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P-ALCOVES AND NONEMPTINESS
OF AFFINE DELIGNE-LUSZTIG VARIETIES

 U GÖRTZ, X HE  S NIE

A. – We study affine Deligne-Lusztig varieties in the affine flag manifold of an algebraic
group, and in particular the question, which affine Deligne-Lusztig varieties are non-empty. Under mild
assumptions on the group, we provide a complete answer to this question in terms of the underlying
affine root system. In particular, this proves the corresponding conjecture for split groups stated in [3].
The question of non-emptiness of affine Deligne-Lusztig varieties is closely related to the relationship
between certain natural stratifications of moduli spaces of abelian varieties in positive characteristic.

R. – Nous étudions les variétés de Deligne-Lusztig affines dans la variété de drapeaux affine
d’un groupe algébrique, et en particulier la question de savoir quelles variétés de Deligne-Lusztig affines
sont non vides. À quelques restrictions près, nous donnons une réponse complète à cette question en
termes de système de racines affine sous-jacent. Pour le cas des groupes déployés, cela résout en parti-
culier la conjecture énoncée dans [3]. Ces propriétés sur les variétés de Deligne-Lusztig affines reflètent
les relations entre certaines stratifications naturelles d’espaces de modules des variétés abéliennes en
caractéristique positive.

1. Introduction

1.1. – Affine Deligne-Lusztig varieties (see below for the definition) are the analogues of
Deligne-Lusztig varieties in the context of an affine root system, and hence are natural
objects which deserve to be studied in their own interest. Furthermore, results about them
have direct applications to certain questions in arithmetic geometry, specifically to moduli
spaces of p-divisible groups and reductions of Shimura varieties. More concretely, if M is
a Rapoport-Zink space, then M(k) can be identified by Dieudonné theory with a (mixed-
characteristic) affine Deligne-Lusztig variety. In this case, the formal scheme M provides a
scheme structure. See [2, 5.10] for further information on this connection.

U. Görtz was partially supported by the Sonderforschungsbereich TR 45 “Periods, Moduli spaces and Arith-
metic of Algebraic Varieties” of the Deutsche Forschungsgemeinschaft. Xuhua He was partially supported by
HKRGC grant 602011.
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648 U. GÖRTZ, X. HE AND S. NIE

1.2. – Let Fq be the finite field with q elements. Let k be an algebraic closure of Fq. Consider
one of the following two cases:

– Mixed characteristic case. Let F/Qp be a finite field extension with residue class
field Fq, and let L be the completion of the maximal unramified extension of F.
Denote by ε a uniformizer of F.

– Equal characteristic case. Let F = Fq((ε)), the field of Laurent series over Fq,
and L := k((ε)), the field of Laurent series over k. As in the previous case, L is
the completion of the maximal unramified extension of F.

Let G be a connected reductive group over F which splits over a tamely ramified extension
of F. Let σ be the Frobenius automorphism of L/F. We also denote the induced automor-
phism on G(L) by σ.

We fix a σ-invariant Iwahori subgroup I ⊂ G(L). In the equal characteristic case we
can view G(L)/I as the k-points of an ind-projective ind-scheme Flag over k, the affine
flag variety for G, see [10]. The I-double cosets in G(L) are parameterized by the extended
affine Weyl group W̃ . The automorphism on W̃ induced by σ is denoted by δ : W̃ → W̃ .
Furthermore we denote by S̃ ⊆ W̃ the set of simple affine reflections.

Following Rapoport [12], we define:

D 1.2.1. – Let x ∈ W̃ , and b ∈ G(L). The affine Deligne-Lusztig variety
attached to x and b is the subset

Xx(b) = {gI ∈ G(L)/I; g−1bσ(g) ∈ IxI}.

In the equal characteristic case, it is not hard to see that there exists a unique locally
closed Xx(b) ⊂ Flag whose set of k-valued points is the subset Xx(b) ⊆ G(L)/I defined
above. Moreover, Xx(b) is a finite-dimensional k-scheme, locally of finite type over k (but
not in general of finite type: depending on b, Xx(b) may have infinitely many irreducible
components). In the mixed characteristic case, the term “variety” is not really justified. More
precisely one should speak about affine Deligne-Lusztig sets.

As experience and partial results show, many basic properties of affine Deligne-Lusztig
varieties such as non-emptiness and dimension depend only on the underlying combinatorial
structure of the (affine) root system, and therefore coincide in the mixed characteristic and
equal characteristic cases.

For the remainder of the introduction, we fix a basic element b ∈ G(L), i.e., an element
whose Newton vector is central, or equivalently, whose σ-conjugacy class can be represented
by a length zero element of the extended affine Weyl group. See [8] or [13] for more details.

So far, the main questions that have been studied are

1. For which x is Xx(b) 6= ∅?
2. If Xx(b) 6= ∅ and Xx(b) carries a scheme structure, what is dimXx(b)?

Until recently, most of the results have been established only for split groups. For tamely
ramified quasi-split groups, we refer to [6, Section 12] for question 2, at least in the equal-
characteristic case.

In this paper, we focus on Question 1 above and give a complete answer to this question.
We first show that it suffices to consider quasi-split, semisimple groups of adjoint type (see

Sections 2.2, 2.3 for an explanation how to reduce to this case). For such groups, the answer
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AFFINE DELIGNE-LUSZTIG VARIETIES 649

is given in terms of the affine root system and the affine Weyl group of G and uses the notion
of (J,w, δ)-alcove (see Section 3.3), a generalization of the notion of P-alcove introduced
in [3] for split groups.

Let a be the fundamental alcove and x ∈ W̃ . Roughly speaking, the alcove xa is
a (J,w, δ)-alcove if the following two conditions are met: x must satisfy a restriction on
its finite part, and the alcove must lie in a certain region of the apartment, which is essen-
tially a union of certain finite Weyl chambers. See Section 3.3 for the precise definition and
[3, Section 3] for a visualization.

We denote by ΓF the absolute Galois group of F and by κG : G(L) → π1(G)ΓF the
Kottwitz map; see [8, 13]. Note that κG also gives rise to maps with source W̃ and
source B(G). Likewise, for a Levi subgroup M, we denote by κM the corresponding
Kottwitz map.

T A (Corollary 3.6.1, Theorem 4.4.7). – Let b ∈ G(L) be a basic element, and
let x ∈ W̃ . Then Xx(b) = ∅ if and only if there exists a pair (J,w) such that xa is a
(J,w, δ)-alcove and

κMJ
(w−1xδ(w)) 6∈ κMJ

([b] ∩MJ(L)).

We say that an element x ∈ W̃ lies in the shrunken Weyl chambers if xa does not lie in
the same strip as the base alcove a with respect to any root direction (cf. Prop. 3.6.5). In this
case, we have a more explicit description of the nonemptiness behavior ofXx(b). The answer
is given in terms of the map ηδ from W̃ to the finite Weyl group W defined in Section 3.6.

T B (Proposition 3.6.5, Proposition 4.4.9). – Let x ∈ W̃ lie in the shrunken Weyl
chambers. Let b ∈ G(L) be a basic element. Then Xx(b) 6= ∅ if and only if κG(x) = κG(b)

and ηδ(x) ∈W −
⋃
J(S,δ(J)=JWJ .

Both theorems require that b is a basic element. As in [3, Conj. 9.5.1 (b)], we expect that
this hypothesis is superfluous for elements x of sufficiently large length (depending on b).
However, we are unable to make a precise statement along these lines (this could be seen
as formulating a version of Mazur’s inequality in the Iwahori case). In applications to the
reduction of Shimura varieties, usually the basic case is the most important one: The basic
locus is the unique closed Newton stratum (in many cases, this is the supersingular locus), it is
the only one where one can hope for a complete geometric description, and it can sometimes
be used as a starting point for understanding other Newton strata.

Let us give an overview of the paper. In Section 2 we collect some preliminaries and reduce
to the case where G is quasi-split and semisimple of adjoint type. In Section 3 we prove, imi-
tating the proof given in [3] in the split case, the direction of Theorem A claiming emptiness.
In the final Section 4 we prove the non-emptiness statement of the theorem by employing
the “reduction method” of Deligne and Lusztig. We show that the notion of (J,w, δ)-alcove
is compatible with this reduction. Using some interesting combinatorial properties of affine
Weyl groups established by the second-named and third-named authors [7], we are able to re-
duce the question to the case of Xx(b), where x is of minimal length in its δ-conjugacy class.
This case can be handled directly using the explicit description of minimal length elements
in [7].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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2. Preliminaries

2.1. Notation

Let S ⊂ G be a maximal L-split torus defined over F. The centralizer T of S in G is
a maximal torus, because over L, G is quasi-split. The Frobenius automorphism σ of L/F
acts on the Iwahori-Weyl group

W̃ = NS(L)/T(L)1.

Here NS denotes the normalizer of S in G, and T(L)1 denotes the unique parahoric sub-
group of T(L). For w ∈ W̃ , we choose a representative in NS(L) and also write it as w.

We denote by A the apartment of G(L) corresponding to S. We fix a σ-invariant alcove a
in A, and denote by I ⊆ G(L) the Iwahori subgroup corresponding to a over L.

2.1.1. The affine Weyl group. – Denote by G1 ⊂ G(L) the subgroup generated by all
parahoric subgroups. We denote by

Wa := (NS(L) ∩G1)/(NS(L) ∩ I)

the affine Weyl group.
The affine Weyl group acts simply transitively on the set of alcoves in A, and our choice of

base alcove gives rise to a length function and the Bruhat order onWa. As usual, the length of
an alcove is the number of “affine root hyperplanes” in the apartment separating the alcove
from the base alcove.

2.1.2. Semi-direct product representations of the Iwahori-Weyl group. – Denote by Γ the
absolute Galois group Gal(L/L) of L. We can identify Γ with the inertia subgroup of the
absolute Galois group ΓF of F. By a subscript •Γ we denote Γ-coinvariants.

Denote by W = NS(L)/T(L) the (relative, finite) Weyl group of G with respect to S.
We use the following important short exact sequence:

(2.1.1) 0→ X∗(T)Γ → W̃ →W → 1,

where the map W̃ → W is the natural projection and X∗(T) is the cocharacter group of T.
Its kernel is T(L)/T(L)1 which can be identified withX∗(T)Γ via the Kottwitz map, see [10,
Section 5]. This short exact sequence splits, and we obtain

W̃ = X∗(T)Γ oW = {ελw;λ ∈ X∗(T)Γ, w ∈W}.

See [5, Proposition 13].
On the other hand, the affine Weyl group naturally embeds into W̃ , and we have an exact

sequence
1→Wa → W̃ → X∗(Z(Ĝ)Γ)→ 0.

Here Ĝ is the (connected) Langlands dual group for G; Z(Ĝ) is the center of G;X∗(Z(Ĝ)Γ)

is the character group of Z(Ĝ)Γ. We can identify X∗(Z(Ĝ)Γ) with the stabilizer of the base
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AFFINE DELIGNE-LUSZTIG VARIETIES 651

alcove a in W̃ . This shows that W̃ = WaoX∗(Z(Ĝ)Γ). See [5, Lemma 14]. Setting `(x) = 0

for x ∈ X∗(Z(Ĝ)Γ), we extend the length function to W̃ .

At the same time, we can view Wa as the Iwahori-Weyl group of the simply connected
cover Gsc of the derived group of G. Denoting by Tsc ⊂ Gsc the maximal torus given by
the choice of T, we obtain a semi-direct product decomposition

Wa = X∗(Tsc)Γ oW.

We can identifyWa with the group generated by the reflections with respect to the walls of a.

2.1.3. Affine flag varieties. – The structure theory for G(L) established by Bruhat and Tits
gives the Iwahori-Bruhat decomposition

G(L) =
⊔
w∈W̃

IwI, G(L)/I =
⊔
w∈W̃

IwI/I,

where both unions are disjoint.

2.2. Reduction to adjoint groups

Let G be a connected reductive group over F, and let Gad be the corresponding group of
adjoint type, i.e., the quotient of G by its center. The buildings of G and Gad coincide, so that
the choice of an alcove a in the building of G determines an alcove, and hence an Iwahori
group of Gad. We first consider the more complicated case of equal characteristic.

Denote by Flag and Flagad the corresponding affine flag varieties for G and Gad.

P 2.2.1. – Assume that char k does not divide the order of π1(Gad).

1. The homomorphism G→ Gad induces an immersion

Flag→ Flagad .

2. Letλ ∈ π0(Flag) = π1(G)Γ, denote byλad its image under the injective mapπ0(Flag)→
π0(Flagad), and denote by Flagλ and Flagad,λad

the corresponding connected compo-
nents. Then the above immersion induces an isomorphism

Flagλ
∼=−→ Flagad,λad

.

Proof. – Denote by Gsc the simply connected cover of G, and by Flagsc its affine flag
variety (attached to the Iwahori subgroup of Gsc given by a). It is proved in [10, 6.a] that
there are natural maps

Flagsc → Flag→ Flagad

and that

Flagsc → Flag, and Flagsc → Flagad

are immersions which identify Flagsc with the neutral connected component of Flag and
of Flagad. Now let λ ∈ π0(Flag) = π1(G)Γ (cf. [10, Theorem 5.1]). Since π0(Flag) = π0(LG),
we can find a representative g ∈ LG(k) of λ. Left multiplication identifies the neutral
connected component Flag0 with Flagλ, and likewise the image of g in LGad(k) identi-
fies Flagad,0 with Flagad,λad

. This proves the proposition.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



652 U. GÖRTZ, X. HE AND S. NIE

Choosing maximal tori in G and Gad compatibly, we obtain a map x 7→ xad between
the corresponding extended affine Weyl groups. For b ∈ G(L), we denote by bad its image
in Gad(L). Finally, for an affine Deligne-Lusztig varietyXx(b) and λ ∈ π0(Flag), we denote
by Xx(b)λ the intersection Xx(b) ∩ Flagλ, and likewise for Gad.

In the mixed characteristic case, an analogous set-theoretic statement is true without any
assumption on the order of π1(Gad). The notion of connected component should be replaced
by fiber of the Kottwitz homomorphism G(L)→ π1(G)Γ. This can be shown along the same
lines as above.

The proposition immediately implies the following corollary. Compare the discussion be-
fore Prop. 5.9.2 in [2] for an analogous statement for split groups and affine Grassmannians.

C 2.2.2. – 1 (Equal characteristic case). Assume that char k does not divide the
order of π1(Gad).(1) Let b ∈ G(L), x ∈ W̃ , and λ ∈ π0(Flag). Then the isomorphism
Flagλ

∼=−→ Flagad,λad
induces an isomorphism

Xx(b)λ ∼= Xxad
(bad)λad

.

2 (Mixed characteristic case). Let b ∈ G(L), x ∈ W̃ , and λ ∈ π0(Flag). We have a
bijection

Xx(b)λ ∼= Xxad
(bad)λad

.

2.3. Reduction to the quasi-split case

Let H be a connected semisimple group over F of adjoint type and G be its quasi-
split inner form. As before, we denote by W̃ the Iwahori-Weyl group of G (over L). The
inner forms of G are parameterized by the Galois cohomology group H1(F,G). By [13,
Theorem 1.15] we have a bijection

(2.3.1) H1(F,G) = π1(G)ΓF .

Via the map X∗(Z(Ĝ))Γ
∼= π1(G)Γ → π1(G)ΓF , we may associate to H some length

zero element z ∈ W̃ . Since by Steinberg’s theorem H ⊗F L is quasi-split, we can identify
H(L) = G(L), and tracing through the above identifications shows that the Frobenius
action induced by H on H(L) = G(L) is σH = Int(γ) ◦ σG; here γ ∈ NS(L) ⊂ G(L) is a
lift of z and Int(γ) denotes conjugation by γ. In fact, Steinberg’s theorem also applies over
the maximal unramified extension Fnr of F, so we can identify H(Fnr) = G(Fnr). Since
conjugation by γ preserves S(Fnr) and T(Fnr), we see that S and T descend to tori SH,
TH ⊂ H (over F). The Iwahori I ⊂ G(L) for G is also an Iwahori subgroup for H.

We can naturally identify W̃ with the Iwahori-Weyl group of H. This identification pre-
serves the Coxeter structure (affine simple reflections, length, Bruhat order). Of course, the
actions of σG and σH on W̃ will usually be different. Also note that while σH acts onW , the
splitting of the sequence (2.1.1) is not necessarily preserved by σH: typically the set of finite
simple reflections (for G) inside W̃ is not stable under σH. This just reflects the fact that for
non-quasi-split H, there is no Borel subgroup over F.

(1) We expect that the statement is still true without this assumption.
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AFFINE DELIGNE-LUSZTIG VARIETIES 653

2.4. σ-conjugacy classes

We keep the notation of Section 2.3 and draw some conclusions from results of Kottwitz
[8, 9] and of Rapoport and Richartz [13] about the classification of σ-conjugacy classes.

Denote by B(H) and B(G) the sets of σ-conjugacy classes in H(L) (with respect to σH)

and G(L) (with respect to σG), respectively. The map [b] 7→ [bγ] is a bijection B(H)
∼=−→ B(G).

This is the map considered by Kottwitz in [9, 4.18]. We obtain the following commutative
diagram

W̃
x 7→xγ //

��

W̃

��
B(H)

[b] 7→[bγ] // B(G),

where the vertical arrows arise from the natural maps NS(L)→ B(H) and NS(L)→ B(G),
respectively. Note that the map in the top row clearly preserves the length. In particular the set
of length zero elements is preserved, and so the map in the bottom row maps basic elements
for H to basic elements for G.

P 2.4.1. – Let H/F be a connected semisimple algebraic group of adjoint type,
and denote by W̃ its Iwahori-Weyl group (over L). Then the natural map W̃ → B(H) is
surjective.

This is [6, Theorem 3.5]. The proposition can also be proved, after reducing to the case of
a quasi-split semisimple group, along the lines of Corollary 7.2.2 in [3].

2.5. Affine Deligne-Lusztig varieties

We can also identify affine Deligne-Lusztig varieties for G and H. Recall that the Iwahori
I ⊂ G(L) for G is at the same time an Iwahori subgroup for H, so that we can identify the
affine flag varieties for G and for H. Furthermore I is normalized by γ, because the length
zero elements stabilize the base alcove. For any x ∈ W̃ and b ∈ G(L) = H(L), the condition
g−1bσH(g) ∈ IxI precisely amounts to g−1bγσG(g)γ−1 ∈ IxI = IxγIγ−1. Thus

P 2.5.1. – Let G, H and γ be as above. Letx ∈ W̃ , and let b ∈ G(L) = H(L).
Then

XH
x (b) = XG

xγ(bγ).

3. P-alcoves and emptiness of ADLV

In the rest of this paper, we let G be a quasi-split connected semisimple group over F that
splits over a tamely ramified extension of L. We simply write σ for the Frobenius map σG

on G(L) and write δ for the induced automorphisms onW and W̃ . The results in this section
are generalizations of results of [3] to the case of quasi-split groups.
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654 U. GÖRTZ, X. HE AND S. NIE

3.1. The root system

Recall that S is a maximal L-split torus of G and T the maximal torus of G that con-
tains S. Consider the real vector space V = X∗(T)Γ ⊗R. Let Φ be the set of (relative) roots
of G over L with respect to S and Φa the set of affine roots. The roots in Φ determine hyper-
planes in V and the relative Weyl groupW can be identified with the group generated by the
reflections through these hyperplanes.

Note that the root system Φ is not necessarily reduced. By [14, Section 1.7], there exists
a unique reduced root system Σ such that the affine roots Φa are the functions on V of the
form y 7→ α(y) + k for α ∈ Σ and k ∈ Z. Moreover, W = W (Σ) and Wa = Q∨(Σ) oW .
Here W (Σ) is the Weyl group of the root system Σ and Q∨(Σ) is the coroot lattice for Σ.

Note that any root of Σ is proportional to a root in Φ. However, the root system Σ is not
necessarily proportional to Φ, even if Φ is reduced. See [14, Section 1.7].

Of course the length function and Bruhat order on Wa produced in these two ways are
the same, since in both cases they are given by the affine root hyperplanes in V , which are the
same in both cases. The identification with the affine Weyl group of a reduced root system
allows us to use the corresponding notions and results from the theory of root systems.

3.2. Parabolic subgroup

For a ∈ Φ, we denote by Ua ⊂ G the corresponding root subgroup and for α ∈ Φa, we
denote by Hα ⊂ G(L) the corresponding root subgroup scheme over k. By [10, (9.8)], Hα is
one-dimensional for all α ∈ Φa. (2)

Our choice of fundamental alcove determines a basis S of Φ. We choose the same nor-
malization as in [3], which means that the fundamental alcove lies in the anti-dominant Weyl
chamber. We identify S with the set of simple reflections in W and hence can also view S as
a basis of the reduced root system Σ. Let Φ+ (resp. Φ−) be the set of positive (resp. nega-
tive) roots of Φ. For J ⊂ S, let ΦJ be the set of roots spanned by J and let Φ±J = ΦJ ∩ Φ±.
Then J is a basis of the subsystem ΦJ . LetWJ ⊂W be the corresponding standard parabolic
subgroup and Q∨J be the corresponding coroot lattice.

We denote by MJ the Levi subgroup of G generated by T and Ua for a ∈ ΦJ and by NJ

the subgroups generated by Ua for a ∈ Φ+−Φ+
J . Then PJ = MJNJ is a parabolic subgroup

of G. If moreover δ(J) = J , then PJ ,MJ and NJ are defined over F. The Iwahori-Weyl
group of MJ is W̃J = X∗(T)Γ oWJ . We simply write κJ instead of κMJ

.

3.3. (J,w, δ)-alcoves

As in [3], we use the notation xg := xgx−1 and σg := σ(g) for g ∈ G(L), and similarly
for subsets of G(L).

(2) This is the place where we use the “tamely ramified” hypothesis. We also suspect that this hypothesis is not
essential. However, as the scheme structure of affine flag varieties (and hence affine Deligne-Lusztig varieties) are
not much studied for wildly ramified groups even in equal characteristic, we only consider tamely ramified groups
in this paper.
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AFFINE DELIGNE-LUSZTIG VARIETIES 655

Recall that a is the fundamental alcove. Let J ⊂ S with δ(J) = J andw ∈W . Let x ∈ W̃ .
We say xa is a (J,w, δ)-alcove, if

(1) w−1xδ(w) ∈ W̃J , and
(2) For any a ∈ w(Φ+ − Φ+

J ), Ua ∩ xI ⊆ Ua ∩ I, or equivalently, U−a ∩ xI ⊇ U−a ∩ I.

We say xa is a strict (J,w, δ)-alcove if instead of (2) we have

(3) For any a ∈ w(Φ+ − Φ+
J ), Ua ∩ xI $ Ua ∩ I, or equivalently, U−a ∩ xI % U−a ∩ I.

In the split case, xa is a (J,w, δ)-alcove if and only if it is a wPJ -alcove in the sense of [3].

Condition (1) implies that xσ(wMJ) = wMJ . If we pass to the (non-connected)
group G o 〈σ〉, then we can reformulate condition (1) above as xδ ∈ w(W̃J o 〈δ〉).

Now we state the main result of this section, which generalizes [3, Theorem 2.1.2].

T 3.3.1. – Suppose J ⊂ S with δ(J) = J andw ∈W , and xa is a (J,w, δ)-alcove.
Set IM = wMJ ∩ I. Then the map

φ : I×IM IMxσ(IM)→ IxI

induced by (i,m) 7→ imσ(i)−1, is surjective. If xa is a strict (J,w, δ)-alcove, then φ is injective.
In general, φ is not injective, but if [i,m] and [i′,m′] belong to the same fiber of φ, the elements
m and m′ are σ-conjugate by an element of IM.

Similarly to [3, Lemma 4.1.1], the theorem is equivalent to the following statement: the
map

φ : (δ
−1(x)−1

I ∩ I)×
δ−1(x)−1

IM∩IM IMx→ Ix

given by (i,m) 7→ imσ(i)−1 is surjective, and is bijective if xa is a strict (J,w, δ)-alcove. In
general, if [i, xj] and [i′, xj′] belong to the same fiber of φ, then xj and xj′ are σ-conjugate
by an element of xIM ∩ IM.

The proof of the portion relating to the fiber of φ is just the same as in [3, Section 4]. For
the proof of surjectivity, we follow the strategy of [3, Section 6].

3.4. – For n ∈ N, let T(L)n be the corresponding congruence subgroup of T(L)∩ I (see [11,
2.6]). For any r ≥ 0, let Ir ⊂ I be the subgroup generated by T(L)n for n ≥ r and Ha+m

for a ∈ Φ and m ≥ r such that a + m is a positive affine root. Let Ir+ = ∪s>rIs. Then Ir
and Ir+ are normal subgroups of I for all r ≥ 0.

Recall that xa is a (J,w, δ)-alcove. Let M = wMJ . Let N ⊂ G be the subgroup
generated by Ua for a ∈ w(Φ+ − Φ+

J ) and N ⊂ G be the subgroup generated by U−a
for a ∈ w(Φ+ − Φ+

J ).

For r ≥ 0, consider the normal subgroups Nr = N(L) ∩ Ir and Nr+ = N(L) ∩ Ir+

of N(L) ∩ I. Similarly, let Nr = N(L) ∩ Ir and Nr+ = N(L) ∩ Ir+ . Since xa is a
(J,w, δ)-alcove, we have xσNr ⊆ Nr and xσNr ⊇ Nr.

L 3.4.1. – Fix an element m ∈ IM and r ≥ 0.

(i) Given i− ∈ σ(Nr), there exists b− ∈ Nr such that (mx)−1

b−i−
σb−1
− ∈ σ(Nr+).

(ii) Given i+ ∈ Nr, there exists b+ ∈ Nr such that b+i+ mxσb−1
+ ∈ Nr+ .
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Proof. – To the Borel subgroup wP∅ of G, we associate a finite separating filtration by
normal subgroups

NL = N[1] ⊃ N[2] ⊃ · · ·

as in [3, proof of Lemma 6.1.1]. It has the following properties:

1. For each i, N[i] ⊂ NL is normal, and stable under conjugation with elements of M.
2. For each i, xσN[i] ⊆ N[i].
3. For each i, the quotient N〈i〉 := N[i]/N[i+ 1] is abelian.

We define Nr[i] := Nr ∩ N[i], and Nr〈i〉 := Nr[i]/Nr[i + 1], and define Nr+〈i〉
analogously. Then Nr〈i〉/Nr+〈i〉 is a vector group over k. We define the groups N[i], N〈i〉,
Nr[i], Nr〈i〉 and Nr+〈i〉 in an analogous manner. It is easy to see from the definition that
(mx)−1

Nr[i] ⊂ σ(Nr[i]) and mxσNr[i] ⊂ Nr[i].

By [3, Lemma 5.1.1], the map b− 7→ (mx)−1

b−
σb−1
− is surjective from the vector group

Nr〈i〉/Nr+〈i〉 to σ(Nr〈i〉/Nr+〈i〉) and the map b+ 7→ b+
mxσb−1

+ is surjective on each
vector group Nr〈i〉/Nr+〈i〉. Applying it repeatedly on these quotients in a suitable order,
we may find b− ∈ Nr such that

(xm)−1

b−i−
σb−1
− ∈ Nr+ ,

and b+ ∈ Nr such that b+i+ mxσb−1
+ ∈ Nr+ .

C 3.4.2. – Let m ∈ IM and r ≥ 0. Given i− ∈ Nr, there exists
b− ∈ σ−1((mx)−1

Nr) such that b−i− mxσb−1
− ∈ Nr+ .

Proof. – By Lemma 3.4.1, there exists b ∈ Nr such that (mx)−1

bσ(i−) σb−1 ∈ σ(Nr+).
Set b− = σ−1((mx)−1

b). Then b−i− mxσb−1
− ∈ Nr+ .

As explained in [3, Section 6], a generic Moy-Prasad filtration gives a filtration I = ∪r>0I[r]

with I[r] ⊃ I[s] for r < s such that each I[r] is normal in I, and each I[r] is a semidirect
product I〈r〉I[r+], where I〈r〉 is either an affine root subgroup or contained in T(o).

Let y ∈ Ix. By the same argument as in [3, Section 6], for any i > 0, there exists
hi ∈ δ−1(x)−1

I ∩ I (suitably small when i is large) such that

hihi−1 · · ·h0yσ(hihi−1 · · ·h0)−1 ∈ I[i+]IMx.

Let g = · · ·h(2)h(1)h(0) be the convergent product. Then gyσ(g)−1 ∈ xIM. This proves the
surjectivity.

By the same argument as in [3, Section 6], we also have the following result.

P 3.4.3. – Suppose J ⊂ S with δ(J) = J andw ∈W , and xa is a (J,w, δ)-al-
cove. Set IM = wMJ ∩ I. If moreover, xσIM = IM, then we may σ-conjugate any element of Ix
to x, using an element of δ

−1(x)−1

I ∩ I.
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3.5. Some properties on Newton points

We recall Kottwitz’s classification of B(G) in [9, §4.13].

A σ-conjugacy class [b] is determined by two invariants. One is given by the image of [b]

under the Kottwitz map κG : B(G)→ π1(G)Γ. The other is given by the Newton point ν̄b,
i.e., the image of [b] under the Newton map B(G)→ X∗(T)+

Q . We do not recall the original
definition of the Newton map here. Instead, we give an explicit description of the restriction
of the Newton map to W̃ . This is enough for our purposes in this paper since anyσ-conjugacy
class in G(L) is represented by an element in W̃ (see Proposition 2.4.1).

Let n be the order of W o 〈δ〉 (we consider δ as an element of the automorphism group
of W ). For x ∈ W̃ , xδ(x) · · · δn−1(x) is a translation element because of the choice of n; it
equals εµ for some µ ∈ X∗(T)δΓ. We set νx = µ/n ∈ X∗(T)Γ ⊗ Q. Let ν̄x ∈ X∗(T)δΓ ⊗ Q
be the unique dominant element in the W -orbit of νx. This is the Newton point of x if we
regard x as an element in G(L). For any λ ∈ X∗(T)Γ, we sometimes simply write νλ for νελ .

We say that the Dynkin diagram of G is δ-connected if it cannot be written as a union of
two proper δ-stable subdiagrams that are not connected to each other.

The following properties are easy to verify and we omit the details.

(1) Let J ⊂ S with δ(J) = J and x = ελw ∈ W̃J . Then νx − νλ ∈ Q∨J ⊗Z Q.

(2) Assume that the Dynkin diagram of G is δ-connected. Let J ( S with δ(J) = J .
If λ, λ′ ∈ V such that 〈λ, α〉 > 0 for allα ∈ J , λ′ is central and λ−λ′ ∈ Q∨J⊗ZQ, then λ = λ′.

The following proposition says that σ-conjugacy classes never fuse.

P 3.5.1. – Let [b] be a σ-conjugacy class in G(L) and J ⊂ S with δ(J) = J .
Then [b] ∩MJ(L) contains at most one σ-conjugacy class of MJ(L).

Proof. – By Proposition 2.4.1, any σ-conjugacy class of MJ(L) is represented by some
element in W̃J . Let x = ελw, x′ = ελ

′
w′ ∈ W̃J such that x and x′ are in the same σ-conjugacy

class of G(L). By Kottwitz [8] and [9], νx = νx′ and κG(x) = κG(x′). By the definition
of κG, λ′ = λ + θ − δ(θ) + r for some coweight θ and r ∈ Q∨. We write r as r = rJ + r′J ,
where rJ ∈ Q∨J and r′J ∈ Q∨S−J .

By Section 3.5 (1), νλ′ − νλ ∈ Q∨J ⊗Z Q. Hence

νr′J ∈ Q
∨
J ⊗Z Q ∩Q∨S−J ⊗Z Q = {0}.

In other words,
∑n−1
i=0 δ

i(r′J) = 0, where n is the order of W o 〈δ〉. Since δ permutes simple
coroots of S − J , we can assume, without loss of generality, that r′J =

∑s−1
j=0 bjδ

j(α∨),
where bj ∈ Z, α∨ is a simple coroot of S − J and s is the smallest positive integer with
δs(α∨) = α∨. The equality

∑n−1
i=0 δ

i(r′J) = 0 is equivalent to
∑s−1
j=0 bj = 0. Let cj =

∑j
k=0 bk

and v =
∑s−1
j=0 cjδ

j(α∨). Then r′J = v − δ(v). Hence λ′ − λ = θ′ − δ(θ′) + rJ for some
coweight θ′.

Therefore κJ(x) = κJ(x′). By [9, 4.13], x and x′ are in the same σ-conjugacy class
of MJ(L).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



658 U. GÖRTZ, X. HE AND S. NIE

3.6. Applications to affine Deligne-Lusztig varieties

For x ∈ W̃ , we denote by x 7→ x̄ the projection W̃ = X∗(T)Γ oW → W and ηl(x) the
unique element w ∈ W such that w−1x ∈ SW̃ . Here SW̃ is the set of x ∈ W̃ such that xa
lies in the dominant chamber.

Set
ηδ(x) = δ−1(ηl(x)−1x̄)ηl(x).

So if x = vεµw with εµwa contained in the dominant chamber, v, w ∈ W , then x̄ = vw,
ηl(x) = v, and ηδ(x) = δ−1(w)v.

Now we discuss some consequences of Theorem 3.3.1 on affine Deligne-Lusztig varieties.
For analogues in the split case, see [3, Section 9].

C 3.6.1. – Let [b] be a basic σ-conjugacy class in G(L). Suppose J ⊂ S with
δ(J) = J and w ∈W , and xa is a (J,w, δ)-alcove. Then Xx(b) = ∅, unless κJ(w−1xδ(w)) ∈
κJ([b] ∩MJ(L)).

R 3.6.2. – By Proposition 3.5.1, [b] ∩MJ(L) is empty or a single σ-conjugacy
class of MJ(L) and hence κJ([b] ∩MJ(L)) consists of at most one element.

L 3.6.3. – Let J ⊂ S with δ(J) = J . Let x ∈ W̃ , and write w = ηl(x) ∈W .
If ηδ(x) ∈WJ , then xa is a (J,w, δ)-alcove.

Proof. – First note thatw−1xδ(w) and δ(ηδ(x)) have that same finite part, so the assump-
tion implies that w−1xδ(w) ∈ W̃J .

Let U be the subgroup of G generated by Uα for α ∈ Φ+. Then for any β ∈ w(Φ+−Φ+
J ),

Uβ ∩ xI ⊆ wU ∩ xI ⊆ w(U ∩ I) ⊆ I.

The second inclusion follows from the assumption thatw−1xa lies in the dominant chamber.

P 3.6.4. – Assume that the Dynkin diagram of G is δ-connected. Let b be
basic. Let x ∈ W̃ , and write x = ελu, u ∈ W . Assume that νηl(x)−1λ 6= νb and that
ηδ(x) ∈

⋃
J(S,δ(J)=JWJ . Then Xx(b) = ∅.

Proof. – Write w = ηl(x) ∈W . By Lemma 3.6.3 and our hypothesis, xa is a (J,w, δ)-al-
cove for some δ-stable proper subset J ( S. In order to apply Corollary 3.6.1 we only need
that κJ(w−1xδ(w)) 6∈ κJ([b] ∩MJ(L)). Here we denote by [b] ⊂ G(L) the σ-conjugacy
class of b. Otherwise, there exists bJ ∈ MJ(L) which is σ-conjugate to b, and such that
κJ(w−1xδ(w)) = κJ(bJ). We may and will assume that bJ ∈ W̃J . If we write w−1xδ(w) =

ελ
′
u′, bJ = εµv, u′, v ∈ WJ , then λ′ = w−1λ and by the definition of κJ , for a suitable

coweight θ,
λ′ − µ+ θ − δ(θ) ∈ Q∨J .

Thus νλ′ − νµ ∈ Q∨J ⊗Z Q. By Section 3.5 (1),

νλ′ − νbJ = νλ′ − νµ + νµ − νbJ ∈ Q∨J ⊗Z Q.

Note that λ′ is dominant and νbJ = ν̄b is central since b is basic. By Section 3.5 (2), νλ′ = ν̄b,
which contradicts our assumption.
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Following [3], for any a ∈ Σ and alcove b, let k(a,b) be the unique integer k such that
b lies in the region between the hyperplanes Ha,k and Ha,k−1. Note that here we work with
the root system Σ, so it seems less natural to rewrite this in terms of root subgroups (as was
done in [3]). But see Section 4.1.

P 3.6.5. – Let x = ελu lie in the shrunken Weyl chambers, i.e., k(a, xa) 6=
k(a,a) for all a ∈ Σ. Assume that ηδ(x) ∈

⋃
J(S,δ(J)=JWJ . Then νηl(x)−1λ is not central.

In particular, Xx(b) = ∅ for any basic element b ∈ G(L).

Proof. – We may assume that G is adjoint and that G = G1 × · · · × Gr, where
each Gi is quasi-split over F with δ-connected Dynkin diagram. We may then write x as
x = (x1, . . . , xr), where xi is in the Iwahori-Weyl group W̃i of Gi for each i. By the definition
of shrunken Weyl chamber, each xi lies in the shrunken Weyl chamber of W̃i.

To prove the Proposition, it suffices to consider the case where the Dynkin diagram of G

is δ-connected.

Let n be the order of W o 〈δ〉. Let λ′ = ηl(x)−1λ. Suppose that νλ′ is central. Then
λ′ + δ(λ′) + · · ·+ δn−1(λ′) is central and

〈λ′ + δ(λ′) + · · ·+ δn−1(λ′), β〉 = n〈λ′, β〉 = 0,

where β is the unique maximal root. As λ′ is dominant, λ′ is central.

Hence x = ηl(x)ελ
′
ηl(x)−1u = ελ

′
u = uελ

′
. Thus xa = ua. This alcove belongs

to the shrunken Weyl chambers only if u = w0. This contradicts our assumption that
ηδ(x) ∈

⋃
J(S,δ(J)=JWJ .

The final part follows from Proposition 3.6.4.

4. Reduction method and nonemptiness of ADLV

4.1. Condition (2) of (J,w, δ)-alcoves

By abuse of notation, we continue to use S for the set of simple root in Σ and the set
of simple reflections in W . We denote by S̃ ⊃ S the set of simple reflections in Wa. For
any J ⊂ S, we denote by ΣJ the set of roots in Σ spanned by J , and let Σ+

J = Σ+ ∩ ΣJ .

For any a ∈ Σ and alcoves b1 and b2, we say that b1 >a b2 if k(a,b1) > k(a,b2).

Condition (2) in the definition of (J,w, δ)-alcoves is equivalent to saying that for
any a ∈ w(Φ+ − Φ+

J ) and an affine root α = a + m (with m ∈ Q), if xa is in the half-
apartment α−1([−∞, 0]), then so is a. We may then reformulate this definition as follows.

(2′) For any a ∈ w(Σ+ − Σ+
J ), xa >a a.

In particular, this condition is just a condition on the relative position between certain
alcoves and walls. Thus it only depends on the affine Weyl group and does not depend on
the set of affine roots.

P 4.1.1. – Letx ∈ W̃ lie in the shrunken Weyl chambers. Ifxa is a (J,w, δ)-al-
cove for J ⊆ S with δ(J) = J and w ∈W , then ηδ(x) ∈WJ .
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Proof. – By the definition of the shrunken Weyl chambers and of (J,w, δ)-alcoves, for
any a ∈ w(Σ+ − Σ+

J ),

k(ηl(x)−1a, ηl(x)−1xa) = k(a, xa) > k(a,a) > 0.

Since ηl(x)−1xa lies in the dominant chamber, ηl(x)−1a ∈ Σ+ for all a ∈ w(Σ+ − Σ+
J ).

Therefore ηl(x)−1w ∈ WJ . By the definition of (J,w, δ)-alcoves, w−1x̄δ(w) ∈ WJ . Thus
ηδ(x) ∈WJ .

4.2. Reduction method

In this section, we will recall the reduction method in [6] and prove that P-alcoves are
“compatible” with the reduction. As a consequence, we prove that an affine Deligne-Lusztig
variety Xw(b) for basic b is nonempty exactly when the P-alcoves predict it to be. See
Theorem 4.4.7 for the precise formulation; compare also with Corollary 3.6.1.

We first recall a “reduction method” à la Deligne and Lusztig [1, proof of Theorem 1.6],
compare also [4].

P 4.2.1. – Let b ∈ G(L), x ∈ W̃ and s ∈ S̃.

(1) If `(sxδ(s)) = `(x), then Xx(b) 6= ∅ if and only if Xsxδ(s)(b) 6= ∅.

(2) If `(sxδ(s)) = `(x)− 2, then Xx(b) 6= ∅ if and only if Xsxδ(s)(b) 6= ∅ or Xsx(b) 6= ∅.

4.3. Minimal length elements

Let x, x′ ∈ W̃ and s ∈ S̃. We write x s→δ x
′ if x′ = sxδ(s) and `(x) ≥ `(x′) and write

x
s
⇀ x′ if either x s→δ x

′ or x′ = sx and `(x) > `(x′).

We write x→δ x
′ if there exist a sequence x0, x1, . . . , xr in W̃ and a sequence s1, s2, . . . , sr

in S̃ such that x = x0
s1→δ x1

s2→δ · · ·
sr→δ xr = x′. Similarly, we may define x ⇀ x′.

We define the δ-conjugation action of W̃ on itself by w ·δ w′ = ww′δ(w)−1. Any orbit is
called a δ-conjugacy class of W̃ . For any δ-conjugacy class O of W̃ , we denote by Omin the
set of minimal length elements in O.

One of the main results in [7] is

T 4.3.1. – Let O be a δ-conjugacy class of W̃ . Then for any x ∈ O, there exists
x′ ∈ Omin such that x→δ x

′.

Note that [7] does also include the twisted case; there the action of δ is incorporated by
replacing W̃ by a semi-direct product of the form W̃ o 〈δ〉.

The following result is a consequence of the “degree = dimension” theorem in [6]. We
include a proof for completeness.

T 4.3.2. – Let x ∈ W̃ and Dx,δ be the set of elements y ∈ W̃ such that y is of
minimal length in its δ-conjugacy class and x ⇀ y. Then for any b ∈ G(L), Xx(b) 6= ∅ if and
only if Xy(b) 6= ∅ for some y ∈ Dx,δ.
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Proof. – If y ∈ Dx,δ andXy(b) 6= ∅, then by Proposition 4.2.1 and the definition ofDx,δ,
Xx(b) 6= ∅. Now we assume that Xx(b) 6= ∅. We proceed by induction on the length of x.

If x is a minimal length element in its δ-conjugacy class O, then x ∈ Dx,δ. The statement
is obvious.

Suppose that x is not a minimal length element in its δ-conjugacy class. By Theorem 4.3.1
there exist x′ ∈ W̃ and s ∈ S̃ such that x→δ x

′, `(x) = `(x′) and `(sx′δ(s)) = `(x′)− 2.
By Proposition 4.2.1, Xx′(b) 6= ∅ and Xsx′δ(s)(b) 6= ∅ or Xsx′(b) 6= ∅. Since
`(sx′δ(s)), `(sx′) < `(x), by induction hypothesis, there exists y ∈ Dsx′δ(s),δ ∪Dsx′,δ such
thatXy(b) 6= ∅. By definition,Dsx′δ(s),δ ∪Dsx′,δ ⊂ Dx,δ. So y ∈ Dx,δ. The statement holds
for x.

4.4. Property (NLO)

We now fix a basic element b ∈ W̃ .

D 4.4.1. – We say that y ∈ W̃ has property (NLO) (with respect to b), if for
every pair (J,w) with J ⊂ S, δ(J) = J and w ∈ W , such that ya is a (J,w, δ)-alcove, there
exists bJ ∈ wW̃Jδ(w)−1 such that

1. κG(b) = κG(bJ),
2. νbJ = νb,
3. κJ(w−1bJδ(w)) = κJ(w−1yδ(w)).

Here (NLO) stands for no Levi obstruction: Heuristically, affine Deligne-Lusztig varieties
should be non-empty, unless there is an evident obstruction. For instance, if κG(b) 6= κG(x),
thenXx(b) = ∅, as is easily checked. Moreover, as the previous results show, an obstruction
of a similar kind can originate from other Levi subgroups of G. This kind of obstruction is
formalized in the above definition, and we will see that it is in fact the only obstruction to
non-emptiness.

A special case is that if ya is not a (J,w, δ)-alcove for any proper subset J of S, then y
satisifies the NLO condition (with respect to b) if and only if κG(b) = κG(y). This simple
observation will be used in Proposition 4.4.9.

By Theorem 4.3.2, to prove the nonemptiness, one only needs to examine the claim for the
reduction step and for minimal length elements.

L 4.4.2. – Denote by x 7→ x̄ the projection W̃ →W . Let y ∈ W̃ and s ∈ S̃. Assume
that s = sH for some affine root hyperplane H = Hα,k with α ∈ Σ and k ∈ Z. Let β ∈ Σ.

1. If β /∈ {±α,±ȳδ(α)}, then syδ(s)a >s̄(β) a if and only if ya >β a.
2. If β 6= ±ȳδ(α), then ya >β a if and only if yδ(s)a >β a.

Proof. – We only prove (1). (2) can be proved in the same way.
Note that syδ(s)a >s̄(β) a if and only if yδ(s)a >β sa. By the assumption on β, there

exists a point e ∈ a ∩ sa ⊂ H such that, with e′ := yδ(e) ∈ yā ∩ yδ(s)ā ⊂ yδH, we have
〈e, β〉, 〈e′, β〉 /∈ Z. Here 〈−,−〉 is the natural pairing between V and its dual V ∗.

The statement follows from the following fact which is easily checked:
Let c 6= c′,d 6= d′ be alcoves such that there exist e ∈ c ∩ c′, e′ ∈ d ∩ d′, and let β ∈ Σ

with 〈e, β〉, 〈e′, β〉 6∈ Z. Then c >β d if and only if c′ >β d′.
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L 4.4.3. – Let y ∈ W̃ and s ∈ S̃ with `(syδ(s)) = `(y). If ya is a (J,w, δ)-alcove,
then syδ(s)a is a (J, s̄w, δ)-alcove.

Proof. – It suffices to show that syδ(s)a >β a for β ∈ s̄w(Σ+ − Σ+
J ).

Assume that s = sH for some affine root hyperplane H = Hα,k with α ∈ Σ and k ∈ Z.
Since w−1ȳδ(w) ∈ WJ , α /∈ w(ΣJ) if and only if ȳδ(α) /∈ w(ΣJ). In this case, w−1(α) and
w−1ȳδ(α) are both positive or both negative roots.

If β /∈ {±α,±s̄ȳδ(α)}, the statement follows from Lemma 4.4.2.

Now suppose that β ∈ {±α,±s̄ȳδ(α)}. Without loss of generality, we assume that
−α, s̄ȳδ(α) ∈ s̄w(Σ+ − Σ+

J ).

It remains to show that syδ(s)a >−α a and syδ(s) >s̄ȳδ(α) a. There are two cases.

Case 1: H = yδ(H). Then −α = s̄ȳδ(α). So a, syδ(s)a are on the same side of H and
their closures intersect with H. Hence syδ(s)a =α a.

Case 2: H 6= yδ(H). Without loss of generality, we assume that `(yδ(s)) < `(y) (argu-
ments for the case `(yδ(s)) > `(y) are similar). In this case, yδH separates ya from yδ(s)a

and a. Since ya is a (J,w, δ)-alcove, ya >ȳδ(α) a. Hence ya >ȳδ(α) yδ(s)a and a >α sa.
Since `(yδ(s)) < `(syδ(s)) = `(y), sa, syδ(s)a are on the same side of H, therefore
syδ(s)a >−α a.

Since ya >ȳδ(α) a, sya >s̄ȳδ(α) syδ(s)a. As `(sy) > `(syδ(s)), a, syδ(s)a are on
the same side of syδH. Moreover, the closure syδ(s)ā intersects with syδH. Therefore
syδ(s)a >s̄ȳδ(α) a.

L 4.4.4. – Let J, J ′ ⊂ S with δ(J) = J , δ(J ′) = J ′. Let y ∈ W̃ and α ∈ Σ.
If there exist w,w′ ∈ W such that w−1yδ(sα)δ(w) ∈ W̃J and (w′)−1yδ(w′) ∈ W̃J′ , then
w−1(α) ∈ ΣJ or (w′)−1(α) ∈ ΣJ′ .

Proof. – Let V be the real vector space spanned by the coweights. Let v0, v
′
0 ∈ V δ be

dominant coweights such that for any u ∈ W , u(v0) = v0 (resp. u(v′0) = v′0) if and only if
u ∈WJ (resp. u ∈WJ′ ). In particular, 〈v0, β〉 = 0 if and only if β ∈ ΣJ .

Set v = w(v0) and v′ = w′(v′0). Then yδ(v′) = yδ(w′v′0) = w′(v′0) = v′ and yδ(sα)δ(v) =

yδ(sα)δ(w)(v0) = w(v0) = v. Let (−,−) be the Killing form on V . Now

(v′ − sα(v), v′ − sα(v)) = (yδ(v′ − sα(v)), yδ(v′ − sα(v)))

= (v′ − v, v′ − v).

Hence (v′, sα(v)) = (v′, v). If w−1(α) /∈ ΣJ , then 〈v, α〉 = 〈v0, w
−1(α)〉 6= 0. So 〈v′, α〉 = 0

and (w′)−1(α) ∈ ΣJ′ .

T 4.4.5. – Let y ∈ W̃ such that property (NLO) holds for y. Let s ∈ S̃.

(1) If `(syδ(s)) = `(y), then property (NLO) holds for syδ(s);

(2) If `(syδ(s)) = `(y)− 2, then property (NLO) holds for syδ(s) or yδ(s).
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Proof. – Case 1: Assume that for any J ⊂ S with δ(J) = J andw ∈W such that syδ(s)a
is a (J,w, δ)-alcove, ya is also a (J, s̄w, δ)-alcove. This in particular includes part (1) of the
theorem by Lemma 4.4.3.

So assume that y satisfies property (NLO), and that syδ(s)a is a (J,w, δ)-alcove. In this
case, by assumption there is an element bJ ∈ s̄wW̃Jδ(s̄w)−1 satisfying conditions (1)-(3) in
the definition of property (NLO) for (y, J, s̄w, δ).

Set b′J = sbJδ(s) ∈ wW̃Jδ(w)−1. Then b′J satisfies conditions (1)-(3) in the definition of
property (NLO) for (syδ(s), J, w, δ).

Case 2: There exists J ⊂ S with δ(J) = J and w ∈ W such that syδ(s)a is a
(J,w, δ)-alcove, but ya is not a (J, s̄w, δ)-alcove. Let α ∈ Σ with s̄ = sα. By Lemma 4.4.2,
we have w−1ȳδ(α) /∈ ΣJ or w−1(α) /∈ ΣJ , which are equivalent to each other since
w−1ȳδ(w) ∈WJ . Therefore, we always have w−1(α) /∈ ΣJ . We show that yδ(s) satisfies
property (NLO).

Assume yδ(s)a is a (J ′, w′, δ)-alcove for some w′ ∈ W and J ′ ⊂ S with δ(J ′) = J ′.
By Lemma 4.4.4, w′−1

(α) ∈ ΣJ′ . Hence by Lemma 4.4.2, ya is a (J ′, w′, δ)-alcove. Since
y satisfies property (NLO), there exists bJ′ ∈ w′W̃J′δ(w

′)−1 such that κG(b) = κG(bJ′),
νb = νbJ′ and

κJ′(w
′−1

bJ′δ(w
′)) = κJ′(w

′−1
yδ(w′))

= κJ′(w
′−1

yδ(w′)δ(w′
−1
sw′)) = κJ′(w

′−1
yδ(s)w′),

where the second equality follows from w′
−1

(α) ∈ ΣJ′ . Hence property (NLO) holds
for yδ(s).

Next we consider the case of minimal length elements:

P 4.4.6. – If y is a minimal length element in its δ-conjugacy class and
y satisfies property (NLO), then Xy(b) 6= ∅.

Proof. – It suffices to show that y and b are in the same σ-conjugacy class. By Kottwitz [8]
and [9], this is equivalent to show that ν̄y = νb and κG(y) = κG(b). Since ya is automatically
a (S, 1, δ)-alcove, by our assumption κG(y) = κG(b).

By [7, Proposition 2.4], there exists a minimal length element y′ in the δ-conjugacy class
containing y such that ā ∩ Vy′ 6= ∅. Here Vy′ = {v ∈ V ; y′δ(v) = v + νy′}. We may then
assume that y = y′ (use Theorem 4.4.5 (1)).

Let w ∈W such that ν̄ = w−1(νy) is dominant. Then w(ν̄) = νy = ȳδ(νy) = ȳδ(w)δ(ν̄).
In other words, ν̄ = w−1ȳδ(w)δ(ν̄). Since δ(ν̄) is the unique dominant coweight in the
W -orbit of ν̄, we have ν̄ = δ(ν̄). Set J = {s ∈ S; s(ν̄) = ν̄}. Then δ(J) = J and
w−1ȳδ(w) ∈WJ .

For any β ∈ Σ with w−1(β) ∈ Σ+ −Σ+
J , 〈νy, β〉 = 〈ν̄, w−1(β)〉 > 0. Hence ya >β a as ā

intersects with Vy. Therefore ya is a (J,w, δ)-alcove.
Since y satisfies property (NLO), there exists bJ ∈ wW̃Jδ(w)−1 such that νbJ = νb and

κJ(w−1bJδ(w)) = κJ(w−1yδ(w)). If we write w−1yδ(w) = ελu and w−1bJδ(w) = ελ
′
u′,

u, u′ ∈WJ , then for a suitable coweight θ,

λ− λ′ + θ − δ(θ) ∈ Q∨J .
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Thus νλ − νλ′ ∈ Q∨J ⊗Z Q. By Section 3.5 (1), νw−1yδ(w) − νw−1bJδ(w) ∈ Q∨J ⊗Z Q. Since
νw−1yδ(w) = ν̄ is orthogonal to all the roots in J and νw−1bJδ(w) = νb is central since b is
basic, by Section 3.5 (2), ν̄y = νw−1yδ(w) = νb.

Altogether, we have now proved:

T 4.4.7. – Let b ∈ G(L) be basic and x ∈ W̃ . If x satisfies property (NLO), then
Xx(b) 6= ∅.

R 4.4.8. – For split groups, this was conjectured in [3, Conjecture 9.4.2].

Proof. – Since x satisfies property (NLO), there exists y ∈ Dx,δ which also satisfies prop-
erty (NLO). By Proposition 4.4.6, Xy(b) 6= ∅. Hence by Theorem 4.3.2, Xx(b) 6= ∅.

Now combining Theorem 4.4.7 with Proposition 4.1.1, we have

P 4.4.9. – Let b ∈ G(L) be basic and x ∈ W̃ lie in the shrunken Weyl cham-
bers such that κG(b) = κG(x). If ηδ(x) ∈W −

⋃
J(S,δ(J)=JWJ , then Xx(b) 6= ∅.
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