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p-ADIC ANALYTIC TWISTS
AND STRONG SUBCONVEXITY

 V BLOMER  D MILIĆEVIĆ

A. – Let f be a fixed cuspidal (holomorphic or Maaß) newform. We prove a Weyl-
exponent subconvexity bound L(f ⊗ χ, 1/2 + it) �p,t q

1/3+ε for the twisted L-function of f with
a Dirichlet character χ of prime power conductor q = pn (with an explicit polynomial dependence
on p and t). We obtain our result by exhibiting strong cancellation between the Hecke eigenvalues of f
and the values of χ, which act as twists by exponentials with a p-adically analytic phase. Among the
tools, we develop a general result on p-adic approximation by rationals (a p-adic counterpart to Farey
dissection) and a p-adic version of van der Corput’s method for exponential sums.

R. – Soit f une forme primitive nouvelle (holomorphe ou de Maass). Soient p un nombre
premier, n > 1 un entier, et t un nombre réel. Nous démontrons une borne sous-convexe de type Weyl
pour la fonctionL de f , tordue par un caractère de Dirichletχ de conducteur q = pn. Plus précisément,
on démontre L(f ⊗ χ, 1/2 + it) �p,t q1/3+ε, avec une dépendance polynomiale et explicite en p
et t. La preuve repose sur la compensation entre les valeurs propres de Hecke de f et les valeurs de χ,
dont l’oscillation est gouvernée par une phase p-adique analytique. Au cours de la démonstration, on
développe quelques outils p-adiques, analogues de méthodes classiques ou archimédiennes, telles que
la dissection de Farey et la méthode de van der Corput pour les sommes d’exponentielles.

1. Introduction

1.1. Orthogonality of arithmetic functions

It is a central question in number theory to understand the asymptotic distribution of
arithmetic functions such as the Möbius function, Dirichlet characters of large conductor,
or Hecke eigenvalues of automorphic forms. It is expected that they display a certain degree
of randomness, and one also expects a certain degree of (asymptotic) orthogonality between

First author supported by the Volkswagen Foundation and a Starting Grant of the European Research Council.
Initial work on this paper was completed while the second author visited the Max Planck Institute for Mathematics
in Bonn; it is a pleasure to acknowledge the support and excellent research infrastructure at MPIM.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/03/© 2015 Société Mathématique de France. Tous droits réservés



562 V. BLOMER AND D. MILIĆEVIĆ

classes of sufficiently independent arithmetic functions. On average, this can often be proved
in a strong quantitative sense by large sieve inequalities.

In this paper we are interested in convolutions of Hecke eigenvalues a(m) of automorphic
forms for the group SL2(Z) and arithmetic functions g that are periodic modulo a large prime
power q = pn. Such arithmetic weight functions (possibly with a general defining modulus q)
have been studied recently in various contexts for instance in [5, 14, 13]. We develop methods
to exhibit cancellation in sums of the type

(1.1)
∑
m6M

(m,p)=1

a(m)g(m), g : (Z/pnZ)× → C,

where g is a “twisting” function satisfying certain natural conditions in small p-adic neigh-
borhoods (which we discuss in this introduction), and M is comparatively small in terms
of q. As a prototypical example we work out in full detail the case where g = χ is a primitive
Dirichlet character of large conductor pn. Our main result is as follows.

T 1. – Let p be an odd prime. Let f be a holomorphic or Maaß Hecke eigenform
for SL2(Z) with Hecke eigenvalues a(m), let χ be a primitive character modulo q = pn, let W
be a smooth weight function with support in [1, 2] satisfying W (j) � Zj for some Z > 1, and
let M > 1. Then

(1.2) L :=
∑
m

a(m)χ(m)W
(m
M

)
�f,ε Z

5/2p7/6 ·M1/2q1/3+ε

for any ε > 0.

We outline our approach in the proofs of Theorems 1 and 2 (see below) in Section 1.3.
Theorem 1 is properly seen as the p-adic analogue of cancellation in Dirichlet polynomials
of the type

(1.3)
∑
m6M

a(m)mit

for large t ∈ R, which have occupied an important place in number theory and, in particular,
in connection with subconvexity of automorphic L-functions. Our twists in (1.2) are p-adi-
cally analytic (see (2.2)), and Theorem 1 is a true analogue of bounds on (1.3) in the sense
that we study a twist that is highly ramified at one fixed place of Q. It should come as no
surprise that Theorem 1, which establishes strong asymptotic orthogonality between Hecke
eigenvalues and p-adic twists, will both be of independent interest and have applications to
subconvexity, which we describe in Section 1.2.

In this section, we proceed to discuss four aspects of Theorem 1: the crucial ranges and
dependence on various parameters, its relationship to the automorphic nature of f , its place
within the more general framework of p-adically analytic twists of the form (1.1), and the
related theory of algebraic twists.

We begin by commenting on the ranges of various parameters in Theorem 1. In this
paper, q is the basic parameter, and we think of p and Z as being relatively small. We do
emphasize right away, however, that all results, including Theorems 1 and 2, are completely
uniform across all primes p and all prime powers q = pn (as well as across all values of Z
in Theorem 1). Thus, while particularly strong results are obtained in the so-called “depth
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p-ADIC ANALYTIC TWISTS AND STRONG SUBCONVEXITY 563

aspect”, taking p fixed and having n tend to infinity, we obtain at the same time new results
already for n moderately large, say with such n fixed and p tending to infinity.

The Rankin–Selberg bound (2.9) implies that L �f M , so that (1.2) yields a non-trivial
result in the range

(1.4) M > Z5p7/3 · q2/3+δ

for δ > 0. On the other hand, if M is substantially larger than Zq, one can apply the
functional equation of L(f ⊗ χ, s) to reduce the length of the sum to about Z2q2/M .
We present the details of this well-known argument at the beginning of Section 5
below, and conclude from this discussion that the real value of Theorem 1 lies in the
range q2/3+δ �Z,p M �Z,p q

4/3−δ.
While we did not try to optimize the exponent of the parameter Z in Theorem 1, the

(explicit) polynomial dependence on Z gives us the flexibility to have slightly oscillating
weight functions or weight functions with sharp cut-offs. In particular, in the situation of
Theorem 1 we obtain

(1.5)
∑
m6M

a(m)χ(m)�f,ε p
1/3 ·M6/7q2/21+ε

which beats the trivial bound if M > p7/3q2/3+δ, cf. (1.4).
We put considerable care into the exponent of p in Theorem 1, although we do not claim

that it is the best obtainable from our method. Finally, the implied constant in (1.2) depends
polynomially on the archimedean parameter of f (weight or Laplacian eigenvalue). This
can be seen by using the uniform bounds for Bessel functions in [18, Appendix]. Also, the
case p = 2 can be dealt with in the same fashion at only the cost of some rather cumbersome
notation; see [29] for a prototype where small primes are treated uniformly.

It should be noted that Theorems 1 and 2 (stated in the next subsection) are completely
independent of bounds towards the Ramanujan conjecture. In fact, the only “automorphic
information” needed are an approximate functional equation, the Voronoi summation for-
mula, and a Rankin-Selberg-type mean value bound for Hecke eigenvalues.

We also remark that the natural but easier continuous spectrum analogues of both
Theorems 1 and 2, involving the Eisenstein series and their Fourier coefficients
dt(m) :=

∑
ab=m(a/b)it, are known. By Mellin inversion, we have∑

m

dt(m)χ(m)W
(m
M

)
=

1

2πi

∫
(1/2)

L(s+ it, χ)L(s− it, χ)Ŵ (s)Msds.

According to [29], one has (the sub-Weyl) subconvexity bound L(1/2 + it, χ)� Ap,t · q1/6−δ

for a primitive character χ of conductor q = pn with an explicitAp,t > 0 and absolute δ > 0.
From this, one obtains the desired cancellation between dt(m) and characters of conduc-
tor q = pn in the situation of Theorem 1 with the even stronger bound� Bp,t,Z · q1/3−2δM1/2

with an explicit Bp,t,Z > 0.
Our method can be adapted to treat other sums of the form (1.1), provided that the local

behavior of g in small p-adic neighborhoods meets suitable conditions that we now discuss.
In particular, we need to be able to control the terms that take place of the first and second
derivative (which, for p-adic analytic functions, can be read off from their p-adic power series
expansion) of a specific phase resulting from g; see also the discussion at the end of Section 4.
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564 V. BLOMER AND D. MILIĆEVIĆ

Corollary 4 displays a prototype of a requisite two-term expansion, such as that given by (2.3)
below in the case of a Dirichlet character. In general, such expansions are easily available for
functions g given by complete exponential sums that can be explicitly evaluated by discrete
stationary phase (such as in our Lemmas 8 and 10), or for functions g that are exponentials
of any p-adically analytic phase with a sufficiently explicit power series expansion (such as,
for example, the class F in [29], which is also fairly stable under natural operations).

Our method starts by introducing a suitable subdivision of the range of summation into
local neighborhoods (see Sections 1.3 and 4); toward the end of the argument, each pair of
these neighborhoods gives rise to another exponential sum with a p-adically analytic phase as
in (9.2), and one requires a bound on the number of such pairs that are “nearly diagonal” in
the sense that the final resulting phase exhibits only mild oscillation. We obtain this estimate
in Section 9 directly for our specific g, but general conditions on the coefficients in local
expansions analogous to those in [23, Theorem 4.6] yield such estimates more generally.
Finally, the proof of Lemma 10 contains the evaluation of an implicit function where the
special shape of (2.3) also comes handy. A prototype of a general implicit function theorem
can be found in [29, Lemma 9]; analogous technology can be used for a corresponding
version of Lemma 10 for more general weight functions g. With some careful bookkeeping,
the method can also be adapted to yield hybrid bounds for sums of the form (1.1) and (1.2)
for characters (and more general arithmetic weights) to all sufficiently powerful moduli q.

A very beautiful theory for a somewhat different family of twisting functions g has been
and is currently being developed by Fouvry, Kowalski and Michel [14, 13]. Their twists are
algebraic in nature and come as trace functions of `-adic sheaves on A1

Fp , including in partic-
ular exponentials and Dirichlet characters with rational functions and hyper-Kloosterman
sums. Using both spectral-theoretic and algebro-geometric methods, they obtain cancella-
tion in twisted sums of the form

LK :=
∑
m

a(m)K(m)W
(m
M

)
whereK : Z/qZ→ C (q prime) is an “admissible trace weight” andW is as in Theorem 1. For
instance, in [14, Theorem 1.5] they establish the bound LK � Z ·M1/2q3/8+ε for M 6 Zq.
It would lead too far to give a detailed discussion on the similarities and differences of the
two approaches, and we restrict ourselves to two fairly obvious observations: as the theory of
Fouvry-Kowalski-Michel is powered by algebraic geometry and in particular the Riemann
hypothesis over finite fields, their trace weights are naturally periodic modulo a prime. In
contrast, our method uses p-adic analysis, hence we consider moduli that are a sufficiently
large prime power. (It should be noted, however, that the method of stationary phase, in its
geometric incarnation due to Laumon, is also a fundamental tool in [14], and it would be
interesting to compare the use of stationary phase in [14] and the present paper.) Secondly
and perhaps most importantly, our bound is stronger in terms of qwhich constitutes precisely
the difference between a “Weyl-type” exponent and a “Burgess-type” exponent. We will
continue this discussion in the next subsection when we consider applications of Theorem 1
to L-functions.
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p-ADIC ANALYTIC TWISTS AND STRONG SUBCONVEXITY 565

1.2. Applications to subconvexity

A classical result states that the Riemann zeta function satisfies the bound

(1.6) ζ(1/2 + it)�ε (1 + |t|)1/6+ε

on the critical line. It was proved first by Hardy and Littlewood (cf. [27]), based on work
of Weyl [33], and first written down by Landau [26] in a slightly refined form and generalized
to all Dirichlet L-functions. Results of similar strength to (1.6) exist (in the t-aspect) for
automorphic L-functions of degree 2. Using deep bounds on triple products, Good [15]
proved that, for a fixed holomorphic cusp form f , one has

(1.7) L(f, 1/2 + it)�f,ε (1 + |t|)1/3+ε.

A very different approach to prove (1.7), much more in the spirit of the Weyl-Hardy-
Littlewood method, was developed by Jutila [23] and generalized to Maaß forms by Meur-
man [28]. While (1.6) was improved slightly over the years, (1.7) is still the current record
(except for replacing ε-powers by powers of the logarithm).

Subconvexity in the conductor aspect seems to be a harder problem. The analogue of (1.6)
is Burgess’ [8] bound L(χ, 1/2 + it)�t cond(χ)3/16+ε, and again one has a result of similar
strength for automorphic L-functions of degree 2 (see [9, 2])

(1.8) L(f ⊗ χ, 1/2 + it)�t,f,ε cond(χ)3/8+ε

for a fixed automorphic form f . Unless χ is quadratic [12], (1.8) has not been improved,
and in particular the exponent 1/3, i.e., the quantitative analogue of (1.7), is unknown. As
a corollary of Theorem 1, we can close the gap between (1.7) and (1.8) if the conductor of χ
is a prime power q = pn, while we retain explicit polynomial dependence in the parameters p
and t.

T 2. – Let p be an odd prime. Let f be a holomorphic or Maaß cuspidal newform
for SL2(Z), and let χ be a primitive character of conductor q = pn. Let t ∈ R. Then one has

L(f ⊗ χ, 1/2 + it)�f,ε (1 + |t|)5/2p7/6 · q1/3+ε.

The quality of subconvexity exponent in the q-aspect in Theorem 2, one-third of the
way from the trivial bound toward the Lindelöf hypothesis and often referred to as a Weyl-
type bound, is a serious barrier that has been breached only for two families of degree-one
L-functions [29] and in the present situation is very unlikely to be improved with current
technology. The Weyl exponent is known for very few families ofL-functions. It is the current
record for subconvexity of GL2 L-functions in the t-aspect and the eigenvalue aspect [24],
and it comes up naturally in sup-norm bounds for automorphic forms on hyperbolic surfaces
of large volume [19, 4] which may be thought of as partly analogous to subconvexity bounds.

As is the case with Theorem 1 and (1.3), Theorem 2 is a close analogue of (1.7) as
involving a twist highly ramified at one fixed (finite) place ofQ. The analogy between analytic
number theory at finite and infinite places and in particular subconvexity in the depth aspect
(cf. early work [1, 20]) has recently received considerable attention (see [29] for a consistent
application of p-adic analysis in this context and [30]); see also Vishe [32], who establishes a
fast algorithm to compute the value of L(f ⊗ χ, 1/2) using an idea of Venkatesh [31] based
on equidistribution of long p-adic horocycles. Theorems 1 and 2 and the p-adic methods we
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566 V. BLOMER AND D. MILIĆEVIĆ

develop in the course of proving them lend strong support to the understanding that, within
what we call the level or q-aspect in analytic arithmetic problems, the square-full direction
plays a very distinctive rôle.

For fixed p, our results produce subconvexity of Weyl-type quality as n→∞, but we
get subconvexity as soon as n > 7, and improve on the Burgess bound as soon as n > 28,
uniformly across all (odd) primes p.

1.3. Method of proof and overview of the paper

Our method of proof of Theorems 1 and 2 is inspired by Jutila’s treatment [23] and
establishes the p-adic counterpart of this flexible argument. Large parts of the paper are
consequently p-adic in nature, and we develop several p-adic results of independent interest,
two of which we specifically discuss in Sections 1.4 and 1.5 below. In Section 4, we provide
a brief sketch of Jutila’s archimedean argument for reader’s reference. The central section
of the paper, Section 5, presents proofs of Theorems 1 and 2, which we outline below. For
clarity, two crucial estimates for these proofs and the methods we develop to address them
are then presented in subsequent Sections 6–9.

The starting point of our argument is (2.2) below, which describes our twisting func-
tion χ(m) = θ(α logpm/p

n) as the result of evaluation of the standard additive charac-
ter θ : Qp → C× on a “phase” given by a p-adic analytic function. (As discussed there, we
need much less information than analyticity.) We split the sum L in Theorem 1 into suit-
able arithmetic progressions to high powers of p (that is, intersections of small p-adic balls
with Z), in which the derivative α/m of the non-archimedean phase α logpm is very well
p-adically approximated by a/b, with a, b of controlled (archimedean) size and coprime to p.
This is the p-adic analogue of a Farey decomposition, and in particular a precise version
of Dirichlet’s approximation theorem; we state and discuss this theorem in Section 1.4 and
prove it in Section 3.

We decompose the localized sums using multiplicative characters; the effect of the p-adic
approximation effort is a serious reduction of the modulus in this harmonic analysis. An ap-
plication of Voronoi summation to the resulting sums produces certain complete exponential
(character) sums and oscillatory integrals, the former containing the essential asymptotic in-
formation. Both are evaluated in Lemmas 3 and 4, which we prove by intricate (archimedean
and p-adic) stationary phase method in Sections 6 and 7. In particular, our explicit evaluation
of the character sum features exactly two terms, each of which is essentially an exponential
with an entirely explicit p-adically analytic phase; see Section 7.2 for a more thorough dis-
cussion and underlying intuition.

Corresponding to each of the various arithmetic progressions, we thus obtain a short
sum of Hecke eigenvalues highly twisted by exponentials with explicit p-adically analytic
and linear archimedean phases. A trivial estimation of these sums individually recovers
the convexity bound. However, after applying the Cauchy-Schwarz inequality, we extract
extra cancellation on average over the various arithmetic progressions (and get rid of the
automorphic information in the process). We achieve this by developing in Section 8 a p-adic
second derivative test, an analogue of van der Corput’s technique, which we discuss in
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p-ADIC ANALYTIC TWISTS AND STRONG SUBCONVEXITY 567

Section 1.5. We then apply this machinery in Section 9 and obtain generically full square-
root strength savings in the resulting exponential sums, thus providing the final ingredient in
the proof of Theorem 1.

We point out that all results are written entirely explicitly and with no direct reference
to p-adic analysis, in order to make minimal assumptions and various extensions completely
transparent. Nevertheless, the p-adic analysis does underlie a lot of important intuition in
this article, and the reader may keep the p-adic metaphor in mind throughout; in particular,
all of the apparently ad hoc calculations and massive cancellations in Sections 7 and 9 appear
for structural reasons.

1.4. p-adic approximation

The Farey dissection is a classical tool in diophantine approximation. It is the starting
point for variants of the circle method without minor arcs and contains as a direct conse-
quence Dirichlet’s approximation theorem. In Section 3, we prove the following p-adic Farey
dissection theorem that decomposes Z×p into small p-adic balls, centered at rational num-
bers a/b with a and b of bounded size. For our application, we want to approximate the
derivative α/m of the phase in (2.2); therefore, we state the dissection in the following form.

T 3. – Let α ∈ Z×p , ` ∈ N, and an integer −` 6 r 6 ` be given. Write
r+ = max(r, 0) and r− = max(−r, 0), and let(1)

S =
{

(a, b, k) ∈ Z× N× N0 : b 6 pk+2r− , |a| 6 pk+2r+

, (a, b) = (a, p) = (b, p) = 1
}
.

For (a, b, k) ∈ S, let

Z×p [a, b, k] = {m ∈ Z×p | bα/m− a ∈ p`+|r|+kZp}.

Then there exists a subset S0 ⊆ S such that

(1.9) Z×p =
⊔

(a,b,k)∈S0

Z×p [a, b, k]

and in addition the following two properties hold: if (a, b, k1), (a, b, k2) ∈ S0, then k1 = k2, and
for each (a, b, k) ∈ S0 one has k 6 `− |r|.

Theorem 3 can also be seen as a statement about integers; its statement and proof are valid
practically verbatim by replacing every instance of Zp and Z×p by Z and Z \ pZ, respectively.
Under such interpretation, the theorem states that Z \ pZ can be partitioned into arithmetic
progressions such that, for integersm in each individual partition,α/m is very well p-adically
approximated by a/b. The conclusion of Theorem 3 should be contrasted with Dirichlet’s
familiar approximation theorem, which states that, for every x ∈ R, there is a rational
number a/b with b 6 B such that |x− a/b| 6 1/bB. Indeed, we will prove Theorem 3 by an
elaboration of Dirichlet’s Box Principle argument.

Theorem 3 features a parameter r with which one can control the relative size of a and b.
This extra flexibility is very important in our application for the proof of Theorem 1. In
the most difficult range M � (qZ)(1+o(1)), we will be setting r = 0 in the application of
Theorem 3, cf. (5.19). In other words, we will be approximating p-adic units by a/b with the

(1) Here and in the following, we use the notation N0 := N t {0} = {0, 1, 2, . . .}.
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568 V. BLOMER AND D. MILIĆEVIĆ

(archimedean) size of both a and b equally bounded from above. In other ranges, however,
it is necessary to choose different values for r. In the extreme case |r| = `, Theorem 3
reduces (except for the appearance of the absolute value in the condition |a| 6 p2`, an
asymptotically insignificant distinction) to the trivial statement that every p-adic integer can
be approximated within p−2` by an integer no greater than p2`.

Finally we comment on the application of Theorem 3 in the context of estimating (1.1)
where g is a more general twisting exponential with a p-adically analytic phase, or an
arithmetic weight function satisfying a two-term expansion as in Corollary 4 (or some
variation of it). Then it follows as in Lemma 11 that, for a suitable fixed κ, the “first
derivative” g1(x) of the phase satisfies g1(x + pκt) − g1(x) ∈ pκ+λtZ×p , and in particular
g1(x+ t)− g1(x) ∈ pµZp for t ∈ pκZp, if and only if t ∈ pµ−λZp. Therefore, in such a
situation, the dissection of Z×p provided in Theorem 3 according to p-adic approxima-
tions of g1(m)/|g1(m)|p by a rational number also induces a dissection of the original
values m ∈ Zp into p-adic balls; moreover, the radii will typically be commensurate in these
two dissections since generically ordp g1 ≈ λ.

1.5. p-adic van der Corput theory

Van der Corput’s theory (see [17]) relies on fundamental estimates of exponential sums in
terms of the known information about the rate of change of a sufficiently smooth phase. As
a typical case, one is interested in non-trivial bounds for sums of the type

(1.10)
∑

M16m6M2

eig(m)

where g is sufficiently smooth and one has some control on the derivatives of g. In particu-
lar, the second derivative test estimates an exponential sum in terms of the size of the second
derivative of the phase g(x), since this quantity can be used to control the number of station-
ary phase points.

We are interested in functions f of arithmetic nature that enjoy some p-adic regularity.
In this case, we can establish bounds of the same strength as in the classical theory. In the
following we give a prototype of a second derivative test for p-adic exponential sums. A much
more general and flexible version of the theorem, tailored for a variety of applications, will
be given in Section 8. Our theorem provides an estimate for an exponential sum of the form∑

M16m6M2

f(m)

(and generalizations thereof) where f is a function for which the values f(x + pκt) along
arithmetic progressions with difference pκ (which can be thought of as p-adic balls around x)
are sufficiently well modelled by quadratic exponentials f(x) ·θ

(
g1(x) ·pκt+ 1

2g2(x) ·p2κt2
)
.

Here, θ is the standard additive character on Qp; see Section 2.1.

C 4. – Let λ, ϕ ∈ N0. Let f : Zp → C×, g1 : Zp → p−ϕZp, g2 : Zp → p−λZ×p ,
h : Zp × Zp × N0 → Zp be functions satisfying

f(x+ pκt) = f(x)θ

(
g1(x)pκt+ 1

2g2(x)p2κt2 +
h(x, t, κ)

pmax(0,λ−2κ−1)

)
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for every x, t ∈ Z, κ ∈ N0. Let M1 < M2 be real numbers. Then∑
M16m6M2

f(m)� ‖f‖∞
(
(M2 −M1) + pϕ + pλ

)
p−λ/2(M2 −M1)ε

for any ε > 0.

The more general version, Theorem 5 below, allows, among other things, a smooth weight
function W (m), an extra archimedean linear phase e(ωm) with ω ∈ R, substantially more
general assumptions on f , and a sum not over a full interval [M1,M2], but over a collection
of residue classes modulo some power of p.

We prove Theorem 5 in Section 8 by splitting the range of summation into subranges (of
p-adic nature) with suitable one-term expansions for the phase, using these expansions to es-
timate the resulting sub-sums, and relying on the two-term expansion to control the number
of subranges where the phase is closer to being stationary. This scheme of proof as well as the
statement of Corollary 4 itself exhibit clear (but also delicate) analogy with archimedean van
der Corput’s theory [17]. Nonarchimedean analogues of the theory of oscillatory exponen-
tial integrals (with polynomial or analytic phases) have featured in contexts including count-
ing integral points [10], Tits alternative for local fields [7], or singular Fourier transforms and
restriction theorems for p-adic analytic manifolds [11]. In particular, Cluckers obtains in [11,
Proposition 3.3] an analytic, nonarchimedean estimate on p-adic exponential integrals whose
phase is given by a suitably regular power series in beautifully transparent analogy with van
der Corput’s kth derivative test. We also refer the reader to that paper’s introduction for an
inspired discussion of the proper analogies and references to previous works that addressed
the cases where the phase was polynomial or otherwise subject to stricter constraints as well
as to Lemma 2.8, which employs, in a very different setting, an idea to avoid the Mean Value
Theorem in the spirit of our Lemma 11.

In the analogy between archimedean and p-adic estimates, complete exponential sums (or,
which is the same, p-adic integrals of exponentials with a locally constant phase) correspond
to exponential integrals, while incomplete exponential sums are properly seen as the analogs
of exponential sums. This parallel is particularly vivid in the technique of completion [6,
29], which in some contexts parallels the archimedean use of Poisson summation to express
an exponential sum as an appropriate sum of exponential integrals. In this sense, Cluckers’
theorem is properly the analogue of van der Corput’s second derivative estimate on expo-
nential integrals [17, Lemma 3.2], while our Theorem 5 takes the place of van der Corput’s
second derivative estimate for exponential sums [17, Theorem 2.2].

In the application of immediate interest to us in the proof of Lemma 5 in Section 9, the
length of the sum is (in the critical ranges) comparable to a complete sum in generic and
shorter than that in closer-to-diagonal cases (whose frequency we can control), so that it is
plausible that it might be possible to develop and use a more explicit and general version
of [11, Proposition 3.3] combined with the technique of completion. On the other hand, in
Theorem 5 and its proof, we develop new machinery to directly estimate incomplete sums. We
point out several additional noteworthy features of this theorem. Our two-term expansion
condition assumes far less than full analyticity, isolating exactly the essential parameters,
and can be checked by a finite direct congruence computation for a specific phase. In certain
ranges, the sums that arise in the proof of Theorem 1 feature an extra archimedean linear
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phase, and Theorem 5 allows this extra flexibility with little extra effort in the proof. Finally,
by working directly with an incomplete sum and being careful with our estimates, we obtain
sharper bounds and explicit dependence in all parameters.

Finally, we remark that, while the statements of both Theorem 3 and Theorem 5/Corol-
lary 4 can be formulated so as to involve integers only (without mentioning the p-adic com-
pletions), they are bona fide p-adic statements (even if an elementary reformulation may be
preferable for certain purposes). After all, the same could be said about their archimedean
analogues: for example, the archimedean van der Corput theory is also concerned with the
values of the exponentials in (1.10) over m ∈ Z only. It goes without saying, however, that
formulating its methods in the language of integers only would be but an exercise in forceful
futility, and, in that case as well as in ours, the appropriate completions provide a natural
framework in which to formulate analytic assumptions and methods.

Acknowledgements. – We would like to thank Peter Sarnak and Philippe Michel for useful
discussions, and we would very much like to thank the referee for an extremely helpful report
that substantially improved the presentation of the paper.

2. Preliminaries and notation

In this section we set up some notation and compile for future reference a number of useful
results, some of which are well-known.

2.1. Notation

We denote by Zp the ring of p-adic integers in the field Qp of p-adic numbers, and
by Z×p = Zp \ pZp the group of its units. Then Q×p = Qp \ {0} =

⊔
k∈Z p

kZ×p ; for x ∈ pkZ×p ,
we write ordp x = k, |x|p = p−k, and

x0 = x · |x|−1
p = x · p−k;

that is, x0 denotes the unit part of x. In Sections 9 and 5.5, we also formally write ordp 0 =∞
and p∞Z×p = {0}.

If k > 0 and a domain A ⊆ Zp are such that A + pkZp ⊆ A, or equivalently if A(x) is a
property enjoyed by some x ∈ Zp such thatA(x+ pkt) ⇔ A(x) for every t ∈ Zp, and if f is
a pkZp-periodic function, then by∑

x mod pk, x∈A

f(x) and
∑

x mod pk :A(x)

f(x)

we mean, respectively, the (finite) sum of f(x) over an arbitrary set of representatives
of classes in A/pkZp (such as A ∩ {1, 2, . . . , pk}), and the sum of f(x) over an arbi-
trary set of representatives of those classes x ∈ Zp/pkZp for which A(x) holds (such
as {x ∈ {1, 2, . . . , pk} : A(x)}). The sum is understood to be only over those classes that
satisfy all specified conditions if more than one is listed. We keep analogous conventions for
appropriately periodic subsets of (or properties defined on) Z.

For x ∈ Z coprime to the modulus (or sometimes for x ∈ Z×p ), the notation x̄ will always
denote the multiplicative inverse to a modulus which will be obvious from the context. In
particular, if no obvious modulus is specified, then x̄ = x−1 will denote the inverse of x inZ×p ,
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which agrees with the multiplicative inverse ofx to any prime power pn. While both x̄ andx−1

have the same meaning for x ∈ Z×p , for aesthetic reasons we usually give preference to the
former in notations that explicitly depend only on the congruence class of x to an obvious
modulus (such as in ε-factors, Kloosterman sums, and so on) and to the latter in expressions
of a more direct p-adic nature such as phases in the context of p-adic local analysis (even
when the expression happens to be locally constant).

The prime p = 3 requires a very minor technical adaptation at one place in our argument;
to track it, we denote ι′ = 1 if p = 3 and ι′ = 0 otherwise. This notation compares to ι′(3)

in [29].

For r ∈ Z, we denote

r+ = max(r, 0), r− = (−r)+ = max(−r, 0).

We use the standard Landau notation. We write f = O(g) or, equivalently, f � g, if there
exists a constant C > 0 such that |f | 6 Cg whenever all variables involved belong to the
specified ranges. The notation f = OA,B,...(g) or f �A,B,... g denotes that the constant C
may depend on the specific values of A,B, etc.

We write e(x) = e2πix for x ∈ R, and we write θ : Qp → C× for the standard
additive character on Qp trivial on Zp. Specifically, if x =

∑
j>j0

ajp
j ∈ Qp, then

θ(x) = exp(2πi
∑
j<0 ajp

j). In particular, on Z[1/p] ⊆ Qp ∩ R we have θ(·) = e(·), and
this relation is crucial for moving arithmetic oscillation between p-adic and archimedean
places.

2.2. Certain classes

We introduce the following terminology, including an auxiliary class of functions.

D 1. – Let κ ∈ Z. We denote by Mpκ an arbitrary element of pκZp, which may
be different from line to line. For κ ∈ N0, we denote byµpκ = θ(·/pκ) = θ

(
Mp−κ

)
an arbitrary

complex (pκ)th root of unity, which may be different from line to line.

Further, let A1, . . . , As ⊆ Zp and Ω0 ∈ N be such that (1 + pΩ0Zp)Ai ⊆ Ai for
every 1 6 i 6 s. We denote by MΩ0

pκ [y1, . . . , ys] an arbitrary function M :
∏s
i=1Ai → pκZp,

which may be different from line to line, such that, for every y1, . . . , ys, every Ω > Ω0, and
every y′i ∈ (1 + pΩZp)yi,

M(y′1, . . . , y
′
s)−M(y1, . . . , ys) ∈ pκ+ΩZp.

We also write Mpκ [y1, . . . , ys] if the value of Ω0 is clear from the context (such as Ω0 = 1).

The classes Mpκ , µpκ , and MΩ0
pκ [y1, . . . , ys] will be useful for efficient tracking of

terms which we think of as remainders in certain two-term p-adic expansions. The do-
mains A1, . . . , As will always be clear from the context. Some examples of immediate
interest to us will be introduced in Subsections 2.3 and 2.4 below. We will only need s = 2

in Definition 1.

We will frequently use that

(2.1) M1[y1, . . . , ys] ·Mpκ [y1, . . . , ys] ⊆Mpκ [y1, . . . , ys]

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



572 V. BLOMER AND D. MILIĆEVIĆ

for classes M1 and Mpκ on the same underlying domainsA1, . . . , As (or, equivalently, when
restricted to the intersection of their respective domains). Indeed, for every f ∈M1[y1, . . . , ys],
g ∈Mpκ [y1, . . . , ys], Ω > Ω0, and y′1, . . . , y

′
s with y′i ∈ (1 + pΩZp)yi as above, we have that

(fg)(y′1, . . . , y
′
s)− (fg)(y1, . . . , ys)

=
(
f(y′1, . . . , y

′
s)− f(y1, . . . , ys)

)
g(y′1, . . . , y

′
s)

+ f(y1, . . . , ys)
(
g(y′1, . . . , y

′
s)− g(y1, . . . , ys)

)
∈ pκ+ΩZp.

In other words, functions in M1[y1, . . . , ys] on fixed domains A1, . . . , As form a ring, and
Mpκ [y1, . . . , ys] is an M1[y1, . . . , ys]-module.

2.3. Characters

We recall the structure of multiplicative characters modulo q = pn. In this section, as
everywhere else in the paper, p denotes an odd prime; all statements hold with minor but
necessary modifications in the case p = 2. The p-adic logarithm logp is defined on 1 + pZp
by the convergent series

logp(1 + x) =

∞∑
j=1

(−1)j

j
xj (x ∈ pZp)

and gives an isomorphism of the multiplicative group (1+pZp) with the additive group pZp.
From [29, Lemma 13] we recall that, for every primitive character χ of conductor pn, there
exists α ∈ Z×p such that, for every m ≡ 1 (mod p),

(2.2) χ(m) = θ

(
α logpm

pn

)
.

We recall this argument briefly for completeness. For every α ∈ Zp, the map χ[α](m) =

θ(α logpm/p
n) is a character of the multiplicative group (Z/pnZ)×1 := (1 + pZ)/(1 + pnZ);

let Γn,1 denote the dual of (Z/pnZ)×1 . The map α 7→ χ[α] defines a homomorphism
from Zp → Γn,1, and it is easy to see that its kernel is exactly pn−1Zp. A counting argument
shows that we thus obtain an isomorphism (and hence a surjection) Zp/pn−1Zp → Γn,1.
The restriction of a primitive character χ of conductor pn to (Z/pnZ)×1 lies in Γn,1 \ Γn−1,1

and is hence of the form χ[α] for some α ∈ Z×p .

In fact, we do not need the full strength of (2.2). However, we will use the following
corollary, valid for every κ > 1 and every u ∈ Z×p , t ∈ Zp:

(2.3) χ
(
u+ pκt

)
= χ(u)θ

(
α

pn

( 1

u
pκt− 1

2u2
p2κt2

)
+ Mp3κ−n−ι′ [u, t]

)
,

where Ω0 = 1 in the sense of Definition 1. Here and later, χ is identified with its
obvious pnZp-periodic extension to Z×p , which also satisfies (2.2) for all m ∈ 1 + pZp.
The equation (2.3) is all the p-adic local information we will require about the function χ.
To prove (2.3), we note that (2.2) implies that

χ
(
u+ pκt

)
= χ(u)χ

(
1 + pκu−1t

)
= χ(u)θ

(
α

pn

( 1

u
pκt− 1

2u2
p2κt2

)
+ f(u, t)

)
,
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where

(2.4) f(u, t) = αp3κ−n
∞∑
j=3

(−1)j−1

juj
p(j−3)κtj .

For p > 5 and j > 4, the inequality pj−3 > j follows by trivial induction; the same is true
for p = 3 and j > 5. Hence, in all of these ranges,

ordp j 6
log j

log p
6 j − 3 6 (j − 3)κ.

From this it follows that f(u, t) ∈Mp3κ−n−ι′ for u ∈ Z×p , t ∈ Zp.
That f(u, t) ∈ Mp3κ−n−ι′ [u, t] follows immediately by subtracting (2.4) and the same

expression for f(u′, t′), with arbitrary u′ ∈ (1 + pΩZp)u, t′ ∈ (1 + pΩZp)t, and Ω > 1,
and observing that tj/uj − t′j/u′j =

(
(u′t)j − (ut′)j

)
/(uu′)j ∈ pΩZp for every j ∈ N.

It will suffice for many (but not all) of our purposes to know that there exists an α ∈ Z\pZ
such that, for every κ ∈ N with 3κ > n and every t ∈ Z,

(2.5) χ
(
1 + pκt

)
= θ

(
α

pn
(
pκt− 1

2p
2κt2

))
.

The equality (2.5) is (for p > 3) a trivial consequence of (2.2), but it is also entirely
elementary. Indeed, for 3κ > n, one checks immediately that the right-hand side is a
multiplicative function of 1 + pκt. Then, α 7→ θ

(
α(pκt− 1

2p
2κt2)/pn

)
defines an injec-

tive homomorphism from (Z/pn−κZ)× to the group of characters of order pn−κ of the
group (1 + pκZ)/(1 + pnZ), which is hence a surjection. In all our uses of (2.5), we will
work under the assumption that 3κ > n + ι′; in such case, (2.5) follows from (2.2) or (2.3)
with the same value of α. (We remark that, for a fixed κ > 1, an α ∈ Z×p can be found so
that (2.3) and (2.5) hold with ι′ = 0 even when p = 3; however, such a value of α will depend
on κ, and the notational complexities involved do not appear any more pleasant than our
simple and from the point of view of the series expansion of logp natural implement of
setting ι′ = 1.)

Finally, for a Dirichlet character ψ modulo N , we denote by

τ(ψ) =
∑

h mod N

ψ(h)e

(
h

N

)
the Gauß sum with |τ(ψ)| =

√
N if χ is primitive.

2.4. p-adic square roots.

For every x ∈ Z×p 2, there are exactly two solutions to the solution u2 = x; we now
describe them more precisely. Recall that by Hensel’s lemma (for p odd) Z×p 2 is the finite
union of sets r + pZp over all square congruence classes r ∈ (Z/pZ)×2. For every x ∈ Z×p 2

and every κ > 1, the congruence u2 ≡ x (mod pκ) has exactly two solutions ±u (mod pκ).
These solutions come in two p-adic towers as κ → ∞, whose limits are the two p-adic
solutions to u2 = x which we alluded to and which we wish to denote as ±u1/2(x).

More precisely, for every r ∈ (Z/pZ)×2, there are exactly two classes s ∈ (Z/pZ)× such
that s2 = r. Suppose we are given a choice function s : (Z/pZ)×2 → (Z/pZ)× such that, for
every r ∈ (Z/pZ)×2, the class s(r) ∈ (Z/pZ)× satisfies s(r)2 = r. Then, for every x ∈ Z×p 2,
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we let u1/2(x) ∈ Z×p be the unique p-adic integer u such that u2 = x and u ∈ s(x + pZ). In
this way, each of the 2(p−1)/2 choices for s : (Z/pZ)×2 → (Z/pZ)× gives way to a unique
function u1/2 : Z×p 2 → Z×p ; we may think of these 2(p−1)/2 functions as p-adic square roots
(or branches of the p-adic square root), and we will fix once and for all one of them. We also
write ±x1/2 for ±u1/2(x); for k ∈ Z, by xk1/2 we always mean (x1/2)k. Note that, for κ > 1,
u2 ≡ x (mod pκ) has solutions if and only if x ∈ Z×p 2, in which case the congruence holds
if and only if u ≡ ±x1/2 (mod pκ). Also, note that, for every x, y ∈ Z×p 2 and every κ > 1,
u1/2(x) ≡ u1/2(y) (mod pκ) if and only if x ≡ y (mod pκ). Finally, x/x1/2 = x1/2 and
(1/x1/2)2 = 1/x for every x ∈ Z×p 2, simply because x2

1/2 = x.

Next, we note that, for every κ > 1 and every u ∈ Z×p 2, t ∈ Zp,(
u1/2 +

1

2u1/2
pκt− 1

8u3
1/2

· p2κt2
)2

∈
(
u+ pκt

)
+ p3κZp,

so that

(2.6)
(
u+ pκt

)
1/2
≡ u1/2 +

1

2u1/2
pκt− 1

8u3
1/2

p2κt2 (mod p3κ).

With the terminology of Definition 1, we claim that actually

(2.7)
(
u+ pκt

)
1/2

= u1/2 +
1

2u1/2
pκt− 1

8u3
1/2

p2κt2 + Mp3κ [u, t],

again with Ω0 = 1 in Definition 1. Both equalities (2.6) and (2.7) can also be proved
using a power series expansion as was done in Section 2.3 (since it is not hard to see that
actually (u+ pκt)1/2 = u1/2(1 + pκt/u)1/2, with the latter power given by the familiar
power series expansion of (1 + x)1/2 for x ∈ pZp), but we give a simple elementary proof
of (2.7) instead. This equality contains all the p-adic local information we will require about
the function (·)1/2.

Indeed, write (2.7) as g = h+ f , where f ∈ p3κZp, and, for u′ ∈ (1 + pΩZp)u,
t′ ∈ (1 + pΩZp)t′, write the corresponding equality as g′ = h′ + f ′, where f ′ ∈ p3κZp;
then we need to prove that f ′ − f ∈ p3κ+ΩZp. Here, the function (·)1/2 is a fixed branch
of the p-adic square-root, and, in particular, since u+ pκt ≡ u′ + pκt′ (mod pΩ), we have
that g − g′ ∈ pΩZp. Then, g2 − h2 = 1

8p
3κt3/u2 − 1

64p
4κt2/u3 and so(

g2 − h2
)
−
(
g′2 − h′2

)
∈ p3κ+ΩZp.

Writing h = g − f and h′ = g′ − f ′, the above may be re-written as

2
(
gf − g′f ′

)
−
(
f2 − f ′2

)
= 2f

(
g − g′

)
+
(
f − f ′

)(
2g′ − f − f ′

)
∈ p3κ+ΩZp.

In light of f
(
g−g′

)
∈ p3κ+ΩZp and 2g′−f−f ′ ∈ Z×p , it is immediate that f−f ′ ∈ p3κ+ΩZp,

as was to be proved.

2.5. Automorphic forms

We recall the Voronoi summation formula [25]:
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L 1. – Let D be a positive integer and ψ a character modulo D. Let g be a holo-
morphic newform of weight κ+ 1 > 1 or a weight zero Maaß newform of spectral parameter
κ/2 ∈ [0,∞) ∪ (−i/2, i/2), levelD and character ψ with Hecke eigenvalues ag(m). Let a ∈ Z
and b ∈ N with (b, aD) = 1. Let h := g|W whereW is the classical Fricke involution of levelD
sending newforms of level D and character ψ to newforms of level D and character ψ̄. Denote
by ah(m) the Hecke eigenvalues of h. Let F : (0,∞)→ C be a smooth, compactly supported
function. Then∑
m>1

ag(m)e
(a
b
m
)
F (m) =

∑
±

ψ(∓b)
b
√
D

∑
m>1

ah(m)e

(
∓aD

b
m

)∫ ∞
0

F (x)J±κ
(

4π
√
mx

b
√
D

)
dx,

where

J +
κ (x) =

{
2πiκ+1Jκ(x), g holomorphic of weight κ+ 1,

iπ Jiκ(x)−J−iκ(x)
sinh(πκ/2) , g Maaß with spectral parameter κ/2,

and

J−κ (x) =

{
0, g holomorphic of weight κ+ 1,

iπ Iiκ(x)−I−iκ(x)
sinh(πκ/2) = 4 cosh(πκ/2)Kiκ(x), g Maaß with spectral parameter κ/2.

The Selberg eigenvalue conjecture (known for SL2(Z)) implies κ ∈ R, but we will only use
the “trivial bound” |=κ| < 1/2.

We are interested in the special case when g = f ⊗ χ for a newform f of level 1 and χ a
primitive character modulo N . Then g is a newform of level N2 and character χ2 (see [22,
Prop. 14.20]), and a matrix computation shows (see [21, Theorem 7.5]) that h = (τ(χ)2/N)ḡ.

Hence we conclude that, under the above assumptions,∑
m

af (m)χ(m)e
(a
b
m
)
F (m)

=
τ(χ)2

N
· χ

2(b)

bN

∑
±

∑
m

af (m)χ̄(m)e
(
∓aN

2

b
m
)∫ ∞

0

F (x)J±κ
(

4π
√
mx

bN

)
dx

(2.8)

(note that f has real coefficients because it has trivial central character). We will frequently
use the Rankin-Selberg bound

(2.9)
∑
m6x

|af (m)|2 �f x.

2.6. Bessel functions

We start with the bound

J±κ (x)�κ

{
x−|=κ|(1 + δκ=0| log x|), 0 < x 6 1,

x−1/2, x > 1,

for fixed κ ∈ C, which follows from the power series expansion [16, 8.402.1, 8.445] for x 6 1

and from the asymptotic formula [16, 8.451] for x > 1. (The term involving | log x| is only
needed for κ = 0.) Integration by parts in combination with [16, 8.472.3, 8.486.14] shows the
formula∫ ∞

0

F (x)Bs(α
√
x)dx =

(
± 2

α

)j ∫ ∞
0

∂j

∂xj
(F (x)x−s/2)x(s+j)/2Bs+j(α

√
x)dx
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for Bs ∈ {Js, Ys,Ks}, α > 0, s ∈ C, j ∈ N and F : (0,∞) → C smooth and of
compact support. Here, the + sign applies for Ks, and the − sign applies for Js and Ys. In
particular, if F has support in the interval [M, 2M ], and F (j) �j M

−jZj0 for some Z0 > 1

and all j ∈ N0, then

(2.10)
∫ ∞

0

F (x)J±κ (α
√
x)dx�j,κ M

(
1 +

1√
Mα

)j+|=κ|+ε(
Z0√
Mα

)j
.

Finally we need the following result.

L 2. – Let κ ∈ R ∪ (−1/2, 1/2) be fixed. There exist smooth functions Ω±κ,+(x),
Ω±κ,−(x) satisfying

(2.11) xj(Ω±κ,±)(j)(x)�κ,j x
−1/2

for all j ∈ N0, such that

(2.12) J±κ (x) = Ω±κ,+(x)eix + Ω±κ,−(x)e−ix.

Proof. – In the − case, we can simply define Ω−κ,+(x) = 4 cosh(πκ/2)Kiκ(x)e−ix,
Ω−κ,−(x) = 0, so that (2.12) is trivially satisfied and (2.11) follows (in much stronger form)
from well-known decay properties of the Bessel K-function.

In the + case, the idea is to use the asymptotic formula for x > 1 and a trivial decom-
position for x < 1 and then to glue these decompositions together. To make this precise, we
define H(1)

κ (x) = Jκ(x) + iYκ(x) and H(2)
κ (x) = Jκ(x)− iYκ(x) as in [16, 8.405] and write

H+
κ (x) = H(1)

κ (x)e−ix, H−κ (x) = H(2)
κ (x)eix.

By [16, 8.476.10] we have H+
κ (x) = H−κ̄ (x) for x ∈ R, and xj(H±κ )(j)(x)� x−1/2 for x > 1

can be verified using the integral representation [16, 8.421.9]

H+
κ (x) =

(
2

πx

)1/2 e(− 2κ+1
8 )

Γ(κ+ 1/2)

∫ ∞
0

(
1 +

it

2x

)κ−1/2

tκ−1/2e−tdt.

Moreover,

Jκ(x) =
1

2

(
H+
κ (x)eix +H−κ (x)e−ix

)
by [16, 8.481]. Now we choose a smooth functionV with support in [1,∞) such thatV (x) = 1

on [2,∞). Then we define

Ω̃+
κ,+(x) :=

1

2
H+
κ (x)V (x) + e−ixJκ(x)(1− V (x)), Ω̃+

κ,− :=
1

2
H−κ (x)V (x).

This gives a decomposition of the desired form for Jκ, and taking a suitable linear combina-
tion, we obtain (2.11) and (2.12) for Jκ.

In our applications of (2.10) and (2.11), we will have |=κ| < 1/2 by the trivial bounds
towards the Selberg eigenvalue conjecture.

4 e SÉRIE – TOME 48 – 2015 – No 3



p-ADIC ANALYTIC TWISTS AND STRONG SUBCONVEXITY 577

3. Proof of Theorem 3

To keep notation simple, we prove the theorem in the case r > 0. The proof in the case
r < 0 is along exactly the same lines, mutatis mutandis, by switching the roles of a and b.

First, we claim that, for any two (a1, b1, k1), (a2, b2, k2) ∈ S, with k1 6 k2, exactly one of
the following two situations occurs:

(1) a1/b1 − a2/b2 6∈ p`+r+k1Zp, and Z×p [a1, b1, k1] ∩ Z×p [a2, b2, k2] = ∅, or
(2) a1/b1 − a2/b2 ∈ p`+r+k1Zp, and Z×p [a2, b2, k2] ⊆ Z×p [a1, b1, k1], with set equality if

and only if k1 = k2.

Suppose that a1/b1 − a2/b2 6∈ p`+r+k1Zp, and that m ∈ Z×p [a1, b1, k1] ∩ Z×p [a2, b2, k2].
Thenα/m−a1/b1 ∈ p`+r+k1Zp, andα/m−a2/b2 ∈ p`+r+k2Zp ⊆ p`+r+k1Zp, since k1 6 k2.
It follows that a1/b1 − a2/b2 ∈ p`+r+k1Zp; contradiction. Hence, if a1/b1 − a2/b2 6∈ p`+r+k1Zp,
then Z×p [a1, b1, k1] ∩ Z×p [a2, b2, k2] = ∅, i.e., (1) holds.

On the other hand, suppose that a1/b1 − a2/b2 ∈ p`+r+k1Zp, and let m2 ∈ Z×p [a2, b2, k2]

be arbitrary. Then m2 ∈ Z×p and α/m2 − a2/b2 ∈ p`+r+k2Zp ⊆ p`+r+k1Zp, since k1 6 k2,
and therefore α/m2 − a1/b1 = (α/m2 − a2/b2) + (a2/b2 − a1/b1) ∈ p`+r+k1Zp too,
so that m2 ∈ Z×p [a1, b1, k1]. This proves that, if a1/b1 − a2/b2 ∈ p`+r+k1Zp, then
Z×p [a2, b2, k2] ⊆ Z×p [a1, b1, k1], i.e., the first statement of (2) holds. If k1 = k2, then the
reverse inclusion also holds, and so Z×p [a1, b1, k1] = Z×p [a2, b2, k2]. If k1 < k2, then,
letting m2 ∈ Z×p [a2, b2, k2] be arbitrary (for example, m2 = αb2/a2), we have that
m2 + p`+r+k1 ∈ Z×p [a1, b1, k1] \ Z×p [a2, b2, k2], so that Z×p [a2, b2, k2] ( Z×p [a1, b1, k1]. This
completes the proof of (2).

It is clear that (1) and (2) are mutually exclusive.
Let Sk = {(a, b) | (a, b, k) ∈ S}. We now inductively construct a set S0

k ⊆ Sk as follows.
Consider the relation ∼0 on S0 defined for (a1, b1), (a2, b2) ∈ S0 as

(a1, b1) ∼0 (a2, b2) ⇐⇒ a1/b1 − a2/b2 ∈ p`+rZp.

This is clearly an equivalence relation. We let S0
0 be a set of unique representatives of the

equivalence classes of ∼0. Suppose the sets S0
κ have been constructed for all 0 6 κ < k. Let

S]k = {(a, b) ∈ Sk : a/b− a1/b1 6∈ p`+r+κZp for every 0 6 κ < k, (a1, b1) ∈ S0
κ}.

Consider the relation ∼k on S]k defined for (a1, b1), (a2, b2) ∈ S]k as

(a1, b1) ∼k (a2, b2) ⇐⇒ a1/b1 − a2/b2 ∈ p`+r+kZp.

Again, this is clearly an equivalence relation. We let S0
k be a set of unique representatives of

the equivalence classes of∼k. Proceeding inductively, we can construct sets S0
0 , S

0
1 , . . . , S

0
`−r.

Let
S0 = {(a, b, k) : 0 6 k 6 `− r, (a, b) ∈ S0

k}.
We are now ready to prove the statements made in the lemma. We first prove that the union

in (1.9) is disjoint. Suppose that the sets Z×p [a1, b1, k1] and Z×p [a2, b2, k2] are not disjoint,
for some (a1, b1) ∈ S0

k1
, (a2, b2) ∈ S0

k2
, (a1, b1, k1) 6= (a2, b2, k2), and (without loss of

generality) k1 6 k2. According to (1) and (2) above, we must have a1/b1−a2/b2 ∈ p`+r+k1Zp.
If k1 = k2, then (a1, b1) ∼k1

(a2, b2); however, this is impossible in light of (a1, b1) 6= (a2, b2)

and the construction of S0
k1

as a system of unique representatives of equivalence classes
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of∼k1
. On the other hand, if k1 < k2, then, since (a1, b1) ∈ S0

k1
, we have that (a2, b2) 6∈ S]k2

,
so we certainly cannot have (a2, b2) ∈ S0

k2
– a contradiction.

We proceed to prove that the disjoint union of subsets ofZ×p on the right-hand side of (1.9)
indeed equals the entire set Z×p . Let m ∈ Z×p be given, and consider the following elements
of Zp:

A(a, b) = bα−ma, 0 < a 6 p`+r, 0 6 b 6 p`−r.

This gives us p`+r(p`−r + 1) > p2` numbers in Zp. Since |Zp/p2`Zp| = p2`, there must be
two distinct (a1, b1) 6= (a2, b2) with 0 < ai 6 p`+r, 0 6 bi 6 p`−r and (without loss of
generality) b1 6 b2 such that A(a2, b2)−A(a1, b1) ∈ p2`Zp, that is,

(b2 − b1)α−m(a2 − a1) ∈ p2`Zp.

We note right away that we cannot have b1 = b2, since then p2` | (a2 − a1). Along
with |a2 − a1| < p`+r 6 p2`, this would imply that a1 = a2, so that (a1, b1) = (a2, b2), a
contradiction.

So let b2 − b1 = psb̃ for some s > 0 and b̃ ∈ N with (p, b̃) = 1. Since 0 < b2 − b1 6 b2 6 p`−r,
we have that s 6 `− r, and in particular s < 2`. It follows that we must have ps | (a2 − a1);
let a2 − a1 = psã for some ã ∈ Z. We note that 0 < b̃ 6 p`−r−s and |ã| < p`+r−s. We find
that

psb̃α−mpsã ∈ p2`Zp
and hence

b̃α−mã ∈ p2`−sZp,

α−mã/b̃ ∈ p2`−sZp.

Moreover, since α ∈ Z×p , it follows that ã ∈ Z×p too, that is, (ã, p) = 1. Recall that ã and b̃
are usual integers. Let d > 1 be their (positive) greatest common divisor, let a = ã/d, and
let b = b̃/d; note that (d, p) = 1 and that 1/b = d/b̃, and so

α−ma/b ∈ p2`−sZp,

with b ∈ N, b 6 p`−r−s, |a| < p`+r−s, and (a, b) = (a, p) = (b, p) = 1.

Letting k = `− r − s, we have that (a, b) ∈ Sk and

m ∈ Z×p [a, b, k].

Let
S′ = {κ ∈ N0 : Z×p [a′, b′, κ] ∩ Z×p [a, b, k] 6= ∅ for some (a′, b′) ∈ Sκ}.

Clearly k ∈ S′; let κ0 = minS′, so that κ0 6 k, and let (a′, b′) ∈ Sκ0 be such that
Z×p [a′, b′, κ0] ∩ Z×p [a, b, k] 6= ∅. According to (1) and (2) above, we have that Z×p [a, b, k] ⊆
Z×p [a′, b′, κ0], and, in particular,

m ∈ Z×p [a′, b′, κ0].

We claim that, if κ0 > 1, then (a′, b′) ∈ S]κ0
. For if this were not the case, we would have

that a′′/b′′ − a′/b′ ∈ p`+r+κZp for some 0 6 κ < κ0, (a′′, b′′) ∈ S0
κ. But then, according

to (2), Z×p [a′, b′, κ0] ⊆ Z×p [a′′, b′′, κ], so that κ ∈ S′, contradicting the minimality of κ0. This
implies κ0 = 0 or (a′, b′) ∈ S]κ0

. In any case, since S0
κ0

is a full set of unique representatives
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of∼κ0
, we must have (a′, b′) ∼κ0

(a′0, b
′
0) for some (a′0, b

′
0) ∈ S0

κ0
. But then, according to (2),

Z×p [a′, b′, κ0] = Z×p [a′0, b
′
0, κ0], so that

m ∈ Z×p [a′0, b
′
0, κ0]

with (a′0, b
′
0, κ0) ∈ S0. This shows that an arbitrary m ∈ Z×p is included in the union on the

right-hand side of (1.9). This completes the proof of (1.9).

The final claim of Theorem 3 is immediate, for if, say, k1 < k2, then a/b−a/b ∈ p`+r+k1Zp
with (a, b) ∈ S0

k1
, so that (a, b) 6∈ S]k2

and so a fortiori (a, b) 6∈ S0
k2

.

4. A sketch of Jutila’s method

In this section we give a very brief sketch of Jutila’s method [23] for bounding (1.3),
ignoring all technicalities. We use a lot of imprecise notation and suppress in particular
smooth weight functions and ε’s. The full proof with all details can be found in [23], but we
hope that the following sketch can guide the reader through the argument.

Let a(m) denote the Fourier coefficients of f and consider (a smoothed version of)

L :=
∑
m�M

a(m)m2πit =
∑
m�M

a(m)e(t logm)

where t2/3 �M � t (for smallerM we estimate trivially, for biggerM we use the functional
equation).

Step 1: Farey Dissection. – Let ρ = a/b � t/M be a typical rational number with b � B,
a � tB/M . We consider intervals Iρ centered at t/ρ of length ≈ M/(AB). These AB
intervals cover [M, 2M ]. This gives

L ≈
∑
ρ

∑
m∈Iρ

a(m)e(t logm).

A Taylor expansion about t/ρ suggests to re-write this as∑
ρ

∑
m∈Iρ

a(m)e(mρ)e(t logm−mρ).

Step 2: Voronoi summation. – We apply Voronoi summation to the inner sum:∑
m∈Iρ

a(m)e(mρ)e(t logm−mρ) ≈ 1

b

∑
m

a(m)e(mρ̄)

∫
Iρ

e(t log x− xρ)J±κ
(

4π
√
mx

b

)
dx.

Let us assume that

(4.1) MB−2 � t1/2,

so that one can run a stationary phase argument. We recall our assumption that all sums
and integrals are understood to be smooth. After some moderately pleasant computation
one obtains∫

Iρ

e(t log x− xρ)J±κ
(

4π

√
mx

b

)
dx ≈ δm�MB−2B(M/t)1/2 · ρ−2πite

(
tφ
( m

4abt

))
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with φ(x) = arcsinh(x1/2) + (x+ x2)1/2 − x. Substituting back, we obtain

L ≈ M1/2

t1/2

∑
ρ

ρ−2πit
∑

m�MB−2

a(m)e(mρ̄)e
(
tφ
( m

4abt

))
.

Since the sum over ρ contains tB2/M terms, a trivial estimate returns (Mt)1/2 which at most
recovers the trivial bound, but we can hope to exploit cancellation in the ρ-sum. This is the
purpose of the next two steps.

Step 3: Cauchy-Schwarz inequality. – By Cauchy-Schwarz and a standard Rankin-Selberg
mean value bound for a(m), we get

L� M

t1/2B

{∑
ρ1,ρ2

(ρ1

ρ2

)−2πit ∑
m�MB−2

e

(
m

(
ā1

b1
− ā2

b2

)
+ tφ

(
m

4a1b1t

)
− tφ

(
m

4a2b2t

))}1/2

.

Step 4: Bounding exponential sums. – For ρ1 6= ρ2 we treat the m-sum by van der Corput’s
technique, see, e.g., [22, Corollary 8.13]), while for ρ1 = ρ2 we estimate trivially. In this way
we obtain

L� M

B
+ t1/2B1/2M1/4 �M1/2t1/3

upon choosing B = M1/2/t1/3 which is in agreement with (4.1). This is non-trivial for M >
t2/3+δ.

The method works for general sums∑
m�M

a(m)e(ft(m))

with suitable functions ft(m), see [23, Theorem 4.6].

5. Proofs of Theorems 1 and 2

5.1. General ranges, assumptions, and notation

Already in the introduction we mentioned that the critical range for applications of
Theorem 1 is M ≈ Zq, and that, for larger M , one can reduce the length of the sum to
about Z2q2/M . We now make this more precise. By Mellin inversion and the functional
equation of L(f ⊗ χ, s) we have∑

m

a(m)χ(m)W
(m
M

)
= η

∑
m

a(m)χ̄(m)W̃

(
m

q2Z2/M

)
,

where η = η(χ) is a constant of absolute value 1, and

W̃ (x) =
1

2πi

∫
(c)

L∞(f, s)

L∞(f, 1− s)
Ŵ (1− s)(Z2x)−sds,

where Ŵ (s) is the Mellin transform of W . It is easy to see that Ŵ (s)�<s,A (1 + |s|/Z)−A

for any A > 0, and hence by Stirling’s formula

W̃ (j)(x)�c,f,j x
−c
(
Z

x

)j
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for any c > 0 and j ∈ N0. In particular, choosing a smooth partition of unity, we find that∑
m

a(m)χ(m)W
(m
M

)
= η

∑
R=2ν

∑
m

a(m)χ̄(m)ΦR

(m
R

)
for smooth, compactly supported functions ΦR satisfying

Φ
(j)
R �j,c

(
R

q2Z2/M

)−c
Zj

for any c > 0 and j ∈ N0. In particular, by choosing c sufficiently large, we can assume
that R 6 (q2Z2/M)1+ε, and, for those R, we choose c = ε in the preceding estimate and
apply Theorem 1 with ΦR in place ofW . The upshot is that in the situation of Theorem 1 we
can assume without loss of generality that

(5.1) M 6 (qZ)1+ε.

We recall the set-up and our general assumptions that will be in force for the rest of the
paper. Let α ∈ Z×p be such that (2.2) holds for the character χmodulo q = pn in Theorem 1.
(As pointed out in Section 2.3, we will only use the Corollary (2.3) in our arguments.) We fix
a positive integer ` and a parameter r with |r| 6 `. At the end of the proof of Theorem 1, in
Section 5.5 in (5.18) and (5.19), we will optimize ` and r. At this point, we only assume

(5.2) ` < n/4.

In view of (5.2), (5.1), and (1.4), we may and will assume without loss of generality that

(5.3)
n > 5 and Z5p7/3q2/3 6M 6 (qZ)1+ε,

in particular M 6 min(q2, Zq4/3).

Other than n > 5, much of our argument until the final choice of parameters in Section 5.5 is
in fact insensitive to the precise form of the conditions (5.3) and requires only that Z �MA

and M � qA for some large constant A > 0; we list them here since their concrete form
imparts no loss while simplifying the writeup.

5.2. Splitting into arithmetic progressions and harmonic analysis

Jutila’s method succeeds by decomposing the m-sum into short intervals, in which the
derivative t/m of the archimedean phase t logm is well-approximated by a rational num-
ber a/b. We begin our argument by using Theorem 3 with the values of α, `, and r specified
in Section 5.1, and obtain a set S0 of triples (a, b, k) inducing the partition (1.9) of Z×p into
sets Z×p [a, b, k], in which the derivative of the non-archimedean phase is very well p-adically
approximated by a/b = ab̄, and whose intersections with Z are arithmetic progressions of
difference p`+|r|+k. Corresponding to this partition, we can decompose

L =
∑

s=(a,b,k)∈S0

∑
m∈Z∩Z×p [a,b,k]

a(m)χ(m)W
(m
M

)
=

∑
s=(a,b,k)∈S0

Ls,

where

Ls =
∑
m

a(m)fs(m)e

(
ab̄

pn
m

)
W
(m
M

)
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and, for every m ∈ Z,

(5.4) fs(m) =

χ(m)θ

(
− ab̄
pn
m

)
, m ∈ Z×p [a, b, k],

0, otherwise.

In other words, keeping in mind that 0 6 k 6 `−|r| for all (a, b, k) ∈ S0, we split the original
sum into arithmetic progressions of moduli between p`+|r| and p2`. It is convenient to split
the sum over s further into O(log3 q) pieces according to the size of a and b. We have

(5.5) L� qε max
06k6`−|r|
A6 1

2p
k+2r+

B6 1
2p
k+2r−

|LA,B,k|, LA,B,k :=
∑

s=(a,b,k)∈S0

A6|a|<2A
B6b<2B

Ls.

In light of (5.5), a good bound for every individualLA,B,k will be satisfactory for Theorem 1.
We keep A,B, k fixed for the rest of this section.

It is important to observe that, for every s = (a, b, k) ∈ S0, the function fs defined
by (5.4) is periodic modulo pn−`−|r|−k. Indeed, in light of (5.2) and k 6 ` − |r|, we have
n− `− |r| − k > n− 2(n/4) = n/2, so that (2.5) gives, for every m ∈ Z×p [a, b, k] and µ ∈ Z,

fs
(
m+ pn−`−|r|−kµ

)
= χ

(
m+ pn−`−|r|−kµ

)
θ

(
−a/b
pn
(
m+ pn−`−|r|−kµ

))
= χ(m)θ

(
−a/b
pn

m

)
χ
(
1 + pn−`−|r|−km̄µ

)
θ

(
−a/b
pn

pn−`−|r|−kµ

)
= fs(m)θ

(
(α/m− a/b)µ

p`+|r|+k

)
.

According to the definition of Z×p [a, b, k], we have that α/m− a/b ∈ p`+|r|+kZp; this clearly
implies that fs

(
m + pn−`−|r|−kµ

)
= fs(m). In particular, fs

(
m + pn−`−|r|−kµ) 6= 0 if and

only if fs(m) 6= 0, and so m+ pn−`−|r|−kµ ∈ Z×p [a, b, k] if and only if m ∈ Z×p [a, b, k]. (The
latter is also immediate from `+ |r|+ k 6 n− `− |r| − k.)

For a Dirichlet character ψ modulo pn−`−|r|−k, denote

(5.6) f̂s(ψ) :=
∑

m mod pn−`−|r|−k

fs(m)ψ̄(m).

Then, we have that

fs(m) =
δp

pn−`−|r|−k

∑
ψ mod pn−`−|r|−k

f̂s(ψ)ψ(m),

where δp = (1− p−1)−1. Hence we may write

Ls =
δp

pn−`−|r|−k

∑
06c6n−`−|r|−k

Ls,c,

where

(5.7) Ls,c =
∑

ψ mod pn−`−|r|−k

condψ=pc

f̂s(ψ)
∑
m

a(m)ψ(m)e

(
− apn

b
m

)
e

(
a

bpn
m

)
W
(m
M

)
;
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here we employed the well-known reciprocity formula for the exponential: e(aū/v)e(av̄/u) =

e(a/uv) for every a ∈ Z, (u, v) = 1.

5.3. Voronoi summation and stationary phase evaluation

We are now prepared for the second step of Jutila’s method, the application of the Voronoi
formula (2.8) to the inner sum in (5.7), with N = pc and F (m) = e

(
a
bpnm

)
W
(
m
M

)
.

For technical reasons it is convenient to estimate the contribution of c 6 1 separately. In
this case, ψ is periodic modulo p, and hence

ψ(m)e

(
−ap

n

b
m

)
=

∑
ξ mod p

β(ξ)e

((
ξ

p
− apn

b

)
m

)
for certain complex numbers β(ξ) satisfying

∑
|β(ξ)|2 6 p. We write ξ/p − apn/b = y/w

with w 6 pb in lowest terms and apply the Voronoi formula (Lemma 1 with D = 1, b = w)
to the m-sum in (5.7) obtaining∑

ξ mod p

β(ξ)
1

w

∑
m>1

a(m)e
(
∓ ȳ
w
m
)∫ ∞

0

e

(
a

bpn
x

)
W
( x
M

)
J±κ

(
4π
√
mx

w

)
dx

for the m-sum in (5.7). By (2.10) with Z0 = Z + AM/(Bpn) and the size condition on A,
B, k in (5.5), the above expression is

�
∑

ξ mod p

|β(ξ)| 1
w

∑
m>1

|a(m)|M
(

1 +
w√
Mm

)j+ 1
2
(

(Z +AM/(Bpn))w√
Mm

)j

�Mp

(
1 +

p1+`−r
√
M

)j+ 1
2

(
Zp1+`−r
√
M

+
p1+`+r

√
M

pn

)j
for any j > 3. Here we used −|r| + 2r± = ±r. Summing this over characters ψ with
conductor dividing p as in (5.7) and using the trivial bound

|f̂s(ψ)| 6
∑

mmod pn−`−|r|−k

m∈Z×p [a,b,k]

1 6 pn−2(`+|r|+k),

the total contribution of these characters to Ls is at most

(5.8) E := Mp2−(`+|r|+k)

(
1 +

p1+`−r
√
M

)j+ 1
2

(
Zp1+`−r
√
M

+
p1+`+r

√
M

pn

)j
for any j > 3. Our choice of parameters will imply that E is very small; we return to this
point in (5.20). From now on, we assume that c > 2 and observe that in this case ψ coincides
with its underlying primitive character as an arithmetic function on the integers.

For c > 2, we apply (2.8) to the inner sum in (5.7) getting

Ls,c =
∑

ψ mod pn−`−|r|−k

condψ=pc

f̂s(ψ) · ψ
2(b)

pcb
· τ(ψ)2

pc

∑
m>1

a(m)ψ̄(m)e

(
āpnp2c

b
m

)
Is,c(m),

with

(5.9) Is,c(m) =

∫ ∞
0

W
( x
M

)
e

(
a

bpn
x

)
J±κ

(
4π
√
mx

bpc

)
dx,
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and hence
(5.10)

Ls =
δp

pn−`−|r|−k

∑
26c6n−`−|r|−k

1

pcb

∑
m>1

a(m)e
( āpnp2c

b
m
)
· Is,c(m) · Ls,c(m) +O(E),

where

(5.11) Ls,c(m) =
∑

ψ mod pc

ψ primitive

τ(ψ)2

pc
ψ(b2m̄)f̂s(ψ).

We need to analyze the integral Is,c and the character sumLs,c. The integral Is,c will be com-
puted by an (archimedean) stationary phase argument, while the character sum Ls,c will be
evaluated by an involved non-archimedean stationary phase computation. This is the con-
tent of the following two lemmas, whose proof we postpone to the next two sections. We re-
call the general notation at the beginning of this section and in particular the conditions (5.2)
and (5.3).

L 3. – Let s = (a, b, k) ∈ S0 be such that A 6 |a| 6 2A, B 6 b 6 2B. Let m > 1

and 2 6 c 6 n − ` − |r| − k. Let the number M and the function W be as in Theorem 1.
Fix 0 < ε < 1/100. Then the function Is,c(m) defined in (5.9) is O((qm)−100) unless

(5.12) m 6

(
p2c

(
B2Z2

M
+
A2M

p2n

))1+ε

qε � p2c

(
B2Z2

M
+
A2M

p2n

)
q3ε =:Mq3ε.

In the range (5.12) one has

(5.13) Is,c(m) =

(
Mq3ε

m

)1/4

min

(
M,

BZpn

A

)
e(ϑs,cm)Ws,c(m) +O(q−100),

where Ws,c is smooth and satisfies

(5.14) mj dj

dmj
Ws,c(m)�j q

3ε(Z2q5ε)j

and where

ϑs,c =

−
pn−2c

ab
,

AM

BZ2pn
> 1,

0, otherwise.

The statement of the lemma looks a bit artificial, but it is most useful for the rest of
the argument. Although the proof gives slightly more information, the lemma claims no
asymptotic formula, but only an upper bound for e(−ϑs,cm)Is,c(m) and all its derivatives.
The function Ws,c(m) depends on whether AM/(BZ2pn) > 1 or not, and hence implicitly
on A,B,M,Z, but this is not displayed in the notation.

L 4. – Let s = (a, b, k) ∈ S0, and, for m ∈ Z×p , let fs(m) be defined as in (5.4).
Further, let 2 6 c 6 n− `− |r| − k, and, for every primitive Dirichlet character ψ modulo pc,
let f̂s(ψ) be defined as in (5.6). Finally, let Ls,c(m) be defined as in (5.11). Then

Ls,c(m) =


γp

n+c
2 −`−|r|−kχ(āb)

∑
ε∈{±1}

Φεc(m/ab), αbm/a ∈ Z×p 2,

0, otherwise,
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where γ is a constant of absolute value 1 − p−1 which depends only on the parity of n, and
Φεc : αZ×p 2 → C is a function of absolute value 1 given explicitly in (7.1).

5.4. Extracting cancellation on average

We insert (5.10), Lemma 3, and Lemma 4 into (5.5), obtaining

(5.15) L� qε max
06k6`−|r|

26c6n−`−|r|−k

max
A6pk+2r+

B6pk+2r−

(
|LA,B,k,c|+ (ABqε)E + q−90

)
,

where E is as in (5.8), and

LA,B,k,c :=
min(M,BZpn/A)

p(n+c)/2

[q3εM]∑
m=1

(
Mq3ε

m

)1/4

∑
s=(a,b,k)∈S0, αbm/a∈Z×p

2

A6|a|<2A, B6b<2B

a(m)χ(āb)

b
e

(( āpnp2c

b
+ ϑs,c

)
m

)
Ws,c(m)

∑
ε

Φεc(m/ab).

For s1 = (a1, b2, k), s2 = (a2, b2, k) ∈ S0, let

(5.16) Ξs1,s2 =
∑

16m6q3εM
αb1m/a1, αb2m/a2∈Z× 2

p

e(ωs1,s2,cm)Ws1,c(m)W s2,c(m)

∑
ε1,ε2

Φε1c (m/a1b1)Φε2c (m/a2b2),

where

ωs1,s2,c =
ā1p

np2c

b1
− ā2p

np2c

b2
+ ϑs1,c − ϑs2,c.

By the Cauchy-Schwarz inequality and the Rankin-Selberg bound (2.9), we obtain

LA,B,k,c �
min(M,BZpn/A)

p(n+c)/2B

(
q3εM

) 1
2

( ∑
s1,s2∈S0

A6|aj |62A
B6bj62B

|Ξs1,s2 |

) 1
2

�M
1
2Zq2εp

c−n
2

( ∑
s1,s2∈S0

A6|aj |62A
B6bj62B

|Ξs1,s2 |

) 1
2

.

(5.17)

In order to bound LA,B,k,c, the crucial remaining step is to bound the sum Ξs1,s2 . The
proof of the following lemma is an application of the second derivative test for p-adic
exponential sums that we develop in Section 8 below; it will be given in Section 9. Recall our
convention from Section 2.1 regarding ordp 0 =∞.
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L 5. – Let sj = (aj , bj , k) ∈ S0 (for j = 1, 2) be such that A 6 |aj | 6 2A,
B 6 bj 6 2B. Let 2 6 c 6 n− `− |r| − k. Let Ξs1,s2 be defined as in (5.16), whereM, Ws,c,
and Φεc are as in Lemmas 3 and 4. Then

Ξs1,s2 =
∑

Ω∈{0,ordp(a1b1−a2b2)}

Ξs1,s2,Ω,

where the summands Ξs1,s2,Ω are defined in (9.10) and satisfy

Ξs1,s2,Ω �

q17εZ2p
(
p

Ω−c
2 M+ p

c−Ω
2

)
, Ω 6 c− 2,

q9εM, c− 1 6 Ω 6∞.

5.5. The end game

We are now prepared to complete the proof of Theorem 1. Splitting the Ξs1,s2 terms
in (5.17) into Ξs1,s2,Ω for various Ω and regrouping, we have that

LA,B,k,c �M
1
2Zq2εp

c−n
2

( ∑
s1,s2∈S0

A6|aj |62A
B6|bj |62B

|Ξs1,s2,0|+
c−2∑
Ω=1

pΩ68AB

∑
s1,s2∈S0

A6|aj |62A, B6bj62B
ordp(a1b1−a2b2)=Ω

|Ξs1,s2,Ω|

+

∞∑
Ω=c−1
pΩ68AB

∑
s1,s2∈S0

A6|aj |62A, B6bj62B
ordp(a1b1−a2b2)=Ω

|Ξs1,s2,Ω|+
∑

s1,s2∈S0

A6|aj |62A, B6bj62B
a1b1=a2b2

|Ξs1,s2,∞|

)1/2

.

Here, both Ω-sums may be restricted to pΩ 6 8AB in light of pΩ | (a1b1 − a2b2) and
|aj | 6 2A, |bj | 6 2B. To estimate the number of terms in the corresponding aj , bj-sums, we
see that, for each of the� AB choices of a1 and b1, there are� AB/pΩ + 1 � AB/pΩ

choices for the (clearly non-zero) product a2b2 and hence no more than (AB/pΩ)(AB)ε �
qε(AB/pΩ) choices for a2 and b2 by the divisor bound; this gives a total of� qεAB(AB/pΩ)

terms. The number of terms in the fourth sum is analogously estimated as� qεAB. Apply-
ing Lemma 5 and recalling the definition ofM in (5.12), we thus obtain

LA,B,k,c

� M
1
2Zq11εp

c−n
2

( ∞∑
Ω=0

AB
AB

pΩ
p
(
p

Ω−c
2 M+ p

c−Ω
2

)
Z2 +

∞∑
Ω=c−1

AB
AB

pΩ
M+ABM

)1/2

� M
1
2Z2q11εp

3c
4 −

n
2 + 1

2

[(
ABpc/2 + (AB)1/2p

3c
4 −

1
2

)(B2Z2

M
+
A2M

p2n

)1/2

+AB

]
.

This is our final estimate for LA,B,k,c. Referring to (5.15), we have that

max
A6pk+2r+

B6pk+2r−

|LA,B,k,c| �M
1
2Z2q11εp

3c
4 −

n
2 + 1

2

[(
p2k+2|r|p

c
2 + pk+|r|p

3c
4 −

1
2

)
pk
(
Z2

M
p4r− +

M

p2n
p4r+

)1/2

+ p2k+2|r|

]
.
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For every fixed 0 6 k 6 `− |r|, the above expression is monotone in c, so that

max
26c6n−`−|r|−k

max
A6pk+2r+

B6pk+2r−

|LA,B,k,c| �M
1
2Z2q11εp

1−n
2

[(
p

5
4 (n−`)+ 3

4 (k+|r|)

+ p
3
2 (n−`)− 1

2 (k+|r|+1)

)
pk+|r|

(
Z

M1/2pr
+
M1/2pr

pn

)
+ p

3
4 (n−`)+ 5

4 (k+|r|)

]
.

Applying monotonicity in k, we find that

max
06k6`−|r|

26c6n−`−|r|−k

max
A6pk+2r+

B6pk+2r−

|LA,B,k,c|

�M
1
2Z2q11εp

1−n
2

[(
p

5
4n+ 1

2 ` + p
3
2n−`−

1
2

)( Z

M1/2pr
+
M1/2pr

pn

)
+ p

3
4n+ 1

2 `

]
.

The above bound holds for all ` ∈ N and−` 6 r 6 `, subject only to the constraint (5.2).
We choose

(5.18) ` ∈
[
n

6
− 1

2
,
n

6
+

1

3

]
∩
[
1,
n

4

)
∩ N.

It is easily verified that such a choice is possible for every n > 5. Also, our basic condi-
tion (5.3) guarantees that p−2(n/6−1/2)−1 � Zpn/M � p2(n/6−1/2)+1 (in other words,
Zq2/3 �M � Zq4/3) and consequently that

p−2`−1 � Zpn

M
� p2`+1.

It follows that we can choose an integer r such that −` 6 r 6 ` and p2r−1 � Zpn/M � p2r+1,
so that

(5.19) p−1/2

(
Zpn

M

)1/2

� pr � p1/2

(
Zpn

M

)1/2

.

We first show that with these choices of ` and r the termABqεE in (5.15) is negligible. Indeed,
the bounds on M in (5.3) imply Z4p7/3 6 q1/3(Zq)ε, and hence a fortiori

p11/6Z1/2 6 q11/42+ε.

By (5.8), (5.3), (5.19) and (5.18) and the size conditions on A and B in (5.15), we conclude

ABq2εE �Mp2q4ε

(
1 +

p1+`−r
√
M

)j+ 1
2

(
p1+ 1

3 + 1
2Z1/2

pn/3

)j
6Mp2q4εq−j/15 � q−100

(5.20)

for j > 2000. Hence (5.15) yields

L�M
1
2Z2q11εp−

n
2 + 1

2

[
p

4
3n+ 1

6 + 1
2

(
Z

pn

)1/2

+ p
5
6n+ 1

6

]
�M

1
2Z

5
2 p

7
6 q

1
3 +11ε.

This completes the proof of Theorem 1.
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5.6. Proof of Theorem 2

Theorem 2 is now an easy consequence. By a standard approximate functional equation
[22, Theorem 5.3] we have under the assumptions of Theorem 2 that

L(f ⊗ χ, 1/2 + it) =
∑
m

a(m)χ(m)

m1/2+it
Vt

(
m

q

)
+
τ(χ)2

q

∑
m

a(m)χ̄(m)

m1/2−it V−t

(
m

q

)
where V±t is a smooth weight function satisfying xjV

(j)
±t (x)�j,A (1 + x/|t|)−A for

all j, A ∈ N0. By symmetry it is enough to estimate the first term on the right hand side. We
can assume without loss of generality 0 6 t 6 q (for Theorem 2 follows from the convexity
bound if |t| > q). We apply a smooth partition of unity and need to bound

1

M1/2

∑
m

a(m)χ(m)W
(m
M

)
,

where W is a smooth weight function with support in [1, 2] satisfying W (j)(x) �j t
j , and

M 6 (tq)1+ε. An application of Theorem 1 completes the proof of Theorem 2.

6. Archimedean stationary phase computation

In this section we give a proof of Lemma 3. We use two general results on exponential
integrals from [3, Section 8]: Lemma 8.1, which shows that an integral is very small by a
general elaboration of the integration by parts argument, and Proposition 8.2, a general
stationary phase estimate which extracts the principal term and a finite number of secondary
principal terms with a very small error term.

It follows directly from (2.10) with Z0 = Z +AM/(Bpn) and α = 4π
√
m/(bpc) that

Is,c(m) is negligible outside the range (5.12). More precisely, we have that

Is,c(m)�M

(
1 +

Bpc√
Mm

)j+ 1
2
(

(Z +AM/(Bpn))Bpc√
Mm

)j
�M(qm)

−εj
2(1+ε) � (qm)−100,

upon choosing j = d500(1 + ε)/εe.
From now on, we assume (5.12). As a preparation for the proof of (5.13) and (5.14), let

us momentarily assume

(6.1)
AM

Bpn
> Zq2ε.

In this case we insert the representation (2.12) into (5.9) getting

Is,c(m) =

∫ ∞
0

W
( x
M

)
e

(
a

bpn
x+

2
√
mx

bpc

)
Ω±κ,+

(
4π
√
mx

bpc

)
dx

+

∫ ∞
0

W
( x
M

)
e

(
a

bpn
x− 2

√
mx

bpc

)
Ω±κ,−

(
4π
√
mx

bpc

)
dx.

(6.2)

The integral Is,c(m) in (6.2) will be estimated using the above mentioned Lemma 8.1 from [3].
Without loss of generality, we assume a > 0 (the other case being identical). The first term
of (6.2) has no stationary point, and we use [3, Lemma 8.1] with

X = qε, U = M/Z, Q = M, Y =
AM

Bpn
+

√
mM

Bpc
� q

3
2 ε
AM

Bpn
, R =

A

Bpn
,
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so that min(RU,QRY −1/2) � qε/4. Hence by [3, (8.3)] the first term is negligible. By the
same argument, the second term is negligible, unless

(6.3)
a

2pn
6

√
m√
Mpc

6
2a

pn
.

We keep this in mind, and proceed now to the proof of (5.13) and (5.14) under the assump-
tion (5.12). We distinguish the two ranges AM/(Bpn) > Z2q2ε and AM/(Bpn) < Z2q2ε,
according to whether the exponential in (5.9) oscillates visibly or not. Let us first assume

(6.4)
AM

Bpn
< Z2q2ε.

Then we find by (2.11) that

mj dj

dmj
Is,c(m)�j M

(√mM
Bpc

)−1/2(√MMq3ε

Bpc

)j
�M

(√mM
Bpc

)−1/2

(Z2q4ε)j .(6.5)

If AM/(Bpn) 6 Zq2ε, this is

�M

(
M
m

)1/4

(Z2q4ε)j 6 min

(
M,

BZpn

A

)
q2ε

(
Mq3ε

m

)1/4

(Z2q4ε)j .

If AM/(Bpn) > Zq2ε, we recall (6.3) and estimate (6.5) by

�M1/2

(
Bpn

A

)1/2

(Z2q4ε)j 6 min

(
M,

BZpn

A

)
q2ε

(
Mq3ε

m

)1/4

(Z2q4ε)j .

In addition, in this range one has (recall (5.12))

mj dj

dmj
e(ϑs,cm)�

((BZ2pn

AM
+
AM

Bpn

)
q3ε

)j
� (Z2q5ε)j .

The preceding three bounds confirm (5.13) and (5.14) under the present assumption (6.4).

We proceed to prove (5.13) and (5.14) if (6.4) is not satisfied, i.e., if

(6.6) AM/(Bpn) > Z2q2ε.

In particular, (6.1) holds, and hence Is,c(m) is negligible unless (6.3) is satisfied, which we
assume from now on. Then the phase e

(
ax/bpn±2

√
mx/bpc

)
in (6.2) has a stationary point

at

x0 =
mp2n−2c

a2
�M.

Recalling (2.11) and (5.3) and applying [3, Prop. 8.2] with

X =
(√mM
Bpc

)−1/2

�
(pnB
AM

)1/2

, V1 = M, V �M/Z,

Y =

√
mM

Bpc
� AM

Bpn
, Q = M, p2n/3 6 Z� p2n, δ =

ε

3

(satisfying [3, (8.7)] by our present assumption (6.6)), it follows that

Is,c(m) = e

(
−mp

n−2c

ba

)
Bpn

A
Ps,c(m) +O(q−100)
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where P (j)
s,c (m) � (m/Z)−j by [3, (8.11)]. This confirms (5.13) and (5.14) in the case (6.6)

and completes the proof of the lemma.

7. p-adic stationary phase computation

In this section we give a proof of Lemma 4. Our method actually works in great generality.
The functions entering the complete and incomplete exponential sums which we consider in
this section are p-adic analytic functions, and this allows for a beautiful analogy on which
this paper and [29] are built. However, we will see that, for our particular purposes, we require
quite a bit less information than full analyticity.

7.1. Preliminaries

The following three lemmas are essentially known (see e.g., [22, pp. 320-322]), but for
completeness we include full proofs.

L 6 (Gauß sum). – Let p be an odd prime, A ∈ Z×p , B ∈ p−nZp, s ∈ {0, 1}, n > s,
and let

S =
∑

x mod pn

θ
(
Ap−sx2 +Bx

)
.

Then S = 0 unless B ∈ p−sZp, in which case

S = pn−s/2ε(A, ps)θ
(
− B2ps

4A

)
,

where

ε(A, ps) =


1, s = 0,(
A
p

)
, s = 1, p ≡ 1 (mod 4),(

A
p

)
i, s = 1, p ≡ 3 (mod 4).

Proof. – Note that the summand is indeed pnZp-periodic. If s = 0, then S = 0 ifB 6∈ Zp
and S = pn otherwise. If, on the other hand, s = 1, then

S =
∑

x mod p

∑
t mod pn−1

θ
(
Ap−1(x+ pt)2 +B(x+ pt)

)
=

∑
x mod p

θ
(
Ap−1x2 +Bx

) ∑
t mod pn−1

θ
(
Bpt

)
,

so that S = 0 if B 6∈ p−1Zp. In the case B ∈ p−1Zp, we find that

S = pn−1
∑

x mod p

θ
(
Ap−1(x+ (2A)−1Bp)2

)
θ
(
−(4A)−1B2p

)
= pn−

1
2 ε(A, p)θ

(
− B2p

4A

)
,

by the classical evaluation of the quadratic Gauß sum (see e.g., [22, (3.29) and (3.22)]).
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L 7 (p-adic stationary phase). – Let n > κ, let A ⊆ Zp be such that (A+ pκZp) ⊆ A,
and let f : A/pnZp → C×, g1, g2 : A→ Qp be functions such that, for every t ∈ Zp,

f
(
x+ pκt

)
= f(x)θ

(
g1(x) · pκt+ 1

2g2(x) · p2κt2
)
.

Assume that ordp g1(x) > −n and ordp g2(x) = µ for every x ∈ A, and that−2n 6 µ 6 −2κ.
Write µ = −2r − ρ with r ∈ Z and ρ ∈ {0, 1}. Then∑

x mod pn, x∈A

f(x) = pn+(µ/2)
∑

x mod pr, x∈A
g1(x)∈p−r−ρZp

f(x)ε
(
2̄(g2(x))0, p

ρ
)
θ

(
− g1(x)2

2g2(x)

)
.

We make a very important remark that, even though this may not be immediately obvious
from its shape, the summand on the right-hand side is prZp-periodic, as will be clear from
the proof. Conditional sums on both sides are understood in the sense of Section 2.1. In par-
ticular, in applying the lemma, one can substitute on the right-hand side arbitrary represen-
tatives of the congruence classes modulo prZp, including, of course, those which are most
convenient.

Proof. – Let S denote the sum on the left-hand side. Note that our assumptions imply
that κ 6 r 6 n− ρ, so that we may write

S =
∑

x mod pr, x∈A

∑
t mod pn−r

f
(
x+ prt

)
=

∑
x mod pr, x∈A

f(x)
∑

t mod pn−r

θ
(

1
2g2(x)p2rt2 + prg1(x)t

)
.

Since r + ordp g1(x) > −(n − r) and 2r + µ = −ρ, Lemma 6 can be applied to the inner
sum, yielding

S = pn−r−ρ/2
∑

x mod pr, x∈A
g1(x)∈p−r−ρZp

f(x)ε
(
2̄(g2(x))0, p

ρ
)
θ

(
−g1(x)2p2r+ρ

2(g2(x))0

)
.

L 8 (Kloosterman sum evaluation). – Let p be an odd prime, let u ∈ Z×p , letm > 2,
and let

S(1, u; pm) =
∑∗

x mod pm

θ

(
x+ u/x

pm

)
be the Kloosterman sum. Then, S(1, u; pm) = 0 unless u ∈ Z×p 2, in which case, denoting ρ = 0

or 1 according to whether m is even or odd,

S(1, u; pm) = pm/2
∑
±
ε(±u1/2, p

ρ)θ

(
±

2u1/2

pm

)
.

Proof. – Note that, for every x ∈ Z×p , t ∈ Zp, and κ > 1,(
x+ pκt

)
·
(

1

x
− 1

x2
pκt+

1

x3
p2κt2

)
∈ 1 + p3κZp,

so that (
x+ pκt

)−1 ≡ 1

x
− 1

x2
pκt+

1

x3
p2κt2 (mod p3κ),
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and the function gu(x) := θ
(
(x+ u/x)/pm

)
satisfies

gu
(
x+ pκt

)
= gu(x)θ

((
1− u

x2

)
pκ−mt+

u

x3
p2κ−mt2

)
as long as 3κ > m. We may apply Lemma 7 withµ = −m as long as−2m 6 µ = −m 6 −2κ,
that is, whenever m > 2κ. We make an arbitrary choice of κ > 1 with κ ∈ [m/3,m/2]; such
a choice can be made for every m > 2. Writing m = 2r + ρ with r > 1 and ρ ∈ {0, 1} as in
the statement of our lemma, we have that

S(1, u; pm) = pm/2
∑∗

x mod pr

1−u/x2≡0 mod pm−r−ρ

θ

(
x+ u/x

pm

)
ε
(
ux̄3, pρ

)
θ
(
− x3

4u

(
1− u

x2

)2 1

pm

)
.

The summation condition is equivalent to x2 ≡ u (mod pr). Since r > 1, it follows
that S(1, u; pm) = 0 unless u ∈ Z×p 2, in which case the condition is equivalent
to x ≡ ±u1/2 (mod pr), so that the sum has exactly two terms. Their contributions may (by
the remarked periodicity) be evaluated by substituting exact values of ±u1/2; this gives the
announced result.

7.2. Proof of Lemma 4

We return to the situation in Lemma 4 and recall our notational conventions. Let ` < n/4

be a positive integer satisfying (5.2), and let r be an integer with−` 6 r 6 `. We recall that the
set Z×p [a, b, k] was defined by the condition m− αb/a ∈ p`+|r|+kZp. For s = (a, b, k) ∈ S0,
write `s = `+ |r|+ k 6 n/2 by (5.2). Recall that χ is a fixed primitive character modulo pn.
According to (2.5), we have

χ
(
1 + pκt

)
= θ

(
α

pn
(
pκt− 1

2p
2κt2

))
for every κ with 3κ > n+ ι′ and every t ∈ Zp.

We split the proof of Lemma 4 into two steps, which are treated in Lemmas 9 and 10 below.
Lemma 4 follows immediately by combining these two statements.

Lemma 9 is a purely algebraic and spectral statement, in which Ls,c(m) is replaced by its
dual sum via discrete harmonic analysis. In other words, Lemma 9 is an expression of discrete
Parseval’s identity, with the Kloosterman sum (the multiplicative convolution of θ(·/pn)

and θ( ·̄/pn), which can be seen as the discrete analogue of the Bessel function) appearing
on the dual side as the transform of the square of the Gauß sum.

The resulting sum is a complete exponential sum; it is exactly evaluated in the analytic
Lemma 10 by using the p-adic method of stationary phase, Lemma 7, and exploiting p-adic
local information; this is also facilitated by an explicit evaluation of the Kloosterman sum
in Lemma 8. The resulting explicit evaluation of Ls,c(m) in Lemma 10 is a sum of at most
two terms Φεc(x) defined in (7.1) below, each of which is (upon recalling (2.2)) essentially
an exponential with a completely explicit p-adically analytic phase. (The p-adically analytic
phase implicit in (7.1) is entirely analogous to Jutila’s φ(x) in [23, (4.1.6)].) We will develop
a general machinery for estimating sums involving terms of this nature in Section 8.
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L 9. – Let m ∈ Z×p . For s = (a, b, k) ∈ S0, let fs(m) be defined as in (5.4). Further,
let 2 6 c 6 n−`s, and, for every primitive Dirichlet characterψmodulo pc, let f̂s(ψ) be defined
as in (5.6). Finally, let Ls,c(m) be defined as in (5.11). Then,

Ls,c(m) =
1

δp

∑
x mod pn−`s

x∈Z×p [a,b,k]

χ(x)θ

(
−a/b
pn

x

)
S
(
1,mb−2x; pc

)
,

where δp =
(
1− p−1

)−1
.

Proof. – The definition of Ls,c(m) in (5.11) features a sum over all primitive characters
modulo pc. In preparation for passage to dual sums, we observe that, for every (u, p) = 1

and every c > 2, one has

δp
pc

∑
ψ mod pc

ψ primitive

ψ(u) =
δp
pc

∑
ψ mod pc

ψ(u)− δp
pc

∑
ψ mod pc−1

ψ(u) = δpc(u)− 1

p
δpc−1(u),

where δpc is the characteristic function of 1 + pcZp. On the other hand, for any character ψ
modulo pc and any w ∈ Z×p ,

τ(ψ)2ψ(w) =
∑∑

u1,u2 mod pc

ψ(u1u2w
−1)θ

(
u1 + u2

pc

)
=

∑
u mod pc

ψ(u)S(1, wu; pc).

Returning to Ls,c(m) and opening up f̂s(ψ), we thus obtain

Ls,c(m) =
1

pc

∑
x mod pn−`s

∑
u mod pc

fs(x)S(1,mb−2u; pc)
∑

ψ mod pc

ψ primitive

ψ(x)ψ(u)

=
1

δp

∑
x mod pn−`s

fs(x)S(1,mb−2x; pc)

− 1

pδp

∑
x mod pn−`s

fs(x)
∑

σ mod p
(x+pc−1σ,p)=1

S(1,mb−2(x+ pc−1σ); pc).

Since the inner sum in the second term vanishes trivially, we obtain the desired result.

L 10. – For s = (a, b, k) ∈ S0, 2 6 c 6 n− `s, and m ∈ Z×p , let

S =
∑

x mod pn−`s

x∈Z×p [a,b,k]

χ(x)θ

(
−a/b
pn

x

)
S(1,mxb−2; pc)

be the sum featured in Lemma 9. Then S = 0 unless αbm/a ∈ Z×p 2, in which case S can be
exactly evaluated as follows. Let ρ, resp. ρ1, be 0 or 1 according as c, resp. n, is even or odd.
For ε ∈ {±1} and ρ ∈ {0, 1}, define Φεc(x) for x ∈ αZ×p 2 as

Φεc(x) := ε
(
ε(αx)1/2, p

ρ
)
χ
(
α+ 1

2p
2(n−c)x+ εpn−c

(
αx+ 1

4p
2(n−c)x2

)
1/2

)
· θ
(

1

pc

(
1
2p
n−cx+ ε

(
αx+ 1

4p
2(n−c)x2

)
1/2

))
.

(7.1)
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Then
S = p(n+c)/2−`sχ(āb)θ

(
− α

pn

)
ε
(
− 2̄α, pρ1

) ∑
ε∈{±1}

Φεc

(m
ab

)
.

Proof. – We can evaluate the Kloosterman sum by Lemma 8. We find that
S(1,mxb−2; pc) = 0 unless mxb−2 ∈ Z×p 2; in light of x− αb/a ∈ p`sZp for every
x ∈ Z×p [a, b, k], this is equivalent to αbm/a ∈ Z×p 2. If this condition is satisfied, then

(7.2) S = pc/2
∑

x mod pn−`s

x∈Z×p [a,b,k]

χ(x)θ

(
− a

bpn
x

)∑
ε

ε
(
ε(mx)1/2b̄, p

ρ
)
θ

(
ε

2(mx)1/2

bpc

)
,

with ρ as in the statement of the lemma. Here, we replaced for convenience (mxb−2)1/2

by (mx)1/2b
−1, since they differ only by a unit factor δ ∈ {±1} that is the same for all

x ∈ αb/a+ pZp and consequently absorbed by the ε-sum. Also, note that the ε-term only
depends on x mod pρ.

Using (2.5) and (2.6), it follows that the function fεs,m,c(x), defined for x ∈ Z×p [a, b, k] as

fεs,m,c(x) := χ(x)θ

(
− a

bpn
x

)
ε
(
ε(mx)1/2b̄, p

ρ
)
θ

(
ε

2(mx)1/2

bpc

)
,

satisfies

fεs,m,c
(
x+ pκt

)
= fεs,m,c(x)θ

(
α

pn

[pκt
x
− p2κt2

2x2

]
− a

bpn
pκt+

ε

bpc

[ pκmt

(mx)1/2
− p2κm2t2

(mx)3
1/2

])
= fεs,m,c(x)θ

([(α
x
− a

b

)
p−`s + ε

mpn−`s−c

(mx)1/2b

]
pκ−(n−`s)t

+
[
− α

2x2
− ε m2pn−c

4(mx)3
1/2b

]
p2κ−nt2

)
for every t ∈ Zp and every κ > `s (which ensures that x + pκt ∈ Z×p [a, b, k] if and only
if x ∈ Z×p ) with 3κ > n+ ι′. (In particular, recalling that α/x−a/b ∈ p`sZp, we can confirm
that f±s,m,c is pn−`sZp-periodic in light of n > 2`s.)

We now apply Lemma 7 to S , with µ = −n, which we may do as long as n − `s > κ

and −2(n − `s) 6 −n 6 −2κ, that is, n > 2κ. In light of n > 2`s, we may choose
any κ ∈ [max((n+ ι′)/3, `s), n/2] (such a choice is always possible, since n > 4 is assured
by either (5.3) or ` < n/4). Writing n = 2ν + ρ1, we find that

S = pc/2+(n−`s)−n/2
∑
x

∑
ε

fεs,m,c(x)ε(−2̄α, pρ1)

θ

(
x2

α

[(α
x
− a

b

)
p−`s + ε

mpn−`s−c

(mx)1/2b

]2
p3`s−n

)
,

where summation is over all x ∈ Z×p [a, b, k], x mod pν , such that(α
x
− a

b

)
+ ε

mpn−c

(mx)1/2b
∈ pn−ν−ρ1Zp = pνZp.

This condition can be written equivalently as

a

b
mx− εmp

n−c

b
(mx)1/2 − αm ≡ 0 (mod pν).
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Denote ξ = (mx)1/2 ∈ Z×p . Recalling that x ∈ αb/a + p`sZp and αmb/a ∈ Z×p 2, we have
that ξ ∈ (αmb/a)1/2 + p`sZp is such that

a

b
ξ2 − εmp

n−c

b
ξ − αm ≡ 0 (mod pν),(

ξ − εmp
n−c

2a

)2

≡ αmb

a
+
m2p2(n−c)

4a2
(mod pν).

The congruence in ξ has two solutions, of which exactly one is in the requisite class
modulo p`s and yields the corresponding stationary point x:

ξ ≡ εmp
n−c

2a
+
(αmb

a
+
m2p2(n−c)

4a2

)
1/2

(mod pν),

x ≡ αb

a
+
mp2(n−c)

2a2
+ ε

pn−c

a

(αmb
a

+
m2p2(n−c)

4a2

)
1/2

(mod pν).

Returning to the result of the stationary phase evaluation of S , we see that the sum over x
has exactly two summands. Denoting temporarily for notational simplicity

W :=
(αm
ab

+
p2(n−c)m2

4a2b2

)
1/2
,

and keeping in mind the remark immediately following the statement of Lemma 7, we may
further evaluate S as

S = p(n+c)/2−`s
∑

ε∈{±1}

ε
(
ε(αmāb̄)1/2, p

ρ
)
ε
(
− 2̄α, pρ1

)
χ

(
αb

a
+
mp2(n−c)

2a2
+ ε

bpn−c

a
W

)

· θ
(
− 1

pn

[
α+

mp2(n−c)

2ab
+ εpn−cW

]
+

1

pc

[mpn−c
ab

+ 2εW ]

)
= p(n+c)/2−`sχ

( b
a

)
θ
(
− α

pn

)
ε
(
− 2̄α, pρ1

)
·
∑

ε∈{±1}

ε
(
ε(αmāb̄)1/2, p

ρ
)
χ

(
α+

p2(n−c)m

2ab
+ εpn−cW

)
θ

(
1

pc

[pn−cm
2ab

+ εW
])
,

by replacing ε by δε (with δ as in the remark after (7.2)). This evaluation of S is equivalent
to the statement of the lemma.

8. p-adic van der Corput estimates

The main result of this section is Theorem 5 below, which is a broad generalization of
Corollary 4 stated in the introduction. Our theorem provides an estimate for an exponential
sum of the form ∑

m∈M

e(ωm)f(m)W (m),

where ω ∈ R, M is (roughly speaking) an interval (subject to finitely many congruence
conditions), and f : M → C is a function satisfying

f(x+ pκt) ≈ f(x) · θ
(
g1(x) · pκt+ 1

2g2(x) · p2κt2
)
.
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We precede Theorem 5 with two auxiliary results in different directions. Lemma 11 is
purely local in nature. It allows us to extract information about the “first derivative” g1(x)

if sufficient information about the size of the “second derivative” g2(x) and the remainder
term µ is available. (The reader is reminded that no analyticity is assumed on f and that, in
any case, no Mean Value Theorem or similar statements are available in the p-adic situation.)
Lemma 12, on the other hand, is analytic in nature and presents an estimate for the sum of
a function defined on integers for which only a good first-order linear model is assumed in
arithmetic progressions to moduli which are very high powers of p.

L 11. – Let κ, ω be nonnegative integers, let A ⊆ Zp be such that (A+ pκZp) ⊆ A,
and let f : A→ C×, g1, g2 : A→ Qp be functions such that, for every t ∈ Zp,

f
(
x+ pκt

)
= f(x)θ

(
g1(x) · pκt+ 1

2g2(x) · p2κt2
)
µpω .

Then, for every t ∈ Zp,

g1

(
x+ pκt

)
− g1(x) ∈ g2(x) · pκt+ p−κ−ωZp.

Proof. – Let u ∈ Zp be arbitrary. Then

f
(
x+ pκut

)
= f(x)θ

(
g1(x) · pκut+ 1

2g2(x) · p2κu2t2
)
µpω , as well as

f
(
x+ pκut

)
= f

((
x+ pκt

)
+ pκ(u− 1)t

)
µpω

= f
(
x+ pκt

)
θ
(
g1

(
x+ pκt

)
· pκ(u− 1)t+ 1

2g2

(
x+ pκt

)
· p2κ(u− 1)2t2

)
µpω

= f(x)θ

([
g1(x) + (u− 1)g1

(
x+ pκt

)]
pκt

+ 1
2

[
g2(x) + (u− 1)2g2

(
x+ pκt

)]
· p2κt2

)
µpω .

It follows that

(u−1)
[
g1

(
x+pκt

)
−g1(x)

]
·pκt− 1

2 (u−1)
[
(u+1)g2(x)−(u−1)g2

(
x+pκt

)]
·p2κt2 ∈ p−ωZp,

so that, assuming that u− 1 ∈ Z×p and writing τ = ordp t,

g1

(
x+ pκt

)
− g1(x)− g2(x) · pκt+ 1

2 (u− 1)
[
g2

(
x+ pκt

)
− g2(x)

]
· pκt ∈ p−κ−ω−τZp.

The above holds for every u ∈ Zp such that u − 1 ∈ Z×p . In particular, it is possible to
choose such u1, u2 with u1 − u2 ∈ Z×p (for example, u1 = 0, u2 = 2). Comparing the above
conclusion with these choices for u1 and u2, we infer that[

g2

(
x+ pκt

)
− g2(x)

]
· pκt ∈ p−κ−ω−τZp,

and hence that
g1

(
x+ pκt

)
− g1(x)− g2(x) · pκt ∈ p−κ−ω−τZp.

If t ∈ Z×p , then τ = 0 and we are done. If t ∈ pZp, then we may choose a t1 with
t1, (t− t1) ∈ Z×p (for example, t1 = 1). This gives

g1

((
x+ pκt1

)
+ pκ(t− t1))

)
− g1

(
x+ pκt1

)
− g2

(
x+ pκt1

)
· pκ(t− t1) ∈ p−κ−ωZp,

4 e SÉRIE – TOME 48 – 2015 – No 3



p-ADIC ANALYTIC TWISTS AND STRONG SUBCONVEXITY 597

hence

g1

(
x+ pκt

)
− g1(x)− g2(x) · pκt−

[
g2

(
x+ pκt1)− g2(x)

]
· pκ(t− t1) ∈ p−κ−ωZp.

Since the third summand is in p−κ−ωZp, the statement of the lemma follows.

L 12 (Pre-second derivative test). – Let ω ∈ R, and let κ, ϕ ∈ N0 and Φ : Z→ C×,
Φ1 : Z→ p−ϕZ be such that |Φ(x)| 6 Φ0 and

Φ
(
x+ pκt

)
= Φ(x)e

(
Φ1(x)pκt

)
= Φ(x)θ

(
Φ1(x)pκt

)
for every x, t ∈ Z. Let M ⊂ Z be the intersection of an interval [M1,M2] with a union of arith-
metic progressions modulo pµ for some µ ∈ N0. We writeM0 = M2 −M1. Let j > max(κ, µ),
let M(j) be a full set of representatives of those congruence classes modulo pj which occur in M ,
and suppose that ∣∣{x ∈M(j) : Φ1(x) ∈ f + p−jZ}

∣∣� pβ

for every f ∈ p−ϕZ and some β > 0.

Then, for every continuously differentiable function W : [M1,M2]→ C,∑
m∈M

e(ωm)Φ(m)W (m)� Φ0

(
M0 + pϕ + pj

)(
‖W‖∞ + ‖W ′‖1

)
pβ−j log(2 +M0).

Proof. – Note that, for every x, t ∈ Z, one has Φ(x + 2pjt) = Φ(x)e(2Φ1(x)pjt) and
Φ(x + 2pjt) = Φ(x + pjt)e(Φ1(x)pjt) = Φ(x)e

(
(Φ1(x) + Φ1(x + pjt))pjt

)
, so that

Φ1(x + pjt) − Φ1(x) ∈ p−jZ. In particular, for any given f ∈ p−ϕZ, the condition that
Φ1(x) ∈ f + p−jZ does not depend on the choice of the representative x of a congruence
class modulo pj .

We first estimate

S =
∑
m∈M

e(ωm)Φ(m) =
∑

m∈M(j)

∑
t:m+pjt∈M

e
(
ω
(
m+ pjt

))
Φ
(
m+ pjt

)
=

∑
m∈M(j)

e(ωm)Φ(m)
∑

t:m+pjt∈M

e
((
ω + Φ1(m)

)
pjt
)

� Φ0

∑
m∈M(j)

min

(
M0

pj
+ 1,

∥∥(ω + Φ1(m)
)
pj
∥∥−1

)
.

Here, in light of j > µ, the inner sums are over an interval of values for t and are estimated
as the sum of a finite geometric progression as usual, with ‖ · ‖ denoting the distance to
the nearest integer. This basic estimate for S is a sort of a “first derivative test”, in that an
exponential sum over each small (p-adic) neighborhood around m is estimated in terms of
the value of (essentially) the first derivative of the phase. The estimate obtained for the local
sum around m seriously depends on

∥∥(ω + Φ1(m)
)
pj
∥∥.

We proceed to exploit the given information about the distribution of values of Φ1 to
estimate the total sum of e(ωm)Φ(m) over M . Denoting X = M0/p

j + 1 and picking a
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parameter Y > 0, we have by adapting a standard argument that

S � Φ0 ·X ·
∣∣{x ∈M(j) : Φ1(x) ∈ (−ω − Y,−ω + Y ) + p−jZ}

∣∣
+ Φ0

∑
16r�p−jY −1

1

rY · pj
·
∣∣{x ∈M(j) : Φ1(x) ∈ −ω ± (rY, (r + 1)Y ) + p−jZ}

∣∣
� pβΦ0

(
Y

p−ϕ
+ 1

)(
X +

1

Y pj
log(2 + p−jY −1)

)
� pβΦ0

(
pϕ−jX−1 + 1

)(
X +

1

X−1
log(2 +X)

)
� Φ0

(
X + pϕ−j

)
pβ log(2 +X)

� Φ0

(
M0 + pϕ + pj

)
pβ−j log(2 +M0),

by choosing Y = p−jX−1. (We note that log(2 +M0) can be replaced by log(2 + p(ϕ−j)+

),
if desired, since at most O(p(ϕ−j)+

) terms in the above sum do not vanish. However, this is
a minor point for us.)

Denoting S(x) =
∑
m∈M∩[M1,x] e(ωm)Φ(m), it follows by summation by parts that

∑
m∈M

e(ωm)Φ(m)W (m) = S(M2)W (M2)−
∫ M2

M1

S(t)W ′(t) dt

� Φ0

(
M0 + pϕ + pj

)
pβ−j log(2 +M0)

(
|W (M2)|+

∫ M2

M1

|W ′(t)| dt
)
,

which immediately implies the announced bound.

The following theorem is our main result on p-adic van der Corput theory. Its proof
combines Lemma 12 to estimate an exponential sum involving sufficiently well-understood
p-adic fluctuations in terms of the frequency with which the derivative of the phase (g1(x) in
the language of Theorem 5) enters a specific short “bad” range and Lemma 11 to control this
frequency in terms of the size of the second derivative, g2(x), and information on the quality
of the approximation.

T 5 (Second derivative test). – Let ω ∈ R, let κ0, ϕ, λ ∈ N0 and A ⊆ Zp be such
that (A + pκ0Zp) ⊆ A, and let f : A → C×, g1 : A → p−ϕZp, g2 : A → p−λZ×p , and
Ω : {κ ∈ N0 : κ > κ0} → N0 be functions such that |f(x)| 6 f0,

f
(
x+ pκt

)
= f(x)θ

(
g1(x) · pκt+ 1

2g2(x) · p2κt2
)
µpΩ(κ)

for every x ∈ A, t ∈ Zp, κ > κ0, and

Ω(κ) 6 (λ− 2κ− 1)+ for every κ > κ0.

Let M ⊂ A ∩ Z be the intersection of an interval [M1,M2] with a union of arithmetic
progressions modulo pµ for some µ ∈ N0. Let κ̃ = max(κ0, µ), κ1 = max(λ/2, κ0, µ),
M0 = M2 −M1.

Then, for every continuously differentiable function W : [M1,M2]→ C,∑
m∈M

e(ωm)f(m)W (m)� f0

(
M0+pϕ+pκ1

)(
‖W‖∞+‖W ′‖1

)
pmin(κ1−λ+κ̃,0) log(2+M0).
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Before proceeding to the proof, we note that Theorem 5 has been formulated with a
number of parameters for flexibility in use. However, in a typical situation (thinking of f as
an exponential with a p-adically analytic phase), the parameters κ0 and µ will be small (for
example, equal to 1): they account for the fact that f may have several different branches
modulo a small power of p, that its true p-adic analytic nature shows up only in sufficiently
small neighborhoods, or that we are summing only in specific congruence classes modulo
a small power of p. The parameter λ, on the other hand, measures the size of the second
derivative of the phase and will typically be large in a depth-aspect problem. For example, if
f equals a primitive character χ of conductor pn as in (2.2), then λ = n. Therefore, typically
one has κ1 = λ/2. Moreover, Theorem 5 is proved by splitting the sum into arithmetic
progressions of difference pκ1 ; thus, nontrivial information can be expected in the principal
range M0 � pκ1 . The upper bound provided by Theorem 5 is thus roughly� M0p

−λ/2 =

M0‖g2(x)‖−1/2
p ; this is exactly what one expects from a second derivative test (compare with

[17, Theorem 2.2]).

Proof. – In light of 2κ1 − λ > 0 and Ω(κ1) = 0, we have that

f
(
x+ pκ1t

)
= f(x)θ

(
g1(x) · pκ1t

)
for every x ∈ A, t ∈ Zp. We will be applying Lemma 12 with Φ1 = g1 mod p−κ1 and j = κ1.

According to Lemma 11, for every κ0 6 κ 6 κ1, we have that

g1

(
x+ pκt

)
− g1(x) ∈ g2(x) · pκt+ p−κ−Ω(κ)Zp

for every x ∈ A, t ∈ Zp.

From here, we claim that g1(x+pκt)−g1(x) ∈ p−κ1Zp if and only if g2(x) ·pκt ∈ p−κ1Zp.
Note that this claim only depends on the value of the product pκt (rather than on the separate
values of κ ∈ [κ0, κ1] and t ∈ Zp). Therefore, by rewriting

pκt = pmin(κ+ordp t,κ1) · t

pmin(ordp t,κ1−κ)
,

we may assume that κ = κ1 or that t ∈ Z×p . We then distinguish two cases according to
the value of Ω(κ). If Ω(κ) = 0 (as is the case when κ = κ1), the claim is clear in light
of p−κZp ⊆ p−κ1Zp. Otherwise, we must have t ∈ Z×p and Ω(κ) 6 λ − 2κ − 1, in which
case −κ − Ω(κ) > −λ + κ and our claim follows from ordp

(
g2(x) · pκt + p−κ−Ω(κ)Zp

)
=

−λ+ κ = ordp
(
g2(x) · pκt

)
.

Further, the condition that g2(x) · pκt ∈ p−κ1Zp holds if and only if

t ∈ p(λ−κ−κ1)+

Zp.

In particular, g1(x+ pκ̃t)− g1(x) ∈ p−κ1Zp if and only if

pκ̃t ∈ pmax(λ−κ1,κ̃)Zp.

Let M(κ1) be a full set of representatives of those congruence classes modulo pκ1 which
occur in M , and let M(κ̃) be a subset of M(κ1) which is a full set of representatives of
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congruence classes modulo pκ̃ occurring in M . For every f ∈ p−ϕZp, we have that

|{x ∈M(κ1) : g1(x) ∈ f + p−κ1Zp}|

=
∑

x∈M(κ̃)

|{t ∈ Z/pκ1−κ̃Z : x+ pκ̃t ∈M(κ1), g1

(
x+ pκ̃t

)
∈ f + p−κ1Zp}|

6 pmin(2κ1−λ+κ̃,κ1).

Applying Lemma 12, we conclude that∑
m∈M

e(ωm)Φ(m)W (m)� f0

(
M0+pϕ+pκ1

)(
‖W‖∞+‖W ′‖1

)
pmin(κ1−λ+κ̃,0) log(2+M0),

as announced.

9. Estimation of the sum of Ξs1,s2

In this final section, we prove Lemma 5 and thereby complete the proofs of Theorems 1
and 2. The sum Ξs1,s2 , introduced in (5.16), will be estimated using the tools of Section 8.
To prepare ground for this application, for any 0 6 c < n, denote ν = n − c, and let,
for ε ∈ {±1} and x ∈ αZ×p 2,

(9.1) Φ̃εν(x) := χ
(
α+ 1

2p
2νx+εpν

(
αx+ 1

4p
2νx2

)
1/2

)
θ

(
1

pc

(
1
2p
νx+ε

(
αx+ 1

4p
2νx2

)
1/2

))
.

Further, for any ε = (ε1, ε2) ∈ {±1}2 and any pair s = (s1, s2) of triples s1 = (a1, b1, k1)

and s2 = (a2, b2, k2) in the set S of Theorem 3 such that a1b1a2b2 ∈ Z×p 2, consider the
function

(9.2) Φεs,c(x) := Φε1,ε2
s1,s2,c(x) := Φ̃ε1n−c

( x

a1b1

)
Φ̃ε2n−c

( x

a2b2

)
.

We remark that no special property of S (or the values of k1 or k2) will be used and that
everything said in this section, including the statement of Lemma 5, holds for arbitrary
a1, b1, a2, b2 ∈ Z×p subject to the condition a1b1a2b2 ∈ Z×p 2; we simply adopt the nota-
tion (9.2) in general for simplicity, and s = (s1, s2) can be understood as no more than a
formally symbol for a1, b1, a2, b2. With this notation, and denoting

Ws,c(x) := Ws1,c(x)Ws2,c(x),

where Ws,c is the weight function from Lemma 3, which satisfies (5.14), we have by (5.16)
and (7.1) that

(9.3) Ξs1,s2 =
∑

ε∈{±1}2

∑
m6q3εM

αb1m/a1∈Z×p
2

εεs,c(m)e
(
ωs,cm

)
Φεs,c(m)Ws,c(m),

where ωs,c = ωs1,s2,c and

εεs,c(m) = ε(ε1(αmā1b̄1)1/2, p
ρ)ε̄(ε2(αmā2b̄2)1/2, p

ρ)

(with ρ ∈ {0, 1} being the parity of c) depends only on the class ofmmodulo p; in particular,
εεs,c(m+ pκt) = εεs,c(m) for every κ > 1.

The following lemma will be essential in estimating Ξs1,s2 in (9.3) using Theorem 5, the
Second Derivative Test. Recall our convention from Section 2.1 regarding ordp 0 =∞.
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L 13. – Let 0 6 c < n, let a1, b1, a2, b2 ∈ Z×p be such that a1b1a2b2 ∈ Z×p 2. For
any ε ∈ {±1}2, there are Ω ∈ N0 ∪{∞} and functions gε1,s,c, g

ε
2,s,c : αa1b1Z×p 2 → pΩZ×p such

that the function Φεs,c(x) defined in (9.2) satisfies

(9.4) Φεs,c
(
x+ pκt

)
= Φεs,c(x)θ

(
1

pc
gε1,s,c(x) · pκt+

1

2pc
gε2,s,c(x) · p2κt2 + MpΩ+3κ−c

)
,

for every x ∈ αa1b1Z×p 2, κ > 1, and t ∈ Zp.

Moreover, there are exactly two choices of ε ∈ {±1}2 for which Ω = ordp(a1b1 − a2b2),
while for the remaining two choices we have Ω = 0.

Proof. – First, we analyze the function Φ̃εν(x) introduced in (9.1). Let, for brevity,

γ = γ(x) =
(
αx+ 1

4p
2νx2

)
1/2
,

β = β(x) = α+ 1
2p

2νx+ εpνγ(x) = α+ 1
2p

2νx+ εpν
(
αx+ 1

4p
2νx2

)
1/2
,

so that

(9.5) Φ̃εν(x) = χ(β(x))θ
( 1

pc
(

1
2p
νx+ εγ(x)

))
.

Recalling the expansion (2.7) and (2.1), we find that

γ(x+ pκt) =
(
α(x+ pκt) + 1

4p
2ν(x+ pκt)2

)
1/2

=
((
αx+ 1

4p
2νx2

)
+
(
αpκt+ 1

2p
2ν+κxt+ 1

4p
2κ+2νt2

))
1/2

= γ +
1

2γ

(
αpκt+ 1

2p
2ν+κxt+ 1

4p
2κ+2νt2

)
− 1

8γ3

(
αpκt+ 1

2p
2ν+κxt

)2
+ Mp3κ [x, t]

= γ +
1

2γ

(
α+ 1

2p
2νx
)
pκt+

1

8γ3

((
αx+ 1

4p
2νx2

)
p2ν −

(
α+ 1

2p
2νx
)2)

p2κt2 + Mp3κ [x, t]

= γ +
1

2γ

(
α+ 1

2p
2νx
)
pκt− 1

8γ3
α2p2κt2 + Mp3κ [x, t].

Further, recalling also (2.3) as well as κ, ν > 1, κ+ ν > 2, we conclude that
(9.6)
χ
(
β(x+ pκt)

)
= χ

(
α+ 1

2p
2ν(x+ pκt) + εpν · γ(x+ pκt)

)
= χ

(
α+ 1

2p
2νx+ 1

2p
2ν+κt+ εpνγ +

ε

2γ

(
α+ 1

2p
2νx
)
pκ+νt− ε

8γ3
α2p2κ+νt2 + Mp3κ+ν [x, t]

)
= χ(β)θ

(
α

βpn

( ε

2γ
·
[
α+ εγpν + 1

2p
2νx
]
pκ+νt− ε

8γ3
α2p2κ+νt2

)
− α

8β2γ2pn
[
α+ εγpν + 1

2p
2νx
]2
p2κ+2νt2 + Mp3κ+ν−n [x, t]

)
= χ(β)θ

(
εα

2γpn
pκ+νt− α

8γ2pn
p2κ+2νt2 − εα

8βγ3pn
· α2p2κ+νt2 + Mp3κ+ν−n [x, t]

)
= χ(β)θ

(
εα

2γpn
pκ+νt− εα

8γ3pn
(
α+ 1

2p
2νx
)
p2κ+νt2 + Mp3κ+ν−n [x, t]

)
,
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since

α2

βγ3
+
εpν

γ2
=

1

βγ3

(
α2 + εβγpν

)
=

1

βγ3

(
α2 + ε

(
α+ 1

2p
2νx
)
γpν + γ2p2ν

)
=

1

βγ3

((
α+ 1

2p
2νx
)2

+ ε
(
α+ 1

2p
2νx
)
γpν
)

=
β

βγ3

(
α+ 1

2p
2νx
)

=
1

γ3

(
α+ 1

2p
2νx
)
.

We also obtain, with c = n− ν,
(9.7)

θ

(
1

pc

(
1
2p
ν
(
x+ pκt

)
+ ε · γ(x+ pκt)

))
= θ

(
1

pc

(
1
2p
νx+ 1

2p
κ+νt+ εγ +

ε

2γ

(
α+ 1

2p
2νx
)
pκt− ε

8γ3
α2p2κt2

)
+ Mp3κ−c [x, t]

)
= θ

(
1

pc
(

1
2p
νx+ εγ

))
θ

(
ε

2γpn
(
α+ 1

2p
2νx
)
pκ+νt+

1

2pn
pκ+2νt

− ε

8γ3pn
α2p2κ+νt2 + Mp3κ−c [x, t]

)
= θ

(
1

pc
(

1
2p
νx+ εγ

))
θ

(
ε

2γpn
βpκ+νt− ε

8γ3pn
α2p2κ+νt2 + Mp3κ+ν−n [x, t]

)
.

Combining (9.5), (9.6), and (9.7), we find that the function Φ̃εν(x) satisfies
(9.8)

Φ̃εν
(
x+ pκt

)
= Φ̃εν(x)θ

(
ε

2γpn
(
α+ β

)
pκ+νt

− εα

8γ3pn
(
2α+ 1

2p
2νx
)
p2κ+νt2 + Mp3κ+ν−n [x, t]

)
= Φ̃εν(x)θ

(
1

xpn

(
εγ + 1

2xp
ν
)
pκ+νt− εα

4xγpn
p2κ+νt2 + Mp3κ+ν−n [x, t]

)
,

since

2α+ 1
2p

2νx = 2x−1γ2, α+ β = 2α+ 1
2p

2νx+ εpνγ = γ · (2x−1γ + εpν).

In particular, (9.8) shows that Φεs,c satisfies

Φεs,c
(
x+ pκt

)
= Φεs,c(x)θ

(
1

xpc

(
ε1γ
( x

a1b1

)
− ε2γ

( x

a2b2

)
+
x

2

( 1

a1b1
− 1

a2b2

)
pν
)
pκt

− α

4xpc

( ε1

a1b1γ(x/a1b1)
− ε2

a2b2γ(x/a2b2)

)
p2κt2 + Mp3κ+ν−n

)
for every x ∈ αa1b1Z×p 2 and every κ > 1. We write the above equation as

(9.9) Φεs,c
(
x+ pκt

)
= Φεs,c(x)θ

(
1

pc
gε1,s,c(x) · pκt+

1

2pc
gε2,s,c(x) · p2κt2 + Mp3κ+ν−n

)
,

with the obvious definitions for gε1,s,c(x) and gε2,s,c(x).
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It remains to find ordp gε1,s,c(x) and ordp gε2,s,c(x). For everyu, v ∈ Z×p , we make the trivial
remark that

(u+ v)(u− v) = u2 − v2, (u−1 + v−1)(u−1 − v−1) = −(uv)−2(u2 − v2).

For odd p, it is immediate from here that exactly one of ordp(u + v) and ordp(u − v)

equals ordp(u2 − v2), while the other one is zero, and similarly for ordp(u−1 + v−1) and
ordp(u−1−v−1). (Note that this holds even if u2 = v2, when ordp(u2−v2) =∞.) Applying
this argument with

(u, v) =
(
γ
( x

a1b1

)
, γ
( x

a2b2

))
=
(( αx

a1b1
+
p2νx2

4a2
1b

2
1

)
1/2
,
( αx

a2b2
+
p2νx2

4a2
2b

2
2

)
1/2

)
and (u′, v′) =

(
a1b1u, a2b2v

)
, respectively, where

u2 − v2, u′2 − v′2 ∈ (a1b1 − a2b2)Z×p , ε1u
′ − ε2v

′ = a1b1(ε1u− ε2v) + ε2v(a1b1 − a2b2),

it follows that there are exactly two choices of ε ∈ {±1}2 for which

ordp gε1,s,c(x) = ordp gε2,s,c(x) = ordp(a1b1 − a2b2),

while for the remaining two choices we have

ordp gε1,s,c(x) = ordp gε2,s,c(x) = 0.

Let Ω = ordp gε1,s,c(x) = ordp gε2,s,c(x).
It remains to prove (9.4). This is already established in (9.9) when Ω = 0. If Ω > 0, then

αx

a1b1
+
p2νx2

4a2
1b

2
1

≡ αx

a2b2
+
p2νx2

4a2
2b

2
2

(mod p),

and we may assume that the same branch of the square-root is in Φ̃ε1n−c(x/a1b1) and
Φ̃ε2n−c(x/a2b2). In that case, Ω > 0 is achieved when ε1 = ε2, so that (9.4) follows from (9.8)
upon recalling that (a1b1)−1 ≡ (a2b2)−1 (mod pΩ). We remark that the equation (9.4) is
the ultimate fruit of the more precise bookkeeping required by Definition 1.

We complete our work with the proof of Lemma 5. First, we split the sum in (9.3) as

(9.10) Ξs1,s2 =
∑

Ω∈{0,ordp(a1b1−a2b2)}

Ξs1,s2,Ω

according to the value of Ω in the expansion (9.4) for the function Φε1,ε2
s1,s2,c corresponding

to (ε1, ε2). In the case Ω 6 c− 2 (so in particular a1b1 6= a2b2) we apply Theorem 5 with

ϕ = λ = c− Ω, Ω(κ) = (c− Ω− 3κ)+, ω = ωs1,s2,c

κ̃ = µ = κ0 = 1, κ1 = max(λ/2, 1) =
c− Ω

2
, M1 = 1, M2 = q3εM

and note that by (5.14) the archimedean weight W := Ws1,s2,c satisfies ‖W‖∞ + ‖W ′‖1 �
Z2q13ε. We obtain

(9.11) Ξs1,s2,Ω � q17εZ2
(
M+ pc−Ω

)
p−

c−Ω
2 +1,

and the first bound of Lemma 5 follows. In the case c − 1 6 Ω 6 ∞, one cannot ex-
pect a sharp result from the application of the second derivative test. Here we estimate
trivially Ξs1,s2,Ω � q9εM, which yields the second estimate. (Although in many cases far
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from optimal, this is the only available estimate in the case Ω =∞, that is, a1b1 = a2b2.)
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