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A TWO-PHASE FREE BOUNDARY PROBLEM
FOR HARMONIC MEASURE

 M ENGELSTEIN

A. – We study a 2-phase free boundary problem for harmonic measure first considered
by Kenig and Toro [21] and prove a sharp Hölder regularity result. The central difficulty is that there
is no a priori non-degeneracy in the free boundary condition. Thus we must establish non-degeneracy
by means of monotonicity formulae.

R. – On étudie un problème dans la frontière libre avec deux phases, initialement examiné
par Kenig et Toro [21], et on montre un résultat précis de régularité de Hölder. La difficulté essentielle
est qu’il n’y a pas de conditions a priori de non-dégénérescence dans la condition de frontière libre. Par
conséquent, nous devons déduire la non-dégénérescence en utilisant des formules de monotonie.

1. Introduction

In this paper we consider the following two-phase free boundary problem for harmonic
measure: let Ω+ be an unbounded 2-sided non-tangentially accessible (NTA) domain (see
Definition 2.1) such that log(h) is regular, e.g., log(h) ∈ C0,α(∂Ω). Here h := dω−

dω+ and
ω± is the harmonic measure associated to the domain Ω± (Ω− := int((Ω+)c)). We ask the
question: what can be said about the regularity of ∂Ω?

This question was first considered by Kenig and Toro (see [21]) when log(h) ∈ VMO(dω+).
They concluded, under the initial assumption of δ-Reifenberg flatness, that Ω is a vanishing
Reifenberg flat domain (see Definition 2.2). Later, the same problem, without the initial
flatness assumption, was investigated by Kenig, Preiss and Toro (see [22]) and Badger
(see [6] and [7]). Our work is a natural extension of theirs, though the techniques involved
are substantially different.

Our main theorem is:

T 1.1. – Let Ω be a 2-sided NTA domain with log(h) ∈ Ck,α(∂Ω) where k ≥ 0 is
an integer and α ∈ (0, 1).

– When n = 2: ∂Ω is locally given by the graph of a Ck+1,α function.
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860 M. ENGELSTEIN

– When n ≥ 3: there is some δn > 0 such that if δ < δn and Ω is δ-Reifenberg flat, then
∂Ω is locally given by the graph of a Ck+1,α function.

Similarly, if log(h) ∈ C∞ or log(h) is analytic we can conclude (under the same flatness
assumptions above) that ∂Ω is locally given by the graph of a C∞ (resp. analytic) function.

When n > 2, the initial flatness assumption is needed; if n ≥ 4,

Ω = {X ∈ Rn | x2
1 + x2

2 > x2
3 + x2

4}

is a 2-sided NTA domain such that ω+ = ω− on ∂Ω (where the poles are at infinity). As such,
h ≡ 1 but, at zero, this domain is not a graph. In R3, H. Lewy (see [28]) proved that, for k
odd, there are homogeneous harmonic polynomials of degree k whose zero set divides S2

into two domains. The cones over these regions are NTA domains and one can calculate that
log(h) = 0. Again, at zero, ∂Ω cannot be written as a graph. However, these two examples
suggest an alternative to the a priori flatness assumption.

T 1.2. – Let Ω be a Lipschitz domain (that is, ∂Ω can be locally written as the
graph of a Lipschitz function) and let h satisfy the conditions of Theorem 1.1. Then the same
conclusions hold.

The corresponding one-phase problem, “Does regularity of the Poisson kernel imply
regularity of the free boundary?”, has been studied extensively. Alt and Caffarelli (see [4])
first showed, under suitable flatness assumptions, that log(dωdσ ) ∈ C0,α(∂Ω) implies ∂Ω is
locally the graph of aC1,s function. Jerison (see [17]) showed s = α above and, furthermore,
if log(dωdσ ) ∈ C1,α(∂Ω), then ∂Ω is locally the graph of a C2,α function (from here, higher
regularity follows from classical work of Kinderlehrer and Nirenberg, [25]). Later, Kenig and
Toro (see [24]) considered when log(dωdσ ) ∈ VMO(dσ) and concluded that ∂Ω is a vanishing
chord-arc domain (see Definition 1.8 in [24]).

Two-phase elliptic problems are also an object of great interest. The paper of Alt,
Caffarelli and Friedman (see [5]) studied an “additive” version of our problem. Later,
Caffarelli (see [10] for part one of three) studied viscosity solutions to an elliptic free
boundary problem similar to our own. This work was then extended to the non-homogenous
setting by De Silva, Ferrari and Salsa (see [12]). It is important to note that, while our
problem is related to those studied above, we cannot immediately apply any of their results.
In each of the aforementioned works there is an a priori assumption of non-degeneracy
built into the problem (either in the class of solutions considered or in the free boundary
condition itself). Our problem has no such a priori assumption. Unsurprisingly, the bulk of
our efforts goes into establishing non-degeneracy.

Even in the case of n = 2, where the powerful tools of complex analysis can be brought to
bear, our non-degeneracy results seem to be new. We briefly summarize some previous work
in this area: let Ω+ be a simply connected domain bounded by a Jordan curve and Ω− = Ω+

c
.

Then ∂Ω = G+ ∪ S+ ∪N+ where

– ω+(N+) = 0.
– ω+ � H 1 � ω+ on G+.
– Every point of G+ is the vertex of a cone in Ω+. Furthermore, if C+ is the set of all

cone points for Ω+, then H 1(C+\G+) = 0 = ω+(C+\G+).
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A TWO-PHASE FREE BOUNDARY PROBLEM FOR HARMONIC MEASURE 861

– H 1(S+) = 0.

– Forω+ a.eQ ∈ S+ we have lim supr↓0
ω+(B(Q,r))

r = +∞ and lim infr↓0
ω+(B(Q,r))

r = 0

with a similar decomposition for ω−. These results are due to works by Makarov, McMillan,
Pommerenke and Choi. See Garnett and Marshall [13], Chapter 6 for an introductory treat-
ment and more precise references.

In our context, that is where ω+ � ω− � ω+, Ω is a 2-sided NTA domain and
log(h) ∈ C0,α(∂Ω), one can use the Beurling monotonicity formula (see Lemma 1 in [8])

to show lim supr↓∞
ω±(B(x,r))

r < ∞. Therefore, ω±(S+ ∪ S−) = 0 and we can write
∂Ω = Γ ∪ N where ω±(N) = 0 and Γ is 1-rectifiable (i.e., the image of countably many
Lipschitz maps) and has σ-finite H 1-measure. This decomposition is implied for n > 2 by
the results of Section 5. In order to prove increased regularity one must bound from below
lim infr↓0

ω+(B(Q,r))
r , which we do in Corollary 6.4 and seems to be an original contribution

to the literature.
The approach is as follows: after establishing some initial facts about blowups and the

Lipschitz continuity of the Green’s function (Sections 3 and 4) we tackle the issue of degen-
eracy. Our main tools here are the monotonicity formulae of Almgren, Weiss and Monneau
which we introduce in Section 5. Unfortunately, in our circumstances these functionals are
not actually monotonic. However, and this is the key point, we show that they are “almost
monotonic” (see, e.g., Theorem 5.8). More precisely, we bound the first derivative from
below by a summable function. From here we quickly conclude pointwise non-degeneracy.
In Section 6, we use the quantitative estimates of the previous section to prove uniform
non-degeneracy and establish the C1 regularity of the free boundary.

At this point the regularity theory developed by De Silva et al. (see [12]) and Kinderlehrer
et al. (see [25] and [26]) can be used to produce the desired conclusion. However, these
results cannot be applied directly and some additional work is required to adapt them to our
situation. These arguments, while standard, do not seem to appear explicitly in the literature.
Therefore, we present them in detail here. Section 7 adapts the iterative argument of De
Silva, Ferrari and Salsa [12] to get C1,s regularity for the free boundary. In Section 8 we first
describe how to establish optimalC1,α regularity and thenC2,α regularity (in analogy to the
aforementioned work of Jerison [17]). This is done through an estimate in the spirit of Agmon
et al. ([1] and [2]) which is proven in the appendix. Higher regularity then follows easily.

Acknowledgements. – This research was partially supported by the Department of Defense’s
National Defense Science and Engineering Graduate Fellowship as well as by the National
Science Foundation’s Graduate Research Fellowship, Grant No. (DGE-1144082). We thank
the anonymous referee for several helpful comments and corrections. The author would
also like thank Professor Carlos Kenig for his guidance, support and, especially, boundless
patience.

2. Notation and Definitions

Throughout this article Ω ⊂ Rn is an open set and our object of study. For simplicity,
Ω+ := Ω and Ω− := Ω

c
. To avoid technicalities we will assume that Ω± are both unbounded

and let u± be the Green’s function of Ω± with a pole at∞ (our methods and theorems apply
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862 M. ENGELSTEIN

to finite poles and bounded domains). Let ω± be the harmonic measure of Ω± associated
to u±; it will always be assumed that ω− � ω+ � ω−. Define h = dω−

dω+ to be the Radon-
Nikodym derivative and unless otherwise noted, it will be assumed that log(h) ∈ C0,α(∂Ω).

Finally, for a measurable f : Rn → R, we write f+(x) := |f(x)|χ{f>0}(x) and
f−(x) := |f(x)|χ{f<0}(x). In particular, f(x) = f+(x) − f−(x). Define u± outside
of Ω± to be identically zero and set u(x) := u+(x) − u−(x) (so that these two notational
conventions comport with each other).

Recall the definition of an non-tangentially accessible (NTA) domain.

D 2.1 (See [18] Section 3). – A domain Ω ⊂ Rn is non-tangentially accessible,
(NTA), if there are constants M > 1, R0 > 0 for which the following is true:

1. Ω satisfies the corkscrew condition: for any Q ∈ ∂Ω and 0 < r < R0 there exists
A = Ar(Q) ∈ Ω such that M−1r < dist(A, ∂Ω) ≤ |A−Q| < r.

2. Ω
c

satisfies the corkscrew condition.
3. Ω satisfies the Harnack chain condition: let ε > 0, x1, x2 ∈ Ω∩B(R0/4, Q) for aQ ∈ ∂Ω

with dist(xi, ∂Ω) > ε and |x1 − x2| ≤ 2kε. Then there exists a “Harnack chain” of
overlapping balls contained in Ω connecting x1 to x2. Furthermore we can ensure that
there are no more thanMk balls and that the diameter of each ball is bounded from below
by M−1 mini=1,2{dist(xi, ∂Ω)}

When Ω is unbounded we also require that Rn\∂Ω has two connected components and that
R0 =∞.

We say that Ω is 2-sided NTA if both Ω and Ω
c

are NTA domains. The constantsM,R0 are
referred to as the “NTA constants” of Ω.

It should be noted that our analysis in this paper will be mostly local. As such we need only
that our domains be “locally NTA” (i.e., that M,R can be chosen uniformly on compacta).
However, for the sake of simplicity we will work only with NTA domains. We now recall the
definition of a Reifenberg flat domain.

D 2.2. – For Q ∈ ∂Ω and r > 0,

θ(Q, r) := inf
P∈G(n,n−1)

D[∂Ω ∩B(Q, r), {P +Q} ∩B(Q, r)],

where D[A,B] is the Hausdorff distance between A,B.
For δ > 0, R > 0 we then say that Ω is (δ,R)-Reifenberg flat if for all Q ∈ ∂Ω, r < R we

have θ(Q, r) ≤ δ. When Ω is unbounded we say it is δ-Reifenberg flat if the above holds for all
0 < r <∞.

Additionally, if K ⊂⊂ Rn we can define

θK(r) = sup
Q∈K∩∂Ω

θ(Q, r).

Then we say that Ω is vanishing Reifenberg flat if for all K ⊂⊂ Rn, lim supr↓0 θK(r) = 0.

R 2.3. – Recall that a δ-Reifenberg flat NTA domain is not necessarily a Lipschitz
domain, and a Lipschitz domain need not be δ-Reifenberg flat. However, all Lipschitz domains
are (locally) 2-sided NTA domains (see [18] for more details and discussion).

Finally, let us make two quick technical points regarding h.

4 e SÉRIE – TOME 49 – 2016 – No 4



A TWO-PHASE FREE BOUNDARY PROBLEM FOR HARMONIC MEASURE 863

R 2.4. – For every Q ∈ ∂Ω, we have limr↓0
ω−(B(Q,r))
ω+(B(Q,r)) = h(Q) (in particular the

limit exists for every Q ∈ ∂Ω).

Justification of Remark. – By assumption, dω−

dω+ agrees with a Hölder continuous
function h where defined (i.e., ω+-almost everywhere). For any Q ∈ ∂Ω we can rewrite
limr↓0

ω−(B(Q,r))
ω+(B(Q,r)) = limr↓0 −

∫
B(Q,r)

dω−

dω+ (P )dω+(P ) = limr↓0 −
∫
B(Q,r)

h(P )dω+(P ). This
final limit exists and is equal to h(Q) everywhere because h is continuous.

We also note that h is only defined on ∂Ω. However, by Whitney’s extension theorem,
we can extend h to h̃ : Rn → R such that h̃ = h on ∂Ω and log(h̃) ∈ Cα(Rn) (or, if
log(h) ∈ Ck,α(∂Ω), then log(h̃) ∈ Ck,α(Rn)). For simplicity’s sake, we will abuse notation
and let h refer to the function defined on all of Rn.

3. Blowups on NTA and Lipschitz Domains

For any Q ∈ ∂Ω and any sequence of rj ↓ 0 and Qj ∈ ∂Ω such that Qj → Q, define the
pseudo-blowup as follows:

(3.1)

Ωj :=
1

rj
(Ω−Qj)

u±j (x) :=
u±(rjx+Qj)r

n−2
j

ω±(B(Qj , rj))

ω±j (E) :=
ω±(rjE +Qj)

ω±(B(Qj , rj))
.

A pseudo-blowup where Qj ≡ Q, is a blowup. Kenig and Toro characterized pseudo-
blowups of 2-sided NTA domains when log(h) ∈ VMO(dω+).

T 3.1 ([21], Theorem 4.4). – Let Ω± ⊂ Rn be a 2-sided NTA domain,u± the asso-
ciated Green’s functions and ω± the associated harmonic measures. Assume log(h) ∈ VMO(dω+).
Then, along any pseudo-blowup, there exists a subsequence (which we shall relabel for
convenience) such that (1) Ωj → Ω∞ in the Hausdorff distance uniformly on compacta,
(2) u±j → u±∞ uniformly on compact sets (3) ω±j ⇀ ω±∞. Furthermore, u∞ := u+

∞ − u−∞ is
a harmonic polynomial (whose degree is bounded by some number which depends on the
dimension and the NTA constants of Ω) and ∂Ω∞ = {u∞ = 0}.

Additionally, if n = 2 or Ω is a δ-Reifenberg flat domain with δ > 0 small enough (depending
on n), then u∞(x) = xn (possibly after a rotation). In particular, Ω is vanishing Reifenberg
flat.

This result plays a crucial role in our analysis. In particular, the key estimate in (5.5)
follows from vanishing Reifenberg flatness. Therefore, in order to prove Theorem 1.2, we
must establish an analogous result when Ω is a Lipschitz domain.

C 3.2. – Let Ω ⊂ Rn be as in Theorem 1.2. Then, along any pseudo-blowup we
have (after a possible rotation) that u∞(x) = xn. In particular, Ω± is a vanishing Reifenberg
flat domain.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



864 M. ENGELSTEIN

Proof. – We first recall Remark 2.3, which states that any Lipschitz domain is a (locally)
2-sided NTA domain. Therefore, the conditions of Theorem 3.1 are satisfied. A result of
Badger (Theorem 6.8 in [7]) says that, under the assumptions of Theorem 3.1, the set of
points where all blowups are 1-homogenous polynomials is in fact vanishing Reifenberg flat
(“locally Reifenberg flat with vanishing constant” in the terminology of [7]). Additionally,
graph domains (i.e., domains whose boundaries are locally the graph of a function) are closed
under blowups, so all blowups of ∂Ω can be written locally as the graph of a some function.
Observe that the zero set of a k-homogenous polynomial is a graph domain if and only
if k = 1. In light of all the above, it suffices to show that all blowups of ∂Ω are given by the
zero set of a homogenous harmonic polynomial. We now recall another result of Badger.

T ([6], Theorem 1.1). – If Ω is an NTA domain with harmonic measure ω and
Q ∈ ∂Ω, then Tan(ω,Q) ⊂ Pd ⇒ Tan(ω,Q) ⊂ Fk for some 1 ≤ k ≤ d. Pd is the set
of harmonic measures associated to a domain of the form {h > 0}, where h is a harmonic
polynomial of degree ≤ d. Fk is the set of harmonic measures associated to a domain of the
form {h > 0}, where h is a homogenous harmonic polynomial of degree k.

In other words, if every blowup of an NTA domain is the zero set of a degree≤ d harmonic
polynomial, then every blowup of that domain is the zero set of a k-homogenous harmonic
polynomial. This result, combined with Theorem 3.1, immediately implies that all blowups
of ∂Ω are given by the zero set of a k-homogenous harmonic polynomial. By the arguments
above, k = 1 and ∂Ω is vanishing Reifenberg flat.

That u∞ = xn (as opposed to kxn for some k 6= 1) follows from the fact that
ω∞(B(0, 1)) = limi ωi(B(0, 1)) ≡ 1, and that u±∞ is the Green’s function associated
to ω∞.

Hereafter, we can assume, without loss of generality, that Ω is a vanishing Reifenberg flat
domain and that all pseudo-blowups are 1-homogenous polynomials.

4. u is Lipschitz

The main aim of this section is to prove that u is locally Lipschitz. (1) We adapt the method
of Alt, Caffarelli and Friedman ([5], most pertinently Section 5) which uses the following
monotonicity formula to establish Lipschitz regularity for an “additive” two phase free
boundary problem.

T 4.1 ([5], Lemma 5.1). – Let f be any function in C0(B(x0, R)) ∩W 1,2(B(x0, R))

where f(x0) = 0 and f is harmonic in B(x0, R)\{f = 0}. Then

J(x, r) :=
1

r2

(∫
B(x,r)

|∇f+|2

|x− y|n−2
dy

)1/2(∫
B(x,r)

|∇f−|2

|x− y|n−2
dy

)1/2

is increasing in r ∈ (0, R) and is finite for all r in that range.

(1) NB: In this section we need only assume that log(h) ∈ C(∂Ω).
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A TWO-PHASE FREE BOUNDARY PROBLEM FOR HARMONIC MEASURE 865

In a 2-sided NTA domain, u ∈ C0(B(Q,R))∩W 1,2(B(Q,R)) for anyQ ∈ ∂Ω and anyR
(as such domains are “admissible” see [22], Lemma 3.6). This monotonicity immediately
implies upper bounds on ω±(B(Q,r))

rn−1 .

C 4.2. – Let K ⊂⊂ Rn be compact. There is a 0 < C ≡ CK,n <∞ such that

sup
0<r≤1

sup
Q∈K∩∂Ω

ω±(B(Q, r))

rn−1
< C.

Proof. – Using Theorem 4.1 one can prove that

ω+(B(Q, r))

rn−1

ω−(B(Q, r))

rn−1
≤ C‖u‖L2(B(Q,4)), ∀0 < r ≤ 1,

(see Remark 3.1 in [22]). Note that

sup
1≥r>0,Q∈∂Ω∩K

(
ω±(B(Q, r))

rn−1

)2

= sup
1≥r>0,Q∈∂Ω∩K

ω+(B(Q, r))

rn−1

ω−(B(Q, r))

rn−1

ω±(B(Q, r))

ω∓(B(Q, r))

≤ sup
P∈∂Ω, dist(P,K)≤1

h∓1(P ) sup
1≥r>0,Q∈∂Ω∩K

ω+(B(Q, r))

rn−1

ω−(B(Q, r))

rn−1
.

By continuity, log(h) is bounded on compacta and so we are done.

Blowup analysis connects the Lipschitz continuity of u to the boundedness of ω
±(B(Q,r))
rn−1 .

L 4.3. – Let K ⊂⊂ Rn be compact, Q ∈ K ∩ ∂Ω and 1 ≥ r > 0. Then there is a
constant C > 0 (which depends only on dimension and K) such that

1

r
−
∫
∂B(Q,r)

|u| < C.

Proof. – We rewrite 1
r −
∫
∂B(Q,r)

|u| = 1
r −
∫
∂B(0,1)

|u(ry +Q)|dσ(y). Standard estimates on

NTA domains implyu±(ry+Q) ≤ CKu±(A±(Q, r)) ≤ CK ω±(B(Q,r))
rn−2 (see [18], Lemmas 4.4

and 4.8). So
1

r
−
∫
∂B(Q,r)

|u| ≤ CK
(
ω+(B(Q, r))

rn−1
+
ω−(B(Q, r))

rn−1

)
.

Corollary 4.2 implies the desired result.

We then prove Lipschitz continuity around the free boundary.

P 4.4. – If K ⊂⊂ Rn is compact then |Du(x)| < C ≡ C(n,K) < ∞ a.e.
in K.

Proof. – As u is analytic away from ∂Ω and u ≡ 0 on ∂Ω we can conclude that Du exists
a.e.

Pick x ∈ K and, without loss of generality, let x ∈ Ω+. Define ρ(x) := dist(x, ∂Ω)

and let Q ∈ ∂Ω be such that ρ(x) = |x − Q|. If ρ > 1/5, then elliptic regularity implies
|Du(x)| ≤ C(n,K).

So we may assume that ρ < 1/5. A standard estimate yields

(4.1) |Du(x)| ≤ C

ρ
−
∫
∂B(x,ρ)

|u(y)|dσ(y).
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We may pick 3ρ < σ < 5ρ such that y ∈ ∂B(x, ρ)⇒ y ∈ B(Q, σ). As |u| is subharmonic
and dist(y, ∂B(Q, σ)) > σ/3 we may estimate

|u(y)| ≤ c(n)

∫
∂B(Q,σ)

σ2 − |y −Q|2

σ|y − z|n
|u(z)|dσ(z) ≤ c−

∫
∂B(Q,σ)

|u(z)|dσ(z)
Lem 4.3
≤ Cσ ≤ C ′ρ.

This estimate, with (4.1), implies the Lipschitz bound.

Consider any pseudo-blowup Qj → Q, rj ↓ 0. It is clear that uj is a Lipschitz function
(though perhaps not uniformly in j). If φ ∈ C∞c (B1;Rn) then Corollary 3.2 implies (after a
possible rotation)∫

φ · ∇u±j = −
∫

(∇ · φ)u±j
j→∞−−−→ −

∫
(∇ · φ)(xn)± =

∫
φ · enχH± .

Because ∇u±j converges in the weak-∗ topology on L∞(B1;Rn), |∇u±j | is bounded
in L∞(B1). Therefore, |∇u±j | converges in the weak-∗ topology on L∞(B1) to some func-

tion f . However, as ∇u±j
∗
⇀ enχH± it must be true that |∇u±j | converges pointwise to χH±

and thus f = χH± (more generally, converges to the indicator function of some half space
which may depend on the blowup sequence taken).

The existence of this weak-∗ limit allows us to prove that Θn−1(ω±, Q) := limr↓0
ω±(B(Q,r))

rn−1

exists, and is finite, everywhere on ∂Ω (as opposed to H n−1-almost everywhere). Let rj ↓ 0;

one can compute that J(Q, rj) =
ω+(B(Q,rj))

rn−1
j

ω−(B(Q,rj))

rn−1
j

JQ,rj (0, 1) where

JQ,rj (0, s) :=
1

s2

(∫
B(0,s)

|∇u+
j (y)|2

|y|n−2
dy

)1/2(∫
B(0,s)

|∇u−j (y)|2

|y|n−2
dy

)1/2

and uj is a blowup along the sequence Qj ≡ Q and rj ↓ 0. By the arguments above, |∇u±j |2
converges in the weak-∗ topology to the indicator function of some halfspace. Therefore,

JQ,rj (0, 1)
j→∞−−−→ c(n), where c(n) is some constant independent of rj ↓ 0 (the halfspace

may depend on the sequence, but the integral does not). Furthermore, by Theorem 4.1
J(Q, 0) := limr↓0 J(Q, r) exists. It follows that

lim
r↓0

ω+(B(Q, r))

rn−1

ω−(B(Q, r))

rn−1
=
J(Q, 0)

c(n)
.

In particular, the limit on the left exists for every Q ∈ ∂Ω, which (given Remark 2.4) implies
Θn−1(ω±, Q) exists for every Q ∈ ∂Ω.

5. Non-degeneracy of Θn−1(ω±, Q)

In this section we show Θn−1(ω±, Q) > 0 for all Q ∈ ∂Ω (Proposition 5.10). Let

(5.1) v(Q)(x) := h(Q)u+(x)− u−(x), Q ∈ ∂Ω.

For any rj ↓ 0, we define the blowup of v(Q) along rj to be v(Q)
j (x) :=

rn−2
j v(Q)(rjx+Q)

ω−(B(Q,rj))
. Let

us make some remarks concerning v(Q) and its blowups.

R 5.1. – The following hold for any Q ∈ ∂Ω.

– For any compact K, we have supQ∈K∩∂Ω ‖v(Q)‖W 1,∞
loc (Rn) <∞.
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– v
(Q)
j (x)→ x · en uniformly on compacta (after passing to a subsequence and a possible

rotation). Additionally (as above), we have |∇v(Q)
j |

∗
⇀ 1 in L∞.

– If the non-tangential limit of |∇v(Q)| at Q exists it is equal to Θn−1(ω−, Q).

Justification of Remarks. – The first two statements follow from the work in Section 4.

To prove the third statement we first notice

(5.2) ∇v(Q)
j (x) =

rn−1
j ∇v(Q)(rjx+Q)

ω−(B(Q, rj))
.

The second statement implies limj→∞ |∇v(Q)
j (x)| = 1 almost everywhere. The result follows.

5.1. Almgren’s Frequency Formula

Remark 5.1 hints at a connection between the degeneracy of Θn−1(ω−, Q) and that of the
non-tangential limit of∇v(Q). This motivates the use of Almgren’s frequency function (first
introduced in [3]).

D 5.2. – Let f ∈ H1
loc(Rn) and pick x0 ∈ {f = 0}. Define

H(r, x0, f) =

∫
∂Br(x0)

f2,

D(r, x0, f) =

∫
Br(x0)

|∇f |2,

and finally

N(r, x0, f) =
rD(r, x0, f)

H(r, x0, f)
.

Almgren first noticed that when f is harmonic, r 7→ N(r, x0, f) is absolutely continuous
and monotonically decreasing as r ↓ 0. Furthermore, N(0, x0, f) is an integer and is the
order to which f vanishes at x0 (these facts first appear in [3]. See [29] for proofs and a gentle
introduction).

Throughout the rest of this subsection we consider v ≡ v(Q) and, for ease of notation, set
Q = 0. v may not be harmonic and thus N(r, 0, v) may not be monotonic. However, in the
sense of distributions, the following holds:

(5.3) ∆v(x) = (h(0)dω+ − dω−)|∂Ω =

(
h(0)

h(x)
− 1

)
dω−|∂Ω.

Therefore, log(h) ∈ Cα(∂Ω) implies that |∆v(x)| ≤ C|x|αdω−|∂Ω. That v is “almost
harmonic” will imply that N is “almost monotonic” (see Lemma 5.6).

When estimating N ′(r, 0, v) we reach a technical difficulty; a priori v is merely Lipschitz,
and so∇v is not defined everywhere. To address this, we will work instead with vε = v ∗ ϕε,
where ϕ is a C∞ approximation to the identity (i.e., supp ϕ ⊂ B1 and

∫
ϕ = 1). Let

Nε(r) := N(r, 0, vε) and similarly define Hε, Dε.
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R 5.3. – The following are true:

lim
r↓0

N(r, 0, v) = 1

Dε(r) =

∫
∂Br

vε(vε)νdσ −
∫
Br

vε∆vε

d

dr
Dε(r) =

n− 2

r

∫
Br

|∇vε|2dx+ 2

∫
∂Br

(vε)
2
ν −

2

r

∫
Br

〈x,∇vε〉∆vεdx

d

dr
Hε(r) =

n− 1

r
Hε(r) + 2

∫
∂Br

vε(vε)νdσ.

Proof. – The second equation follows from integration by parts and the third (originally
observed by Rellich) can be obtained using the change of variables y = x/r. The final
equation can be proven in the same way as the third.

To establish the first equality we take blowups. Pick any rj ↓ 0. One computes,

N(rj , 0, v) =

∫
B1
|∇vj |2∫

∂B1
v2
j

.

Recall Remark 5.1; vj → xn uniformly on compacta and |∇vj |
∗
⇀ 1 in L∞ (perhaps passing

to subsequences and rotating the coordinate system). Therefore, limj→∞N(rj , 0, v) =

limj→∞N(1, 0, vj) = N(1, 0, xn). Almgren (in [3]) proved that if p is a 1-homogenous
polynomial, then N(r, 0, p) ≡ 1 for all r. It follows that limj→∞N(rj , 0, v) = 1.

With these facts in mind we calculate N ′ε(r).

(5.4)
H2
ε (r)N ′ε(r) = 2r

(∫
∂Br

(vε)
2
νdσ

∫
∂Br

v2
εdσ −

[∫
∂Br

vε(vε)νdσ

]2
)

+ 2r

∫
Br

vε∆vεdx

∫
∂Br

vε(vε)νdσ − 2Hε(r)

∫
Br

〈x,∇vε〉∆vεdx

Derivation of (5.4). – By the quotient rule

H2
ε (r)N ′ε(r) = Dε(r)Hε(r) + rD′ε(r)Hε(r)− rDε(r)H

′
ε(r).

Using the formulae for H ′ε, D
′
ε found in Remark 5.3 we rewrite the above as

H2
ε (r)N ′ε(r) = Dε(r)Hε(r) + rHε(r)

(
n− 2

r

∫
Br

|∇vε|2dx+ 2

∫
∂Br

(vε)
2
ν −

2

r

∫
Br

〈x,∇vε〉∆vεdx
)

− rDε(r)

(
n− 1

r
Hε(r) + 2

∫
∂Br

vε(vε)νdσ

)
.

Distribute and combine terms to get

H2
ε (r)N ′ε(r) =

(
Dε(r)Hε(r) + (n− 2)Hε(r)

∫
Br

|∇vε|2dx− (n− 1)Dε(r)Hε(r)

)
+ 2r

(
Hε(r)

∫
∂Br

(vε)
2
νdσ −Dε(r)

∫
∂Br

vε(vε)νdσ

)
− 2Hε(r)

∫
Br

〈x,∇vε〉∆vεdx.
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The first set of parenthesis above is equal to zero (recalling the definition ofDε(r)). In the
second set of parenthesis use the formula for Dε(r) found in Remark 5.3. This gives us

H2
ε (r)N ′ε(r) = 2r

(
Hε(r)

∫
∂Br

(vε)
2
νdσ −

(∫
∂Br

(vε)νvεdσ

)2
)

+ 2r

∫
Br

vε∆vεdx

∫
∂Br

vε(vε)νdσ − 2Hε(r)

∫
Br

〈x,∇vε〉∆vεdx.

The difference in parenthesis on the right hand side of (5.4) is positive by the Cauchy-
Schwartz inequality. Thus, to establish a lower bound on N ′ε(r), it suffices to consider the
other terms in the equation.

L 5.4. – Let ε < r and define Eε(r) =
∫
Br
〈x,∇vε〉∆vεdx. Then there exists a

constant C (independent of r, ε) such that |Eε(r)| ≤ Cr1+αω−(B(0, r)).

Proof. – Since ∆vε = (∆v) ∗ ϕε in terms of distributions, we can move the convolution
from one term to the other:∫

Br

〈x,∇vε〉∆vεdx =

∫
[(χBr (x) 〈x,∇vε〉) ∗ ϕε]∆vdx.

Evaluate ∆v, as in (5.3), to obtain∣∣∣∣∫
Br

〈x,∇vε〉∆vεdx
∣∣∣∣ =

∣∣∣∣∫ (χBr (x) 〈x,∇vε〉)ε
(
h(0)

h(x)
− 1

)
dω−

∣∣∣∣
≤ Cr1+α

∫
Br+ε

(|∇v|ε)εdω−,

where the last inequality follows from log(h) ∈ Cα, and |x| < C(r+ε) < Cr on the domain
of integration. The desired estimate then follows from the Lipschitz continuity of v and that
the harmonic measure of an NTA domain is doubling (see [18], Theorem 2.7).

L 5.5. – Let ε� r. ThenHε(r) > cω
−(B(0,r))2

rn−3 for some constant c > 0 independent
of r, ε > 0.

Proof. – By the corkscrew condition (see Definition 2.1 condition (1)) on Ω, there is a
point x0 ∈ ∂Br∩Ω such that dist(x0, ∂Ω) > cr (c depends only on the NTA properties of Ω).
The Harnack chain condition (see Definition 2.1 condition (3)) gives v(x0) ∼ v(Ar(0)).
The Harnack inequality then implies that, for ε � r there is a universal k such that
for y ∈ B(x0, kr) we have vε(y) ∼ v(x0) ∼ v(Ar(0)).

Therefore, there is a subset of ∂Br (with surface measure≈ k|∂Br|) on which vε is propor-

tional to v(Ar(0)). We then recall that in an NTA domain we have v(Ar(0)) ∼ ω−(B(0,r))
rn−2

([18], Lemma 4.8), which proves the desired result.

It is useful now to establish bounds on the growth rate of ω±(B(Q, r)). As Ω is vanishing
Reifenberg flat, ω± is asymptotically optimally doubling ([23], Corollary 4.1). This implies a
key estimate: for any δ > 0 and Q ∈ ∂Ω we have

(5.5) lim
r↓0

rn−1+δ

ω−(B(Q, r))
= 0.
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L 5.6. – Let ε� R. There exists a function, C(R, ε), such that

∀R/4 < r < R, Nε(R) + C(R, ε)(R− r) ≥ Nε(r)(5.6)

C(R, ε)R ≤ kRα/2(5.7)

where k > 0 is a constant independent of ε,R (as long as ε� R).

Proof. – If C(R, ε) := supR/4<r<R(Nε(r)
′)−, the first claim of our lemma is true by

definition.

Recall (5.4):

H2
ε (r)N ′ε(r) = 2r

(∫
∂Br

(vε)
2
νdσ

∫
∂Br

v2
εdσ −

[∫
∂Br

vε(vε)νdσ

]2
)

+ 2r

∫
Br

vε∆vεdx

∫
∂Br

vε(vε)νdσ − 2Hε(r)Eε(r).

As mentioned above, the difference in parenthesis is positive by the Cauchy-Schwartz
inequality. Therefore

(N ′ε(r))
− ≤ 2

∣∣∣∣Eε(r)Hε(r)

∣∣∣∣+

∣∣∣∣∣2r
∫
Br
vε∆vεdx

∫
∂Br

vε(vε)νdσ

Hε(r)2

∣∣∣∣∣ .
(A) Estimating 2r

∫
Br
vε∆vεdx

∫
∂Br

vε(vε)νdσ: On ∂Br, |(vε)ν | < C, |vε| < Cr by
Lipschitz continuity. Therefore, arguing as in Lemma 5.4, we can estimate∣∣∣∣2r ∫

Br

vε∆vεdx

∫
∂Br

vε(vε)νdσ

∣∣∣∣ ≤ Crn+1

∫
Br+ε∩∂Ω

|vε|ε
(
h(0)

h(x)
− 1

)
dω−

≤ Crn+α+2ω−(B(0, r)),

where the last inequality follows from |vε|ε ≤ Cε < Cr on ∂Ω (by Lipschitz continuity).

From Lemma 5.5 it follows that∣∣∣∣∣2r
∫
Br
vε∆vεdx

∫
∂Br

vε(vε)νdσ

Hε(r)2

∣∣∣∣∣ ≤ Crn+α+2r2n−6

ω−(B(0, r))3
= C

(
rn−1+α/6

ω−(B(0, r))

)3

rα/2−1.

(B) Estimating 2
∣∣∣Eε(r)Hε(r)

∣∣∣: Lemma 5.4 and Lemma 5.5 imply

2

∣∣∣∣Eε(r)Hε(r)

∣∣∣∣ ≤ C rn−2+α

ω−(B(0, r))
= C

(
rn−1+α/2

ω−(B(0, r))

)
rα/2−1.

From (5.5) we can conclude

Rn−1+α/2

ω−(B(0, R))
,
R3n−3+α/2

ω−(B(0, R))3

R↓0→ 0.

Combine the estimates in (A) and (B) to conclude that C(ε,R)R ≤ oR(1)Rα/2.

We can now prove a lower bound on the size of Nε(r) for small r.

C 5.7. – lim supε↓0
1
r (Nε(r)− 1) > −Crα/2−1.
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Proof. – As lims↓0N(s) = 1 there is some r′ � r such that |N(r′) − 1| < Crα/2. Now
pick ε � r′ small enough that Lemma 5.6 applies for ε and all r′ < R < r and such that
|Nε(r′)−N(r′)| < Crα/2(recall Nε(ρ)→ N(ρ) for fixed ρ as ε ↓ 0).

Let j be such that 2−jr < r′ < 2−j+1r. Then

Nε(r)−Nε(r′) ≥
j−2∑
`=0

(Nε(2
−`r)−Nε(2−`−1r)) +Nε(2

−j+1r)−Nε(r′)

≥ −C(2−j+1r, ε)(2−j+1r − r′)− 1

2

j−2∑
`=0

C(2−`r, ε)2−`r

Lem5.6
≥ −krα/2

j−1∑
`=0

(2−`)α/2 ≥ −Cαrα/2.

Combining all the inequalities above we have that Nε(r) − 1 > −Crα/2 for small
ε > 0.

5.2. Monneau Monotonicity and Non-degeneracy

Our main tool here will be the Monneau potential, defined for f ∈ H1
loc(Rn) and

p ∈ C∞(Rn),

(5.8) Mx0(r, f, p) :=
1

rn+1

∫
∂Br

(f(x+ x0)− p)2dσ(x).

Monneau, [30], observed that if f is a harmonic function vanishing to first order at x0 and
p is a 1-homogenous polynomial then Mx0 is monotonically decreasing as r ↓ 0.

We follow closely the methods of Garofalo and Petrosyan ([14], see specifically Sections 1.4-
1.5) who studied issues of non-degeneracy in an obstacle problem. Their program, which we
adapt to our circumstances, has two steps: first relate the growth of the Monneau potential
to the growth of Almgren’s frequency function. Second, use this relation to establish lower
bounds on the growth of M and the existence of a limit at zero for M . As before, v ≡ v(Q)

and without loss of generality, Q = 0 ∈ ∂Ω. Additionally, p will always be a 1-homogenous
polynomial. We drop the dependence ofM onQ and v when no confusion is possible. Again
vε = v ∗ϕε, where ϕ is an approximation to the identity. Naturally,Mε(r, p) := M0(r, vε, p).

First we derive Equations (5.9) and (5.10).

(5.9) M ′ε(r, p) =
2

rn+2

∫
∂Br

(vε − p)(x · ∇(vε − p)− (vε − p))dσ.

Derivation of (5.9). – Let x = ry so that Mε(r, p) =
∫
∂B1

(
vε(ry)
r − p(ry)

r

)2

dσ(y).

Differentiating under the integral gives

M ′ε(r, p) =

∫
∂B1

2

(
vε(ry)

r
− p(ry)

r

)(
y

r
· ∇x[vε(ry)− p(ry)]− 1

r2
(vε(ry)− p(ry))

)
dσ(y).

Changing back to x we have that

M ′ε(r, p) =
2

rn+2

∫
∂Br

(vε − p)(x · ∇(vε − p)− (vε − p))dσ(x).
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Next we establish a relation between the derivative of M and the growth rate of N (we
emphasize that (5.10) is true only when p is a 1-homogenous polynomial).

(5.10)
Hε(r)

rn+1
(Nε(r)− 1) = − 1

rn

∫
Br

(vε − p)∆vεdx+ rM ′ε(r, p)/2

Derivation of (5.10). – Recall for all 1-homogenous polynomials p we have N(r, x0, p) ≡ 1.
We “add zero” and distribute to rewrite
Hε(r)

rn+1
(Nε(r)− 1) =

1

rn

∫
Br

|∇(vε − p)|2 + 2∇vε · ∇pdx−
1

rn+1

∫
∂Br

(vε − p)2 + 2vεpdσ.

Transform the first integral on the right hand side using integration by parts,

Hε(r)

rn+1
(Nε(r)− 1)

=
1

rn

∫
∂Br

x

r
· ∇(vε − p)(vε − p) + 2

(x
r
· ∇p

)
vε −

1

rn

∫
Br

(vε − p)∆(vε − p)

+ 2vε∆pdx−
1

rn+1

∫
∂Br

(vε − p)2 + 2vεpdσ.

As p is a 1-homogenous polynomial, ∆p = 0 and x · ∇p− p = 0. The above simplifies to

Hε(r)

rn+1
(Nε(r)− 1) = − 1

rn

∫
Br

(vε−p)∆vε+
1

rn+1

∫
∂Br

(x ·∇(vε−p)− (vε−p))(vε−p)dσ.

In light of (5.9), we are finished.

The above two equations, along with Corollary 5.7, allow us to control the growth of M
from below.

L 5.8. – Let p be any 1-homogenous polynomial. Then for any R > 0 there exists a
constant C (independent of R and p) such that

M(R, p)−M(r, p) ≥ −(C + C‖p‖L∞(∂B1))R
α/2

for any r ∈ [R/4, R].

Proof. – Recall (5.10),

rM ′ε(r, p)/2 =
Hε(r)

rn+1
(Nε(r)− 1) +

1

rn

∫
Br

(vε − p)∆vε.

Consider first the integral on the right hand side and argue as before to estimate,∣∣∣∣ 1

rn

∫
Br

(vε − p)∆vε
∣∣∣∣ ≤ 1

rn

∫
∂Ω∩Br+ε

|vε − p|ε
(
h(x)

h(0)
− 1

)
dω−

≤ C(1 + ‖p‖L∞(∂B1))
ω−(B(0, r))r1+α

rn
,

where |vε| < Cr on ∂Ω because v is Lipschitz and |p(x)| ≤ C‖p‖L∞(∂B1)r because p is

1-homogenous. By Corollary 4.2, ω
−(B(Q,r))
rn−1 is bounded uniformly in r < 1 and in Q ∈ ∂Ω

on compacta. Therefore, | 1
rn

∫
Br

(vε − p)∆vε| ≤ C(1 + ‖p‖L∞(∂B1))r
α.

Returning to (5.10),

lim sup
ε↓0

sup
R/4<r<R

(Mε(r, p)
′)− ≤ C(1 + ‖p‖L∞(∂B1))R

α−1 + lim sup
ε↓0

sup
R/4<r<R

1

r
(Nε(r)− 1).
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The bounds on the growth of N (Corollary 5.7) imply

lim sup
ε↓0

sup
R/4<r<R

(Mε(r, p)
′)− ≤ (C + C‖p‖L∞(∂B1))R

α/2−1,

which is equivalent to the desired result.

When it is not relevant to the analysis (e.g., in the proofs of Lemma 5.9 and Proposi-
tion 5.10 below), we omit the dependence of the constant in Lemma 5.8 on ‖p‖L∞(∂B1).

L 5.9. – Let p be any 1-homogenous polynomial. Then M(0, p) := limr↓0M(r, p)

exists.

Proof. – Let a := lim supr↓0M(r, p). That a < ∞ follows from Lemma 5.8, applied
iteratively (as rα/2−1 is integrable at zero). We claim that there exists a constantC <∞ such
that M(r, p)− a > −Crα/2 for any 0 < r ≤ 1.

On the other hand, a −M(r, p) > −o(1) as r ↓ 0 by the definition of lim sup. This, with
the claim above, implies that limr↓0M(r, p) = a.

Let us now address the claim: take r0 < r. Let k be such that 2−kr ≥ r0 ≥ 2−k−1r. Then,
by Lemma 5.8, we have

M(r, p)−M(r0, p) =

k−1∑
`=0

(M(2−`r, p)−M(2−`−1r, p)) +M(2−kr, p)−M(r0, p)

≥ −Crα/2
∞∑
`=0

(2α/2)−` ≥ −Cαrα/2.

The claim follows if we pick r0 small so that M(r0, p) is arbitrarily close to a.

Finally, we can establish the pointwise non-degeneracy of Θn−1(ω±, Q).

P 5.10. – For all Q ∈ ∂Ω we have Θn−1(ω±, Q) > 0.

Proof. – It suffices to assume Q = 0 and to prove Θn−1(ω−, 0) > 0.
We proceed by contradiction. Pick some rj ↓ 0 so that vj → p uniformly on compacta

(where p is a 1-homogenous polynomial given by Corollary 3.2). Lemma 5.9 implies

M(0, p) = lim
j→∞

M(rj , p) = lim
j→∞

∫
∂B1

(
vj(x)

ω−(B(0, rj))

rn−1
j

− p(rjx)

rj

)2

dσ(x).

As p(rjx)
rj

= p(x) and Θn−1(ω−, 0) = 0, by assumption, we can conclude M(0, p) =
∫
∂B1

p2dσ.
For any j, the homogeneity of p implies

M(rj , p)−M(0, p) =
1

rn+1
j

∫
∂Brj

(v − p)2 −
∫
∂B1

p2

=

∫
∂B1

(
vj(y)

ω−(B(0, rj))

rn−1
j

− p

)2

− p2dσ

=

∫
∂B1

(
vj(y)

ω−(B(0, rj))

rn−1
j

)2

− 2vj(y)
ω−(B(0, rj))

rn−1
j

p(y)dσ ≥ −Crα/2j ,

where the last inequality follows from iterating Lemma 5.8 (as in the proof of Lemma 5.9).
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Rewrite the above equation as

ω−(B(0, rj))

rn−1
j

∫
∂B1

vj(y)2ω
−(B(0, rj))

rn−1
j

− 2vj(y)p(y)dσ ≥ −Crα/2j .

Divide by ω−(B(0, rj))/r
n−1
j and let j → ∞. By (5.5) the right hand side vanishes and, by

assumption,ω−(B(0, rj))/r
n−1
j → 0. In the limit we obtain−2

∫
∂B1

p2 ≥ 0, a contradiction.

At this point we have proven that ∞ > Θn−1(ω−, Q) > 0 everywhere on ∂Ω and that
Θn−1(ω−, Q) is bounded uniformly from above on compacta. Using standard tools from
geometric measure theory this implies, for all dimensions, the decomposition mentioned in
the introduction (for n = 2): ∂Ω = Γ ∪ N , where ω±(N) = 0 and Γ is a (n − 1)-rectifiable
set with σ-finite H n−1 measure.

6. Uniform non-degeneracy and initial regularity

6.1. Θn−1(ω±, Q) is bounded uniformly away from 0.

In order to establish greater regularity for ∂Ω we need a uniform lower bound. Again the
method of Garofalo and Petrosyan ([14], specifically Theorems 1.5.4 and 1.5.5) guides us.
Our first step is to show that there is a unique tangent plane at every point.

L 6.1. – For each Q ∈ ∂Ω there exists a unique 1-homogenous polynomial, pQ, such
that for any rj ↓ 0 we have vj → pQ uniformly on compacta (i.e., the limit described in
Corollary 3.2 is unique).

Proof. – We prove it for Q = 0. Pick rj ↓ 0 so that vrj → p uniformly on compacta for
some 1-homogenous polynomial p. Let r̃j ↓ 0 be another sequence so that vr̃j → p̃, where
p̃ is also a 1-homogenous polynomial.

By Lemma 5.9, M(0,Θn−1(ω−, 0)p) exists. Therefore,

(6.1)

M(0,Θn−1(ω−, 0)p) = lim
j→∞

M(rj ,Θ
n−1(ω−, 0)p)

= lim
j→∞

∫
∂B1

(
ω−(B(0, rj))

rn−1
j

vrj (x)−Θn−1(ω−, 0)p

)2

dσ

= 0.

The last equality above follows by the dominated convergence theorem and that vrj → p.
Similarly,

M(0,Θn−1(ω−, 0)p) = lim
j→∞

M(r̃j ,Θ
n−1(ω−, 0)p)

= lim
j→∞

∫
∂B1

(
ω−(B(0, r̃j))

r̃n−1
j

vr̃j (x)−Θn−1(ω−, 0)p

)2

= (Θn−1(ω−, 0))2

∫
∂B1

(p̃− p)2dσ.

Again the last equality follows by dominated convergence theorem and that vr̃j → p̃. As
Θn−1(ω−, 0) > 0 (Proposition 5.10), we have p = p̃.
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We should note that Lemma 5.9 (the existence of a limit at 0) and Lemma 5.8 (estimates on
the derivatives ofM ) both hold forMQ(r, v(Q), p) where p is any 1-homogenous polynomial
and (as before) v(Q)(y) = h(Q)u+(y)−u−(y). Furthermore the constants in Lemma 5.8 are
uniform for Q in a compact set. We now prove the main result of this subsection.

P 6.2. – The function Q 7→ p̃Q := Θn−1(ω−, Q)pQ is a continuous function
from ∂Ω→ C(Rn).

Proof. – As p̃Q is a 1-homogenous polynomial, it suffices to show that Q 7→ p̃Q is a
continuous function from ∂Ω→ L2(∂B1).

Pick ε > 0 and Q ∈ ∂Ω. Equation (6.1) implies that MQ(0, v(Q), p̃Q) = 0. In particular,
there is a rε > 0 such that if r ≤ rε then MQ(r, v(Q), p̃Q) < ε. Shrink rε so that rα/2ε < ε.

We have v(Q) ∈W 1,∞
loc (Rn) (uniformly for Q in a compact set) and h ∈ Cα(∂Ω), so there

exists a δ = δ(rε, ε) > 0 such that for all P ∈ Bδ(Q) and x ∈ B1(0) we have

(6.2) |v(Q)(x+Q)− v(P )(x+ P )| < εrε.

Since supP∈Bδ(Q) ‖v(P )(−+ P )‖L∞(∂Brε ) < rε, (6.2) immediately implies that∣∣∣∣∣MQ(rε, v
(Q), p̃Q)− 1

rn+1
ε

∫
∂Brε

(v(P )(x+ P )− p̃Q)2

∣∣∣∣∣ < Cε, ∀P ∈ Bδ(Q).

By definition, MQ(rε, v
(Q), p̃Q) < ε, so it follows that

MP (rε, v
(P ), p̃Q) ≡ 1

rn+1
ε

∫
∂Brε

(v(P )(x+ P )− p̃Q)2 < Cε, ∀P ∈ Bδ(Q).

Repeated application of Lemma 5.8 yields,

MP (rε, v
(P ), p̃Q)−MP (0, v(P ), p̃Q) > −(C + C‖p̃Q‖L∞(∂B1))r

α/2
ε , ∀P ∈ Bδ(Q)⇒

Cε > MP (0, v(P ), p̃Q) =

∫
∂B1

(p̃P − p̃Q)2, ∀P ∈ Bδ(Q).

That the first line implies the second follows from ‖p̃Q‖L∞(∂B1) = Θn−1(ω−, Q) < C

uniformly on compacta, rα/2ε < ε and MP (rε, v
(P ), p̃Q) < Cε. The equality in the second

line follows from the standard blowup argument (see the proof of Lemma 6.1) and allows us
to conclude that Q 7→ p̃Q is continuous from ∂Ω→ L2(∂B1).

C 6.3. – The function Q 7→ Θn−1(ω−, Q) is continuous. Additionally, the
function Q 7→ {pQ = 0} is continuous (from ∂Ω to G(n, n− 1)).

Proof. – Clearly the first claim, combined with Proposition 6.2, implies the second.

For Q1, Q2 ∈ ∂Ω, if P1 = {pQ1 = 0}, P2 = {pQ2 = 0} are distinct hyperplanes with
normals n̂1, n̂2, then both (n̂1 + n̂2)⊥ and (n̂1 − n̂2)⊥ consist of points equidistant from P1

and P2. Elementary geometry then shows that there is some constant c > 0 such that

max{D[(n̂1 + n̂2)⊥ ∩B1(0), P1 ∩B1(0)], D[(n̂1 − n̂2)⊥ ∩B1(0), P1 ∩B1(0)]} ≥ c.

Let P3(Q1, Q2) be the plane which achieves this maximum. If P1 = P2 then pick P3(Q1, Q2)

to be any hyperplane such that D[P1 ∩B1(0), P3 ∩B1(0)] ≥ c.
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Recall Corollary 3.2, which implies that pQ is a monic 1-homogenous polynomial for all
Q ∈ ∂Ω. So if y ∈ P3(Q1, Q2)∩∂B1(0), there is an universal c̃ > 0 such that c̃ < |pQ1(y)| =
|pQ2(y)|.

Therefore,

‖p̃Q1 − p̃Q2‖L∞(∂B1) ≥|Θn−1(ω−, Q1)pQ1(y)−Θn−1(ω−, Q2)pQ2(y)|

≥c̃|Θn−1(ω−, Q1)− (sgn pQ1(y)pQ2(y))Θn−1(ω−, Q2)|.

If sgn pQ1(y)pQ2(y) = −1 (pQ1(y) and pQ2(y) have opposite signs), then

‖p̃Q1 − p̃Q2‖L∞(∂B1) ≥ c̃(Θn−1(ω−, Q1) + Θn−1(ω−, Q2)) ≥ c̃Θn−1(ω−, Q1).

Letting Q2 → Q1, the continuity of Q 7→ p̃Q (Proposition 6.2) implies that 0 ≥ c̃Θn−1(ω−, Q1).
This contradicts the non-degeneracy of Θn−1(ω−, Q1) (Proposition 5.10).

On the other hand, if sgn pQ1(y)pQ2(y) = 1 (pQ1(y) and pQ2(y) share the same sign),
then

‖p̃Q1 − p̃Q2‖L∞(∂B1) ≥ c̃|Θn−1(ω−, Q1)−Θn−1(ω−, Q2)|,
and the continuity of Q 7→ p̃Q implies that Q 7→ Θn−1(ω−, Q) is continuous.

Uniform non-degeneracy immediately follows.

C 6.4. – For any K ⊂⊂ Rn there is a c = c(K) > 0 such that, for all
Q ∈ K ∩ ∂Ω,

Θn−1(ω±, Q) > c.

6.2. ∂Ω is a C1 domain

We define for Q0 ∈ ∂Ω and r > 0

(6.3) β(Q0, r) = inf
P

1

r
sup

Q∈∂Ω∩Br(Q0)

dist(Q,P )

where the infimum is taken over all (n− 1)-dimensional hyperplanes through Q0 (these are
a variant of Jones’ β-numbers, see [19]). David, Kenig and Toro (see [11], Proposition 9.1)
show that, under suitable assumptions, β(Q0, r) . rγ implies that ∂Ω is locally the graph of
a C1,γ function for any 1 > γ > 0. We will adapt this proof to show that ∂Ω is locally the
graph of a C1 function.

For any Q0 ∈ ∂Ω,
P (Q0) := {pQ0 = 0}

(where pQ0 is the 1-homogenous polynomial guaranteed to exist by Corollary 3.2 and which
is unique by Lemma 6.1). By the definition of blowups, we know that P (Q0) + Q0 approx-
imates ∂Ω near Q0. The following lemma shows that this approximation is uniformly tight
in Q0.

L 6.5. – [Compare to [11], Equation 9.14] Let K ⊂⊂ Rn and ε > 0. Then there is
an R = R(K, ε) > 0 such that r < R and Q0 ∈ K ∩ ∂Ω implies

(6.4) sup
Q∈∂Ω∩Br(Q0)

1

r
dist (Q−Q0, P (Q0)) < ε.
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Proof. – The proof hinges on the following estimate (see [14] Theorem 1.5.5); for any K
compact there exists a modulus of continuity σK with limt↓0 σK(t) = 0 such that

(6.5) |v(Q0)(x+Q0)− p̃Q0(x)| ≤ σK(|x|)|x|

for any Q0 ∈ K ∩ ∂Ω.

Assume this estimate is true; let Q ∈ Br(Q0) ∩ ∂Ω and write Q = Q0 + x. As
Θn−1(ω−, Q0) > c for allQ0 ∈ K∩∂Ω (Corollary 6.4) it follows that dist(Q−Q0, P (Q0)) .
|p̃Q0(x)|. Then (6.5) yields that dist(Q − Q0, P (Q0)) . |p̃Q0(x)| ≤ |x|σK(|x|) = rσK(r).
Set R to be small enough so that r < R implies σK(r) < ε to prove (6.4).

Thus it suffices to establish (6.5). Let |x| = r and write x = ry with |y| = 1. If we divide
by r, (6.5) is equivalent to

(6.6) |v(Q0)(ry +Q0)/r − p̃Q0(y)| ≤ σK(r).

As v(Q)(ry+Q)/r is locally Lipschitz (uniformly inQ on compacta), the uniform estimate
(6.6) follows from anL2 estimate: for all ε > 0, there exists aR = RK,ε > 0 such that if r < R

and Q0 ∈ K ∩ ∂Ω then

MQ0(r, v(Q0), p̃Q0) ≡ ‖v(Q0)(ry +Q0)/r − p̃Q0(y)‖2L2(∂B1) < ε.

For each point Q ∈ K ∩ ∂Ω we can find an R = Rε(Q) such that R � ε and for all
r < R, |MQ(r, v(Q), p̃Q)| < ε/4. Furthermore, for every r > 0 there is a δ(r) > 0 such that
for Q,Q′ ∈ K ∩ ∂Ω we have

|Q−Q′| < δ(r)⇒ |MQ′(r, v(Q′), p̃Q
′
)−MQ(r, v(Q), p̃Q)| < ε/4.

The existence of δ(r) follows from the uniform Lipschitz continuity of v(Q), the Hölder
continuity of h and the continuity of Q 7→ p̃Q.

AsK is compact we can findQ1, . . . , Qn ∈ K∩∂Ω such that if δ1 := δ(Rε(Q1)), . . . , δn :=

δ(Rε(Qn)) then K ∩ ∂Ω ⊂
⋃
Bδi(Qi). By the definition of δi, if Q′ ∈ Bδi(Qi), then

MQ′(Rε(xi), v
(Q′), p̃Q

′
) < ε/2. Recall, Rε(Qi) � ε and Lemma 5.8 to conclude

that for all Q′ ∈ Bδi(Qi) and r < Rε(Qi),M
Q′(r, v(Q′), p̃Q

′
) < ε. Therefore, setting

RK,ε ≡ mini{Rε(Qi)} gives the L2 estimate r < RK,ε, Q
′ ∈ K ∩ ∂Ω⇒MQ′(r, v(Q′), p̃Q

′
) < ε.

We should note, (6.5) (along with the Whitney extension theorem) allows for an alternative
proof that ∂Ω is a C1 domain (see [14] Theorem 1.3.8). We will, however, continue our proof
in the vein of [11].

P 6.6. – Let Ω ⊂ Rn satisfy the conditions of Theorem 1.1 or Theorem 1.2. If
log(h) ∈ C0,α(∂Ω) then Ω is a C1 domain.

Proof. – For Q0 ∈ ∂Ω, Equation (6.4) shows that P (Q0) + Q0 is a tangent plane to ∂Ω

at Q0. Furthermore, Q0 7→ P (Q0) is continuous (Corollary 6.3). Under the assumptions
of Theorem 1.2, Ω is a Lipschitz domain with a tangent plane at every Q ∈ ∂Ω that varies
continuously in Q; thus we are done.

If we simply assume that Ω is Reifenberg flat (Theorem 1.1), we still need to show that Ω is
a graph domain (in fact we will show it is a Lipschitz domain). Let R = RK,ε > 0 be chosen

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



878 M. ENGELSTEIN

later and let r < R. IfR is small enough, vanishing Reifenberg flatness (Corollary 3.2), along
with Lemma 6.5, implies

π({∂Ω ∩B(Q0, r)−Q0}) ⊃ P (Q0) ∩B(0,
r

2
), ∀Q0 ∈ K ∩ ∂Ω, r < R.

Here π : Rn → P (Q0) is a projection (for more details see the proof of [11] Lemma 8.3 or [23]
Remark 2.2).

We need only to show that π−1 is a well defined function with bounded Lipschitz norm
on P (Q0) ∩ B(0, r/2). Let Σ := (∂Ω − Q0) ∩ B(0, r) ∩ π−1(B(0, r/2)) and pick distinct
Q1, Q2 ∈ Σ. Perhaps shrinking R again, the continuity of Q 7→ P (Q), combined with
Lemma 6.5, implies

(6.7)
1

|Q1 −Q2|
dist(Q1 −Q2, P (Q0)) < ε.

Therefore, π−1 is well defined and ‖π−1‖Lip(P (Q0)∩B(0,r/2)) < (1− ε)−1.

It should be noted that if Ω is a C1 domain it is not necessarily true that u ∈ C1(Ω)

(see [32], pg 45). However, as Θn−1(ω±, Q) is continuous, we can establish the following.

C 6.7. – Let Ω, log(h) be as in Proposition 6.6. Then u± ∈ C1(Ω±).

Proof. – For Q ∈ ∂Ω, let ν(Q) be the inward pointing normal to Ω at Q. We will prove
that

lim
X→Q
X∈Ω+

Diu
+(X) = (ν(Q) · ei)Θn−1(ω+, Q),∀i = 1, . . . , n.

The desired result follows from Θn−1(ω+,−), ν(−) ∈ C(∂Ω) (Corollary 6.3 and Proposi-
tion 6.6). The proof for u− is identical.

Pick r small so that B(Q, r) ∩ ∂Ω can be written as the graph of a C1 function. Then
construct a bounded NTA domain ΩB ⊂ Ω such that ∂ΩB ∩ ∂Ω = B(Q, r) ∩ ∂Ω (see [18]
Lemma 6.3 and [24] Lemma A.3.3). For X0 ∈ ΩB , let ωX0

B be the harmonic measure of ΩB
with a pole atX0. By local Lipschitz continuity, |Diu

+| < C on ΩB and, therefore,Diu
+ has

a non-tagential limit g(P ) for ωX0

B -a.e. P in ∂ΩB (see Section 5 in [18]). Furthermore, if

K(X,P ) :=
dωXB
dω

X0
B

(P ) we have the following representation (see [18] Corollary 5.12),

Diu
+(X) =

∫
∂ΩB

g(P )K(X,P )dωX0

B (P ).

Using blowup analysis, one computes g(P ) = (ν(P ) · ei)Θn−1(ω+, P ) for
P ∈ ∂ΩB ∩ B(Q, r/2). As g(P ) is continuous on B(Q, r/2) ∩ ∂ΩB , there is some s < r/2

such that P ∈ B(Q, s) ∩ ∂ΩB ⇒ |g(P )− g(Q)| < ε. On the other hand, Jerison and Kenig
(Lemma 4.15) proved that limX∈ΩB ,X→Q supP∈∂ΩB\B(Q,s)K(X,P ) = 0. This allows us to

4 e SÉRIE – TOME 49 – 2016 – No 4



A TWO-PHASE FREE BOUNDARY PROBLEM FOR HARMONIC MEASURE 879

estimate,

lim
X→Q
X∈Ω+

|Diu
+(X)− (ν(Q) · ei)Θn−1(ω+, Q)|

= lim
X→Q
X∈ΩB

|Diu
+(X)− g(Q)|

≤ lim
X→Q
X∈ΩB

∫
∂ΩB\B(Q,s)

K(X,P )|g(P )− g(Q)|dωX0

B (P )

+

∫
∂ΩB∩B(Q,s)

K(X,P )|g(P )− g(Q)|dωX0

B (P )

≤ lim
X→Q
X∈ΩB

CωX0

B (∂ΩB\B(Q, s)) sup
P /∈B(Q,s)

K(X,P ) + εωXB (B(Q, s)) ≤ ε.

The first equality follows from the fact that any sequence in Ω+ approaching Q must, apart
from finitely many terms, be contained in ΩB . The last line follows first from |g(P )| < C and
then from the fact that ωXB is a probability measure for any X ∈ ΩB .

7. Initial Hölder regularity: ∂Ω is C1,s

In this section we will prove that ∂Ω is locally the graph of a C1,s function for some
0 < s ≤ α. Note that, in general, the best one can hope for is s = α (if ∂Ω is the graph
of a C1,α function then log(h) ∈ C0,α).

Here we will borrow heavily from the arguments of De Silva et al. [12], who prove C1,γ

regularity for a wide class of non-homogenous free boundary problems. We cannot imme-
diately apply their results, as they assume a non-degeneracy in the free boundary condition
that our problem does not have (see condition (H2) in Section 7 of [12]). It should also be
noted that our main result in this section is not immediately implied by the remark at the
end of Caffarelli’s paper, [10]. Indeed, Caffarelli’s free boundary condition also contains an a
priori non-degeneracy condition (see condition (a) at the top of page 158 in [10]) which our
problem lacks.

7.1. The Iterative Argument

In this section we shall state the main lemma and show how that lemma, through an
iterative argument, implies our desired result. First we need two definitions.

D 7.1. – Let g : Rn → R. Then w ∈ C(B1(0)) is a solution to the free
boundary problem associated to g if:

– w ∈ C2({w > 0}) ∩ C2({w < 0})
– w ∈ C1({w > 0}) ∩ C1({w < 0})
– w satisfies, in B1(0), the following:

(7.1)
∆w(x) = 0, x ∈ {w 6= 0}

(w+)νx(x)g(x) = −(w−)νx(x), x ∈ {w = 0}

where νx is the normal to {w = 0} at x.
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One observes that Corollary 6.7 implies that u is a solution to the free boundary problem
associated to h. We now need the notion of a “two-plane solution”.

D 7.2. – Let γ > 0 and g : Rn → R. Then for any x0 ∈ B1(0) we can define
the two-plane solution associated to g at x0:

U (x0)
γ (t) := γt+ − g(x0)γt−, t ∈ R.

When no confusion is possible we drop the dependence on x0. It should also be clear from context
to which function g our U is associated.

The following remark, which follows immediately from Corollary 3.2 and (6.5), elucidates
the relationship between a two-plane solution and our function u.

R 7.3. – Let x0 ∈ ∂Ω. As r → 0 it is true that

ur,x0
(x) :=

u(rx+ x0)

r
→ U

(x0)
Θn−1(ω+,x0)(x · νx0

)

uniformly on compacta. Here U is the two-plane solution associated to h. Furthermore, the rate
of this convergence is independent of x0 ∈ K ∩ ∂Ω for K compact.

Intuitively, the faster the rate of this convergence, the greater the regularity of ∂Ω. This
relationship motivates the following lemma (compare with [12], Lemma 8.3), which says
roughly that if u is close to a two-plane solution in a large ball, then u is in fact even closer
to a, possibly different, two-plane solution in a smaller ball.

L 7.4. – Let ∞ > C1, c1 > 0 and k̃ > 0. Let v be a solution to a free boundary
problem associated to g such that infx∈B2(x0) g(x) ≥ k̃ > 0 and such that v(x0) = 0.
Let ε > 0, C1 > γ > c1, ν ∈ Sn−1 and assume

(7.2) U (x0)
γ (x · ν − ε) ≤ v(x+ x0) ≤ U (x0)

γ (x · ν + ε), x ∈ B1(0).

Also, assume that supx,y∈B1(x0)
|g(x)−g(y)|
|x−y|α < ε2.

Then there exists some R0 = R0(C1, c1, n) > 0 such that for all r < R0 there is a
ε̃ = ε̃(r, C1, c1, n) > 0 so that if the ε above satisfies ε ≤ ε̃ then

(7.3) U
(x0)
γ′ (x · ν′ − r ε

2
) ≤ v(x+ x0) ≤ U (x0)

γ′ (x · ν′ + r
ε

2
), x ∈ Br(0),

where |ν′| = 1, |ν′ − ν| ≤ C̃ε and |γ − γ′| ≤ C̃γε. Here C̃ = C̃(C1, c1, n) > 0.

With this lemma we can prove Hölder regularity by way of an iterative argument.

P 7.5. – Let Ω ⊂ Rn be a 2-sided NTA domain with log(h) ∈ C0,α(∂Ω).

– If n = 2, then Ω is a C1,s domain for some s > 0.
– If n ≥ 3, assume that either Ω is a δ-Reifenberg flat domain for some 0 < δ small enough

or that Ω is a Lipschitz domain. Then Ω is a C1,s domain for some s > 0.
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Proof of Proposition 7.5 assuming Lemma 7.4. – Without loss of generality let 0 ∈ ∂Ω

and en be the inward pointing normal to Ω at x0 ∈ B1(0) ∩ ∂Ω. We will show that
β(x0, t) ≤ C ′′ts for some s > 0 and some C ′′ > 0 independent of t > 0, x0 ∈ ∂Ω ∩B1(0).
A theorem of David, Kenig and Toro ([11], Proposition 9.1) then implies that ∂Ω is locally
the graph of a C1,s function.

Set γ = Θn−1(ω+, x0) and let

C1 := 2 sup
z∈∂Ω∩B4(0)

Θn−1(ω+, z), c1 :=
1

2
inf

z∈∂Ω∩B4(0)
Θn−1(ω+, z).

By Corollary 6.4 and the work of Section 4 we have∞ > C1 ≥ c1 > 0.

Lemma 7.4 gives us an R0. Pick 0 < r ≤ R0 small enough so that rα < 1
4 . We then get a

ε̃ > 0 depending on r. Pick ε < ε̃ such that

1/2 ≤

( ∞∏
k=0

(1− C̃ε/2k)

)
<

( ∞∏
k=0

(1 + C̃ε/2k)

)
≤ 2

where C̃ is the constant from Lemma 7.4.

Recall Remark 7.3, that uρ,x0
(x)→ Uγ(xn) for x ∈ B1 as ρ ↓ 0. Thus, for small enough ρ,

we have
‖uρ,x0(x)− Uγ(xn)‖L∞(B1) < Kε,

where K ≤ min{c1, infx∈B1
|h(x)|c1}. This implies

Uγ(xn − ε) ≤ uρ,x0(x) ≤ Uγ(xn + ε), x ∈ B1(0).

uρ,x0 is a solution to the free boundary problem associated to g(x) = h(ρx + x0). In
particular, if ρ is small enough such that ρα‖h‖C0,α < ε2 then g satisfies the growth and
lower bound assumptions of Lemma 7.4.

If u0(x) := uρ,x0
(x), then we can apply Lemma 7.4 to u0 in direction en with γ,C1, c1, r, ε

as above. This gives us a ν1 ∈ Sn−1 and a γ1 > 0 such that

Uγ1(x · ν1 − r
ε

2
) ≤ u0(x) ≤ Uγ1(x · ν1 + r

ε

2
), x ∈ Br(0).

Write x = ry and divide the above equation by r to obtain,

Uγ1(y · ν1 −
ε

2
) ≤ u0(ry)/r ≤ Uγ1(y · ν1 +

ε

2
), y ∈ B1(0).

Let u1(z) := u0(rz)/r so that

Uγ1(y · ν1 − ε/2) ≤ u1(y) ≤ Uγ1(y · ν1 + ε/2), y ∈ B1(0)

Apply Lemma 7.4 to u1 in direction ν1 with C1, c1, γ1, ε/2, r and iterate.

In this way, we create a sequence of uk(y), θk, γk, νk such that

Uγk(y · νk − ε/2k) ≤ uk(y) ≤ Uγk(y · νk + ε/2k), y ∈ B1(0)

and |νk − νk+1| < C̃ε/2k. We must prove that it is valid to apply Lemma 7.4 at each step.

By Lemma 7.4 and construction,

c1 ≤
1

2
γ ≤

k−1∏
i=0

(1− C̃ε/2k)γ ≤ γk ≤
k−1∏
i=0

(1 + C̃ε/2k)γ ≤ 2γ ≤ C1,
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so γk is always in the acceptable range for another application of Lemma 7.4. Also in the kth
step we apply the lemma with ε/2k < ε < ε̃ and the same r.

Finally, in the kth step we have uk(y) = uρrk,x0
(y). Thus we need to make sure that

(ρrk)α‖h‖C0,α < (ε/2k)2. By construction, ρα‖h‖C0,α < ε2 and rkα ≤ 1
4

k
and so the

conditions of Lemma 7.4 are satisfied for each k.
After k steps,

Uγk(y · νk − ε/2k) ≤ uk(y) ≤ Uγk(y · νk + ε/2k), y ∈ B1(0)⇒

Uγk(x · νk − ρrkε/2k) ≤ u(x+ x0) ≤ Uγk(x · νk + ρrkε/2k), x ∈ Bρrk(0).

If x ∈ Bρrk(0) is taken such that x+ x0 ∈ ∂Ω then the above equation implies

x · νk − ρrkε/2k < 0 < x · νk + ρrkε/2k ⇒

|x · νk| ≤ ρrkε/2k ⇒ β(x0, ρr
k) ≤ ε/2k.

If s := − logr(2) > 0, we have shown β(x0, ρr
k) ≤ ε

ρs (ρrk)s ≤ C ′(ρrk)s (Remark 7.3

implies that we can we can take ρ uniformly in x0 ∈ B1(0)). If t is such that ρrk+1 < t ≤ ρrk
we can estimate

β(x0, t) <
ρrk

t
β(x0, ρr

k) < C ′
ρrk

t
(ρrk)s = C ′

ρrk

t
ts
(
ρrk

t

)s
≤ C ′

r1+s t
s ≡ C ′′ts,

where we used that ρr
k

t < 1
r .

It is worthwhile to note that the condition rα < 1/4 implies s = − logr(2) < α/2. So this
argument does not give optimal Hölder regularity.

7.2. Harnack Inequalities

It remains to prove Lemma 7.4. We first define a subsolution to the free boundary problem
(see Definition 7.1).

D 7.6. – Let O be an open set in Rn and g : Rn → R. We say that z ∈ C( O) is
a strict-subsolution to the free boundary problem associated with g in O if:

– {z = 0} is locally the graph of a C2 function.
– z ∈ C1({z > 0} ∩ O) ∩ C1({z < 0} ∩ O).
– On the set {z 6= 0} we have ∆z > 0.
– For x0 ∈ {z = 0} we have

g(x0)(z+)νx0 (x0) + (z−)νx0 (x0) > 0,

where νx0
is the inward pointing normal at x0 to {z > 0}.

We define a strict supersolution analogously.

With this definition we need a comparison principle (note that this comparison principle
can also be taken to be the definition of a sub/super solution, see e.g., [12]).

L 7.7. – [Compare to [9] Lemma 2.1, [12] Definition 7.2] Let O be an open set inRn.
Letw, z be a solution and strict subsolution respectively to the free boundary problem associated
to a positive g in O. If w ≥ z in O then w > z in O.

The analogous statement holds for supersolutions.
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Proof. – We proceed by contradiction and let x̃ be a touching point. There are three cases:

Case 1. – x̃ ∈ {z = 0}. {z = 0} is locally the graph of a C2 function so there is a tangent
ballB ⊂ {z > 0}withB∩{z = 0} = x̃. Since {z > 0} ⊆ {w > 0}we haveB∩{w = 0} = x̃

and B ⊂ {w > 0}. As such {z = 0}, {w = 0} share a normal vector ν at x̃.
Sincew ≥ z, z 6= wwe have that z−w attains a local maximum at x̃. Thus (z+−w+)ν ≤ 0

and (−z−+w−)−ν = (z−−w−)ν ≤ 0. We then have 0 ≥ g(x̃)(z+−w+)ν + (z−−w−)ν =

g(x̃)(z+)ν + (z−)ν > 0 a contradiction.

Case 2. – x̃ ∈ {z > 0}. As {z > 0} ⊆ {w > 0}, both −w, z are subharmonic on {z > 0}.
So z − w cannot attain a local maximum on {z > 0} which implies w > z on {z > 0} ∩ O.

Case 3. – x̃ ∈ {z < 0}. In this case x̃ ∈ {w < 0}. As {w < 0} ⊆ {z < 0}, we have that
−w, z are both subharmonic on {w < 0}. We can then argue as in Case 2.

With this comparison lemma we can prove a “one-sided” Harnack type inequality.

L 7.8. – [Compare with [12], Lemmas 4.3 and 8.1] Let w be a solution to the free
boundary problem associated to a positive continuous function g onB1(0) (see Definition 7.1).
Let k̃ > 0 and assume infx∈B1(0) g(x) ≥ k̃. Also assume w satisfies

w(x) ≥ U (0)
γ (x · ν), x ∈ B1(0)

(where ν ∈ Sn−1 and γ > 0) and that at x = 1
5ν

(7.4) w(x) ≥ U (0)
γ (1/5 + ε).

Finally, assume that supx∈B1
|g(0)− g(x)| ≤ 10ε2.

Then there exists ε > 0 and 0 < c < 1 (which depend only on the dimension and k), such
that if the above ε < ε we can conclude

w(x) ≥ U (0)
γ (x · ν + cε), x ∈ B1/2(0).

Analogously, if w(x) ≤ Uγ(x · ν), x ∈ B1 and w(x) ≤ Uγ(1/5− ε) then w(x) ≤ Uγ(x · ν − cε)
in B1/2(0).

Proof. – For ease of notation we will drop the dependence of U on γ, 0 and let ν = en.
We prove the inequality from below; the inequality from above, and the result for general ν,
is proven similarly. Our first step is to widen the gap between w and U :

C. – There exists a universal c1 > 0 such that w(x) ≥ (1 + c1ε)γx
+
n − g(0)γx−n for

all x ∈ B19/20(0).

Proof of Claim. – In B1/20(x) there is a universal constant c0 > 0 such that we have
w(x)− Uγ(x) ≥ c0γε ≥ c0γεxn by the Harnack inequality and (7.4).

Define O = (B1 ∩{xn > 0})\B1/20(x) and let φ be the harmonic function in O such that
φ = 0 on ∂(B1 ∩ {xn > 0}) and φ = 1 on ∂B1/20(x).

We have
w(x)− γxn ≥ 0 = γc0φ(x)ε/2, x ∈ ∂(B1 ∩ {xn > 0}).

Also, note
w(x)− γxn ≥ c0γε ≥ γc0εφ(x)/2, x ∈ ∂B1/20(x).
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As w − γxn and γc0εφ(x)/2 are both harmonic on O we have that w − γxn ≥ γc0εφ(x)/2

on all of O. Finally, by the boundary Harnack principle there is a c̃ > 0 such that φ ≥ c̃xn
on O∩B19/20. Therefore, c1 = min{c0, c0c̃/2, 5/2} is such thatw−γx+

n ≥ γεc1x+
n onB19/20,

proving the claim.

Recall w(x) − U(xn) ≥ γε > 0. Thus w(x) − (1 + c1ε)γ(xn)+ ≥ γε − c1γε/5 ≥ γε/2.
The Harnack inequality tells us that

w(x)− (1 + c1ε)γ(xn)+ ≥ c′εγ, x ∈ B1/20(x),

for c′ universal depending on dimension. If c2 is small enough that (1 + c1ε)c2 ≤ c′, then

(7.5) w(x)− (1 + c1ε)γ(xn + c2ε)
+ ≥ 0, x ∈ B1/20(x).

Now we create a strict subsolution in the annulus

A := B3/4(x)\B1/20(x)

and then use this subsolution to transfer the gap in (7.5) to a neighborhood of 0.

Let

ψ(x) := 1− c(|x− x|−n − (3/4)−n), x ∈ A,

where c is such that ψ = 0 on ∂B1/20(x). Then 0 ≤ ψ ≤ 1 and −∆ψ ≥ k(n) > 0 in A. We
can extend ψ ≡ 0 on B1/20(x).

For t ≥ 0 we write

(7.6) vt(x) := (1 + c1ε)γ(xn− εc2ψ(x) + tε)+−g(0)γ(xn− εc2ψ(x) + tε)−, x ∈ B3/4(x).

We will prove later that this is a family of strict subsolutions.

By the claim, v0(x) ≤ (1 + c1ε)γx
+
n −g(0)γx−n ≤ w(x) for x ∈ B3/4(x). So we can define

t∗ = sup{t | vt(x) ≤ w(x), ∀x ∈ B3/4(x)}. If t∗ ≥ c2 we get

w(x) ≥ vc2(x) ≥ Uγ(xn − εc2ψ + c2ε) ≥ Uγ(xn + cε), x ∈ B1/2(0)

where c := c2(1− supx∈B1/2
ψ). This is the desired result.

Assume, to obtain a contradiction, t∗ < c2. There must be some point x̃ ∈ B3/4(x) such
that vt∗(x̃) = w(x̃) (and everywhere else in B3/4(x) we have vt∗(x) ≤ w(x)) .

Case 1. – x̃ ∈ ∂B3/4(x). As ψ(x̃) = 1,

vt∗(x̃) = (1 + c1ε)γ(x̃n + (t∗ − c2)ε)+ − g(0)γ(x̃n + (t∗ − c2)ε)−

< (1 + c1ε)γ(x̃n)+ − g(0)γ(x̃n)−.

Note, B3/4(x) ⊂ B19/20, so the claim implies w(x̃) ≥ (1 + c1ε)γ(x̃n)+ − g(0)γ(x̃n)− > vt∗(x̃),
a contradiction.

Case 2. – x̃ ∈ B1/20(x). Here ψ ≡ 0 so vt∗(x̃) = (1 + c1ε)γ(x̃n + t∗ε)+ < (1 + c1ε)γ(x̃n + c2ε)
+,

as t∗ < c2. But (7.5) implies w(x̃) ≥ (1 + c1ε)γ(x̃n + c2ε)
+, which is a contradiction.
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Case 3. – x̃ ∈ A. If vt is a strict subsolution to the free boundary problem associated with
g in A, then Lemma 7.7 (the comparison lemma) gives the desired contradiction.

Proof that vt is a strict subsolution. – Note that in ({vt∗ > 0} ∩A)∪ ({vt∗ < 0} ∩A) we
have ∆vt∗ ≥ −mεc2∆ψ ≥ mεc2k(n) > 0 where m = γmin{1, k̃}.

We then need to show that {vt∗ = 0} is locally the graph of a C2 function. Observe
{vt∗ = 0} = {xn − εc2ψ(x) + t∗ε = 0}. As ψ ∈ C∞(A) it suffices to show that
|en − εc2∇ψ(x)| 6= 0 on A. But this is accomplished simply by picking ε < 1

c2M
where

M = supx∈A |∇ψ(x)|. M depends only on dimension so ε can still be chosen universally.

To verify the boundary condition, let x0 ∈ {vt = 0} and ν the unit normal pointing into
{vt > 0} at x0. Then g(x0)(v+

t )ν + (v−t )ν = ((1 + c1ε)g(x0)γ − g(0)γ)(en − εc2∇ψ) · ν. As
ν points into {vt > 0} it must be the case that (en− εc2∇ψ) · ν > 0. So it is enough to prove
that (1 + c1ε)g(x0)− g(0) > 0. By assumption |g(x0)− g(0)| ≤ 10ε2 which means it suffices
to show c1εg(x0) > 10ε2. By picking ε > 0 small enough (now depending on k̃) this is true
on B1(0) and we are done.

Using the one-sided Harnack inequality we can prove a two-sided Harnack type
inequality.

L 7.9. – [Compare with [12], Theorem 4.1] Let k̃ > 0 and let g ∈ C(B2(0)) such
that infx∈B2(0) g(x) ≥ k̃. Let w be a solution to the free boundary problem associated to g
in B2(0). Assume w satisfies at some point x0 ∈ B2,

U (0)
γ (x · ν + a0) ≤ w(x) ≤ U (0)

γ (x · ν + b0), ∀x ∈ Br(x0) ⊂ B2(0)

where ν ∈ Sn−1, γ > 0 and b0 − a0 ≤ εr, supx∈B2
|g(x)− g(0)| ≤ ε2 for some ε > 0.

Then there exists some ε = ε(n, k̃) > 0 such that if ε ≤ ε we can conclude

U (0)
γ (x · ν + a1) ≤ w(x) ≤ U (0)

γ (x · ν + b1), ∀x ∈ Br/20(x0),

where a0 ≤ a1 ≤ b1 ≤ b0 and b1 − a1 ≤ (1− c)εr. Here c = c(n, k̃) > 0.

Proof. – Without loss of generality x0 = 0, r = 1, ν = en. There are three cases, each of
which produces a universal 0 < c̃ < 1. Take c to be the minimum of these three.

Case 1. – a0 < −1/5. For small ε > 0 we have xn + b0 < 0 on B1/10. Therefore, by the
assumed inequality on w,

0 ≤ v(x) :=
w(x)− g(0)γ(xn + a0)

g(0)γε
≤ 1, ∀x ∈ B1/10.

Additionally, ∆v = 0 on B1/10.

So by the Harnack inequality there are constants 1 ≥ k1 ≥ k2 ≥ 0 such that k1 − k2 =

1−c̃ < 1 where c̃ is universal (though k1, k2 may depend onw) and k1 ≥ v(x) ≥ k2 onB1/20.

This implies

Uγ(xn + a0 + k2ε) ≤ w(x) ≤ Uγ(xn + a0 + k1ε), ∀x ∈ B1/20.

Set a1 = a0 + k2ε and b1 = a0 + k1ε, so that a0 ≤ a1 ≤ b1 ≤ b0 and b1 − a1 ≤ (k1 − k2)ε =

(1− c̃)ε.
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Case 2. – a0 > 1/5. In this case a0 + xn > 0 on B1/10 and so

0 ≤ v(x) :=
w(x)− γ(xn + a0)

γε
≤ 1

on B1/10. The rest of the argument follows exactly as in Case 1.

Case 3. – |a0| < 1/5. We can rewrite the main assumption as

Uγ(xn + a0) ≤ w(x) ≤ Uγ(xn + a0 + ε), x ∈ B1(0).

Without loss of generality, assume that

(7.7) w(x) ≥ Uγ(xn + a0 + ε/2)

where x = 4en/25− a0en (the case with the reverse inequality is similar).
If v(x) := w(x− a0en) for x ∈ B4/5(0), then the above can be rewritten as

(7.8)
Uγ(xn) ≤ v(x) ≤ Uγ(xn + ε), ∀x ∈ B4/5(0).

v(4en/25) ≥ Uγ(4/25 + ε/2).

Note that v satisfies the free boundary problem associated to g̃ which is a translate of g.
Thus we can apply Lemma 7.8 with ε/2 and inside B4/5 to get that

v(x) ≥ Uγ(xn + c̃ε), x ∈ B2/5(0)⇒

w(x) ≥ Uγ(xn + a0 + c̃ε), x ∈ B1/5(0),

for some universal 0 < c̃ < 1. Letting a1 = a0 + c̃ε and b1 = b0 we have b1 − a1 =

b0 − a0 − c̃ε ≤ (1− c̃)ε.

With these lemmata in hand we can prove the following regularity result. This will be
crucial in the proof of Lemma 7.4 (the iterative step).

C 7.10. – [Compare with [12], Corollary 8.2] Let w, γ, g, ν, ε, x0 satisfy the
assumptions of Lemma 7.9 with r = 1. Define

(7.9) w̃ε :=


w(x)− γx · ν

γε
, x ∈ B2(0) ∩ {w ≥ 0}

w(x)− g(0)γx · ν
g(0)γε

, x ∈ B2(0) ∩ {w < 0}

Then w̃ε has a Hölder modulus of continuity at x0 outside the ball of radius ε/ε, i.e., for all
x ∈ B1(x0) with |x− x0| ≥ ε/ε

|w̃ε(x)− w̃ε(x0)| ≤ C|x− x0|χ

where C,χ depend only n, k̃.

Proof. – Let ν = en. Repeated application of Lemma 7.9 gives

Uγ(xn + am) ≤ w(x) ≤ Uγ(xn + bm), x ∈ B20−m(x0),

with bm − am ≤ (1 − c)mε. However, we may only apply Lemma 7.9 when m is such that
(1− c)m20mε ≤ ε (as we are taking r = 20−m at the mth step).

If 20−χ = (1− c) then we have, for each acceptable m, that x ∈ B20−m(x0)\B20−m−1(x0)

implies |w̃ε(x)− w̃ε(x0)| ≤ C|x− x0|χ. As above, m must satisfy 20−m ≥ (1− c)m ε
ε , which

is true if 20−m ≥ ε
ε . So we have the desired continuity outside B ε

ε
(x0).
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7.3. The Transmission Problem and Proof of Lemma 7.4

In order to prove Lemma 7.4, we will argue by contradiction and analyze the limit of
the w̃ε (see (7.9)) as ε ↓ 0. This limit will be the solution to a transmission problem which we
introduce now.

D 7.11. – We say that W ∈ C(Bρ) is a classical solution to the transmission
problem at 0 in Bρ if:

– W ∈ C∞(Bρ ∩ {xn ≥ 0}) ∩ C∞(Bρ ∩ {xn ≤ 0})
– W satisfies

(7.10)
∆W = 0, x ∈ Bρ(0) ∩ {xn 6= 0}

lim
t↓0

Wn(x′, t)− lim
t↑0

Wn(x′, t) = 0, x ∈ Bρ(0) ∩ {xn = 0}

When no confusion is possible, we will simply say that W is a classical solution to the
transmission problem or a classical solution to (7.10).

We can deduce the following immediately from the definition:

L 7.12. – LetW be a classical solution to the transmission problem inB1. Then there
is a universal constant C and a constant p (which depend on W) such that
(7.11)
|W (x)−W (0)− (∇x′W (0) · x′ + px+

n − px−n )| ≤ C‖W‖L∞(B1)r
2, ∀x = (x′, xn) ∈ Br(0).

Unfortunately, the conditions of Definition 7.11 are too difficult to verify directly. It will
be more convenient to work with viscosity solutions.

D 7.13. – Let W̃ ∈ C(Bρ). We say that W̃ is a viscosity solution to the
transmission problem (7.10) if:

– ∆W̃ (x) = 0, in the viscosity sense, when x ∈ {xn 6= 0} ∩Bρ.
– Let φ be any function of the form

φ(x) = A+ px+
n − qx−n +BQ(x− y)

where

Q(x) =
1

2
[(n− 1)x2

n − |x′|2], y = (y′, 0), A ∈ R, B > 0

and p− q > 0. Then φ cannot touch W̃ strictly from below at a point x0 = (x′0, 0) ∈ Bρ.
– If p− q < 0 then φ cannot touch W̃ strictly from above on {xn = 0}.

The following result allows us to estimate the growth rate of viscosity solutions. We will
omit the proof as it is identical to the one provided by De Silva, Ferrari and Salsa in [12].

T 7.14 (Theorem 3.3 and Theorem 3.4 in [12]). – Let W̃ be a viscosity solution
to (7.10) in B1 such that ‖W̃‖L∞ ≤ 1. Then, in B1/2, W̃ is actually a classical solution to
(7.10). In particular, W̃ satisfies the estimate (7.11).

With this machinery in hand we are ready to prove Lemma 7.4.
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Proof of Lemma 7.4.. – It suffices to assume that x0 = 0 and ν = en (by the rotation
invariance of the conditions). Fix any r > 0 small and let {γk}, {εk}, {wk}, {gk} be such
that C1 > γk > c1, εk ↓ 0 and wk is a classical solution to the free boundary problem
associated to gk. Furthermore, infx∈B1(0) gk(x) ≥ k̃, supx,y∈B1(0)

|gk(x)−gk(y)|
|x−y|α < ε2

k and
wk(x) satisfies

(7.12) U (0)
γk

(xn − εk) ≤ wk(x) ≤ U (0)
γk

(xn + εk), x ∈ B1(0).

However, to obtain a contradiction, assume the desired νk, γ′k do not exist.
Define w̃k as in (7.9). Then (7.12) implies that {w̃k = 0} → {xn = 0} in the Hausdorff

distance norm and ‖w̃k‖L∞ ≤ 1. These observations, combined with Corollary 7.10 and the
Arzelà-Ascoli theorem, show that w̃k → w̃ uniformly in C(B1(0)) (after passing to subse-
quences). Furthermore, Corollary 7.10 implies that w̃ is a C0,χ function defined on B1/2(0).

C. – w̃ is a viscosity solution in B1/2 to the transmission problem.

If this is the case, w̃ satisfies the estimate (7.11). So there is a p such that

|w̃(x)− w̃(0)− (∇x′w̃(0) · x′ + px+
n − px−n )| ≤ Cr2, ∀x = (x′, xn) ∈ Br(0).

Because ‖w̃‖L∞ ≤ 1 we have |p| < 10. We will also pick r small enough so that 8Cr < 1.
As w̃k converges uniformly to w̃, for large enough k (depending on r possibly) we have

(7.13) |w̃k(x)− (∇x′w̃(0) · x′ + px+
n − px−n )| ≤ 2Cr2, ∀x = (x′, xn) ∈ Br(0).

Let νk := 1√
1+ε2k|∇x′ w̃(0)|2

(εk∇x′w̃(0), 1) and γ′k := γk(1 + εkp). We will now prove

(A) Uγ′k(x · νk − r
εk
2

) ≤ wk(x) ≤ Uγ′k(x · νk + r
εk
2

), x ∈ Br(0)

and also

(B) |γ′k − γk| ≤ C̃εkγk, |en − νk| ≤ C̃εk,

for some universal C̃. This is the desired contradiction.

Proof of (A): Assume wk(x) ≥ 0 (the other case follows similarly). (7.13) implies

(∇x′w̃(0) ·x′+ px+
n − px−n )− 2Cr2 ≤ wk(x)− γkxn

γkεk
≤ 2Cr2 + (∇x′w̃(0) ·x′+ px+

n − px−n )

for x ∈ Br(0). Consider the inequality on the left. Some algebraic manipulation yields

γkxn + γkεk((∇x′w̃(0) · x′ + px+
n − px−n )− 2Cr2) ≤ wk(x), ∀x ∈ Br(0) ∩ {wk ≥ 0}.

We can rewrite this again to obtain√
1 + ε2

k|∇x′w̃(0)|2Uγ′k(x · νk)− γkpε2
k|∇x′w̃(0) · x| − 2Cr2γkεk ≤ wk(x), ∀x ∈ Br(0) ∩ {wk ≥ 0}.

The Cauchy-Schwartz inequality, followed by some more algebraic manipulation, gives

Uγ′k(x · νk)− γ′kr
εk
2

(
2pεk|∇x′w̃(0)|+ 4Cr

1 + εkp

)
≤ wk(x), ∀x ∈ Br(0) ∩ {wk ≥ 0}.

Recall that r was chosen so that 8Cr < 1. Now pick k large enough so that 20εk|∇x′w̃(0)| < 1/2.

Together this implies
(

2pεk|∇x′ w̃(0)|+4Cr
1+εkp

)
< 1. In conclusion,

Uγ′k(x · νk − r
εk
2

) ≤ wk(x), ∀x ∈ Br(0) ∩ {wk ≥ 0}.
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The upper bound on wk and the inequalities for when wk < 0 follow in the same fashion.

Proof of (B). – We compute |γ′k − γk| = εkpγk ≤ 10εkγk. Also |νk − en|2 =

(νk − en, νk − en) = 2− 2(en, νk) = 2− 2√
1+ε2k|∇x′ w̃(0)|2

. For large k (so that εk|∇x′w̃(0)| < 1/2)

the Taylor series expansion of
√

1 + x2 yields the estimate |νk − en|2 ≤ ε2
k|∇x′w̃(0)|2.

Let C̃ = max{|∇x′w̃(0)|, 10} and we are done.

Proof of Claim. – We want to establish that w̃ is a viscosity solution to the transmission
problem. As ∆w̃k = 0, wherever {w̃k 6= 0}, it is clear that ∆w̃ = 0, in the viscosity sense,
when {xn 6= 0}. It remains to verify the boundary condition.

So assume, in order to reach a contradiction, that there is a function

φ̃(x) := A+ px+
n − qx−n +BQ(x− y),

with p−q > 0, which touches w̃ strictly from below at x0 = (x′0, 0) (the case where p−q < 0

and φ̃ touches from above follows similarly). Recall Q(x) := 1
2 [(n − 1)x2

n − |x′|2], y =

(y′, 0), B > 0 andA ∈ R. We now construct a family of functions which converge uniformly
to φ̃. Define

Γ(x) :=
1

n− 2
[(|x|′2 + |xn − 1|2)

2−n
2 − 1] and Γk(x) :=

1

Bεk
Γ(Bεk(x− y) +ABε2

ken).

Additionally, let

φk(x) := γk(1+εkp)Γ
+
k (x)−g(0)γk(1+εkq)Γ

−
k (x)+γk(d+

k (x))2ε
3/2
k +g(0)γk(d−k (x))2ε

3/2
k ,

where dk is the signed distance from x to ∂B 1
Bεk

(y+ en(Aεk− 1
Bεk

)). Finally, we can define

φ̃k as in (7.9).

A Taylor series expansion gives Γ(x) = xn +Q(x) +O(|x|3) and thus

Γk(x) = Aεk + xn +BεkQ(x− y) +O(ε2
k), x ∈ B1.

Therefore, φ̃k converges uniformly to φ̃. The existence of a touching point x0 implies a
sequence of constants, ck, and points, xk ∈ B1/2, such that ψk(x) := φk(x+εkcken) touches
wk from below at xk. We will get the desired contradiction if ψk is a strict subsolution to the
free boundary problem associated to gk.

When ψk 6= 0 we have ∆ψk & ∆d2
k(x + εkcken) > 0. If ψk = 0 a straightfor-

ward computation shows Γk(x + εkcken) = dk(x + εkcken) = 0. Thus, |∇d2
k| = 0

whenever ψk = 0. We can also compute (∇Γ±k )ν = ±1 on ψk = 0. Putting this
together, gk(x)(ψk(x)+)ν + (ψk(x)−)ν = gk(x)γk(1 + εkp)− g(0)γk(1 + εkq). Recall,
|gk(x) − g(0)| = |gk(x) − gk(0)| ≤ ε2

k which implies, gk(x) ≥ g(0) − ε2
k. Therefore,

gk(x)(ψk(x)+)ν + (ψk(x)−)ν ≥ g(0)γkεk(p − q) − ε2
kγk(1 + εkp). We are done if this last

term is > 0. It is easy to see

g(0)γkεk(p− q)− ε2
kγk(1 + εkp) > 0⇔ g(0)(p− q) > εk(1 + εkp)

which is clearly true for k large enough.
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8. Optimal Hölder regularity and higher regularity

Proposition 7.5 tells us that if log(h) ∈ C0,α(∂Ω) then ∂Ω is locally the graph of a C1,s

function for some s > 0. In this section we will introduce tools from elliptic regularity theory
in order to establish the sharp estimate s = α. These tools will also allow us to analyze the
case when log(h) ∈ Ck,α(∂Ω) for k ≥ 1.

8.1. Partial Hodograph Transform and Elliptic Systems

We begin by recalling the partial hodograph transform (see [27], Chapter 7 for a short
introduction). Here, and throughout the rest of the paper, we assume that 0 ∈ ∂Ω and that,
at 0, en is the inward pointing normal to ∂Ω.

Define F+ : Ω+ → H+ by (x′, xn) = x 7→ y = (x′, u+(x)). Because u+
n (0) = dω+

dσ (0) 6= 0

(Proposition 5.10), DF+(0) is invertible. So, by the inverse function theorem, there is some
neighborhood, O+, of 0 in Ω+ that is mapped diffeomorphically to U , a neighborhood of 0

in the upper half plane. Furthermore, this map extends in a C1 fashion from O+ to U (by
Corollary 6.7).

Similarly, define F− : Ω− → H+ by (x′, xn) = x 7→ y = (x′, u−(x)). Again u−n (0) 6= 0

so DF−(0) is invertible. We can conclude, as above, that there is a neighborhood, O−, of 0

in Ω− that is mapped diffeomorphically to U (perhaps after shrinking U ) and that this map

extends in a C1 fashion from O− to U .

Let ψ : U → R be given by ψ(y) = xn, where F+(x) = y. Because F+ is locally one-to-
one, ψ is well defined. Similarly, define φ : U → R by φ(y) = −xn where F−(x) = y. Again,
F− is locally one-to-one, so φ is well defined.

If νy denotes the normal vector to ∂Ω pointing into Ω at y, then u satisfies

∆u+(x) = 0, x ∈ Ω+

∆u−(x) = 0, x ∈ Ω−

(u+)νx(x)h(x) = −(u−)νx(x), x ∈ ∂Ω.

After our change of variables these equations become

(8.1)

0 =
1

2

(
1

ψ2
n

)
n

+

n−1∑
i=1

(
−
(
ψi
ψn

)
i

+
1

2

(
ψ2
i

ψ2
n

)
n

)

0 =
1

2

(
1

φ2
n

)
n

+

n−1∑
i=1

(
−
(
φi
φn

)
i

+
1

2

(
φ2
i

φ2
n

)
n

)
,

with both equations taking place for y ∈ U . On the boundary we have

(8.2)

φ(y) + ψ(y) = 0, y ∈ {yn = 0} ∩ U(
h̃(y)

ψn(y)

)
− 1

φn(y)
= 0, y ∈ {yn = 0} ∩ U,

where h̃((y′, 0)) = h((y′, ψ(y))).

R 8.1. – The following are true of φ, ψ:
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– Assume ψ, φ ∈ Ck,s(U ∩ {yn = 0}) with k ≥ 1, s ∈ (0, 1) Then u± ∈ Ck,s( O
±

) ⇔
ψ, φ ∈ Ck,s(U).

– If h ∈ Ck,α(∂Ω) and ψ, φ ∈ Ck+1,s(U) for any s, α ∈ (0, 1), then h̃ ∈ Ck,α(U ∩ {yn = 0})
with norm depending only on the Hölder norms of h and ψ, φ.

– φn, ψn > 0 in U .

Proof. – Let us address the first statement; when k ≥ 2 this follows from standard elliptic
regularity applied to the function ũ+(x) = u+(x + φ(x′, 0)) (and a similarly defined ũ−).
When k = 1, a theorem of Kellogg [20] says that ∇u± has non-tangential limit everywhere

on ∂Ω ∩ O± and that this non-tangential limit is in C0,s. We can then argue as in the proof

of Corollary 6.7 to see that∇u± ∈ C0,s( O
±

); the desired result.
To prove the second statement when k = 0, one computes |h̃(y1)− h̃(y2)| =

|h((y′1, ψ(y1)))− h((y′2, ψ(y2)))| ≤ C|(y′1, ψ(y1))− (y′2, ψ(y2))|α ≤ C ′|y1 − y2|α where that
last inequality follows because ψ ∈ C1,s(U). So h̃ ∈ C0,α({yn = 0} ∩ U). When k ≥ 1 we
note that ∂ih̃(y, 0) = ∂ih(y, ψ(y)) + ∂nh(y, ψ(y))∂iψ(y). By assumption ∂iψ(y) is at least
as regular as ∂nh(y, ψ(y)) so the result follows by induction.

The third claim follows immediately from construction.

We now recall the concepts of an elliptic system of equations and coercive boundary
conditions. For the sake of brevity, our Definition 8.2 is not fully general—it considers only
a specific type of system in “divergence form”. A comprehensive introduction to elliptic
systems can be found in Morrey ([31]), Chapter 6 (weak solutions in particular are covered
in Section 6.4).

D 8.2. – Let uk, k = 1, 2, satisfy

(8.3)

∫
U

∑
|χ|≤m1

|γ|≤t1+s1−m1

a1
χγ(x)Dγu1Dχζ =

∫
U

∑
|χ|≤m1

f1
χD

χζ

∫
U

∑
|χ|≤m2

|γ|≤t2+s2−m2

a2
χγ(x)Dγu2Dχζ =

∫
U

∑
|χ|≤m2

f2
χD

χζ

for all ζ ∈ C∞0 (U). Additionally assume,

(8.4)

∫
∂U∩{yn=0}

∑
|χ|≤p1

(
2∑
k=1

B1
kχ(Dx, Dy, x)uk

)
Dχ
xξdx =

∫
∂U∩{yn=0}

∑
|χ|≤p1

g1
χD

χ
xξdx

∫
∂U∩{yn=0}

∑
|χ|≤p2

(
2∑
k=1

B2
kχ(Dx, Dy, x)uk

)
Dχ
xξdx =

∫
∂U∩{yn=0}

∑
|χ|≤p2

g2
χD

χ
xξdx

for all ξ ∈ C∞0 (∂U ∩ {yn = 0}). Throughout, γ, χ are multi-indices. Let h1, h2, be such that
B1
kχ is of order ≤ tk − h1 − p1 and B2

kχ is of order ≤ tk − h2 − p2. This system has a proper
assignment of weights if there exists an h0 such that h0 and the tk,mj , sj , hr, pr, k, j, r = 1, 2

satisfy the following conditions:

– minj,k sj + tk ≥ 1 and minj,k tk + sj −mj ≥ 0

– minmj ≥ 0 and max sj = 0.
– min pr ≥ 0 and minh0 + hr + pr ≥ 1
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– min tk + h0 ≥ 0 and minh0 − sj +mj ≥ 0.

We say the above system is elliptic if the block diagonal matrix

M =

(
(a1
γχ)|χ|=m1,|γ|=t1+s1−m1

0

0 (a2
γχ)|χ|=m2,|γ|=t2+s2−m2

)
is an elliptic matrix for any x0 ∈ U . Additionally, when n = 2, we require that, for any linearly
independent ξ, η ∈ R2, half the roots of the equation

det

(∑
|χ|=m1,|γ|=t1+s1−m1

a1
γχ · (ξ + zη)χ+γ 0

0
∑
|χ|=m2,|γ|=t2+s2−m2

a2
γχ · (ξ + zη)χ+γ

)
= 0

have positive imaginary part and the other half have negative imaginary part.
Finally, we say that the boundary equations are coercive if for all y0 ∈ U ∩ {yn = 0} the

system

(8.5)

∑
|χ|=m1,|γ|=t1+s1−m1

a1
χγ(y0)Dγ+χv1(y) = 0

∑
|χ|=m2,|γ|=t2+s2−m2

a2
χγ(y0)Dγ+χv2(y) = 0

∑
|χ|=p1

2∑
k=1

B̃1
kχ(Dx, Dy, y0)vk((y′, 0)) = 0

∑
|χ|=p2

2∑
k=1

B̃2
kχ(Dx, Dy, y0)vk((y′, 0)) = 0

has no solutions of the form vk((y′, yn)) = eiy
′·ξ′ ṽk(yn), k = 1, 2 where ṽk(yn) → 0 as

yn → +∞ and ξ′ ∈ Rn−1. Above, B̃rkχ denotes the part of the operator Brkχ which has order
tk − hr − pr (the principle part).

D 8.3. – We define the h− µ-conditions on the coefficients above:
(1) The ajχγ satisfy the h− µ-conditions, 0 < µ < 1, in some open Γ:

1. if |γ| = tj + sj −mj and |χ| = mj then ajχγ ∈ C0,µ(Γ)

2. if h− sj + |χ| > 0 then ajχγ ∈ Ch−sj+|χ|,µ(Γ)

3. else, the as are in C0,µ(Γ).

(2) The operators Brkχ satisfy the h − µ-conditions, 0 < µ < 1, in some open Γ, if
Brkγ(Dx, Dy,−) ∈ Ch+hr+pr,µ(Γ ∩ {yn = 0}).

With these definitions in mind, we can state Theorem 6.4.8 of [31] (note the theorem in
Morrey refers to a slightly more general class of elliptic systems). Our wording differs in order
to comport with the notation used above.

T 8.4. – [Theorem 6.4.8, [31]] Let uk, k = 1, 2 satisfy an elliptic and coercive
system of equations onU (a neighborhood of 0 in the upper half plane withC∞ boundary) with
a proper assignment of weights h0, hr, pr, tk, sj ,mj . Let Γ ⊃ U be an open domain. Suppose
the a’s and the coefficients in the Brkγ satisfy the h − µ-conditions on Γ, 0 < µ < 1, and
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suppose the a priori estimates: f jα ∈ Cρ,µ(U), ρ = max{0, h− sj + |α|}, grγ ∈ Cτ,µ(U) with
τ = max{0, h+ hr + |γ|} and uk ∈ Ctk+h,µ(U). Then

(8.6)
∑
k

‖uk‖Ctk+h,µ(U) ≤ C

∑
j,α

‖f jα‖Cρ,µ(U) +
∑
r,γ

‖grγ‖Cτ,µ(U) +
∑
k

‖uk‖C0(U)

 .

Here C is, again, independent of uk the f ’s and the g’s.

8.2. Sharp C1,α regularity and C2,α regularity

It should be noted that in [31] it is not explicitly made clear if Theorem 8.4 applies when
h < h0 (nor if there should be additional restrictions on h). For the sake of completeness
we include a proof of Theorem 8.4 with h0 = 0, h = −1 in Appendix A. This is exactly the
result we need to establish optimal C1,α regularity.

P 8.5. – Let Ω ⊂ Rn be a 2-sided NTA domain with log(h) ∈ C0,α(∂Ω),

α ∈ (0, 1). In addition, if n ≥ 3 also assume that Ω is δ-Reifenberg flat, for δ > 0 small, or that
Ω is a Lipschitz domain. Then ∂Ω is locally the graph of a C1,α function.

Proof. – Recall the functions φ, ψ which satisfy the system (8.1) with boundary condi-
tions (8.2). For t = (t′, 0) ∈ Rn we consider u1,t(x) := ψ(x + t) − ψ(x) and u2,t(x) :=

φ(x + t) − φ(x); our plan is to show that u1,t, u2,t satisfy a system like the one in Defini-
tion 8.2. Repeated applications of Theorem 8.4 will then give the desired result. Our proof
has three steps.

Step 1. Constructing the elliptic and coercive system. – Both φ and ψ satisfy

div ~A(Du) = 0

where ~A(Du) :=

(
− u1

un
,− u2

un
, . . . , 1

2

(∑n−1
i=1

(
ui
un

)2

+ 1
u2
n

))
. As such

div

∫ 1

0

d

ds
~A(D(ψ(x) + s(ψ(x+ t)− ψ(x))))ds = 0⇒

div

∫ 1

0

aij(D(ψ(x) + s(ψ(x+ t)− ψ(x))))Diu
1,t(x)ds = 0

where aij(~p) = d
dpj

Ai(~p). φ and u2,t satisfy an analogous equation. Therefore, u1,t, u2,t

satisfy (8.3) with a1
ij(x) := aij(Dψ(x)) and

f1
j :=

∑
i

(
aij(Dψ(x))−

∫ 1

0

aij(D(ψ(x) + s(ψ(x+ t)− ψ(x))))ds

)
Diu

1,t

(and with corresponding definitions for f2, a2 in terms ofφ). Notem1 = m2 = 1, t1 = t2 = 2

and s1 = s2 = 0. On the boundary u1,t + u2,t = 0 and h̃(x)
φn(x+t)Dnu

2,t − 1
φn(x+t)Dnu

1,t =

h̃(x) − h̃(x + t). Therefore, h1 = 2, h2 = 1 and p1 = p2 = 0. Set h0 = 0. It is then easy to
see that this is a system with a proper assignment of weights. We will check in Step 3 that our
system satisfies the ellipticity, coercivity and regularity conditions of Definition 8.3.
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Step 2. The iterative process. – By Proposition 7.5, ui,t ∈ C1,s(U). In particular, the akij ’s
and theBs satisfy the h−µ-conditions with h = −1 and µ = s. It is also easy to see that the
f ’s and g’s satisfy the conditions of Theorem 8.4 (we assume, of course, that α ≥ s; otherwise
the result is immediate). We conclude

(8.7) ‖ui,t‖C1,s(U)

≤ K

 2∑
i=1

n∑
j=1

‖f ij‖C0,s(U) + ‖h̃(−)− h̃(−+ t)‖C0,s(U∩{yn=0}) +

2∑
k=1

‖uk,t‖C0(U)

 ,

where K is a constant independent of t. Some additional justification is needed here: in
Theorem 8.4 the constant may depend on the C0,s norm of the a’s and B’s. However, these
coefficients have norms which can be bounded independently of t and so K may be taken to
be independent of t.

For any x, y ∈ U,

(8.8)
2‖h̃‖Cα |x− y|s|t|α−s ≥ min{2|x− y|α‖h̃‖Cα , 2|t|α‖h̃‖Cα}

≥ |h̃(x)− h̃(x+ t)− h̃(y) + h̃(y + t)|.

Thus ‖h̃(−)− h̃(−+ t)‖C0,s(U∩{yn=0}) ≤ C|t|α−s. We also claim that if w, v ∈ C0,s then

‖(w(−)− w(−+ t))(v(−)− v(−+ t))‖C0,s ≤ 4|t|s‖w‖C0,s‖v‖C0,s

(this follows immediately from the triangle inequality and the fact that
sup |w(−) − w(− + t)| < |t|s‖w‖C0,s ). From here we conclude ‖f ij‖C0,s(U) ≤ C|t|s.
Plugging these estimates into (8.7) we obtain ‖ui,t‖C1,s(U) ≤ K(|t|s + |t|α−s + |t|) (as
‖uk,t‖C0(U) ≤ C|t|).

Therefore, for j = 1, . . . , n, we have that

(8.9)
|Djψ(x+ t) +Djψ(x− t)− 2Djψ(x)| = |Dju

1,t(x)−Dju
1,t(x− t)|

≤ ‖u1,t‖C1,s |t|s ≤ K(|t|2s + |t|α).

This implies ψ|U∩{yn=0} ∈ C1,β where β = min{α, 2s} (see [33], Chapter 5, Proposition 8).

Remark 8.1 gives ψ, φ ∈ C1,β(U). Iterate until β = α.

Step 3. Verifying the conditions of Definition 8.2. – It is easy to calculate the symmetric
(n× n)-matrix

DA(~p) =



−1
pn

0 0 . . . p1
p2n

0 −1
pn

0 . . . p2
p2n

... 0
. . . . . .

...
p1
p2n

. . . pi
p2n

. . . −
(

1
pn

)3 (
1 +

∑n−1
i=1 p

2
i

)

 .

If ~p = Dφ,Dψ, then pn > 0 in U . Thus the matricesDA(Dφ) andDA(Dψ) are both elliptic
(justifying our above use of the Schauder estimates) and the system is also elliptic (with the
obvious weights t1 = t2 = 2, s1 = s2 = 0). Additionally, when n = 2 we have the equation

− 1

p2
(ξ1 + zη1)2 + 2

p1

p2
2

(ξ1 + zη1)(ξ2 + zη2)− 1

p3
2

(1 + p2
1)(ξ2 + zη2)2 = 0.
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All the coefficients of this polynomial are real, so if α, β are its roots it must be the case that
α = β which is exactly the desired result.

We must check coercivity at an arbitrary y0 ∈ U ∩ {yn = 0}. If u1 = eiy
′·ξ′ ũ1(yn) solves

aij(Dψ(y0))Diju
1 = 0 then ũ1(yn) is a linear combination of functions of the form eryn

where r is a root of ∑
|ξ′|2

pn
+ 2

pj
p2
n

∑
iξ′jx−

1

p3
n

(1 +
∑

p2
i )x

2 = 0.

This equation has at most one root, call it r1, with strictly negative real part (as the sum of the
roots is purely imaginary). That ũ1(yn)→ 0 as yn →∞ implies ũ1(yn) = α1e

ynr1 . Similarly,
we define ũ2(yn) and conclude ũ2(yn) = α2e

ynr2 , where r2 has strictly negative real part (if
such an r1 or r2 does not exist then we are done).

As u1 + u2 = 0 on the boundary it must be true that α1 + α2 = 0. Furthermore

h̃(0)Dnu
2 −Dnu

1 = 0⇒

h̃(0)α2r2 − α1r1 = 0⇒ h̃(0)r2 + r1 = 0.

But h̃(0)r2 has strictly negative real part and r1 has strictly negative real part, so their sum
must have strictly negative real part and the system is coercive.

If log(h) ∈ Ck,α for k ≥ 1, the above argument can be modified slightly to give that ∂Ω

is locally the graph of a C2, α
2+α function.

P 8.6. – Let ∂Ω be a 2-sided NTA domain with log(h) ∈ C1,α(∂Ω)

for 0 < α < 1. If n ≥ 3 also assume either that Ω is δ-Reifenberg flat for δ > 0 small or
that Ω is a Lipschitz domain. Then ∂Ω is locally the graph of a C2, α

2+α function.

Proof. – We follow the proof of Proposition 8.5; consider againu1,t, u2,t. We have already
shown these functions satisfy an elliptic system with coercive boundary conditions. Note, by
Proposition 8.5, ui,t ∈ C1,s(U) for all s ∈ (0, 1). In particular, the akij ’s and the Bs satisfy
the h− µ-conditions with h = −1 and µ = s ∈ (0, 1) to be choosen later. Furthermore, the
f ’s and g’s satisfy the conditions of Theorem 8.4.

Follow Step 2 in the proof of Proposition 8.5 until we reach (8.8). Here we need an estimate
which incorporates the higher regularity of h̃. By Remark 8.1, h̃ ∈ C1,α(U ∩ {yn = 0}). For
any x, y ∈ Rn write, for the sake of brevity,

δ2
yf(x) ≡ f(x+ y) + f(x− y)− 2f(x).

We can then estimate, for x, y ∈ U ∩ {yn = 0},

(8.10)
|δ2
yh̃(x+ t)− δ2

yh̃(x)| ≤ ‖h̃‖C1+α min{3|t|, 2|y|1+α}

≤ C‖h̃‖C1+α |y|s|t|1−
s

1+α .

Consequently, ‖h̃(−)− h̃(−+ t)‖C0,s ≤ C|t|1−
s

1+α .

Proceed as in Step 2 of the proof of Proposition 8.5 until we reach (8.9), which now reads

(8.11)
|Djψ(x+ t) +Djψ(x− t)− 2Djψ(x)| = |Dju

1,t(x)−Dju
1,t(x− t)|

≤ ‖u1,t‖C1,s |t|s ≤ K(|t|2s + |t|1+s− s
1+α ).
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Pick s ∈ (0, 1) such that

1 + s− s

1 + α
= 2s⇒ s =

1 + α

2 + α
.

Then ψ|U∩{yn=0} ∈ C
2, α

2+α . By Remark 8.1 we can conclude that u ∈ C2, α
2+α (Ω) and, ergo,

ψ, φ ∈ C2, α
2+α (U).

8.3. Higher regularity

Once we have shown φ, ψ ∈ C2,s(U) for some s ∈ (0, 1), we can apply classical non-
linear “Schauder” type estimates (which require theC2,s a priori assumption). First we need
to define a non-linear elliptic and coercive system.

D 8.7. – Let uk, k = 1, 2 satisfy

(8.12)
F1(y, u1, u2, Du1, Du2, . . . , Dt1+s1u1, Dt2+s1u2) = 0, y ∈ U

F2(y, u1, u2, Du1, Du2, . . . , Dt1+s2u1, Dt2+s2u2) = 0, y ∈ U

and on the boundary satisfy

(8.13)
B1(y, u1, u2, Du1, Du2, . . . , Dt1−h1u1, Dt2−h1u2) = 0, y ∈ U ∩ {yn = 0}

B2(y, u1, u2, Du1, Du2, . . . , Dt1−h2u1, Dt2−h2u2) = 0, y ∈ U ∩ {yn = 0}.

Where, max si = 0 and min{tk + si},min{tk − hi} ≥ 0.

For a solution, v, to (8.12), we say that the system is elliptic along v at a point y0 ∈ U if the
linear system

(8.14)
L1

1(y0, D)φ1 + L2
1(y0, D)φ2 =

d

dt
F1(y0, v

1 + tφ1, . . . , Dt2+s1(v2 + tφ2))|t=0

L1
2(y0, D)φ1 + L2

2(y0, D)φ2 =
d

dt
F2(y0, v

1 + tφ1, . . . , Dt2+s2(v2 + tφ2))|t=0

is elliptic. That is to say, if the block matrix A, where Aij = L̃ij , is elliptic. Here L̃ij is the
principle part of the operator L (for more details see Definition 3.1, Chapter 6 of [27]).

For a solution, v, to both Equations (8.12) and (8.13) we say that the boundary conditions
are coercive along v at a point y0 ∈ U ∩ {yn = 0} if the linear boundary conditions

(8.15)
Φ1

1(y0, D)φ1 + Φ2
1(y0, D)φ2 =

d

dt
B1(y0, v

1 + tφ1, . . . , Dt2−h1(v2 + tφ2))|t=0

Φ1
2(y0, D)φ1 + Φ2

2(y0, D)φ2 =
d

dt
B2(y0, v

1 + tφ1, . . . , Dt2−h2(v2 + tφ2))|t=0

are coercive for the (8.14) (see Definition 8.2, above, for the definition of coercive linear boundary
values. See Definition 3.2, Chapter 6 in [27] for more details). Note in all of the above Dnv is
short hand for all nth-order derivatives of v.

We now recall the Schauder estimates for non-linear elliptic systems.
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T 8.8. – [see Theorem 12.2, [2], Theorem 3.3 in Chapter 6, [27] and
Chapter 6.8, [31]] Assume uk, k = 1, 2 satisfy an elliptic and coercive non linear system
with proper weights like in Definition 8.7. Let 0 < α < 1 and `0 = max(0,−hr) and assume
uk ∈ C`0+tk,α(U) for k = 1, 2. Then for any ` ≥ `0 if Fi ∈ C`−si,α and Br ∈ C`+hr,α, in all
arguments, then uk ∈ C`+tk,α(U).

Additionally if F,G are C∞ (analytic) functions in all of their arguments then uk is C∞

(analytic).

Our main theorem follows:

T (Main Theorem). – Let Ω be a 2-sided NTA domain with log(h) ∈ Ck,α(∂Ω)

where k ≥ 0 is an integer and α ∈ (0, 1). Then:

– when n = 2: ∂Ω is locally given by the graph of a Ck+1,α function.
– when n ≥ 3: there is some δn > 0 such that if δ < δn and Ω is δ-Reifenberg flat or if Ω is

a Lipschitz domain then ∂Ω is locally given by the graph of a Ck+1,α function.

Similarly, if log(h) ∈ C∞ or log(h) is analytic we can conclude (under the same flatness
assumptions above) that ∂Ω is locally given by the graph of a C∞ (resp. analytic) function.

Proof. – For k = 0 this result is contained in Proposition 8.5. For k = 1 Proposition 8.6
tells us that ∂Ω is C2,s, u± ∈ C2,s(Ω

±
) for some 0 < s < α. Theorem 8.8, applied as

below, combined with a standard difference quotient argument, like the ones above, gives
the optimal regularity; ∂Ω given by the graph of a C2,α function and u± ∈ C2,α(Ω

±
)

Let k ≥ 2, and set `0 = 0, ` = k − 1, t1 = t2 = 2, s1 = s2 = 0 and h1 = 2, h2 = 1.
First, we will show that ψ, φ satisfy an elliptic and coercive non-linear system with the above
weights (as defined in Definition 8.7). This same method also works to proveC∞ or analytic
regularity.

Recall both φ and ψ satisfy

div ~A(Du) = 0

where ~A(Du) :=

(
− u1

un
,− u2

un
, . . . , 1

2

(∑n−1
i=1

(
ui
un

)2

+ 1
u2
n

))
. Therefore, the associated

linear system at y0 isL1
1v

1 = d
dpi
Aj(ψ(y0))v1

ij , L
2
1 ≡ 0, L1

2 ≡ 0 andL2
2v

2 = d
dpi
Aj(φ(y0))v2

ij .
We have already established, in the proof of Proposition 8.5, that this is an elliptic system.

We have B1(y, ψ, φ, . . .) = φ+ ψ and B2(y, ψ, φ, . . .) = h((y′, ψ(y)))φn − ψn, which are
unchanged by linearization. Again, in the proof of Proposition 8.5, we have shown that these
boundary conditions are coercive for the above linear equations. Furthermore, the above
values give a proper assignment of weights.

Finally, F1, F2, B1 are analytic in all arguments (recall that ψn, φn 6= 0 in U ) and B2 is
analytic in Dψ,Dφ but has the same regularity in y and ψ that h has in x. By assumption,
h ∈ Ck,α = C`+h2,α soB2 has the desired regularity. Additionally, by Proposition 8.6, u has
the required initial smoothness. Thus, applying Theorem 8.8 yields the desired result.
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Appendix A

Proof of Theorem 8.4 for h < h0

Let us recall the statement we are trying to prove:

Theorem 8.4 Let uk, k = 1, 2 satisfy a system of coercive and elliptic equations with proper
weights. Suppose the coefficients in (8.3) and theBrkγ satisfy the h−µ-conditions on a domain
Γ ⊃ U , where 0 < µ < 1. Additionally, assume the following regularity: fαj ∈ Cρ,µ(U),
ρ = max{0, h−sj+|α|}, grγ ∈ Cτ,µ(U) with τ = max{0, h+hr+|γ|} and uk ∈ Ctk+h,µ(U).
Then

(A.1)
∑
k

‖uk‖Ctk+h,µ(U) ≤ C

∑
j,α

‖fαj ‖Cρ,µ(U) +
∑
r,γ

‖grγ‖Cτ,µ(U) +
∑
k

‖uk‖C0(U)

 .

Here C is independent of the uk’s, the f ’s and the g’s.

For simplicity’s sake, we establish the above in the special case where h0 = 0, h = −1,

t1 = t2 = 2, s1 = s2 = 0 and p1 = p2 = 0 (which is the case that is applied in the
proof of Proposition 8.5). However, our techniques work for h0 ≥ 0, h ≥ h0 − 1 and any
proper assignment of weights. To further simplify the proof, we will make the assumptions
that U is bounded and that uk ∈ C∞(U\{yn = 0}), i.e., that uk is infinitely smooth
away from {yn = 0}. In the context of the paper, these assumptions are clearly satisfied.
This simplification can be avoided through the use of cutoff functions (e.g., in the proof of
Theorem 6.2 in [1]).

Here we will follow closely the work of Agmon, Douglis and Nirenberg ([1, 2]). Our proof
has three steps; first, we present a representation formula for solutions to constant coefficient
systems and show how this formula implies the desired result in that circumstance. Second,
we analyze the variable coefficient case. Finally, we will justify the representation formula
introduced in the first step.

A.1. The constant coefficient case

We present a formula for solutions to constant-coefficient systems of the form (8.3) with
boundary conditions (8.4).

If every function involved is C∞ with compact support, then integration by parts and [2]
Theorem 6.1 tell us

(A.2) Diu
k(y′, yn)+Cki = Div

k(y′, yn)+Di

∫
Rn−1

2∑
r=1

Kkr(y
′−x′, yn)(g̃r(x′)−φr(x′))dx′

for any i = 1, . . . , n− 1 (this is essentially Equation 6.7 in [2] with the addition of a constant
to compensate for h = h0 − 1). We need to define some of the above terms:

– The Cki s are constants.
– Let Γ be the fundamental solution to the linear operator (−1)χakχγD

γ+χ. We define

vk(Y ) =

∫
Rn

∑
|χ|≤mk

(−1)χΓk(Y −X)Dχ
X f̃

k
χ(X)dX.
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Here f̃kχ is a smooth, compactly supported extension of fkχ to all of Rn. How the
extension is created is not particularly important.

– Similarly g̃r(x) is a smooth, compactly supported extension of gr to all of Rn−1. We
will abuse notation and refer to g̃ as g (similarly with f̃ ).

– φr(x′) :=
∑2
k=1B

r
k(Dx′ , Dxn)vk(x′, 0).

– Kkr are kernels so that if the ψrs have sufficient smoothness/growth properties and

Uk(y′, yn) :=

∫
Rn−1

∑
r

Kkr(y
′ − x′, yn)ψr(x′)dx′

then (−1)χakχγD
γ+χUk = 0 and

2∑
k=1

Brk(Dy′ , Dyn)Uk(y′, 0) = ψr(y′).

Classical results imply that Γ(Z), DΓ(Z) are integrable (at zero) and that DχΓ (for
any |χ| = 2) is a Calderon-Zygmund kernel which integrates to zero on Rn. For the Poisson
kernels, K, we turn to [1], Sections 2 and 3. When s = ord Brk = tk − hr − pr = 2 − hr,
we can deduce that DsKkr is homogenous of degree −(n− 1) (see [1], Equation (2.13)′). In
this case, we can write

DsKkr(y
′, yn) =

Ω( y
′

|Y | ,
yn
|Y | )

|Y |−n+1
, Y = (y′, yn).

As DsKkr satisfies the same differential equation as uk we conclude that∫
|y′|=1

Ω(y′, 0)dσ(y′) = 0

(see the corollary on pg 645 of [1]). Furthermore, DsK has bounded first derivatives away
from zero, so Ω is smooth. In particular, DsKkr(y

′, 0) is a Calderon-Zygmund kernel.
As the u’s, f ’s and g’s are assumed to be C∞c , we can differentiate under the integral sign

and rewrite (A.2) as

(A.3) Diu
k(y′, yn) + Ck =

∫
Rn

∑
|χ|≤mk

Γ̃kχ(Y −X)fkχ(X)dX

+
2∑
r=1

∫
Rn−1

D2−hr
Y Kkr(y

′ − x′, yn)Dhr−1
x′ (gr(x′)− φr(x′))dx′.

Where we define
Γ̃kχ(Y −X) := Dei+χ

Y Γ(Y −X)

(depending on the parity of tk−hr−pr the above equation may be missing some minus signs,
these omissions are irrelevant to future analysis). It should also be noted all the kernels above
are either integrable or Calderon-Zygmund kernels. We now make a crucial claim:

C. – The above (A.3) holds for weak solutions of the constant-coefficient system
(8.3) and (8.4) under the regularity assumptions fαj ∈ Cρ,µ(U) where ρ = max{0, |α| − 1},
grγ ∈ Cτ,µ(U) with τ = max{0, hr − 1}, and uk ∈ C1,µ(U).

From this one can conclude:
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L A.1. – Let uk, k = 1, 2 satisfy a system of constant-coefficient coercive and elliptic
equations with proper weights. Additionally, assume that for some for 0 < µ < 1: fχj ∈ Cρ,µ(U)

where ρ = max{0, |χ| − 1}, gr ∈ Cτ,µ(U) with τ = max{0, hr − 1} and uk ∈ C1,µ(U). Then

(A.4)
∑
k

‖uk‖C1,µ(U) ≤ C1

∑
j,χ

‖fχj ‖Cρ,µ(U) +
∑
r

‖gr‖Cτ,µ(U) +
∑
k

‖uk‖C0(U)

 .

Here, C is independent of the uk’s, the f ’s and the g’s.

Proof assuming the Claim. – It suffices to estimate the C1,µ norm of uk|{yn=0} (as each
uk satisfies an elliptic equation in U , the full estimate can be obtained using weighted
Schauder estimates. See, e.g., [15] Theorem 5.1 or [1] Theorem 9.1).

We use the classical fact that

(A.5) ‖f‖C1 ≤ ε[Df ]α + Cε,α sup |f |

where f ∈ C1,α(Rn−1) and [f ]α = supx 6=y
|f(x)−f(y)|
|x−y|α (see Equations 7.4, 7.5 in [1]).

From here it follows that we need only estimate [Diu
k|{yn=0}]µ, i = 1, . . . , n− 1 in terms

of the norms on the right hand side. That such an estimate exists, follows immediately from
the theory of singular integrals and the fact that the kernels in (A.3) are either Calderon-
Zygmund kernels or integrable at 0.

A.2. The variable coefficient case

Given Lemma A.1, the standard way to handle variable coefficients is to “freeze” the
coefficients at a point. For any y0 = (y′0, 0) ∈ U , we write:

(A.6)

∫
U

∑
|χ|≤m1
|γ|≤2−m1

a1
χγ(y0)Dγu1Dχζdx =

∫
U

∑
(f1
χ + [a1

χγ(y0)− a1
χγ(x)]Dγu1)Dχζdx

∫
U

∑
|χ|≤m2
|γ|≤2−m2

a2
χγ(y0)Dγu2Dχζdx =

∫
U

∑
(f2
χ + [a2

χγ(y0)− a2
χγ(x)]Dγu2)Dχζdx

for all ζ ∈ C∞0 (U). On the boundary

(A.7)

∫
{yn=0}

(
2∑
k=1

B1
k(Dx′ , Dxn , y

′
0)uk

)
ξdx′ =

∫
{yn=0}

(g1 +G1)ξdx′

∫
{yn=0}

(
2∑
k=1

B2
k(Dx′ , Dxn , y

′
0)uk

)
ξdx′ =

∫
{yn=0}

(g2 +G2)ξdx′

for all ξ ∈ C∞0 (∂U∩{yn = 0}). HereGr :=
∑2
k=1(Brk(Dx′ , Dxn , y

′
0)−Brk(Dx′ , Dxn , x

′))uk.

However, naïve application of Lemma A.1 will not work as the semi-norms [Duk]µ may
appear with large coefficients on the wrong side of the inequality.

(A.5) allows us to argue

[Duk]µ ≤
1

2
‖uk‖C1,µ ⇒ ‖uk‖C1,µ ≤ C‖uk‖C0 ,

4 e SÉRIE – TOME 49 – 2016 – No 4



A TWO-PHASE FREE BOUNDARY PROBLEM FOR HARMONIC MEASURE 901

for k = 1, 2 (which renders our desired estimate trivially true). So, without loss of generality,
it suffices to consider the case

(A.8) ∃k = 1, 2 s.t. ∃P,Q ∈ U with
|Duk(P )−Duk(Q)|

|P −Q|µ
>

1

2
‖uk‖C1,µ .

Let λ > 0 be determined later and assume, without loss of generality, P = (0, t), k = 1.
We have three cases:

Case 1. – |P − Q| ≥ λ. This easily implies 2 sup |Du1| ≥ λµ 1
2‖u

1‖C1,µ . From here, if λ is
sufficiently small, use (A.5) to get

Cλ‖u1‖C0 ≥ ‖u1‖C1,µ

which, as stated above, yields the desired estimate.

Case 2. – |P −Q| < λ but t ≥ 2λ. In this case uk, k = 1, 2 are solutions to an elliptic system
of equations inB3λ/2(P ) ⊂ U . Interior Schauder estimates for weak solutions (see e.g., [31],
Theorem 6.4.3 or [16] Chapter 8) give

∑
k

‖uk‖C1,µ(B5λ/4(P )) ≤ Cλ

∑
j,α

‖fαj ‖C0,µ(B3λ/2(P )) +
∑
k

‖uk‖C0(B3λ/2(P ))

 .

By assumption,

1

2
‖u1‖C1,µ(U) <

|Du1(P )−Du1(Q)|
|P −Q|µ

≤ ‖u1‖C1,µ(B5λ/4(P ))

and so, once we have fixed λ, we have the desired result.

Case 3. – |P −Q| < λ and t < 2λ. Consider a smooth cutoff function, η ∈ C∞(Rn), such
that η(Y ) ≡ 1 when |Y | ≤ 3λ and η(Y ) ≡ 0 when |Y | ≥ 5λ. Additionally, η can be chosen
such that |D`η| ≤ Cλ−`. Now consider V k := ηuk. V k satisfies equations similar to (A.6)
and (A.7) but with different right hand sides.

We can use the representation (A.3) and thus Lemma A.1 on the V ks. We need to estimate
each term on the right. The term that comes from the interior equations is dominated by

‖
∑
χ,γ

η(fkχ + [akχγ(y0)− akχγ(x)]Dγu1)‖C0,µ + ‖
∑
|γ|=1

∑
χ

[akχγ(y0)− akχγ(x)]ukDγη‖C0,µ .

Note that η is supported on B5λ so sup |akχγ(y0) − akχγ(x)| < Cλµ. Also recall that the
h− µ-conditions imply the akχγ are Hölder continuous. Thus, the first term in the offset
equation above can be dominated by

∑
χ,k ‖fkχ‖C0,µ + Cλµ[Duk]µ + C sup |Duk|, where

the constants above are independent of λ. Similarly, the second term can be bounded
by
∑
χ,k Cλ

µ−1[u]µ + C sup |uk|λ−2 + Cλ−1 sup |uk|.
From the boundary terms we get∑

r

(
‖

2∑
k=1

(Brk(Dx′ , Dxn , y
′
0)−Brk(Dx′ , Dxn , x

′))ηuk‖Chr−1,µ + ‖ηgr‖Chr−1,µ

)
.

As we have seen above, we need not worry when the derivatives in the boundary operators
land on η (as these terms will all be bounded by the C0,µ norms of the fs, gs and us and
the C1 norm of the us). When the derivatives all land on the uk term, we argue just as above
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(recalling that h − µ conditions imply that the Bs are Hölder continuous in position) and
conclude that the coefficient of [Duk]µ contains a positive power of λ.

We can then pick λ small enough so that the coefficient of [Duk]µ on the right hand side
is less than 1/4. This yields the estimate

∑
k

‖V k‖C1,µ(U) ≤
1

4

∑
k

[Duk]µ + C

∑
j,χ

‖fχj ‖Cρ,µ(U) +
∑
r

‖gr‖Cτ,µ(U) +
∑
k

‖uk‖C0(U)

 .

But V k = uk on P,Q so we have that

1

2
‖u1‖C1,µ(U) <

|Du1(P )−Du1(Q)|
|P −Q|µ

≤ ‖V 1‖C1,µ(U)

⇒ 1

2
‖u1‖C1,µ(U) ≤

1

4

∑
k

[Duk]µ + C

∑
j,χ

‖fχj ‖Cρ,µ(U) +
∑
r

‖gr‖Cτ,µ(U) +
∑
k

‖uk‖C0(U)

 .

From here the desired estimate follows immediately. As such, we are done modulo the proof
that (A.3) holds for non-C∞ functions.

A.3. Justifying (A.3)

It remains to prove our claim above: namely, that the representation in (A.3) is valid
without the a priori assumption of C∞ regularity. Here we follow closely the discussion on
pages 673-674 of [1]. It should first be noted that the integrals on the right hand side of (A.3)
converge if fαj ∈ Cρ,µ(U) and grγ ∈ Cτ,µ(U).

Let j(r) be an approximation to the identity and then define

Jεu(y′, yn) := ε−n+1

∫ n−1∏
i=1

j

(
yi − xi
ε

)
u(x1, . . . , xn−1, xn)dx′.

Similarly, we can define

Jε,ε̃u(y′, yn) :=
1

ε̃

∫ ∞
0

j

(
yn + ε̃− s

ε̃

)
Jεu(y′, s)ds.

For any u it is clear that Jε,ε̃u is a C∞ function in the closed upper half plane.
Now assume the uk’s satisfy a coercive and elliptic system with constant coefficients and

let the f ’s and g’s be as in Definition 8.2. Then (as the system has constant coefficients) it is
true that Jε,ε̃uk satisfies (8.3) with Jε,ε̃fkχ on the right hand side. So, with vk defined as above,
(A.3) becomes

(A.9) Jε,ε̃Diu
k(y′, yn) + Cki (ε, ε̃) =

∫
Rn

∑
|χ|≤mk

Γ̃kχ(Y −X)Jε,ε̃f
k
χ(X)dX

+

2∑
r=1

∫
Rn−1

D2−hr
Y Kkr(y

′ − x′, yn)Gε,ε̃(x
′, 0)dx′

where

Gε,ε̃(x
′, 0) := (Jε,ε̃D

hr−1
x′

∑
k

Brk(Dx′ , Dxn)(uk(x′, xn)− vk(x′, xn)))xn=0.
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Note that, for H ∈ C0,µ, Jε,ε̃H
ε̃↓0→ JεH uniformly (by Arzelà-Ascoli). By assumption

fkχ is Hölder continuous. To analyze the boundary terms, note first that Dhr−1
x′ Brk is an

operator of order 1 and, as such,Dhr−1
x′

∑
k B

r
k(Dx′ , Dxn)(uk(x′, xn)−vk(x′, xn)) is at least

as regular as C0,µ. So Jε,ε̃D
hr−1
x′

∑
k B

r
k(Dx′ , Dxn)(uk(x′, xn) − vk(x′, xn)) (and thus its

restriction to {xn = 0}) converges in the uniform topology.
Let ε̃ ↓ 0 to obtain

(A.10) JεDiu
k(y′, yn) + Ck(ε) =

∫
Rn

∑
|χ|≤mk

Γ̃kχ(Y −X)Jεf
k
χ(X)dX

+

2∑
r=1

∫
Rn−1

D2−hr
Y Kkr(y

′ − x′, yn)Gε(x
′, 0)dx′

where

Gε(x
′, 0) := (JεD

hr−1
x′

∑
k

Brk(Dx′ , Dxn)(uk(x′, xn)− vk(x′, xn)))xn=0.

Since Jε is a convolution in only the Rn−1 directions, we can set xn = 0 to obtain

Gε(x
′, 0) = JεD

hr−1
x′ (gr(x′)− φr(x′)).

We note, by assumption, that gr is at least Hölder continuous. As such, we can use the same
argument as above to justify taking ε ↓ 0; the validity of our claim follows.
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