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AMBITORIC GEOMETRY II:
EXTREMAL TORIC SURFACES
AND EINSTEIN 4-ORBIFOLDS

 V APOSTOLOV, D M. J. CALDERBANK
 P GAUDUCHON

A. – We provide an explicit resolution of the existence problem for extremal Kähler
metrics on toric 4-orbifolds M with second Betti number b2(M) = 2. More precisely we show that
M admits such a metric if and only if its rational Delzant polytope (which is a labelled quadrilateral) is
K-polystable in the relative, toric sense (as studied by S. Donaldson, E. Legendre, G. Székelyhidi et al.).
Furthermore, in this case, the extremal Kähler metric is ambitoric, i.e., compatible with a conformally
equivalent, oppositely oriented toric Kähler metric, which turns out to be extremal as well. These
results provide a computational test for the K-stability of labelled quadrilaterals.

Extremal ambitoric structures were classified locally in Part I of this work, but herein we only use
the straightforward fact that explicit Kähler metrics obtained there are extremal, and the identification
of Bach-flat (conformally Einstein) examples among them. Using our global results, the latter yield
countably infinite families of compact toric Bach-flat Kähler orbifolds, including examples which are
globally conformally Einstein, and examples which are conformal to complete smooth Einstein metrics
on an open subset, thus extending the work of many authors.

R. – Nous donnons une solution complète et explicite du problème d’existence de mé-
triques kählériennes extrémales sur un orbifold torique M de dimension réelle 4, dont le nombre de
Betti b2(M) est égal à 2. Nous montrons plus précisément que M admet de telles métriques si et seule-
ment si son polytope de Delzant rationnel — qui est alors un quadrilatère étiqueté — est K-polystable,
suivant la théorie générale développée dans le cas torique par S. K. Donaldson, E. Legendre, G. Szé-
kelyhidi et al., et que ces métriques sont alors ambitoriques, donc complètement explicites d’après
la classification figurant dans la première partie de ce travail. Notre approche donne de surcroît
une façon effective de tester la stabilité des quadrilatères étiquetés. Parmi les métriques kählériennes
construites dans cet article figurent celles dont le tenseur de Bach est nul, qui sont à la fois extrémales
et conformément Einstein. Nous obtenons ainsi, en dimension 4, de nouveaux exemples explicites
d’orbifolds d’Einstein compacts ou de variétés d’Einstein non-compactes, complètes et lisses.

Introduction

This paper concerns the explicit construction of extremal Kähler metrics on compact
4-orbifolds, including Kähler metrics which are conformally Einstein (either globally or on
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1076 V. APOSTOLOV, D.M.J. CALDERBANK AND P. GAUDUCHON

the complement of real hypersurface). The examples we construct are toric with second Betti
number two, i.e., their rational Delzant polytope (which is the image of the momentum map
of the 2-torus action [22, 45]) is a quadrilateral. More precisely, we use extremal ambitoric
metrics, which we classified locally in Part I of this work, to resolve completely the existence
problem in the quadrilateral case.

There are several narratives to which this paper may be viewed as a contribution. A general
theme is the interplay between the abstract existence theory for a geometric PDE, and the
construction of explicit solutions associated to special geometric structures. Extremal Kähler
metrics were introduced by E. Calabi [16, 17] to address the problem of finding canonical
Kähler metrics with Kähler form in a given cohomology class Ω on a compact complex
manifold. The L2 norm of the scalar curvature yields a functional on Ω, and its critical points
are the extremal metrics. They are thus natural generalizations of constant curvature metrics
on Riemann surfaces; in general, the Euler-Lagrange equation asserts that a Kähler metric
is extremal if its scalar curvature is Hamiltonian for a Killing vector field. As a geometric
PDE, this is quasilinear of fourth order, and no general methods are currently available.

Nevertheless, considerable progress on the existence theory has been made, following the
seminal work of Calabi [15] on the non-positive Kähler-Einstein case and the resolution
of his famous conjecture by T. Aubin [9] and S-T. Yau [59]. Conjectures going back to
Yau [60], G. Tian [56] and S. Donaldson [26] state that the obstruction to the existence of an
extremal Kähler metric in the class Ω = 2πc1( L) of a polarized complex manifold (M, L)

should be a purely algebro-geometric “stability condition” on the pair (M, L), and these
conjectures may be extended to orbifolds [49]. Defining a precise notion of stability is part of
the problem, one candidate being “K-(poly)stability” [56, 26]: the necessity of K-polystability
has been proven for constant scalar curvature metrics [28, 20, 51, 46], and a version of
K-polystability relative to a maximal torus of the automorphism group of (M, L), developed
by G. Székelyhidi [54, 53], is necessary for the existence of an extremal Kähler metric of non-
constant scalar curvature [52].

A major difficulty with the theory is that in practice it is not only difficult to determine
whether a given polarized variety admits an extremal Kähler metric—it is also difficult to
verify a proposed stability condition. Consequently classes of complex manifolds or orb-
ifolds for which extremality and stability are more tractable play an important role. These
examples come in two main flavors: ruled and toric. Using a construction due to Calabi [16],
ruled surfaces and other projective line bundles provide a setting for many explicit extremal
Kähler metrics [57, 37, 54, 7]. We refer to these as metrics of Calabi type; they admit a Hamil-
tonian 2-form of order one [4, 5]. The extremality equations reduce to ODEs with explicit
polynomial solutions, and stability amounts to a positivity condition on the solution [54, 8].
For toric varieties, in contrast, the extremality equations only reduce to a nonlinear fourth
order PDE in the momenta; explicit solutions are hard to find, but the existence theory is
well-developed [26, 27] and there is a well-understood notion of “relative K-polystability with
respect to toric degenerations” which is widely believed to be equivalent to existence [26,
53, 62, 61]. Explicit examples are largely limited to orthotoric 2m-orbifolds, which admit a
Hamiltonian 2-form of order m and have a convex m-cube (or degeneration) for their ratio-
nal Delzant polytope [4, 7, 42].
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AMBITORIC GEOMETRY II 1077

In dimension four, examples and theory come together to provide a fairly complete pic-
ture. Extremal Kähler surfaces of Calabi type are locally toric (as the base is a constant cur-
vature Riemann surface) and there are specific results for toric surfaces. The equivalence of
existence and (relative) K-polystability is established in [30, 29] in the constant scalar curva-
ture case, while more recent work [18] relaxes this to the assumption that the zero locus of
the scalar curvature does not contain a toric divisor.

Our paper is closely related to work of E. Legendre [42], who investigated systematically
the extent to which explicit methods resolve the existence problem when the rational Delzant
polytope is a convex quadrilateral. Her solution highlighted the role of the extremal affine
function ζ on the rational Delzant polytope, a combinatorial invariant which pulls back to
the scalar curvature in the extremal case. Her main results show that Hamiltonian 2-form
methods suffice only for “equipoised” quadrilaterals, for which ζ has equal values at the
midpoints of the diagonals. A key ingredient in Legendre’s work is the observation that ζ is
linear in the inverse lengths of the normals. Using this, she resolved the existence problem
for the codimension one family of equipoised quadrilaterals using orthotoric, Calabi type or
product metrics.

The theory of Hamiltonian 2-forms in four dimensions [4] implies that these toric metrics
are in fact ambitoric, i.e., toric with respect to a pair of oppositely oriented but conformally
equivalent Kähler metrics. The local classification of ambitoric structures [6] implies that
the “regular” examples (i.e., neither a product nor of Calabi type) are determined by a
quadratic polynomial q and two functionsA,B of one variable. Regular ambitoric structures
reduce to orthotoric metrics precisely when q has vanishing discriminant. The extremality
conditions for regular ambitoric structures can be explicitly solved withA,B given by quartic
polynomials [6], and this generalization suffices to remove the equipoisedness constraint
introduced by Legendre.

To prove this, we use, in addition to ambitoric geometry, two further ingredients. The first
is an analysis of rational Delzant quadrilaterals building on [41]. We compute the extremal
affine function ζ and establish a notion of “temperateness” for polystable quadrilaterals
which implies ζ is positive at the midpoints of the diagonals.

The second is the concept of a “factorization structure”, which makes precise the sepa-
ration of variables technique that underpins explicit solutions of geometric PDEs on toric
4-orbifolds. One can hope such an approach will work in 2m-dimensions when the rational
Delzant polytope is a convexm-cube (or degeneration), with the 2m facets providing bound-
ary conditions for the m functions of one variable determining the solution. In particular,
by the uniqueness of toric extremal Kähler metrics [34], we might expect a rational Delzant
polytope to select an essentially unique adapted factorization structure for the solution. This
is indeed what happens for m = 2.

The fruit of this analysis is Theorem 1, which establishes in an explicit way, and for
arbitrary quadrilaterals, the conjecture [26] that the existence of an extremal Kähler metric
is equivalent to relative K-polystability with respect to toric degenerations. Indeed, we show
that temperate quadrilaterals admit a factorization structure which relates the polystability
condition directly to the positivity of the quarticsA andB appearing in the expression for the
extremal ambitoric metrics. This explicitly computable criterion yields new examples both of
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1078 V. APOSTOLOV, D.M.J. CALDERBANK AND P. GAUDUCHON

extremal toric 4-orbifolds, and of (unstable) toric 4-orbifolds admitting no extremal Kähler
metric.

In our discussion of examples, we return to another motivation for ambitoric geome-
try: Kähler metrics which are conformally Einstein. Since the work of D. Page [48] and
E. Calabi [16], such metrics have been an important source of examples, with contribu-
tions by L. Bérard-Bergery [10], R. Bryant [14], A. Derdzinski [23], G. Maschler [24], and
C. LeBrun [38, 39, 40] among others. In part I of this work [6], we classified locally 4-dimen-
sional Einstein metrics with degenerate half-Weyl tensors using Bach-flat ambitoric struc-
tures (which are extremal and locally conformally Einstein). Here we show that Bach-flat
ambitoric 4-orbifolds are abundant, and include examples which are globally conformally
Einstein, as well as examples with an open set where the Kähler metric is conformal to a
smooth, complete (conformally compact) Einstein metric on a covering. These extend in
particular the examples of R. Bryant [14].

The organization is as follows. In Section 1 we review the theory of compact toric Kähler
orbifolds [2, 22, 26, 35, 45], but adopting an affine invariant viewpoint. We begin our analysis
of quadrilaterals in Section 2 where affine invariance provides an effective tool to compute,
for example, the extremal vector field, without extensive calculus. By considering the affine
structure as a variable, we similarly use projective invariance to simplify our later discussion
of factorization structures. This approach is closely related to 5-dimensional contact, CR and
Sasakian geometry, cf. [41], which we discuss in Appendix C. The main results are estab-
lished in Sections 3–4 which concern the compactification of ambitoric metrics in general,
in terms of factorization structures, and extremal ambitoric metrics in particular in terms of
adapted factorization structures. Examples, including the new Einstein metrics, are given in
Section 5. In Appendix B, we study the set of inward normals for which a given quadrilateral
is K-semistable but not stable, and show that any quadrilateral which is not a parallelogram
can be made K-unstable by suitably chosen normals.

The first author was supported by an NSERC Discovery Grant. He is grateful to the
Institute of Mathematics and Informatics of the Bulgarian Academy of Science where a
part of this project was realized. The second author was (partly) supported by an EPSRC
Advanced Research Fellowship. The authors are grateful to Liana David and the Centro
Georgi, Pisa, for an opportunity to meet in 2006, and to the Simons Institute, Stony Brook,
for a workshop invitation in 2011. They also thank Miguel Abreu, Hugues Auvray, Olivier
Biquard, Claude LeBrun, Éveline Legendre, Gabor Székelyhidi and Christina Tønnessen-
Friedman for helpful discussions and comments.

1. Toric orbifolds, Kähler metrics and polystability

We review the theory of toric Kähler 2m-orbifolds M , primarily adopting the symplectic
point of view, as in [2, 22, 35, 36, 45]. We denote the m-torus acting on M by T = t/2πΛ,
where t is its (Abelian) Lie algebra, and Λ its lattice of circle subgroups. Our applications
have m = 2 and a geometry which may not be compatible with the lattice or origin in t∗.
Hence we use basis-independent and affine-invariant language.
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AMBITORIC GEOMETRY II 1079

1.1. Toric symplectic orbifolds

Let h be an (m+1)-dimensional real vector space, and ι : R→ h a 1-dimensional subspace
with quotient t. Dually, h∗ has t∗ as a subspace with quotient ι> : h∗ → R. The inverse image
of 1 ∈ R under ι> is an affine subspace Ξ of h∗, modeled on t∗. The space of affine functions f
on Ξ is canonically isomorphic to h, where the constant functions are ι(c), c ∈ R, and the
projection of f to t, viewed as a linear form on t∗, is its derivative df (at every point of Ξ).

D 1. – Let L1, . . . , Ln be affine functions on Ξ such that the convex polytope

∆ := {ξ ∈ Ξ : Lj(ξ) ≥ 0, j = 1, . . . , n}

is compact and nonempty.(1) Then (∆, L1, . . . , Ln) is a rational Delzant polytope in Ξ iff

(i) ∀ j ∈ {1, . . . , n} the normals uj := dLj ∈ t belong to the lattice Λ ⊂ t and

(ii) ∀ξ ∈ ∆, Nξ := {uj ∈ t : Lj(ξ) = 0} is linearly independent in t.

The term “rational” refers to the fact that the normals uj span an m-dimensional vector
space overQ. If the affine normalsLj span an (m+1)-dimensional vector space overQ, we say
the polytope is strongly rational. The facesF of ∆ are intersections of the facets (codimension
one faces) Fj = ∆ ∩ {ξ ∈ Ξ : Lj(ξ) = 0} which have inward normals uj . A rational
Delzant polytope is simple or m-valent: m facets and m edges meet at each vertex. The
primitive inward normals, which are uniquely determined by ∆ and Λ, have the form uj/mj

for some positive integer labelling mj of the facets Fj , so rational Delzant polytopes are
also called labelled polytopes [45]. It is convenient to encode the labelling in the row vector
L = (L1, . . . , Ln) ∈ Hom(Rn, h) ∼= h ⊗ Rn∗ of affine normals, and denote the normals
by dL = (u1, . . . , un) ∈ Hom(Rn, t).

Compact toric symplectic 2m-orbifolds are classified (up to equivariant symplecto-
morphism) by rational Delzant polytopes (up to lattice preserving affine equivalences) [22,
45]. In one direction, if (M,ω) is a toric symplectic orbifold under the action of T, with
Lie algebra t ⊆ C∞(M,TM), we let h ⊆ C∞(M,R) be the space of Hamiltonian gen-
erators f (with gradωf ∈ t) and µ : M → h∗ be the natural momentum map (with
〈µ(x), f〉 = f(x)); then ∆ is the image of µ, and (spanRuj ∩ Λ)/spanZuj

∼= Z/mjZ is
the local uniformizing group of every point in µ−1(F 0

j ). (For any face F , we denote by F 0

its interior.) Conversely, (∆,L) determines (M,ω) as a symplectic quotient of Cn by an
(n − m)-dimensional subgroup G of the standard n-torus (S1)n = Rn/2πZn: G is the
kernel of the map (S1)n → T = t/2πΛ induced by the natural map dL : Rn → t (with kernel
the Lie algebra g of G); the composite of L> : h∗ → Rn∗ with the transpose Rn∗ → g∗ of
the inclusion therefore vanishes on t∗ and hence induces a map λ : R = h∗/t∗ → g∗—the
momentum level for the symplectic quotient of Cn by G is then λ(1).

R 1. – Affine functions Lj defining a rational Delzant polytope ∆ ⊂ Ξ do so
with respect to any lattice containing the normals uj . There is clearly a smallest such lattice
Λ := spanZ{uj : j = 1, . . . , n}, and any other such lattice Λ′ contains Λ as a sublattice
(of finite index). The torus T′ = t/2πΛ′ is the quotient of T = t/2πΛ by a finite Abelian
group Γ ∼= Λ′/Λ, and the corresponding toric symplectic orbifolds M and M ′ (under the

(1) We implicitly assume each Lj vanishes somewhere on ∆, otherwise it may be discarded.
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tori T and T′) are related by a regular orbifold covering [55]: M ′ = M/Γ. In fact M is a
simply connected orbifold in the sense of W. Thurston [55] and is the universal orbifold cover
of M ′ [45]. We therefore say that the rational Delzant polytope is simply connected. Simply
connected rational Delzant polytopes are entirely determined by the affine normals L.

1.2. Toric Kähler orbifolds

We next consider Kähler metrics compatible with a toric symplectic structure. On the
unionM0 := µ−1(∆0) of the generic orbits, such metrics have an explicit general expression
due to V. Guillemin [35, 36]. In this description, the momentum map µ : M0 → Ξ is
supplemented by angular coordinates t : M → t/2πΛ such that the kernel of dt is orthogonal
to the torus orbits. These action-angle coordinates (µ, t) identify each tangent space to M0

with t ⊕ t∗, and the symplectic form is ω = 〈dµ ∧ dt〉, where 〈·〉 denotes contraction of t
and t∗. Hence invariant ω-compatible Kähler metrics on M0 have the form

(1) g = 〈dµ,G, dµ〉+ 〈dt,H, dt〉,

where G is a positive definite S2t-valued function of µ, H is its pointwise inverse in S2t∗

(at each point, G and H define mutually inverse linear maps t∗ → t and t → t∗) and
〈·, ·, ·〉 denotes the pointwise contraction t∗ × S2t × t∗ → R or the dual contraction. The
corresponding almost complex structure is defined by

(2) Jdt = −〈G, dµ〉,

and J is integrable if and only if G is the Hessian of a function [35].

Necessary and sufficient conditions for H to come from a globally defined metric on M
are obtained in [2, 7, 27]. Here we use the first order boundary conditions given in [7, §1]. In
order to state them, we denote by tF ⊆ t (for any face F ⊆ ∆) the vector subspace spanned
by the inward normals uj ∈ t to facets containing F . Thus the tangent plane to points in F 0

is the annihilator t0F ∼= (t/tF )∗ of tF in t∗.

P 1. – Let (M,ω) be a compact toric symplectic 2m-manifold or orbifold with
natural momentum map µ : M → ∆ ⊂ Ξ ⊂ h∗, and H be a positive definite S2t∗-valued
function on ∆0. Then H defines a T-invariant, ω-compatible almost Kähler metric g via (1) if
and only if it satisfies the following conditions:

– [smoothness] H is the restriction to ∆0 of a smooth S2t∗-valued function on ∆;
– [boundary values] for any point ξ on the facet Fj ⊂ ∆ with inward normal uj ,

(3) Hξ(uj , ·) = 0 and (dH)ξ(uj , uj) = 2uj ,

where the differential dH is viewed as a smooth S2t∗ ⊗ t-valued function on ∆;
– [positivity] for any point ξ in interior of a face F ⊆ ∆, Hξ(·, ·) is positive definite when

viewed as a smooth function with values in S2(t/tF )∗.
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AMBITORIC GEOMETRY II 1081

1.3. The extremal affine function and K-polystability

Let (M,J, g, ω) be a compact Kähler orbifold invariant under the action of a maximal
torusG in the reduced automorphism groupH0(M,J) of (M,J). (By a result of Calabi [16],
any extremal Kähler metric is invariant under such a G.) Following [32], the extremal poten-
tial is the L2-projection of the scalar curvature sg onto the space of Killing potentials (with
respect toω) of elements of the Lie algebra g and the extremal vector field is its symplectic gra-
dient. A. Futaki and T. Mabuchi [32] show that the extremal vector field is independent of the
choice of aG-invariant Kähler metric within the given Kähler class [ω] on (M,J). Since, the
extremal vector field is central,G can also be taken to be a maximal compact subgroup. Fur-
thermore, by adopting the symplectic viewpoint [31, 25, 43], the extremal potential becomes
a natural deformation invariant of the complex structure, for fixed (M,ω,G).

For toric symplectic orbifolds (M,ω,T), the extremal potential is an element ζ of h, called
the extremal affine function [8, 34, 43], and is defined (in the notation of Section 1.1) by the
following vector equation in h∗:∫

ξ∈∆

〈ξ, ζ〉ξ dλ =

∫
ξ∈∆

sg(ξ)ξ dλ = 2

∫
ξ∈∂∆

ξ dν

where dλ is a (constant) volume form on Ξ, the (m − 1)-form dν satisfies uj ∧ dν = −dλ

on the facet Fj of ∂∆ with normal uj , and sg is the scalar curvature of a compatible Kähler
metric viewed as a function on ∆. The combinatorial boundary integral for the first moment
of sg is an application of the Abreu formula [1]

(4) sg = −div δH := −
∑
r,s

∂2Hrs

∂ξr∂ξs

for the scalar curvature of the compatible metric defined by H, together with the divergence
theorem; the latter calculation uses only the boundary conditions of Proposition 1, and not
the positive definiteness of H on the faces of ∆, nor the fact that H is the inverse hessian of
a symplectic potential. We deduce that if H satisfies the boundary conditions and −div δH

is an affine function, then this is the extremal affine function; such an H is called a formal
extremal solution.

The extremal affine function is important not only as the scalar curvature of a compatible
extremal Kähler metric, but also because it may be used to define a relative Futaki invariant
and hence a combinatorial K-polystability criterion [26, 30, 53, 62].

D 2. – The relative Futaki invariant F ∆,L of a compact toric symplectic
2m-orbifold (M,ω,T) with rational Delzant polytope (∆,L) is defined by

(5) F ∆,L(f) :=

∫
ξ∈∂∆

f(ξ)dν − 1

2

∫
ξ∈∆

〈ξ, ζ〉f(ξ)dλ

for any continuous function f on ∆. Note that F ∆,L vanishes on affine functions f .

Note that if H is a formal extremal solution, we may substitute ζ = −div δH in this
formula and integrate by parts to obtain

(6) F ∆,L(f) =
1

2

∫
ξ∈∆

tr(H Hess f)dλ.
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1082 V. APOSTOLOV, D.M.J. CALDERBANK AND P. GAUDUCHON

Let PL(∆) be the space of continuous piecewise-linear (PL) convex functions f on ∆ (thus
f is the maximum of a finite collection of affine linear functions). Although (6) involves two
derivatives of f , it may be used in a distributional sense to compute F ∆,L(f) for f ∈ PL(∆).
In particular (cf. [42]) let f be a simple convex PL function with crease on the line {ξ ∈ Ξ :

〈ξ, uf 〉 = 0} (with uf normalized to be the change in df along the line) and let Sf be the
intersection of this line with ∆. Then

(7) F ∆,L(f) =

∫
Sf

H(uf , uf )dνf ,

where νf is the positive measure on Sf such that uf ∧ dνf = dλ.

D 3. – (M,ω,T) is said to be (analytically, relatively) K-polystable (with respect
to toric degenerations) provided that F ∆,L(f) ≥ 0 for all f ∈ PL(∆), with equality iff f is
an affine function.

The main conjecture of [26] is that a compact toric orbifold (M,ω,T) admits a compatible
extremal Kähler metric if and only if it is K-polystable in this toric sense. The forward
implication has been established by Zhou and Zhu [61]. Conversely, in [30], Donaldson shows
that for polygons with zero extremal vector field, this toric K-polystability criterion implies
existence of a CSC metric. The general extremal case remains open, which motivates its study
in the ambitoric context.

2. Simplices and quadrilaterals

Rational Delzant polytopes may be considered from a projective viewpoint, not just an
affine one. To fix notation, for a real vector space V , we denote by P(V ) = V ×/R× the
nonzero vectors in V up to scale: P(V ) is isomorphic to the set of 1-dimensional subspaces
of V , where the equivalence class [v] ∈ P(V ) of a nonzero vector v ∈ V is mapped
to <v> ⊆ V , its span.

Given a rational Delzant polytope (∆,L), where ∆ ⊂ Ξ ⊂ h∗ and Ξ is an affine
subspace of h∗ modeled on t∗ ⊆ h∗, observe that Ξ is an affine chart for P(h∗). Hence it
is natural to identify ∆ with its image in P(h∗), and also with the convex cone in h∗ of its
nonnegative multiples. Dually, the space ∆∗ ⊆ h of affine functions which are nonnegative
on ∆ is a convex cone,(2) given by the nonnegative linear combinations of the affine normals
L1, . . . , Ln, which we may identify with its image in P(h).

The incarnations of ∆ determine one another uniquely, but depend upon the choice of Ξ,
or equivalently, the inclusion ι : R→ h or the affine structure ι(1) ∈ h; note that ι(1) is in the
interior of ∆∗.

(2) In fact ∆∗ is a strictly convex cone: it contains no nontrivial linear subspace.
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2.1. Rational Delzant simplices

The case of m-simplices is well understood, but we summarize it briefly, both as a warm-
up, and because we shall use the case of triangles (m = 2) as a limiting case of quadrilat-
erals. All simplices are affine equivalent, so simply connected rational Delzant simplices are
parametrized by the choices of scale for the normals. Concretely let ∆ ⊂ Ξ be them-simplex
on which `j(ξ) ≥ 0 for affine functions `0, `1, . . . , `m with `0 + `1 + · · · + `m = 1 on Ξ,
so that each `j = 1 at the vertex vj opposite to the facet Fj on which it vanishes. Then for
any r0, r1, . . . , rm ∈ R+ with rational ratios, affine normals Lj := `j/rj define a rational
Delzant simplex (∆,L) with L = (L0, L1, . . . , Lm) and

∑m
j=0 rjLj = 1.

The corresponding symplectic orbifolds are weighted projective spaces: the vector
(r0, r1, . . . , rm) spans the kernel of the map dL : Rm+1 → t sending (x0, x1, . . . , xm) to∑m
j=0 xjuj (where uj = dLj), and some multiple (w0, w1, . . . , wm) of (r0, r1, . . . , rm) is a

list of positive integers with no common multiple; the rational Delzant construction there-
fore yields the weighted projective space CPmw0,...,wm

as the symplectic quotient of Cm+1 by
the diagonal action of S1 with weights w0, . . . , wm. Each weighted projective space has a
unique Kähler class (up to scale), and this class contains a unique extremal Kähler metric
(up to homothety and biholomorphism); moreover, this extremal Kähler metric is Bochner-
flat [14]. In four dimensions, a Kähler metric is Bochner-flat iff it is selfdual (W− = 0) which
is equivalent to the existence of many (local) opposite complex structures, although none of
these are globally defined on a weighted projective plane.

The toric geometry of weighted projective spaces (and their quotients) has been worked
out in detail by M. Abreu [2] in specific coordinates. Here we give an affine invariant deriva-
tion, as we shall use similar ideas to simplify computation in the more complicated case of
quadrilaterals.

L 1. – Let ∆ be an m-simplex in Ξ as above, let λ be a translation invariant measure
on Ξ, and A1, A2 : Ξ → R be affine functions whose values on the vertices v0, v1, . . . , vm of ∆

are given by a1, a2 ∈ Rm+1. Then∫
∆

A1A2 dλ = B(a1, a2)λ(∆)

where B is the symmetric bilinear form on Rm+1 with Bjk =
1+δjk

(m+1)(m+2) .

Proof. – Since all m-simplices are affine equivalent, and any affine function is uniquely
determined by its values on the m+ 1 vertices of a simplex, the integral must have the given
form for some symmetric bilinear form B. The entries of B must be permutation invariant,
so Bjk = a + bδjk. Substituting A1 = A2 = 1, we obtain (m + 1)2a + (m + 1)b = 1.
IfA1 = A2 = `0 (i.e., equal to 1 at v0 and 0 at v1, . . . , vm), then we observe that for 0 ≤ x ≤ 1,
λ({p ∈ ∆ : `0(p)2 ≥ x}) = λ({p ∈ ∆ : 1 − `0(p) ≤ 1 −

√
x}) = λ

(
(1 −

√
x)∆

)
=

(1 −
√
x)mλ(∆), and integrating over x, the integral evaluates to 2λ(∆)/(m + 1)(m + 2).

Thus (m+ 1)(m+ 2)(a+ b) = 2 and a = b = 1/(m+ 1)(m+ 2).

The measure ν, with uj ∧ dν = −dλ on the facet Fj where `j = 0, satisfies
ν(Fj) = mrjλ(∆), since Lj = 1/rj at the opposite vertex vj . Consequently, for any
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affine function A, ∫
Fj

A dν = rjλ(∆)
∑
k 6=j

A(vk).

Since (B−1)jk = (m + 1)
(
(m + 2)δjk − 1

)
, the extremal affine function ζ of (∆,L) is∑m

j=0 ζjrj where

ζj =

m∑
k=0

1
2 (m+ 1)(2− (m+ 2)δjk)`k.

Note that ζ is linear in the parameters rj : this is the reason for using such an inverse scale to
parametrize the normals. Form = 2, ζ/3 = (−`0+`1+`2)r0+(`0−`1+`2)r1+(`0+`1−`2)r2,
which is positive on the interior of the medial triangle (with vertices at the midpoints of the
edges of ∆). This positivity has an analogue for convex quadrilaterals, to which we now turn.

2.2. Rational Delzant quadrilaterals

Quadrilaterals are not all affine equivalent, but they are projectively equivalent since the
vertices (or the projective normals) give four points in general position in P(h∗) (or P(h)).
Consequently, quadrilaterals can be parametrized conveniently by varying the affine struc-
ture, an approach adopted by E. Legendre in [42, 41] and closely related to 5-dimensional
toric Sasakian geometry (see Appendix C). Following Legendre, let ∆ = {[w, x, y] ∈ P(R3∗) :

w ≥ |x|, w ≥ |y|} be the quadrilateral with vertices [1,±1,±1]. In the affine subspace
{(w, x, y) ∈ R3∗ : w = 1} defined by (1, 0, 0) ∈ R3, ∆ is a square. More generally, affine
subspaces meeting ∆ in a compact convex quadrilateral are parametrized by vectors in the
interior of the dual cone ∆∗, spanned by (1,±1, 0) and (1, 0,±1). Any such vector is a
positive multiple of

(
1, 1

2 (ε + η), 1
2 (ε − η)

)
for some ε, η ∈ R with |ε| < 1 and |η| < 1. The

corresponding affine subspace is {(w, x, y) : 2w+ (ε+ η)x+ (ε− η)y = 2} and the vertices
of ∆ in this subspace are

v00 =
(1,−1,−1)

1− ε
, v0∞ =

(1,−1, 1)

1− η
, v∞0 =

(1, 1,−1)

1 + η
, v∞∞ =

(1, 1, 1)

1 + ε

with v00 opposite to v∞∞ and v0∞ opposite to v∞0. An affine function A is uniquely
determined by its values at the vertices, but these values are constrained by the equality of
two expressions for (twice) the value of A at the intersection of the diagonals:

(8) (1− ε)A(v00) + (1 + ε)A(v∞∞) = (1− η)A(v0∞) + (1 + η)A(v∞0).

The affine functions obtained by restricting w + x, w − x, w + y and w − y to this
affine subspace will be denoted `′α,0, `′α,∞, `′β,0 and `′β,∞ respectively. They clearly satisfy
`′α,0 + `′α,∞ = `′β,0 + `′β,∞. We also set

`α,0 = 1
4 (1 + ε)(1 + η)`′α,0, `α,∞ = 1

4 (1− ε)(1− η)`′α,∞,

`β,0 = 1
4 (1 + ε)(1− η)`′β,0, `β,∞ = 1

4 (1− ε)(1 + η)`′β,∞,

which satisfy `α,0 + `α,∞ + `β,0 + `β,∞ = 1, and whose nonzero values on vertices are

`α,0(v∞0) = `β,0(v0∞) = 1
2 (1 + ε), `α,0(v∞∞) = `β,∞(v00) = 1

2 (1 + η)

`α,∞(v00) = `β,0(v∞∞) = 1
2 (1− η) `α,∞(v0∞) = `β,∞(v∞0) = 1

2 (1− ε).
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These affine functions provide an affine invariant description of a family of quadrilaterals
∆ε,η with (ε, η) ∈ (−1, 1) × (−1, 1), and we can drop the (w, x, y) coordinate system. The
parameters ε, η can be interpreted geometrically in terms of the diagonals, which bisect each
other in the ratios 1−ε : 1+ε and 1−η : 1+η. The rescaled affine normalsLα,k := `α,k/rα,k
and Lβ,k := `β,k/rβ,k, where rα,k, rβ,k (k ∈ {0,∞}) are positive real numbers, define a
rational Delzant quadrilateral (∆,L) in P(h∗) (with an ordering of its vertices and the affine
normals L indexed Lβ,0, Lα,0, Lβ,∞, Lα,∞) provided that the normals uα,k = dLα,k and
uβ,k = dLβ,k span a lattice in t.

The following diagram shows the projection of the quadrilateral onto the (x, y) plane.
This normal form is orthodiagonal and so its Varignon parallelogram (whose vertices are
the midpoints of the sides of the quadrilateral) is a rectangle. Also shown are the midpoints
vε, vη of the diagonals and the centroid v0.

•

•

v00 =
(−1,−1)
1−ε

v∞∞ = (1,1)
1+ε

•

•

v0∞ = (−1,1)
1−η

v∞0 =
(1,−1)
1+η

• (0, 0)

•vε =
−ε(1,1)
1−ε2

•vη = η(−1,1)
1−η2

•v0 =
vε+vη

2

Fβ,0

Fα,0

Fβ,∞

Fα,∞

F 1. A rational Delzant quadrilateral with its diagonals and Newton line.

When ε = η = 0, ∆ is a parallelogram (these are all affine equivalent); the associated
simply connected symplectic 4-orbifolds are products of weighted projective lines (including
CP 1 × CP 1 when rα,0 = rα,∞ and rβ,0 = rβ,∞). If η = ±ε, ∆ is a trapezium(3);
the associated simply connected symplectic 4-orbifolds are orbifold weighted projective line
bundles over a weighted projective line (which include the smooth Hirzebruch surfaces
P( O ⊕ O(k))→ CP 1).

The extremal affine function ζ may be written ζ = c(ε, η)
∑
k=0,∞(ζα,krα,k + ζβ,krβ,k)

where the normalization constant c(ε, η) will be chosen shortly. By symmetry, it suffices to

(3) I.e., a quadrilateral with at least two parallel sides, also known as a trapezoid.
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compute ζα,0, noting that its integral over ∆ against any affine function A depends only on
the value of A at the midpoint of the edge v00v0∞.

L 2. – ζα,0 satisfies the following equations:

ζα,0(v0∞) + ζα,0(v∞0) + (1− ε)ζα,0(v∞∞) = 0(9)

ζα,0(v00) + ζα,0(v∞∞) + (1− η)ζα,0(v∞0) = 0.(10)

Proof. – Let Aε be an affine function which is constant on the diagonal v∞0v0∞ and
vanishes at the midpoint of v00v0∞. Up to scale, we may take Aε(v∞0) = Aε(v0∞) = 1 + ε,
Aε(v00) = −(1+ε), andAε(v∞∞) = 3−ε (which verifies (8)). The integral of ζα,0Aε over ∆

(which vanishes) may be computed using Lemma 1 by splitting ∆ into two triangles along
the diagonal v∞0v0∞. Up to a positive constant, the result is

(1− ε)(3 + ε)
(
ζα,0(v0∞) + ζα,0(v∞0)

)
+ 4(1− ε)ζα,0(v∞∞) + (1 + ε)2ζα,0(v0∞)

which readily yields (9); (10) follows similarly, using the diagonal v00v∞∞.

It follows that ζα,0 is a constant multiple of the affine function(
2 + (1− ε)(1− η)

)
(`α,∞ − `α,0) +

(
2− (1− ε)(1− η)

)
(`β,0 + `β,∞)

= 2(1− 2`α,0) + (1− ε)(1− η)(2`α,∞ − 1).

With some further work we can compute the constant: if we set c(ε, η) = 1, it equals
24/
(
4− (1− ε2)(1− η2)

)
. We can instead take this constant as the definition of c(ε, η) (by

symmetry, it is the same for all four components of ζ). For ζα,0, we then have

ζα,0(v00) = 2− η(1− ε)(1− η) ζα,0(v∞∞) = −2 + (1 + ε)(1− η)

ζα,0(v0∞) = 2− ε(1− ε)(1− η) ζα,0(v∞0) = −2 + (1− ε)(1 + η)

2ζα,0(vε) = (1− η)(2− (1− ε)(1 + η)) 2ζα,0(vη) = (1− ε)(2− (1 + ε)(1− η))

(11) 4ζα,0(v0) = (1 + ε2)(1− η) + (1 + η2)(1− ε)

where vε = 1
2 (v00 + v∞∞) and vη = 1

2 (v0∞ + v∞0) are the midpoints of the diagonals, and
v0 = 1

2 (vε + vη) is the centroid of ∆.

L 3. – The extremal affine function ζ is positive at the centroid of ∆, and is also
positive at the midpoints of the diagonals if (1 + |ε|)(1 + |η|) < 2. In general, the value of ζ at
the midpoint of a diagonal is a positive multiple of the Futaki invariant of a simple PL convex
function with crease along that diagonal.

Proof. – By (11) and analogous formulae for the other components, ζ is positive at the
centroid v0, since |ε|, |η| < 1. Similarly, it is positive at the midpoints of the diagonals
for (1 + |ε|)(1 + |η|) < 2. We now compute the Futaki invariant of a simple PL function
H with a crease along the diagonal v00v∞∞ through vε. By symmetry, it suffices to compute
the rα,0 component ζα,0. Modulo an affine function (on which the Futaki invariant vanishes),
we may assume f vanishes on Fα,0, so that we only need to compute the integral of −fζα,0
over the triangle T = v00v∞∞v∞0, on which we may suppose f = `′α,0 − `′β,0, i.e.,
f(v∞0) = 2/(1 + η). By Lemma 1, the integral evaluates to a universal constant positive
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multiple of −λ(T )f(v∞0)(ζα,0(v00) + ζα,0(v∞∞) + 2ζα,0(v∞0)). By Lemma 2, this is a
universal constant positive multiple of

−
(
ζα,0(v00) + ζα,0(v∞∞)

)(
1− 2/(1− η)

)
(1 + ε)(1− ε)(1 + η)2

=
2ζα,0(vε)

(1 + ε)(1− ε)(1 + η)(1− η)
.

Hence the Futaki invariant is a positive multiple of ζ(vε), as required. The argument for the
other diagonal/midpoint is similar.

We conclude that if a rational Delzant quadrilateral is K-polystable, then the extremal
affine function must be positive at the diagonal midpoints.

D 4. – Let (∆,L) be a rational Delzant quadrilateral with vertices v00,
v∞∞, v0∞, v∞0 so that v00 and v∞∞ are opposite. Then ∆ is said to be equipoised if
ζ(v00)+ζ(v∞∞) = ζ(v0∞)+ζ(v∞0), and temperate if ζ(v00)+ζ(v∞∞) and ζ(v0∞)+ζ(v∞0)

are both positive.

The condition to be equipoised was introduced in [42], and means equivalently that the
extremal affine function has equal values on the midpoints vε and vη of the diagonals of ∆.
This is automatic if ∆ is a parallelogram (when vε = vη)—otherwise it means that the
extremal affine function is constant (hence positive by Lemma 3) on the Newton line vεvη.
The condition to be temperate is the much weaker condition that ζ is positive on the line
segment between vε and vη.

3. Orbifold compactifications of ambitoric structures

3.1. Ambitoric structures and their local classification

In [6], we studied the following 4-dimensional geometric structure.

D 5. – An ambikähler structure on a real 4-manifold or orbifoldM consists of
a pair of Kähler metrics (g−, J−, ω−) and (g+, J+, ω+) such that

• g− and g+ induce the same conformal structure (i.e., g− = f2g+ for a positive function f
on M );

• J− and J+ have opposite orientations (equivalently the volume elements 1
2ω− ∧ ω− and

1
2ω+ ∧ ω+ on M have opposite signs).

The structure is said to be ambitoric if in addition

• there is a 2-dimensional subspace t of vector fields onM , linearly independent on a dense
open set, whose elements are Hamiltonian and Poisson-commuting Killing vector fields
with respect to both (g−, ω−) and (g+, ω+).

Thus M has a pair of conformally equivalent but oppositely oriented Kähler metrics,
invariant under a local 2-torus action, and both locally toric with respect to that action.

E. – There are three classes of examples of ambitoric structures.

(i) Toric Kähler products. Let (Σ1, g1, J1, ω1) and (Σ2, g2, J2, ω2) be (locally) toric
2-dimensional Kähler manifolds or orbifolds, with Hamiltonian Killing vector fields K1

and K2. Then M = Σ1 × Σ2 is ambitoric, with g± = g1 ⊕ g2, J± = J1 ⊕ (±J2),
ω± = ω1 ⊕ (±ω2) and t spanned by K1 and K2.
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(ii) Toric Calabi geometries. Let (Σ, g, J, ω) be a 2-dimensional Kähler manifold or orbi-
fold with Hamiltonian Killing vector field K, let π : P → Σ be a circle bundle with connec-
tion θ and curvature dθ = π∗ω, and let A be a positive function on an open subset U of R+.
Then M = P × U is ambitoric, with

g± = z±1
(
g +

(
z−1dz

)2
A(z)

+A(z)θ2
)
,

ω± = z±1
(
ω ± z−1dz ∧ θ

)
, J±(z−1dz) = ±A(z)θ,

and the local torus action spanned by K and the generator of the circle action. Here
z : M → R+ is the projection onto U ⊆ R+.

(iii) Regular ambitoric structures. Let q(z) = q0z
2 + 2q1z + q2 be a quadratic polynomial

and letM be a 4-dimensional manifold or orbifold with real-valued functions (x, y, τ0, τ1, τ2)

such that x > y, 2q1τ1 = q0τ2 + q2τ0, and their exterior derivatives span each cotangent
space. Let t be the 2-dimensional space of vector fields K on M with dx(K) = 0 = dy(K)

and dτj(K) constant, and let A and B be positive functions on open neighborhoods of the
images of x and y in R, on whose product q(x, y) := q0xy+ q1(x+ y) + q2 is positive. Then
M is ambitoric with

g± =

(
x− y
q(x, y)

)±1(
dx2

A(x)
+

dy2

B(y)
(12)

+A(x)
(y2dτ0 + 2ydτ1 + dτ2

(x− y)q(x, y)

)2

+B(y)
(x2dτ0 + 2xdτ1 + dτ2

(x− y)q(x, y)

)2
)
,

ω± =

(
x− y
q(x, y)

)±1
dx ∧ (y2dτ0 + 2ydτ1 + dτ2)± dy ∧ (x2dτ0 + 2xdτ1 + dτ2)

(x− y)q(x, y)
,(13)

J±dx = A(x)
y2dτ0 + 2ydτ1 + dτ2

(x− y)q(x, y)
, J±dy = ±B(y)

x2dτ0 + 2xdτ1 + dτ2
(x− y)q(x, y)

.(14)

If (g±, J±, ω±, t) is a regular ambitoric structure for which the quadratic form q has vanish-
ing discriminant, then (g+, J+, ω+) is orthotoric in the sense of [4]: see [6].

It is easy to check that these explicit geometries are ambitoric (cf. [4, 6]).

T ([6]). – Let (M, g±, J±, ω±, t) be an ambitoric 4-manifold or orbifold. Then any
point in an open dense subset ofM has a neighborhood on which (g±, J±, ω±, t) is either a toric
Kähler product, a toric Calabi geometry, or a regular ambitoric structure.

3.2. Invariant geometry in momentum coordinates

In order to compactify ambitoric structures using the approach of Section 1.2, we need
to describe the metrics in momentum coordinates. For toric Kähler products, toric Calabi
geometries and orthotoric metrics, this has been done systematically by E. Legendre [42] in
her resolution of existence problem for extremal metrics over equipoised rational Delzant
quadrilaterals. Hence we concentrate on the general regular ambitoric case.

We shall make essential use of the underlying geometry of regular ambitoric structures.
For this we recall (from [6]) that there is a natural PSL(2,R) gauge freedom in regular
ambitoric structures, which may be described in an invariant geometric way by viewing the
codomain of the x and y coordinates as a projective line P(W ), where W is a 2-dimensional
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real vector space on which we fix a (nonzero) area form κ. Note that the tensor prod-
uct O(1)⊗W of the dual tautological line bundle O(1) and the trivial bundle P(W ) × W

has a tautological section which we use to embed P(W ) into the total space. We use bold
font for the maps x,y : M → P(W ) ⊆ O(1) ⊗W and x, y : M → R for their expression
in an affine coordinate on P(W ); in the affine trivialization of O(1), x,y are homogeneous
coordinates corresponding to the inhomogeneous coordinates x, y.

The quadratic form q in (12)–(14) is naturally an element of S2W ∗ (i.e., an algebraic
section of O(2) → P(W )) and the Lie algebra t of the torus is the subspace S2

0,qW
∗

orthogonal to q with respect to the inner product κ ⊗ κ on W ∗ ⊗ W ∗ (which restricts to
the polarization of the discriminant on S2W ∗). Note that S2W ∗ ∼= sl(W ) has a Lie algebra
structure (the Poisson bracket, or Wronskian) and the Poisson bracket with q induces an
isomorphism adq : S2W ∗/<q> → S2

0,qW
∗. Following [6], we distinguish these isomorphs

of t by writing τ = adq(t) where τ and t take values in S2
0,qW

∗ and S2W ∗/<q> respectively
(modulo corresponding lattices). For z ∈ W , we denote by z[ = κ(z, ·) the corresponding
element of W ∗, using ] for the inverse isomorphism.

D 6. – A regular ambitoric structure is said to be of elliptic, parabolic or hyper-
bolic type if q has (respectively) zero, one or two distinct real roots (on P(W )).

The spaces h± of Hamiltonian generators of the torus action with respect toω± are readily
computed using (13) (see [6, (24)–(25)]); these yield the affine structures ι±(1) ∈ h± and the
natural momentum maps µ± : M → h±∗ as functions of x and y.

Negative structures. – We identify h− with S2
0,qW

∗ ⊕∧2W ∗ ⊆W ∗ ⊗W ∗ and

(15) µ−(x,y) = −x⊗ y mod q]

κ(x,y)
in h−

∗ ∼= W ⊗W/<q]>,

where q] ∈ S2W is dual to q using κ (i.e., q](z[) = q(z)). Modulo a sign convention, the
affine structure is κ, with 〈µ−, κ〉 = 1. For γ ∈ W (or in P(W ) ⊆ O(1) ⊗ W ), we define
λ(γ) = γ[⊗q(γ, ·) and ρ(γ) = q(γ, ·)⊗γ[, which are decomposables inW ∗⊗W ∗ orthogonal
to q, and hence in h−. The contractions of λ(γ) and ρ(γ) with µ−(x,y) vanish when x = γ

or y = γ respectively. In affine coordinates on P(W ),

λ(γ)(x, y) = (x− γ)q(γ, y), ρ(γ)(x, y) = q(x, γ)(y − γ),

〈µ−(x, y), λ(γ)〉 = − (x− γ)q(y, γ)

x− y
, 〈µ−(x, y), ρ(γ)〉 = − (y − γ)q(x, γ)

x− y
.

Hence λ(γ) and ρ(γ) are dual (i.e., normal) to level surfaces of x and y respectively.

Positive structures. – Here we have h+ ∼= S2W ∗ and

(16) µ+(x,y) = − x� y
q(x,y)

in h+
∗ ∼= W ⊗W/∧2W ∼= S2W.

The affine structure is q, with 〈µ+, q〉 = 1. Decomposables now all have the form σ(γ) =

γ[ ⊗ γ[ ∈ h+ = S2W ∗ ⊆ W ∗ ⊗ W ∗, for some γ ∈ W (or P(W ) ⊆ O(1) ⊗ W ). The
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contraction of σ(γ) with µ+(x,y) vanishes when x = γ or y = γ. In affine coordinates
on P(W ), σ(γ) polarizes the quadratic σ(γ)(z) = (z − γ)2, with

σ(γ)(x, y) = (x− γ)(y − γ), 〈µ+(x, y), σ(γ)〉 = − (x− γ)(y − γ)

q(x, y)
.

Hence σ(γ) are dual (i.e., normal) to level surfaces of x and y.

The constants in h± are elements of <κ> = ∧2W ∗ and <q> ⊆ S2W ∗ respectively, and
the map w 7→ p = adq(w) : S2W ∗ → S2

0,qW
∗ sends a Killing potential with respect to ω+

to a Killing potential for the same vector field with respect to ω−. We denote by K(p) the
corresponding vector field on M .

It is now straightforward to compute the torus metrics H± of g±:

H−µ−(x,y)(p, p̃) = g−(K(p),K(p̃)) =
A(x)p(y)p̃(y) +B(y)p(x)p̃(x)

(x− y)3 q(x, y)
,(17)

H+
µ+(x,y)(p, p̃) = g+(K(p),K(p̃)) =

A(x)p(y)p̃(y) +B(y)p(x)p̃(x)

(x− y) q(x, y)3
,(18)

where p, p̃ in S2
0,qW

∗ ∼= t. Up to a constant multiple (depending on a choice of basis for t∗),
we have

(19) det H−µ−(x,y) =
A(x)B(y)

(x− y)4
, det H+

µ+(x,y) =
A(x)B(y)

q(x, y)4
.

3.3. Orbifold compactifications of ambitoric Kähler surfaces

The existence of an ambitoric structure on a compact 4-orbifold M places strong (and
well-known) constraints on the topology of M .

P 2. – Let M be a compact connected 4-orbifold with an effective action of a
2-torus T, and suppose that (g±, J±, ω±) is an ambitoric structure on M with respect to the
derivative t ↪→ C∞(M,TM) of the T action. Then the images of the momentum maps of the
T action (with respect to ω+ and ω−) are quadrilaterals (i.e., b2(M) = 2). In particular, ifM is
smooth, then for some k ∈ N, (M,J+) and (M,J−) are biholomorphic to a Hirzebruch surface
P( O ⊕ O(k))→ CP 1.

Proof. – IfM is a compact Kähler surface admitting a holomorphic Hamiltonian action
of a 2-torus T andM0 is the union of the generic T-orbits, then the anticanonical bundle has
a holomorphic section with zerosetM \M0. The canonical bundle therefore has no holomor-
phic sections, and so h2,0 = h0,2 = 0. In the ambitoric case, the deRham cohomology group
H2(M) = H1,1(M) with respect to both J+ and J−, hence is represented by a constant
linear combination of the harmonic forms ω+ and ω− (since g+ and g− are conformally
equivalent). It follows that M has second Betti number b2(M) = 2 (b+(M) = b−(M) = 1).
Standard results about compact simply connected 4-orbifolds with 2-torus actions (e.g., [12])
then imply that the rational Delzant polygons have b2(M) + 2 = 4 sides.
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R 2. – Conversely, it is well-known that any Hirzebruch surface M admits com-
patible ambitoric structures: indeed it admits toric extremal metrics of Calabi type in each
Kähler class [16], where the base metric gΣ is the Fubini-Study metric on CP 1—such metrics
are ambitoric by [6, Proposition 9]. Furthermore, any ambikähler structure (g±, ω±) on M
with g+ or g− extremal is of this type: if g+ is extremal, then by uniqueness for extremal Käh-
ler metrics in their Kähler class [20], we may assume g+ is of Calabi type, hence ambitoric
with respect to a negative complex structure J̃−. However, g+ cannot have selfdual Weyl ten-
sor, so J− must equal ±J̃−.

Note that we have assumed above that both Kähler metrics (g±, J±, ω±) are globally
defined on M , not just at points in generic T-orbits. In the following we shall weaken this
assumption slightly.

D 7. – An ambitoric compactification is a compact connected oriented 4-orbi-
fold M with an effective action of a 2-torus T such that on the (dense) union M0 of the
free T-orbits, there is an ambitoric structure (g±, J±, ω±, t) (with t the Lie algebra of T) for
which at least one of the Kähler metrics extends smoothly to a toric Kähler metric on (M,T).
An ambitoric compactification is regular if the ambitoric structure on M0 is regular with
(x, y)-coordinates that are globally defined on M .

Henceforth, we consider only regular ambitoric compactifications (without loss of gen-
erality if we are interested in extremal ambitoric metrics, as Theorem 1 below will show).
We say the ambitoric compactificationM is positive and/or negative if g+ and/or g− extends
smoothly to M . (M can be both positive and negative.)

By Proposition 1, if g± compactifies, the determinant (19) of H± must be smooth on M ,
positive on M0, and vanish on (the pre-image of) the boundaries of ∆±. Hence the image
of M0 under (x, y) must be a domain D0 := (α0, α∞) × (β0, β∞) where A(z) and B(z)

are positive on (α0, α∞) and (β0, β∞) respectively, with zeros at the endpoints; furthermore,
if g+ and/or g− are globally defined, then q(x, y) 6= 0 and/or x − y 6= 0 on the closure
D = [α0, α∞] × [β0, β∞] of D0. If both g+ and g− are globally defined, α0 > β∞ and ∆±
are both quadrilaterals. However, in order to apply limiting arguments, we also need to allow
β∞ = α0 when ∆+ is a simplex and M is a weighted projective plane. In this case g− does
not compactify.

The polytopes ∆± ⊆ h±∗ are the images of D ⊆ P(W ) × P(W ) (using the chosen affine
chart on P(W )) under the formulae (15)–(16) for the momenta µ±(x,y). Since the level
surfaces x = γ, y = γ have normals λ(γ) and ρ(γ) (respectively) in the negative case, and
σ(γ) in the positive case, we can take γ = α0, α∞, β0 and β∞ to determine straightforwardly
that

∆− =
{
ξ ∈ h−∗ : 〈ξ, κ〉 = 1, 〈ξ, λ(α0)〉 ≤ 0, 〈ξ, λ(α∞)〉 ≥ 0, 〈ξ, ρ(β0)〉 ≤ 0, 〈ξ, ρ(β∞)〉 ≥ 0

}
;

∆+ =
{
ξ ∈ h+∗ : 〈ξ, q〉 = 1, 〈ξ, σ(α0)〉 ≤ 0, 〈ξ, σ(α∞)〉 ≥ 0, 〈ξ, σ(β0)〉 ≥ 0, 〈ξ, σ(β∞)〉 ≤ 0

}
.

Normals to ∆± may be written u±α,k = p(αk)/r±α,k and u±β,k = p(βk)/r±β,k for k = 0,∞
and constants r±α,k and r±β,k, where p(γ) = γ[ � q(γ, ·) ∈ t has the affine expression

p(γ)(x, y) = 1
2

(
q(x, γ)(y − γ) + (x− γ)q(y, γ)

)
.
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The boundary conditions H±µ±(αk,y)(u
±
α,k, ·) = 0 = H±µ±(x,βk)(u

±
β,k, ·) (see (3)) are

equivalent to A(αk) = 0 = B(βk), and the remaining boundary conditions simplify to
A′(αk) = 2r±α,k and B′(βk) = ∓2r±β,k, using e.g.,

dH+
µ+(α0,y)(p

(α0), p(α0)) =
A′(α0)(p(α0)(y))2

(α0 − y)q(α0, y)3
dx =

A′(α0)(α0 − y)

q(α0, y)
dx,

which is equal to − 1
2A
′(α0)p(α0). We deduce that rα,k := r+

α,k = r−α,k and rβ,k := r+
β,k =

−r−β,k. The construction of (simply connected) regular ambitoric compactifications is now
completed by ensuring the normals are inward, and satisfy the integrality condition that they
span a lattice.

P 3. – Any compact, simply connected regular ambitoric compactification is
determined by the following data:

– real numbers αk, βk, rα,k, rβ,k (k = 0,∞), subject to the inequalities

β0 < β∞ ≤ α0 < α∞, rα,0 < 0 < rα,∞, rβ,0 > 0 > rβ,∞,

and the integrality condition that, with uα,k = p(αk)/rα,k and uβ,k = p(βk)/rβ,k,

(20) spanZ{uα,0, uα,∞, uβ,0, uβ,∞} ∼= Z2;

– a quadratic q(z) and two smooth functions of one variable, A(z) and B(z), satisfying the
positivity conditions that q(x, y) > 0 onD0 = (α0, α∞)× (β0, β∞),A(z) > 0 on (α0, α∞)

and B(z) > 0 on (β0, β∞), and the boundary conditions that

(21) A(αk) = 0 = B(βk), A′(αk) = −2rα,k, B′(βk) = 2rβ,k (k = 0,∞).

It is positive if q(x, y) > 0 on the closure D of D0, and negative if β∞ < α0.

R 3. – A particular case where (20) holds automatically is when q has rational
coefficients and αk, βk and rα,k, rβ,k are all rational: since the condition (20) is clearly
invariant under an overall multiplication of rα,k and rβ,k by a nonzero real constant, we can
choose this constant such that uα,k and uβ,k have integer coordinates.

R 4. – One can allow some (but not all) of rα,k and rβ,k in Proposition 3 to be
zero. In terms of the theory reviewed in Section 1, this is a limiting case in which some of the
normals uj are infinite, and hence the measure dν on the corresponding facet Fj is zero. On
such an “omitted” facet Fj , the first order boundary conditions of Proposition 1 become

(22) Hξ(ũj , ·) = 0 and (dH)ξ(ũj , ũj) = 0, ∀ξ ∈ Fj ,

where ũj is any nonzero normal vector to Fj . This is the setting of [26, Conjecture 7.2.3] and
[53, §3.1] and yields complete Kähler metrics on the complement of a toric divisor (the inverse
image of the omitted facets) in a compact toric orbifold M .

Proposition 3 extends the characterization of regular ambitoric compactifications by
allowing complete ends of this form. When rα,k or rβ,k is zero, the boundary conditions (21)
apply without change, but in (20), we replace uα,k = p(αk)/rα,k or uβ,k = p(βk)/rβ,k by some
other multiples of p(αk) or p(βk).
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3.4. Factorization structures for triangles and quadrilaterals

In the previous two subsections, we found that in an ambitoric compactification, the
coordinate lines (in particular, the facets) in ∆ ⊆ P(h∗) were dual to (projective) normals
in P(h) which were decomposable with respect to an inclusion of h into a tensor product
of 2-dimensional vector spacesW ∗⊗W ∗. In order to obtain a converse, and determine when
a rational Delzant quadrilateral arises from an ambitoric compactification, we formalize
this phenomenon by introducing (2-dimensional) factorization structures; for a more general
context, see Appendix A.

Throughout this section, we adopt the notation of §2.2 for (∆,L) in P(h∗): the affine nor-
mals will be indexed Lβ,0, Lα,0, Lβ,∞, Lα,∞. We also allow the quadrilateral to degenerate
to a triangle with Lα,0 = Lβ,∞.

D 8. – Let (∆,L) be a rational Delzant quadrilateral or a triangle in P(h∗),
let W1,W2 be 2-dimensional vector spaces, and let S : P(W1) × P(W2) → P(W1 ⊗ W2)

be the Segre embedding, sending ([w1], [w2]) to [w1 ⊗ w2]. A factorization structure is a
rational map Sϕ : P(W1) × P(W2) 99K P(h∗) obtained by composing S with a projection
P(W1 ⊗W2) 99K P(h∗) dual to a linear injection ϕ : h→W ∗1 ⊗W ∗2 .

(i) Sϕ is a Segre factorization structure if the image of ϕ is γ1
0 ⊗ W ∗2 + W ∗1 ⊗ γ2

0 ⊂
W ∗1 ⊗W ∗2 , where γj0 ⊆W ∗j is the annihilator of some γj ∈Wj (for j = 1, 2).

∆

[L    ]

C

C*

[L    ]α,0
β,0

[L    ]α,∞

[L    ]β,∞

F 2. Segre factorization compatible with ∆ ⊆ P(h∗): the induced conic is a
line-pair (singular conic) C passing through the projective normals in P(h); points
in ∆ are parametrized by lines through the two points on the dual conic C∗ ⊆ P(h∗).

(ii) Sϕ is a Veronese factorization structure if there is an isomorphism W1
∼= W2 (so we

drop the index) such that the image of ϕ is S2W ∗ ⊂W ∗ ⊗W ∗.

We say Sϕ is compatible with (∆,L) if Sϕ maps a product I1 × I2 of closed intervals
in P(W1)× P(W2) bijectively onto ∆.
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β,∞[L    ]

[L    ]α,0

[L    ]α,∞

β,0[L    ]

C*

C∆

F 3. Veronese factorization compatible with ∆ ⊆ P(h∗): the induced conic
C is a nonsingular conic passing through the projective normals in P(h); points in ∆

are parameterized by pairs of tangent lines to the dual conic C∗ ⊆ P(h∗).

The image of the Segre embedding S is a nonsingular ruled quadric surface, and the
pullback by ϕ is a hyperplane section. This is a conic C in P(h) which we call the induced
conic of the factorization structure; it is a line-pair in the Segre case, and nonsingular (and
nonempty) in the Veronese case. Conversely, any two nonsingular ruled quadric surfaces are
projectively equivalent, as are any two line-pairs, or any two nonsingular nonempty conics,
in a projective plane. Hence a Segre or Veronese factorization structure is determined up to
isomorphism by a line-pair or nonsingular nonempty conic C in P(h).

Such a conic C in P(h) has a dual C∗ in P(h∗): in the Segre case (Figure 2), C∗ is a
“double” line (dual to the vertex of the line-pair C ) with two marked points (dual to the
two lines), while in the Veronese case (Figure 3), C∗ is the conic of tangent lines to C . The
coordinate lines of the factorization structure (whose duals, i.e., projective normals, are the
points of C ) are

– the lines through the two marked points on C∗ in the Segre case;
– the tangent lines to C∗ in the Veronese case.

For compatibility with (∆,L), the projective normals [Lβ,0], [Lα,0], [Lβ,∞], and [Lα,∞]

must be on C (so that the facets of ∆ are on coordinate lines). This is not quite sufficient:
in the Segre case, C∗ must not meet the interior of ∆, while in the Veronese case, ∆ must be
entirely in the “exterior” (union of tangent lines) of C∗. Using the projectivized dual cone
∆∗ ⊆ P(h), the following ensures both requirements.

C 1. – C meets the interior of ∆∗.

When ∆ is a quadrilateral (bounded by four lines in general position), there is a pencil of
conics through the four projective normals, and C can be any conic in the pencil satisfying
Condition 1.

To complete our analysis, we need to discuss what happens to the affine structure ι(1) ∈ h
under the factorization structure. In the Segre case, there are three possibilities for ϕ(ι(1)):
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if ϕ(ι(1)) ∈ γ1
0 ⊗ γ2

0, then C∗ is the line at infinity and ∆ is a parallelogram; otherwise
ϕ(ι(1)) is either decomposable, in which case ∆ is a trapezium (two parallel sides), or inde-
composable, in which case ∆ has no parallel sides. In the Veronese case,ϕ(ι(1)) = q ∈ S2W ∗

and there are also three possibilities: q may have positive, zero or negative discriminant.

P 4. – Let (∆,L) be a rational Delzant quadrilateral, and C a conic through
the projective normals of ∆ which satisfies Condition 1. Then if C is nonsingular (respectively
[ι(1)] is not on C ), there is a positive (respectively negative) ambitoric compactification with
rational Delzant polytope ∆ and induced conic C .

Proof. – For C nonsingular, Condition 1 implies there is a Veronese factorization ϕ

compatible with (∆,L). We identify h with S2W ∗ using ϕ, and fix an area form κ on W ,
hence an isomorphism γ 7→ γ[ ∈ γ0 from W to W ∗. Up to an overall sign, the affine
normals therefore have the form Lβ,0 = −β[0 ⊗ β[0, Lα,0 = α[0 ⊗ α[0, Lβ,∞ = β[∞ ⊗ β[∞
and Lα,∞ = α[∞ ⊗ α[∞; it is straightforward to check that [β0], [β∞], [α0], [α∞] are
in cyclic order on P(W ) and hence choose an affine chart in which they are represented
by β0 < β∞ ≤ α0 < α∞. Proposition 3 now implies that there is a positive ambitoric
compactification with rational Delzant polytope isomorphic to ∆ and induced conic C .

For negative compactifications, we identify C ⊆ P(h) with the conic of decomposables
inψ0 ⊆W ∗1 ⊗W ∗2 , whereψ ∈W1⊗W2 is decomposable if C is singular, and indecomposable
otherwise. (By Appendix A.2, the factorization is Veronese if C is nonsingular and Segre
otherwise; in the singular case, C must be a line-pair, since the projective normals are not
collinear.) Now if ι(1) ∈ h is not on C , its image in W ∗1 ⊗ W ∗2 is not decomposable, and
may be used to identify W1 and W2

∗; we may identify W1 with W2 and drop subscripts by
fixing also an area form κ. Then ψ is dual to a quadratic form q ∈ S2W ∗, i.e., h = q⊥.
We conclude, similarly to the positive case, that Condition 1 implies that the normals have
the form Lβ,0 = q(β0, ·) ⊗ β[0, Lα,0 = α[0 ⊗ q(α0, ·), Lβ,∞ = −q(β∞, ·) ⊗ β[∞ and
Lα,∞ = −α[∞ ⊗ q(α∞, ·); the rest of the construction, using Proposition 3, follows the
positive case.

R 5. – Both types of compactification exist if C is nonsingular and does not pass
through [ι(1)]. They are then related by interchanging the roles of q (nonsingular) and κ. If
neither exists, C is the line-pair joining opposite normals, and [ι(1)] lies on one of its lines.
In particular, ∆ is a trapezium or parallelogram.

Condition 1 means that the conic C∗ tangent to the four lines of ∆ (the dual conic if C is
nonsingular, or the double line dual to the vertex of C if it is a line-pair) does not meet ∆, i.e.,
C∗ is not an inscribed ellipse, or a degeneration of such an ellipse to a double line through
opposite points of ∆. We conclude this section by using the affine structure ι(1) ∈ ∆∗ to
provide a sufficient criterion for Condition 1.

P 5. – Let (∆,L) be a rational Delzant quadrilateral with affine structure
ι(1) ∈ h and let C be a conic in the pencil through the four projective normals such that [ι(1)] is
not a singular point on C . Suppose there is an affine function orthogonal to ι(1) with no zero on
the segment of the Newton line between the midpoints of the diagonals of ∆. Then C satisfies
Condition 1.
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Proof. – The centre of C∗ is the point dual to the line orthogonal to [ι(1)] with respect
to C (or the midpoint of the vertices of ∆ on C∗ if C is singular). Thus all affine functions
orthogonal to ι(1) with respect to C vanish there. Newton’s theorem for convex quadrilater-
als implies that inscribed ellipses (or their degenerations) have centers (or midpoints) on the
segment of the Newton line between the midpoints of the diagonals of ∆. Hence C∗ cannot
be among these, so Condition 1 holds.

4. Extremal ambitoric 4-orbifolds and convex quadrilaterals

4.1. Extremal ambitoric metrics and adapted factorizations

A toric Kähler metric is extremal if and only if its scalar curvature is equal to the extremal
affine function. For regular ambitoric structures, a straightforward computation of the scalar
curvatures of the two Kähler metrics yields the following result [6].

T. – Let (J+, J−, g+, g−, t) be a regular ambitoric structure given by a quadratic q
and functions of one variable A,B. Then (g+, J+) is an extremal Kähler metric if and only if
(g−, J−) is an extremal Kähler metric if and only if

A(z) = q(z)π(z) + P (z),

B(z) = q(z)π(z)− P (z),
(23)

where π is a polynomial of degree at most two orthogonal to q and P is polynomial of degree at
most four. In this case

s− = −24π(x, y)

x− y
,(24)

s+ = −w(x, y)

q(x, y)
,(25)

where the quadratic w (defining w(x, y) = w0xy + w1(x+ y) + w2) is equal to Cq(P ), where
Cq is a surjective linear map from quartics to quadratics orthogonal to q.

In [6], we also proved that the ambitoric structure is locally conformally Einstein if in
addition the quadratics π and w in this theorem are linearly dependent. We shall use this to
construct examples later. We shall also need the explicit formula for Cq(P )(z), which is the
Poisson bracket (with the normalization convention {f1, f2} := f ′1f2 − f1f

′
2) of q(z) with

q(z)P ′′(z)− 3q′(z)P (z) + 6q′′(z)P (z).

For ambitoric compactifications, we deduce the following from the above theorem.

C 1. – For an extremal regular ambitoric compactification with induced conic C ,
the extremal affine function ζ± ∈ h± of ω± is orthogonal to the affine structure ι(1) ∈ h± with
respect to C .

Given a rational Delzant quadrilateral (∆,L) in Ξ ⊂ P(h∗), there is a unique conic
C(∆,L) ⊂ P(h) in the pencil through the normals such that [ι(1)] is orthogonal to [ζ]. Now
C(∆,L) corresponds to a conic in P(h∗) such that ζ vanishes at its centre (if nonsingular) or
midpoint (if a double line). We now apply Proposition 5.
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L 4. – A rational Delzant quadrilateral (∆,L) is equipoised iff [ι(1)] lies on the conic
C(∆,L); if (∆,L) is temperate, then the conic C(∆,L) satisfies Condition 1.

Consequently, by Proposition 4, for temperate rational Delzant quadrilaterals, there is an
ambitoric compactification unless C(∆,L) is the diagonal line pair, and the affine structure
[ι(1)] lies on one of the diagonals, i.e., ∆ is an equipoised trapezium.

4.2. Extremal ambitoric orbifolds and K-polystability

In order to construct extremal ambitoric orbifolds, we specialize the discussion of Sec-
tion 3.3 to the case that A(z) and B(z) in Proposition 3 are polynomials of degree ≤ 4. Our
approach follows [7, 8, 42, 43] to which we refer the reader for further details.

The boundary conditions (21) have the general solution

A(z) = (z − α0)(z − α∞)
(
(c+ d)(z − α0)(z − α∞) +Nα,0(z − α∞) +Nα,∞(z − α0)

)
B(z) = (z − β0)(z − β∞)

(
(c− d)(z − β0)(z − β∞) +Nβ,0(z − β∞) +Nβ,∞(z − β0)

)
for A(z) and B(z) in terms of (αk, rα,k) and (βk, rβ,k) (for k = 0,∞), where
Nα,k = 2rα,k/(α∞ − α0)2 and Nβ,k = 2rβ,k/(β∞ − β0)2 (for k = 0,∞), and c, d are
two free parameters. For fixed q(z), the extremality conditions of Section 4.1 state that
A(z) + B(z) = q(z)π(z) with π orthogonal to q. These impose three further linear condi-
tions onA andB, which we may solve for c and d, leaving one linear condition on (rα,k, rβ,k)

whose coefficients depend rationally on αk and βk (k = 0,∞).

E 1. – When q(z) = 1 (the orthotoric case), we have c = 0 and two formulae
for d whose equality yields the equation

(Nα,0 Nα,∞ Nβ,0 Nβ,∞)


(α0 + α∞ − β0 − β∞)2 + 2(α∞ − β0)(α∞ − β∞)

(α0 + α∞ − β0 − β∞)2 + 2(α0 − β0)(α0 − β∞)

(α0 + α∞ − β0 − β∞)2 + 2(β∞ − α0)(β∞ − α∞)

(α0 + α∞ − β0 − β∞)2 + 2(β0 − α0)(β0 − α∞)

 = 0

found by E. Legendre [42].(4) She proved that this condition on (rα,k, rβ,k) is equivalent
to ∆+ being equipoised (relative to the corresponding normals) and thus showed that the
existence of extremal Kähler metrics is equivalent to (toric) K-polystability in this case. How-
ever, it turns out that when ∆+ is equipoised, it is automatically K-polystable: for q(z) = 1,
deg(A + B) ≤ 1, and so between any maximum of A on (α0, α∞) and B on (β0, β∞), the
quadratic A′′ = −B′′ has a unique root; the boundary conditions thus force A and B to be
positive on (α0, α∞) and (β0, β∞) respectively.

For equipoised trapezia (which cannot be orthotoric), Legendre [42] established similar
existence and K-polystability results using ambitoric metrics of Calabi type.

We now generalize these results to arbitrary quadrilaterals, on which we relate the exis-
tence of ambitoric extremal Kähler metrics to the toric K-polystability criteria.

T 1. – Let (M,ω,T) be a toric symplectic orbifold whose rational Delzant poly-
tope ∆ is a quadrilateral (i.e., b2(M) = 2). Then the following are equivalent:

(4) Hence the linear system always determines c and d, since this condition is open and natural in q.
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(i) (M,ω) admits a T-invariant extremal Kähler metric;

(ii) (M,ω,T) is analytically relatively K-polystable wrt. toric degenerations;

(iii) (M,ω) admits a T-invariant ambitoric extremal Kähler metric g which is regular on
generic orbits, unless ∆ is an equipoised trapezium, in which case, g has Calabi type or is a
Kähler product.

In particular, if (M,ω,T) admits an extremal Kähler metric, it must be ambitoric.

Proof. – We use the notation of Sections 1.1 and 2.2, so that ∆ ⊂ Ξ ⊂ h∗, where
ι>(Ξ) = {1} for an affine structure ι : R → h on P(h∗) which we identify with ι(1) ∈ h.
Since ∆ is convex, ι(1) is interior to the strictly convex cone spanned by the normal rays
of ∆; thus [ι(1)] is interior to the dual polytope ∆∗ ⊂ P(h) which is the projectivization of
this cone. Let ζ ∈ h be the extremal affine function and C(∆,L) the unique conic in P(h)

passing through the normals, and such that [ι(1)] and [ζ] are orthogonal.

Case 1. – Suppose ∆ is temperate and C(∆,L) is nonsingular. Then by Lemma 4, C(∆,L)

satisfies Condition 1 and so Proposition 4 implies that there are positive ambitoric compact-
ifications with rational Delzant polytope ∆ and induced conic C(∆,L).

Fixing C = C(∆,L) and the associated factorization structure, such compactifications
also exist for arbitrary positive rational rescalings of the normals of ∆. Hence we are in a
position to apply an argument pioneered by E. Legendre [42] in the parabolic case. The posi-
tive ambitoric ansatz, with fixedαk, βk and q yields a linear condition on the normal parame-
ters rα,k, rβ,k for the existence of quarticsA,B satisfying the boundary conditions (21) such
that A(z) + B(z) = q(z)π(z) with π orthogonal to q. If such A and B exist, then even if
they do not satisfy the positivity requirement to define an extremal Kähler metric, we can
use them to compute that the extremal affine function is orthogonal to q. However, this lat-
ter condition is also a linear condition on the normal parameters rα,k, rβ,k. We conclude that
the two linear conditions agree. For the normals L of ∆, ζ is orthogonal to q; hence there do
exist quartics A,B defining a formal extremal solution H = H+ on ∆ = ∆+.

Case 2. – Suppose ∆ is temperate, but C(∆,L) is singular so that it is the line-pair in the pen-
cil of conics through the four normals which meets the interior of ∆∗. If [ι(1)] is on C(∆,L),
then ∆ is an equipoised trapezium, hence admits formal extremal solution of Calabi type [42].
Otherwise, Proposition 4 implies that there are negative ambitoric compactifications with
rational Delzant polytope ∆. As in case 1, we conclude that there are quartics A,B defin-
ing a formal extremal solution H = H− on ∆ = ∆−.

If ∆ is intemperate, it is not K-polystable by Lemma 3. Otherwise, either case 1 or case 2
provides a formal extremal solution. This may not yield a positive definite metric, but it can
be used to compute the toric K-polystability criterion. In the Calabi or product case, this has
been done in [42]; it remains to consider the regular ambitoric case.

Let H be the formal extremal solution given by the quarticsA,B as above. IfA is positive
on (α0, α∞) andB is positive on (β0, β∞), then H is positive definite. Hence (6) implies that
F ∆,L(f) > 0 for f ∈ PL(∆), unless Hess f = 0 on ∆, i.e., f is affine. The rational Delzant
polytope (∆,L) is therefore K-polystable.

To establish a converse, we consider special families of simple convex PL functions deter-
mined by the ambitoric factorization. For any x0 ∈ (α0, α∞) consider the line segment
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{(x0, y) : y ∈ (β0, β∞)}. Under µ± it transforms to a line segment Sx0
in the interior of ∆±.

Let ux0
be a normal of Sx0

. It is straightforward to check that H±(x0,y)(ux0
, ux0

) is positive
multiple ofA(x0). Thus, if (M,ω) is analytically relatively K-polystable with respect to toric
degenerations, then (7) implies A(x0) must be positive for any x0 ∈ (α0, α∞); the argument
for B is similar.

Conclusion. – We conclude that (ii) and (iii) are equivalent, and evidently (iii) implies (i). The
implication (i) ⇒ (ii) follows from [61, Theorem 1.3], and the final assertion follows from
the uniqueness of the extremal toric Kähler metrics, modulo automorphisms, established
in [34].

R 6. – The general theory from [26] and [62] implies that in order to check the
K-polystability of a rational Delzant polygon (∆,L), it is only necessary to consider a
particular kind of PL convex function: the simple PL convex functions whose crease meets
the interior of the polytope ∆. Theorem 1 shows that in the case of a quadrilateral, it suffices
to consider the cases that the crease is either one of the diagonals or meets the polytope in
a segment corresponding to {(x0, y) : y ∈ (β0, β∞)} or {(x, y0) : x ∈ (α0, α∞)} under
the unique ambitoric compactification given by the conic C(∆,L), which may be found by
solving linear equations.

In the light of [26] and its extension to orbifolds in [49], when the rational Delzant poly-
tope ∆ has rational vertices with respect to the dual lattice, one can also consider a weaker
version of algebraic relative (toric) K-polystability by requiring that F ∆,L(f) ≥ 0 for any
rational PL continuous convex function f with equality if and only if f is an affine function.
Presumably, this condition corresponds to an algebro-geometric notion of stability for the
corresponding (log) variety. A key observation in [26] is that in the case of a rational poly-
gon with vanishing extremal vector field, the algebraic relative K-polystability with respect
to toric degenerations is equivalent to the analytic one. This phenomenon is well demon-
strated on our classification: if αk, βk, rα,k, rβ,k are all rational numbers as in Remark 3 (so
that the vertices of ∆ are rational with respect to the dual lattice) and if F ∆,L > 0 on rational
PL convex functions which are not affine on ∆, we then conclude as in the proof of Theo-
rem 1 that A(z) must be positive at any rational point in (α0, α∞). It follows that A(z) ≥ 0

on (α0, α∞) with (possibly) a repeated irrational root in this interval. As the αk’s and rα,k’s
are rational, by the first order boundary conditions A(z) is a (multiple of) degree 4 polyno-
mial with rational coefficients with two simple (rational) roots α0 and α∞. In particular, any
double root of A (if any) must be rational too, showing that A(z) must be strictly positive
on (α0, α∞). Similarly, B(z) > 0 on (β0, β∞).

This provides a computational test for K-polystability of quadrilaterals which is guaran-
teed to terminate in the unstable case. We will further use these observations in Appendix B
to show that any compact convex quadrilateral which is not a parallelogram can be made
K-unstable by a suitable choice of the affine normals L.

R 7. – In view of Remark 4, the equivalence (ii) ⇔ (iii) of Theorem 1 extends
to complements of toric divisors in compact toric orbifolds (with b2 = 2), for ambitoric
extremal Kähler metrics satisfying (21) with rα,k or rβ,k zero on omitted facets.
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5. Examples

Our results show, as in [42], that for any convex quadrilateral, there is a nonempty open
subset of scales for the normals such that the corresponding toric 4-orbifold has an extremal
Kähler metric. By considering data close to well-known Bochner-flat Kähler metrics, we
shall demonstrate this explicitly. We shall restrict attention to rational data in the sense of
Remark 3. More precisely, if αk, βk and the coefficients of q are rational, then the param-
eters ε and η defining the quadrilateral are rational, and the normal scales rα,k, rβ,k are
constrained by a single rational linear relation.

A 4-dimensional extremal Kähler metric with nonzero scalar curvature is locally confor-
mally Einstein iff it is Bach-flat, and globally so if the scalar curvature is nonvanishing [23];
the compact smooth examples have been classified [19, 38, 39], so we seek complete or com-
pact orbifold examples.

A 4-dimensional Kähler metric is Bochner-flat iff it is selfdual (W− = 0); hence it is
Bach-flat and locally conformally Einstein. According to R. Bryant [14] such metrics exist
on weighted projective planes CP 2

w1,w2,w3
(where w1, w2, w3 are positive integers with no

common factor), cf. Section 2.1 and [2, 7]. SinceW− = 0, there is some freedom in the choice
of negative complex structure J−, and hence a family of ambitoric structures compatible with
a given Bochner-flat Kähler metric (note however, that J− is not globally defined).

5.1. Bochner-flat ambitoric structures on weighted projective planes

The Kähler metric (g+, J+, ω+) of an ambitoric structure is Bochner-flat if A(z) = P (z),
B(z) = −P (z) for an arbitrary polynomial P of degree ≤ 4. The parabolic case (with
q(z) = 1) has been studied in [7]: we now consider arbitrary q.

We set P (z) = −(z− z0)(z− z1)(z− z2)(z− z3), where z0 < z1 < z2 < z3 and q(x, y) is
positive on [z2, z3]× [z1, z2] (e.g., q(z) positive on [z1, z3]). Since ∆+ is a simplex, we are in
the degenerate case of Section 3.3 where α0 = β∞, and we set β0 = z1, β∞ = z2 = α0 and
α∞ = z3. The boundary conditions give

rβ,0 = −2P ′(z1), rβ,∞ = rα,0 = −2P ′(z2), rα,∞ = −2P ′(z3),

which we can ensure are rational by taking z0, . . . , z3 rational. By Remark 3, taking q also
rational gives condition (20) for the normals u1 := p(β0)/rβ,1, u2 := p(α0)/rα,1 and
u3 := p(α∞)/rα,2. These normals are uj = −p(zj)/2P ′(zj), which satisfy

(z1 − z0)q(z2, z3)u1 + (z2 − z0)q(z1, z3)u2 + (z3 − z0)q(z1, z2)u3 = 0

and so the weights w1, w2, w3 are a multiple of (z1 − z0)q(z2, z3), (z2 − z0)q(z1, z3),
(z3 − z0)q(z1, z2). Any weighted projective plane CP 2

w1,w2,w3
with distinct weights has a

Bochner-flat ambitoric structure of any type (parabolic, hyperbolic or elliptic).

Since the scalar curvature s+ of g+ is an affine function of the momenta, it attains its
maximum and minimum values at the vertices of the momentum simplex, which are the
images of (x, y) = (z2, z1), (z3, z1) and (z3, z2). If we write, for 0 < i < j ≤ 3,
P (z) = −(z − zi)(z − zj)pij(z), then we compute from Section 4.1 that

s+(zj , zi) = 3
q(zi)pij(zj)− q(zj)pij(zi)

zj − zi
.
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We deduce (assuming q(z) > 0 on [z1, z3]) that s+ is positive at (z3, z1); it is also positive
at (z3, z2) for z2 − z1 sufficiently small. On the other hand, at (z2, z1), for z3 − z2 small,
s+ changes sign as a function of z0 ∈ (−∞, z1), being negative at z0 = z1, but positive once
z1 − z0 is sufficiently large.

Under these conditions, s+ is everywhere positive for z0 � z1, and hence g+ is globally
conformal to an Einstein hermitian metric s−2

+ g of positive scalar curvature. On the other
hand, as z0 increases, s+ becomes nonpositive on the preimage (µ+)−1(T ) of a triangle
T ⊂ ∆+ containing the vertex (z2, z1). This preimageN is a compact orbifold with boundary
(the latter being the zero locus of s+), but it is straightforward to see that N is covered
by a compact manifold Ñ with boundary, cf. [14]. Indeed let C be the 2-dimensional cone
defined by the two facets of ∆+ which bound T and let Λ be the lattice generated by the
normals to these facets; Delzant theory identifies (C,Λ) as the image by the momentum map
of a (standard) toric C2; the preimage Ñ of T ⊂ C is the closure of a bounded domain
biholomorphic to the unit ball in C2. The lift of g = s−2

+ g+ to Ñ \ ∂Ñ is a conformally
compact, Einstein hermitian metric of negative scalar curvature, which is complete since
ds+ 6= 0 on ∂Ñ (cf. [3]).

5.2. Extremal ambitoric compactifications

In order to obtain new examples, which have those of the previous subsection as limiting
cases, we let P (z), q(z) and z0 < z1 < z2 < z3 be as before, and consider rational αk and βk
satisfying z1 ≈ β0 < β∞ . z2 . α0 < α∞ ≈ z3. We now set A(z) = q(z)πA(z) + P (z) and
B(z) = q(z)πB(z)−P (z) where πA and πB are quadratic polynomials uniquely determined
by three rational (affine) linear conditions: each is orthogonal to q,A(α0) = 0 = A(α∞) and
B(β0) = 0 = B(β∞). Note that A(z) +B(z) = q(z)(πA + πB)(z) and that A(z)−B(z) =

q(z)(πA − πB)(z) + 2P (z).

For β0 = z1, β∞ = z2 = α0, α∞ = z3, the unique solution is πA = πB = 0 and the quar-
tics A on (z3, z2) and B on (z2, z1) are positive and define a Bochner-flat extremal metric.
Hence for a small perturbation of the endpoints, A and B remain positive on (α0, α∞) and
(β0, β∞) respectively (having roots close to z1, z2, z3 and z0 < z1). The boundary conditions
rα,k = −2A′(αk), rα,k = 2B′(βk) give rational scales for the normals with the right signs to
obtain an extremal Kähler metrics over a rational Delzant quadrilateral ∆+. Since β∞ and
α0 are very close, the sides Fβ,∞ and Fα,0 are almost parallel, meaning that the quadrilateral
∆ = ∆+ has parameter η close to −1, but ε ∈ (−1, 1) ∩Q is unconstrained.

The parametrization of these solutions by P, αk, βk is not effective, because P (z) is only
determined up to the addition of q(z)π(z) with π orthogonal to q. This overcounting matches
precisely with the dimension of the space of rational Delzant quadrilaterals. By symmetry,
we see that for quadrilaterals with rational parameters ε and η, one of these being sufficiently
close to ±1, there is a nonempty open subset of rational normal scales—belonging, up to
homothety, a nonempty open subset of QP 3—for which the corresponding toric 4-orbifold
has an extremal Kähler metric. There are thus infinitely many ambitoric extremal compact
4-orbifolds with b2 = 2, depending on 5 rational parameters.
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5.3. Conformally Einstein Kähler orbifolds and complete Einstein metrics

A regular extremal ambitoric structure, given by quartic polynomials A = qπ + P ,
B = qπ − P is Bach-flat iff the quadratics π and Cq(P ) (which are both orthogonal to q)
are linearly dependent. For fixed q, this is a singular quadric hypersurface in the QP 6 of
coefficients of (π, P ) up to homothety. Bochner-flat metrics are Bach-flat with π = 0, and
so the quadric meets any open neighborhood of π = 0. Hence, as in the Bochner-flat case,
we obtain locally or globally conformally Einstein metrics according to whether the scalar
curvature s+ of g+ changes sign or is positive.

We can make this more explicit using the approach developed in the previous two subsec-
tions, whereA = P ,B = −P gives a known Bochner-flat Kähler metric with nonzero scalar
curvature. Fix π, π̃ := Cq(P ) as a basis for the quadratic polynomials orthogonal to q, and
consider the equationsA+B = δ(λπ̃+µπ)q,Cq(A−B) = γ(λπ̃+µπ),A(αk) = 0 = B(βk).
For fixed (δ, γ) ≈ (0, 1) and z0 ≈ β0 < β∞ . z1 . α0 < α∞ ≈ z2, this has a unique (and
appropriately positive) solution up to scale (with λ ≈ 2 and µ ≈ 0). The solution depends
rationally on [δ : γ] up to scale, hence for given αk, βk, we have a one parameter family of
Bach-flat ambitoric orbifolds.

Positivity of s+ can be obtained by a limiting argument, provided P is chosen so that
the corresponding Bochner-flat metric (in 5.1) has positive scalar curvature. We thus
obtain infinitely many new examples of compact ambihermitian Einstein 4-orbifolds of
positive scalar curvature. If instead we choose P so that the corresponding Bochner-flat
metric has scalar curvature positive for (x, y) = (z3, z1), (z3, z2), (z2, z2), and negative
for (x, y) = (z2, z1), the analysis in 5.1 generalizes to yield new complete ambihermitian
Einstein 4-manifolds of negative scalar curvature.

We do not attempt to classify explicitly the data yielding Bach-flat (or extremal) ambitoric
compactifications, but examples are not confined to limiting cases. For instance, let q(z) = z

and consider the quartics A,B with parameters (s, t) given by

A(z) = tz4 + (s− 1)(t+ 1)z3 − (st+ 4s+ 2t− 2)z2 − 2s(t− 2)z

= z(z − 2)(tz2 + (st+ s+ t− 1)z + s(t− 2)),

B(z) = −tz4 + (s− 1)(t− 2)z3 + (st+ 4s+ 2t− 2)z2 − 2s(t+ 1)z

= −z(z − 1)(tz2 − (st− 2s− 2t+ 2)z − 2s(t+ 1)).

In this family, the roots z = 0, 1, 2 are fixed, which is a slightly special choice because
q(z) vanishes at z = 0, and so (A+B)(0) = 0 is a consequence of the extremality condition.
The latter equation is satisfied by the family, since

(A+B)(z) = z(2t− 1)
(
(s− 1)z2 − 2s

)
and the Bochner-flat case is t = 1/2, with A(z) = −B(z) = 1

2z(z − 1)(z − 2)(z + 3s). With
three roots fixed, the extremal family is parametrized by an open subset of QP 3, and s, t are
affine coordinates on the quadric surface given by the Bach-flatness condition a1a3 = b1b3
on the coefficients of A and B.

For s > 0, after negating A,B, we are in the situation considered before, with z0 = −3s,
z1 = 0, z2 = 1 and z3 = 2: the Bochner-flat metric with β0 = 0, β∞ = 1 and α∞ = 2

has positive scalar curvature. Varying t in [2/3(s + 2), 1/2], A has a root 1 < α0 < 2,
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yielding Bach-flat examples over [α0, 2] × [0, 1]. We also get such examples for s < −2/3

using a slight variant of the same approach in which z0 = −3s > 2. Here A,B (unnegated)
satisfy positivity on [α0, 2] × [0, 1] with 1 < α0 < 2 provided −1 < s < −2/3 and
1/2 < t < 2/3(s+2), or s < −1 and 1/2 > t > 2/3(1−s). The quadrilaterals corresponding
to these examples have moduli ε = 1/2 and η = −1/α0.

Similar examples to these can be found by considering the Bochner-flat metrics on
[2,−3s] × [1, 2] for s < −2/3. However, there are plenty of examples which are not defor-
mations of the Bochner-flat family in this way. Other convenient families are given by (s, t)

coordinate lines tangent to the discriminant of A or B, so that one of the quartics splits
over Q(s) or Q(t). These lines are s = 0,−1, 1/3, 2/3, 2,∞ and t = 0,−1, 1/2, 2,∞. Many
of these only yield singular or indefinite examples. However, after multiplying A and B

by −1/t, we have, for s = 1/3, t = 2/(1 + 3u),

A(z) = −z4 + (u+ 1)z3 − (u− 2)z2 − 2uz = −(z + 1)z(z − 2)(z − u)

B(z) = z4 − 2uz3 + (u− 2)z2 + (u+ 1)z = z(z − 1)
(
z2 − (2u− 1)z − (u+ 1)

)
,

and for u > 2,A(z) is positive on (2, u) while the nontrivial roots ofB(z) have opposite sign
and sum at least 3, so that B(z) is positive on (0, 1). Hence after rescaling, we obtain Bach-
flat examples on [2, α∞]× [0, 1] with α∞ = u > 2. The quadrilaterals corresponding to these
examples have moduli ε = 1/α∞ and η = −1/2.

For a final example, let t = 0, scale by −1/(s− 1) and set s = u/(u− 1) so that

A(z) = −z3 + 2(u+ 1)z2 − 4uz = −z(z − 2)(z − 2u)

B(z) = 2z3 − 2(u+ 1)z2 + 2uz = 2z(z − 1)(z − u).

For 1
2 < u < 1 this yields Bach-flat examples on [α0, 2]× [0, β∞] with β∞ = u and α0 = 2u,

while for u > 1 we obtain instead examples on [2, α∞]× [0, 1] with α∞ = 2u.

5.4. Hirzebruch orbifold surfaces

Another interesting class of examples are the toric orbifolds for which the rational Delzant
polytope is a trapezium but not a parallelogram. It is shown in [42] that these are precisely the
toric orbifolds which admit toric Kähler metrics of Calabi type. Up to an orbifold covering,
these orbifolds are fibre bundles of the form M = P ×S1 CPw1,w2

→ CPv1,v2 , where the
fibre and the base are weighted projective lines CPw1,w2

and CPv1,v2 respectively, and P is
a principal S1-orbibundle over CPv1,v2 . It follows from [42] that such a Hirzebruch orbifold
surface admits an extremal Kähler metric of Calabi type (in some and hence any Kähler class)
if and only if the base admits a CSC Kähler metric, i.e., v1 = v2 = 1. In our formalism, this
corresponds to the case when ∆ is an equipoised trapezium, and (M,ω,T) is automatically
K-polystable with respect to toric degenerations [42].

When v1 6= v2, the corresponding trapezia are not equipoised and extremal Käh-
ler metrics must be obtained from the hyperbolic ambitoric ansatz. Rational Delzant
trapezia which are close to but different from equipoised ones provide such examples.
On the other hand, one can readily find K-unstable trapezia by violating the condition
(1 + |ε|)(1 + |η|) < 2 in Lemma 3; then there exist affine normals such that the trapezium
is intemperate. More generally, Proposition 6 shows that any quadrilateral which is not a
parallelogram is K-unstable for some choice of affine normals.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1104 V. APOSTOLOV, D.M.J. CALDERBANK AND P. GAUDUCHON

Appendix A

Factorization structures

The idea behind factorization structures is to separate variables using a rational map from
a product of projective lines to a projective space. In order to explain our terminology, and
place our constructions in a natural context, we discuss this idea in greater generality than
we need in the body of the paper.

A.1. Factorization for rational Delzant polytopes

Let h be a real vector space of dimension m + 1 and ∆ ⊆ P(h∗) the image of a strictly
convex cone in h∗.

D 9. – A factorization structure over P(h∗) is an injective linear map
ϕ : h → V ∗1 ⊗ V ∗2 ⊗ · · · ⊗ V ∗m, where V1, . . . , Vm are 2-dimensional real vector spaces,
such that composite Sϕ of the Segre embedding

P(V1)× · · · × P(Vm)→ P(V1 ⊗ · · · ⊗ Vm)

([v1], . . . , [vm]) 7→ [v1 ⊗ · · · ⊗ vm]

with the dual projection P(V1 ⊗ · · · ⊗ Vm) 99K P(h∗) maps any coordinate hyperplane
([vj ] constant for some j) into a hyperplane in P(h∗). We say ϕ is compatible with ∆ (or a
factorization structure for ∆) if Sϕ maps a product I1 × · · · × Im of intervals Ij ⊆ P(Vj)

bijectively onto ∆ ⊆ P(h∗).

Note that the coordinate hyperplane condition is automatic for m ≤ 2 (since Sϕ maps
coordinate lines to lines). Also Sϕ maps the boundary of I1×· · ·×Im to the boundary of ∆,
so ∆ has at most 2m facets. In our application, ∆ and the intervals Ij will be closed, so Sϕ is
also a bijection between boundaries.

If ϕ is understood, we typically regard it as an inclusion and identify hwith its image ϕ(h)

in V ∗1 ⊗ · · · ⊗ V ∗m. The examples we consider are all of the following form.

E. – Let (m1, . . . ,mk) be a partition ofm and letW1, . . . ,Wk be 2-dimensional
vector spaces. Then ϕ : h→

⊗k
i=1

(⊗mi W ∗i
)

is a Segre-Veronese factorization structure of
type (m1, . . . ,mk) iff ϕ(h) =

∑k
i=1<π1> ⊗ · · · ⊗ SmiW ∗i ⊗ · · · ⊗ <πk> ⊆

⊗k
i=1 S

miW ∗i
for some decomposable πi = γi

�mi ∈ SmiW ∗i (for j = 1 . . . k, γj ∈W ∗j ).

The mapSϕ : P(W1)m1×· · ·×P(Wk)mk → P(h∗) sends a coordinate hyperplane with one
component equal to [αj ] ∈ P(Wj) to the hyperplane in P(h∗) dual to
[π1⊗· · ·⊗θj�mj ⊗· · ·⊗πk] ∈ P(h), where kerθj = <αj>. This is an element in the image
of the (dual) mixed Segre-Veronese embedding P(W ∗1 )× · · · ×P(W ∗k )→ P

(⊗k
i=1 S

miW ∗i
)
.

The extreme partitions (1, 1, . . . , 1) and (m) correspond to pure Segre and Veronese
embeddings respectively. For toric 4-orbifolds (m = 2), these are the only cases.
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A.2. Factorizations on toric 4-orbifolds

When m := dim t = 2, the image of any factorization structure h → W ∗1 ⊗ W ∗2
(dimWi = 2) is the annihilator of an element χ ofW1⊗W2. If χ = γ1⊗γ2 is decomposable,
the image of h is γ1

0 ⊗W ∗2 + W ∗1 ⊗ γ2
0, where γj0 ⊆ W ∗j is the annihilator of γj ∈ Wj .

If not, χ defines an isomorphism W ∗1 → W2, and hence, fixing a nonzero area form on W1,
an isomorphism W1 →W2. Using this to identify W1 with W2 and dropping subscripts, the
factorization structure h → W ∗ ⊗W ∗ has image annihilating ∧2W ⊂ W ⊗W , i.e., equal
to S2W ∗.

Thus, up to isomorphism, any factorization structure is Segre-Veronese of type (1, 1)

or (2); these are the Segre and Veronese factorizations used in the paper. In the Segre case,
P(W1)×P(W2) 99K P(h∗) is projection away from the point [γ1⊗γ2] on the quadric surface
in P(W1⊗W2); this is the famous birational map identifying the blow-up of P(W1)× P(W2)

at ([γ1], [γ2]) with the blow-up of P(h∗) at two points. In the Veronese case, the map
P(W ) × P(W ) 99K P(h∗) is projection away from a point off the quadric surface, which is
a branched double cover over a conic.

Appendix B

The semistability surface

In this appendix we consider the dependence of the toric K-polystability condition (and
hence the existence of extremal metrics) on the rational Delzant quadrilateral (∆,L), which
is determined by a positivity property of its Futaki functional F ∆,L on the space PL(∆) of
PL convex functions. For a fixed quadrilateral ∆, F ∆,L depends linearly on inverse scales rα,k
and rβ,k (k = 0,∞) for the normals L. We can thus parameterize a choice of normals, up to
overall scale, by a point [rα,0, rα,∞, rβ,0, rβ,∞] in the positive quadrant of QP3, and a given
choice will be K-polystable provided this point lies in the open subset R∆ of RP3 on which
the Futaki functional has constant sign (with only trivial zeros). It follows from [42] that
R∆ ⊆ RP3 has nonempty intersection with the positive rational quadrant.

We refer to the boundary S∆ of R∆ as the semistability surface of ∆. At any point in S∆

there must be a nontrivial Futaki invariant which is zero, and since it is linear on RP3, this
Futaki invariant defines a supporting hyperplane for R∆. Consequently, we can hope to
describe the dual surface of S∆ explicitly in terms of Futaki invariants, and then consider
its dependence on ∆.

It suffices to consider Futaki invariants defined by simple PL convex functions with a
crease meeting opposite sides of ∆ (including the diagonals of ∆ as extreme cases): our
main results show that the positivity of these invariants is not only necessary, but sufficient,
for toric K-polystability. These invariants are still quite formidable in complexity, but are
amenable to computation.

In our computations, we drop overall positive constants, such as the constant
c(ε, η) = 24/

(
4 − (1 − ε2)(1 − η2)

)
appearing in the extremal affine function, and employ

the dihedral symmetry (which acts projectively on ∆) to minimize duplication of effort. This
symmetry group, determined by its action on vertices, is generated by a “vertical” reflection
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(cf. Figure 1) σα : v00 7→ v∞0, v0∞ 7→ v∞∞ and a diagonal reflection σε : v00 7→ v∞∞ fixing
v0∞ and v∞0, so that ρ := σε ◦ σα is a π

2 rotation, which acts on vertices and edges by

v00 7→ v∞0 7→ v∞∞ 7→ v0∞ 7→ v00,

Fα,0 7→ Fβ,0 7→ Fα,∞ 7→ Fβ,∞ 7→ Fα,0.

The remaining nonidentity elements consist of the other diagonal reflection ση = σαρ =

σασεσα, the “horizontal” reflection σβ = ρσε = σεσασε, ρ2 = σησε and ρ3 = ρ−1.
The dihedral action is only affine after permuting the labelling, so there is an induced action
on the parameters (ε, η) which determine the affine class of ∆ as a labelled quadrilateral.
Explicitly, we have σα∗(ε, η) = (η, ε) and σε∗(ε, η) = (−ε, η), and hence ρ∗(ε, η) = (η,−ε),
σβ
∗(ε, η) = (−η,−ε), ση∗(ε, η) = (ε,−η).

The two families of simple PL convex functions whose Futaki invariants we need are fαs,t,

with a crease joining s ∈ Fα,0 to t ∈ Fα,∞, and fβs,t, with a crease joining s ∈ Fβ,0
to t ∈ Fβ,∞. We write

F ∆,L(fαs,t) =
∑

j∈{α,β}×{0,∞}

Aj(ε, η, s, t)rj , F ∆,L(fβs,t) =
∑

j∈{α,β}×{0,∞}

Bj(ε, η, s, t)rj

for functions Aj , Bj related by the following symmetries:

Aα,0(ε, η, s, t) = Aα,∞(−ε,−η, t, s) = Bβ,0(ε,−η, s, t) = Bβ,∞(−ε, η, t, s)
Bα,0(ε, η, s, t) = Bα,∞(−ε,−η, t, s) = Aβ,0(ε,−η, s, t) = Aβ,∞(−ε, η, t, s)

Aα,0(ε, η, s, t) = Aα,0(−η,−ε, s∗, t∗), Bα,0(ε, η, s, t) = Bα,0(−η,−ε, t∗, s∗),

where the star denotes the (harmonic) inversion interchanging the diagonals lε and lη and fix-
ing the midpoints of the sides. It thus suffices to compute Aα,0(ε, η, s, t) and Bα,0(ε, η, s, t).
To parameterize the points s, t on the edges, a convenient reference space is the pencil of lines
through the intersection O of the diagonals; this is a projective line with four harmonically
separated marked points (the two diagonals lε and lη and the two lines lα and lβ joiningO to
intersection points of opposite sides). In the concrete description of §2.2, the diagonals are
x = ±y and the other lines are x = 0 and y = 0. We set lε = 0 = [1 : 0], lη =∞ = [0 : 1], so
that we can use positive homogeneous coordinates s = [s0 : s1], t = [t0 : t1] on the edges;
this fixes sj and tj up to independent scales. Each A,B is a polynomial of bidegree (3, 3)

in s, t.

We compute that Aα,0(ε, η, s, t) is given (up to normalization) by

2 (s0 + s1)
(
(1 + η)t0 + (1 + ε)t1

) (
(1− η)s0t0 − (1− ε)s1t1

)2
− (1− ε)(1− η)

(
(1− η)s0 + (1− ε)s1

)
(t0 + t1)

(
(1 + η)s0t0 − (1 + ε)s1t1

)2
,
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whereas Bα,0(ε, η, s, t) is given (up to normalization) by

(1− ε)(1 + η)(1 + ε− η + εη) s3
0t

3
0

+ 2(1 + εη + 1 + ε− η + εη) s2
0s1t

3
0

+ 2(1− ε)(1 + η)
(
4− (1− ε2)(1− η2)

)
s3

0t0t
2
1

+(1− ε)(1 + η)
(
(1 + ε)2 + (1− η)2 + (1 + εη)(2 + ε− η)

)
s3

0t
2
0t1

+
(
(1 + εη)(10 + ε− η + (1 + ε)(1− η)) + (1 + ε)2 + (1− η)2

)
s2

0s1t
2
0t1

+ 4(1 + εη) s0s
2
1t

2
0t1 + (40− 12(1− ε2)(1− η2)− 8εη) s2

0s1t0t
2
1

+
(
(1 + εη)(10− ε+ η + (1− ε)(1 + η)) + (1− ε)2 + (1 + η)2

)
s0s

2
1t0t

2
1

+(1 + ε)(1− η)
(
(1− ε)2 + (1 + η)2 + (1 + εη)(2− ε+ η)

)
s0s

2
1t

3
1

+ 2(1 + ε)(1− η)
(
4− (1− ε2)(1− η2)

)
s2

0s1t
3
1

+ 2(1 + εη + 1− ε+ η + εη) s3
1t0t

2
1

+(1 + ε)(1− η)(1− ε+ η + εη) s3
1t

3
1.

The latter expression typifies the contribution to the Futaki invariant from a side which
does not meet the crease. Only the first and last two coefficients can be negative, and this
can happen if and only if Bα,0(ε, η, 0, 0) (i.e., 1 + ε − η + εη) or Bα,0(ε, η, 1, 1) (i.e.,
1 − ε + η + εη) is negative. This means that the expression already contributes negatively
to the Futaki invariant of one of the diagonals, in which case the normals can be scaled to
make the quadrilateral intemperate.

In contrast, the expression for Aα,0 typifies the contribution to the Futaki invariant from
a side which does meet the crease. Here we have found a surprising factorization which shows
that the contribution can be negative even when (1 + |ε|)(1 + |η|) < 2 (so the quadrilateral
is temperate for any choice of normals). We deduce the following.

P 6. – Let ∆ be a compact convex quadrilateral.

– If ∆ is a parallelogram, then for any affine normals L, (∆,L) is K-polystable.
– If ∆ is not a parallelogram, then there exist choices for the affine normals L such that (∆,L)

is K-polystable as well as choices such that (∆,L) is K-unstable.

Proof. – The stability results are straightforward [42], but the instability results stated
in [42] are incorrect: by Example 1, equipoised rational Delzant quadrilaterals are
K-polystable. However, if ∆ is not a parallelogram, then either ε 6= η or ε 6= −η. In
the former case, put s0 = (1− η)t1 and s1 = (1− ε)t0 in fαs,t so that Aα,0 is negative. Then
F ∆,L(fαs,t) can be made negative by taking rα,0 large relative to the other inverse normals.
When ε 6= −η a similar argument applies to F ∆,L(fβs,t) and Bβ,0.

Appendix C

Link with CR and Sasakian 5-manifolds

There are well known connections between symplectic and Kähler geometry in dimen-
sions four and contact, CR and Sasakian geometry in dimension five [11, 44, 50]. In partic-
ular, quasiregular Sasaki-Einstein 5-manifolds have Kähler-Einstein orbifolds as quotients
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by the Reeb vector field, and this provides one way of constructing them. As observed by
D. Martelli and J. Sparks [47, 50], the Sasaki-Einstein manifolds of J. Gauntlett, D. Martelli,
J. Sparks, D. Waldram [33] and M. Cvetič, H. Lü, D. Page, and C. Pope [21] have quotients
which are of Calabi type and orthotoric respectively.

The general ambitoric context does not provide further Kähler-Einstein examples, but
the extremal metrics may be used to construct continuous families of extremal Sasakian
5-manifolds, as well as Reeb directions which do not admit transversal extremal metrics
(cf. [13, 42, 41]).

C.1. Contact, CR and Sasakian structures

Recall that a contact manifold is an odd dimensional manifold N with a maximally non-
integrable codimension one distribution H ⊂ TN , i.e., the Lie bracket (X,Y ) 7→ [X,Y ]

mod H defines a nondegenerate TN/H -valued 2-form Ω on H called the Levi form. We
assume that the line bundle TN/H is oriented; positive sections η of the contact line bundle
(TN/H )∗ ⊂ T ∗N are called contact forms. Such a contact form has pointwise kernel H and
induces a unique vector field K with η(K) = 1 and LKη = 0, called the Reeb vector field
of η.

An almost CR structure is a complex structure J on H such that the Levi form is J-invari-
ant, and (N, H , J) is said to be a CR manifold of Sasaki type if there is a contact form η such
that

g = dr2 + r2(dη(·, J ·) + η2), ω = d(r2η) = 2r dr ∧ η + r2 dη

is a Kähler metric on the cone N ×R+. The corresponding metric gη = dη(·, J ·) + η2 on M
is called a compatible Sasakian metric. On a CR manifold of Sasaki type the contact forms η
giving rise to compatible Sasakian metrics are those for which ( H , J, dη| H ) is invariant
under the Reeb vector field and descends to a Kähler structure on local quotients by K; it is
called the transverse Kähler geometry. The Sasakian structure is said to be quasiregular if the
quotient by K is an orbifold.

C.2. CR structure associated to positive ambitoric metrics

We observe here that for fixed A(z) and B(z), the ambitoric Kähler metrics (g+, ω+) we
obtain form a family of Sasakian metrics compatible with a fixed 5-dimensional CR-struc-
ture: this is similar to the well-known identification of Bochner-flat Kähler metrics with
Sasakian structures compatible with the standard CR structure on an odd-dimensional
sphere [58].

Suppose that (M, g±, J±, ω±, t) be a regular ambitoric 4-orbifold. Then on the union
M0 of the generic orbits the coordinates (x,y, t) provide a diffeomorphism of M0 with
D0 × t/2πΛ for a domain D0 in (an affine patch of) P(W ) × P(W ). Recall that
t ∼= S2W ∗/<q> and the space of Hamiltonians h+ is isomorphic to S2W ∗. By passing
to the universal cover of t/2πΛ, or introducing a lattice Λ̃ ⊂ h+ covering Λ, we can pull
back the Kähler structure along πq : N0 = D0 × h+ → D0 × t. Then

π∗qω+ = dηq, where ηq = −〈dt,x⊗ y〉
q(x,y)

,
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where dt is the tautological h+ = S2W ∗ valued 1-form on the 5-manifold. The kernel
H ∼= π∗qTM

0 of ηq, together with J+ defines a CR structure of Sasakian type on N0. The
Reeb field of the contact form ηq is

Kq = −〈q,X〉 = −(q0∂t0 + q1∂t1 + q2∂t2),

where X ∈ h+∗ ⊗ C∞(N0, TN0) is dual to dt, and the corresponding Sasakian metric is
g+ + ηq

2. Keeping the CR structure fixed, we now rescale the contact form and define

η =
q(x,y)

κ(x,y)
ηq = −〈dt,x⊗ y〉

κ(x,y)
with

dη =
−dx ∧ 〈dt,y ⊗ y〉+ dy ∧ 〈dt,x⊗ x〉

κ(x,y)
.

The corresponding Reeb vector field is

K = −〈x� y,X〉 = −∂t0 + (1/2)(x+ y)∂t1 − xy∂t2 .

This does not preserve the CR structure and hence only defines a transversal Hermi-
tian metric, not a Sasakian metric. To compute this, we need to find the horizontal
lift of g0 = q(x, y)g+/(x − y). For this we observe that 〈dt, {q,y ⊗ y}〉 agrees with
q(x,y)〈dt,y⊗y〉/κ(x,y) on H (i.e., modulo η) and the latter vanishes on K. Similarly, we
replace 〈dt, {q,x ⊗ x}〉 by q(x,y)〈dt,x ⊗ x〉/κ(x,y). Introducing affine coordinates, we
conclude that the contact metric is

dx2

A(x)
+

dy2

B(y)
+A(x)

(y2dt0 + 2ydt1 + dt2
(x− y)2

)2

+B(y)
(x2dt0 + 2xdt1 + dt2

(x− y)2

)2

+
(xydt0 + (x+ y)dt1 + dt2

x− y

)2

,

which is manifestly independent of q. Consequently this CR structure has a family of com-
patible Sasakian structures ηq (with Reeb vector fields Kq) for q ∈ S2W ∗. If A(z) and B(z)

are quartics such that A(z) + B(z) = q1(z)q2(z) for orthogonal quadratic forms q1 and q2,
then both Sasakian structures (q = q1 and q = q2) will be extremal.
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