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THE BREUIL-MÉZARD CONJECTURE FOR
NON-SCALAR SPLIT RESIDUAL REPRESENTATIONS

 Y HU  F TAN

A. – We prove the Breuil-Mézard conjecture for split non-scalar residual representations
of Gal(Qp/Qp) by local methods. Combined with the cases previously proved in [20] and [26], this
completes the proof of the conjecture (when p ≥ 5). As a consequence, the local restriction in the proof
of the Fontaine-Mazur conjecture in [20] is removed.

R. – Nous prouvons la conjecture de Breuil-Mézard pour les représentations résiduelles
scindées non-scalaires de Gal(Qp/Qp) par des méthodes locales. Combiné avec les cas déjà prouvés
dans [20] et [26], cela complète la preuve de la conjecture (lorsque p ≥ 5). Par conséquent, la restriction
locale dans la preuve de la conjecture de Fontaine-Mazur dans [20] est levée.

Notation

– p ≥ 5 is a prime number. The p-adic valuation is normalized as vp(p) = 1.
– E/Qp is a sufficiently large finite extension with ring of integers O, a (fixed) uniformizer
$, and residue field F. Its subring of Witt vectors is denoted by W (F).

– For a number field F , the completion at a place v is written as Fv, for which we fix a
uniformizer denoted by $v.

– For a local or global field L, GL = Gal(L/L). The inertia subgroup for the local field
is written as IL.

– For each finite place v in a number field F , fix a map GFv → GF by choosing an
inclusion F ↪→ F v of algebraic closures.

– ε : GQp → Z×p is the cyclotomic character, ω : GQp → F×p is its reduction mod p, and
ω̃ is the Teichmüller lifting of ω.

– 1 : GQp → F×p is the trivial character. We also let 1 denote other trivial representations,
if no confusion arises.

– Normalize the local class field map Q×p → Gab
Qp so that uniformizers correspond to

geometric Frobenii. Then a character ofGQp will also be regarded as a character ofQ×p .
– For a ring R, m-SpecR denotes the set of maximal ideals.
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0012-9593/06/© 2015 Société Mathématique de France. Tous droits réservés



1384 Y. HU AND F. TAN

– ForR a Noetherian ring andM a finiteR-module of dimension at most d, let `Rp(Mp)

denote the length of the Rp-module Mp, and let Zd(M) =
∑
p `Rp(Mp)p for all

p ∈ SpecR such that dimR/p = d. When the context is clear, we simply denote it
by Z(M).

– ForR a Noetherian local ring with maximal idealm andM a finiteR-module, and for
an m-primary ideal q of R, let eq(R,M) denote the Hilbert-Samuel multiplicity of M
with respect to q. We abbreviate em(R,M) = e(R,M) and eq(R,R) = eq(R).

– For r ≥ 0, we let SymrE2 (resp. SymrF2) be the usual symmetric power representation
of GL2(Zp) (resp. of GL2(Fp), but viewed as a representation of GL2(Zp)).

1. Introduction

Consider the following data:

– an integer k ≥ 2,
– a representation τ : IQp → GL2(E) with open kernel,
– a continuous character ψ : GQp → O× such that ψ|IQp = εk−2detτ .

We call such a triple (k, τ, ψ) a p-adic Hodge type. We say a 2-dimensional continuous
representation ρ : GQp → GL2(E) is of type (k, τ, ψ) if ρ is potentially semi-stable (i.e.,
de Rham) such that its Hodge-Tate weights are (0, k − 1), WD(ρ)|IQp ' τ , and detρ ' ψε.
Here WD(ρ) is the Weil-Deligne representation associated to ρ by Fontaine [12].

By a result of Henniart [14], there is a unique finite dimensional smooth irreducible
Qp-representation σ(τ) (resp. σcr(τ)) of GL2(Zp) associated to τ , such that for any infinite
dimensional smooth absolutely irreducible representation π of GL2(Qp) and the associated
Weil-Deligne representation LL(π) via classical local Langlands correspondence, we have
HomGL2(Zp)(σ(τ), π) 6= 0 if and only if LL(π)|IQp ' τ (resp. HomGL2(Zp)(σ

cr(τ), π) 6= 0 if
and only if LL(π)|IQp ' τ and the monodromy operator is trivial). We remark that σ(τ) and
σcr(τ) differ only when τ = χ⊕ χ is scalar, in which case

σ(τ) = s̃t⊗ χ ◦ det, σcr(τ) = χ ◦ det

where s̃t is the inflation to GL2(Zp) of the Steinberg representation of GL2(Fp).
Enlarging E if needed, we may and do assume σ(τ) is defined over E. Form the finite

dimensional GL2(Zp)-representation

σ(k, τ) = Symk−2E2 ⊗E σ(τ)

and the semi-simplification σ(k, τ)
ss

of the reduction modulo $ of a GL2(Zp)-stable O-lat-
tice inside σ(k, τ). Then σ(k, τ)

ss
does not depend on the choice of the lattice.

Recall that the finite dimensional irreducibleF-representations of GL2(Zp) are of the form

σn,m := SymnF2 ⊗ detm, n ∈ {0, . . . , p− 1},m ∈ {0, . . . , p− 2}.

For each σn,m let an,m = an,m(k, τ) be the multiplicity with which σn,m occurs in σ(k, τ)
ss

.
We have the obvious analogue in the crystalline case by considering

σcr(k, τ) := Symk−2E2 ⊗E σcr(τ)

and denote the resulting numbers by acr
n,m = acr

n,m(k, τ).
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THE BREUIL-MÉZARD CONJECTURE 1385

Let ρ : GQp → GL2(F) be a continuous representation and R�(ρ) be its universal
framed deformation ring ([19]). The following results on the structure of potentially semi-
stable framed deformation rings are known.

T 1.1 (Kisin, [19]). – There is a unique (possibly trivial) quotient R�,ψ(k, τ, ρ)

(resp. R�,ψ
cr (k, τ, ρ)) of R�(ρ) such that

(i) A map x : R�(ρ) → E′, for any finite extension E′/E, factors through R�,ψ(k, τ, ρ)

(resp. R�,ψ
cr (k, τ, ρ)) if and only if the Galois representation ρx corresponding to x is of type

(k, τ, ψ) (resp. and is potentially crystalline).
(ii) R�,ψ(k, τ, ρ) (resp. R�,ψ

cr (k, τ, ρ)) is p-torsion free.
(iii) R�,ψ(k, τ, ρ)[1/p] (resp. R�,ψ

cr (k, τ, ρ)[1/p]) is reduced, all of whose irreducible com-
ponents are smooth of dimension 4.

The following conjecture, the so-called Breuil-Mézard conjecture, relates the Hilbert-
Samuel multiplicity ofR�,ψ(k, τ, ρ)/$ (resp.R�,ψ

cr (k, τ, ρ)/$) with the numbers an,m (resp.
acr
n,m).

C 1.2 (Breuil-Mézard, [4]). – For any (k, τ, ψ) as above, we have

e(R�,ψ(k, τ, ρ)/$) =
∑
n,m

an,m(k, τ)µn,m(ρ),(1)

e(R�,ψ
cr (k, τ, ρ)/$) =

∑
n,m

acr
n,m(k, τ)µn,m(ρ)(2)

for some integers µn,m(ρ) which are independent of k, τ and ψ.

In particular, the conjecture implies that

µn,m(ρ) = e
(
R�,ψ

cr (n+ 2, (ω̃m)⊕2, ρ)/$
)

which can be computed. We refer the reader to [20, 1.1.6] for these numbers, and remark that
when n = p− 2 and ρ is scalar, µp−2,m(ρ) = 4, as is shown in [28].

Conjecture 1.2 was proved by Kisin [20] in the cases that ρ is not (a twist of) an extension
of 1 by ω. He first proved the “≤” part of (1) and (2) using the p-adic local Langlands [6], and
then combined it with the (global) modularity lifting method to deduce the “≥” part. Years
later, the conjecture was proved by Paškūnas [26] for all ρ with only scalar endomorphisms,
using the p-adic local Langlands and his previous (local) results in [25]. We prove, also using
local methods (except for one global input due to Emerton [9], see the introduction of [26]),
the following theorem (in the language of cycles of [10]), which in particular includes the
remaining case of the conjecture (when p ≥ 5).

T 1.3 (Remark 5.7, Theorem 5.11, Theorem 5.12). – For any continuous repre-
sentation ρ : GQp → GL2(F) which is isomorphic to the direct sum of two distinct characters,
and for any (k, τ, ψ) as above, there are 4-dimensional cycles Zn,m of R�(ρ) which are
independent of (k, τ, ψ) such that

Z(R�,ψ(k, τ, ρ)/$) =
∑
n,m

an,m(k, τ) Zn,m.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1386 Y. HU AND F. TAN

Z(R�,ψ
cr (k, τ, ρ)/$) =

∑
n,m

acr
n,m(k, τ) Zn,m.

Moreover, we have Zn,m = Z(R�,ψ
cr (n+ 2, (ω̃m)⊕2, ρ)/$)). In particular, the Breuil-Mézard

Conjecture 1.2 is true.

In fact, we prove Theorem 1.3 in the language of versal deformation ringsRver(ρ) (see §3).
This implies the result, as is explained in §6.

Remark 5.7 is for the generic case, i.e., for ρ = χ1 ⊕ χ2 with χ1χ
−1
2 /∈ {1, ω±}, while

Theorem 5.11 and Theorem 5.12 are for the non-generic case, i.e., ρ ' 1 ⊕ ω (up to twist),
which is a new result.

For the proof, we follow closely that of [26], but have to deal with some extra compli-
cations, especially when ρ is a twist of 1 ⊕ ω, which we explain now. In [26], Paškūnas
developed a general formalism to deduce the Breuil-Mézard conjecture, the key of which
is to construct an appropriate representation of GL2(Qp) with coefficients in Rver(ρ) sat-
isfying several good properties, one of which is that it gives the universal deformation of ρ
over Rver(ρ) via Colmez’s functor (in fact, to do so, we should work with deformation rings
with fixed determinant, but we ignore this issue in this introduction). Then, using the p-adic
local Langlands, he reduces the proof of the conjecture to representation theory of GL2(Qp).
When ρ is split and generic, such a construction can be done easily and essentially follows
from that of [26].

However, we are not able to do it directly when ρ is a twist of 1 ⊕ ω. In contrast, such
a GL2(Qp)-representation over the pseudo-deformation ring of (the trace of) ρ is known,
thanks to Paškūnas’ previous work [25]. This naturally suggests that we first mimic Paškūnas’
strategy in the setting of potentially semi-stable pseudo-deformation rings, and then pass
to the corresponding versal deformation rings, as Kisin did in [20]. There are however two
complications in doing so. The first one is that the GL2(Qp)-representation over the pseudo-
deformation ring constructed in [25] is not flat, which makes the arguments more involved
when verifying the setting of [26]; see §4.2. The second is that even if the (analogous) conjec-
ture for pseudo-deformation rings is proven, the local argument in [20, §1.7] only gives the
inequality “≤”. To resolve these, we construct and study morphisms among various deforma-
tion rings, and reduce the conjecture to the (analogous) statement for pseudo-deformation
rings and to the cases which have been treated in [26]. Thus, our proof may also be viewed as
a refinement of the local argument in [20].

With the main result of [26] and Theorem 1.3 in hand, Kisin’s original proof [20] applies to
give the Fontaine-Mazur conjecture for geometric Galois representations ρ : GQ → GL2( O)

such that ρ|GQp
is a twist of an extension of 1 by ω, split or not. These are complementary

to the cases treated in [20]. Putting them together, we have the following theorem (recall that
p ≥ 5).

T 1.4. – Let ρ : GQ → GL2( O) be a continuous representation which is unramified
away from a finite set of primes, whose residual representation ρ is odd with restriction ρ|Q(ζp)

being absolutely irreducible. If ρ|GQp
is potentially semi-stable with distinct Hodge-Tate weights,

then ρ comes from a modular form, up to a twist.

4 e SÉRIE – TOME 48 – 2015 – No 6



THE BREUIL-MÉZARD CONJECTURE 1387

Note that the majority cases of Theorem 1.4 was also proved by Emerton [9], namely the
cases for which ρ|GQp

is not a twist of an extension of ω by 1 or an extension of 1 by 1. Thus
the only new case proved here is when ρ|GQp

is a twist of the direct sum 1⊕ ω.

The paper is organized as follows. Section 2 and Section 4 are devoted to the study of the
pseudo-deformation rings using representation theory of GL2(Qp) via the theory developed
in [25],[26]. In Section 3, we give explicit descriptions of certain deformation rings and maps
among them. We prove Theorem 1.3 in Section 5 and prove Theorem 1.4 in Section 6.

Acknowledgments. The authors are deeply indebted to Mark Kisin and Vytautas Paškūnas
for the works [20] and [26]. The first named author would like to thank Xavier Caruso and
Laurent Moret-Bailly for several discussions, and Vytautas Paškūnas for helpful correspon-
dences. They thank the referee for providing many constructive comments and for help in
improving the content of this paper. They are grateful to the Morningside Center of Mathe-
matics and the Max-Planck Institute for Mathematics for their hospitality in the final stages
of the project.

2. Preparations on F-representations of GL2(Qp)

In this section, we redefine and study Kisin’s map θ [20, 1.5.11]. It will be used in §4.

LetG := GL2(Qp),K := GL2(Zp) and Z ⊂ G be the centre. Denote by P ⊂ G the upper
triangular Borel subgroup, by I ⊂ K the upper triangular Iwahori subgroup, and by I1 ⊂ K
the upper triangular pro-p-Iwahori subgroup.

Let Modsm
G ( O) be the category of smooth G-representations on O-torsion modules

and Modl,fin
G ( O) be its full subcategory consisting of locally finite objects. Here an object

τ ∈ Modsm
G ( O) is said to be locally finite if for all v ∈ τ the O[G]-submodule generated by v

is of finite length. For τ ∈ Modl,fin
G ( O), we write socGτ for its G-socle, namely the largest

semi-simple sub-representation of τ . Let Modsm
G (F) and Modl,fin

G (F) be respectively the full
subcategory consisting of G-representations on F-modules, i.e., killed by $. Moreover, for
a continuous character ζ : Z → O×, adding the subscript ζ in any of the above categories
indicates the corresponding full subcategory of G-representations with central character ζ.

Let Modpro
G ( O) be the category of compact O[[K]]-modules with an action of O[G] such

that the two actions coincide when restricted to O[K]. This category is anti-equivalent
to Modsm

G ( O) under the Pontryagin dual τ 7→ τ∨ := Hom O(τ, E/ O), the latter being
equipped with the compact-open topology. Finally let Cζ( O) and Cζ(F) be respectively the
full subcategory of Modpro

G ( O) anti-equivalent to Modl,fin
G,ζ ( O) and Modl,fin

G,ζ (F).

2.1. Some F-representations of G

Fix an integer r ∈ {0, . . . , p−1} and consider the representation SymrF2 ofKZ obtained
by letting p ∈ Z act trivially. Fix a continuous character χ : Q×p → F× and λ ∈ F. For our
purpose we will assume:

(H) λ 6= 0 and (r, λ) 6= (p− 1,±1).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1388 Y. HU AND F. TAN

Write I(SymrF2) := c-IndGKZSymrF2, the compact induction of SymrF2 fromKZ toG,
and Iχ(SymrF2) := I(SymrF2)⊗ χ ◦ det. By [1, Proposition 8], we have

EndG(Iχ(SymrF2)) ∼= F[Tr]

for certain Hecke operator Tr (as normalized in [1, §3.1] or in [20, 1.2.1]). We will often write
T = Tr if no confusion is caused. Write

π(r, λ, χ) := Iχ(SymrF2)/(T − λ).

By [1, Theorem 30], π(r, λ, χ) is an irreducible principal series if (r, λ) 6= (0,±1) (under our
assumption (H)), and is reducible of length 2 if (r, λ) = (0,±1) in which case we have a non-
split short exact sequence:

0→ Sp⊗χµ±1 ◦ det→ π(0,±1, χ)→ χµ±1 ◦ det→ 0

where Sp denotes the Steinberg representation of G and µ±1 : Q×p → F× denotes the
unramified character sending p to ±1.

Since F[T ] acts freely on Iχ(SymrF2) by [1, Theorem 19], for each n ∈ Nwe have a natural
G-equivariant injection

(T − λ) : Iχ(SymrF2)/(T − λ)n → Iχ(SymrF2)/(T − λ)n+1.

Write πn(r, λ, χ) := Iχ(SymrF2)/(T − λ)n for n ≥ 1 so that π1(r, λ, χ) = π(r, λ, χ). For
convenience, we set π0(r, λ, χ) := 0. Then, for 1 ≤ m ≤ n, we have an exact sequence
of G-representations:

(3) 0→ πm(r, λ, χ)
(T−λ)n−m−→ πn(r, λ, χ)→ πn−m(r, λ, χ)→ 0

which is non-split because F[T ] acts freely on Iχ(SymrF2).
Put

π∞(r, λ, χ) := lim−→
n

πn(r, λ, χ).

Then π∞(r, λ, χ) is a smooth locally finiteF-representation ofGwith central characterχ2ωr.
Taking m = 1 and passing to the limit over n in (3), we obtain a non-split exact sequence

(4) 0→ π(r, λ, χ)→ π∞(r, λ, χ)→ π∞(r, λ, χ)→ 0.

L 2.1. – (i) The F-vector space HomG (π(r, λ, χ), π∞(r, λ, χ)) is of dimension 1 and
is spanned by the second arrow constructed in (4). In particular, any non-zero G-equivariant
morphism π(r, λ, χ)→ π∞(r, λ, χ) is injective.

(ii) We have

socGπ∞(r, λ, χ) = socGπ(r, λ, χ) =

{
π(r, λ, χ) if (r, λ) 6= (0,±1)

Sp⊗χµ±1 ◦ det if (r, λ) = (0,±1).

Proof. – We give a proof for the sake of completeness although the argument is standard.
To simplify the notation, we write πn for πn(r, λ, χ) (where n ∈ N ∪ {∞}).

(i) By construction it suffices to prove that for anyn ≥ 1, theF-vector space HomG(π1, πn)

is of dimension 1 and is spanned by (T−λ)n−1 : π1 → πn. This is clear whenn = 1. Letn ≥ 2

and assume the assertion is true for n−1. Then the exact sequence (3) withm = n−1 induces

0→ HomG(π1, πn−1)→ HomG(π1, πn)→ HomG(π1, π1).

4 e SÉRIE – TOME 48 – 2015 – No 6



THE BREUIL-MÉZARD CONJECTURE 1389

We deduce that HomG(π1, πn) is of dimension ≤ 2, and the equality holds if and only if the
last arrow is surjective if and only if (3) is split (when m = n− 1). Since (3) is non-split, the
result follows.

(ii) The second equality is clear by what we have recalled. For the first one, if (r, λ) 6= (0,±1),
then π1 is irreducible and each irreducible constituent of π∞ is isomorphic to π1 so the lemma
follows from (i).

Assume now (r, λ) = (0,±1) so that socGπ1 = Sp⊗χµ±1 ◦ det. We assume moreover
λ = 1 and χ is trivial; the general case can be deduced by twisting. In particular, the central
character of πn is trivial. Clearly if π is an irreducible smooth F-representation of G such
that HomG(π, π∞) 6= 0 then π ∼= Sp or π ∼= 1 (the trivial F-representation of G).
Moreover, by (i) the natural morphism HomG(π1, π∞)→ HomG(Sp, π∞) is non-zero, hence
dimF HomG(Sp, π∞) ≥ 1 and HomG(1, π∞) = 0.

We are left to show dimF HomG(Sp, π∞) = 1, or equivalently dimF HomG(Sp, πn) = 1

for all n ≥ 1. For each n ≥ 2 we define τn to be the kernel of the composition πn � π1 � 1.
Then τn fits into the exact sequence

(5) 0→ πn−1 → τn → Sp→ 0.

If we had dimF HomG(Sp, πk) ≥ 2 for some k ∈ N which we choose to be the smallest, then
k ≥ 2 and the sequence (5) with n = k must split and would induce an exact sequence

0→ Sp⊕πk−1 → πk → 1→ 0.

Since HomG(πk−1,1) 6= 0 and Ext1
G/Z(1,1) = 0 (since p 6= 2, see [25, §10.1]), this would

imply dimF HomG(πk,1) ≥ 2 hence

dimF HomK(Sym0F2,1) = dimF HomG(I(Sym0F2),1) ≥ 2.

This being impossible, the assertion follows.

Let InjGπ(r, λ, χ) be an injective envelope of π(r, λ, χ) in Modl,fin
G,ζ (F), where ζ : Z → O×

is a continuous character whose reduction modulo $ is equal to χ2ωr, the central character
of π(r, λ, χ). Lemma 2.1 implies the existence of a G-equivariant injection

θ : π∞(r, λ, χ) ↪→ InjGπ(r, λ, χ).

Such an injection need not be unique. We will show later that the image of θ does not depend
on the choice; see Corollary 2.4.

Let H be the Hecke algebra associated to c-IndGI1Zζ and Mod H the category of H -mod-
ules. Denote by I : Modsm

G,ζ(F)→ Mod H the left exact functor induced by taking I1-invari-
ants and Ri I its right derived functors for i ≥ 1, cf. [25, §5.4] for a collection of properties
about this functor. Recall the following result.

L 2.2. – Letπ be a smooth irreducible non-supersingularF-representation ofG. Then

(i) Ext2
H ( I (π), ∗) = 0;

(ii) Ext1
H ( I (π), I (π(r, λ, χ))) = 0 except when π ∼= socGπ(r, λ, χ) in which case the space

is of dimension 1 over F.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Proof. – (i) It is a special case of [25, Lemma 5.24]. (ii) If (r, λ) 6= (0,±1) so that π(r, λ, χ)

is irreducible, it is a special case of [25, Lemma 5.27(ii)]. If (r, λ) = (0,±1), then it follows
from [25, Lemma 5.27(iii)], using (i) for the second assertion.

P 2.3. – The morphism θ identifies π∞(r, λ, χ) with the largest G-stable sub-
space of InjGπ(r, λ, χ) generated by its I1-invariants. In other words, θ induces an isomorphism

θ : π∞(r, λ, χ)
∼−→ 〈G · (InjGπ(r, λ, χ))I1〉.

Proof. – To simplify the notation, we write πn for πn(r, λ, χ) where n ∈ N ∪ {∞}.

Let π be an irreducible object in Modsm
G,ζ(F). Recall that we have the following exact

sequence

0→ Ext1
H ( I (π), I (π∞))

T→ Ext1
G,ζ(π, π∞)→ Hom H ( I (π),R1 I (π∞))

see for example [25, §5.4], where T : Mod H → Modsm
G,ζ(F) denotes the functor

M 7→ M ⊗ H c-IndGI1Zζ and Ext1
G,ζ indicates that the extensions are calculated in the

category Modsm
G,ζ(F). By the main result of [24], an extension 0→ π∞ → V → π → 0 lies in

the image of T if and only if V is generated by its I1-invariants, i.e., V = 〈G · V I1〉. We will
show Ext1

H ( I (π), I (π∞)) = 0 which will imply the assertion.

By definition of π∞, we have an isomorphism I (π∞) ∼= lim−→n
I (πn) as H -modules

which induces Ext1
H ( I (π), I (π∞)) ∼= lim−→n

Ext1
H ( I (π), I (πn)). The latter isomorphism

holds because I (π) is a finitely presented H -module, see [32]. So it suffices to show that the
transition map

αn : Ext1
H ( I (π), I (πn))→Ext1

H ( I (π), I (πn+1))

is zero for any n ≥ 1. By Lemma 2.2, we may assume π = socGπ1. The exact sequence (3)
induces a sequence of H -modules

(6) 0→ I (πn)→ I (πn+1)→ I (π1)→ 0,

which is still exact by the main result of [24] because πn+1 is generated by its I1-invariants.
Applying Hom H ( I (π), ∗) to it and using Lemma 2.2(i) and the fact that
Hom H ( I (π), I (πn)) ∼= HomG(π, πn) ∼= F for all n ≥ 1 by Lemma 2.1(ii), we get a
long exact sequence

0→ Hom H ( I (π), I (π1))→ Ext1
H ( I (π), I (πn))

αn→ Ext1
H ( I (π), I (πn+1))

→ Ext1
H ( I (π), I (π1))→ 0.

Since this holds for all n ≥ 1, an induction on n, using Lemma 2.2(ii), implies that all
dimensions over F appeared in the last exact sequence are equal to 1, and the morphism αn
must be zero. This finishes the proof.

C 2.4. – The image of θ does not depend on the choice of θ. More generally, for
any non-zero morphism θ′ : π∞(r, λ, χ)→ InjGπ(r, λ, χ), its image coincides with that of θ.
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Proof. – The first assertion follows from Proposition 2.3. Since θ′ is nonzero, we can
define the largest integer k ∈ N such that θ′ factors through πk(r, λ, χ). Then the induced
map

π∞(r, λ, χ)/πk(r, λ, χ)→ InjGπ(r, λ, χ)

must be an injection, using Lemma 2.1 when π(r, λ, χ) is reducible. The quotient
π∞(r, λ, χ)/πk(r, λ, χ) is isomorphic to π∞(r, λ, χ) by (4), so we can apply the first assertion
to conclude.

C 2.5. – For any smooth irreducible F-representation σ of K, θ induces an
isomorphism

HomK(σ, π∞(r, λ, χ)) ∼= HomK(σ, InjGπ(r, λ, χ)).

Moreover, the two spaces are non-zero if and only if HomK(σ, π(r, λ, χ)) 6= 0.

Proof. – The second assertion follows from the first one by definition of π∞(r, λ, χ). By
Frobenius reciprocity, we need to show that the injection (induced from θ)

HomG(Iχ′(σ), π∞(r, λ, χ)) ↪→ HomG(Iχ′(σ), InjGπ(r, λ, χ))

is an isomorphism, where χ′ : Q×p → F× is the character making the central character
of Iχ′(σ) to be that of π(r, λ, χ). But this follows from Proposition 2.3 since the image
of Iχ′(σ)→ InjGπ(r, λ, χ) is generated by its I1-invariants, hence lies in θ(π∞(r, λ, χ)).

R 2.6. – The above results (Proposition 2.3 and Corollaries 2.4, 2.5) hold true in
the case (r, λ) = (p− 1,±1). To see this one can either modify the above proofs or apply (the
proof of) [20, 1.5.5].

The next lemma will be used in the proof of Proposition 2.9.

L 2.7. – For any smooth irreducible F-representation σ ofK, the following sequence
induced by (4) is exact

0→ HomK(σ, π(r, λ, χ))→ HomK(σ, π∞(r, λ, χ))→ HomK(σ, π∞(r, λ, χ))→ 0.

Proof. – To simplify the notation, we write πn for πn(r, λ, χ) (where n ∈ N ∪ {∞}). We
may assume χ is trivial by twisting. We also assume that HomK(σ, π1) 6= 0, otherwise the
assertion is trivial by Corollary 2.5. By [1, Theorem 34], this implies that σ ∼= SymrF2 if
r /∈ {0, p − 1}, and σ ∈ {Sym0F2,Symp−1F2} otherwise. Moreover, in all cases, we have
dimF HomK(σ, π1) = 1.

Since HomK(σ, π∞) ∼= lim−→n≥1
HomK(σ, πn), it suffices to prove the exactness of the

sequence
0→ HomK(σ, π1)→ HomK(σ, πn)→ HomK(σ, πn−1)→ 0

for all n ≥ 1, or equivalently, to prove dimF HomK(σ, πn) = n for all n ≥ 1. This is true if
σ ∼= SymrF2, since an easy induction on n shows that

HomK(SymrF2, πn) ∼= HomG(I(SymrF2), πn)

is of dimension n over F, with a basis given by{
I(SymrF2) � πi ↪→ πn, 1 ≤ i ≤ n

}
,

where the first arrow is the natural quotient map and the second is given by (3).
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If σ � SymrF2, then we have r ∈ {0, p− 1} and σ ∼= Symp−1−rF2 so that

socK(πn) = (SymrF2)⊕n1 ⊕ (Symp−1−rF2)⊕n2

for some n1, n2 ≥ 0. By the case already treated, we have n1 = n. On the other hand, since
dimF I (π1) = 2, an induction onn using the exact sequence (6) shows that dimF I (πn) = 2n.
Using the fact that IndKI 1

∼= Sym0F2⊕Symp−1F2, we show that socKπn is generated by πI1n
as a K-representation, so that

2n = dimF I (πn) = dimF(socKπn)I1 = n1 + n2.

This implies n2 = n and finishes the proof.

2.2. The prime ideal J

We keep the notation in the preceding subsection. Let π∨(r, λ, χ) be the Pontryagin
dual of π(r, λ, χ) and π∨∞(r, λ, χ) be that of π∞(r, λ, χ). They are objects in Cζ(F), the
dual category of Modl,fin

G,ζ (F). Dualizing the sequence (4), we get an injective G-equivariant
endomorphism of π∨∞(r, λ, χ) which we denote by S. We have

(7) 0→ π∨∞(r, λ, χ)
S→ π∨∞(r, λ, χ)→ π∨(r, λ, χ)→ 0

and π∨∞(r, λ, χ) ∼= lim←−n π
∨
∞(r, λ, χ)/Sn so that π∨∞(r, λ, χ) can be naturally viewed as an

F[[S]]-module.
Let P̃ := ProjCζ( O)π

∨(r, λ, χ), a projective envelope of π∨(r, λ, χ) in Cζ( O), and

Ẽ := EndCζ( O)(P̃ ) which acts naturally on P̃ . Then we have an isomorphism P̃ ⊗ O F ∼=(
InjGπ(r, λ, χ)

)∨
in Cζ(F). The injection θ : π∞(r, λ, χ) ↪→ InjGπ(r, λ, χ) chosen in §2.1

induces a surjection in Cζ( O):

θ∨ : P̃ � P̃ ⊗ O F� π∨∞(r, λ, χ).

Define a right ideal of Ẽ as follows:

J := {ϕ ∈ Ẽ : θ∨ ◦ ϕ = 0}.

According to Proposition 2.3, J does not depend on the choice of θ.

R 2.8. – Note that Ẽ need not be commutative, see [25, §9]. In fact, it is shown in [25]
that Ẽ is commutative if and only if (r, λ) 6= (p− 2,±1).

LetW be a smooth F-representation ofK of finite length. Recall from [26, Definition 2.2]
the compact left Ẽ-module M(W ) defined as

M(W ) := Homcont
O[[K]](P̃ ,W

∨)∨.

The main result of [11] implies that P̃ is also projective in Modpro
K,ζ( O), so that M(·) is an

exact functor. Write Ann(M(W )) for the annihilator of M(W ) in Ẽ, i.e.,

Ann(M(W )) := {ϕ ∈ Ẽ : u ◦ ϕ = 0, ∀u ∈ HomK(P̃ ,W∨)}.

P 2.9. – Let σ be a smooth irreducible F-representation of K. We have
M(σ) 6= 0 if and only if HomK(σ, π(r, λ, χ)) 6= 0. If this is the case, then J = Ann(M(σ)).
Moreover, Ẽ/J ∼= F[[S]], and J is a (two-sided) prime ideal of Ẽ.
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Proof. – We write πn = πn(r, λ, χ) for all n ∈ N ∪ {∞} to simplify the notation.

The first assertion follows from Corollary 2.5 and that P̃ ⊗ O F ∼=
(
InjGπ(r, λ, χ)

)∨
.

Assume HomK(σ, π1) 6= 0. Dualizing, Corollary 2.5 gives an isomorphism

(8) Homcont
O[[K]](π

∨
∞, σ

∨)
∼−→ Homcont

O[[K]](P̃ , σ
∨)

so that J ⊆ Ann(M(σ)). Conversely, let ϕ ∈ Ann(M(σ)) and assume θ∨ ◦ ϕ 6= 0. The
image of θ∨ ◦ ϕ is then a non-zero sub-object of π∨∞ whose Pontryagin dual is the image of
some non-zero morphism θ′ : π∞ → InjGπ1. However, we have HomK(σ, Im(θ′)) 6= 0 by
Corollaries 2.4 and 2.5, hence Homcont

O[[K]](Im(θ∨ ◦ ϕ), σ∨) 6= 0. In view of (8), it contradicts
that ϕ ∈ Ann(M(σ)).

For the last assertion, we claim that M(σ) is a cyclic Ẽ-module. This implies that
M(σ) ∼= Ẽ/Ann(M(σ)) ∼= Ẽ/J . However, Lemma 2.7 and the isomorphism (8) give an
exact sequence

(9) 0→M(σ)→M(σ)→ Homcont
O[[K]](π

∨
1 , σ

∨)∨ → 0.

Since Homcont
O[[K]](π

∨
1 , σ

∨)∨ ∼= F, we get M(σ) ∼= F[[S]] hence Ẽ/J ∼= F[[S]].

Now we prove the claim. Since we have a natural isomorphism

M(σ)⊗Ẽ F ∼= Homcont
O[[K]](P̃ ⊗Ẽ F, σ

∨)∨

by [26, Proposition 2.4], it suffices to show that the latter space, whenever non-zero, is
1-dimensional over F by Nakayama’s lemma. By the projectivity of P̃ , we can find x ∈ Ẽ

which makes the following diagram commutative:

P̃

����

x // P̃

����
π∨∞

S // π∨∞.

Applying Homcont
O[[K]](∗, σ∨)∨ to the diagram and the cokernels we get using (7) and (8):

(10) dimF Homcont
O[[K]](P̃ /xP̃ , σ

∨)∨ = dimF Homcont
O[[K]](π

∨
1 , σ

∨)∨ = 1.

Since Ẽ is a local ring by [25, Corollary 2.5] and x is not an isomorphism (as S is not
surjective), x lies in the maximal ideal of Ẽ. This implies a natural surjection P̃ /xP̃ �
P̃ ⊗Ẽ F, and therefore

Homcont
O[[K]](P̃ /xP̃ , σ

∨)∨ � Homcont
O[[K]](P̃ ⊗Ẽ F, σ

∨)∨.

This proves the claim using (10).

C 2.10. – For W a non-zero smooth F-representation of K of finite length, J is
the only associated prime ideal of M(W ).

Proof. – It follows from Proposition 2.9 since M(·) is exact.
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2.3. Colmez’s functor

We keep the notation of the preceding subsection. Recall that Colmez ([6]) has defined
an exact and covariant functor V from the category of smooth, finite length representations
ofG on O-torsion modules with a central character to the category of continuous finite length
representations of GQp on O-torsion modules. Moreover, if π is an object of finite length
in Modsm

G,ζ( O), then the determinant of V(π) is equal to εζ. Following Paškūnas [26, §3], we
define an exact covariant functor V̌ : Cζ( O) → RepGQp

( O) as follows: for M ∈ Cζ( O)

of finite length, we let V̌(M) := V(M∨)∨(εζ) where ∨ denotes the Pontryagin dual. For
general M ∈ Cζ( O), write M = lim←−Mi with Mi of finite length in Cζ( O) and define
V̌(M) := lim←− V̌(Mi).

P 2.11. – The GQp -representation V̌(π∨∞(r, λ, χ)) is of rank 1 over F[[S]] and
isomorphic to χµ−1

S+λ, where µS+λ : GQp → F[[S]]× is the unramified character sending
geometric Frobenii to S + λ.

Proof. – By the proof of [20, 1.5.9], V(Iχ(SymrF2)/(T − λ)n) is isomorphic to the
character

χωr+1µS+λ : GQp → (F[[S]]/Sn)×.

Using the fact that ζ reduces to χ2ωr, this implies by definition that

V̌
(
(Iχ(SymrF2)/(T − λ)n)∨

)
= (χωr+1µS+λ)−1 · (ωχ2ωr) = χµ−1

S+λ.

The result follows by passing to the limit.

As in [20, §1.5], denote by r̄ the pseudo-representation defined by

χωr+1µλ + χµλ−1

and by Rps,ζ(r̄) the universal pseudo-deformation ring with fixed determinant εζ (see §3.2
for more details). It follows from results of [25] that Ẽ ∼= Rps,ζ(r̄) if (r, λ) 6= (p − 2,±1)

and Rps,ζ(r̄) ↪→ Ẽ otherwise (note that the definition of Rps,ζ(r̄) in [25] is slightly different
from ours). Recall that Proposition 2.9 gives a surjective ring morphism Ẽ � F[[S]], which
we denote by θ̃.

C 2.12. – Assume (H) and moreover that (r, λ) 6= (p − 2,±1). Then, via
the natural isomorphism Ẽ ∼= Rps,ζ(r̄), the map θ̃ : Ẽ → F[[S]] coincides with the map
θ : Rps,ζ(r̄)→ F[[S]] constructed in [20, 1.5.11].

Proof. – The isomorphism Ẽ ∼= Rps,ζ(r̄) in [25] is compatible with Colmez’s functor,
namely it is given by

V̌ : Ẽ = EndCζ( O)(P̃ ) ∼= EndGQp
(V̌(P̃ )) ∼= Rps,ζ(r̄).

The corollary follows since both θ̃ and θ induce the same pseudo-deformation of r over F[[S]]

by Proposition 2.11 and [20, 1.5.11] (taking the determinant into account).
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3. The versal and pseudo-deformation rings

Let ρ : GQp → GL2(F) be a (continuous) representation. We aim to describe the versal
deformation rings for various ρ explicitly, and then construct maps between them. For these
we follow the methods of [2] and [25, Appendix B].

3.1. The versal deformation rings

We refer the reader to [23] for the general theory of Galois deformations. The deformation
functor D(ρ) on the category of Artinian local O-algebras with residue field F always has a
versal hull Rver = Rver(ρ), which is unique up to non-canonical isomorphisms.

In the rest of this section, we always assume that ρ is of the form
(
1 ∗
0 ω

)
or
(
1 0
∗ ω
)
. It is

obvious that the deformation functor D(ρ) is representable by a universal deformation ring
if ρ is non-split, and has only a versal hull otherwise.

Denote by L ⊂ Qp the fixed field of Ker(ρ), and write H = Gal(L/Qp). Let U ⊂ H

be its p-Sylow subgroup, which is isomorphic to Fp if ρ is a non-split extension, and is
trivial otherwise. Write F as the fixed field of Kerω. Then the quotient C = Gal(F/Qp) is
isomorphic toF×p . For a deformation ρA to (A,m), the image ofGF ⊂ GQp thus has diagonal
entries lying in 1 +m and the lower left (resp. upper right) entry lying inm, hence ρA factors
through Gal(F (p)/Qp), with F (p) the composition of all the finite extensions of F whose
degrees are powers of p. As the order of C is prime to p, we can and do fix an isomorphism

Gal(F (p)/Qp) ∼= GF (p)o C.

Here GF (p) denotes Gal(F (p)/F ). We regard C as a subgroup of GL2(R) for any complete
Noetherian local ring R, via the map

g 7→

(
1 0

0 ω̃C(g)

)
where ω̃C : C → Z×p is the Teichmüller lifting of ω|C : C → F×p .

A pro-p group D is called a Demuškin group if dimFpH
1(D,Fp) := n(D) < ∞,

dimFpH
2(D,Fp) = 1, and the cup product

H1(D,Fp)×H1(D,Fp)
∪→ H2(D,Fp)

is a non-degenerate bilinear form. Since we assume p 6= 2, the Demuškin group D is
determined (up to isomorphism) by n(D) and t(D), where t(D) denotes the order of the
torsion subgroup ofDab. Namely,D is isomorphic to the pro-p group with n(D) generators
t1, . . . , tn(D) and one relation

t
t(D)
1 [t1, t2][t3, t4] · · · [tn(D)−1, tn(D)] = 1,

where [ti, tj ] = t−1
i t−1

j titj are commutators; see [21, Theorem 3]. It is well-known (see
e.g., [21, Theorem 7]) that GF (p) is a Demuškin group, for which n(GF (p)) = p + 1 and
t(GF (p)) = p.

For a pro-p group F , define a filtration { F i}i≥1 by setting

F 1 = F , F i = F pi−1[ F i−1, F ], gri F = F i/ F i+1.
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The Frattini quotient gr1 F will play an important role in the following. By [2, Lemma 3.1]
the action on F of a group of order prime to p is determined by the action on gr1 F , up to
inner automorphisms of F .

We choose F to be a free pro-p group in p+ 1 generators, and a surjection

φ : F � GF (p)

whose kernel R is generated by a single element r ∈ F . We see that gr1 F ' gr1GF (p), hence
r ∈ F 2. By [2, Lemma 3.1], the C-action on GF (p) extends uniquely to F and makes φ a
C-equivariant homomorphism, hence gives a homomorphism

(11) φ : F o C → GF (p)o C ' Gal(F (p)/Qp).

We will relate r with the Demuškin relation.

The local class field theory and the C-module structure of GF (p)ab determined by Iwa-
sawa [16, Theorem 1] give the following result.

L 3.1. – There is a natural isomorphism of Fp[C]-modules

gr1 F ' gr1GF (p) ' Fp ⊕ µp ⊕ Fp[C]

such that µp is the image of the torsion subgroup of GF (p)ab under the projection GF (p)ab �
gr1GF (p) on which C acts by ω, and Fp[C] is the image of the 2nd ramification subgroup IF,2
of the inertia IF .

(GEN) Fix generators ξ0, . . . , ξp of gr1GF (p) so that ξ1 generates µp and ξ2, . . . , ξp
generate Fp[C], and such that C acts on ξi by ωi.

We remark that Lemma 3.2 below is the best one can achieve, when choosing generators
of F that respect both C-actions and the Demuškin relation; cf. [2, Proposition 3.6].

L 3.2. – There exist generators t0, . . . , tp in F lifting ξ0, . . . , ξp such that

(i) ∀i ∈ {0, . . . , p},∀g ∈ C, we have gtig−1 = t
ω̃iC(g)
i .

(ii) The element rD := tp1[t0, tp][t1, tp−1] · · · [t p−1
2
, t p+1

2
] is congruent to r modulo F 3.

Proof. – Take a lifting t0, . . . , tp ∈ F so that the C-actions are as in (i), which is
achievable as C is of order prime to p; recall [2, Lemma 3.1]. That they may be chosen to
satisfy (ii) follows essentially from [21, Proposition 3] (see also [26, Lemma B.1]), where it
is shown how the cup product H1(D,Fp) × H1(D,Fp) → H2(D,Fp) for a Demuškin
group D is determined by the image of an element of F 2 modulo F 3. Namely, the image
in F 2/ F 3 of such an element must be of the form of Demuškin relation (up to rescaling),
and it defines an isomorphism H2(D,Fp)

∼−→ Fp. It is then easy to see that rD defines the
same cup product on H1(GF (p),Fp) × H1(GF (p),Fp) as that defined by r, hence has the
same image as r modulo F 3.

To construct the (uni-)versal deformations for some ρ with semi-simplification 1⊕ ω, we
first introduce the following general result.
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P 3.3. – Let R be a complete Noetherian local O-algebra with residue field F.
Suppose there are matrices mi in GL2(R) which satisfy the following conditions:

(1) C-actions: gmig
−1 = m

ω̃iC(g)
i ,∀g ∈ C.

(2) Demuškin relation: mp
1[m0,mp][m1,mp−1] · · · [m p−1

2
,m p+1

2
] = 1.

Then we have

(i) The assignment ti 7→ mi (i = 0, . . . , p) is a C-equivariant group homomorphism, hence
defines a homomorphism αR : F o C → GL2(R), which satisfies that αR(r) ∈ αR( F 3).

(ii) There is a continuous homomorphism

ρR : Gal(F (p)/Qp)→ GL2(R)

and a continuous homomorphism

φ′ : F o C → Gal(F (p)/Qp)

with the properties Kerφ′ ∈ F 2, αR = ρR ◦ φ′, and φ′ ≡ φ mod F 3.

(iii) Moreover, φ′ can be chosen uniformly for various R if
⋂
R KerαR is non-empty.

Proof. – (i) follows from (1) and (2); we have αR(r) ∈ αR( F 3) by Lemma 3.2(ii) and that
rD ∈ KerαR.

(ii) and (iii) can be obtained by the proof of [2, Proposition 3.8], with Kerα loc.cit.
replaced by the intersection of the KerαR’s; the intersection is taken for the uniformness
of φ′. More precisely, we first note that C acts on H2(GF (p),Fp) by ω−1, since the latter is
the Fp-dual of µp on which C acts by ω. Thus, by the discussion on [2, Page 118], C acts on r
by ω̃. Now, for any i ≥ 2, form the compositeNi of F i and

⋂
R KerαR. Then [2, Lemma 3.2]

shows that there is an element ri ∈ Ni on whichC acts as ω̃, and ri ≡ rmod F i for any i ≥ 2,
hence all ri ∈ F 2.

Denote by Cri the closure of {rj}j≥i in Ni ∩ F 2. Then I :=
⋂
i≥2 Cri is non-empty by

the compactness of F , and lies in (
⋂
R KerαR)∩ F 2. Note thatC acts on any element inCri

(for any i ≥ 2) via ω̃, because the set {x ∈ F |g · x = xω̃(g),∀g ∈ G} is closed. Thus C acts
on any element in I via ω̃. Furthermore, an element in I is congruent to r modulo F 3 by
the construction of r′is, hence F modulo such an element defines a Demuškin group which
is isomorphic to GF (p), by [21, Proposition 3]. Then, F modulo an element in I ⊂ F 2 gives
the wanted homomorphisms ϕ′ and ρR.

Depending on the shapes of the representations ρ, the (candidates for) versal deformations
and deformation rings are listed below.

For each R = Rver, R1, Rpeu and the matrices mi in GL2(R) below, direct computation
shows that the conditions (1) and (2) in Proposition 3.3 are satisfied. (We refer the reader
to [2, Lemma 5.3 (i)-(iii)] for more details on the choices of these matrices.) Moreover,
the intersection

⋂
R KerαR of these rings is non-empty, because, for instance, t2 lies in it.

Therefore Proposition 3.3 applies.
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3.1.1. The split case. – Let ρ be 1⊕ω. We pick indeterminate variables a0, a1, b, c0, c1, d0, d1

and write

m0 = (1 + a0)1/2

(
(1 + d0)1/2 0

0 (1 + d0)−1/2

)
, m1 =

(
1 0

c0 1

)
,

mp−1 = (1 + a1)1/2

(
(1− p+ d1)1/2 0

0 (1− p+ d1)−1/2

)
, mp =

(
1 0

c1 1

)
,

mp−2 =

(
1 b

0 1

)
, m2 = · · · = mp−3 = I2×2.

Set

Rver =
O[[a0, a1, b, c0, c1, d0, d1]]

(c0d1 − c1d0)
.

By the description above, the same proof as in [25, B.4] shows that the reducibility ideal
of Rver is (bc0, bc1), that is, for x : Rver → E a closed point, the corresponding deformation
ρx is reducible if and only if (bc0, bc1) ⊂ Kerx.

3.1.2. The non-split cases. – (1) Assume ρ is a non-split extension of ω by 1 (unique up to
scalar as p ≥ 5). Pick indeterminate variables a0, a1, c0, c1, d0, d1. Set m0, . . . ,mp as in the
split case, except that we replace mp−2 =

(
1 b
0 1

)
with mp−2 =

(
1 1
0 1

)
.

Set

R1 =
O[[a0, a1, c0, c1, d0, d1]]

(c0d1 − c1d0)
.

One sees easily that the reduction of ρR1 given by Proposition 3.3 is a non-split extension
of ω by 1. Similarly as before, we have that the reducibility ideal of R1 is (c0, c1).

(2) Assume ρ is a non-split extension 0→ ω → ρ→ 1→ 0. We know that Ext1
GQp

(1, ω) '
H1(GQp , ω) is of dimension 2, so ρ could be either peu ramifié or très ramifié extensions, as
defined by Serre [31, §2.4]. We recall the definition below.

Write K0 = Qur
p the maximal unramified extension of Qp, and Kt = K0(µp) the tamely

ramified field. Then Kummer theory tells us that the Galois representation ρ|Gal(Qp/Kt) must
factor through Gal(K/Kt) for some K of the form

K = Kt(x
1/p
1 , . . . , x1/p

m ) for xi ∈ K×0 /(K
×
0 )p,

for some m ≥ 1. We then say ρ is peu ramifié if p|vp(xi) for each i, and say the associated
element in H1(GQp , ω) is a peu ramifié extension. A peu ramifié extension is unique up to
scalars. Depending on context, we sometimes call the trivial extension 1 ⊕ ω a peu ramifié
extension. All the other extensions are called très ramifié extensions.

The following equivalent variation of Serre’s definition is easy to obtain.

L 3.4. – An extension 0 → ω → ρ → 1 → 0 is peu ramifié if and only if the image
of the 2nd ramification subgroup IF,2 ⊂ Gal(Qp/Kt) under ρ is trivial.
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Proof. – First recall from Lemma 3.1 that the image of IF (or equivalently, that of the
wild inertia IF,1) in gr1GF (p) is isomorphic to µp ⊕ Fp[C] as Fp[C]-modules, and that
under the same reduction the 2nd ramification subgroup IF,2 is mapped onto Fp[C] and the
p-torsion subgroup of IF,1 is mapped onto µp.

LetH be the kernel of the projection IF,1 � µp ⊂ gr1GF (p) andK be the fixed field ofH.
Then H = IF,2 and K is an abelian extension over Kt of degree p. Moreover, since Kt con-
tains the p-th roots of unity, K is a Kummer extension and of the form K = Kt(u

1/p) with
u ∈ K×0 /(K

×
0 )p. We then have the 2nd ramification subgroup Gal(K/Kt)2 = {1} by [30,

p. 68, Corollary]. On the other hand, it is elementary to check that Gal(Kt(u
1/p)/Kt)2 = {1}

if and only if vp(u) = 0 (mod p). The claim follows.

R 3.5. – By Kummer theory, we have the isomorphism

Q×p /(Q×p )p
∼−→ H1(GQp , ω), u 7→ (g 7→ g(u1/p)/u1/p).

Then the image of Z×p /(Z×p )p in H1(GQp , ω) is the peu ramifié line. Hence a peu ramifié
extension ρ must factor through Gal(Qp(µp, (1 − p)1/p)/Qp); take u = 1 − p in the proof
of Lemma 3.4.

Assume ρ is a non-split extension of 1 by ω which is peu ramifié. We pick indeterminate
variables a0, a1, x1, x2, x3 and write

m0 = (1 + a0)1/2

(
(1 + x1)1/2 0

0 (1 + x1)−1/2

)
, m1 =

(
1 0

1 1

)
,

mp−1 = (1 + a1)1/2

(
(1− p+ x1x2)1/2 0

0 (1− p+ x1x2)−1/2

)
, mp =

(
1 0

x2 1

)
,

mp−2 =

(
1 x3

0 1

)
, m2 = · · · = mp−3 = I2×2.

Set

Rpeu = O[[a0, a1, x1, x2, x3]].

The reducibility ideal of Rpeu is (x3).

By Lemma 3.4, (GEN) and the choices mi, the deformation ρRpeu obtained via Propo-
sition 3.3 reduces to the peu ramifié extension ρ modulo the maximal ideal of Rpeu (up to
isomorphism). This justifies the notation ρRpeu .

C 3.6. – The rings R = Rver, R1, Rpeu in §§3.1.1, 3.1.2 are the (uni-)versal
deformation rings of the corresponding ρ, and the continuous homomorphisms ρR obtained via
Proposition 3.3 are the associated (uni-)versal deformations.

Proof. – This is by the same proof as in [2, Theorem 6.2].

We need to consider the deformations with fixed determinants, which is needed to link the
deformation rings to p-adic Langlands correspondence.
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C 3.7. – Keep the notation above. Letψ : GQp → O× be a continuous character
whose reduction mod $ is equal to 1, and let D(ρ)ψ be the sub-functor of D(ρ) parametrizing
the deformations with determinants equal to εψ. Then the functor D(ρ)ψ is (pro-)represented
by the quotient of R by (a0 − α0, a1 − α1) for some α0, α1 ∈ $ O.

Proof. – This is clear by the choice of the matrices mi = αR(ti).

3.2. Comparison of various deformation rings

Let ρ : GQp → GL2(F) be the representation as before. Define Dps = Dps(trρ)

as the functor from the category of Artinian local O-algebras A with residue field F to
the category of sets of pseudo-deformations of trρ, which is always (pro-)represented by a
complete Noetherian local O-algebra Rps = Rps(trρ), equipped with the universal pseudo-
deformationT univ. Furthermore, we defineDps,ψ to be the sub-functor ofDps parametrizing
the pseudo-deformations T ∈ Dps(A) such that εψ(g) is mapped to T 2(g)−T (g2)

2 under the
structure morphism. The Noetherian local O-algebra representingDps,ψ is denoted byRps,ψ

and the corresponding universal pseudo-deformation is denoted by T univ,ψ.

By the constructions in §§3.1.1, 3.1.2 and Proposition 3.3, we will write down the maps
among various (pseudo-)deformation rings, adapting the idea of [25, Appendix B].

3.2.1. The map f1. – First consider a non-split extension 0 → 1 → ρ1 → ω → 0. The
construction ofR1 = Rver(ρ1) provides the following description of the pseudo-deformation
ring Rps = Rps(trρ).

P 3.8. – The natural homomorphism Rps → R1 given by taking traces is an
isomorphism and induces the isomorphism

f1 : Rps,ψ ' R1,ψ.

Proof. – This is [25, Proposition B.15].

We identify Rps,ψ = R1,ψ from now on, hence have an isomorphism

(12) Rps,ψ ∼= O[[c0, c1, d0, d1]]/(c0d1 − c1d0).

Recall that we have defined in §2.2 a prime ideal J of Rps,ψ, the kernel of the map
θ : Rps,ψ � F[[S]]. (Here we have taken ζ loc. cit. to be ψ, whose reduction mod $ is trivial.)

L 3.9. – Under the identification (12), we have J = ($, c0, c1, d1).

Proof. – First, $ ∈ J as the image of θ is F[[S]]. Since c0, c1 lie in the reducibility ideal,
they lie in J . By Proposition 2.11, the image of the inertia IF under θ◦T univ,ψ is trivial as χ is
trivial in our case. By Lemma 3.1 and the choice (GEN) of generators of gr1 F ' gr1GF (p)

(and [2, Lemma 3.1] again), the image t′p−1 = φ′(tp−1) ∈ GF (p) of tp−1 ∈ F comes
from IF , hence has trivial action under θ ◦ T univ,ψ. Thus we have θ(d1) = 0, noting that
T univ,ψ(t′p−1) = (1+α1)1/2((1−p+d1)1/2+(1−p+d1)−1/2) withα1 ∈ $ O by Corollary 3.7,
and θ(p) = 0. We thus get the inclusion ($, c0, c1, d1) ⊆ J , from which the result follows
since they have the same height.
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3.2.2. The map fpeu. – Let ρpeu be a (non-split) peu ramifié extension. By the construc-
tion of Rpeu,ψ ∼= O[[x1, x2, x3]] in §3.1.2, the ideal of Rpeu,ψ generated by the (1, 2)-entry
of ρRpeu,ψ (g) for all g ∈ GQp is just (x3), so the conjugation(

x−1
3 0
0 1

)
ρRpeu,ψ

(
x3 0
0 1

)
still takes values in Rpeu,ψ. We check easily that this gives a representation on Rpeu,ψ whose
residual representation is a non-split extension of ω by 1, hence induces a ring homomor-
phism R1,ψ → Rpeu,ψ. It is seen at the same time that

(
x−1
3 0
0 1

)
ρRpeu,ψ

(
x3 0
0 1

)
is isomorphic

to the base change to Rpeu,ψ of the universal representation on R1,ψ. By Proposition 3.3(iii)
and the fact that taking conjugation does not change traces, the composition of the above
map with (12) gives us the trace map:

(13) fpeu : Rps,ψ ' O[[c0, c1, d0, d1]]

(c0d1 − c1d0)
↪→ Rpeu,ψ,

c0 7→ x3, c1 7→ x2x3, d0 7→ x1, d1 7→ x1x2.

3.2.3. The map fver. – Assume ρ = 1 ⊕ ω is split. As in §3.2.2, one checks, using the
construction in §§3.1.1, 3.1.2 and Proposition 3.3, that the conjugation by

(
b 0
0 1

)
on the

universal representation ρRver,ψ gives a map R1,ψ → Rver,ψ, hence the trace map:

(14) fver : Rps,ψ → Rver,ψ, ci 7→ bci, di 7→ di, i = 0, 1.

By Lemma 3.9, Rver,ψ/JRver,ψ has three minimal prime ideals:

(15) p1 = ($, c0, c1, d1), p2 = ($, b, c1, d1), p3 = ($, b, d0, d1).

In fact, one checks that JRver,ψ = p1 ∩ p2 ∩ p3. Write

(16) fver
i : Rps,ψ → Rver,ψ

pi

for the induced homomorphism. The following property of fver
1 and fver

2 will be used in the
proof of the Breuil-Mézard conjecture later.

P 3.10. – For i = 1, 2, fver
i is flat, and for any radical ideal a of Rps, aRver

pi
is

still radical.

Proof. – We only prove the claim for p1; the proof for p2 goes over verbatim. Note that
Rps,ψ
J is a regular local ring, because its Krull dimension is 3 and its maximal ideal is gener-

ated by$, c0, d1 (as c1 = c0d1d
−1
0 ). Also,Rver,ψ

p1 is Cohen-Macaulay since it is a localization
of a Cohen-Macaulay ring. Since (fver)−1(p1) = J , the map fver

1 : Rps,ψ → Rver,ψ
p1 factors

as
Rps,ψ ↪→ Rps,ψ

J → Rver,ψ
p1 ,

where the second map is a local homomorphism. The first map is clearly flat. The second map
is also flat by [22, Theorem 23.1], since one checks directly that dimRver,ψ

p1 = dimRps,ψ
J +

dimRver,ψ
p1 /JRver,ψ

p1 = 3. In fact, since JRver,ψ
p1 = p1R

ver,ψ
p1 , the quotient ringRver,ψ

p1 /JRver,ψ
p1

is a field. Thus the map fver
1 is flat.

Recall [15, Theorem 2.1]: Let u : A → B be a local flat morphism of Noetherian local
rings, with A a Nagata ring. If B/mAB is a geometrically reduced A/mA-algebra, then u is
a reduced morphism (see [15, Definition 1.1] for its definition), which in particular sends
radical ideals to radical ideals.
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For the second assertion, we first note that aRps,ψ
J is a radical ideal. Hence, it suffices to

check that the map Rps,ψ
J → Rver,ψ

p1 sends radical ideals to radical ideals. The last map is
a flat local morphism of Noetherian local rings. The ring Rps,ψ

J is a Nagata ring, since it
is a localization of a complete Noetherian local ring; see [3, Chapitre IX, §4, n◦4]. By [15,
Theorem 2.1], we only need to show that Rver,ψ

p1 /JRver,ψ
p1 ' F((d0, b)), the field of fractions

of Rver,ψ/p1 ' F[[d0, b]], is geometrically reduced over Rps,ψ
J /JRps,ψ

J ' F((d0)) =: k. To see
this, let k′ be any finite extension of k. Then k′ ⊗k k((b)) is reduced since it is a field. But we
have the inclusion k′ ⊗k F((d0, b)) ⊂ k′ ⊗k k((b)) by the flatness of k′ over k, which implies
that k′ ⊗k F((d0, b)) is also reduced.

R 3.11. – One sees easily that the induced homomorphism fver
3 : Rps,ψ → Rver,ψ

p3

is not flat.

R 3.12. – In the case that ρ is split generic, that is, ρ ∼= χ1 ⊕ χ2 with
χ1χ

−1
2 /∈ {1, ω±1}, the situation is similar and in fact simpler. More precisely, using the

machinery above, one gets, after choosing parameters, that Rps,ψ = O[[y1, y2, y3]] and
Rver,ψ = O[[b, y1, y2, y3]]. By a similar construction as in §§3.1.1, 3.1.2, taking traces
induces the homomorphism

fver : Rps,ψ ↪→ Rver,ψ, y1 7→ y1, y2 7→ y2, y3 7→ by3.

One then sees that fver is flat and maps radical ideals to radical ideals.

3.2.4. The maps γi. – Consider the ideals p2 and p3 of Rver,ψ. Meanwhile, one checks that
Rpeu/JRpeu has two minimal prime ideals, which we denote by q2, q3 (notation chosen to be
consistent with p2, p3):

q2 = ($,x2, x3), q3 = ($,x1, x3).

P 3.13. – Let R̂ver,ψ
pi (i = 2, 3) be the completion ofRver,ψ

pi with respect to its

maximal ideal. We still write fver for the composition Rps,ψ → Rver,ψ → R̂ver,ψ
pi .

(i) There is a unique local homomorphism of O-algebras

(17) γi : Rpeu,ψ
qi

→ R̂ver,ψ
pi

which is compatible with the trace maps fpeu and fver. That is, we have the following commu-
tative diagram:

(18) Rps,ψ

fpeu

��

fver

##

Rpeu,ψ
qi

γi // R̂ver,ψ
pi .

(ii) The map γi is flat and sends radical ideals to radical ideals.
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Proof. – (i) Define

γi : Rpeu,ψ → R̂ver,ψ
pi , x1 7→ d0, x2 7→ c−1

0 c1, x3 7→ bc0.

One checks that this is well-defined. Now look at the inverse image of the maximal ideal

piR̂
ver,ψ
pi in Rpeu,ψ, which is a prime ideal containing qi but not the maximal ideal (because

it does not contain x1 (resp. x2) when i = 2 (resp. i = 3)), hence must be equal to qi. This

implies that γi factors through Rpeu,ψ
qi → R̂ver,ψ

pi , and it makes the diagram (18) commute

using the definitions of (13), (14). On the other hand, any morphism γ′ : Rpeu,ψ
qi → R̂ver,ψ

pi

fitting into the commutative diagram (18) must be of the form above.
(ii) It can be proved similarly as in the proof of Proposition 3.10. The flatness of γi follows

from [22, Theorem 23.1], which applies as Rpeu,ψ
qi is regular and R̂ver,ψ

pi is Cohen-Macaulay,
being the completion of a localization of the Cohen-Macaulay ringRver,ψ. More concretely,
one checks that

mRpeu,ψ
qi

R̂ver,ψ
pi = piR̂

ver,ψ
pi

is the maximal ideal, hence dim R̂ver,ψ
pi = dimRpeu,ψ

qi + dim R̂ver,ψ
pi /mRpeu,ψ

qi

R̂ver,ψ
pi = 3.

That γi sends radical ideals to radical ideals follows from [15, Theorem 2.1]. Namely, it

suffices to show, say for i = 2, that R̂ver,ψ
p2 /mRpeu,ψ

q2
R̂ver,ψ
p2 ' F((c0, d0)) is geometrically

reduced over the residue field F((x1)) of Rpeu,ψ
q2 , via the map γi : x1 7→ d0; but we have seen

how to show this in the proof of Proposition 3.10. The same argument goes through when
i = 3.

R 3.14. – One checks easily that there does not exist an Rps,ψ-homomorphism
from Rpeu,ψ to Rver,ψ.

4. The multiplicity of pseudo-deformation rings

In this section, we will study the multiplicity of potentially semi-stable pseudo-deformation
rings of ρ := 1⊕ ω.

Recall that Rps,ψ = Rps,ψ(trρ) denotes the universal pseudo-deformation ring of ρ with
fixed determinant εψ, where ψ : GQp → O× is a continuous character. To lighten the
notation, we will omit the superscript ψ in the rest of the section; for example, we write Rps

for Rps,ψ.
For n ∈ m-SpecRps[1/p] we denote by κ(n) the quotient field Rps[1/p]/n, Oκ(n) the ring

of integers of κ(n), and Tn the induced pseudo-deformation of ρ defined over κ(n).
Denote by Ips

irr the intersection of all n ∈ m-SpecRps[1/p] such that Tn is the trace of an
absolutely irreducible representation ofGQp which is potentially semi-stable of type (k, τ, ψ),
and by Ips

1 (resp. Ips
2 ) the intersection of all n ∈ m-SpecRps[1/p] such that Tn is the trace of

an absolutely reducible representation which is potentially semi-stable of type (k, τ, ψ) and
contains a one-dimensional sub-representation lifting 1 (resp. ω) with the higher Hodge-
Tate weight. We define in a similar way Ips

cr,irr and Ips
cr,i (i = 1, 2) by replacing “semi-

stable” by “crystalline” in the above definition. Here we note that for an indecomposable
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reducible potentially semi-stable representation of distinct Hodge-Tate weights, the unique
one-dimensional sub-representation is automatically of higher weight.

R 4.1. – In the definition of Ips
i (and Ips

cr,i), we could have demanded that Tn come
from an indecomposable reducible representation, because it follows from [27] that, for instance
for Ips

2 , if ρ = δ1 ⊕ δ2 is potentially semi-stable of type (k, τ, ψ), such that δ1 (resp. δ2) lifts 1
(resp. ω) and GQp acts on δ2 via the higher Hodge-Tate weight, then any non-split extension

0→ δ2 → ρ′ → δ1 → 0

is also potentially semi-stable of the same type. Moreover, ρ′ is automatically potentially
crystalline except when k = 2 and τ = χ ⊕ χ is scalar, in which case δ2δ−1

1 = ε and
Ext1

GQp
(δ1, δ2) is 2-dimensional and we can always find a non-split potentially crystalline

extension.

Fix a p-adic Hodge type (k, τ, ψ), and write V for σ(k, τ) := Symk−2E2 ⊗ σ(τ) or
σcr(k, τ) := Symk−2E2 ⊗ σcr(τ) (when we consider potentially crystalline deformation
rings). Choose a K-stable O-lattice Θ inside V . Let N1, N2 be respectively a projective
envelope of π∨α and of Sp∨ in the category Cψ( O), where πα := IndGPα with α := ω ⊗ ω−1

the smooth character of T :=
( Q×p 0

0 Q×p

)
. For i = 1, 2, set

Mi(Θ) := Hom O(Homcont
O[[K]](Ni,Θ

d), O),

where Θd denotes the Schikhof dual of Θ (see [29]). Then M1(Θ) and M2(Θ) are naturally
compact Rps-modules where Rps acts on N1 and N2 via the natural isomorphisms
Rps ∼= EndCψ( O)(N1) ∼= EndCψ( O)(N2) (cf. [25, §10]).

4.1. The module M1(Θ)

Recall that ρ1 denotes a non-split extension of ω by 1 (unique up to scalars),Rver(ρ1) the
universal deformation ring of ρ1 with determinant εψ andRver(k, τ, ρ1) the potentially semi-
stable deformation ring of type (k, τ, ψ). (The superscript ψ is omitted as we remarked.) The
following theorem is a consequence of results of [25], [26].

T 4.2. – We have an isomorphism

Ann(M1(Θ)) ∼= Ips
irr ∩ I

ps
1

and an equality of 1-dimensional cycles (where J is the prime ideal defined in §2.2)

Z1 (Rps/(Ips
irr ∩ I

ps
1 , $)) = ap−3,1J.

The same statement holds if we replace Ips
irr, I

ps
1 , ap−3,1 by Ips

cr,irr, I
ps
cr,1, acr

p−3,1 respectively.

Proof. – Note that V̌(N1) is isomorphic to the universal deformation of ρ1 by [25, Corol-
lary 10.72]. By [26, Corollary 6.5] we know

Rver(ρ1)/AnnRver(ρ1)(M1(Θ)) ∼= Rver(k, τ, ρ1).

The natural isomorphism f1 : Rps → Rver(ρ1) (see Proposition 3.8) induces an isomorphism
from Rps/(Ips

irr ∩ I
ps
1 ) to Rver(k, τ, ρ1). The first assertion follows from this and the second

assertion from [26, Theorem 6.6] and Proposition 2.9, which say that Z1(Rver(k, τ, ρ1)/$) =

ap−3,1 Z1(M1(σp−3,1)) = ap−3,1J.

4 e SÉRIE – TOME 48 – 2015 – No 6



THE BREUIL-MÉZARD CONJECTURE 1405

4.2. The module M2(Θ)

We turn to study the action ofRps onM2(Θ). Recall thatN2 denotes a projective envelope
of Sp∨ in Cψ( O). For π1, π2 ∈ Modl,fin

G,ψ(F) we will write e1(π1, π2) := dimF Ext1
G,ψ(π1, π2).

We refer to [25, §10.1] for the list of e1(π1, π2) when π1, π2 are both irreducible non-
supersingular representations.

If m is an Rps[1/p]-module of finite length, we define as in [26, §2.2]

Π(m) := Homcont
O (N2 ⊗Rps m0, E),

where m0 is any Rps-stable O-lattice in m (the definition does not depend on the choice
of m0). Equipped with the supremum norm, Π(m) is an admissible unitary E-Banach space
representation of G.

The following result is an analogue of [26, Proposition 4.7]. Recall from [25] that an abso-
lutely irreducible Banach space representation is called non-ordinary if it is not a subquotient
of a parabolic induction of a unitary character.

P 4.3. – For almost all n ∈ m-SpecRps[1/p], the κ(n)-Banach space repre-
sentation Π(κ(n)) is either absolutely irreducible non-ordinary or fits into a non-split extension

0→ (IndGP δ1 ⊗ δ2ε−1)cont → Π(κ(n))→ (IndGP δ2 ⊗ δ1ε−1)cont → 0,

where δ1, δ2 : Q×p → κ(n)× are unitary characters such that δ1δ2 = εψ and δ1δ−1
2 6= 1, ε±1.

We need some preparations to prove this proposition. In the proof of the next lemma, we
shall use Emerton’s functor of ordinary parts defined in [8]; our main reference for this is [25,
§7.1].

L 4.4. – We have
(
(N2 ⊗Rps F)∨

)ss ∼= Sp⊕1⊕2 ⊕ π⊕2
α .

Proof. – First note that N2 ⊗Rps F is the maximal quotient of N2 which contains Sp∨

with multiplicity one (in fact Sp∨ must appear as its cosocle), or equivalently, (N2 ⊗Rps F)∨

is the (unique) maximal smooth F-representation of G with G-socle isomorphic to Sp and
such that (N2 ⊗Rps F)∨/ Sp contains no subquotient isomorphic to Sp. We now construct
it explicitly. Consider the smooth F-representation τ1 of G defined in [25, (181)], which fits
into an exact sequence

0→ Sp→ τ1 → 1⊕ 1→ 0.

Moreover the G-socle of τ1 is Sp. By [25, Lemma 10.12], e1(πα, τ1) = 2, hence there exists
an extension of πα ⊕ πα by τ1, denoted by τ ′1:

(19) 0→ τ1 → τ ′1 → πα ⊕ πα → 0,

such that theG-socle of τ ′1 is still Sp. In particular, we have an injection τ ′1 ↪→ (N2⊗Rps F)∨.
We shall prove that it is in fact an isomorphism. For this it suffices to show e1(π, τ ′1) = 0 for
all irreducible π ∈ Modsm

G,ψ(F) except when π ∼= Sp. Firstly, one checks e1(1, τ ′1) = 0, using
that (see [25, §10.1])

e1(1,1) = 0, e1(1, πα) = 0, e1(1,Sp) = 2.

We claim that e1(πα, τ
′
1) = 0. For this we need to use Emerton’s functor of ordinary parts

relative to P (see [8]). We denote by OrdP : Modl,fin
G,ψ(F) → Modl,fin

T,ψ(F) this functor and
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byRiOrdP its right derived functors for i ≥ 1. It follows from [11] thatRiOrdP = 0 for i ≥ 2.
Moreover we know by [25, (182),(126)] that

OrdP τ1 = 1, R1OrdP τ1 = (α−1)⊕2,

OrdPπα = α−1, R1OrdPπα = 1.

Applying OrdP to (19) gives

0→ 1→ OrdP τ
′
1 → (α−1)⊕2 ∂→ (α−1)⊕2 → R1OrdP τ

′
1 → 1⊕2 → 0.

The connecting morphism ∂ must be injective. Indeed, if not, we would have that
HomT (OrdP τ

′
1, α
−1) 6= 0, hence HomT (α−1,OrdP τ

′
1) 6= 0 since there is no non-trivial

T -extension between α−1 and 1 (as p 6= 2). We then get

HomG(πα, τ
′
1) 6= 0

by the adjointness property between OrdP and IndGP (see [25, (120),(125)]), which contradicts
the definition of τ ′1. We deduce that OrdP τ

′
1
∼= 1 and R1OrdP τ

′
1
∼= 1⊕2. Since p 6= 2, the

claim follows from this and the exact sequence (see e.g., [25, (123)])

0→ Ext1
T,ψ(α,OrdP τ

′
1)→ Ext1

G,ψ(πα, τ
′
1)→ HomT (α,R1OrdP τ

′
1).

Since the block of Sp consists of {Sp,1, πα} by [25, Proposition 5.42], we see that
Ext1

G,ψ(π, τ ′1) = 0 for all irreducible π ∈ Modsm
G,ψ(F) except for π ∼= Sp. This shows that

(N2 ⊗Rps F)∨ is isomorphic to τ ′1, and the lemma follows.

WriteB for the block of Sp, i.e.,B = {Sp,1, πα}. Let Banadm,fl
G,ψ (E)B be the category of

admissible unitary E-Banach space representations Π of G, of finite length and with central
character ψ, such that all the irreducible constituents of Π

ss
lie in B. Here Π

ss
denotes the

semi-simplification of the modulo$ reduction of any open boundedG-invariant lattice in Π.
As in [25, §10], for n a maximal ideal of Rps[1/p], let Banadm,fl

G,ψ (E)Bn be the full subcategory

of Banadm,fl
G,ψ (E)B consisting of those Π such that m(Π) is killed by a power of n, where m is

defined as in [25, Corollary 4.42] with P̃ = N2.

We will need to apply Colmez’s functor V̌ to objects in Banadm,fl
G,ψ (E)B. For such a Π, we

define

V̌(Π) := V̌(Θd)⊗ O E

for any open boundedG-invariant O-lattice Θ in Π. Remark that V̌ is exact and contravariant
on Banadm,fl

G,ψ (E)B. By the proof of [26, Lemma 4.2], for m an Rps[1/p]-module of finite
length, we have

(20) V̌(Π(m)) ∼= V̌(N2)⊗Rps m.

To see this, we just tensor the sequence [26, (23)] with E (over O).

L 4.5. – The representation Π(κ(n)) is nonzero, of finite length, and has an irreducible
G-socle (in the category Banadm,fl

G,ψ (E)B). In particular, it is indecomposable and lies in the

category Banadm,fl
G,ψ (E)Bn .
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Proof. – It follows from [25, Lemma 4.25] that Π(κ(n)) is non-zero and of finite length.
By Lemma 4.4, N2 ⊗Rps F is of finite length in Cψ( O) and is finitely generated as an
O[[K]]-module, so [25, Corollary 4.33] implies that Π(κ(n)) has an irreducible G-socle. The
last assertion follows from this and the decomposition of categories

Banadm,fl
G,ψ (E)B ∼=

⊕
n∈m-SpecRps[1/p]

Banadm,fl
G,ψ (E)Bn

established in [25, Corollary 10.106].

Recall that Rps is isomorphic to O[[c0, c1, d0, d1]]/(c0d1 − c1d0) by (12). Let r = (c0, c1)

be the reducibility ideal of Rps. Also recall from §4.1 that N1 denotes a projective envelope
of π∨α in Cψ( O).

L 4.6. – We have an exact sequence of Rps[GQp ]-modules:

(21) 0→ r.V̌(N1)→ V̌(N2)→ ρuniv
1 → 0,

where ρuniv
1 is the universal deformation of the trivial representation 1 to Rps/r (viewed as an

Rps-module).

Proof. – This follows from [25, Remark 10.97]. In fact it gives a commutative diagram
of Rps[GQp ]-modules:

0 // V̌(N2) //

��

V̌(N1) //

��

ρuniv
ω

// 0

0 // ρuniv
1

// V̌(N1)/r.V̌(N1) // ρuniv
ω

// 0

and the result follows from the snake lemma.

L 4.7. – Assume n contains the reducibility ideal r. Then r⊗Rpsκ(n) is of dimension 2
over κ(n) if n = (c0, c1, d0, d1) and of dimension 1 otherwise.

Proof. – Write f = c0d1 − c1d0 so that Rps ∼= O[[c0, c1, d0, d1]]/(f). Let n0 := n∩Rps so
that Rps/n0 ∼= Oκ(n) and

r⊗Rps κ(n) ∼= r/(r.n0)⊗ Oκ(n)
κ(n).

In particular if n = (c0, c1, d0, d1), we have f ∈ r.n0 and see easily that r/r.n0 is free of rank 2
over O ∼= Oκ(n), generated by c0, c1. When n 6= (c0, c1, d0, d1), then making a base change
from κ(n) to a finite field extension κ′, we may assume that n = (c0, c1, d0 − t′0, d1 − t′1)

with t′i ∈ κ′ and at least one of them is non-zero, say t′0 6= 0. This implies that c1 = c0t
′
1t
′−1
0

in r⊗Rps κ′, hence the latter κ′-space is of dimension 1 (it is nonzero by Nakayama’s lemma).
The lemma follows.

Proof of Proposition 4.3. – Suppose first that Tn is absolutely irreducible. By [25, Propo-
sition 10.107(i)], the category Banadm,fl

G,ψ (E)Bn contains only one absolutely irreducible
object denoted by Πn, which must be non-ordinary. In particular, each irreducible subquo-
tient of Π(κ(n)) is isomorphic to Πn and Lemma 4.5 gives an injection Πn ↪→ Π(κ(n)).
Lemma 4.4 implies that the setup of [25, Proposition 4.32] is satisfied, which implies that
m(Π(κ(n))/Πn) = 0 (we use the notation m as in loc.cit.), hence Π(κ(n))/Πn = 0.
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Suppose from now on that Tn is absolutely reducible and can be written as Tn = δ1 + δ2
over a finite extension L′ of κ(n) with δ1δ

−1
2 6= 1, ε±1. Since δ1 6= δ2 as they reduce to

different characters, we have only excluded the case when Tn = δ + δε (with δ2 = ψ). Using
the isomorphism Rps ∼= Rver(ρ1), [25, Corollary 10.94] implies that we only exclude the
ideal (c0, c1, d0, d1).

We first treat the case when L′ = κ(n). Up to order, we may assume that δ1 reduces
to 1 modulo the maximal ideal of Oκ(n), and therefore δ2 reduces to ω. Then [25, Proposi-
tion 10.107(ii)] implies that Banadm,fl

G,ψ (E)Bn has exactly two (non-isomorphic) absolutely irre-
ducible objects Π1 and Π2, where

Π1 = (IndGP δ1 ⊗ δ2ε−1)cont, Π2 = (IndGP δ2 ⊗ δ1ε−1)cont.

Let Π be the unique irreducible Banach space sub-representation of Π(κ(n)) given by
Lemma 4.5. Since Π

ss
contains Sp as a subquotient, we have Π ∼= Π1 by our convention.

Moreover, by the assumption p ≥ 5 we must have Π2
ss ∼= πα. Put

Π′ := Π(κ(n))/Π.

As in the irreducible case, [25, Proposition 4.32] implies that each irreducible subquotient
of Π′ is isomorphic to Π2. To conclude we need to show that Π ∼= Π2, or equivalently
V̌(Π2) ∼= δ2.

Tensoring the sequence (21) with κ(n) (over Rps) gives

r.V̌(N1)⊗Rps κ(n)
φ→ V̌(N2)⊗Rps κ(n)→ ρuniv

1 ⊗Rps κ(n)→ 0.

On the one hand, since n contains the reducibility ideal r, ρuniv
1 ⊗Rps κ(n) is non-zero

and ρuniv
1 ⊗Rps Oκ(n) is a deformation of 1 to Oκ(n). By our convention, this implies that

ρuniv
1 ⊗Rps κ(n) is isomorphic to δ1. On the other hand, since V̌(N1) is the universal defor-

mation of ρ1 over Rver(ρ1) ' Rps, it is flat over Rps. Together with Lemma 4.7, this implies
that

r.V̌(N1)⊗Rps κ(n) ∼= V̌(N1)⊗Rps (r⊗Rps κ(n)) ∼= V̌(N1)⊗Rps κ(n).

which is isomorphic to a non-split extension of δ2 by δ1 by [26, Proposition 4.9(ii)]. The map
φ cannot be injective, since V̌(N2) ⊗Rps κ(n) does not contain δ1 as a sub-representation
(otherwise, Π(κ(n)) would admit Π1 as a quotient which contradicts Lemma 4.5). Moreover,
φ cannot be zero because its kernel, being a quotient of TorR

ps

1 (ρuniv
1 , κ(n)), admits only

irreducible subquotients reducing to 1. As a consequence, Im(φ) ∼= δ2, and V̌(N2)⊗Rps κ(n)

is a non-split extension of δ1 by δ2.
For general L′, the same argument as above shows that V̌(Π(κ(n))) ⊗κ(n) L

′, which is
isomorphic to V̌(N2) ⊗Rps L′ by (20), is a non-split extension of δ1 by δ2. Since 1 6= ω (as
p > 2), [26, Lemma 4.5] implies that δ1, δ2 are in fact defined over κ(n). As in the proof of
[26, Proposition 4.9], we see that Π(κ(n)) is a non-split extension of Π2 by Π1.

R 4.8. – We thank Paškūnas for pointing out to us that N2 is not flat over Rps.

P 4.9. – If V = σ(k, τ) (resp. V = σcr(k, τ)), then

dimκ(n) HomK(V,Π(κ(n))) ≤ 1

for almost all n ∈ m-SpecRps[1/p]. Moreover, for such n, dimκ(n) HomK(V,Π(κ(n))) = 1 if
and only if Tn is absolutely irreducible and potentially semi-stable (resp. potentially crystalline)
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of type (k, τ, ψ), or Tn is reducible and isomorphic to the trace of a potentially semi-stable (resp.
potentially crystalline) representation of type (k, τ, ψ) which is non-split and contains a one-
dimensional sub-representation lifting ω.

Proof. – We exclude the finite set of n as in Proposition 4.3. The case when Tn is abso-
lutely irreducible is identical to that of [26, Proposition 4.14]. Assume that Tn is absolutely
reducible. Then by the proof of Proposition 4.3,Tn can be written of the form δ1+δ2 overκ(n)

with δ1δ−1
2 6= 1, ε±1, and Π(κ(n)) fits into a non-split extension

0→ Π1 → Π(κ(n))→ Π2 → 0

with Π1,Π2 absolutely irreducible and non-isomorphic. As in the proof of Proposition 4.3,
we assume that δ1 reduces to1 and δ2 reduces toωmodulo the maximal ideal of Oκ(n), so that
V̌(Πi) ∼= δi for i = 1, 2. Now the proof of [26, Proposition 4.14] gives that Π(κ(n))alg, the
subspace of locally algebraic vectors in Π(κ(n)), is non-zero if and only if Πalg

1 is non-zero,
if and only if the GQp -representation

(22) 0→ δ2 → V̌(Π(κ(n)))→ δ1 → 0

is potentially semi-stable (resp. potentially crystalline if V = σcr(k, τ)) of type (k, τ, ψ). We
conclude as in the proof of loc.cit., noting that the sequence (22) is non-split since Π(κ(n))

is a non-split extension of Π2 by Π1.

Recall the fixed K-stable lattice Θ in V and the Rps-module M2(Θ). As in §4.1, we have
the following result.

T 4.10. – We have an isomorphism

Ann(M2(Θ)) ∼= Ips
irr ∩ I

ps
2

and an equality of 1-dimensional cycles

Z1 (Rps/(Ips
irr ∩ I

ps
2 , $)) = (a0,0 + ap−1,0)J.

The same statement holds if we replace Ips
irr, I

ps
2 , a0,0, ap−1,0 by Ips

cr,irr, I
ps
cr,2, acr

0,0, acr
p−1,0

respectively.

Proof. – Write Σ for the set of n in the statement of Proposition 4.9 such that
dimκ(n) HomK(V,Π(κ(n))) = 1. By Proposition 4.9 and Remark 4.1, we see that Σ forms
a dense subset of Spec (Rps/(Ips

irr ∩ I
ps
2 )) [1/p], hence of SpecRps/(Ips

irr ∩ Ips
2 ), see [26,

Remark 2.43]. Now [26, Proposition 2.22] implies that Σ forms a dense subset of the support
of M2(Θ), so we get the equality

√
Ann(M2(Θ)) = Ips

irr ∩ I
ps
2 .

To prove the theorem, we need to check the conditions (a),(b),(c) in [26, Theorem 2.42] in
order to apply it. The condition (a) follows from the definition of N2, using the main result
of [11]. The condition (c)(i) is just Proposition 4.9 and (c)(ii) proceeds exactly as in [26, §4.2]
using the main result of [7] and Proposition 4.9 in place of [26, Proposition 4.9].

We are left to verify the condition (b). By [26, Proposition 2.29], it suffices to prove that
M2(Θ) is a finitely generated Cohen-MacaulayRps-module. Recall that we have constructed
an element x ∈ Rps in the proof of Proposition 2.9, which is a lifting of S via the surjection
Rps � F[[S]]. We claim that ($,x) forms a regular sequence for M2(Θ). Firstly, since N2 is
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projective in Modpro
K,ζ( O), the exact sequence 0 → Θ

$→ Θ → Θ/$Θ → 0 induces an exact
sequence of Rps-modules

0→M2(Θ)
$→M2(Θ)→M2(Θ/$Θ)→ 0.

This implies that $ is regular for M2(Θ) and M2(Θ)/$M2(Θ) ∼= M2(Θ/$Θ). Secondly, it
follows from the exact sequence (9) (in Proposition loc.cit.) that x is regular forM2(σ) for any
smooth irreducible F-representation σ ofK, hence also regular forM2(Θ/$Θ) (here we use
thatN2 is projective in Modpro

K,ζ( O)). Moreover, the quotientM2(Θ/$Θ)/xM2(Θ/$Θ) is of
Krull dimension 0 since this is true forM2(σ)/xM2(σ) by (9). This proves the claim. Finally,
Lemma 4.4 and [26, Proposition 2.15] imply that M2(Θ) is finitely generated over Rps.

All conditions of [26, Theorem 2.42] being verified, we deduce that Ann(M2(Θ)) is a
radical ideal, hence the equality Ann(M2(Θ)) = Ips

irr ∩ I
ps
2 . We also deduce an equality

of 1-dimensional cycles

Z1 (Rps/(Ips
irr ∩ I

ps
2 , $)) =

∑
n,m

an,m Z1(M2(σn,m)).

But it follows from Proposition 2.9 that M2(σn,m) 6= 0 if and only if (n,m) = (0, 0) or
(p− 1, 0), in which case the associated 1-dimensional cycle is J .

5. Proof of the Breuil-Mézard conjecture

In this section we prove the Breuil-Mézard conjecture for the residual representation1⊕ω.
To do this, we study the relation between potentially semi-stable pseudo-deformation rings
and potentially semi-stable (of the same type) deformation rings so that we can use what
is proved in Section 3 and Section 4 to deduce the multiplicities of potentially semi-stable
deformation rings (modulo $).

Notational remark: As the character ψ will be fixed everywhere, we omit it from the
notation of the deformation rings for simplicity. For m ∈ m-SpecRver[1/p], write ρm for the
associated deformation of ρ.

Let ρ be an extension of two distinct characters χ2 by χ1 and fix a p-adic Hodge
type (k, τ, ψ). A closed point in SpecRver(k, τ, ρ)[1/p] is called of reducibility type irr

if the corresponding GQp -representation is absolutely irreducible. For a closed point
x ∈ SpecRver(k, τ, ρ)[1/p] such that the corresponding GQp -representation Vx is reducible,
it has to be an (possibly split) extension of two distinct characters δi lifting χi, respectively.
We say the point x is of reducibility type χi, or more briefly, of type i, if δi has the higher
Hodge-Tate weight.

For ∗ ∈ {irr, 1, 2}, define an ideal Iver
∗ of Rver as follows:

Iver
∗ :=

( ⋂
m∈m-SpecRver[1/p]

m
)
∩Rver,

for m ranging over all the maximal ideals such that ρm is potentially semi-stable of
type (k, τ, ψ) and of reducibility type ∗, so that

Rver(k, τ, ρ) = Rver/(Iver
irr ∩ Iver

1 ∩ Iver
2 ).
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In the pseudo-deformation ring Rps = Rps(trρ), define the ideal

Ips
∗ := Iver

∗ ∩Rps.

One sees that this definition coincides with the one defined at the beginning of Section 4.

We define in an obvious way the ideals Iver
cr,∗ and Ips

cr,∗ (∗ ∈ {irr, 1, 2}) by considering
potentially crystalline representations of type ∗.

R 5.1. – In [20], a quotient ringRps
U0

ofRps (denoted byRps(k, τ, ρ) in [5]) is intro-
duced, which can be seen as the analogue of Rver(k, τ, ρ). One checks that
Rps
U0

= Rps/(Ips
irr ∩ I

ps
1 ∩ I

ps
2 ) and that Ips

∗ defines the (closure of union of) components
in SpecRps

U0
[1/p] of type ∗ defined loc. cit.

In the rest of this section, we will take ρ = 1 ⊕ ω and use the convention χ1 = 1 and
χ2 = ω while we talk about reducibility types.

Recall from §3 that there are three minimal prime ideals of Rver containing
JRver: p1, p2, p3, and that JRver = p1 ∩ p2 ∩ p3. We first record the following fact, which
says that they induce all possible minimal prime ideals of Rver(k, τ, ρ)/$.

P 5.2. – (i) The quotient ring Rver/(Iver
irr + ($)) has at most three minimal

prime ideals, that is among {p1, p2, p3}.
(ii) The quotient ring Rver/(Iver

1 + ($)) has at most one minimal prime ideal p1, with the
quantity being one if and only if Iver

1 6= Rver.

(iii) The quotient ring Rver/(Iver
2 + ($)) has at most two minimal prime ideals p2 and p3.

The same hold in the crystalline case, i.e., with Iver
∗ replaced by Iver

cr,∗.

Proof. – (i) Let ∗ ∈ {irr, 1, 2} and q ∈ SpecRver be any minimal prime ideal over
Iver
∗ +($). By Theorems 4.2 and 4.10, J is the radical of the ideal Ips

∗ +($). Since the natural
map fver : Rps → Rver maps Ips

∗ into Iver
∗ , there exists r ∈ N large enough such that

(p1 ∩ p2 ∩ p3)rRver = JrRver ⊂ (Ips
∗ + ($))Rver ⊂ q.

Hence q must contain one of the p1, p2, p3. By Theorem 1.1 and [22, Theorem 31.5],
Rver/(Iver

∗ + ($)) is equidimensional of dimension 2, which implies that q has height 3.
Since pi (i = 1, 2, 3) also has height 3, the first claim follows.

The proofs of (ii) and (iii) are similar and we only give that of (ii). We follow the arguments
in the proof of [5, Lemma 4.3.4(ii)]. Let q′ be a minimal prime ideal over Iver

1 . By the proof
of (i) we only need to show q′ * p2, p3. As in the proof loc.cit., the associated deformation

ρq′ : GQp → GL2(Rver/q′)

is reducible and it contains a free sub-Rver/q′-module of rank 1 as a direct summand, which is
a deformation of the trivial character 1. The same property holds for any prime ideal ofRver

containing q′. However, by the explicit description of ρRver in §3.1.1, the deformations ρp2
and ρp3 are reducible non-split, containing a free sub-module of rank 1 lifting ω. This implies
q′ * p2, p3 and the result follows.
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By [22, Theorem 14.7] we have

(23) e(Rver(k, τ, ρ)/$) =

3∑
i=1

`(Rver(k, τ, ρ)pi/$)e(Rver/pi) =

3∑
i=1

`(Rver(k, τ, ρ)pi/$)

where the second equality holds because e(Rver/pi) = 1 for i = 1, 2, 3. We are left to
study `(Rver(k, τ, ρ)pi/$), which is also equal to e(Rver(k, τ, ρ)pi/$). Of course, the same
happens in the crystalline case.

5.1. Multiplicities at p1 and p2

Recall the maps (16) fver
i : Rps → Rver

pi
, for i = 1, 2, 3.

P 5.3. – (i) For i = 1, 2, we have Iver
irr R

ver
pi

= Ips
irrR

ver
pi

and Iver
i Rver

pi
= Ips

i R
ver
pi

.

(ii) For ∗ ∈ {irr, 2}, we have Iver
∗ Rver

p3
[1/p] =

√
Ips
∗ Rver

p3
[1/p].

Proof. – First look at Iver
irr . Using the fact that Rver[1/p] is a Jacobson ring, we have by

definition

Iver
irr R

ver[1/p] =
⋂

n∈m-SpecRver[1/p]

n,
√
Ips
irrR

ver[1/p] =
⋂

m∈m-SpecRver[1/p]

m,

where n ranges over all maximal ideals such that ρn is absolutely irreducible of type (k, τ, ψ),
and m ranges over all maximal ideals such that tr(ρm) is absolutely irreducible of type (k, τ, ψ),
that is tr(ρm) ∼= tr(ρ′) for some ρ′ which is absolutely irreducible of type (k, τ, ψ). Clearly
these conditions define the same subset of m-SpecRver[1/p], hence the equality

(24) Iver
irr R

ver[1/p] =
√
Ips
irrR

ver[1/p] =
√
Ips
irrR

ver[1/p]

where the second equality holds because taking radical commutes with localization. Taking
localization at pi (viewing the two sides as Rver-modules), i = 1, 2, 3, gives

(25) Iver
irr R

ver
pi

[1/p] =
√
Ips
irrR

ver
pi

[1/p]

hence (ii) holds for ∗ = irr. To deduce (i), first remark that if A is an O-algebra and I is an
ideal of A such that the quotient A/I is an O-flat module, then I = (IA[1/p]) ∩ A. Since
the map Rps → Rver

pi
(here i = 1, 2) is flat by Proposition 3.10, Rver

pi
/Ips

irrR
ver
pi

is O-flat as

Rps/Ips
irr is. This implies that Rver

pi
/
√
Ips
irrR

ver
pi

is also O-flat and thus (25) improves to be

Iver
irr R

ver
pi

=
√
Ips
irrR

ver
pi
, i = 1, 2.

Then we conclude still by Proposition 3.10, which says that Ips
irrR

ver
pi

is already radical. So far
we have proved (i) and (ii) for ∗ = irr.

The claim for Iver
i (i = 1, 2) is proved similarly, using Proposition 5.2. More precisely, with

the notation in the proof of loc. cit. let n ∈ Spec((Rver/q′)[1/p]) be any closed point such
that trρn comes from some potentially semi-stable representation of type (k, τ, ψ). Since we
have fixed its reducibility type, the representation ρn itself has to be potentially semi-stable
of type (k, τ, ψ). The rest of the proof then goes over as in the irreducible case.
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R 5.4. – In general, we do not expect Ips
∗ R

ver
p3

= Iver
∗ Rver

p3
to be true (this would

imply Ips
∗ R

ver = Iver
∗ ). For example, in the crystalline case it could happen that Ips

cr,irr =

(c0−p, c1, d1) inRps. Then Ips
cr,irrR

ver = (c0d1−c1d0, bc0−p, bc1, d1) andRver/Ips
cr,irrR

ver has
p3 as a minimal prime ideal, which implies that Rver/Ips

cr,irrR
ver is not equidimensional, while

Rver/Iver
cr,irr is equidimensional by Theorem 1.1.

P 5.5. – For i = 1, 2, we have

` (Rver(k, τ, ρ)pi/$) = ` (Rps
J /(I

ps
irr ∩ I

ps
i , $)) .

Proof. – It follows from Proposition 5.2 that Rver(k, τ, ρ)pi
∼= Rver

pi
/(Iver

irr ∩ Iver
i )

for i = 1, 2. Then Proposition 5.3(i) implies further that

Rver(k, τ, ρ)pi
∼= Rps

J /(I
ps
irr ∩ I

ps
i )⊗Rps

J
Rver
pi
.

Since the local map Rps
J → Rver

pi
is flat by (the proof of) Proposition 3.10, so is

Rps
J /(I

ps
irr ∩ I

ps
i , $)→ Rver(k, τ, ρ)pi/$. Applying Lemma 5.6 below to it we obtain

` (Rver(k, τ, ρ)pi/$) = `(Rps
J /(I

ps
irr ∩ I

ps
i , $))e(Rver

pi
/J) = `(Rps

J /(I
ps
irr ∩ I

ps
i , $)).

Here we have used the fact that e(Rver
pi
/J) = 1.

L 5.6. – Let A→ B be a local map of Noetherian local rings with radicals m and n,
respectively. Let p ⊂ A be a nilpotent prime ideal and suppose that all the minimal prime ideals
of B lie over p. Assume further that B is flat over A. Then

en(B) = en/pB(B/pB)`(Ap).

Proof. – Let {q1, . . . , qm} be the set of minimal prime ideals ofB. By [22, Theorem 14.7],
we have

en(B) =

m∑
i=1

en/qi(B/qi)`Bqi (Bqi)

and

en/pB(B/pB) =

m∑
i=1

en/qi(B/qi)`(B/pB)qi
((B/pB)qi).

Since A→ B is flat, so is Ap → Bqi for any i. By Nagata’s flatness theorem (see for example
[22, Ex. 22.1]), we have

`Bqi (Bqi) = `Ap(Ap) · `Bqi (Bqi/pBqi).

The result follows.
Note that we can also adapt the proof of [20, 1.3.10], where all the inequalities appeared

become equalities under the assumption that B is flat over A.

R 5.7. – In this remark, we take ρ to be of the form ρ ∼= χ1 ⊕ χ2 with
χ1χ

−1
2 /∈ {1, ω±1}. The situation is simpler, in the sense that the analogue of Proposition 5.2

holds except that the minimal ideal p3 disappears. In this case, there are only two minimal
prime ideals of Rver containing JRver; in the notation of Remark 3.12, J = ($, y2, y3). By
Remark 3.12, the natural homomorphismRps → Rver is flat and maps radical ideals to radical
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ideals. If we let ρ1 (reap. ρ2) be the unique non-split extension of χ2 by χ1 (resp. of χ1 by χ2),
then we have

e(Rver(k, τ, ρ)/$) = e(Rver(k, τ, ρ1)/$) + e(Rver(k, τ, ρ2)/$),

which proves the Breuil-Mézard conjecture in this case; the conjecture for the two terms on the
right-hand side are already known by [20] and [26]. The crystalline case is shown in the same
way.

5.2. Multiplicity at p2 and p3

We determine the multiplicity of Rver(k, τ, ρ)/$ at p2 and p3, by means of deformation
rings of peu ramifié extensions, for which the Breuil-Mézard conjecture has been treated in
[26].

Recall the map (13)

fpeu : Rps ' O[[c0, c1, d0, d1]]

(c0d1 − c1d0)
↪→ Rpeu ' O[[x1, x2, x3]],

c0 7→ x3, c1 7→ x2x3, d0 7→ x1, d1 7→ x1x2.

HereRpeu := Rver(ρpeu) denotes the universal deformation ring (with fixed determinant εψ)
of ρpeu, the (non-split) peu ramifié extension of 1 by ω. Recall that Rpeu/JRpeu has two
minimal prime ideals q2 = ($,x2, x3) and q3 = ($,x1, x3).

By Proposition 3.13 we have the following commutative diagram (18)

Rps

fpeu

��

fver

""
Rpeu
qi

γi // R̂ver
pi
.

In the proof of Proposition 3.13, we have seen that piR̂ver
pi

lies over qiR
peu
qi (i = 2, 3) and

qiR̂ver
pi

= piR̂ver
pi

, under the map γi (17).

Denote by Ipeu
irr (resp. Ipeu

2 ) the ideal ofRpeu cutting out the closure in SpecRpeu of closed
points in SpecRver(k, τ, ρpeu)[1/p] which are of irreducible type (resp. of reducible type). The
notation Ipeu

2 chosen as a component of reducible type is automatically of type 2.

P 5.8. – We have for i = 2, 3 the following relations under the map γi (17):

Ipeu
irr R̂

ver
pi

= Iver
irr R̂

ver
pi
, Ipeu

2 R̂ver
pi

= Iver
2 R̂ver

pi
.

Proof. – By Proposition 5.3, we have for ∗ ∈ {irr, 2} and i ∈ {2, 3}

Iver
∗ Rver

pi
[1/p] =

√
Ips
∗ Rver

pi
[1/p] =

√
Ips
∗ Rver

pi
[1/p].

Applying Lemma 5.9 below to A = Rver
pi

and I =
√
Ips
∗ Rver

pi
, J = Iver

∗ Rver
pi

we get

(26) Iver
∗ R̂ver

pi
[1/p] =

√
Ips
∗ Rver

pi
R̂ver
pi

[1/p] =

√
Ips
∗ R̂ver

pi
[1/p],
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where to get the second equality we have applied Lemma 5.9(ii) to A = Rver
pi

which is a
Nagata ring, being a localization of a complete Noetherian local ring (see [3, Chapitre IX,
§4, no 4]). On the other hand, a similar proof as in Proposition 5.3 shows

(27) Ipeu
∗ Rpeu

qi
[1/p] =

√
Ips
∗ R

peu
qi [1/p] =

√
Ips
∗ R

peu
qi [1/p].

Then using the commutative diagram (18), we get

Iver
∗ R̂ver

pi
[1/p]

(26)
=

√
fver(Ips

∗ )R̂ver
pi

[1/p] =
√
Ips
∗ R

peu
qi R̂

ver
pi

[1/p]
(27)
= Ipeu

∗ R̂ver
pi

[1/p].

Here, we use (the proof of) Lemma 5.9(ii), applied to the morphism γi, to get the second
equality, since γi sends radical ideals to radical ideals by Proposition 3.13. Since
γi : Rpeu

qi → R̂ver
pi

is flat by Proposition 3.13 again, we conclude as in the proof of
Proposition 5.3(i).

L 5.9. – Let (A,m) be a Noetherian local ring and denote by Â itsm-adic completion.

(i) Let I ⊆ J be two ideals of A such that IA[1/p] = JA[1/p]. Then we have IÂ[1/p] =

JÂ[1/p].

(ii) If moreover A is a Nagata ring, then the natural morphism A → Â sends radical ideals
to radical ideals. In particular,

√
IÂ =

√
IÂ for any ideal I of A.

Proof. – (i) Write M = I/J and consider the exact sequence of A-modules:

(28) 0→ I → J →M → 0.

The assumption that IA[1/p] = JA[1/p] implies that M [1/p] = 0. Since M is a finitely
generated A-module, we can find n ∈ N large enough such that pnm = 0 for all m ∈ M .
Taking m-adic completions and inverting p, the sequence (28) induces an exact sequence

0→ IÂ[1/p]→ JÂ[1/p]→ M̂ [1/p]→ 0.

By definition we have M̂ = lim←−i≥1
M/miM , so that M̂ is also killed by pn and therefore

M̂ [1/p] = 0. The result follows.

(ii) By Nagata-Zariski theorem, see for example [15, Theorem 1.3], the natural morphism
A→ Â is a reduced morphism, hence sends radical ideals to radical ideals. To show the last
assertion, we remark that for any ring morphism f : A → B which sends radical ideals to
radical ideals and any ideal I of A, we have

√
IB =

√
IB. Indeed, the inclusion ⊆ holds in

general, and the inclusion ⊇ holds because IB ⊆
√
IB and

√
IB is already radical.

C 5.10. – We have the equality

`(Rver(k, τ, ρ)p2/$) + `(Rver(k, τ, ρ)p3/$) = a0,0 + 2ap−1,0.

Proof. – To lighten the notation, denote Rpeu(k, τ) := Rver(k, τ, ρpeu). First, a similar
proof as that of Proposition 5.2 implies thatRpeu(k, τ)/$ has at most 2 minimal prime ideals
q2 and q3, so that by [22, Theorem 14.7]

e(Rpeu(k, τ)/$) = `(Rpeu(k, τ)q2/$) + `(Rpeu(k, τ)q3/$),
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where we have used thatRpeu/q2 andRpeu/q3 both have Hilbert-Samuel multiplicity 1. Since
we know e(Rpeu(k, τ)/$) = a0,0 + 2ap−1,0 by the Breuil-Mézard conjecture for ρpeu which
is proved in [26], it suffices to show

(29) `(Rver(k, τ, ρ)pi/$) = `(Rpeu(k, τ)qi/$), i = 2, 3.

Proposition 5.2 and Proposition 5.8 imply that

̂Rver(k, τ, ρ)pi
∼= Rpeu(k, τ)qi ⊗Rpeu

qi
R̂ver
pi
.

Note that taking completion does not change Hilbert-Samuel multiplicities. Then using
that qiR̂ver

pi
= piR̂ver

pi
for i = 2, 3, we get (29) by applying Lemma 5.6 to the flat map

Rpeu(k, τ)qi/$ → ̂Rver(k, τ, ρ)pi/$, base change of the flat local morphism Rpeu
qi → R̂ver

pi
,

as in the proof of Proposition 5.5.

5.3. Conclusion

We can now prove the (cycle version of) Breuil-Mézard conjecture for ρ = 1⊕ω. First we
prove it for potentially semi-stable deformation rings.

T 5.11. – The cycle version of the Breuil-Mézard Conjecture (hence the original
Conjecture 1.2) is true for the representation ρ = 1⊕ ω. Precisely, we have

Z(Rver(k, τ, ρ)/$) = ap−3,1p1 + a0,0p2 + ap−1,0(p2 + p3).

Proof. – Theorem 4.2, Theorem 4.10 and Proposition 5.5 imply that

`(Rver(k, τ, ρ)p1/$) = ap−3,1, `(Rver(k, τ, ρ)p2/$) = a0,0 + ap−1,0.

Together with Corollary 5.10, this implies that `(Rver(k, τ, ρ)p3/$) = ap−1,0. They prove
the theorem by (23).

To prove the Breuil-Mézard Conjecture for potentially crystalline deformation rings, it is
enough to assume that the Galois type τ is scalar, since otherwise potentially semi-stable and
potentially crystalline deformation rings coincide by [4, Lemma 2.2.2.2].

T 5.12. – The cycle version of the crystalline Breuil-Mézard Conjecture (hence the
original Conjecture 1.2) holds for ρ = 1⊕ ω:

Z(Rver
cr (k, τ, ρ)/$) = acr

p−3,1p1 + acr
0,0p2 + acr

p−1,0(p2 + p3).

Proof. – In the case k > 2, all the previous arguments in §§5.1-5.2 go over verbatim with
Ips
∗ , Iver

∗ andRver(k, τ, ρ) replaced by Ips
cr,∗, Iver

cr,∗ andRver
cr (k, τ, ρ), respectively. For example,

Proposition 5.3, which is the key result, holds true, since a representation is potentially
crystalline of type (k, τ, ψ) if and only if its trace is.

We are left to treat the special case k = 2. In this case there are crystalline representations
and semi-stable non-crystalline representations with the same trace, which makes Proposi-
tion 5.3(ii) fail when ∗ = 2. However, we give a direct proof in this case. After twisting, we
may assume τ = 1 is the trivial type and ψ is the trivial character.

First of all, Theorem 5.11 implies that

Z(Rver(2,1, ρ)/$) = p2 + p3
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since σ(2,1)
ss

= σp−1,0. By definition, SpecRver
cr (2,1, ρ)/$ is a union of irreducible compo-

nents of SpecRver(2,1, ρ)/$. Moreover, we know by [18, Proposition 3.6] thatRver
cr (2,1, ρ)

is formally smooth, which implies that the cycle Z(Rver
cr (2,1, ρ)/$) is simply of the form pi

for some i ∈ {2, 3}. However, we cannot have i = 3, since the image of Spec(Rver/p3)

in SpecRps reduces to the closed point, whereas that of SpecRver
cr (2,1, ρ)/$ does not

because we can find easily two crystalline liftings of ρ with distinct traces. Hence we have
Z(Rver

cr (k, τ, ρ)/$) = p2 which proves the theorem since σcr(2,1)
ss

= σ0,0.

6. The Fontaine-Mazur conjecture

This section is devoted to the proof of Theorem 1.4. Since the arguments for deducing the
Fontaine-Mazur conjecture from the Breuil-Mézard conjecture are now standard, thanks to
[20] (and its errata in [13]), we only emphasize how to modify Kisin’s original proof in the
cases that are not covered in [20]. In the following, whenever we quote a result in [20, §2], we
mean the corrected version given in [13, Appendix B].

LetF be a totally real field in which p is split. LetD be a quaternion algebra with centreF ,
ramified at all infinite places and a set of finite places Σ which does not contain the places
above p. Let U ⊂ (D ⊗F AfF )× be the open compact as in [20, 2.1.1]. Fix a continuous
representation σ : U → Aut(

∏
vWσv ) such that

Wσv = Symkv−2 O2
Fv ⊗ σ(τv)⊗ detwv , ∀v|p

with wv an integer and τv : Iv → GL2(E) a representation with open kernel, and σ is trivial
at other places. Fix a characterψ : (AfF )×/F× → O× so that at anyUv∩ O×Fv , σ is given byψ.
Extend σ to be a representation of the product U(AfF )× by letting the second component act
by ψ. Let Sσ,ψ(U, O) be the set of continuous functions f : D×\(D ⊗F AfF )× →

∏
vWσv

defined in [20, 2.1.1], which is chosen to be a finite projective O-module by shrinking U ;
cf. [20, 2.1.2].

We take S to be the union of Σp := Σ∪{v, v|p} and some other unramified places v such
that Uv ⊂ D×v consists of matrices which are upper triangular and unipotent modulo $v.
Consider a continuous absolutely irreducible representation

ρ : GF,S → GL2(F)

such that there is an eigenform f ∈ Sσ,ψ(U, O) with the associated Galois representation
reducing to ρ; cf. [20, 2.2.3] for additional technical conditions on ρ. We have the universal
deformation ring RF,S := Rver(ρ) analogous to the local setting.

In the following, it is more convenient to use the universal framed deformation rings;
see, for example, [18, Section 2] for basics. Note that by [18, Proposition 2.1] a universal
framed deformation ring R� is formally smooth over a corresponding versal deformation
ring Rver, and that all the closed points of SpecR�[1/p] lying above a given closed point
of SpecRver[1/p] give rise to isomorphic representations. Hence our main results in Section 5
hold for framed deformation rings.

We add the superscript � to the notation of deformation rings to indicate framed defor-
mations, and as before use the superscript ψ to indicate the deformations with fixed determi-
nant ψ. Among them, the universal framed deformation ring R�

F,S of the global absolutely
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irreducible ρ is defined by considering deformations of ρ, together with the lifts of a fixed
basis of (the representation space of) ρ|GFv for each v ∈ Σp. In particular, this gives a natu-

ral map of O-algebrasR�,ψ
Σp

:= ⊗̂R�,ψ
v → R�,ψ

F,S , whereR�,ψ
v is the local framed deformation

ring of ρ|GFv . We denote the various quotient rings analogously.
Let Qn (for any n ≥ 1) be the set of auxiliary primes as in [20, 2.2.4], for which

h := |Qn| = dimFH
1(GF,S , ad0ρ(1)) is independent of n and R�,ψ

SQn
(SQn = S ∪ Qn

and Uv for v ∈ Qn are defined as in [20, 2.1.6]) is topologically generated by g = h + j − d
elements as an R�,ψ

Σp
-algebra, with j = 4|Σp| − 1 and d = [F : Q] + 3|Σp|. Set

Mn = Sσ,ψ(UQn , O)mQn ⊗RψF,SQn
R�,ψ
F,SQn

,

where the ideal mQn is associated to ρ and Qn as in [20, 2.1.5, 2.1.6], and UQn =
∏
v∈Qn Uv.

Fix a K-stable filtration of Wσ ⊗ O F by F-vector spaces:

0 = L0 ⊂ · · · ⊂ Ls = Wσ ⊗ O F,

such that the graded piece σi = Li+1/Li is absolutely irreducible, which then has the form
σi = ⊗v|pσni,v,mi,v , withni,v ∈ {0, . . . , p−1} andmi,v ∈ {0, . . . , p−2}. This induces a filtra-
tion {M i

n} onMn⊗ O F for any n ≥ 0. Let cn ⊂ O[[y1, . . . , yh+j ]] be the ideal as in [20, 2.2.9].
There are maps of R∞ = R�,ψ

Σp
[[x1, . . . , xg]]-modules fn : Mn+1/cn+1Mn+1 → Mn/cnMn

compatible with the filtrations (modulo $). The R∞-module M∞ = lim←−Mn/cnMn is finite
free as an O[[y1, . . . , yh+j ]]-module, whose reduction mod $ has a filtration

0 = M0
∞ ⊂ · · · ⊂Ms

∞ = M∞ ⊗ O F,

each of whose graded pieces is a finite free F[[y1, . . . , yh+j ]]-module.
As explained in [20, 2.2.10], the action of R�,ψ

v on M∞ for v|p factors through the
potentially semi-stable quotient R̄�,ψ

v , twist of R�,ψ(kv, τv, ρ|GFv ⊗ ω−wv ), and for v ∈ Σ

factors through certain quotient R̄�,ψ
v whose closed points parametrize extensions of γv

by γv(1), where γv is the unramified character such that γ2
v = ψ|GFv . Denote

R̄�,ψ
Σp

:= ⊗̂v∈ΣpR̄
�,ψ
v . It can be shown that R̄�,ψ

Σp
is of relative dimension d over O. Now

M∞ is an R̄∞ = R̄�,ψ
Σp

[[x1, . . . , xg]]-module.

Let i ∈ {1, . . . , s}. For v ∈ Σ and v|p such that ρ|GFv is not a twist of

(
ω ∗
0 1

)
, let R̄�,ψ

v,i

be as in the proof of [20, 2.2.15]. Otherwise, we define for v|p with ρ|GFv (possibly split) peu
ramifié (resp. très ramifié) that

R̄�,ψ
v,i = R�,ψi,v (2, (ω̃mi,v )⊕2, ρ|GFv )/$v

with ψi,v : GFv → O× any character such that ψi,v|IFv = εni,v ω̃2mi,v and ψi,v ≡ ψ|GFv
mod $v (cf. [20, 2.2.13]). That is, we use the semi-stable instead of crystalline deformation
rings in the latter cases as building blocks, because of the appearance of components of semi-
stable non-crystalline points. Then we form the completed tensor product R̄�,ψ

Σp,i
of the R̄�,ψ

v,i

for all v ∈ Σp and set R̄i∞ := R̄�,ψ
Σp,i

[[x1, . . . , xg]].

L 6.1. – For any i = 1, . . . , s, the support of the R̄i∞-module M i
∞/M

i−1
∞ is all

of Spec R̄i∞.
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Proof. – This is a modification of the proof of [20, 2.2.15], which uses the existence of
modular liftings of prescribed type. For the latter in the cases that ρ|GFv is a twist of ( ω ∗0 1 )

(v|p), which is not treated in [20], we use [18, Theorem 9.7] as follows.
Suppose we are in these cases. By [4, Theorem 5.3.1(i)], we know that the cycle

Z(R�,ψi,v (2, (ω̃mi,v )⊕2, ρ|GFv )/$) is irreducible if ρ is très ramifié. In the (possibly
split) peu ramifié case, it is the sum of two irreducible components, one of which is just
Z(R

�,ψi,v
cr (2, (ω̃mi,v )⊕2, ρ|GFv )/$), and the other of which is the closure of the semi-stable

non-crystalline points, as predicted by the Breuil-Mézard conjecture. Now [18, Theorem 9.7]
tells us that the support ofM i

∞/M
i−1
∞ , as an R̄i∞-module, meets each irreducible component

of R̄i∞, and in fact consists of all of it by dimension counting; cf. the proof of [20, 2.2.15].

P 6.2. – M∞ is a faithful R̄∞-module.

Proof. – Recall Theorem 5.11 and the main result of [26]. Now the result follows from
Lemma 6.1 and the argument of [20, 2.2.17].

T 6.3. – Let F be a totally real field in which p splits. Let ρ : GF,S → GL2( O)

be a continuous representation such that ρ is odd, ρ|GF (ζp)
is absolutely irreducible, the restric-

tion ρ|GFv for each place v|p is potentially semi-stable of distinct Hodge-Tate weights, and the
residual representation ρ is modular. Then ρ comes from a Hilbert modular form.

As a consequence, Theorem 1.4 holds.

Proof. – By Proposition 6.2 and [20, 2.2.11], the modularity holds in the case that
ρ|IFv , v ∈ Σ, is an extension of γv by γv(1). The general case then follows from the base
change arguments as in the proof of [20, 2.2.18]. For Theorem 1.4, one only needs that ρ is
modular, which is the main result of [17], [18].
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