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RENORMALIZATION, FREEZING PHASE
TRANSITIONS AND FIBONACCI QUASICRYSTALS

 H BRUIN  R LEPLAIDEUR

A. – We examine the renormalization operator determined by the Fibonacci substitution
within the full shift on two symbols Σ := {0, 1}N. We exhibit a fixed point and determine its stable leaf
(under iteration of the operator acting on potentials V : Σ → R), which is completely determined
by the germ near the attractor of the substitution. Then we study the thermodynamic formalism for
potentials in this stable leaf, and prove they have a freezing phase transition at finite temperature, with
ground state supported on the attracting quasi-crystal associated to the Fibonacci substitution.

R. – Nous étudions les relations entre renormalisation, substitutions et transitions de
phase : nous montrons que la substitution de Fibonacci dans le shift plein à deux symboles Σ := {0, 1}N

génère un opérateur de renormalisation sur les potentiels V : Σ → R. Nous montrons que cet opéra-
teur possède un point fixe, uniquement déterminé par son germe proche de l’attracteur associé à la
substitution de Fibonacci. Nous déterminons aussi la feuille stable de ce point fixe. Dans un second
temps, nous montrons que tous les potentiels dans cette feuille stable présentent une transition de
phase congelante. En particulier, cela donne un nouvel exemple d’obtention d’un état fondamental
porté par un quasi-cristal avant le zéro absolu.

1. Introduction

1.1. Background

The present paper studies phase transitions from an ergodic theory and dynamical systems
point of view. It investigates renormalization, substitutions and phase transition initiated
in [2] and continued in [5].

Phase transitions are an important topic in statistical mechanics and also in probability
theory (see e.g., [11, 12, 23, 27]). The viewpoint presented here is different for several reasons.
One of them is that, here, the geometry of the lattice is not relevant(1), whereas in statistical
mechanics, the geometry of the lattice is the most important part.

(1) and we only consider a one-dimensional lattice.
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740 H. BRUIN AND R. LEPLAIDEUR

During the 1970’s, motivated by problems in statistical mechanics, Bowen, Ruelle and
Sinai (see [3, 24, 26]) introduced thermodynamic formalism into ergodic theory. Given a
dynamical system (X,T ) and a potential ϕ : X → R, the pressure function is given by

P(β) := sup

{
hµ(T ) + β

∫
ϕdµ

}
,

where the supremum is taken over the invariant probability measures µ, hµ(T ) is the Kol-
mogorov entropy and β is a real parameter. Any measure realizing the supremum is then
called an equilibrium state for βϕ.

For a uniformly hyperbolic dynamical system (X,T ) and a Hölder continuous poten-
tial ϕ, the pressure function β 7→ P(β) is analytic (see e.g., [3, 24, 15]) and there is a unique
equilibrium state µβϕ (for every β). This equilibrium also satisfies a Gibbs property; in the
dynamical systems language this condition expresses how the measure of n-cylinders scales:
There is K > 0 such that

(1) K−1 ≤ µβϕ(Zn)

exp(β
∑n−1
i=0 ϕ ◦ T i(x)− nP(β))

≤ K

for all n ≥ 1, all n-cylinders Zn and x ∈ Zn.
Since the late 1970s, people in dynamical systems focused on extending the notions and

results of thermodynamics to non-uniformly hyperbolic dynamical systems. This started
with the work of Hofbauer [13, 22] proving non-analyticity of pressure for a non-Hölder
potential ϕ on the shift-space ({0, 1}N, σ). This example is closely related to the Manneville-
Pomeau map, and an associated renormalization procedure, presented in [2], was the starting
point of the project this paper is part of. Ledrappier [17] showed that any finite number of
equilibrium can co-exist in similar examples (cf. also [4, 9] for the co-existence of multiple
equilibirum states in other settings). Weakening the Gibbs property may be necessary as well.
For instance, Yuri [29], in the setting of maps with neutral fixed points, used a version of weak
Gibbs in which theK in (1) is replaced byKn with limn

1
n logKn = 0. See [6, Section 3.1] for

similar results to smooth interval maps with critical points.
More recently, the original motivation came back into focus, and the question of phase

transitions is now a very active theme in ergodic theory. Nevertheless, due to equivalences
or interdependences in the “classical” settings between unique existence of Gibbs measures,
unique existence of equilibrium states and regularity of the pressure function, and also due
to historical or inspiration models (e.g., the Ising model in probability or Erhenfest vs.
Gibbs classification in statistical mechanics), the notion of phase transition may vary in the
literature. In this paper, we adopt a largely accepted definition now in dynamical systems: a
phase transition is characterized by a lack of analyticity of the pressure function.

Although analyticity is usually considered as a very rigid property and thus quite rare, it
turns out that proving non-analyticity for the pressure function is not so easy. Currently, this
has become an important challenge in smooth ergodic theory to produce and study phase
transitions, see e.g., [19, 8, 5] and also [14, Sec. 6] for the possible shapes of the pressure
function. We also refer to [25] for results on the regularity of the pressure in the non-compact
setting and [29, 21] for uniqueness of the equilibrium state, again in the non-compact case.

To observe phase transitions, one has to weaken hyperbolicity of the system or of regu-
larity of the potential; it is the latter one that we continue to investigate here. Our dynamical
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RENORMALIZATION AND THERMODYNAMICS 741

system is the full shift, which is uniformly hyperbolic. The first main question we want to
investigate is thus which potentials ϕ will produce phase transitions. More precisely, we are
looking for a machinery to produce potentials with phase transitions.

The main purpose of [2] was to investigate possible relation between renormalization and
phase transitions. In the shift space ({0, 1}N, σ), a renormalization is a functionH for which
there is an integer k ≥ 2 such that

(2) σk ◦H = H ◦ σ.

The link with potentials was made in [2] by introducing a renormalization operator R acting
on potentials and related to a solution H for (2). It is easy to check that constant length k
substitutions are solutions to (2). In [5], we studied the Thue-Morse substitution, which has
constant length 2. Here we investigate the Fibonacci substitution, which is not of constant
length. Several reasons led us to study the Fibonacci case:

Together with the Thue-Morse substitution, the Fibonacci substitution is the most
“famous” substitution and it has been well-studied. In particular, the dynamical properties
of their respective attracting sets are well-known and this will be used extensively in this pa-
per. As a result, we were able to describe the relevant fixed point of renormalization exactly.
Information of the left and right-special words in these attractors is a key ingredient to prove
existence of a phase transition; it is a crucial issue in the relations between substitutions and
phase transitions.

The type of phase transition we establish is a freezing phase transition. This means that
beyond the phase transition (i.e., for large β), the pressure function is affine and equal to
its asymptote, and the equilibrium state (i.e., ground state) is the unique shift-invariant
measure supported on an aperiodic subshift space, sometimes called quasi-crystal. One open
question in statistical mechanics (see [10]) is whether freezing phase transitions can happen
and whether quasi-crystal ground state can be reached at positive temperature. An affirmative
answer was given for the Thue-Morse quasi-crystal in [5]; here we show that this also holds
for the Fibonacci quasi-crystal.

We think that Fibonacci shift opens the door to study more general cases. One natural
question is whether any quasi-crystal can be reached as a ground state at positive temper-
ature. In this context we emphasize that the Fibonacci substitution space is also Sturmian
shift, that is, it encodes the irrational rotation (with angle the golden mean γ := 1+

√
5

2 ). We
expect that the machinery developed here can be extended to the Sturmian shift associated to
general irrational rotation numbers (although those with bounded entries in the continued
fraction expansion will be the easiest), possibly to rotations on higher-dimensional tori, and
also to more general substitutions.

1.2. Results

Let Σ = {0, 1}N be the full shift space; points in Σ are sequences x := (xn)n≥0 or
equivalently infinite words x0x1 . . . Throughout, let xj = 1−xj denote the opposite symbol.
The dynamics is the left-shift

σ : x = x0x1x2 . . . 7→ x1x2 . . .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



742 H. BRUIN AND R. LEPLAIDEUR

Given a word w = w0 . . . wn−1 of length |w| = n, the corresponding cylinder (or n-cylinder)
is the set of infinite words starting asw0 . . . wn−1. We use the notationCn(x) = [x0 . . . xn−1]

for the n-cylinder containing x = x0x1 . . . If w = w0 . . . wn−1 is a word with length n and
w′ = w′0 . . . a word of any length, the concatenation ww′ is the word w0 . . . wn−1w

′
0 . . .

The Fibonacci substitution on Σ is defined by:

H :

{
0→ 01

1→ 0

and extended to words by the concatenation rule H(ww′) = H(w)H(w′). It is convenient
for us to count the Fibonacci numbers starting with index −2:

(3) F−2 = 1, F−1 = 0, F0 = 1, F1 = 1, F2 = 2, Fn+2 = Fn+1 + Fn.

We have

(4) F an := |Hn(a)| =

{
Fn+1 if a = 0,

Fn if a = 1.

The Fibonacci substitution has a unique fixed point

ρ = 0 1 0 01 010 01001 01001010 0100101001001 . . .

We define the orbit closure K = ∪nσn(ρ); it forms a subshift of (Σ, σ) associated to ρ,
supporting a unique shift-invariant probability measure µK. More properties on K are given
in Section 2.

We define the renormalization operator acting on potentials V : Σ→ R by

( RV )(x) =

{
V ◦ σ ◦H(x) + V ◦H(x) if x ∈ [0],

V ◦H(x) if x ∈ [1].

We are interested in finding fixed points for R and, where possible, studying their stable
leaves, i.e., potentials converging to the fixed point under iterations of R. Contrary to the
Thue-Morse substitution, the Fibonacci substitution is not of constant length. This is the
source of several complications, in particular for the correct expression for Rn.

For α > 0, let Xα be the set of functions V : Σ → R such that V (x) ∼ n−α if
d(x,K) = 2−n. More precisely, Xα is the set of functions V such that:

1. V is continuous and non-negative.
2. There exist two continuous functions g, h : Σ→ R, satisfying h|K ≡ 0 and g > 0, such

that

V (x) =
g(x)

nα
+
h(x)

nα
when d(x,K) = 2−n.

We call g theα-density, or just the density ofV ∈ Xα. Continuity and the assumption h|K ≡ 0

imply that h(x)/nα = o(n−α).
Our first theorem achieves the existence of a fixed point for R and shows that the germ

of V close to K, i.e., its α-density, allows us to determine the stable leaf of that fixed point.
Given a finite word w, let κa(w) denote the number of symbols a ∈ {0, 1} in w. If

x ∈ Σ \K, we denote by κ̃a(x) the number of symbols a in the finite word x0 . . . xn−1 where
d(x,K) = 2−n.
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T 1. – If V ∈ Xα, with α-density function g, then

lim
k→∞

RkV (x) =


∞ for all x ∈ Σ \K if α < 1;

0 for all x ∈ Σ if α > 1;∫
g dµK · Ṽ (x) for all x ∈ Σ if α = 1,

where Ṽ ∈ X1 is a fixed point for R, given by

(5) Ṽ (x) =


log
(

κ̃0(x)+
1
γ κ̃1(x)+γ

κ̃0(x)+
1
γ κ̃1(x)+γ−1

)
if x ∈ [0];

log
(

γκ̃0(x)+κ̃1(x)+γ
2

γκ̃0(x)+κ̃1(x)+γ2−1

)
if x ∈ [1].

This precise expression of Ṽ corresponds to an α-density g̃(x) = γ2/(2γ−1) if x ∈ [0]∩K
and g̃(x) = γ/(2γ − 1) if x ∈ [1] ∩K, and

∫
Ṽ (x)dµK = 1.

A freezing phase transition is characterized by the fact that the pressure is of the form

P(β) = aβ + b for β ≥ βc
and that the equilibrium state is fixed for β ≥ βc. The word “freezing” comes from the fact
that in statistical mechanics β is the inverse of the temperature (so the temperature goes to 0

asβ → +∞) and that a ground-state is reached at positive temperature 1/βc, see [27, Chap. 2].
In mathematics, one usually talks about maximizing measure (see e.g., [7, Prop. 29 ]).

T 2. – Any potential ϕ := −V with V ∈ X1 admits a freezing phase transition at
finite β: there exists βc > 0 such that

1. for 0 ≤ β < βc the map P(β) is analytic, there exists a unique equilibrium state for βϕ
and this measure has full support;

2. for β ≥ βc, the pressure P(β) = 0 and µK is an equilibrium state for βϕ; it is unique
for β > βc.

The equilibrium states µβϕ for β < βc satisfy a local Gibbs property. Namely, (1) remains
true but only for cylinders of the form Zrn(x)(x) ⊂ J , where J is a cylinder with empty
intersection with K and rn is a nth-return time into J . In that case, the constant K also
depends on the cylinder J . This holds because these equilibrium states have conditional
measures with respect to J satisfying a Gibbs property for the induced map (see Section 4
and [18]).

The Gibbs property is less practical for the equilibrium state µK for β ≥ βc because the
pressure P(β) = 0 and the potential ϕ is identically zero on the support of µK. Therefore
a weak Gibbs property holds trivially with Kn = 2n for every n-cylinder intersecting
K = supp(µK). The proof of the existence of a phase transition depends on the estimate of a
complicated series; its convergence for large β with limit value strictly less than 1 ensures that
a phase transition has taken place at some βc. Regularity of the pressure function (or number
of equilibrium states) for β = βc depends on the convergence of another complicated series
(related to the first one). Unfortunately, it requires a far more precise understanding of these
series to obtain a reliable estimate on the value of βc and whether the second series converges
or diverges at β = βc.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



744 H. BRUIN AND R. LEPLAIDEUR

The phenomenon that the same class of potentials are both fixed by the renormalization
operator R and exhibit phase transitions remains intriguing. We are not aware of a proof that
the one implies the other. Rather, we believe that they both follow from a deeper structure,
basically that the power α in the definition of Vα expresses the dimension of the lattice. This
is one more incentive to study the structure of renormalization and phase transitions for
substitutive systems in higher dimensional lattices.

1.3. Outline of the paper

In Section 2 we recall and prove various properties of the Fibonacci subshift and its
special words. We establish the form of Hn and RnV for arbitrary n. We define a notion
of accident and link it to special words in the Fibonacci shift. In Section 3, after clarifying
the role of accidents on the computation of RnV , we prove Theorem 1. Section 4 deals with
the thermodynamic formalism. Following the strategy of [18] we specify and estimate the
required (quite involved) quantities that are the core of the proof of Theorem 2.

1.4. Acknowledgement

The authors want to thank the anonymous referee for the valuable suggestions and refer-
ences that helped to improve our paper.

2. Properties of H, K and R

2.1. The set K as Sturmian subshift

In addition to being a substitution subshift, (K, σ) is the Sturmian subshift associated to
the golden mean rotation, Tγ : x 7→ x + γ (mod 1). The golden mean is γ = 1+

√
5

2 and it
satisfies γ2 = γ + 1.

Fixing an orientation on the circle S1, let
_

ab denote the arc of points between a and b in
the circle in that orientation. Define the itinerary e(x) = e0e1 . . . of a point x ∈ S1 as

ei =

0 if T iγ(x) ∈
_
0γ

1 if T iγ(x) ∈
_
γ0 .

Then it turns out that e(2γ) = ρ, the fixed point of the substitution.

There is an almost (i.e., up to a countable set) one-to-one correspondence between points
in K and codes of orbits of (S1, Tγ), expressed by the commutative diagram

S1
Tγ //

π

��
	

S1

π

��
K σ // K

and π is a bijection, except at points T−nγ (γ) ∈ S1, n ≥ 0. Since Lebesgue measure is the
unique Tγ-invariant probability measure, µK := Leb◦π−1 is the unique invariant probability
measure of (K, σ).
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X

X

X 1
γ

2γ

0

0

F 1. Coding for Fibonacci Sturmian subshift.

We will use the same terminology for both K and S1. For instance, a cylinder Cn(x)

for x ∈ S1 is an interval, with the convention that Cn(x) = π−1(Cn(π(x))), and we may
confuse a point x ∈ S1 and its image π(x) ∈ K.

D 2.1. – Let AK denote the set of finite words that appear in ρ. A word
ω := ω0 . . . ωn−1 ∈ AK is said to be left-special if 0w and 1w both appear in AK. It is
right-special if w0 and w1 both appear in AK. A left and right-special word is called bi-special.
A special word is either left-special or right-special.

Since ρ has n + 1 subwords of length n (a characterization of Sturmian words), there
is exactly one left-special and one right-special word of length n. They are of the form
ρ0 . . . ρn−1 and ρn−1 . . . ρ0 respectively, which can be seen from the forward itinerary e(x)

for x ∈ S1 close to γ and backward itinerary e(x) for x ∈ S1 close to 0. Sometimes the
left and right-special words merge into a single bi-special word ω, but only one of the two
words 0ω0, and 1ω1 appears in AK, see [1, Section 1].

P 2.2. – Bi-special words in AK are of the form ρ0 . . . ρFm−3 and for
each m ≥ 3, ρ0 . . . ρFm−3 is bi-special.

We prove this proposition at the end of Section 2.2

2.2. Results for Hn

We recall that κa(w) is the number of symbol a in the finite word w.

L 2.3. – For any finite word w, the following recursive relations hold:

κ0(Hn(w)) = Fnκ0(w) + Fn−1κ1(w);

κ1(Hn(w)) = Fn−1κ0(w) + Fn−2κ1(w);

|Hn(w)| = Fn+1κ0(w) + Fnκ1(w) = |Hn−1(w)|+ |Hn−2(w)|,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



746 H. BRUIN AND R. LEPLAIDEUR

where |H0(w)| = |w|, |H1(w)| = |H(w)|.

Since we have defined F−2 = 1 and F−1 = 0, see (3), these formulas hold for n = 0 and
n = 1 as well.

Proof. – Since Hn(0) contains Fn+1 zeroes and Fn−1 ones, while Hn(0) contains Fn−1

zeroes and Fn−2 ones, the first two lines follow from concatenation. The third line is the sum
of the first two, and naturally the recursive relation follows from the same recursive relation
for Fibonacci numbers.

Since (K, σ, µK) is uniquely ergodic, and isomorphic to (S1, Tγ ,Leb), we immediately get
that

(6) lim
n→+∞

κa(Hn(w))

|Hn(w)|
=

|
_
0γ | = 1

γ if a = 0,

|
_
γ0 | = 1− 1

γ if a = 1.

L 2.4. – Assume that x and y have a maximal common prefix w. Then Hn(x)

and Hn(y) coincide for Tn(w) + Fn+2 − 2 digits, where Tn(w) is defined by

(7) T0(w) = |w|, T1(w) = |H(w)|, Tn+2(w) = Tn+1(w) + Tn(w).

Proof. – For x = w0 . . . and y = w1 . . . , we find

w

w

0

1

H−→
H(w) 0

H(w) 0

1

0

H−→
H2(w) 0 1 0

H2(w) 0 1 0

0

1

H−→
H3(w) 0 1 0 0 1 0

H3(w) 0 1 0 0 1 0

1

0

H−→ · · ·

where we used that H(a) starts with 0 for both a = 0 and a = 1. For Tn(w) := |Hn(w)|, the
recursive Formula (7) follows as in Lemma 2.3.

Iterating the words 01 and 10 by H, we find:

(8)
0 1

1 0

H−→
0

0

1 0

0 1

H−→
0 1 0

0 1 0

0 1

1 0

H−→
0 1 0 0 1 0

0 1 0 0 1 0

1 0

0 1
.

Thus |Hn(10)| = |Hn(01| = Fn+2 and the common prefix of Hn(10) and Hn(01) has
length Fn+2 − 2. Therefore, if x = w01 and y = w10, then Hn(x) and Hn(y) coincide
for Tn(w) + Fn+2 − 2 digits. A similar argument works for x = w00 and y = w10.

C 2.5. – For x ∈ K and n ∈ N, Hn(x) and ρ coincide for at least Fn+3 − 2

digits if x ∈ [0] and for at least Fn+2 − 2 digits if x ∈ [1].

Proof. – If x ∈ [0], then, by Lemma 2.4, Hn(x) coincides with Hn(ρ) = ρ for at least
Tn(0) + Fn+2 − 2 digits. But Tn(0) = |Hn(0)| = Fn+1, so Tn(0) + Fn+2 − 2 = Fn+3 − 2.
If x ∈ [1], then H(x) ∈ [0] and the previous argument gives that Hn(x) coincides with
Hn(ρ) = ρ for at least Fn+2 − 2 digits.
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Proof of Proposition 2.2. – We iterate the blocks 0 · 01, 0 · 10 and 1 · 01 under H:

0 · 0 1

0 · 1 0

1 · 0 1

H−→
0 1

0 1

0

0

0

0

1 0

0 1

1 0

H−→
. . .1 0

. . .1 0

0 1

0 1 0

0 1 0

0 1 0

1 0

0 1

1 0

H−→ · · · ,

so the common central block here is bi-special, and it is the same as the common block v
of Hn(01) and Hn(10) of length Fn+2 − 2 in the proof of Lemma 2.4. Thus we have found
the bi-special word of length Fn+2−2, and every prefix and suffix of v is left and right-special
respectively. The fact that these are the only bi-special words can be derived from the Rauzy
graph for this Sturmian shift, see e.g., [1, Sec. 1]. In their notation, there is a bi-special word
of length k if the two special nodes in the Rauzy graph coincide: Dk = Gk. The lengths of
the two “buckles” of non-special nodes between Dk = Gk are two consecutive Fibonacci
numbers minus one, as follows from the continued fraction expansion

γ = 1 +
1

1 +
1

1 + · · ·

.

Therefore, the complexity satisfies

k + 1 = p(k) = #{nodes of Rauzy graph of order k} = Fn − 1 + Fn−1 − 1 + 1,

so indeed only the numbers k = Fn+1 − 2 can be the lengths of bi-special words.

2.3. Iterations of the renormalization operator

The renormalization operator for potentials can be rewritten as (recall the definition
of F an , from (4))

(9) RV |[a] =

Fa1 −1∑
j=0

V ◦ σj ◦H|[a].

This leads to an expression for RnV . The main result here is Lemma 2.7, which shows that

(10) ( RnV )(x) =

Fn∗−1∑
j=0

V ◦ σj ◦Hn(x),

where

(11) n∗ =

{
n+ 1 if x ∈ [0],

n if x ∈ [1].

The substitution H solves a renormalization equation of the form (2). If x = 0x1 . . ., then
H(x) = 01H(x1) . . . and σ2 ◦H(x) = H ◦ σ(x). If x = 1x1 . . . then σ ◦H(x) = H ◦ σ(x).
The renormalization equation is thus more complicated than for the constant length case.
We need an expression for iterates of H and σ.
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L 2.6. – Given k ≥ 0 and a = 0, 1, let w = w1w2 . . . wFak = Hk(a). Then

H ◦ σi ◦Hk|[a] = σ|H(w1...wi)| ◦Hk+1|[a]

for every 0 ≤ i < F ak .

Proof. – For k = 0 this is true by default and for k = 1, this is precisely what is done in
the paragraph before the lemma. Let us continue by induction, assuming that the statement
is true for k. Then σi removes the first i symbols of w = Hk(a), which otherwise, under H,
would be extended to a word of length |H(w1 . . . wi)|. We need this number of shifts to
remove H(w1 . . . wi) from H([w]) = Hk+1([a]).

L 2.7. – For every k ≥ 0 and a = 0, 1, we have

RkV |[a] = SFak V ◦H
k|[a],

where SnV =
∑n−1
i=0 V ◦ σi denotes the n-th ergodic sum.

Proof. – For k = 0 this is true by default. For k = 1, this follows by the definition of
the renormalization operator R. Let us continue by induction, assuming that the statement
is true for k. Write w = Hk(a) and ti = |H(wi)| = Fwi . Then

Rk+1
V |[a] = ( RV ) ◦ SFak V ◦H

k|[a] (induction assumption)

=

Fak−1∑
i=0

ti−1∑
j=0

V ◦ σj ◦H

σi ◦Hk|[a] (by Formula (9))

=

Fak−1∑
i=0

ti−1∑
j=0

V ◦ σj+|H(w1...wi)| ◦H

 ◦Hk|[a] (by Lemma 2.6)

=

Fak+1−1∑
l=0

V ◦ σl ◦Hk+1|[a],

as required.

2.4. Special words are sources of accidents

Overlaps of ρwith itself are strongly related to bi-special words. They are of prime impor-
tance to determine the fixed points of R and their stable leaves, see e.g., Formula (12) below.
Dynamically, they correspond to what we call accident in the time-evolution of the distance
between the orbit and K. For most x close to K, d(σ(x),K) = 2d(x,K), but the variation
of d(σj(x),K) is not always monotone with respect to j. When it decreases, it generates an
accident:

D 2.8. – Let x ∈ Σ and d(x,K) = 2−n. If d(σ(x),K) ≤ 2−n, we say that we
have an accident at σ(x). If there is an accident at σj(x), then we shall simply say we have an
accident at j.

The next lemma allows us to detect accidents.
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L 2.9. – Let x = x0x1 . . . coincide with some y ∈ K for d digits. Assume that the first
accident occurs at b. Then xb . . . xd−1 is a bi-special word in AK. Moreover, the word x0 . . . xd−1

is not right-special.

Proof. – By definition of accident, there exist y and y′ in K such that d(x,K) = d(x, y)

and d(σb(x),K) = d(σb(x), y′).

b

x

y

y′

d

F 2. Accident and bi-special words

Figure 2 shows that the word xb . . . xd−1 is bi-special because its two extensions y and y′

in K have different suffix and prefix for this word.

It remains to prove that x0 . . . xd−1 is not right-special. If it were, then x0 . . . xd−1xd =

y0 . . . yd−1yd would a K-admissible word, thus d(x,K) ≤ 2−(d+1) 6= 2−d.

3. Proof of Theorem 1

3.1. Control of the accidents under iterations of R

We compute RnV and show that accidents do not crucially perturb the Birkhoff sum
involved. This will follow from Corollaries 3.2 and 2.5.

Note that Lemma 2.4 shows that H is one-to-one. The next proposition explains the
relation between the attractor K and its image by H.

P 3.1. – The subshift K is contained in H(K) ∪ σ ◦H(K). More precisely, if
[0] ∩K ⊂ H(K) and [1] ∩K ⊂ σ ◦H(K).

Proof. – First note that Lemma 2.4 shows that H is one-to-one and recall that the
word 11 is forbidden in K. Hence, each digit 1 in x = x0x1x2 . . . ∈ K is followed and
preceded by a 0 (unless the 1 is in first position).

Assumingx0 = 0, we can uniquely splitx into blocks of the form 0 and 01. In this splitting,
we replace each single 0 by 1 and each pair 01 by 0. This produces a new word, say y, and
H(y) = x by construction. Denote this operation by H−1. It can be used on finite words
too, provided that the last digit is 1. If x0 = 1, we repeat the above construction with 0x, and
x = σ ◦H(y).
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It remains to prove that y ∈ K. For every x ∈ K, there is a sequence kn → ∞ such that
σkn(ρ) → x. Assume again that x0 = 0. Then we can find a sequence ln ∼ kn/γ such that
H ◦σln(ρ) = σkn(ρ). Therefore y := limn σ

ln(ρ) ∈ K satisfiesH(y) = x. Finally, for x0 = 1,
we repeat the argument with 0x.

C 3.2. – If d(x,K) = d(x, y) with y ∈ K, then d(Hn(x),K) = d(Hn(x), Hn(y))

for n ≥ 0.

Proof. – Write x = wa and y = wa where a is an unknown digit and a its opposite.
Note that Hn(x) starts with 0 for any n ≥ 1. Assume that there is some z ∈ K such that
d(H(x), z) < d(H(x), H(y)).

Case 1: x = w0 . . . and y = w1 . . . Necessarily, y = w10. Therefore H(x) = H(w)01 . . . and
H(y) = H(w)001 . . . By assumption, z coincides with H(x) longer than H(y), which shows
that z starts as z = H(w)01 . . . Consequently, H−1(z) = w0 . . . and this contradicts that
d(x,K) = d(x, y).

Case 2: x = w1b . . . and y = w0 . . . Then H(x) = H(w)00 . . . (since H(b) starts with 0

regardless what b is) andH(y) = H(w)01 . . .Again z coincides withH(x) longer thanH(y)

and thus z starts as H(w)00. The 0 before last position is necessarily a single zero for the
H−1-procedure and thus H−1(z) coincide with x for longer than y. This is a contradiction.

Consequently, for both cases we have shown d(H(x),K) = d(H(x), H(y)). The result
follows by induction.

By (10), RnV is given by a Birkhoff sum of Fn∗ terms where n∗ = n + 1 or n as in (11).
To compute ( RnV )(x), we need an estimate for d(σj(Hn(x)),K), for 0 ≤ j ≤ Fn∗ − 1. The
key point is that no accident can occur for these j. This follows from the next lemma.

L 3.3. – The sequence Hn(x) has no accident in the first Fn∗ entries.

Proof. – We give the proof for x ∈ [1], so n∗ = n. The proof for x ∈ [0] is analogous.
By Corollary 2.5,Hn(x) coincides for at least Fn+2− 2 digits with ρ. If an accident happens
in the first Fn digits, say at entry 0 ≤ j < Fn, then by Lemma 2.9, a bi-special word starts
at j, which by Proposition 2.2 is a suffix of ρ of length Fm − 2 for some m. Since we have an
accident, j + Fm − 2 ≥ Fn+2 − 1, so m > n+ 1.

Hence ρ0 . . . ρFn+2−1 can be written asBBB′ whereB is the suffix of ρ of length j andB′

is a suffix of ρ of length≥ |B|/γ. ClearlyB starts with 0. We can split it uniquely into blocks 0

and 01, andB fits an integer number of such blocks, because if the final block would overlap
with the second appearance of B, then B would start with 1, which it does not.

Therefore we can perform an inverse substitution H−1, for each block B and also for B′

because we can apply H−1 on ρ0 . . . ρFn+2−1. This gives H−1(BBB′) = CCC ′ which has
the same characteristics. Repeating this inverse iteration, we find that ρ starts with 0101, or
with 00, a contradiction.
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Let N(x, n) be the integer such that 2−N(x,n) = d(Hn(x),K). By the previous lemma
d(σj(Hn(x))K) = 2−(N(x,n)−j) for every j < Fn∗ . For the largest value j = FN∗ , we have
d(σj(Hn(x)),K) = 2−(Tn+Fn+2−2−Fn∗ ). Therefore, if g is the α-density function for V , then
we obtain

(12) ( RnV )(x) =

Fn∗−1∑
j=0

g ◦ σj ◦Hn(x)

(N(x, n)− j)α
+ o

Fn∗−1∑
j=0

g ◦ σj ◦Hn(x)

(N(x, n)− j)α

 .

3.2. Proof of Theorem 1

3.2.1. Ṽ is a fixed point. – Take Ṽ as in (5). We show that R fixes Ṽ . Assume x /∈ K is such
that κ̃0(x) = n and κ̃1(x) = m (see the definition of κ̃a above the statement of Theorem 1).
Then, by Lemmas 2.3 and 2.4 and the fact that H(x) starts with 0, we get

κ̃0(H(x)) = n+m+ 1 κ̃0(σ ◦H(x)) = n+m,

κ̃1(H(x)) = n κ̃1(σ ◦H(x)) = n.

– If x starts with 0, then H(x) starts with 01 and

( RṼ )(x) = Ṽ (H(x)) + Ṽ ◦ σ(H(x))

= log

(
(n+m+ 1) + 1

γn+ γ

(n+m+ 1) + 1
γn+ γ − 1

)
+ log

(
γ(n+m) + n+ γ2

γ(n+m) + n+ γ2 − 1

)

= log

(
(n+m+ 1) + 1

γn+ γ

n+m+ 1
γn+ γ

)
+ log

(
n+m+ 1

γn+ γ

n+m+ 1
γn+ γ − 1

γ

)

= log

(
n+m+ 1 + 1

γn+ γ

n+m+ 1
γn+ γ − 1

γ

)

= log

(
n(1 + 1

γ ) +m+ γ + 1

n(1 + 1
γ ) +m+ γ − 1

γ

)
since γ2 = γ + 1

= log

(
γn+m+ γ2

γn+m+ γ(γ − 1)

)
= log

(
n+ 1

γm+ γ

n+ 1
γm+ γ − 1

)
= Ṽ (x).

– If x starts with 1, then H(x) starts with 0 and

( RṼ )(x) = Ṽ (H(x)) = log

(
(n+m+ 1) + 1

γn+ γ

(n+m+ 1) + 1
γn+ γ − 1

)

= log

(
γ(n+m+ 1) + n+ γ2

γ(n+m+ 1) + n+ γ2 − γ

)
= log

(
n(γ + 1) + γm+ γ + γ2

n(γ + 1) + γm+ γ2

)
= log

(
γ2n+ γm+ γ3

γ2n+ γm+ γ2

)
= log

(
γn+m+ γ2

γn+m+ γ

)
= log

(
γn+m+ γ2

γn+m+ γ2 − 1

)
= Ṽ (x).
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3.2.2. Toeplitz summation. – Next, we compute RnV for arbitrary V ∈ X1. (For V ∈ Xα
with α 6= 1, we can perform the same computation, and obtain an extra factor F 1−α

n∗ which
will push the limit to 0 or∞ according to whether α > 1 or α < 1.)

We will show that
∑Fn∗−1
j=0

g◦σj◦Hn(x)
N(x,n)−j actually converges, which immediately yields that

o
(∑Fn∗−1

j=0
g◦σj◦Hn(x)
N(x,n)−j

)
converges to 0. We can thus ignore the little o terms.

Lemmas 2.3 and 2.4 and Corollary 3.2 give

N(x, n) := log2 d(Hn(x),K) = Tn + Fn+2 − 2 for Tn := Fn+1κ̃0(x) + Fnκ̃1(x).

We thus have to compute the limit of

Fn∗−1∑
j=0

g ◦ σj ◦Hn(x)

Fn+1κ̃0(x) + Fnκ̃1(x) + Fn+2 − (j + 2)

as n∗ → +∞, where n∗ = n + 1 if x ∈ [0] and n∗ = n if x ∈ [1]. Moreover g is a non-
negative continuous function, hence uniformly continuous. For y ∈ K closest to x, the point
σFn∗ ◦Hn(x) coincides with σFn∗ ◦Hn(y) for at least Fn− 2 digits. There exists a sequence
εn ↓ 0 such that ∣∣g ◦ σj(Hn(x))− g ◦ σj(Hn(y))

∣∣ ≤ εn,
for every j ≤ Fn∗ − 1.

Finally, Binet’s formula Fn+1 − γFn =
√

5γ−(n−1) shows that

Fn+1κ̃0(x) + Fnκ̃1(x)+Fn+2 − (j + 2)

= Fn+1(κ̃0(x) +
1

γ
κ̃1(x) + γ − j

Fn+1
)(1 + ε′n)

= Fn(γκ̃0(x) + κ̃1(x) + γ2 − j

Fn
)(1 + ε′′n),

where ε′n and ε′′n tend to 0 as n→ +∞.

Combining ε, ε′ and ε′′ in a single o(1), we can rewrite the above equalities to

(13)
Fn∗−1∑
j=0

g ◦ σj ◦Hn(x)

Fn+1κ̃0(x) + Fnκ̃1(x) + Fn+2 − (j + 2)
=

1 + o(1)

Fn∗

Fn∗∑
j=0

g ◦ σj ◦Hn(y)

Xn − j
Fn∗

,

where Xn = κ̃0(x) + 1
γ κ̃1(x) + γ if x ∈ [0] and Xn = γκ̃0(x) + κ̃1(x) + γ2 if x ∈ [1].

3.2.3. Convergence of the weighted sum in (13). – The reader can verify that we are here
considering a Toeplitz summation method, with a regular matrix (see [16, Definition 7.5]
and [28]), up to a renormalization factor, which is the limit of

1

Fn∗

Fn∗∑
j=0

1

Xn − j
Fn∗

.

This expression is a Riemann sum, and converges to Ṽ (x) as n∗ →∞.

Using notations from [28], coefficients of the Toeplitz matrix are

an,k :=
1

Ṽ (x)

1

Fn∗Xn − k
for k ≤ Fn∗ − 1 and an,k = 0 otherwise,
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and they satisfy the Müller criterion (see [20] and [28, p. 1 equality (1.4)])

lim
n→+∞

+∞∑
k=1

|an,k − an,k+1| log k = 0.

Therefore

(14) lim
n→+∞

1

Fn∗

Fn∗∑
j=0

g ◦ σj(z)
Xn − j

Fn∗

= Ṽ (x)

∫
g dµK µK-a.e.

Nevertheless, our expression in (13) is different, because the point z = Hn(y) depends on n.
A priori, this may generate fluctuations in the convergence, but we prove here that this is not
the case.

The main argument is that (K, σ) is uniquely ergodic. This implies that the convergence
in (14) is uniform in z. Indeed, if it is not uniform, we can find ε > 0 and a sequence of zn such
that for everyn, | 1

Fn∗

∑Fn∗
j=0

g◦σj(zn)

Xn− j
Fn∗
−Ṽ (x)

∫
g dµK| > ε for everyn. Then any accumulation

point µ∞ of the family of measures

µn :=
1

Fn∗

Fn∗∑
j=0

1

Xn − j
Fn∗

δσj(zn)

is σ-invariant (because Fn∗ → +∞), supported on K, and
∫
g dµ∞ 6=

∫
g dµK. This

contradicts the unique ergodicity for (K, σ).
Therefore, the convergence in (14) is uniform in z and this shows that

1

Fn∗

Fn∗∑
j=0

g ◦ σj(Hn(y))

Xn − j
Fn∗

→ Ṽ (x) ·
∫
g dµK.

This finishes the proof of Theorem 1.

4. Proof of Theorem 2

4.1. The case − log n+1
n

We first consider the potential ϕ(x) = − log n+1
n when d(x,K) = 2−n, leaving general

potentials in X1 for later.

4.1.1. Strategy, local equilibria. – Fix some cylinder J such that the associated word, sayωJ ,
does not appear in ρ (as e.g., 11). We follow the induction method presented in [18]. Let τ
be the first return time into J (possibly τ(x) = +∞), and consider the family of transfer
operators

LZ,β : ψ 7→ LZ,β(ψ)

x 7→ LZ,β(ψ)(x) :=

+∞∑
n=1

∑
y∈J τ(y)=n
σn(y)=x

eβ·(Snϕ)(y)−nZψ(y),

which acts on the set of continuous functions ψ : J → R. Following [18, Proposition 1],
for each β there exists Zc(β) such that LZ,β is well defined for every Z > Zc(β). By [18,
Theorem 1], Zc(β) ≥ 0 because the pressure of the dotted system (which in the terminology
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of [18] is the system restricted to the trajectories that avoid J) is larger than or equal to the
pressure of K which is zero.

We shall prove

P 4.1. – There exists β0 such that L0,β(11J)(x) < 1 for every β > β0 and
x ∈ J .

We claim that if Proposition 4.1 holds, then [18, Theorem 4] proves that P(β) = 0 for
every β > β0, and µK is the unique equilibrium state for βϕ.

To summarize [18] (and adapt it to our context), the pressure function(2) satisfies
Zc(β) ≤ P(β), P(β) ≥ 0 and P(β) = 0 if log( L0,β(11J)) < 0 (see Figure 3). As long
as P(β) > 0, there is a unique equilibrium state and it has full support. In particular this
shows that the construction does not depend on the choice of J . If Proposition 4.1 holds,
then P(β) = 0, for β > βc and no equilibrium state gives positive weight to J (and also to
any cylinder which does not intersect K). Therefore, µK is the unique equilibrium state.

β

z

Zc(β)

z = P(β)

z = log λ0,β

F 3. The pressure between Zc(β) and log λ0,β := L0,β(11J)

4.1.2. Proof of Proposition 4.1-Step 1. – We reduce the problem to the computation of a
series depending on β. Note that ϕ(x) only depends on the distance from x to K. This shows
that if x, x′ ∈ J and y, y′ ∈ J are such that

y = ωx , y′ = ωx′,

with ω ∈ {0, 1}n, τ(y) = τ(y′) = n, then

(Snϕ)(y) = (Snϕ)(y′).

In other words, LZ,β(11J) is a constant function, and then equal to the spectral radius λZ,β
of LZ,β .

Consequently, to computeλZ,β , it suffices to compute the sum of all eβ·(Snϕ)(ω)−nZ , where
ω is a word of length n+ |ωJ |, starting and finishing with ωJ . Such a word ω can also be seen
as a path of length n starting from J and returning (for the first time) to J at time n.

(2) We will see that L0,β(11J ) is a constant function on J .
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We split such a path in several sub-paths. We fix an integer N and say that the path is free
at time k if ωk . . . ωn−1ωJ is at distance larger than 2−N to K. Otherwise, we say that we have
an excursion. The path is thus split into intervals of free times and excursions. We assume that
N is chosen so large that 0 is a free time. This also shows that for every k ≤ n, d(σk(ωωJ),K)

is determined by ωk . . . ωn−1.
If k is a free time, then ϕ(σk(ωωJ)) ≤ AN := − log

(
1 + 1

N

)
. Denote by k0 the maximal

integer such that k is a free time for every k ≤ k0. Then Sk0+1ϕ ≤ (k0 + 1)AN and there are
at most 2k0+1 such prefixes of length k0 + 1.

Now, assume that every j for k0 + 1 ≤ j ≤ k0 + k1 is an excursion time, and assume that
k1 is the maximal integer with this property. To the contribution (Sk0+1ϕ)(ωωJ) we must
add the contribution (Sk1ϕ)(σk0+1(ωωJ)) of the excursion. Then we have a new interval of
free times, and so on. We can compute L0,β(11J) by grouping together paths with the same
number of free periods and excursions. If we denote byCE the total contribution of all paths
with exactly one excursion (and only starting at the beginning of the excursion), then we have

(15) λ0,β = L0,β(11J) ≤
+∞∑
k=1

(
+∞∑
k0=0

e(k0+1)(βAN+log 2)

)k+1

CkE .

The sum in k accounts for k + 1 free intervals with k excursions between them. The sum
in k0 accounts for the possible length k0 + 1 for an interval of free times. These events
are potentially not independent but the sum in (15) includes all paths, possible or not, and
therefore yields an upper bound.

The integer N is fixed, and we can take β so large that βAN < − log 2. This shows that
the sum in k0 in (15) converges and is as close to 0 as we want if β is taken sufficiently large.

To prove Proposition 4.1, it is thus sufficient to prove that CE can be made as small as we
want if β increases.

4.1.3. Proof of Proposition 4.1-Step 2. – We split excursions according to their number of
accidents, see Definition 2.8. Let x be a point at a beginning of an excursion.

Let B0 := 0 = b0, B1 := b1 > b0, B2 := b1 + b2 > b1, B3 := b1 + b2 + b3, . . . , BM :=

b1 + b2 + · · · + bM be the times of accidents in the excursion. There is y0 ∈ K such that x
shadows y0 at the beginning of the excursion, say for d0 iterates. Let yi ∈ K, i = 1, . . . ,M ,
be the points that x starts to shadow at the i-th accident, for di iterates.

y3

d0

b1

d1
y1

d2

b3b2

x

y0 y2

F 4. Accidents during an excursion.

By Lemma 2.9, xbi+1 . . . xdi is bi-special and by Proposition 2.2, di − bi+1 = Fni+1 − 2

for some ni+1.
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R 1. – We emphasize that the first di entries of yi form neither a right-special
word (due to Lemma 2.9) nor a left-special word, because otherwise there would be an
accident earlier.

If there are M + 1 accidents (counting the first as 0), the ergodic sums for ϕ are

(Sbi+1ϕ)(σBi(x)) =

bi+1−1∑
k=0

ϕ ◦ σBi+k(x)

=

bi+1−1∑
k=0

− log
di + 1− k
di − k

= − log
di + 1

di + 1− bi+1
= − log(1 +

bi+1

di + 1− bi+1
),

for 0 ≤ i ≤M − 1, while the ergodic sum of the tail of the excursion is

(16) (SdMϕ)(σBM (x)) =

dM−1∑
k=0

ϕ ◦ σBM+k(x) = − log
dM + 1

N + 1
.

We set ei := eβ·(Sbiϕ)(σBi−1 (x)) for i = 1 . . .M and eM+1 := eβ·(SdMϕ)(σBM (x)).
ComputingCE , we can order excursions according to their number of accidents (M+1) and
then according to the contribution of each accident. Let Ei stand for the total contribution
of all possible ei’s between accidents i− 1 and i. Then

(17) CE =

+∞∑
M=0

M+1∏
i=1

Ei.

4.1.4. Proof of Proposition 4.1-Step 3. – Let us now find an upper bound for Ei. By defini-
tion, Ei is the sum over the possible di−1 and bi of ei.

Recall that di−1−bi = Fni−2, so bi and Fni determine di−1. The key idea is that Fni and
Fni+1 determine the possible values of bi. This implies thatEi can be written as an expression
over the Fni and Fni+1 .

For 2 ≤ i ≤ M each ei depends on Fni and bi. Let us show that for 2 ≤ i ≤ M , bi
depends on ni and ni−1. Indeed, the sequence yi ∈ K coincides with ρ for Fni − 2 initial
symbols, and from entry bi+1 has another di − bi+1 = Fni+1

− 2 symbols in common with
the head of ρ, but differs from xBi+di at entry di, see Figure 4. Thus we need to find all the
values of di > Fni − 2 such that ρ0 . . . ρdi−1 ends the bi-special word ρ0 . . . ρFni+1−3

but is
itself not bi-special. The possible starting positions of this appearance of ρ0 . . . ρFni+1−3

are
the required numbers bi+1.

L 4.2. – Let us denote by bi+1(j), j ≥ 1, the j-th value that bi+1 can assume. Then

(18) bi+1(j) ≥ max(Fni − Fni+1
, Fni−1) + jFni+1−2.

This will allow us to find an upper bound for Ei for 1 ≤ i ≤M − 1 later in this section.
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Proof. – We abbreviate the bi-special wordsLk = ρ0 . . . ρFk−3 for k ≥ 4. For the smallest
value di ≥ Fni−2 so that ρ0 . . . ρdi−1 ends in (but is not identical to) a blockLni+1

, this block
starts at entry:

bi+1(0) =


Fni − Fni+1 if ni+1 < ni and ni − ni+1 is even,

Fni − Fni+1−1 if ni+1 < ni and ni − ni+1 is odd,

Fni−1 if ni+1 ≥ ni.

However, if ni+1 < ni then di = Fni − 2, and if ni+1 ≥ ni then di = Fni+1+1 − 2 and
thus ρ0 . . . ρdi−1 is right-special, contradicting Lemma 2.9. Therefore we need to wait for the
next appearance ofLni+1

. For the Rauzy graph of the Fibonacci shift, the bi-special wordLk
is the single node connecting loops of length Fk−1 and Fk−2, see [1, Section 1]. Therefore
the gap between two appearances of Lk is always Fk−2 or Fk−1. This gives bi+1(j + 1) ≥
bi+1(j) + Fni+1−2 for all j ≥ 0 and (18) follows.

For i = 1, we introduce the quantity n0, coinciding with the overlap of the end of the
previous “fictitious” word, say y−1. The point is that y0 is the “beginning” of the excursion,
thus the first accident. Then Fn0

≤ N and Fn1
> N which yields n0 < n1. Formula (18) can

now be applied. Therefore b1 = Fn0
− 2 + j

γ (Fn1
− 2) with j ≥ 0.

The estimate

EM+1 =
∑
d≥1

e−β log(
FnM

+d

N+1 ) =
∑
d≥1

(
FnM + d

N + 1

)−β
≤ N + 1

β − 1

(
FnM
N + 1

)1−β

follows from (16), with dM = FnM + d and d ≥ 1.

Recall that within excursions, all Fnj ≥ N + 1 for all j, where N can be chosen as large
as we want. We also remind Binet’s formula Fn = 1√

5
(γn+1 − (−1/γ)n+1), which allows to

replace Fn by γn+1

√
5

, and to treat the quantities−1 as negligible compared to γni for large ni,
as it is the case. Therefore, assuming that β > 1, there exists a constant C such that

Ei =
∑
j≥1

e
−β log

(
1+

max(Fni
−Fni+1

,Fni−1)+jFni+1−2

Fni+1
−1

)

≤ C
∑
j≥1

(
1 + max(γni−ni+1 − 1, γni−ni+1−1) + j/γ2

)−β
≤ Cγ2

β − 1

(
1 + max(γni−ni+1 − 1, γni−ni+1−1)

)1−β
,

for 2 ≤ i ≤M .

Let P = b
log N√

5

log γ c = max{n ∈ N : Fn ≤ N}. Then (17) yields

(19) CE ≤
+∞∑
M=0

(
γ2

β − 1

)M
(N + 1)

β − 1

·
∑

n1,...nM>P

n0≤P

E1

(
1 + max(γni−ni+1 − 1, γni−ni+1−1)

)1−β
γ(P−nM )(β−1).
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4.1.5. Proof of Proposition 4.1-Step 4. – We show that CE → 0 as β → +∞.

P 4.3. – There exists A = A(β) ∈ (0, 1) with limβ→+∞A = 0 such that

CE ≤ 2P
N + 1

β − 1

+∞∑
n=1

γ−n(β−1)
+∞∑
M=0

AM
M∑
i=0

ni

i!
.

Before proving this proposition, we show that it finishes the proof of Proposition 4.1.
The series has only positive terms. Clearly,

∑+∞
M=0A

M
∑M
i=0

ni

i! ≤
1

1−Ae
n, so the main sum

converges if γβ−1 > e. Thus Proposition 4.3 implies that CE → 0 as β → +∞.

Therefore, inequality (15) shows that if β → +∞, then λ0,β → 0 too, and hence
Proposition 4.1 is proved.

The rest of this subsection is devoted to the proof of Proposition 4.3. The following lemma
follows easily by induction:

L 4.4. – Let η and y be positive real numbers. Then for every n,∫ ∞
y

xne−η(x−y)dx =

n∑
j=0

n!

j!

yj

ηn+1−j .

For some positive integer n and real numbers ξ, ζ > 0, let Dn = (dn,i,j)
n+1,n
i=1,j=1 be the

matrix with n+ 1 rows and n columns defined by

dn,i,j :=


(j−1)!
(i−1)! ζ

j−i+1 if i ≤ j,
ξ
j if i = j + 1,

0 if i > j + 1,

or in other words:

Dn =



0!ζ 1!ζ2 2!ζ3 . . . (j − 1)!ζj . . . (n− 1)!ζn

ξ ζ . . . (n− 2)!ζn−1

0 ξ
2 ζ

...

0 0 ξ
3

. . . (j−1)!
(i−1)! ζ

j−i+1
...

... 0
. . .

. . .
...

... 0 ξ
j ζ ζ2

0 0 ξ
n−1 ζ

0 0 . . . . . . 0 0 ξ
n



.

We call w non-negative (and write w � 0) if all entries of w are non-negative. This defines a
partial ordering on vectors by

w′ � w ⇐⇒ w′ −w � 0.
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L 4.5. – Assume 0 < ζ < 1 and set K := 1
1−ζ . Then, for every n,

Dn ·



Kn−1

0!

Kn−1

1!

Kn−1

2!

...
Kn−1

(n−1)!


�



Kn

0!

Kn

1!

Kn

2!

...
Kn

n!


.

Proof. – This is just a computation. For the first row we get
n∑
j=1

(j − 1)!ζj .
Kn−1

(j − 1)!
≤ Kn−1.

ζ

1− ζ
≤ Kn.

For row i > 1 we get

1

(i− 1)

Kn−1

(i− 2)!
+

n∑
j=i

(j − 1)!

(i− 1)!
ζj−i+1 Kn−1

(j − 1)!
=

Kn−1

(i− 1)!

(
1 + ζ + ζ2 . . .

)
≤ Kn

(i− 1)!
.

P 4.6. – Set ζ := 1
(β−1) log γ andK = 1

1−ζ . For everyM ≥ 2, consider integers
n1, . . . nM , with nM > P . Then,∑
n1,...,nM−1>P

M−1∏
i=1

(
1 + max(γni−ni+1 − 1, γni−ni+1−1)

)1−β ≤ KM−1
M−1∑
i=0

(nM − P )i

i!

Proof. – Note that∑
n1,...,nM−1>P

M∏
i=1

(
1 + max(γni−ni+1 − 1, γni−ni+1−1)

)1−β
=

∞∑
nM−1=1

(
· · ·
( ∞∑
n2=1

( ∞∑
n1=1

(
1 + max(γn1−n2 − 1, γn1−n2−1)

)1−β)

· (1 + max(γn2−n3 − 1, γn2−n3−1))1−β
)
· · ·

(
1 + max(γnM−1−nM − 1, γnM−1−nM−1)

)1−β)
.

This means that we can proceed by induction. Now
∞∑

n1=P+1

(1 + max(γn1−n2 − 1, γn1−n2−1))1−β

≤
∫ n2

P

(1 + γx−n2−1))1−βdx+

∫ ∞
n2

(γx−n2)1−βdx

≤ n2 − P +

∫ ∞
n2

e−(β−1) (x−n2) log γ dx = n2 − P +

∫ ∞
n2

e−
x−n2
ζ dx,

because ζ = 1
(β−1) log γ . This shows that the result holds for M = 2.
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Assuming that the sum forM = p is of the form
∑p−1
j=0 aj(np−P )j , we compute the sum

for M = p+ 1.

∞∑
np=P+1

p−1∑
j=0

aj
(np − P )j

(1 + max(γnp−np+1 − 1, γnp−np+1−1))β−1

≤
∑
j

aj

∫ np+1

P

(x− P )j

(1 + γx−np+1−1)β−1
dx+

∑
j

aj

∫ ∞
np+1

(x− P )j

(γx−np+1)β−1
dx

≤
∑
j

aj(np+1 − P )j+1

(j + 1)
+

∫ ∞
np+1

(x− P )je−
x−np+1

ζ dx.

Set w ·w′ =
∑
wiw

′
i, for vectors w = (w1, . . . , wp+1) and w′ = (w′1, . . . , w

′
p+1). Lemma 4.4

yields

∞∑
np=P+1

p−1∑
j=0

aj
(np − P )j

(1 + max(γnp−np+1 − 1, γnp−np+1−1))β−1

≤
∑
j

aj
(j + 1)

(np+1 − P )j+1 +

j∑
i=0

j!

i!
ζj−i+1(np+1 − P )i

≤ Dp


a0

a1

...

ap−1

 ·


1

np+1

...

npp+1

 .

Lemma 4.5 concludes the proof of the induction.

Proof of Proposition 4.3. – We have just proved that∑
n1,...nM>P

(
1 + max(γni−ni+1 − 1, γni−ni+1−1)

)1−β
γ(P−nM )(β−1)

≤ KM−1
+∞∑

nM=P+1

M−1∑
j=0

(nM − P )j

j!
γ(nM−P )(β−1).

It remains to sum over n0. Note that in that case, there are only P terms of the form∑+∞
j=0

1

(1+γn0−n1−2+ j
γ )
β because n0 ≤ P < n1 for each possible n0,

+∞∑
j=0

1(
1 + γn0−n1−1 + j

γ2

)β =
1

(1 + γn0−n1−2)
β

+

+∞∑
j=1

1(
1 + γn0−n1−2 + j

γ2

)β
≤ 1 +

γ2

β − 1

1

(1 + γn0−n1−2)
β−1

≤ 1 +
β − 1

2
,
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for β ≥
√

2γ. Finally, inequality (19) yields

CE ≤ 2P
N + 1

β − 1

+∞∑
M=0

AM
+∞∑
n=1

γn(1−β)
M−1∑
j=0

nj

j!
,

with A := γ
β−1K = γ

β−1− 1
log γ

. This tends to 0 as β → +∞.

4.2. End of the proof of Theorem 2

4.2.1. End of the case− log n+1
n . – Proposition 4.1 shows that there exists some minimal β0

such that λ0,β < 1 for every β > β0. This also shows that P(β) = 0 for β > β0. Since P(β) is
a continuous and convex function, it is constant for β > β0. As P(0) = log 2, there exists a
minimal βc > 0 such that P(β) > 0 for every 0 ≤ β < βc. Clearly, βc ≤ β0.

We claim that for β < βc, there exists a unique equilibrium state and that it has full
support. Indeed, there exists at least one equilibrium state, say µβ , and at least one cylinder,
say J , has positive µβ-measure. Therefore, we can induce on this cylinder, and the form of
potential (see [18, Theorem 4]) shows that there exists a unique local equilibrium state. It is
a local Gibbs measure and therefore µβ is uniquely determined on each cylinder, and unique
and with full support (due to the mixing property).

We claim that the pressure function P(β) is analytic on [0, βc]. Indeed, each cylinder J
has positive µβ-measure and the associated Zc(β) is the pressure of the dotted system (that
is: restricted to the trajectories that avoid J). This set of trajectories has a pressure strictly
smaller than P(β) because otherwise, several equilibrium states would coexist. Therefore
P(β) is determined by the implicit equation λ P(β),β = 1 and P(β) > Zc(β) for β ∈ [0, βc].
The Implicit Function Theorem shows that P(β) is analytic.

For β ≥ βc, the pressure P(β) = 0 and for cylinders J as above, we have Zc(β) ≥ 0. This
shows that Zc(β) = 0 for every β ≥ βc. Due to the form of the potential, λ0,β is continuous
and decreasing in β.

Now, the next result finishes the proof of Theorem 2 in the case that V (x) = − log n+1
n .

L 4.7. – The parameters βc and β0 coincide.

Proof. – As mentioned above βc ≤ β0. Assume by contradiction βc < β0. We claim that
λ0,βc > 1. Indeed, β 7→ λ0,β is strictly decreasing, and λ0,βc ≤ 1 would yield that λ0,β < 1

for every β > βc. This would imply βc ≥ β0 because β0 is minimal with this property, and
we have assumed βc < β0.

Now, for fixed β, Z 7→ λZ,β is continuous and strictly decreasing and goes to 0 as
Z → +∞. Therefore, since λ0,βc > 1, there exists Z > 0 such that λZ,βc = 1. The
local equilibrium state for this Z generates some σ-invariant probability measure(3) with
pressure for βcϕ equal to Z, thus positive, and this contradicts P(βc) = 0. This proves that
βc = β0.

(3) Since Zc(βc) = P(βc) = 0 < Z, the expectation of the return time is comparable to
∣∣∣ ∂ LZ,βc (11J )

∂Z

∣∣∣, which
converges.
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4.3. The general case V ∈ X1

For V ∈ X1, there exists κ > 0 such that

−V ≤ κϕ.

This shows that the pressure function is constant equal to zero for β ≥ β0/κ. Again, the
pressure is convex, thus non-increasing and continuous. We can define β′c such that P(β) > 0

for 0 ≤ β ≤ β′c and P(β) = 0 for β ≥ β′c.
The rest of the argument is relatively similar to the previous discussion. We deduce that

for β < β′c, there exists a unique equilibrium state, it has full support and P(β) is analytic on
this interval. For β ≥ β′c, it is not clear that λ0,β decreases in β. However, we do not really
need this argument, because if λ0,β > 1, then the decrease of Z 7→ λZ,β (which follows from
convexity argument and limZ→+∞ λZ,β = 0), is sufficient to produce a contradiction.
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