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THE q-ANALOGUE OF THE WILD FUNDAMENTAL
GROUP AND THE INVERSE PROBLEM OF THE

GALOIS THEORY OF q-DIFFERENCE EQUATIONS

 J-P RAMIS  J SAULOY

A. – In [23, 24], we defined q-analogues of alien derivations for linear analytic q-difference
equations with integral slopes and proved a density theorem (in the Galois group) and a freeness
theorem. In this paper, we completely describe the wild fundamental group and apply this result to
the inverse problem in q-difference Galois theory.

R. – Nous avons défini dans [23, 24] des q-analogues des dérivations étrangères pour les
équations aux q-différences linéaires analytiques à pentes entières, et prouvé un théorème de densité
(dans le groupe de Galois) et un théorème de liberté. Dans cet article, nous décrivons complètement
le groupe fondamental sauvage et appliquons ce résultat au problème inverse en théorie de Galois des
équations aux q-différences.

1. Introduction

1.1. The problems

The main purpose of this paper is to give a new and probably definitive version of the local
meromorphic classification of q-difference modules in the integral slopes case(1). Using this
result we shall get a complete solution of the inverse problem for the q-difference Galois theory
in the local case, for all q ∈ C∗, |q| 6= 1, and a solution of the inverse problem for connected
reductive algebraic groups in the global case, also for all q ∈ C∗, |q| 6= 1 (for the case of the
exceptional simple groups, in particular, this result is new(2)).

(1) This is explained in Section 2.2. For the definition and properties of slopes, see Section 2 and [33].
(2) For the simple groups SL(n,C), SO(n,C), Sp(2n,C) there are explicit solutions with generalized q-hyper-
geometric difference equations due to J. Roques, cf. Section 5.1
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172 J.-P. RAMIS AND J. SAULOY

1.1.1. The q-wild fundamental group. – In [25] we gave three versions of the local meromor-
phic classification of q-difference modules (in the integral slopes case). The first one uses alge-
braic normal forms and index theorems, it improves some results of Birkhoff and Guenther
[3], there is no analog in the differential case. The second method uses a q-analog of Poincaré
asymptotics expansions and the non Abelian cohomology H1(Eq,Λ) of some sheaves Λ on
the (loxodromic) elliptic curve Eq := C∗/qZ, it parallels some results of Malgrange and
Sibuya (after Birkhoff, Balser-Jürkat-Lutz) in the differential case. The third method uses
q-multisummability, it parallels [17] in the differential case.

The new version of the classification exposed here is based upon a “fundamental
group” π

(0)
1,q,w,1 that we named the q-wild fundamental group(3), a q-analog of the wild

fundamental group introduced by the first author in the differential case [7], [17]. There is
an equivalence of (Tannakian) categories between the category of finite dimensional rep-
resentations of this q-wild fundamental group and the category of q-difference modules
(with integral slopes), moreover the image of a representation is “the” q-difference Galois
group of the corresponding module (see Section 3.6 for a precise definition and statement).
This classification is in the style of the Riemann-Hilbert correspondence for regular sin-
gular meromorphic linear differential equations and should have similar (important...)
applications.

Of course there is a “trivial” candidate for a q-wild fundamental group satisfying our
requirements: the Tannakian Galois group Gal( E(0)

1 ) of the Tannakian category E(0)
1 of our

q-modules, but this (proalgebraic) group is “too abstract and too big”, our purpose was
to get a smaller fundamental group (as small as possible !) which is Zariski dense in the
Tannakian Galois group and to describe it explicitly. (As a byproduct, we shall get finally a
complete description of the Tannakian Galois group itself.) It is important to notice that the
Tannakian Galois group is an algebraic object, but that the construction of the smaller group
is based upon transcendental techniques (complex analysis). This is similar to what happens
with the Riemann-Hilbert correspondance.

We will see that it is possible to write:

Gal( E(0)
1 ) = Sto Gal( E(0)

p,1)

where(4), by definition, Gal( E(0)
p,1) := Homgr(Eq,C

∗) × C and St is a prounipotent group

(named the Stokes group). We can replace Gal( E(0)
1 ) by an equivalent datum, the action

of Gal( E(0)
p,1) on the Lie algebra st of St. We denote this datum as a semi-direct product

sto Gal( E(0)
p,1).

We build a free Lie algebra L generated by an infinite family of symbols ∆̇
(δ,c̄)
i

(δ ∈ N∗, c̄ ∈ Eq, i = 1, . . . , δ) and ∆̇(0), the (pointed) q-alien derivations, endowed
with an action of Gal( E(0)

p,1)s := Homgr(Eq,C
∗), and a natural Gal( E(0)

p,1)s-equivariant map

(3) In π(0)
1,q,w,1, the subscript 1 is for the analogy with π1, q is clear,w is for wild, the last 1 is for integral slopes case

(i.e., with denominator 1) and the superscript (0) is for local at 0.
(4) This a priori strange notation is motivated by the fact that this group is the Galois group of the category of pure
modules.

4 e SÉRIE – TOME 48 – 2015 – No 1



THE q-ANALOGUE OF THE WILD FUNDAMENTAL GROUP (III) 173

L→ s̃t := st⊕C log ∆̇(0). Then, by definition:

π
(0)
1,q,w,1 := Lo Gal( E(0)

p,1)s

and we prove that the natural map

RepC(Gal( E(0)
1 ))→ RepC(π

(0)
1,q,w,1)

is an isomorphism. To be more precise, RepC(Gal( E(0)
1 )) denotes the category of ratio-

nal finite dimensional complex representations of the proalgebraic group Gal( E(0)
1 ) and

RepC(π
(0)
1,q,w,1) the category of plain finite dimensional complex representations of the wild

fundamental group π(0)
1,q,w,1 (this will be made precise in Definition 3.9). The restriction of

representations induces a functor RepC(Gal( E(0)
1 )) → RepC(π

(0)
1,q,w,1) and this functor is

an isomorphism, i.e., it is fully faithful and bijective on objects (see Theorem 3.10). Note
that in the text all representations of algebraic or proalgebraic groups will be rational and
we shall usually not bother to mention this explicitly.

As a byproduct, we prove that, for some convenient pronilpotent completion L† (intro-
duced in Section 3.6 and studied in the appendix) of the free Lie-algebra the map:

exp(L†) oG
(0)
p,1,s → exp(s̃t) oG

(0)
p,1,s = StoG

(0)
p,1 = G

(0)
1

is an isomorphism of proalgebraic groups. It is an “explicit description” of the Tannakian
group G(0)

1 .
The construction of L and the proof of its main properties is the outcome of a quite long

process (in three steps: [23], [24] and the present article) and uses some deep results of [25].
In [23] we built some (pointed) q-alien derivations ∆̇δ

a belonging to st(5), we interpreted them
using q-Borel-Ramis transform and we got the “first level” of our construction (the “linear
case” as in the two-slopes case). In [24] we proved the Zariski density of the Lie algebra
generated by the q-alien derivations and we gave a first (awkward...) tentative of devissage
in order to “free” a convenient subset of an extended set of alien derivations. Here we finally
give “the good” devissage and we prove the freeness theorem (Theorem 3.8). The freeness
property is absolutely crucial, it allows a very easy computation of the representations of the
q-wild fundamental group and in particular the solution of the inverse problem.

The (q-Gevrey) devissage used in the present article is based upon the (q-Gevrey) devissage
of the non-Abelian cohomology sets of some sheaves of unipotent groups on Eq and its
relations with the q-alien derivations (this is explained in more detail in Sections 3.2 and 3.3).
We think that this devissage is interesting by itself and will give later some relations between
some H1(Eq,Λ) and some (rational) representations of algebraic groups.

The underlying idea of our construction is that the knowledge of a q-difference module
is equivalent to the knowledge of its formal invariants and of the corresponding q-Stokes
phenomena (in the sense of [25]). This is similar to what happens in the differential case,
but unfortunately there is a major difference, here the entries of the Stokes matrices are
q-constants, that is elliptic functions on Eq, and we would like instead some matrices be-
longing to GLn(C) (the q-difference Galois groups are defined on C). This motivates the

(5) The pointed q alien derivations are q-analog of the algebraic pointed alien derivation introduced in [16]. The
name comes from the fact that in the simplest cases the Martinet-Ramis pointed alien derivations “coincide” with
the derivations introduced before by J. Écalle under this name. For a proof, cf. [15].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



174 J.-P. RAMIS AND J. SAULOY

replacement of Stokes matrices by q-alien derivations (using residues) introduced in [23]: a
trick to reduce the field of constants from M(Eq) to C.

As a byproduct of our classification theorem we get a q-analog of the Ramis density
theorem of the differential case [17].

At the end of the story there is a fascinating parallel between the differential and the
q-difference case. However, it was impossible (in any case for us...) to mimic the differential
approach which is essentially based upon the concept of solution, because in the q-difference
case the solutions behave badly by tensor products. Hence we followed a new path using
(roughly speaking) categories in place of solutions.

For more details about the analogies between the q-wild fundamental group and the wild
fundamental group of the differential case the reader can have a look at the introduction
of [23](6).

For each point ᾱ ∈ Eq, we can consider the semi-direct product of the free Lie algebra

generated by the symbols ∆̇δ,ᾱδ

ᾱ (δ ∈ N∗) by C∗ (the action of C∗ corresponding to the
grading δ). The corresponding category of representations is isomorphic to the category of
representations of a quotient of π1,q,w,1. Similar groups appear in the linear differential case,
in the non linear differential case (Lie algebras of Écalle pointed alien derivations (7)) and in
the theory of the cosmic Galois group of Connes-Marcolli [5]. These groups are in some sense
“motivic groups” (cf. also [1] 5. Coda(8)), therefore we can interpret our result as a “motivic
version” of the local classification of the q-difference modules.

1.1.2. The inverse problem of the Galois theory of q-difference equations. – Using the q-wild
fundamental group we can imitate the solution of the local inverse problem in the differential
case due to the first author. The problem is to find necessary and sufficient conditions on a
complex linear algebraic group in order that this group be the q-difference Galois group of
a local meromorphic q-difference module with integral slopes (q ∈ C∗, |q| 6= 1).

As in the differential case we get easily some necessary conditions using the algebraic group
V (G) := G/L(G) (where L(G) is the invariant subgroup generated by all the maximal
tori of G) and a Tannakian argument. In the differential case the corresponding conditions
are sufficient, but here it is no longer the case, there appears a new necessary condition
involving some type of co-weight on a maximal torus (existence of a Θ-structure(9)). Adding
this condition we get a set of necessary and sufficient conditions. It follows in particular that a
Borel subgroup of a reductive group is the q-difference Galois group of a local meromorphic
q-difference module with integral slopes.

(6) In fact it is possible to get a perfect analogy if one replaces the free resurgent algebra of the wild fundamental
group by a bigger free Lie algebra endowed with an action not only of Z but of its proalgebraic completion
Homgr(C∗,C∗)×C, we will return to this problem in a future paper.
(7) The Lie algebra generated by the Écalle pointed alien derivations {∆̇n}n∈N∗ is free, the grading corresponding
to the rescaling of e−1/x. There is a dictionary between Martinet-Ramis classification of saddle-nodes and some
representations of this algebra [34].
(8) “Ce groupe d’une ubiquité stupéfiante”, page 16.
(9) Cf. the Definition 5.14.
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THE q-ANALOGUE OF THE WILD FUNDAMENTAL GROUP (III) 175

In [30] and [31] the second author proved a classification Theorem for regular singular
q-difference modules, involving the local modules at 0 and ∞ and an invertible elliptic
connection matrix (in Birkhoff style) and derived a description of the corresponding Galois
group and of a Zariski dense subset of this group. We extend these results to the general case.
Using this extension and the solution of the local inverse problem we get a partial solution
of the global inverse problem. We prove in particular that every connected reductive group is
the q-difference Galois group of a rational q-difference module.

1.2. Contents of the paper

We now briefly sketch the organisation of the paper. General notations and conventions
are explained in the next Subsection 1.3.

Sections 2 to 4 are devoted to the “direct problem” of the description of the Galois group
of a q-difference module (or system, or equation) with integral slopes. In Section 2, we review
results from our previous work [23, 24] and adapt them to our present needs. In Section 3, we
proceed to a complete description of the local Galois group; in particular, in 3.2 and 3.3 we
explicitly describe the relation between local analytic classification according to the point of
view of [25] and the point of view of representations here. In Section 4, we combine this with
previous results from [31] to obtain a description of the global Galois group (when it makes
sense); this is less complete that Section 3 but nevertheless sufficient for our use in Section 7.

Sections 5 to 7 are devoted to the inverse problem. This is introduced in Section 5, as
well as an important technical tool, the notion of Θ-structure. In Section 6, the local inverse
problem is solved. In Section 7, the global inverse problem is tackled.

1.3. General notations

Let q ∈ C be a complex number with modulus |q| > 1. We write σq the q-dilatation
operator, so that, for any map f on an adequate domain in C, one has: σqf(z) = f(qz).
Thus, σq defines a ring automorphism in each of the following rings: C{z} (convergent power
series), C[[z]] (formal power series), O(C∗) (holomorphic functions over C∗), O(C∗, 0)

(germs at 0 of holomorphic functions over some punctured neighborhood of 0 in C∗). Like-
wise, σq defines a field automorphism in each of their fields of fractions: C({z}) (convergent
Laurent series), C((z)) (formal Laurent series), M(C∗) (meromorphic functions over C∗),
M(C∗, 0) (germs at 0 of meromorphic functions over some punctured neighborhood of 0

in C∗). The σq-invariants elements of M(C∗, 0) actually belong to M(C∗) and can be con-
sidered as meromorphic functions on the quotient Riemann surface Eq = C∗/qZ. Through
the mapping x 7→ z = e2iπx, the latter is identified with the complex torus(10) C/(Z + Zτ),
where q = e2iπτ . Accordingly, we shall identify the fields M(C∗, 0)

σq , M(C∗)
σq and M(Eq).

We shall write a 7→ a the canonical projection map π : C∗ → Eq and [c; q] = π−1 (c) = cqZ

(a discrete logarithmic q-spiral). Last, we shall have use for the function θ ∈ O(C∗), a
Jacobi Theta function such that σqθ = zθ and θ has simple zeroes along [−1; q]. One then
puts θc(z) = θ(z/c), so that θc ∈ O(C∗) satisfies σqθc = (z/c)θc and θc has simple zeroes
along [−c; q].

(10) Note however that we shall rather use the multiplicative notation for the group structure on Eq .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



176 J.-P. RAMIS AND J. SAULOY

For any two (pro)algebraic groups G, H, the set of morphisms from G to H is written
Homgralg(G,H). When we want to consider all morphisms of abstract groups, forgetting the
(pro)algebraic structure, we write Homgr(G,H).

Acknowledgements. – The final redaction of this work was achieved while the second author
was an invited professor for three months at the School of Mathematics and Statistics of
“Wuda” (Wuhan University, Wuhan, Hubei, People’s Republic of China): he wishes to
express his gratitude to Wuda for the excellent working conditions there. Both authors
express their gratitude to Claudine Mitschi and Michael Singer for help when coming at
hands with Levi decomposition and Mostow’s results.

2. Previous results on the structure of the local Galois group

In this section, we recall the notations and results of [23, 24] and make more precise some
of them.

A linear analytic q-difference equation at 0 ∈ C is an equation:

(1) σqX = AX,

where A ∈ GLn(C({z})). We shall identify it with the q-difference module(11):

(2) MA := (C({z})n,ΦA), where ΦA(X) := A−1σqX.

If B ∈ GLp(C({z})), morphisms from MA to MB are described by:

(3) Hom
(
MA,MB

)
= {F ∈ Matp,n(C({z})) | (σqF )A = BF}.

The q-difference modules over C({z}) form a C-linear neutral Tannakian category E(0),
of which we shall now distinguish some particular subcategories. First note that to each
q-difference module is attached a Newton polygon, which can be described as a sequence
µ1 < · · · < µk of rational slopes coming with multiplicities r1, . . . , rk ∈ N∗. Modules with
integral slopes form the full subcategory E(0)

1 of E(0). Modules having only one slope are
called pure isoclinic; direct sums of pure isoclinic modules are called pure and they form the
full subcategory E(0)

p of E(0). Pure modules with integral slopes form the full subcategory

E(0)
p,1 of both E(0)

p and E(0)
1 . Pure isoclinic modules of slope 0 are called Fuchsian; they form

the full subcategory E(0)
f of E(0)

p,1. All these categories are Tannakian subcategories of E(0).
Before describing their Galois groups, we shall have a look at their fiber functors.

For any q-difference module M , holomorphic solutions in σq-invariant open subsets
of (C∗, 0) form a sheaf FM over Eq. This sheaf is locally free over the structural sheaf of Eq
and thereby defines a holomorphic vector bundle which we also write FM . In case M is

(11) A difference module over a difference field (K,σ) (i.e., σ is an automorphism of the commutative field K)
is a pair M := (V,Φ), where V is a finite dimensional vector space over K and Φ a σ-linear automor-
phism: ∀a ∈ K, ∀x ∈ V, Φ(ax) = σ(a)Φ(x). Equivalently, M is a finite length left module over the ring
Dq,K := K

〈
σ, σ−1

〉
of difference operators

∑
aiσ

i. Difference modules over (C({z}), σq) are called q-differ-
ence modules.
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THE q-ANALOGUE OF THE WILD FUNDAMENTAL GROUP (III) 177

given in matricial form MA = (C({z})n,ΦA), these sheaf and bundle admit the following
descriptions:

FM (V ) = {X ∈ O
(
π−1(V ), 0

)n | σqX = AX},

FM =
(C∗, 0)×Cn

(z,X) ∼ (qz,A(z)X)
−→ (C∗, 0)

z ∼ qz
= Eq.

In the right hand side of the first (resp. the second) equality, solutions X ∈ O
(
π−1(V ), 0

)n
are taken to be germs at 0 ∈ C∗ (resp. the bundle (C∗, 0)×Cn to be quotiented is taken to
be trivial over the germ of C∗ at 0).

The functor M  FM is exact, faithful and ⊗-compatible and provides a fiber functor
on E(0) over the base Eq. Lifting FM through π to an equivariant (trivial) bundle over C∗,
then taking fibers, we get a family (ω

(0)
a )a∈C∗ of fiber functors on E(0) over C, thus a Galois

groupoid with base C∗ over the field C. (The reason to consider points in C∗ rather than
in Eq is that we want to use transcendental constructions(12).)

On the other hand, to each object M of E(0) is associated a Newton polygon [33, def.
1.1.1], a formal invariant; this has rational slopes µ1 < · · · < µk with multiplicities
r1, . . . , rk ∈ N∗ and (contrary to the differential case) one can prove [33, th. 3.1.6] that there
exists a unique tower of submodules {0} = M0 ⊂ · · · ⊂Mk = M such that each Mi/Mi−1,
i = 1, . . . , k, has only the slope µi (and then its rank is ri). The functorM  grM :=

⊕
Mi

then has good Abelian and tensor properties [33, Section 3.2]. The resulting structure on E(0)

can be described as follows (note that it is stronger than the one described by Saavedra in [29,
chap. IV, §2]). The category E(0) is endowed with a family (F≤µ)µ∈Q of endofunctors such
that, for each module M , the F≤µM form a filtration of M by subobjects, with jumps at the
slopes of M . The associated graded module:

grM :=
⊕ F≤µM

F<µM

is pure and we get a functor M  grM from E(0) to E(0)
p , which is exact, faithful and

⊗-compatible. It is also a retraction of E(0)
p ⊂ E(0). This yields a new family of fiber functors

on E(0):
ω̂(0)
a := ω(0)

a ◦ gr.

In some sense, E(0)
p is the “formalisation” of E(0) and we see the ω̂(0)

a , resp. the ω(0)
a , as points

in a formal, resp. an analytic neighborhood of 0. (The reason for this is that, over the formal
category, gr is isomorphic to the identity functor, see [33].)

Whatever the fiber functor used to define it, the Galois group(13) Gal( E(0)) is the semi-
direct product of the “formal” Galois group Gal( E(0)

p ) by a prounipotent group, the kernel

(12) It is not feasible in the setting of q-difference equations to define a fiber functor as the space of solutions in some
big fieldK. Indeed, in order to get a fiber functor in this way, one has to takeK rather big; then the fiber functor is
defined over the field of constants ofK, which will be bigger than C. For instance, the natural choiceK = M(C∗)

yields a Galois group over M(Eq).
(13) We refer to [8] for the Tannakian formalism, except that, instead of using the group scheme Gal( C) := Aut⊗(ω)

(where ω is a fiber functor over C on the Tannakian category C ), we rather use the proalgebraic group
Gal( C) := Aut⊗(ω) of its C-valued points, so that C is equivalent to the category RepC(Gal( C)) of rational
representations of Gal( C).
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178 J.-P. RAMIS AND J. SAULOY

of the morphism i∗ : Gal( E(0)) → Gal( E(0)
p ) dual to the inclusion i : E(0)

p  E(0); indeed,

since gr ◦ i is the identity of E(0)
p , we see that i∗ ◦ gr∗ is the identity of Gal( E(0)

p ), and the fact

that Ker i∗ is prounipotent follows from the existence of the filtration. Restricting to E(0)
1 ,

one gets:

(4) Gal( E(0)
1 ) = Sto Gal( E(0)

p,1),

where St is a prounipotent group.

D 2.1. – We call St := Ker i∗ the Stokes group and st := Lie(St) the Stokes
Lie algebra.

The goal of this series of papers is the description of the Stokes group St and the Stokes
Lie algebra(14) st := Lie(St) and its application to the inverse problem in q-difference
Galois theory. The main tool on the side of q-difference equations is Theorem 3.10, which
describes all Galois groups of systems with integral slopes in terms of representations of
a wild fundamental group, actually, the semi-direct product of an infinite dimensional Lie
algebra with a proalgebraic group, the Tannakian formal Galois group of the category of
systems with integral slopes. We obtain it with the help of an explicit family of Galoisian
Stokes operators built by the authors together with Changgui Zhang in [25] and used there to
get an analytic classification of q-difference modules. It was proved in previous work [23, 24]
that we thus obtain a generating family. The analytic classification and representations of st
are, in some sense, two models of the same thing, which allows us to give a precise description
of the latter. In this comparison, the filtration above plays a crucial role and we shall now have
a closer look at it.

Convention. – As already said, any object of E(0) is equivalent to some MA. It can more-
over be shown that one may always choose A in so-called Birkhoff-Guenther normal
form; in our case of interest, this is explained at the beginning of 2.2. This implies that
A ∈ GLn(C[z, z−1]) ⊂ GLn(C({z})) ∩ GLn( O(C∗)), so that the above definitions are
simplified to:

FM (V ) = {X ∈ O
(
π−1(V )

)n | σqX = AX},

FM =
C∗ ×Cn

(z,X) ∼ (qz,A(z)X)
−→ C∗

z ∼ qz
= Eq.

Moreover, starting from a module MA = (C({z})n,ΦA) such that A ∈ GLn(C[z, z−1]),
a module MB = (C({z})p,ΦB) such that B ∈ GLp(C[z, z−1]), and a morphism F : MA →MB ,
F ∈ Matp,n(C({z})), it follows from the relation (σqF )A = BF ⇒ σqF = BFA−1 that
F is holomorphic over C∗ (the functional equation allows one to expand by a factor |q| > 1

any punctured disk of convergence). Thus, in order to have a more concrete description of
the fiber functors ω(0)

a and ω̂(0)
a , we shall now restrict to the essential full Tannakian sub-

category of E(0) made of q-difference modules MA such that A ∈ GLn(C[z, z−1]). We shall
keep the notation E(0) for this smaller (but equivalent) category. Then, one has canonical

(14) Actually, we shall extend here st to a Lie algebra s̃t which contains the “Stokes operators of level 0”, that is the
unipotent part of the Fuchsian Galois group, corresponding to the q-logarithm.
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identifications ω(0)
a (MA) = Cn, ω(0)

a (MB) = Cp and ω(0)
a (F ) = F (a). A similar description

of ω̂(0)
a will be given in 2.2.

2.1. Consequences of the slope filtration

We now combine the facts recalled above with some Tannakian general nonsense, always
referring to [8, 29] for the formalism of Tannakian duality. In order to shorten notations, we
temporarily write G for Gal( E(0)

1 ), Gp for Gal( E(0)
p,1), S := Ker (G → Gp) for the Stokes

group St and s := Lie(S) for the Stokes Lie algebra.

From Tannakian theory, the proalgebraic group G is the inverse limit lim
←

G(M) of

the algebraic groups G(M) := Aut⊗(ω|〈M〉), where M runs over the objects of E(0)
1 ,

〈M〉 denotes the Tannakian subcategory generated by M and ω|〈M〉 the corresponding
restriction of the relevant fiber functor ω. Actually, G(M) is identified with an algebraic
subgroup of GL(ω(M)) = GLn(C) (since here ω(M) = Cn). The semi-direct decom-
position G = S o Gp refines into G(M) = S(M) o Gp(M), with Gp(M) consisting in
block-diagonal matrices and S(M) into upper triangular unipotent matrices (see 2.3 for
a more precise description). We then have Gp = lim

←
Gp(M) and S = lim

←
Sp(M). Thus,

s(M) := Lie(S(M)) consists in upper triangular nilpotent matrices and, according to [6,
A7], s = lim

←
s(M) is a pronilpotent Lie algebra.

Let us write sk(M) (k ∈ N∗) the ideal of s(M) ⊂ gln(C) consisting in matrices
(ai,j)1≤i,j≤n such that ai,j = 0 for j − i ≤ k. Then the sequence of sk := lim

←
sk(M) defines

a descending filtration by ideals and the corresponding linear topology makes s a Hausdorff

complete space. This yields the following lemma for which we shall have use later.

L 2.2. – Let τ ∈ Gp be such that each τ(M) ∈ Gp(M) ⊂ GLn(C) is an upper
triangular unipotent matrix (such a τ will naturally appear in 2.4). Let ν := log τ , and
s̃ := s⊕Cν. Let s′ ⊂ s′′ be sub-Lie algebras such that s′′ = s′+[Cν, s′′]. Then s′ topologically
generates s′′.

Proof. – Note first that [Cν, s] ⊂ s, so that s̃ is a well defined Lie algebra. Setting
Φ(s′′) := [Cν, s′′] and iterating, we find that s′′ = s′ + Φk(s′′) for all k > 0. Since clearly
Φk(s′′) ⊂ sk, the conclusion follows.

2.2. Overall structure and representations of Gal( E(0)
1 )

We now make an important assumption:

From now on, we shall restrict to modules with integral slopes.

The reason is that we then have explicit normal forms, and we are going to use them
heavily(15). Indeed, any pure moduleM0 with integral slopes µ1 < · · · < µk and multiplicities

(15) In the general case of rational slopes, van der Put and Reversat obtained a precise description of pure modules
and of the Galois group of E(0)

p , see [20]. Relying on these results, Virginie Bugeaud has started to extend the
methods of the present series of papers to the case of two arbitrary slopes.
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r1, . . . , rk can be described as MA0
:= (C({z})n,ΦA0

), and any module M such that
grM ≈M0 can be described as MA := (C({z})n,ΦA) (see Equation (2)), with:

(5) A0 :=



zµ1A1 . . . . . . . . . . . .

. . . . . . . . . 0 . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . zµkAk


and A :=



zµ1A1 . . . . . . . . . . . .

. . . . . . . . . Ui,j . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . zµkAk


,

where, for 1 ≤ i ≤ k, Ai ∈ GLri(C) and where, for 1 ≤ i < j ≤ k, Ui,j ∈ Matri,rj (C({z}));
moreover, one can assume that the coefficients of each block Ui,j belong to

∑
µi≤`<µj

Cz`

(Birkhoff-Guenther normal form). Modules MA := (C({z})n,ΦA) form an essential Tan-
nakian subcategory of E(0)

1 , so that we can restrict all our definitions and constructions to
such objects.

The fiber functors ω̂(0)
a and ω

(0)
a admit the following concrete description. Let A,A0

be as in (5) and write for short M := MA, M0 := MA0 , so that M0 = grM . Then
ω̂

(0)
a (M) = ω

(0)
a (M) = ω

(0)
a (M0) = Cn. Now define similarly B ∈ GLp(C({z})) in

Birkhoff-Guenther normal form with slopes ν1 < · · · < νl having multiplicities s1, . . . , sl
and B0 its graded (block diagonal) component and put N := MB , N0 := MB0

, so that
N0 = grN . Then any morphism M → N is a matrix F ∈ Matp,n(C({z})) such that
σqF = BFA−1, so that one easily shows that F ∈ Matp,n( O(C∗)). The corresponding
graded morphism F0 := gr(F ) ∈ Matp,n(C({z})) ∩ Matp,n( O(C∗)) has kl blocks of
sizes ri × sj , those such that µi = νj coming from F , all the other ones being trivial. Then
one has:

ω(0)
a (F ) = F (a),

ω̂(0)
a (F ) = F0(a).

The Galois groups of E(0)
f and E(0)

p,1 are Abelian, so that we can use any fiber functor to
describe them. Using the subscript “f” for “Fuchsian” and the subscript “p” for “pure”, we
have:

G
(0)
f := Gal( E(0)

f ) = Homgr(C
∗/qZ,C∗)×C,

G
(0)
p,1 := Gal( E(0)

p,1) = C∗ ×G(0)
f .

(The notation Homgr was defined in 1.3.) We also write G(0)
f,s = Homgr(C

∗/qZ,C∗) the

semi-simple component of the Fuchsian groupG(0)
f ; its elements are identified with (abstract

group) morphisms C∗ → C∗ that send q to 1. Likewise, we write G(0)
f,u = C the unipotent

component of G(0)
f and T (0)

1 = C∗ the “theta torus” component of G(0)
p,1; the latter should

be compared(16) with the “exponential torus” component of the wild fundamental group of
differential equations.

(16) For details on this analogy, see the introduction of [23] and the conclusion of [24].
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Taking againA in form (5), the representation ofG(0)
p,1 = G

(0)
f,s×G

(0)
f,u×T

(0)
1 corresponding

to M := MA by Tannakian duality is the following:

(γ, λ, t) 7→



tµ1γ(A1,s)A
λ
1,u . . . . . . . . . . . .

. . . . . . . . . 0 . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . tµkγ(Ak,s)A
λ
k,u


.

We wrote Ai = Ai,sAi,u the Jordan decomposition into semi-simple and unipotent compo-
nent, and γ(Ai,s) means γ operating on eigenvalues of Ai.

As explained before (see Definition 2.1), we write St the kernel of i∗ : G
(0)
1 → G

(0)
p,1, a

prounipotent proalgebraic group, whence the semidirect decomposition of (4):

G
(0)
1 = StoG

(0)
p,1.

We write st the Lie algebra of St; it is pronilpotent, see Section 2.1.

2.3. First look at the structure of St and st

Let us characterize Stokes operators, i.e., elements of the Stokes group St and alien
derivations, i.e., elements of the Stokes Lie algebra st. Let s ∈ St, resp. D ∈ st. Their
respective images by the representation associated to matrix A (meaning: to module MA)
are

s(A) ∈ St(A) ⊂ GA0(C) ⊂ GLn(C), where St(A) := St(MA),

D(A) ∈ st(A) ⊂ gA0
(C) ⊂ gln(C), where st(A) := st(MA),

where we introduce the following unipotent algebraic group GA0 and its Lie algebra gA0 :

GA0 :=





Ir1 . . . . . . . . . . . .

. . . . . . . . . ? . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . Irk




⊂ GLn,

gA0 :=





0r1 . . . . . . . . . . . .

. . . . . . . . . ? . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . 0rk




⊂ gln = Matn.

Here Ir and 0r respectively denote the identity and the null matrix of size r × r. The
rectangular block ? indexed by (i, j) such that 1 ≤ i < j ≤ k has size ri × rj and links
the diagonal square blocks corresponding to slopes µi and µj .

Globally, s andD are characterized as follows. They must be functorial: if (σqF )A = BF ,
then

s(B)F0(a) = F0(a)s(A) and D(B)F0(a) = F0(a)D(A)
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(for the chosen base point a ∈ C∗). They must be ⊗-compatible:

s(A⊗B) = s(A)⊗ s(B) and D(A⊗B) = D(A)⊗ Ip + In ⊗D(B).

Last, they must be trivial on pure modules:

s(A0) = In and D(A0) = 0n.

The character group of the semi-simple component of G(0)
p,1 is:

X
(
T

(0)
1 ×G(0)

f,s

)
= Z×Eq.

To describe the adjoint action of this group on st therefore amounts to give the decom-
position in eigenspaces; note that for the projective limit st, we have to complete the direct
sum:

(6) st =
⊕̂
δ≥1

st(δ), where st(δ) =
⊕̂
c∈Eq

st(δ,c).

(Note that only the weights such that δ ≥ 1 are required, because of the triangular structure
coming from the functorial filtration theorem.) This decomposition is expressed elementwise
as a Fourier decomposition:

∀D ∈ st , ∀σ ∈ T (0)
1 ×G(0)

f,s , σDσ
−1 =

∑
χ∈X

(
T

(0)
1 ×G

(0)
f,s

) 〈χ, σ〉D(χ),

where, for χ = (δ, c) ∈ Z×Eq and for σ = (t, γ) ∈ C∗ ×Homgr(C
∗/qZ,C∗):

〈χ, σ〉 = tδγ(c).

Thus, D =
∑
D(δ,c) (with unicity of the decomposition) and:

σD(δ,c)σ−1 = tδγ(c)D(δ,c).

Since G(0)
p,1 is Abelian, conjugacy under elements of its unipotent component G(0)

f,u fixes

each st(δ,c). We shall write τ the (Zariski-) generator 1 ∈ C = G
(0)
f,u, so that:

τst(δ,c)τ−1 = st(δ,c).

2.4. First look at the representations of St and st

More generally, the semi-simple component of G
(0)
p,1 operates on gA0

through

G
(0)
p,1(A) = G

(0)
p,1(A0), whence a decomposition:

gA0
=
⊕
δ≥1

gA0

(δ), where gA0

(δ) =
⊕
c∈Eq

gA0

(δ,c).

(And, of course, st(δ)(A) = st(A) ∩ gA0
(δ), etc.) More concretely, one can divide matrices

in gA0 in rectangular blocks numbered (i, j) with 1 ≤ i < j ≤ k; the block i, j has
size ri× rj and links the (null) square diagonal blocks corresponding to slopes µi and µj . If
one assumes moreover that the matrices Ai are divided into diagonal blocks corresponding
to their eigenvalues, then one can further divide each block (i, j) into rectangular blocks
numbered (d, e) ∈ SpAi × SpAj . The action of σ = (t, γ) ∈ T

(0)
1 × G

(0)
f,s (through its

image in GA0
) on the block

(
(i, j), (d, e)

)
is multiplication by the nonzero scalar tµi

tµj
γ(d)
γ(e) .
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Thus, the matrices of gA0
(δ) are those such that blocks with µj − µi 6= δ are all zero and

the matrices of gA0
(δ,c) are those matrices of gA0

(δ) such that blocks with d/e 6≡ c (mod qZ)

are all zero. We shall frequently identify gA0
(δ), resp. gA0

(δ,c) with the corresponding vector
spaces of rectangular matrices, forgetting their null components. For instance, in the case of
two slopes µ < ν with multiplicities r, s ∈ N∗, the (Abelian) Lie algebra gA0

has a single
nontrivial component gA0

(δ), with δ = ν − µ, and we identify it with Matr,s(C).

The conjugacy action of the unipotent component of G(0)
p,1(A) leaves stable each gA0

(δ,c).
Recall its Zariski-generator τ defined at the very end of 2.3. Writing:

U := τ(A) = τ(A0) =


A1,u · · · · · · · · · · · ·
· · · · · · · · · 0 · · ·
0 · · · · · · · · · · · ·
· · · 0 · · · · · · · · ·
0 · · · 0 · · · Ak,u

 ,

we see that:

UgA0

(δ,c)U−1 = gA0

(δ,c).

Now fix M0, A0 in E(0)
p,1 as above and call ρ0 the attached representation of G(0)

p,1. We

consider objects M,A in E(0)
1 above M0, A0 (that is, grM = M0). By Tannakian duality,

they correspond to representations ρ ofG(0)
1 = StoG(0)

p,1 which restrict to ρ0 onG(0)
p,1. These

representations ρ are in turn in one to one correspondance with representations of St that
are compatible with ρ0. Translated in terms of representations of st, this gives:

P 2.3. – Those representations of st corresponding to objects M,A

above M0, A0 are exactly those such that:

1. Each st(δ,c) is mapped to gA0
(δ,c);

2. The conjugation by τ in st is intertwined with the conjugation by U in gA0
, i.e.,

ρ(τDτ−1) = Uρ(D)U−1.

We write RepA0
(st) the set of these representations.

Proof. – Indeed, the first condition expresses compatibility with the semi-simple compo-
nent of the representation ρ0.

In this paper, we shall extend the definition of the Stokes Lie algebra to include the
Fuchsian unipotent component and put:

s̃t := sto Lie(G
(0)
f,u) = Cν ⊕ st,

that is, s̃t is generated by st and by Lie(G
(0)
f,u) = Cν, where ν := log τ . Since G(0)

f,u commutes

with T (0)
1 ×G(0)

f,s, the adjoint action of this group on Cν is trivial and we write s̃t
(χ)

:= st(χ)

and s̃t
(0)

:= Cν.
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C 2.4. – Those representations of s̃t corresponding to objects M,A

above M0, A0 are exactly those such that:

1. Each s̃t
(δ,c)

is mapped to gA0
(δ,c);

2. The element ν is mapped to logU .

We write RepA0
(s̃t) the set of these representations.

2.5. Explicit generators of St

Let A0, A be as in (5). Then, there is a unique F ∈ GA0(C((z))) such that
F [A0] = A. We write it F̂A. The components of the (i, j) block of F̂A have q-Gevrey
level δ := µj−µi, meaning that they are divergent formal series with coefficients ak having a
growth of order qk

2/2δ (up to someO(Rk) factor). Stokes operators, to be defined here below,
are obtained by “summing” this formal object in various directions then taking quotients
of such summations (ambiguities). We consider as candidate “directions of summation” the
q-spirals [c; q] in C∗, equivalently, the points c ∈ Eq. Define:

ΣA0
:= {c ∈ Eq | qZcµiSp(Ai) ∩ qZcµjSp(Aj) 6= ∅ for some 1 ≤ i < j ≤ k},

thus a finite subset of Eq. Then [32]:

P 2.5. – For all c ∈ Eq \ ΣA0
, there is a unique F ∈ GA0

( M(C∗)) such
that F [A0] = A and subject to the following constraints: components of the (i, j) block are
meromorphic over C∗ with at worst poles over [−c; q], of order ≤ µj − µi.

One proves in [25] that, in some adequate sense, this F is asymptotic to F̂A. We write
it ScF̂A and we consider it as a summation of ScF̂A in the “direction” c ∈ Eq. Thus, elements
of ΣA0

are prohibited directions of summation. The Stokes operators are then defined as:

Sc,dF̂A :=
(
ScF̂A

)−1

SdF̂A.

These are meromorphic automorphisms of A0, and they are Galois in the following sense:
evaluating them at a fixed base point a ∈ C∗ that is not a pole will yield elements of St(A)

for the corresponding fiber functor ω̂(0)
a . More precisely [24]:

P 2.6. – For all c, d ∈ Eq \ ΣA0
such that a 6∈ [−c; q] ∪ [−d; q] (so that a is

not a pole):

Sc,dF̂A(a) ∈ St(A)

and these elements, together with their conjugates under the action of G(0)
p,1(A), are Zariski-

generators of St(A).

Since Sc,dF̂A = (Sc0,cF̂A)−1Sc0,dF̂A, we may as well fix c0 and consider the family of all

Sc0,cF̂A(a). The question of their relations thus comes next.
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2.6. Explicit generators of st

In order to try to“free” these generators, one goes to the Lie algebra. Fix an arbitrary
c0 ∈ Eq \ ΣA0 . For a given A, the map:

c 7→ logSc0,cF̂A(a)

is meromorphic on Eq with poles on ΣA0
, with values in st(A). Its residue at α ∈ ΣA0

is
written:

∆α(A) := Resβ=α logSc0,βF̂A(a) ∈ st(A).

Residues at points α 6∈ ΣA0
are null, except maybe at the particular point a, where a encodes

the fiber functor; but this one has no intrinsic significance and we shall have no use for it.

Now the above statement may be reinforced as follows. From [23, 24], it follows that
the mapping A 7→ ∆α(A) is functorial and tensor compatible in the sense of the Stokes
Lie algebra (see Section 2.3) when defined on all operands; by continuity, this remains true
without condition:

L 2.7. – Each mapping A ∆α(A) defines an element ∆α of st.

It was proved in [24, Theorem 3.5] (with slightly different notations) that:

P 2.8. – The ∆α, together with their conjugates under the action of G(0)
p,1, are

topological generators of st.

According to (6) in 2.3, ∆α admits a decomposition:

∆α =
⊕̂

∆(δ)
α , ∆(δ)

α =
⊕̂

∆(δ,c)
α .

We see the components ∆
(δ,c)
α as q-analogs of alien derivations. From the preceding section,

we draw:

T 2.9. – The “q-alien derivations” ∆
(δ,c)
α together with ν generate topologically

the Lie algebra s̃t.

R 2.10. – It was conjectured at the end of [24] that those “q-alien deriva-
tions” ∆

(δ,c)
α such that αδ = c (remember we use a multiplicative notation for the group Eq),

together with their conjugates under the action of G(0)
p,1, are topological generators of st.

This will be proved in Section 3.3. Therefore, those ∆
(δ,c)
α such that αδ = c together with ν

generate topologically the Lie algebra s̃t. The condition on α, δ, c can be interpreted in terms
of “directions of maximal growth” as in the theory of differential equations.

From considerations related to the classification theory (see Section 3.1), one can predict
that these generators are not free: there should be δ of them for each pair δ, c, but there are δ2.
In this respect, the “freeness theorem” of [24] is quite incomplete. We shall here complete it
by Theorem 3.8 at the end of 3.5.
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2.7. q-Gevrey interpolation

Here, we use [24, §3.3.3]. For each level δ ∈ N ∪ {∞}, we define a category Eδ with
the same objects as E(0)

1 but morphisms having coefficients in the field of q-Gevrey series of
level > δ (see definition at the beginning of 2.5). For δ = ∞, the morphisms are analytic
and E∞ = E(0)

1 . For δ = 0, any F̂A is a morphism, so that any A is equivalent to A0 and
E0 = E(0)

p,1. In between, the interpolating categories Eδ are related by essentially surjective

and (not fully) faithful ⊗-compatible inclusion functors Eδ ↪→ Eδ−1, whence the following
diagram:

E(0)
1

gr // E(0)
p,1

E∞ //

ω̂(0)
a ((

· · · // Eδ //

��

· · · // E0

ω(0)
avv

VectfC.

Each Eδ is Tannakian, with the same fiber functors as E(0)
1 , and its Galois group is a closed

subgroup of G(0)
1 (its elements are ⊗-automorphisms of the fiber functor with more con-

straints imposed by functoriality since there are more morphisms; this is a particular case
of [8, prop. 2.21 (b), p. 139]). Actually:

Gal( Eδ) = St≤δ oG
(0)
p,1,

where St≤δ is the subgroup of St with Lie algebra(17):

Lie(St≤δ) = st≤δ :=
∑
δ′≤δ

st(δ
′).

Thus, st≤δ contains in particular all the ∆
(δ′,c)
α for δ′ ≤ δ.

We now define:

s̃t
≤δ

:=
∑
δ′≤δ

s̃t
(δ′)

= Cν ⊕ st≤δ.

Then, from what was said before and the grading, one draws:

P 2.11. – The Lie algebra s̃t
≤δ

is generated by ν and the ∆
(δ′,c)
α such that

αδ
′

= c for δ′ ≤ δ.

Proof. – From Theorem 2.9, we know that the ∆
(δ′,c)
α together with ν generate topolog-

ically the whole Lie algebra s̃t. However, those with δ′ > δ cannot contribute to st≤δ (the
grading being by the ordered monoid N); and there is no need here for topological closure,
since the degrees are bounded above, so there are no terms tending to 0.

(17) This was denoted st(δ) in [24].
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3. Structure of the Stokes component

In this section, we shall describe in detail the structure of st and its representations. We
first recall some necessary facts about classification.

3.1. Some useful results on local analytic classification

These results come from [25, 32]. Fix a pure module M0 with matrix A0 in form (5). The
modules formally equivalent to M0 are those such that grM ≈ M0. In order to classify
them analytically, one rigidifies the situation by introducing “marked pairs” (M, g) made
up of an analytic q-difference module M and an isomorphism g : gr(M) → M0. We then
define two such marked pairs (M, g) and (M ′, g′) to be equivalent if there exists a morphism
f : M →M ′ such that g = g′ ◦gr(f). By standard commutative algebra, such a morphism f

is automatically an isomorphism.
The set of equivalence classes of marked pairs is written F (M0) and we see it as the space

of isoformal analytic classes in the formal class ofM0. The corresponding classification prob-
lem was solved in [25] and we shall use it in 3.3 to get an alternative description of RepA0

(st).
We define the sheaf ΛI(M0) of meromorphic automorphisms of M0 infinitely tangent to

identity as:
ΛI(M0)(V ) := {F ∈ GA0

( O(π−1(V ))) | F [A0] = A0}.
(V denoting an open subset of Eq.) The reason for the name is that, according to [32,
Lemma 2.7 and Section 4.1], for any F satisfying the above condition, F − In is flat in the
sense of q-Gevrey asymptotics. Then ΛI(M0) is a sheaf of unipotent groups over Eq, and it
is Abelian only in the case that M0 has one or two slopes; in the former case, it is trivial, in
the latter case, it is a vector bundle [32, prop. 4.1].

Now let M in the formal class of M0, with matrix A in form (5). The family of all
the Sc,dF̂A for all c, d ∈ Eq \ ΣA0

is a cocycle for the above sheaf:

(Sc,dF̂A)c,d ∈ Z
1(UA0

,ΛI(M0)).

Here, UA0
is the covering of Eq by the Zariski open sets Eq \ {−c}, c ∈ Eq \ ΣA0

.
The conditions on the poles of summations ScF̂A imply that each Sc,dF̂A has only poles
on [−c; q] ∪ [−d; q], with multiplicities ≤ µj − µi for the coefficients of the block (i, j). We
call privileged such a cocycle and write Z1

pr(UA0
,ΛI(M0)) the space of privileged cocycles.

T 3.1 ([25, 32]). – The maps sending A to this cocycle and the latter to its coho-
mology class induce isomorphisms of pointed sets:

F (M0)→ Z1
pr(UA0

,ΛI(M0))→ H1(Eq,ΛI(M0)).

We now describe a q-Gevrey interpolation of this classification. WriteGA0

≥δ the subgroup
of GA0

defined by the vanishing of all blocks (i, j) such that 0 < µj − µi < δ. This is a
normal subgroup ofGA0

and each quotientGA0

≥δ/GA0

≥δ+1 is Abelian, indeed isomorphic
to gA0

(δ), whence an exact sequence:

0→ gA0

(δ) → GA0/GA0

≥δ+1 → GA0/GA0

≥δ → 1.

This is actually a central extension. It induces a central extension of sheaves:

0→ λ
(δ)
I (M0)→ ΛI(M0)/Λ≥δ+1

I (M0)→ ΛI(M0)/Λ≥δI (M0)→ 1,
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where we write Λ≥δI (M0) the subsheaf of ΛI(M0) of Sections with values in GA0

≥δ. The
sheaf λ(δ)

I (M0) := Λ≥δI (M0)/Λ≥δ+1
I (M0) is a sheaf of Abelian groups, actually a vector

bundle over Eq, corresponding by the construction at the beginning of Section 2 to a q-dif-
ference module that is pure isoclinic of slope δ: it is indeed the direct sum of the equations
σqf = (zµiAi)f(zµjAj)

−1 for µj−µi = δ. Now, using some non-Abelian cohomology from
[11], one gets an exact sequence:

(7) 0→ V (δ) → F ≤δ(M0)→ F ≤δ−1(M0)→ 1.

The meaning of this sequence is the following:

1. The leftmost term V (δ) := H1(Eq, λ
(δ)
I (M0)) is a finite dimensional complex vector

space (first cohomology of a vector bundle); its dimension is:

dimCV
(δ) = δ

∑
µj−µi=δ

rirj .

2. The group V (δ) operates freely on the mid term, which is defined as the cohomology
pointed set F ≤δ(M0) := H1(Eq,ΛI(M0)/Λ≥δ+1

I (M0)). (The special point of this
pointed set is the class of the trivial cocycle all of whose components are the identity.)

3. The corresponding quotient map is the canonical arrow from F ≤δ(M0) to the coho-
mology pointed set F ≤δ−1(M0) := H1(Eq,ΛI(M0)/Λ≥δI (M0)).

Thus, the fibers(18) of F ≤δ(M0) → F ≤δ−1(M0) inherit a natural structure of affine space
over the vector space V (δ). Accordingly, for v ∈ V (δ), we shall writeα 7→ v⊕α the translation
by v in F ≤δ(M0) (that is, in each of the fibers just mentioned); and for two classes α, α′ ∈
F ≤δ(M0) having the same image in F ≤δ−1(M0), we shall write α′ 	 α the unique element
of V (δ) such that α′ = v ⊕ α.

The interpretation of F ≤δ(M0) in terms of classification rests on the same interpolat-
ing categories Eδ as in Subsection 2.7. An object of Eδ can be identified with a matrix A
in GLn(C({z})), with undetermined blocks (i, j) for µj − µi > δ, symbolized here by ?:

zµ1A1 . . . . . . ? ? ?

. . . . . . . . . . . . ? ?

. . . . . . . . . Ui,j . . . ?

0 . . . . . . . . . . . . . . .

. . . 0 . . . . . . . . . . . .

0 . . . 0 . . . . . . zµkAk


.

The highest meaningful block diagonal consists in blocks Ui,j with level µj − µi = δ.
We fix a block diagonal matrix A0 and we classify all matrices A with diagonal A0, up

to q-Gevrey gauge equivalence of level > δ, that is under transforms in GA0
(C((z))) all of

whose coefficients are series of q-Gevrey level > δ. This amounts to the same as fixing the
pure moduleM0 and doing q-Gevrey classification in its formal class. The space of isoformal
classes above A0 in Eδ received a cohomological description in [25]: it is F ≤δ(M0). Using

(18) Actually, each F ≤δ(M0) can be endowed with an affine structure over the vector space
⊕
k≤δ

V (k), but we shall

not need this fact.
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the Birkhoff-Guenther normal form (loc. cit.), one can moreover require null blocks (i, j)

for µj−µi > δ and find its dimension as an affine space. We shall write cl(A) the class of the
module MA in F ≤δ(A0) := F ≤δ(M0).

In 3.3, we shall have use for the corresponding computational description of the exact
sequence (7). Consider A,A′ in F ≤δ(M0) having the same image in F ≤δ−1(M0). Then
F̂A,A′ := F̂A′(F̂A)−1 lies in GA0

≥δ(C((z))), as well as its summations:

ScF̂A,A′ := ScF̂A′(ScF̂A)−1.

We get a cocycle:

Sc,dF̂A,A′ :=
(
ScF̂A,A′

)−1

SdF̂A,A′

of ΛI(M0), in which the blocks forµj−µi > δ have no meaning and those for 0 < µj−µi < δ

vanish; thus, it yields a well defined privileged cocycle of λ(δ)
I (M0) := Λ≥δI (M0)/Λ≥δ+1

I (M0),
whence a class in V (δ) := H1(Eq, λ

(δ)
I (M0)). This class is the element cl(A′)	 cl(A) ∈ V (δ)

which sends the class of A to the class of A′ in F ≤δ(M0).

3.2. Linking representations of st to isoformal analytic classes

Let M0 be an object of E(0)
p,1 Its fiber by the functor gr from E(0)

1 to E(0)
p,1 can be identified with

the category C(M0) with objects the pairs (M,u), M an object of E(0)
1 and u : grM → M0

an isomorphism; and with morphisms (M,u) → (N, v) the morphisms f : M → N in E(0)
1

such that u = v ◦grf . Such a morphism is automatically an isomorphism so that C(M0) is a
groupoid and F (M0) is the set π0( C(M0)) of its connected components. Its cohomological
description was explained in 3.1, we now use Tannakian duality to get a representation
theoretic description.

To alleviate notations, in this section, we respectively write C , C0 for E(0)
1 , E(0)

p,1 andG,G0

for their Galois groups G(0)
1 = Gal( E(0)

1 ), G
(0)
p,1 = Gal( E(0)

p,1). We write RepC(G),RepC(G0)

the categories of complex finite dimensional rational representations of these proalgebraic
groups. The choice of the fiber functors is here irrelevant, all that we need is the equivalences
of category C with RepC(G) and of category C0 with RepC(G0).

We also introduce the auxiliary comma-category C with objects the triples (M,M0, u)

where M,M0 are objects of C , C0 and where u : grM → M0 is an isomorphism; and with
morphisms (M,M0, u) → (N,N0, v) the pairs (f, f0) made up of a morphism f : M → N

and of a morphism f0 : M0 → N0 such that f0 ◦ u = v ◦ grf .

L 3.2. – The category C is equivalent to C and we can identify the fiber C(M0)

described above with the fiber C(M0).

Proof. – Let F be the functor from C to C defined by M  (M, grM, IdgrM ) and
f  (f, grf) and letG be the forgetful functor from C to C . ThenG◦F is the identity functor
of C and F ◦ G is isomorphic to the identity functor of C by the natural transformation
which sends X = (M,M0, u) to the morphism (IdM , u) from F ◦G(X) = (M, grM, IdgrM )

to X.
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We now carry on this construction to the equivalent categories RepC(G) and RepC(G0).
The setting is the same as in 2.1 with G0 in place of Gp and we write π := i∗ : G→ G0. We
shall use gr∗ to identifyG0 to a (proalgebraic) subgroup ofG. The Stokes groupSt = Ker π

is such that G = St o G0. Thus, G0 acts upon St by inner automorphisms, which we shall
denote s 7→ sg := g−1sg. We also shall denote D 7→ Dg the corresponding adjoint action
on the Lie algebra st of St.

The functor C0 ↪→ C is thereby identified with the following functor from RepC(G0)

to RepC(G):

(ρ0 : G0 → GL(V )) (ρ0 ◦ π : G→ GL(V )) ,

(φ : V → V ′, ρ0 → ρ′0) (φ : V → V ′, ρ0 ◦ π → ρ′0 ◦ π).

Similarly, the functor gr : C → C0 is identified with the following functor from RepC(G)

to RepC(G0):

(ρ : G→ GL(V )) 
(
ρ|G0

: G0 → GL(V )
)
,

(φ : V → V ′, ρ→ ρ′) (φ : V → V ′, ρ|G0
→ ρ′|G0

).

Since (ρ0 ◦ π)|G0
= ρ0, the composition is the identity of RepC(G0) as it should. Then one

checks that C is identified to the category of triples (ρ, ρ0, u), where ρ : G → GL(V ) and
ρ0 : G0 → GL(V0) are rational representations and where u : V → V0 is an isomor-
phism from ρ|G0

to ρ0, with morphisms from (ρ, ρ0, u) to (ρ′, ρ′0, u
′) the pairs (φ, φ′) where

φ : V → V ′ and φ′ : v′ → V ′0 yield morphisms ρ → ρ′ and ρ0 → ρ′0 of representations and
where moreover φ0 ◦ u = u′ ◦ φ. The equivalences of C and C are easy to explicit.

Last, if M0 “is” the representation ρ0 : G0 → GL(V0), the fiber C(M0) is identified with
the category with objects the pairs (ρ, u) of a rational representation ρ : G → GL(V ) and
a map u : V → V0 which is an isomorphism from ρ|G0

to ρ0, with morphisms from (ρ, u)

to (ρ′, u′) the maps φ : V → V ′ which yield morphisms ρ→ ρ′ such that u = u′ ◦ φ.

L 3.3. – The fiber C(M0) can be identified with the set of representations
ρ : G→ GL(V0) such that ρ|G0

= ρ0.

Here as in the next proposition, we mean that classes of representations are in bijective
correspondance with this set; the bijection being explicit allows for an identification.

Proof. – This set is considered as a category having only identity morphisms. The
identification comes from the functor which sends the object (ρ, u) to the representation
ρu : g 7→ u ◦ ρ(g) ◦ u−1 and every morphism to the corresponding identity morphism. This
is a retraction of the obvious inclusion, and an equivalence of categories.

Now we return to our more concrete setting, with G = St oG0. If ρ0 : G0 → GL(V ) is
fixed, to specify a representation ρ : G→ GL(V0) such that ρ|G0

= ρ0, we need only to give
its restriction ρ to St, and this is subject to the necessary and sufficient condition:

∀s ∈ St , ∀g ∈ G0 , ρ(sg) = (ρ(s))ρ0(g).

SinceSt is connected and prounipotent, ρ is determined by the corresponding representation
of the Lie algebra st. In the end, we have proved:
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P 3.4. – The fiber C(M0) can be identified with the set:

{ρ : st→ gl(V0) | ∀D ∈ st , ∀g ∈ G0 , ρ(Dg) = (ρ(D))ρ0(g)}.

As explained in the introduction, this description of the set F (M0) of isoformal analytic
classes in terms of representations will allow to transport to representations of the Galois
group the q-Gevrey interpolation obtained in [25]: this is the crucial (and deepest) step of
our construction here.

3.3. Linking representations of st with H1(Eq, λI(M0))

The bijection of H1(Eq, λI(M0)) with RepA0
(s̃t) resulting from the two descriptions

of F (M0) (see Sections 2.4, 3.1 and 3.2) is obtained as follows: for any matrixA correspond-
ing to a class in F (M0), first compute the privileged cocycle (Sc,dF̂A) ∈ Z1

pr(UA0
,ΛI(M0)).

Write temporarily h(A) its class in H1(Eq, λI(M0)). On the other hand, write Dα the
residue at β = α of the meromorphic function β 7→ logSc0,βF̂A(z0) ∈ gA0

, and ∆
(δ,c)
α (A)

the components of Dα for αδ = c. Then call ρ(A) ∈ RepA0
(s̃t) the unique representation

which sends the “q-alien derivations” ∆
(δ,c)
α to the ∆

(δ,c)
α (A) and ν to U (the block-diagonal

matrix of unipotent components of A); the unicity of this representation is a direct con-
sequence of Theorem 2.9. The bijection puts in correspondance the class h(A) with the
representation ρ(A).

Using Z1
pr(UA0

, (ΛI/Λ
≥δ+1
I )(M0)), we get correspondingly a bijection of

H1(Eq, (ΛI/Λ
≥δ+1
I )(M0)) with RepA0

(s̃t
≤δ

), elements of this set being defined by the
same two conditions used to define RepA0

(s̃t) (see just after Corollary 2.4). This gives a
commutative diagram with bijective horizontal arrows and surjective vertical arrows:

H1(Eq,ΛI(M0)) //

��

RepA0
(s̃t)

��

H1(Eq, (ΛI/Λ
≥δ+1
I )(M0)) // RepA0

(s̃t
≤δ

).

Just with this information, we shall now start to get structural information about s̃t.

Let c ∈ C∗, δ ∈ N∗ and set A0 :=

(
1 0

0 czδ

)
. Then:

gA0
= gA0

(δ,c) =

(
0 C

0 0

)
.

Since gA0
is Abelian, RepA0

(s̃t) can be identified with the dual space of
(
s̃t

[s̃t,s̃t]

)(δ,c)

. Now

RepA0
(s̃t) is a linear space and its bijection with H1(Eq,ΛI(M0)) is a linear isomorphism

(it is a consequence of the q-Gevrey devissage in 3.4, but it is obvious in the particular case
considered here). Since H1(Eq,ΛI(M0)) = H1(Eq, F czδ) has dimension δ [25, 23], we
conclude:

dimC

(
s̃t

[s̃t, s̃t]

)(δ,c)

= δ.
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Applying Theorem 2.9, we see that (the images of) the ∆
(δ,c)
α for arbitrary α ∈ Eq generate

the complex vector space
(
s̃t

[s̃t,s̃t]

)(δ,c)

. However, when computing the residues in the case of

a matrix Au :=

(
1 u

0 czδ

)
, we only find poles at points such that αδ = c: for this calculation,

see [23, Section 4.2]. Thus, if all the ∆
(δ,c)
α such that αδ = c vanish on the class of Au, this

class is trivial. By duality, this means that (the images of) those ∆
(δ,c)
α such that αδ = c

generate
(
s̃t

[s̃t,s̃t]

)(δ,c)

.

R 3.5. – This is in essence the content of [23, Lemma 4.7 and Theorems 4.8, 4.9]
(also see [25, prop. 3.11 and Section 6.2.1]) and it represents the basic step in the “Abelian
(two slopes) case”, which served as a bootstrap for the general case. In [24] we attempted to
obtain the general case by devissage of the filtration. Here we achieve this devissage in the
next two subsections.

For each pair (δ, c) ∈ N∗ × Eq, we choose δ among the δ2 points α ∈ Eq such that
αδ = c in such a way that the images of the corresponding ∆

(δ,c)
α form a basis of s̃t

[s̃t,s̃t]
.

We write ∆
(δ,c)
i , 1 ≤ i ≤ δ, the corresponding q-alien derivations. In accordance with the

analogy explained in the introduction, we see them as “pointed” and from now on they will
be denoted ∆̇

(δ,c)
i , and ν ∈ st(0) will be denoted ∆̇(0).

P 3.6. – The family of all ∆̇
(δ,c)
i together with ∆̇(0) := ν topologically

generate s̃t.

Proof. – Call S the sub-Lie algebra generated by this family. It is naturally N-graded and
one has, for all δ ∈ N:

s̃t
(δ)

= S(δ) + [s̃t, s̃t](δ) = S(δ) +
∑
i+j=δ

[s̃t
(i)
, s̃t

(j)
].

We shall prove inductively that S(δ) = s̃t
(δ)

for all δ ∈ N, which will imply the conclusion.
For δ = 0, both sides are equal to Cν. Assuming it to be true for all degrees< δ, we calculate:

s̃t
(δ)

= S(δ) +
∑
i+j=δ

[s̃t
(i)
, s̃t

(j)
]

= S(δ) + [Cν, s̃t
(δ)

] +
∑
i+j=δ
i,j<δ

[s̃t
(i)
, s̃t

(j)
]

= S(δ) + [Cν, s̃t
(δ)

] +
∑
i+j=δ
i,j<δ

[S(i), S(j)]

= S(δ) + [Cν, s̃t
(δ)

]

since [S(i), S(j)] ⊂ S(δ) when i + j = δ. By Lemma 2.2 at the end of 2.1, this ends the
proof.

We will show in 3.5 that this family is in some sense free.
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3.4. q-Gevrey devissage of the space of representations

From the q-Gevrey dévissage ofH1(Eq,ΛI(M0)) and ofZ1
pr(UA0

,ΛI(M0)), and from the
identifications with RepA0

(s̃t), we get the following commutative diagram of exact sequences
(for concision, we do not indicate the dependency on M0):

0 // H1(Eq, λ
(δ)
I ) // H1(Eq, (ΛI/Λ

≥δ+1
I )) // H1(Eq, (ΛI/Λ

≥δ
I )) // 0

0 // Z1
pr(UA0

, λ
(δ)
I ) //

OO

��

Z1
pr(UA0

, (ΛI/Λ
≥δ+1
I )) //

OO

��

Z1
pr(UA0

, (ΛI/Λ
≥δ
I )) //

OO

��

0

0 // W (δ) // RepA0
(s̃t
≤δ

) // RepA0
(s̃t
≤δ−1

) // 0.

In the last line, being an exact sequence means that W (δ) is a vector space acting on the
middle term with quotient the rightmost term. We shall now describe this space and this ac-
tion. For this, we recall the description given in [24, prop. 3.3.3] of the fibers of the surjection
from RepA0

(s̃t
≤δ

) to RepA0
(s̃t
≤δ−1

) (modulo the change of notation from st(δ) there to s̃t
≤δ

here). In loc. cit., the interpolation categories C δ were defined as having the same objects as
E(0)

1 , but through q-Gevrey conditions on the coefficients of the morphisms (see [24, bottom
of p. 320 and Corollary 3.14]): these are actually the same as the categories Eδ here intro-
duced in Section 2.7. Let B be an element of C δ−1 in Birkhoff-Guenther normal form hav-
ing graded partA0. Two elementsA,A′ of C δ liftingB are related by a unique formal gauge
transform F̂A,A′ ∈ GA0

(C((z))). This matrix has null blocks for 0 < µj−µi < δ; the blocks
corresponding to levels µj −µi > δ are irrelevant; and we call f̂A,A′ the part of F̂A,A′ corre-
sponding to level µj − µi = δ. The family of all the Sc,df̂A,A′ is a cocycle in Z1

pr(UA0 , λ
(δ)
I ).

Then:
∆(δ)
α (A,A′) := ∆(δ)

α (A′)−∆(δ)
α (A) = Resβ=αSc0,β f̂A,A′(z0).

Moreover, all families (∆
(δ)
α ) arising this way correspond to a difference ∆(A′)−∆(A). We

thus define:
W (δ) :=

{(
Resβ=αSc0,βf(z0)

)(δ,c)
α
| f ∈ Z1

pr(UA0
, λ

(δ)
I )
}
.

If we encode a representation by the family of all the ∆̇
(δ,c)
i (A), we see that we do get an

action of W (δ) on RepA0
(s̃t
≤δ

) with quotient RepA0
(s̃t
≤δ−1

).

3.5. Freeing the alien derivations

D 3.7. – Let ∆̇(0) be a symbol corresponding to the element ν introduced
in Section 2.4. For each (δ, c) ∈ N∗ × Eq and i = 1, . . . , δ, let ∆̇

(δ,c)
i be a symbol corre-

sponding to the actual alien derivation with the same notation. We callL the free Lie algebra
generated by ∆̇(0) and all the ∆̇

(δ,c)
i . We graduate it by the semi-group {0}∪N∗×Eq by taking

deg ∆̇(0) = 0 and deg ∆̇
(δ,c)
i = (δ, c). We also endow L with the following action of T (0)

1 ×G(0)
f,1:

(∆̇
(δ,c)
i )(t,γ) := tδγ(c)∆̇

(δ,c)
i ,

(∆̇(0))(t,γ) := ∆̇(0).
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We write RepA0
(L) the set of representations fromL to gA0

compatible with this action (and
similarly for all stable sub-Lie algebras of L).

Write L≤δ the sub-Lie algebra generated by ∆̇(0) and all the ∆̇
(δ′,c)
i , δ′ ≤ δ; and

L>δ the ideal generated by all the ∆̇
(δ′,c)
i , δ′ > δ. After [4, chap. 2, §2, no 9, prop. 10],

L≤δ is free with basis the stated system of generators, while L>δ is free with basis the family
of all (adD1) · · · (adDk)∆̇

(δ′′,c)
i where the Di are ∆̇

(δ′,c)
i with δ′ ≤ δ and where δ′′ > δ.

Moreover, L = L≤δ ⊕ L>δ. Likewise, we have L≤δ = L≤δ−1 ⊕ L(δ), where L(δ) is the ideal
generated by all the ∆̇

(δ,c)
i (i and c varying). We define likewise L(δ,c) as the ideal generated

by all the ∆̇
(δ,c)
i (i varying).

From the obvious dominant morphisms of Lie algebras L → s̃t and L≤δ → s̃t≤δ, one
deduces a commutative diagram with surjective horizontal maps and injective vertical maps:

RepA0
(s̃t) //

��

RepA0
(s̃t
≤δ

)

��
RepA0

(L) // RepA0
(L≤δ).

On the other hand, we have identifications:

RepA0
(L) ≈

⊕
(δ,c)∈N∗×Eq

(
gA0

(δ,c)
)δ

RepA0
(L≤δ) ≈

⊕
(δ′,c)∈N∗×Eq

1≤δ′≤δ

(
gA0

(δ′,c)
)δ′

RepA0
(L(δ)) ≈

⊕
c∈Eq

(
gA0

(δ,c)
)δ

RepA0
(L(δ,c)) ≈

(
gA0

(δ,c)
)δ
.

Indeed, the value of the generator ν is imposed since we consider representations in RepA0
,

i.e., relative to the fixed A0. Then, we can enrich as follows the previous diagram of exact
sequences:

0 // H1(Eq, λ
(δ)
I ) // H1(Eq, (ΛI/Λ

≥δ+1
I )) // H1(Eq, (ΛI/Λ

≥δ
I )) // 0

0 // Z1
pr(UA0 , λ

(δ)
I ) //

OO

��

Z1
pr(UA0 , (ΛI/Λ

≥δ+1
I )) //

OO

��

Z1
pr(UA0 , (ΛI/Λ

≥δ
I )) //

OO

��

0

0 // W (δ) //

��

RepA0
(s̃t
≤δ

) //

��

RepA0
(s̃t
≤δ−1

) //

��

0

0 // RepA0
(L(δ)) // RepA0

(L≤δ) // RepA0
(L≤δ−1) // 0.
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The new vertical arrows are a priori injections.

T 3.8 (Freeness theorem). – The map RepA0
(s̃t)→ RepA0

(L) is bijective.

Proof. – By induction, using the last two lines of the above diagram, it is enough to show
that the leftmost vertical arrow is bijective. But it is linear and it sends injectively eachW (δ,c)

to RepA0
(L(δ,c)), which has the same dimension δ.

3.6. First step in direction of the inverse problem

Recall from Section 2.2 the description of the pure (or formal) Galois group with integral
slopes:

G
(0)
p,1 = Gal( E(0)

p,1) = C∗ ×Homgr(C
∗/qZ,C∗)×C.

In Section 2.4, we took off its unipotent component C and glued it with the Stokes group,
so we now introduce its semi-simple component:

G
(0)
p,1,s := C∗ ×Homgr(C

∗/qZ,C∗).

It acts as follows on the free Lie algebra L: the action on Cν is trivial; for each
(δ, c) ∈ N∗ ×Eq, the action on the component L(δ,c) is multiplication by tδγ(c).

D 3.9. – The wild fundamental group of E(0)
1 is the semi-direct product

π
(0)
1,q,w,1 := L o G

(0)
p,1,s. A representation of the wild fundamental group is the data of a

rational linear representation of G(0)
p,1,s together with a representation of L, required to be

compatible with the corresponding adjoint actions.

If L was nilpotent, it would be equivalent to consider the semi-direct product of groups
(expL)oG(0)

p,1,s, where expL is just L endowed with the Campbell-Hausdorff group law ([6,

A7]); and representations of this group with the conditions that they be rational on G(0)
p,1,s.

Here a similar description would be possible using the f-pronilpotent completion L† studied
in the Appendix 3, but we do not need it. At any rate, such representations make up a
Tannakian category RepC(π

(0)
1,q,w,1) = RepC(LoG

(0)
p,1,s). To summarize, we have proved:

T 3.10. – (i) The Tannakian categories E(0)
1 and RepC(G

(0)
1 ) are equivalent.

(ii) The restriction functor from RepC(G
(0)
1 ) to RepC(π

(0)
1,q,w,1) is an isomorphism, i.e., it is

fully faithful and bijective on objects.
(iii) There is a natural bijection between isomorphism classes of representations of the wild

fundamental group π(0)
1,q,w,1 of E(0)

1 and isomorphism classes of objects of E(0)
1 . All the Galois

groups of such objects are the Zariski-closures of images of such representations.

Proof. – Actually (i) is just Tannakian duality.
The restriction functor(which is plainly exact and ⊗-compatible) is obviously faithful.

It is bijective on objects because of Theorem 3.8. To see that it is full, we consider two
rational representations ρ, ρ′ ofG(0)

1 in spaces V, V ′ and their restrictions ρ0, ρ
′
0 to π(0)

1,q,w,1. A
morphism from ρ0 to ρ′0 is a linear map φ : V → V ′ that intertwines ρ0, ρ

′
0, i.e., φ ◦ ρ(s, g) =

ρ′(s, g) ◦ φ when s is restricted to expL. But then this equality extends to the whole of G(0)
1

by Zariski-density (Proposition 3.6) and φ is the image of a morphism from ρ to ρ′.
Then (iii) is a consequence of (i) and (ii).
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R 3.11. – Let ρ : L o G
(0)
p,1,s → GL(V ) be a representation of the wild fun-

damental group in the sense of the above definition. It is easy to check that the restriction
dρ′′ : L → End(V ) is nilpotent and vanishes on every alien derivation but perhaps a finite
number. Therefore dρ′′ factors by L†, L† being the f-pronilpotent completion of the free Lie
algebra L (cf. the Appendix 3), which is a pronilpotent proalgebraic Lie algebra.

The natural morphism L → s̃t factors into L → L† → s̃t, the first morphism being
injective and dominant (i.e., its image is dense)(19). We deduce morphisms:

LoG
(0)
p,1,s → L† oG

(0)
p,1,s → s̃toG

(0)
p,1,s,

and then functors:

Rep(s̃toG
(0)
p,1,s)→ Rep(L† oG

(0)
p,1,s)→ Rep(LoG

(0)
p,1,s).

It follows from Theorem 3.8 that these are equivalences of categories, therefore:

L† oG
(0)
p,1,s → s̃toG

(0)
p,1,s

is an isomorphism in the obvious proalgebraic sense (Proposition 3.3) and L† → s̃t is an
isomorphism of pronilpotent proalgebraic Lie algebras.

Finally we get an isomorphism of proalgebraic groups:

exp(L†) oG
(0)
p,1,s → exp(s̃t) oG

(0)
p,1,s = StoG

(0)
p,1 = G

(0)
1 .

This is an “explicit description” of the Tannakian group G(0)
1 .

4. Structure of the global Galois group

We consider here the Galois theory of equations with matrix in GLn(C(z)). We shall not
develop the theory in such general terms as we did in the previous sections, but just enough
to be able to apply it to the inverse problem.

4.1. The global Fuchsian Galois group

We recall here results from [31], mostly its Subsection 3.2. Unfortunately, some of
the results that we need are not completely proven there: details can be found in the
thesis “Théorie de Galois des équations aux q-différences fuchsiennes”, available at
http://www.math.univ-toulouse.fr/~sauloy/PAPIERS/these.pdf. We shall slightly
adapt the notations of loc. cit. so that they extend more easily to our case of interest in the
next section.

Let Ef be the category with objects the matrices A ∈ GLn(C(z)) which are Fuchsian(20)

at 0 and at∞, and with morphisms F : A → B the matrices F ∈ Matp,n(C(z)) such that
(σqF )A = BF . It is endowed with a natural tensor structure(21) which makes it a neutral
Tannakian category. Each object A of Ef can be written, non canonically:

A = M (0)[A(0)] = M (∞)[A(∞)],

(19) We are going to prove below that the second morphism is an isomorphism.
(20) All definitions and constructions given at 0 can be applied at∞ by using the coordinate w := 1/z.
(21) The conventions used to obtain a matrix (and not a quadritensor) as the result of tensoring two matrices are
detailed in loc. cit.
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where:

A(0), A(∞) ∈ GLn(C) and M (0) ∈ GLn(C({z})),M (∞) ∈ GLn(C({w})).

For the constant matrix C ∈ GLn(C), one builds a canonical fundamental solution
of σqX = CX in the following way. First, special functions are built from theta functions
that satisfy the following elementary equations: σqlq = lq+1; and, for all c ∈ C∗: σqec = cec.
All these functions are meromorphic over C∗; moreover, we have e1 = 1 and eqc = zec.
Then, from the Jordan decomposition C = CsCu, where Cs = PDiag(c1, . . . , cn)P−1,
one draws eCu := C

lq
u and eCs := PDiag(ec1 , . . . , ecn)P−1. Last, eC := eCseCu . Thus

σqX = AX admits the following non canonical fundamental solutions:

X (0) := M (0)eA(0) and X (∞) := M (∞)eA(∞) .

The Birkhoff connection matrix is then defined as:

P := ( X (∞))−1 X (0) ∈ GLn( M(Eq)).

In order to give it a functorial and even Galois meaning, we record two basic facts. First [31,
Lemma 1.2.4.1, p. 935], if F (0) is a meromorphic (at 0) morphism from A(0) to B(0), then of
course F (0)eA(0) = eB(0)R(0) where R(0) is elliptic. But more is true: from the special form
of our solutions, one can deduce thatR(0) ∈ Matp,n(C). (Similarly at∞.) This is used in the
context of the following commutative diagram:

In
e
A(∞)//

R(∞)

��

A(∞)M
(∞)
//

F (∞)

��

A

F

��

A(0)M(0)
oo

F (0)

��

In
e
A(0)oo

R(0)

��
Ip

e
B(∞)// B(∞) N

(∞)
// B B(0)N(0)
oo Ip.

e
B(0)oo

One can start from F and complete it outwards, or start from R(0) and R(∞) and complete
it inwards.

As for the tensor properties, the basic fact is that it is impossible to choose the family of
functions ec so that eced = ecd. Thus we are led to introduce the cocycle of elliptic functions
φ(c, d) := eced

ecd
and to extend it to matrices (through their eigenvalues) so as to have the

formula:

eC1 ⊗ eC2 = eC1⊗C2Φ(C1, C2).

Note that for unipotent matrices there is no twisting since e1 = 1.

4.1.0.1. The tensor category Cf of connection data. – Its objects are triples (A(0), P,A(∞)),
where A(0), A(∞) ∈ GLn(C) and P ∈ GLn( M(Eq)). Morphisms from (A(0), P,A(∞))

to (B(0), Q,B(∞)) are pairs (R(0), R(∞)) ∈ Matp,n(C)2 such that:

R(∞)P = QR(0),

F (0) := eB(0)R(0)(eA(0))−1 is meromorphic at 0

F (∞) := eB(∞)R(∞)(eA(∞))−1 is meromorphic at∞.

In loc. cit. an explicit condition is given ensuring these meromorphies, but we shall not need
it. (It is used to guarantee that the following constructions do work.)
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Now the tensor product has to be twisted in order to get the theorem we need. For
morphisms, and for the left and right components of objects, we use the usual tensor product.
For the middle component, we shall use the twisted tensor product, defined as follows:

(A
(0)
1 , P1, A

(∞)
1 )⊗ (A

(0)
2 , P2, A

(∞)
2 ) := (A

(0)
1 ⊗A

(0)
2 , P1⊗P2, A

(∞)
1 ⊗A(∞)

2 ),

where:

P1⊗P2 := Φ(A
(∞)
1 , A

(∞)
2 )(P1 ⊗ P2)

(
Φ(A

(0)
1 , A

(0)
2 )
)−1

.

T 4.1. – The tensor categories Ef and Cf are equivalent.

Proof. – Because of the non canonical choice, one does not define a functor from one
of these categories to the other. Instead, one defines yet another category Sf with objects
(A(0),M (0), A(∞),M (∞)) and with morphisms (R(0), R(∞)), all being subject to adequate
conditions. The tensor structure on Sf is the natural one. Then functors from Sf to Ef and
Cf are easily defined. Note that the proof of the essential surjectivity of the second functor is
essentially due to Birkhoff (it rests on his theorem of factorisation of analytic matrices).

4.1.0.2. The Galois group of Ef and Cf . – From the description of Cf , it is clear how to
define fiber functors ω(0)

f and ω(∞)
f on it. These extend to the local categories obtained by

keeping only the 0 or ∞ component, and by allowing meromorphic morphisms. One thus
obtains the local Galois groups G(0)

f and G(∞)
f that were described in Section 2.2. We want

to use P to connect them. More precisely, we should like each value P (a) ∈ GLn(C) to
behave like a “connection formula” in Riemann-Hilbert correspondance, and so be a Galois
isomorphism from ω(0)(A) to ω(∞)(A). This does not work because the formation of the
Birkhoff matrix is not⊗-compatible: that is, (P1⊗P2)(a) 6= P1(a)⊗P2(a). We shall therefore
twist P in order to obtain tensor-compatibility and also functoriality. This is done as follows.

One can define explicitly a family of (abstract) group morphisms ga from C∗ to itself such
that(22) ga(q) = a for all a ∈ C∗. Then we set ψa(c) := ec(a)

ga(c) and we extend each function ψa
to a function Ψa on matrices, through their eigenvalues. Last, we define:

P̌ (a) :=
(
Ψa(A(∞))

)−1
P (a)Ψa(A(0)),

and can prove that, for each a ∈ C∗, one has an isomorphism of fiber functors (A(0), P,A(∞)) P̌ (a)

from ω
(0)
f to ω

(∞)
f . Since P̌ (a) is not defined for all a, this actually applies to a smaller

category than Ef , but any given object belongs to “most” of these subcategories.

T 4.2. – The group generated byG(0)
f , one particular conjugate

(
P̌ (a)

)−1
G

(∞)
f P̌ (a)

and the set of all defined values
(
P̌ (b)

)−1
P̌ (a) is Zariski-dense in the global Galois group ofA.

The proof uses Chevalley criterion: any line in any tensor construction that is fixed by
the smaller group is fixed by the bigger one. It rests on the following useful fact: if x is an
eigenvector for G(0)

f , then it is an eigenvector for Ψa(A(0)). We shall sketch the proof in our
case of interest in the next subsection.

(22) In [31, 3.2.2.2], the stated condition is ga(q) = 1, but it is a typographical error.
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4.2. The global Galois group with integral slopes

We now extend the results above to the case of irregular equations with integral slopes.
As the extension involves no new idea, our presentation will be concise. The category E1

of interest has as objects systems with matrix A ∈ GLn(C(z)) such that their slopes at 0

and at ∞ are integral; and as morphisms A → B matrices F ∈ Matp,n(C(z)) such that
(σqF )A = BF . The tensor product is the natural one and makes it a neutral Tannakian
category. Each object A of E1 can be written, non canonically:

A = M (0)[A(0)] = M (∞)[A(∞)],

where M (0) ∈ GLn(C({z})), M (∞) ∈ GLn(C({w})) and A(0), A(∞) are in Birkhoff-
Guenther normal form.

To define solutions, we choose once and for all a function θ such that σqθ = zθ and an
arbitrary direction of summation in Eq. Because of this, the following constructions are
only valid on a subcategory of E1, but each particular object of E1 belongs to “most” of
these subcategories. We shall call A(0)

p , A(∞)
p the pure systems associated to A(0), A(∞) by

the gr functor (hence there block-diagonal parts). Let S(0) be the meromorphic isomor-
phism from A

(0)
p to A(0) obtained by summation along the selected direction mentioned

above; and similarly at infinity. Then, calling µ1, . . . , µk the slopes of A(0) and r1, . . . , rk
their multiplicities, let Γ(0) := Diag(θµ1Ir1 , . . . , θ

µkIrk). We have A(0)
p = Γ(0)[A

(0)
f ] with

A
(0)
f ∈ GLn(C). In the end, using the similar notations at infinity, we put:

eA(0) := S(0)Γ(0)e
A

(0)
f

and eA(∞) := S(∞)Γ(∞)e
A

(∞)
f

.

Thus σqX = AX admits the following non canonical fundamental solutions:

X (0) := M (0)eA(0) and X (∞) := M (∞)eA(∞) .

The Birkhoff connection matrix is then defined as:

P := ( X (∞))−1 X (0) ∈ GLn( M(Eq)).

Its tensor behaviour is exactly similar to that observed in the Fuchsian case and we shall set,
in appropriate context:

(A
(0)
1 , P1, A

(∞)
1 )⊗ (A

(0)
2 , P2, A

(∞)
2 ) := (A

(0)
1 ⊗A

(0)
2 , P1⊗P2, A

(∞)
1 ⊗A(∞)

2 ),

where:
P1⊗P2 := Φ((A1)

(∞)
f , (A2)

(∞)
f )(P1 ⊗ P2)

(
Φ((A1)

(0)
f , (A2)

(0)
f )
)−1

.

The functorial behaviour requires some more comments. Let B be an object of rank p in E1

andB(0),N (0),B(0)
p , T (0),B(0)

f , ∆(0), Y(0), Y(∞), andQ the associated data corresponding

respectively to A(0), M (0), A(0)
p , S(0), A(0)

f , Γ(0), X (0), X (∞) and P . Let F be a morphism
from A to B. Then we have a commutative diagram:

In

e
A

(∞)
f //

R(∞)

��

A
(∞)
f

Γ(∞)
//

F
(∞)
f

��

A
(∞)
p

S(∞)
//

F (∞)
p

��

A(∞)M
(∞)
//

F (∞)

��

A

F

��

A(0)M(0)
oo

F (0)

��

A
(0)
p

S(0)
oo

F (0)
p

��

A
(0)
f

Γ(0)
oo

F
(0)
f

��

In

e
A

(0)
foo

R(0)

��
Ip e

B
(∞)
f

// B(∞)
f

∆(∞)

// B(∞)
p

T (∞)

// B(∞)

N(∞)

// B B(0)

N(0)

oo B
(0)
p

T (0)

oo B
(0)
f

∆(0)

oo Ip.e
B

(0)
f

oo
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Of course, all vertical arrows can be defined from F . For instance,

F (0) := (N (0))−1 ◦ F ◦M (0) ∈ Matp,n(C({z}))

is a morphism in E(0)
1 , and similarly at∞. Then one can see that

F (0)
p := (T (0))−1 ◦ F (0) ◦ S(0)

is actually grF (0) (and similarly at ∞); and, from the block-diagonal structures of the
involved matrices, one can see that F (0)

f := (∆(0))−1 ◦ F (0)
p ◦ Γ(0) is actually equal

to F
(0)
p = grF (0), the block-diagonal of F (0). Then, from the lemma already quoted

[31, Lemma 1.2.4.1, p. 935], we see that R(0) := (e
B

(0)
f

)−1 ◦ F (0)
f ◦ e

A
(0)
f

∈ Matp,n(C) and

similarly at∞.
Conversely, if we are given the two lines and the most external vertical arrows R(0),

R(∞), the condition to be able to go inwards and fill in the other vertical arrows to get
a commutative diagram is that QR(0) = R(∞)P . The condition to get a rational F is
that F (0) ∈ Matp,n(C({z})) and similarly at ∞. Indeed, from the functional equation
σqF

(0) = B(0)F (0)(A(0))−1 and the fact that A(0), B(0) are in Birkhoff-Guenther normal
form, one deduces that F (0) is meromorphic on C, and similarly at∞, so that F is actually
meromorphic on the Riemann sphere, thus rational.

4.2.0.3. The tensor category C1 of connection data. – Its objects are triples (A(0), P,A(∞)),
where A(0), A(∞) ∈ GLn(C({z})) are in Birkhoff-Guenther normal form and P ∈ GLn( M(Eq)).
Morphisms from (A(0), P,A(∞)) to (B(0), Q,B(∞)) are pairs (R(0), R(∞)) ∈ Matp,n(C)2

such that:

R(∞)P = QR(0),

F (0) := eB(0)R(0)(eA(0))−1 is meromorphic at 0

F (∞) := eB(∞)R(∞)(eA(∞))−1 is meromorphic at∞.

R 4.3. – We saw in 4.1.0.1 that there was an explicit condition (although we did
not state it) on R(0) for F (0)

p = F
(0)
f to be meromorphic at 0. Here, we must add a new

condition to ensure that F (0) is also meromorphic at 0. This condition is obviously related to
the summations S(0) and T (0). We have not so far an explicit criterion, but it could be related
to the way F

(0)
p links the classifying cohomology class in H1(Eq, F A(0)

p
) corresponding

to A(0) to the classifying cohomology class in H1(Eq, F B(0)
p

) corresponding to B(0).

The tensor structure is defined as follows. For morphisms, and for the left and right
components of objects, we use the usual tensor product. For the middle component, we shall
use the twisted tensor product, defined as follows:

(A
(0)
1 , P1, A

(∞)
1 )⊗ (A

(0)
2 , P2, A

(∞)
2 ) := (A

(0)
1 ⊗A

(0)
2 , P1⊗P2, A

(∞)
1 ⊗A(∞)

2 ),

where:
P1⊗P2 := Φ(A

(∞)
1 , A

(∞)
2 )(P1 ⊗ P2)

(
Φ(A

(0)
1 , A

(0)
2 )
)−1

.

Recall that we have extended the definition of Φ to this setting.

T 4.4. – The tensor categories E1 and C1 are equivalent.
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Proof. – The method and the proof are the same as in the Fuchsian case: we use an en-
riched category S1 with objects (A(0),M (0), A(∞),M (∞)) and with morphisms (R(0), R(∞)),
all being subject to obvious conditions. The tensor structure on S1 is the natural one. Then
functors from S1 to E1 and C1 are defined and proved to be⊗-equivalences exactly as in the
Fuchsian case.

4.2.0.4. The Galois group of E1 and C1. – From the description of C1, it is clear how to
define fiber functors ω(0)

1 and ω(∞)
1 on it and that their extension to the local categories E(0)

1

and E(∞)
1 yields local Galois groups which are precisely the Galois groupG(0)

1 studied in this
paper and its counterpart G(∞)

1 at∞.

Also the formula:

P̌ (a) :=
(
Ψa(A(∞))

)−1
P (a)Ψa(A(0))

extends here with the only adaptation that Ψa(A(0)) means Ψa(A
(0)
f ), and similarly

at ∞. Again, one finds that, for each a ∈ C∗, one has an isomorphism of fiber functors
(A(0), P,A(∞)) P̌ (a) from ω

(0)
1 to ω(∞)

1 (again, on appropriate subcategories).

T 4.5. – The group generated byG(0)
1 , one particular conjugate

(
P̌ (a)

)−1
G

(∞)
1 P̌ (a)

and the set of all defined values
(
P̌ (b)

)−1
P̌ (a) is Zariski-dense in the global Galois group ofA.

Proof. – The proof uses again Chevalley criterion in a similar way to loc. cit. Suppose
we have two lines D(0) and D(∞) that are respectively fixed by G(0)

1 and G(∞)
1 and such that

each P̌ (a) sends D(0) to D(∞). Taking generators x(0), x(∞), we see by Tannakian duality
that they define rank one subobjects x(0) : a(0) → A(0) and x(∞) : a(∞) → A(∞). By the
lemma quoted at the end of the previous subsection, the fact that x(0), x(∞) are respectively
eigenvectors ofG(0)

1 ,G(∞)
1 implies that the value P (a) of the non-twisted connection matrix

sends D(0) to D(∞), so that P (a)x(0) = p(a)x(∞) for some p(a) ∈ C. But then p is
a non-trivial elliptic function, (a(0), p, a(∞)) is a rank one object of C1 and (x(0), x(∞))

an embedding of this object as a subobject of (A(0), P,A(∞)). Then, by functoriality, all
elements of the global Galois group must fix this subobject, whence the two lines.

C 4.6. – Topological generators of the Stokes Lie algebra at 0 and∞ together
with topological generators of the local pure Galois groups and the values of P̌ (a) are together
topological generators of the global Galois group.

5. The inverse problem

5.1. Known results

To our knowledge there existed before almost no result on the local inverse problem that
we shall solve below (for the integral slope case). We will review the known results on the
global inverse problem.

As far as we know, the first significant result on the global inverse problem of the q-dif-
ference Galois theory is due to P. Etingof [10] (Proposition 3.4, page 7). We recall that the
system σqY = AY is said to be regular if A(0) = A(∞) = In.
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P 5.1. – Let G be any connected complex linear algebraic group, there exists
δ > 0 (depending onG) such that, for all 0 < |q| < δ, there exists a rational regular difference
system σqY = AY whose q-difference Galois group is G.

The proof of Proposition 5.1 is related to the following result (cf. [35]).

L 5.2. – LetG be any complex linear algebraic group, then there exists g1, . . . , gm ∈ G
such that the subgroup generated by g1, . . . , gm is Zariski-dense in G.

We recall that the Tretkoffs used this lemma (and the Riemann-Hilbert correspondence)
to solve the inverse problem of the Galois differential theory with regular singular systems.
Actually, the condition that q is small enough can be relaxed, according to the following
argument, which was shown to us by Julien Roques: the Galois group of a regular system
does not change by ramification, as follows easily from the Theorem of Etingof that the
values of P (a)−1P (b) generate it (P being the connection matrix of Birkhoff)(23).

However, the proof of Etingof is extremely sketchy and we have not been able to fill in the
details. Indeed, it relies on two arguments, the first (presented as obvious) yielding an even
stronger statement than the above result of the Tretkoffs. So we prefer not to rely on Etingof’s
result. Moreover, our method here seems more “economical” in creating singularities.

In [21, Corollary 12.17], van der Put and Singer give the following sufficient condition
for G ⊂ GLn(C) to be the Galois group of a q-difference equation over C(z): G contains a
finite commutative subgroup Z lying in the connected component of the normalizer of G0

in GLn(C), and moreover mapping surjectively onto G/G0.
If G is Abelian, it is possible to improve the Proposition 5.1 in the following way.

P 5.3. – LetG be any Abelian connected complex linear algebraic group, then,
for all q ∈ C∗, |q| 6= 1, there exists a rational regular difference system σqY = AY whose
q-difference Galois group is G.

This proposition follows from [31], using the following lemma.

L 5.4. – Let G be any Abelian connected complex linear algebraic group, then there
exists a rational dominant map f : Eq → G.

Here Eq is seen as a projective algebraic curve (an elliptic curve). The proof of this lemma
follows from the existence of an isomorphism G ≈ (Gm)k × (Gu)l.

From Propositions 5.1 and 5.3 one could conjecture that for every connected complex
linear algebraic group G and for all q ∈ C∗, |q| 6= 1, there exists a rational regular difference
system σqY = AY whose q-difference Galois group is G.

Such a system will have in general “a lot of singularities”. Below we will attack the global
inverse problem in the opposite direction, searching a system with a minimal number of
singularities in the spirit of a q-analog of the Abhyankar conjecture.

Another source of solutions of the inverse problem are of course the known solutions of
the direct problem, in particular from the computation of the q-difference Galois groups of
the generalized q-hypergeometric equations (regular singular or not). One can find a complete

(23) If one uses instead the stronger density Theorem 4.2, one sees more generally that the connected component
does not change by ramification (for a Fuchsian system).

4 e SÉRIE – TOME 48 – 2015 – No 1



THE q-ANALOGUE OF THE WILD FUNDAMENTAL GROUP (III) 203

solution of this last problem in a series of papers of J. Roques [26, 27, 28]. Limiting ourselves
to the cases of simple groups, the complete list obtained by J. Roques is: SL(n,C), SO(n,C),
Sp(2n,C).

It is interesting to compare with the differential case (cf. [2], [9], [13], [18]). The sim-
ple groups which are differential groups of generalized hypergeometric differential equations
(regular singular or not) are: SL(n,C), SO(n,C), Sp(2n,C) and ...the groupG2 ! Therefore
the only difference between the q-difference case and the differential case is the exceptional
group G2.

5.2. Linear algebraic groups: reminders and complements

5.2.1. Notations and definitions. Levi decomposition. – In the following all the algebraic
groups are complex linear algebraic groups. In general G is a linear algebraic group, g is its
Lie algebra, T ⊂ G is a torus, t the Lie algebra of T , and D ⊂ G is an Abelian semi-simple
group.

An algebraic group G contains a unique maximal normal solvable subgroup, this subgroup
is closed. Its identity component is called the radical R(G) of G.

We will denote Ru(G) the unipotent radical of G (i.e., the set of unipotent elements
of R(G)). A group G is reductive if and only if Ru(G) = {e}.

D 5.5. – A Levi subgroup of a linear algebraic groupG is a maximal reductive
subgroup.

We have an exact sequence:

{e} → Ru(G)→ G→ G/Ru(G)→ {e}

and, if H ⊂ G is a Levi subgroup, then the quotient map G → G/Ru(G) induces an
isomorphism H → G/Ru(G). More precisely we have the following result (essentially due
to Mostow).

P 5.6. – Let G be a linear algebraic group.

(i) If H ⊂ G is a Levi subgroup, then G is a semi-direct product: G = Ru(G) oH.
(ii) Any two Levi subgroups of G are conjugate under an inner automorphism.

(iii) If H ⊂ G is a subgroup and if the quotient map G→ G/Ru(G) induces an isomorphism
H → G/Ru(G), thenH is a Levi subgroup. (As noted before the proposition, the converse
is true.)

Proof. – For (i) and (ii), cf. [19] (a subgroup is fully reducible if and only if it is reductive).

Let H ⊂ G be a subgroup such that the quotient map G → G/Ru(G) induces an
isomorphismH → G/Ru(G),H is reductive, therefore it is contained in a maximal reductive
subgroup H ′ and H = H ′.

D 5.7. – A Levi decomposition of a linear algebraic groupG is an isomorphism
G ≈ U o S, where S is reductive and U is unipotent.
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5.2.2. Diagonalisable and triangularizable groups. – We shall recall the notions of diagonal-
isable and of triangularizable algebraic group. The properties of the diagonalisable groups
and of the triangularizable connected groups are well known, but for the triangularizable non
connected groups we do not know good references, hence, for sake of completeness, we shall
detail the necessary results.

An algebraic group G is diagonalisable if and only if it is Abelian and semi-simple
(G = Gs). If G is diagonalisable, then every representation of G is diagonalisable in the
matrix sense. An algebraic group G is diagonalisable if and only if there exists a faithful
representation of G which is diagonalisable in the matrix sense.

We will say that a linear algebraic group G is triangularizable if there exists a faithful
triangular representation. A triangularizable group is solvable.

A solvable connected linear algebraic group is triangularizable (Lie-Kolchin theorem). In
particular a unipotent group is triangularizable.

P 5.8. – A linear algebraic group G is triangularizable if and only if
G ≈ U o D, where U is unipotent and D is Abelian and semi-simple. Then U = Ru(G)

and D ≈ G/Ru(G).
The Levi subgroups of a triangularizable algebraic group G are the maximal Abelian semi-

simple subgroups. If G is connected, the Levi subgroups are the maximal tori.

Proof. – If G ≈ U o D, where U is unipotent and D is Abelian and semi-simple, G is
triangularizable by [14, I.7, lemma, p. 20].

We suppose that G is triangularizable, there exists a faithful representation ρ : G→ GLn(C),
such that ρ(G) is an upper triangular subgroup of GLn(C), a subgroup of the upper trian-
gular subgroup Tn. We denote Un (resp.Dn) the unipotent upper-triangular subgroup (resp.
the diagonal subgroup) of GLn(C), then Tn = Un oDn, Tn/Un = Dn.

There exists a Levi decomposition G = U o D, where U is unipotent and D reductive.
Then ρ(U) is unipotent, therefore it is a subgroup ofUn and ρ induces an injective morphism
D = G/U → Tn/Un = Dn. The group Dn is Abelian semi-simple, and D is isomorphic to
a subgroup, therefore D is Abelian semi-simple.

The Levi subgroups are Abelian semi-simple and any Abelian semi-simple subgroup is
reductive, the result follows.

5.3. Θ-structures on linear algebraic groups

5.3.1. Weights and coweights

D 5.9. – Let G be an Abelian semi-simple group. The weight group G• of G is
the group of homomorphisms of algebraic groups G→ C∗.

A weight onG is usually called a character onG, but we shall use the words “weight” and
“coweight” to emphasize the relation with the infinitesimal point of view.

The group G• is an Abelian finitely generated group.
The weight functor G  G• is an antiequivalence of categories between Abelian semi-

simple algebraic groups and finitely generated Abelian groups. The quasi inverse of the
weight functor is Homgr(.,C

∗).
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D 5.10. – Let D be an Abelian semi-simple group. A coweight on D is a
homomorphism of algebraic groups C∗ → D.

A coweight on D is also called a one parameter subgroup of D.
If χ : C∗ → D is a coweight on D, its image is contained in the maximal torus T ⊂ D,

therefore it is also a coweight on T .
Let f : C∗ → C∗ be a homomorphism of algebraic groups, then f : z 7→ zn, n ∈ Z, is

the degree of f and we denote deg f = n.
For every weight ξ and every coweight χ on an algebraic Abelian semi-simple group D,

we set
〈ξ, χ〉 := deg(ξ ◦ χ).

D 5.11. – Let T be a complex algebraic torus. The weight lattice T • of T is the
group of weights T → C∗, and the coweight lattice T• of T is the group of coweights C∗ → T .

The groups T • and T• are both free Abelian groups whose rank is the dimension of T . The
map (ξ, χ) 7→ 〈ξ, χ〉 := deg(ξ ◦χ) is a canonical non degenerate pairing T •×T• → Z (cf. for
example [12, 16.1]).

The weight functor T  T •, resp. the coweight functor T  T• is an antiequivalence,
resp. an equivalence of categories between algebraic tori and finitely generated free Abelian
groups. The quasi inverse of the weight functor is Homgr(.,C

∗).
An isomorphism of algebraic torus Φ : (C∗)µ → T gives a Z-basis of T• and the inverse

isomorphism Φ−1 : T → (C∗)µ gives a Z-basis of T •.
To a weight ξ : T → C∗ we associate its infinitesimal counterpart Lξ : t→ C (remember

that t denotes the Lie algebra of T ). If ξ is defined by the formula (z1, . . . , zk) 7→ zn1
1 · · · z

nk
k ,

then Lξ is defined as (ζ1, . . . , ζk) 7→ n1ζ1 + · · ·+ nkζk.
We will sometimes “identify” the group of weights and the group of infinitesimal weights

and we will interpret T • as a Z-submodule of the complex dual space t∗ of t. According to
the tradition, we will freely use the additive notation for the weights. We will denote WR the
real vector space R⊗Z T

•.
For ξ ∈ T •, χ ∈ T•, we define:

〈Lξ, Lχ〉 := Lξ ◦ Lχ(1) = 〈ξ, χ〉.

Let G be a linear algebraic group and let D be an Abelian semi-simple group. We recall
that the roots of D are the non trivial weights on D for the adjoint action of D on the Lie
algebra g. We denote gξ the root space associated to the root ξ:

gξ := {x ∈ g | ∀λ ∈ D , (Adλ)(x) = ξ(λ)x}.

We have g = g0 ⊕
⊕

ξ∈R gξ, the sum being on the set of roots R and g0 being the space
of elements invariant by D.

If D = T is connected (a torus), then

gξ = {x ∈ g | ∀τ ∈ t , (adτ)(x) = Lξ(τ)x}.

Let χ be a non trivial coweight on a torus T ⊂ G, it induces a grading of Lie algebras on g:

∀k ∈ Z , grkχ := {x ∈ g | ∀t ∈ C∗ , (Adχ(t))(x) = tkx} = {x ∈ g | [Lχ(1), x] = kx}.
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If ξ is a weight on T , then there exists a unique k ∈ Z such that gξ ⊂ grkχ and we have
k = 〈ξ, χ〉. In particular g0 ⊂ gr0

χ. We have:

grkχ =
⊕
〈ξ,χ〉=k

gξ.

5.3.2. Θ-coweights and Θ-structures

D 5.12. – Let D ⊂ G be an Abelian semi-simple subgroup and P := {ξi}i∈I
a finite family of non trivial weights onD. We will say that a coweight χ onD is positive (resp.
negative) on P if, for every i ∈ I, 〈ξi, χ〉 > 0 (resp. 〈ξi, χ〉 < 0).

D 5.13. – Let G be a triangularizable linear algebraic group. Let D be a Levi
subgroup ofG. By Proposition 5.8,D is Abelian semi-simple. A Θ-coweight onD is a coweight
on D which is negative on the family of roots for the adjoint action of D on the Lie algebra
g of G.

If χ is a Θ-coweight on D, then g0 = gr0
χ and g =

⊕
k∈−N grkχ.

5.3.2.1. Θ-structures

D 5.14. – We will say that a linear algebraic group G admits a Θ-structure if
it is triangularizable and if there exists a Θ-coweight on a Levi subgroup of G.

Then, by conjugation, there exists a Θ-coweight on any Levi subgroup of G.

D 5.15. – Let G be a linear algebraic group, let D ⊂ G be an Abelian semi-
simple subgroup and χ a Θ-coweight on D. We will say that χ is dominant if, for every root
ζ on D, we have dimgζ ≤ −〈ζ, χ〉.

L 5.16. – Let G be a triangularizable complex linear algebraic group, let D ⊂ G be
an Abelian semi-simple subgroup. We suppose that χ is a Θ-coweight on D. Then there exists
a Θ-coweight on D which is dominant.

Proof. – Let m ∈ N∗ and ϕm : C∗ → C∗ defined by ϕm : t 7→ tm. Then χm := χ ◦ ϕm
is a coweight on T , and for every root ξ, we have 〈ξ, χ〉 < 0, that is 〈ξ, χ〉 ≤ −1, whence
〈ξ, χm〉 = m〈ξ, χ〉 ≤ −m, and χm is a Θ-coweight. Then, for a sufficiently big m (m ≥
maxξ∈R(dimgξ)), χm is dominant.

5.3.3. Existence of a Θ-structure

R 5.17. – 1. If G = U o D is a Levi decomposition such that the semidirect
product is not direct and ifD is an Abelian finite group, then there exists no Θ-structure
on G.

2. We suppose that there exists a Θ-structure on a linear algebraic group G. If ξ is a root,
then ξ−1 is not a root.
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3. There exists a triangularizable connected linear algebraic groupG such that there exists
no Θ-structure on G. Let :

G :=
{(

1 α β
0 t γ
0 0 1

) ∣∣∣ t ∈ C∗, α, β, γ ∈ C
}
,

it is triangular and it admits the infinitesimal roots 1 and −1, therefore there exists no
Θ-structure on G.

A triangularizable group being given it seems difficult to find a practical criterion to decide
if it admits a Θ-structure. We shall give now a sufficient condition (we will use it below for the
case of Borel subgroups of reductive groups).

D 5.18. – LetG be a linear algebraic group and T ⊂ G a torus. A good system
of roots for the adjoint action of T on g is a set Σ of roots such that

(i) Σ is a R-free subset of WR ;
(ii) every root ξ ∈ R can be written ξ =

∑
k∈I

aiξi, with, for every i ∈ I, ai ∈ R+ and ξi ∈ Σ.

P 5.19. – LetG be a connected triangularizable group and T ⊂ G a maximal
torus. If there exists a good system of roots for the adjoint action of T on g, then there exists a
Θ-structure on G.

Proof. – We prove firstly a preliminary lemma (part (ii) of this lemma will be used later).

L 5.20. – (i) Let f1, . . . , fµ′ be independent R-linear forms on Rµ, there exists
p = (p1, . . . , pµ) ∈ Zµ such that fi(p) < 0 for all i = 1, . . . , µ′.

(ii) Let f1, . . . , fµ′ be non-trivial R-linear forms on Rµ, there exists p = (p1, . . . , pµ) ∈ Zµ

such that fi(p) 6= 0 for all i = 1, . . . , µ′.

Proof. – (i) The set U := {y ∈ Rµ | fi(y) < 0, i = 1, . . . , µ′} is a non-void open
subset of Rµ, therefore there exists p′ = (p′1, . . . , p

′
µ) ∈ Qµ ∩U . If y ∈ U and a ∈ N∗,

then ay ∈ U , the result follows.
(ii) The set U := {y ∈ Rµ | fi(y) 6= 0, i = 1, . . . , µ′} is a non-void open subset of Rµ,

therefore there exists p′ = (p′1, . . . , p
′
µ) ∈ Qµ ∩ U . If y ∈ U and a ∈ N∗, then ay ∈ U ,

the result follows.

We can now prove the proposition.

Let Φ : (C∗)µ → T be an isomorphism of tori.

Let Σ = {ξ1, . . . , ξµ′} be a good system of roots of G. For i = 1, . . . , µ′, we set
fi := Lξi ◦ LΦ. We interpret f1, . . . , fµ′ as linear forms on Rµ, by hypothesis they are
independent, therefore we can apply the Lemma 5.20 above. There exists p = (p1, . . . , pµ) ∈ Zµ

such that fi(p) < 0 for all i = 1, . . . , µ′. We define a morphism χ : C∗ → T by
Φ−1◦χ : t→ (t1 := tp1 , . . . , tµ := tpµ), for i = 1, . . . , µ′, then we set vi := fi◦L(Φ−1◦χ) :=

Lξi ◦ Lχ. We have vi(1) = fi(p) < 0. If ξ is a root, then 〈Lξ, Lχ〉 =
∑

i=1,...,µ′

aivi(1) with

ai ≥ 0, a1 + · · ·+ aµ′ > 0 and therefore 〈Lξ, Lχ〉 = 〈ξ, χ〉 < 0.
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In the following proposition, T is a maximal torus of G. One implication is Proposi-
tion 5.19.

P 5.21. – If the dimension of T is one, thenG admits a Θ-structure if and only
if there exists a good system of roots.

Proof. – If G admits a Θ-structure, then there exists a surjective morphism η : C∗ → T

such that, for every root ξ, 〈ξ, η〉 is negative. Let ξ1 be a root, then, for every root ξ, we have
Lξ = aLξ1 with a > 0, therefore {ξ1} is a good system of roots.

For basic definitions on Borel subgroups, positive systems of roots..., cf. [12].

P 5.22. – IfG+ is a Borel subgroup of a connected reductive algebraic group,
then there exists a Θ-structure on G+.

Proof. – Let G+ be a Borel subgroup of the connected reductive algebraic group G. Let
T be a maximal torus of G contained in G+, then G+ corresponds to a positive system of
roots R+ ofG′ (g = t+

⊕
ξ∈R+

gρ). We denote by B := (ξ1, . . . , ξµ) a basis (or system of simple

roots) of this system R+ (such a basis exists). Then every root in R+ is a linear combination
of the roots of this basis with positive coefficients (they are integers) and therefore B is a good
system of roots. Then the result follows from the Proposition 5.19.

5.4. Some complements on linear algebraic groups

We shall use later this part for the solution of the local inverse problem and in our study
of the global inverse problem. Similar tools were introduced by the first author in order to
solve inverse problems in the differential case. For the missing proofs, cf. [22, 11.3,11.4].

We denote by L(G) the subgroup of an algebraic group G generated by all the maximal
tori ofG, it is a connected algebraic normal subgroup and the maximal torus of the algebraic
group V (G) := G/L(G) is reduced to the identity.

L 5.23. – The Lie algebra L of L(G) is generated by t (the Lie algebra of a maximal
torus) and the root-spaces gξ.

The groupRu(G)/
(
G0, Ru(G)

)
is a commutative unipotent group, therefore it can be iden-

tified with a finite dimensional complex vector space. The finite group G/G0 acts naturally
on Ru(G)/

(
G0, Ru(G)

)
.

We set S(G) := Ru(G)/
(
G0, Ru(G)

)
o G/G0. Due to a result of the first author [22,

Proposition 1.8, page 276] , there is an isomorphism of algebraic groups:

S(G)→ V (G)/
(
V (G)0, V (G)0

)
.

L 5.24. – The linear algebraic groups S(G), V (G) and V (G)/(V (G)0, V (G)0) have
the same number m of topological generators.

We have dimRu(G)/
(
G0, Ru(G)

)
≤ m and it is an equality if G is connected.

If G is topologically generated by s elements, then m ≤ s.
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L 5.25. – Let G be an algebraic group endowed with a Θ-structure defined by a
Θ-coweight χ on a Levi subgroup D ⊂ G. Let T ⊂ D be the maximal torus of D. We set
U := Ru(G) and denote by u its Lie algebra. Then:

(i) u = u0 ⊕
⊕

ξ∈R gξ and
⊕

ξ∈R gξ is a sub-Lie algebra of u;
(ii) L = t⊕

⊕
ξ∈R gξ, g = g0 ⊕

⊕
ξ∈R gξ, g0 = u0 ⊕ t, g = u0 ⊕ L;

Proof. – (i) For any weight ξ on D, uξ ⊂ gξ and if ξ is a root, gξ = uξ.
Let α, β ∈ R, we have gα+β = (0) or [gα, gβ ] ⊂ gα+β . As α+ β 6= 0, in the second

case α+ β is a root. Hence
⊕

ξ∈R gξ is a sub-Lie algebra of u.
(ii) For all ξ ∈ R, [t, gξ] = gξ, therefore, using (i) and the Lemma 5.23, we get
L = t⊕

⊕
ξ∈R gξ.

6. The local inverse problem

6.1. The regular singular case

6.1.1. Universal groups and representations. Necessary conditions. – The universal group for
the local regular singular case (at 0) is the commutative proalgebraic group:

G
(0)
f = G

(0)
f,s ×G

(0)
f,u,

with:

G
(0)
f,s = Homgr(Eq,C

∗) and G(0)
f,s = C.

To a germ (at the origin) of meromorphic q-difference system ∆ : σqY = AY , up to
meromorphic equivalence, corresponds a rational representation:

ρf : G
(0)
f → GLn(C)

and conversely. The q-difference Galois group of ∆ is G = Imρf . It is Abelian.

The knowledge of the representation ρ is equivalent to the knowledge of a pair of com-
muting representations:

ρf,s : G
(0)
f,s → GLn(C) ρf,u : G

(0)
f,u → GLn(C).

We have Gs = Imρf,s and Gu = Imρf,u and our commutation condition means that each
element of Gs commutes with each element of Gu.

The commutative unipotent group Gu being the image of C by ρf,u its dimension is at
most one.

Note that the group Homgr(Eq,C
∗) is topologically generated by (exactly) two elements

[31] and C is topologically generated by one element.

P 6.1. – Let G be the Galois group of a local regular singular q-difference
system, then:

– The group G is Abelian and topologically generated by two elements;
– The finite group G/G0 is algebraically generated by at most two elements;
– dimCGu ≤ 1.
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6.1.1.1. A description of Homgr(Eq,C
∗). – We recall the description of Homgr(Eq,C

∗). We
choose τ ∈ C such that e−2iπτ = q (Imτ > 0). The map w 7→ z := e2iπw induces an
isomorphism of C/(Z⊕Zτ) on Eq. We consider C as a Q-vector space, we can write it as a
direct sum of Q-vector spaces C = Q ⊕ Qτ ⊕ L, then we have a product of Z-modules
C/(Z ⊕ Zτ) ≈ (Q/Z) × (Qτ/Zτ) × L and the corresponding image is the product
of Z-modules:

Eq = µ× µ
q
× L,

where µ := e2iπQ is the group of the roots of the unity, µ
q

= qQ/qZ is the image in Eq of

the subgroup qQ ⊂ C∗ (µ
q
≈ µ ≈ Q/Z) and L is a torsion free subgroup (the “universal

lattice”, defined up to isomorphism).

We shall consider each Abelian group as the inductive limit of its finitely generated sub-
groups.

Recall that the groups writtenG(0) are (universal) local Galois groups at 0, whileG0 means
the neutral component of any proalgebraic group G. We have a short exact sequence of
proalgebraic groups: (

G
(0)
f,s

)0 → G
(0)
f,s → G

(0)
f,s/

(
G

(0)
f,s

)0
,

we get it applying the exact contravariant functor Homgr(.,C
∗) to the short exact sequence

of groups:

µ× µ
q
→ Eq → Eq/(µ× µq).

We have Eq → Eq/(µ× µq) ≈ L, therefore:

Homgr

(
Eq/(µ× µq),C

∗) ≈ Homgr

(
L,C∗

)
.

Hence
(
G

(0)
f,s

)0 ≈ Homgr

(
Eq/(µ×µq),C

∗) is a protorus, we will call it the Fuchsian protorus
and we will denote it Tf .

We recall that Homgr(Q/Z,C
∗) = Ẑ. Then Hom(µ,C∗) = Ẑ(1) (Ẑ(1) is the multiplica-

tive notation for Ẑ).

We have G(0)
f,s/Tf ≈ Ẑ(1)× Ẑ(1).

Considering G(0)
f,s as a proalgebraic group, we get Eq = Hom(G

(0)
f,s,C

∗) (here Hom is for
morphisms of proalgebraic groups, i.e., rational homomorphisms), as the inductive limit of
its finitely generated subgroups. Then we can consider Eq as the group of weights of G(0)

f,s.

More precisely, if c̄ ∈ Eq, then the map ψc̄ : G
(0)
f,s = Homgr(Eq,C

∗) → C∗ defined

by f ∈ Homgr(Eq,C
∗) 7→ f(c̄) is a weight on G(0)

f,s and conversely if ϕ is a weight on G(0)
f,s,

there exists a unique c̄ ∈ Eq such that ϕ = ψc̄.

Applying the functor Hom(.,C∗) to the (non-canonical) decomposition
G

(0)
f,s = Ẑ(1)× Ẑ(1)×Tf , we get the (non-canonical) decomposition Eq = µ× µ

q
× L.
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6.1.2. The inverse problem for the regular singular case, a Tannakian solution. – We solve the
inverse problem for the regular singular case using the Tannakian mechanism, proving that
the conditions of the Proposition 6.1 are sufficient. Afterwards we will give an elementary
proof.

P 6.2. – Let G be an Abelian complex linear algebraic group such that:

(i) G is topologically generated by at most two elements;
(ii) dimCGu ≤ 1.

Then G is the local Galois group of a local regular singular meromorphic linear q-difference
system.

The condition (i) can be replaced by the following (a priori weaker) condition:

(iii) G/G0 is generated by at most two elements.

Proof. – We will give a Tannakian proof, defining a surjective morphism ρ : G
(0)
f,s → G.

Then, if r : G→ GLn(C) is a faithful representation, the morphism r ◦ ρ : G
(0)
f,s → GLn(C)

defines a system of rank n whose Galois group is r(G).

Let G be an Abelian linear algebraic group satisfying conditions (ii) and (iii), then
G = Gu × Gs. The natural map Gs/G0

s → G/G0 is an isomorphism, therefore there exists
an isomorphism Gs ≈ Z/p1Z × Z/p2Z × (C∗)ν (p1, p2 ∈ N∗). The degenerate case where
p1 or p2 = 1 is easy and left to the reader.

Using a sub-lattice of rank n of L, we get a surjective morphism Tf → (C∗)ν . There exists
also a surjective morphism µ× µ

q
→ Z/p1Z×Z/p2Z. Hence we get a surjective morphism

ρs : G
(0)
f,s ≈ µ× µq ×Tf → Z/p1Z× Z/p2Z× (C∗)ν .

The Lie algebra u of Gu is of dimension at most one. Therefore there exists N ∈ u such
that Gu = {exp tN | t ∈ C}. If N = 0, the end of the proof is trivial. Otherwise, the map
ρu : G

(0)
f,u ≈ C→ Gu defined by t 7→ exp tN is an isomorphism (of algebraic groups).

The representations ρs and ρu clearly commute and the morphism ρ := (ρs, ρu) : G
(0)
f =

Gf,s ×Gf,u → G is onto. That ends the proof.

6.1.3. Explicit descriptions and elementary proof. – We shall recall how to compute the Ga-
lois group of a local regular singular q-difference system and shall deduce a(n) (elementary)
proof of Proposition 6.2 from this computation.

Up to a meromorphic gauge transformation, it is sufficient to consider the case of a
constant coefficient system ∆ : σqY = AY , A ∈ GLn(C).

We suppose that the matrixA is in upper triangular Jordan form. The representation ρ of
the universal group G(0)

f = G
(0)
f,s ×G

(0)
f,u associated to the system ∆ is:

(8) ρ = (ρs, ρu) : (γ, λ) 7→ γ(As)A
λ
u.

We have As = Diag (a1, . . . , an), then γ(Ai,s) = Diag
(
γ(a1), . . . , γ(an)

)
, ai being the

image of ai in Eq.
Let H be the subgroup of Eq generated by the image of Sp A. Using the decomposition

Eq = µ× µ× L, we get (up to the isomorphism µ
q
≈ µ) H = Z/p1Z× Z/p2Z× Λ, where

Λ is a lattice of rank µ.
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The algebraic group Homgr(H,C
∗) is an algebraic quotient of Homgr(Eq,C

∗) (using the
canonical injectionH → Eq) and the semi-simple componentGs of the Galois groupG of ∆

is the image of the quotient map, that is Homgr(H,C
∗), then:

Gs = Z/p1Z× Z/p2Z×Homgr(H,C
∗) ≈ Z/p1Z× Z/p2Z× (C∗)µ.

More precisely we get the representation of Gs in GLn(C) corresponding to (8) using the
interpretation ofH as the group of weights ofGs. This representation is given by the diagonal
weights (ai)i=1,...,n (ai ∈ H).

We can now solve explicitly the inverse problem.
Let G be an Abelian complex linear algebraic group satisfying the conditions of the

Proposition 6.2, we will compute a matrixA ∈ GLn(C) such that the system ∆ : σqY = AY

admits G as Galois group.
More precisely, we start from a faithful representation of the Abelian group G in GLn

in upper triangular form. Then Gs is diagonal and (due to condition (ii)) there exists a
unipotent matrix N ∈ Mn(C) such that Gu = {Nλ | λ ∈ C}.

The Abelian linear algebraic group Gs is isomorphic to the product of a finite group (the
quotientG/G0) by a torus of dimension µ, and the finite component is generated by at most
two elements. Then Gs ≈ Z/p1Z × Z/p2Z × (C∗)µ. The dual group (group of weights)
of Z/p1Z× Z/p2Z× (C∗)µ is Z/p1Z× Z/p2Z× Zµ

Using the decomposition Eq = µ × µ
q
× L, we get an isomorphism between

Z/p1Z × Z/p2Z × Zµ and a subgroup H of Eq. We can therefore interpret H as the
group of weights on the diagonal group Gs.

We denote $1, . . . , $n the diagonal weights of the diagonal group Gs, they are elements
ofH. Let a1, . . . , an ∈ C∗ such that their natural images in Eq are$1, . . . , $n. We moreover
require these choices to be consistent in the following sense: each time $i = $j , we take
ai = aj . Then H is generated by a1 = $1, . . . , an = $n.

We can now define A ∈ GLn(C):

As := Diag (a1, . . . , an) and Au := N.

Indeed, because of our consistent choices above, As and Au do commute. Then the Galois
group of ∆ : σqY = AY is G.

6.2. The pure case with integral slopes

6.2.1. Universal groups and representations. Necessary conditions. – The universal group for
the pure case with integral slopes (at 0) is the commutative proalgebraic group:

G
(0)
p,1 = G

(0)
f,s ×G

(0)
f,u × T

(0)
1 ,

with:
G

(0)
f,s = Homgr(Eq,C

∗), G
(0)
f,s = C and T

(0)
1 = C∗.

To a germ (at the origin) of meromorphic q-difference system, pure with integral slopes,
up to meromorphic equivalence, corresponds a morphism:

ρ : G
(0)
p,1 → GLn(C);

G = Imρ is the Galois group of the system, it is commutative.
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The knowledge of the representation ρ is equivalent to the knowledge of a triple of
pairwise commuting representations:

ρf,s : G
(0)
f,s → GLn(C), ρf,u : G

(0)
f,u → GLn(C), ρθ : T

(0)
1 → GLn(C).

We have (up to the obvious reordering of the factors) Gs = Im(ρf,s, ρθ), Gu = Imρf,u.

As in the regular singular case, we get the following result.

P 6.3. – Let G be the Galois group of a local pure q-difference system, then:

– G is Abelian and topologically generated by two elements;
– G/G0 is algebraically generated by at most two elements;
– dimCGu ≤ 1.

We recall that we have a (non-canonical) decomposition G(0)
f,s = Ẑ(1)× Ẑ(1)×Tf , where

the Fuchsian universal protorus is a subgroup of G(0)
f,s.

We will denote Tf the image of Tf by ρf,s and we will call it the Fuchsian torus of G. We
will denote Tθ the image of T1

(0) by ρf,s and we will call it the θ-torus ofG. The θ-torus and
the Fuchsian torus of G generate the maximal torus of G.

6.2.2. Sufficient conditions

P 6.4. – LetG be an Abelian complex linear algebraic group and a non trivial
coweight χ : C∗ → Gs. We suppose that:

(i) G is topologically generated by at most two elements;
(ii) dimCGu ≤ 1.

Then G is the local Galois group of a local pure meromorphic linear q-difference system with
integral slopes such that χ = ρθ (where ρ = (ρf , ρθ) is the representation defining the system).
The condition (i) can be replaced by the following (a priori weaker) condition:

(iii) G/G0 is generated by at most two elements.

Proof. – We will prove the existence of a system such that its Fuchsian torus Tf is a
maximal torus, or equivalently such that Tθ ⊂ Tf . The proof is Tannakian and it is only
a slight modification of the proof of the Proposition 6.2.

Let T be the maximal torus of G, it contains the image of χ.

We build as above a surjective representation:

ρf = (ρf,s, ρf,u) : G
(0)
f = G

(0)
f,s ×G

(0)
f,u → G.

Then using T
(0)
1 = C∗, we define a representation

ρ = (ρf , ρθ) : G
(0)
p,1 = G

(0)
f ×T

(0)
1 → G,

by ρθ = χ. (The component representations automatically commute.) It is a surjective
morphism and it answers the question.
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6.2.3. Explicit descriptions. – We recall how to compute the Galois group of a local pure
q-difference system with integral slopes and deduce a new (elementary) proof of Proposi-
tion 6.4 from this computation.

Up to a meromorphic gauge transformation, it is sufficient to consider the case of a system
∆ : σqY = AY , such that the matrix A is in upper triangular normal form:

(9) A :=



zµ1A1 . . . . . . . . . . . .

. . . . . . . . . Ui,j . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . zµkAk


,

where, for 1 ≤ i ≤ k,Ai ∈ GLri(C) is in Jordan form, and µ1, . . . , µk ∈ Z. (Usually we take
µ1 < · · · < µk, although this has no consequence in the formal case.)

The representation ρ of the universal group G(0)
p,1 = G

(0)
f,s ×G

(0)
f,u × T

(0)
1 associated to the

system ∆ is:

(10) ρ = (ρs, ρu, ρθ) : (γ, λ, t) 7→



tµ1γ(A1,s)A
λ
1,u . . . . . . . . . . . .

. . . . . . . . . 0 . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . tµkγ(Ak,s)A
λ
k,u


.

We can now give a new proof of Proposition 6.4. We start from the Abelian group G and
the one-parameter subgroup χ. We can assume that it is diagonalized:

∀t ∈ C∗ , χ(t) =



tµ1Ir1 . . . . . . . . . . . .

. . . . . . . . . 0 . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . tµkIrk


,

and we apply the explicit proof of Proposition 6.2 to each of the regular singular blocks of
ranks ri, yielding matrices Ai with constant coefficients. Then we set:

A :=



zµ1A1 . . . . . . . . . . . .

. . . . . . . . . 0 . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . zµkAk


.

The image of χ is contained in G, therefore the Galois group of the system σqY = AY is G
and we have χ = ρθ.
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6.3. The local inverse problem: the general case with integral slopes

6.3.1. Necessary conditions

T 6.5. – Let G be a complex linear algebraic subgroup. If G is the local Galois
group of a meromorphic linear q-difference equation, then:

(i) G is triangularizable;
(ii) G/L(G) is Abelian and topologically generated by at most two elements;

(iii) the finite group G/G0 is Abelian and generated by at most two elements;
(iv) the group G/G0 acts trivially on Ru(G)/

(
G0, Ru(G)

)
and the dimension of the vector

space Ru(G)/
(
G0, Ru(G)

)
is at most one.

Proof. – (i) Trivial.

(ii) We will use a Tannakian argument which is a variant of an idea due to O. Gabber in
the differential case [13].

LetG(0) be the Tannakian group of the Tannakian category E(0). To a q-difference system
of rank n, meromorphic at the origin, corresponds a (rational) representation ρ : G(0) → GLn(C)

and conversely. If G = GalC({z})(∆) is the Galois group of ∆, then G = Imρ.

Let π : G → G/L(G) be the canonical map, let ι : G/L(G) → GLn′(C) be a faithful
linear representation ofG/L(G), then we get a continuous linear representation ρ′ : ι◦π◦ρ :

G(0) → GLn′(C).

To the representation ρ′ corresponds a q-difference system ∆′ of rank n′ and
G′ := ι(G/V (G)) = GalC({z})(∆

′) = Imρ′.

The maximal torus of G′ is reduced to the identity, therefore the θ-torus of ∆′ is trivial
and ∆′ is regular singular.

Hence the Galois group G′ of ∆′ is Abelian and topologically generated by at most
two elements [31]. Moreover G′ = G′sG

′
u, where the unipotent group G′u is topologically

generated by at most one element [31].

(iii) We haveG/L(G) = V (G) ≈ G′. The groupG/G0 is a quotient of V (G) therefore it is
Abelian and topologically generated by at most two elements, as it is finite it is algebraically
generated by at most two elements.

(iv) We set as in Section 5.4 S(G) := Ru(G)/
(
G0, Ru(G)

)
o G/G0, we recall that there

is an isomorphism of algebraic groups S(G) → V (G)/
(
V (G)0, V (G)0

)
. The group V (G)

being commutative, we get an isomorphism S(G) → V (G), S(G) is commutative and the
action of G/G0 on Ru(G)/

(
G0, Ru(G)

)
is trivial.

We have an isomorphism S(G)u = Ru(G)/
(
G0, Ru(G)

)
→ V (G)u. As V (G)u, S(G)u is

topologically generated by at most one generator. Then dimCRu(G)/
(
G0, Ru(G)

)
≤ 1.

We think that the four necessary conditions of the above theorem are not sufficient.
Anyway if we want to realize G as the Galois group of a meromorphic linear q-difference
system whose Newton polygon has integral slopes, then there is a new necessary condition
((vi) of the following theorem). This condition is not trivial: there exists a solvable linear
algebraic group satisfying the conditions (ii), (iii), (iv) of Theorem 6.5 which does not satisfy
the condition (vi) of Theorem 6.6 below (cf. 3 of Remark 5.17, page 206).
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T 6.6. – Let G be a complex linear algebraic subgroup. If G is the local Galois
group of a meromorphic linear q-difference system whose Newton polygon has integral slopes,
then:

(i) G is triangularizable;
(ii) G/L(G) is Abelian and topologically generated by at most two elements;

(iii) G/G0 is Abelian and generated by at most two elements;
(iv) the dimension of the unipotent component ot the Abelian group G/L(G) is at most one;
(v) the dimension of Ru(G)/

(
G0, Ru(G)

)
is at most one;

(vi) there exists a Θ-structure on G.

Proof. – Assertions (i) to (v) follow from the Proposition 6.1 and Theorem 6.5.
It remains to prove (vi).
Every system with integral slopes admits, up to meromorphic equivalence, a Birkhoff-

Guenther normal form, therefore it is sufficient to prove the result for a system σqY = AY

in Birkhoff-Guenther normal form:

(11) A = AU :=



B1 . . . . . . . . . . . .

. . . . . . . . . Ui,j . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . Bk


,

where, for 1 ≤ i < j ≤ k,Ui,j ∈ Matri,rj (C({z})). Here,U stands short for (Ui,j)1≤i<j≤k ∈∏
1≤i<j≤k

Matri,rj (C({z})). (This requirement is actually weaker than the true Birkhoff-

Guenther normal form, where the Ui,j would have polynomial coefficients, cf. Section 2.2.)
We suppose that:

Bi = zµiAi, Ai ∈ GLri(C), µ1 < · · · < µi < · · · < µk,

and we set (5):

A0 :=



B1 . . . . . . . . . . . .

. . . . . . . . . 0 . . .

0 . . . . . . . . . . . .

. . . 0 . . . . . . . . .

0 . . . 0 . . . Bk


.

We firstly consider the differential Galois group G0 of the pure system σqY = A0Y . This
group is Abelian, in upper triangular form, and its semi-simple component D := (G0)s is
diagonal.

We define a coweight of D by χ : t 7→ (tµ1Ir1 , . . . , t
µkIrk) and we denote its image by Tθ

(the theta-torus). Then the maximal torus T of D is generated by the “Fuchsian torus” Tf
and Tθ.

We consider now the differential Galois group G of the system σqY = AY . It is in upper
triangular form, it contains G0 as a subgroup, moreover D is a Levi subgroup of G.

We denote$1, . . . , $n the diagonal weights ofD. The root for the adjoint action ofD on g
are elements of the set {$i$

−1
j | i < j}. If ξ is a root, the corresponding root space is not
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trivial: there exists x ∈ gξ such that x 6= 0. Therefore there exist i, j, with i < j, such that
xij 6= 0, then 〈ξ, χ〉 = µi − µj < 0 ($i ◦ χ(t) = tµi ). Hence χ is a Θ-structure on G.

6.3.2. Sufficient conditions. – We will prove in this part that the conditions of the Theo-
rem 6.6 are sufficient.

From Lemma 5.25 we deduce the following preliminary result.

L 6.7. – Let G be a complex linear algebraic group admitting a Θ-structure. Then
the following conditions are equivalent:

(i) the dimension of Ru(G)/
(
G0, Ru(G)

)
is at most one;

(ii) if G = U o D is a Levi decomposition, then the dimension of u0 (which was defined in
Lemma 5.25) is at most one;

(iii) if D is a Levi subgroup of G, then dim CG(D) ≤ dim D + 1 (we write CG(D) the
centralizer of D).

If these conditions are satisfied, then:

dim Ru(G)/
(
G0, Ru(G)

)
= dim u0 = dim CG(D)− dim D.

T 6.8. – Let G be a complex linear algebraic group such that:

(i) G/L(G) is Abelian and topologically generated by at most two elements;
(ii) the dimension of Ru(G)/

(
G0, Ru(G)

)
is at most one;

(iii) G admits a Θ-structure,

then G is the local Galois group of a meromorphic linear q-difference system whose Newton
polygon has integral slopes.

More precisely, if r : G → GLn(C) is a faithful representation, it is possible to find a
meromorphic linear q-difference system whose Newton polygon has integral slopes and whose
Galois group is r(G).

It is possible to replace the condition (ii) by the following:

(ii′) the dimension of the unipotent component of the Abelian group G/L(G) is at most one.

Proof. – The proof is Tannakian, starting from an algebraic group G, we will obtain the
system as a rational representation of the total Galois group with integral slopes:

ρ = (ρw, ρp,1) : G
(0)
1 = StoG

(0)
p,1 → G

whose image is G.
We will build this representation using our main result on the description of the rep-

resentations of the Tannakian group G
(0)
1 via the representations of the wild fundamental

group LoG
(0)
p,1,s. We recall (cf. Sections 2 and 3) that the knowledge of ρw is equivalent

to the knowledge of its infinitesimal counterpart Lρw and that the knowledge of Lρw is
equivalent to the knowledge of a representation of L: λ : L → g, compatible with the
corresponding adjoint actions ofG(0)

p,1,s and ρp,1
(
G

(0)
p,1,s

)
(cf. Section 2.4). Moreover we have

ImLρw = Imλ.

Let G be a triangularizable complex linear algebraic goup. Let χ be a Θ-coweight on a
Levi subgroup D of G. Using Lemma 5.16, we can suppose that χ is dominant.

We will build the representation ρ in three steps:
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– we will define a rational representation ρf : G
(0)
f → G, whose image is the central-

izer CG(D);
– using the coweightχ : C∗ → D and the canonical injectionD → G, we get a morphism
ρθ : C∗ → G and we define a rational representation ρp,1 = (ρθ, ρf ) : G

(0)
p,1 → G;

– we will define a representation λ : L → g such that, if Lρw : st → g is the associated
representation, then ρ := (ρw, ρp,1) : G

(0)
1 → G is onto.

6.3.2.1. Definition of ρf and ρp,1. – We consider the centralizer CG(D), its Lie algebra
is u0 ⊕ t and, according to the hypothesis and to Lemma 6.7, dim u0 ≤ 1. We choose a
generator N of the vector space u0, then CG(D) = U0 × D, where U0 = exp u0 =

{exp tN | t ∈ C}, in particular CG(D) is Abelian.

We consider the Abelian algebraic group CG(D) and the coweight χ on D ⊂ CG(D).
They satisfy the conditions of Proposition 6.3 (CG(D)/(CG(D))0 ≈ G/G0), therefore there
exists a representation

ρ′p,1 : G
(0)
p,1 → CG(D)

such that Imρ′p,1 = CG(D) and such that the corestriction of ρ′θ : T
(0)
1 → CG(D) to D is

equal to the coweight χ.

By composition of ρ′p,1 by the canonical injection CG(D)→ G, we get a representation:

ρp,1 = ρ′p,1 ◦ r : G
(0)
p,1 → G.

Its image is topologically generated by D and expN .

6.3.2.2. Definition of ρw and ρ. – We want to extend the representation ρp,1 into a surjective
representation

ρ = (ρw, ρp,1) : G
(0)
1 = SoG

(0)
p,1 → G.

As we recalled above, the knowledge of ρw : St→ G is equivalent to the knowledge of a
representation:

λ : L→ g,
the images of λ and Lρw being equal.

We will define λ such that its image contains all the root spaces gξ, ξ ∈ R.

We have a surjective map

ρf,s : G
(0)
f,s = Homgr(Eq,C

∗)→ D.

Let ξ be a root on D, then ξ ◦ ρf,s defines a weight on Homgr(Eq,C
∗), that is an element

c̄ ∈ Eq. We set 〈ξ, χ〉 =: −δ, δ ∈ N∗. Therefore to each root ξ we associate a label
(δ, c) ∈ N∗ × Eq. We denote by Σ ⊂ N∗ × Eq the finite subset of labels obtained from
the roots by this procedure.

If (δ, c) /∈ Σ, for all i = 1, . . . , δ, we set λ(∆̇
(δ,c)
i ) := 0. It remains to define λ(∆̇

(δ,c)
i )

for (δ, c) ∈ Σ and for all i = 1, . . . , δ.

We set dξ := dim gξ. The Θ-coweight χ is dominant, therefore dξ ≤ δ. We choose a
basis (eξ,1, . . . , eξ,dξ) of the vector space gξ and we set λ(∆̇(δ,c)) := eξ,i if i = 1, . . . , dξ and

∆̇
(δ,c)
i := 0 if i = dξ + 1, . . . , δ.

Then, for every root ξ ∈ R, the image of λ contains the root space gξ.
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6.3.2.3. End of the proof. – By construction, the image of λ, and therefore the image of Lρw
contains the sum of the root spaces

⊕
ξ∈R gξ =

⊕
ξ∈R uξ and the image of Lρf,u is u0.

Therefore the image of Lρ contains u and the image of ρ contains U = Ru(G). The image
of ρ contains also CG(D) and a fortiori D. Finally the image of ρ is G.

Using Proposition 5.22 we get the following result.

C 6.9. – Let G be a Borel subgroup of a connected reductive algebraic group,
then it is the local Galois group of a meromorphic linear q-difference system whose Newton
polygon has integral slopes.

7. About the global inverse problem

We have a “glueing” lemma.

L 7.1. – (i) Let A(0) (resp. A(∞)) be an object of E(0)
1 (resp. E(∞)

1 ). We suppose
that A(0) and A(∞) are in Birkhoff-Guenther normal form and that A(0)

f = A
(∞)
f ∈GLn(C).

Let G(0)
1 (resp. G(∞)

1 ) be the Galois group of A(0) (resp. A(∞)) and G the Galois group
of the global system defined by (A(0), In, A

(∞)). ThenG is the Zariski closure in GLn(C)

of the subgroup generated by G(0)
1 and G(∞)

1 .
(ii) Let G+ and G− be two connected algebraic subgroups of GLn(C) satisfying the condi-

tions of Theorem 6.8 (or equivalently such that they are local Galois group of meromorphic
linear q-difference systems whose Newton polygon have integral slopes). We suppose that
G+ andG− admit a same maximal torus. We denoteG the Zariski closure in GLn(C) of
the subgroup generated by G+ and G−. Then G is the global Galois group of a meromor-
phic linear q-difference system whose Newton polygon has integral slopes at 0 and∞.

Proof. – (i) follows easily from Theorem 4.5.
(ii) Going back to the proof of Theorem 6.8, we can find A(0) (resp. A(∞)) such that

G+ (resp. G−) is the Galois group of A(0) (resp. A(∞)) and such that A(0)
f = A

(∞)
f (we

choose A(0)
f such that the subgroup generated by its semi-simple part is Zariski dense in T ).

Then the result follows from (i).

P 7.2. – Let G be a connected reductive linear algebraic group, then G is the
global Galois group of a meromorphic linear q-difference system whose Newton polygons at 0

and∞ have integral slopes.
Moreover it is possible to get a q-difference system admitting G as a Galois group with a

trivial (generalized) Birkhoff connection matrix and such that the local groups at 0 and∞ are
Borel subgroups.

Proof. – If the maximal torus of G is trivial, then the conditions of the Proposition 6.1
are satisfied, thereforeG is the Galois group of a local regular singular equation. It is easy to
conclude using [31].

We can suppose that G ⊂ GLn(C) and that the maximal torus T of G is not trivial and
in diagonal form.
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We denote G+ and G− two opposite Borel subgroups of G and we choose as explained
above a coweight χ of T such that χ is a Θ-coweight for G+ and χ−1 is a Θ-coweight
for G−. Using 6.9 we prove that G+ (resp. G−) is the local Galois group of a meromorphic
linear q-difference system whose Newton polygon has integral slopes. We end the proof using
Lemma 7.1.

T 7.3. – LetG be a connected linear algebraic group. We suppose that the dimen-
sion of the vector space Ru(G)/(G,Ru(G)) is at most 2. Then G is the global Galois group of
a rational linear q-difference system whose Newton polygons at 0 and∞ have integral slopes.

In particular we can apply this result to a connected group. It generalizes Proposition 7.2.

Proof. – If the maximal torus of G is trivial, then the conditions of Proposition 6.1 are
satisfied, therefore G is the Galois group of a local regular singular equation. It is easy to
conclude using [31].

We can suppose that G ⊂ GLn(C) and that the maximal torus T of G is not trivial and
in diagonal form.

L 7.4. – There exists a coweightχ onT which is non null on each root ξ for the adjoint
action of T on the Lie algebra g of G: 〈ξ, χ〉 6= 0.

Proof. – The proof is a variant of an argument used above.
Let Φ : (C∗)µ → T be an isomorphism of tori.
Let Σ = {ξ1, . . . , ξν} be the set of roots of G. For i = 1, . . . , ν, we set fi := Lξi ◦ LΦ.

We interpret f1, . . . , fµ′ as linear forms on Rµ. There exists p = (p1, . . . , pµ) ∈ Zµ such that
fi(p) 6= 0 for all i = 1, . . . , ν (cf. Lemma 5.20). We define a coweight χ : C∗ → T by Φ−1◦χ :

t 7→ (t1 := tp1 , . . . , tµ := tpµ), then, for i = 1, . . . , ν, we set vi := fi◦L(Φ−1◦χ) := Lξi◦Lχ.
We have vi(1) = fi(p) 6= 0, then 〈Lξi, Lχ〉 = 〈ξi, χ〉 6= 0.

We return to the proof of the theorem. We will suppose that we are in the “worst case”
that is dim Ru(G)/(G,Ru(G)) = 2, the reader will easily adapt the proof to the other cases.

We denote by R ⊂ g∗ the set of roots.
The commutative group V (G) ≈ Ru(G)/(G,Ru(G)) is topologically generated by two

elements (cf. Lemma 5.24).
The Lie algebra of V (G) is the image of gn0 induced by the quotient map (cf. Lemma 5.23).

Hence there existN+, N− ∈ gn0 whose images generate the Lie algebra of V (G). Then the Lie
algebra g is generated by CN+,CN− and the Lie algebra ofL(G), therefore by CN+,CN−,
t and the root spaces gξ, ξ ∈ R (cf. Lemma 5.23).

We set R+
:= {ξ ∈ R | 〈ξ, χ〉 < 0} and R− := {ξ ∈ R | 〈ξ, χ〉 > 0}. We have a partition

R = R+ ∪ R−.
We denote by G+ (resp. G−) the algebraic subgroup of G topologically generated by, T ,

exp (CN+) and the exp gξ, ξ ∈ R+ (resp. T , exp (CN−) and the exp gξ, ξ ∈ R−). The
group G is clearly topologically generated by G+ and G−.

Then χ defines a Θ-structure on G+ and χ−1 defines a Θ-structure on G−. Using 6.8
we prove that G+ (resp. G−) is the local Galois group of a meromorphic linear q-difference
system whose Newton polygon has integral slopes. We end the proof using Lemma 7.1.

4 e SÉRIE – TOME 48 – 2015 – No 1



THE q-ANALOGUE OF THE WILD FUNDAMENTAL GROUP (III) 221

R 7.5. – In fact as we noticed above, we proved more than what is stated in the
proposition. In some sense the only singularities of the constructed equation are 0 and ∞
(cf. [30]). This is a first step towards a q-analog version of the Abhyankar conjecture. The
reader will compare with the solution of the differential Abhyankar Conjecture due to the
first author.

T 7.6. – If a complex linear algebraic group G is the q-difference Galois group of
a rational system, then V (G) := G/L(G) is the q-difference Galois group of a rational regular
singular system.

The proof is “Tannakian” and similar to the first part of the proof of the Theorem 6.5.
Conversely we can conjecture that, using a variant of the proof of the Proposition 7.3,

the condition of the theorem is not only necessary but that it is also sufficient (the reader
will compare with the proof of the corresponding result in the differential case by the first
author).

Appendix

Pronilpotent completions

To a family (xi)i∈I , we associate the free Lie algebra Lib
(
(xi)i∈I

)
generated over C. We

will denote Lib̂
(
(xi)i∈I

)
the completion of Lib

(
(xi)i∈I

)
for the descending central filtration:

L∧ := Lib̂
(
(xi)i∈I

)
= lim←−−−
n∈N

L/Ln,

with L := Lib
(
(xi)i∈I

)
and L1 := L, Ln+1 := [L,Ln].

If I is finite, we refer to [6] for the following properties. Then each L/Ln is a finite
dimensional nilpotent complex Lie algebra, therefore it is an algebraic Lie algebra and L∧ is
a pronilpotent proalgebraic Lie algebra.

The functor “Lie algebra” is an equivalence between the category of unipotent algebraic
groups and the category of finite dimensional nilpotent Lie algebras. We shall denote exp the
inverse equivalence.

We set:
exp(L∧) := lim←−−−

n∈N
exp(L/Ln).

It is a prounipotent algebraic group, whose Lie algebra is L∧.
If I is infinite, then the situation is more complicated. The dimension of each nilpotent

Lie algebra L/Ln is infinite and the pronilpotent completion L∧ is not satisfying for our
purposes. Therefore we will introduce another completion of L, the f-pronilpotent comple-
tion L†.

Let J ⊂ I be a finite subset. We have a natural map of Lie algebras:

pJ : Lib
(
(xi)i∈I

)
→ Lib

(
(xj)j∈J

)
,

defined by pJ(xi) := 0 if i /∈ J and pJ(xi) := xi if i ∈ J . We define similarly maps
pJ1,J2

: Lib
(
(xi)i∈J2

)
→ Lib

(
(xj)j∈J1

)
if J1 ⊂ J2 ⊂ I (J2 finite).

Going to the nilpotent completions, we get maps:

p̂J : Lib̂
(
(xi)i∈I

)
→ Lib̂

(
(xj)j∈J

)
, pJ1,J2 : Lib̂

(
(xi)i∈J2

)
→ Lib̂

(
(xj)j∈J1

)
.
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The Lib̂
(
(xj)j∈J

)
(J ⊂ I, J finite) are pronilpotent proalgebraic Lie algebras and the

pJ1,J2
(J2 ⊂ I finite, J1 ⊂ J2) are morphisms of proalgebraic Lie algebras.

We thus get a projective system of prounipotent proalgebraic Lie algebras and, by defini-
tion, the f-pronilpotent completion L† := Lib†

(
(xi)i∈I

)
of L := Lib

(
(xi)i∈I

)
is the projec-

tive limit of this system,

L† := lim←−−
J⊂I

Lib̂
(
(xj)j∈J

)
, J finite.

It can be interpreted as a projective limit of prounipotent proalgebraic Lie algebras. Then we
can pass to groups, using the functor exp, and we can define a projective limit of unipotent
groups expL†, whose Lie algebra is L†.

The natural map L→ L† is injective and dominant (its image is dense).

R .1. – If I is finite, then L† = L∧.

If I is infinite, then we have maps L→ L∧ → L† and L∧ → L† is not an isomorphism.

We shall consider now some actions of an Abelian proalgebraic group G on a free Lie
algebra L and the corresponding “semi-direct products” LoG.

In what follows we will suppose that each one-dimensional complex vector space Cxi is
stable under the action of G and that the action of G on Cxi is, for all i ∈ I, algebraic.
Therefore the representations ρi : G → C∗, given by g ∈ G 7→ ρi(g), with g(xi) = ρi(g)xi
are rational, they are weights on G.

By definition a representation ρ of LoG is the data of a rational linear representation ρ′

of G (ρ′ : G → GL(V )), together with a representation dρ′′ of L in the same space
(dρ′′ : L → End(V )), required to be compatible with the corresponding adjoint actions.
We consider the corresponding Tannakian category Rep(LoG).

In what follows we will suppose that:

(i) for all weight on G, there exists only a finite set of i ∈ I such that ρi = ρ;
(ii) for every representation ρ = (ρ′, dρ′′) of L o G, the image of dρ′′ is a nilpotent

subalgebra of End(V ).

L .2. – Let ρ = (ρ′, dρ′′) be a representation of LoG. Then there exists only a finite
set of i ∈ I such that dρ′′(xi) 6= 0.

Proof. – Let ρ = (ρ′, dρ′′) be a representation of LoG in a finite dimensional space V .
Let i ∈ I, for all g ∈ G:

Adρ′(g)
(
dρ′′(xi)

)
= dρ′′

(
g(xi)

)
= dρ′′

(
ρi(g)xi

)
= ρi(g)dρ′′(xi).

We suppose that dρ′′(xi) 6= 0. There exists g0 ∈ G such that ρi(g0) 6= 1, then
Adρ′(g0)

(
dρ′′(xi)

)
= ρi(g0)dρ′′(xi), therefore there exists a root ξ for the adjoint action

of ρ1(G) on EndV such that dρ′′(xi) belongs to the corresponding root space and we have
ρi = ξ ◦ ρ′. The number of roots ξ is finite, the result follows, using the condition (i).
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If J ⊂ I is a finite subset such that, for all i ∈ I \ J , dρ′′(xi) = 0, then the representation
dρ′′ factors by Lib

(
(xj)j∈J

)
and, as the image of dρ′′ is nilpotent, it factors by Lib̂

(
(xj)j∈J

)
.

Therefore the natural map:

Lib
(
(xi)i∈I

)
→ Lib†

(
(xi)i∈I

)
induces an isomorphism:

Rep
(

Lib†
(
(xi)i∈I

)
oG

)
→ Rep

(
Lib
(
(xi)i∈I

)
oG

)
.

P .3. – Under the above conditions, the Tannakian group of the Tannakian
categoryRep

(
Lib
(
(xi)i∈I

)
oG

)
is isomorphic to Lib†

(
(xi)i∈I

)
oG. More precisely, if we have

a G-equivariant morphism of prounipotent proalgebraic Lie algebras ϕ : Lib†
(
(xi)i∈I → Λ

inducing an isomorphism:

Rep
(

Λ oG
)
→ Rep

(
Lib†

(
(xi)i∈I

)
oG

)
,

then ϕ is an isomorphism.

E .4. – Our main Example is:

I := {ι = (δ, c̄, i)|(δ, c̄) ∈ N∗ ×Eq, i = 1, . . . , δ} ∪ {0},

with xι := ∆̇
(δ,c̄)
i if ι 6= 0 and x0 := ∆̇(0). Then L := Lib

(
(xι)ι∈I

)
, G := G

(0)
p,1,s. The

weights ρi are defined by:

ρι := δc̄,

Eq being interpreted as the group of weights on Homgr(Eq,C
∗)) if ι 6= 0 and ρ1 := 1.

It is easy to check that the conditions (i), (ii) are satisfied.

Using the Proposition .3, we prove that

L† → s̃t

is an isomorphism of pronilpotent proalgebraic Lie algebras. It follows that

exp(L†) oG
(0)
p,1,s → exp(s̃t) oG

(0)
p,1,s = G

(0)
1

is an isomorphism of proalgebraic groups, giving a transcendental explicit description of the
q-difference universal local Galois group G(0)

1 .
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Variations. – It is possible to use (more complicated) variants of the above formalism for
various problems of local classification of dynamical systems.

1. Local classification of meromorphic linear differential equations. In that case condition
(ii) is not satisfied.

2. Local classification of meromorphic linear difference equations.
3. Local classification of meromorphic saddle nodes in the plane. In that case it is

necessary to use some infinite dimensional representations. As an exercise the reader
can explicit this example using the dictionary between the Martinet-Ramis classifica-
tion and the Écalle resurgent classification detailed in [34].

There are also some analogies with the wild ramification phenomena in the classical
Galois theory of local fields, but that is another story.
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