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LIMIT THEOREMS FOR HOROCYCLE FLOWS

 A BUFETOV  G FORNI

A. – The main results of this paper are limit theorems for horocycle flows on compact
surfaces of constant negative curvature.

One of the main objects of the paper is a special family of horocycle-invariant finitely additive
Hölder measures on rectifiable arcs. An asymptotic formula for ergodic integrals for horocycle flows
is obtained in terms of the finitely-additive measures, and limit theorems follow as a corollary of the
asymptotic formula.

The objects and results of this paper are similar to those in [15, 16], [5] and [6] for translation flows on
flat surfaces. The arguments are based on the representation theory methods developed in [12] for the
classification of invariant distributions, the solution of the cohomological equation and the asymptotics
of ergodic averages of horocycle flows.

R. – Le but de cet article est de démontrer des théorèmes limites pour les flots horocycliques
sur les surfaces compactes à courbure négative constante. Notre principal outil est une famille parti-
culière de mesures additives, höldériennes, invariantes par le flot horocyclique sur les arcs rectifiables.
Une formule asymptotique pour les intégrales ergodiques des flots horocycliques est ensuite établie en
termes des mesures additives, et les théorèmes limites en découlent. Les constructions et les résultats ici
développés ressemblent à ceux de [15], [16], [5] et [6] qui traitent des flots de translation sur les surfaces
plates. Les preuves sont basées sur des méthodes de la théorie des répresentations développées en [12]
pour l’étude de l’équation cohomologique et du comportement asymptotique des moyennes ergodiques
des flots horocycliques.

1. Introduction

1.1. Outline of the main results

The aim of this paper is to obtain limit theorems for horocycle flows on compact surfaces
of constant negative curvature.

Our limit theorems admit the simplest formulation in the case when the smallest positive
eigenvalue µ0 of the Laplace operator on the surface of curvature −1 is strictly less than
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852 A. BUFETOV AND G. FORNI

1/4 (equivalently, when the spectral decomposition of the space of square-integrable func-
tions on our surface into irreducible unitary representations of the modular group contains
representations of the complementary series).

In this case, the variance of the ergodic integrals (up to time T > 0) of a generic smooth
function grows at the rate T

1+ν0
2 , where ν0 :=

√
1− 4µ0, and its ergodic integrals, normal-

ized to have variance 1, converge in distribution to a nondegenerate compactly supported
measure on the real line.

The situation is more complicated for surfaces whose spectral decomposition only con-
tains representations of the principal series (or more generally for functions supported on
irreducible representations of the principal series).

In this case, the variance of ergodic integrals (up to time T > 0) of any smooth function
which is not a coboundary grows at the rate T

1
2 , but its ergodic integrals, normalized to have

variance 1, converge in distribution to an orbit of an infinite-dimensional quasi-periodic flow
in the space of random variables with compactly supported distributions. The frequencies of
this quasi-periodic motion are determined by the eigenvalues larger than 1/4 of the Laplace-
Beltrami operator on the hyperbolic surface. We are not able to determine whether the limit
distribution exists in this case; we conjecture that it does not. In fact, the limit distribution
will exist for all smooth functions which are not coboundaries if and only if all random
variables in each of the invariant subtori of our infinite dimensional torus have exactly the
same probability distribution (see §5.4).

Our argument relies on the classification, due to Flaminio and Forni [12], of distributions
(in the sense of S. L. Sobolev and L. Schwartz(1)) invariant under a given horocycle flow. One
of the main objects of our paper is a closely related space of finitely-additive Hölder mea-
sures on rectifiable arcs on our surface, invariant under the complementary horocycle flow.
We classify these measures and establish an explicit bijective correspondence between them
and the subspace of the Flaminio-Forni space given by invariant distributions correspond-
ing to positive eigenvalues of the Casimir operator. This isomorphism yields a natural dual-
ity between the spaces of invariant distributions for the two horocycle flows on a surface. We
further establish an asymptotic formula for ergodic integrals in terms of the finitely-additive
measures. Our limit theorems are obtained as corollaries of the asymptotic formula. Infor-
mally, the limit theorems claim that the normalized ergodic integrals of horocycle flows con-
verge in distribution to the probability distributions of finitely-additive measures of horocy-
cle arcs.

The objects and results of this paper are similar to those in [15, 16] and especially [5, 6],
[4] for translation flows on flat surfaces. The methods here are completely different, however,
and are based on those in [12].

The remainder of this section is organized as follows. In §1.2 we make some brief histor-
ical remarks. In § 1.3 we establish our notation and recall the main properties of invariant
distributions and basic currents for horocycle flows. In §1.4 we state our main theorems on
finitely additive Hölder measures on rectifiable arcs, invariant with respect to the unstable

(1) The term “distribution” is used in two very different senses in our paper: first, probability distributions of random
variables and, second, distributions of Sobolev and Schwartz. For instance, “limit distributions” refer to the first
meaning, while “invariant distributions” to the second. We hope that our precise meaning is always clear from the
context.
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(stable) horocycle (Theorem 1.1) and on the related additive cocycle for the stable (unstable)
horocycle (Theorem 1.2). We also state several important corollaries of the above mentioned
theorems (Corollary 1.1 and Corollary 1.2). In §1.5 we state our results on the asymptotics
of ergodic integrals, in particular we state an approximation theorem for ergodic integrals of
sufficiently smooth zero-average functions in terms of additive cocycles (Theorem 1.3) and
our results on limit distributions of normalized ergodic integrals (Theorem 1.4 and Theo-
rem 1.5). We then state our conditional results about the existence of limit distributions for
functions supported on irreducible components of the principal series (Corollary 1.4 and
Corollary 1.5). In §1.6 we introduce currents of dimension 2 (and degree 1) associated to our
finitely additive measures on rectifiable arcs. We then state a duality theorem which affirms
that such currents can be written in terms of invariant distributions for the unstable (stable)
horocycle flow (Theorem 1.7). The duality theorem leads to a complete classification of the
class of finitely additive Hölder measures axiomatically defined in §1.4 (see Definition 1.2),
in the sense that our construction gives the space of all finitely additive Hölder measures with
the listed properties (Theorem 1.8). It also allows us to establish a direct relation between the
lifts of our additive cocycles to the universal cover and Γ-conformal invariant distributions
on the boundary of the Poincaré disk (Theorem 1.9).

1.2. Historical remarks

The classical horocycle flow on a compact surface of constant negative curvature is a main
example of a unipotent, parabolic flow. Its ergodic theory has been extensively studied. It is
known that the flow is minimal [21], uniquely ergodic [17], has Lebesgue spectrum and is
therefore strongly mixing [29], in fact mixing of all orders [27], and has zero entropy [20].
Its finer ergodic and rigidity properties, as well as the rate of mixing, were investigated by
M. Ratner in a series of papers [30, 31], [32, 33]. In joint work with L. Flaminio [12], the
second author has proved precise bounds on ergodic integrals of smooth functions. Those
bounds already imply, as proved in [12], that all weak limits of probability distributions of
normalized ergodic integrals of generic smooth functions have (non degenerate) compact
support.

In the case of finite-volume surfaces, the classification of invariant measures is due to
Dani [10]. The asymptotic behaviour of averages along closed horocycles in the finite-volume
case has been studied by D. Zagier [36], P. Sarnak [34], D. Hejal [22] and more recently in [12]
and by A. Strömbergsson [35]. The flows on general geometrically finite surfaces have been
studied by M. Burger [7].

Invariant distributions, and, more generally, eigendistributions for smooth dynamical
systems were already considered in 1955 by S. V. Fomin [14], who constructed a full system
of eigendistributions for a linear toral automorphism.

In the case of horospherical foliations of symmetric spaces X = G/K of non-compact
type of connected semi-simple Lie groups G with finite center, invariant distributions are re-
lated to conical distributions on the space of horocycles introduced in the work of S. Helga-
son [23].

Invariant distributions for the horocycle flow appear in the asymptotics for the equidistri-
bution of long closed horocycle on finite-volume non-compact hyperbolic surfaces in work

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



854 A. BUFETOV AND G. FORNI

of P. Sarnak [34]. To the authors’ best knowledge this is the first appearance of invariant dis-
tributions in the context of quantitative equidistribution. Sarnak’s work was later general-
ized to arbitrary horocycle arcs and to the horocyle flow also in the compact case in [12] (see
also [22], [35]).

Other similar (parabolic, uniquely ergodic) systems for which the asymptotics and the
limit distributions of ergodic integrals have been studied include translation flows on surfaces
of higher genus and interval exchange transformations, substitution dynamical systems and
Vershik’s automorphisms, and nilflows on homogeneous spaces of the Heisenberg group. The
latter are related to the asymptotic behavior of theta sums. For translation flows and interval
exchange transformations, results on the growth of ergodic integrals were proved condition-
ally in the work of A. Zorich [37, 38], [39] and M. Kontsevich [26] and later fully proved in [16]
and by A. Avila and M. Viana [1]. An asymptotic formula for ergodic integrals and limit the-
orems for translation flows were obtained in [5], [6] and [4]. Similar results for suspension
flows over Vershik’s automorphisms were obtained in [5]. Limit theorems for theta sums were
proved by W. B. Jurkat and J. W. Van Horne [24, 25], by J. Marklof [28] and more recently
in stronger form by F. Cellarosi [8]. Invariant distributions and asymptotics of ergodic inte-
grals for Heisenberg nilflows were studied in [13], which generalizes the asymptotics for theta
sums proved by H. Fiedler, W. B. Jurkat and O. Körner [11] .

1.3. Definitions and notation

Let Γ be a co-compact lattice in PSL(2,R) and let M := Γ\D be the corresponding
hyperbolic surface obtained as a quotient of the Poincaré diskD under standard action of Γ

by linear fractional transformations. Since PSL(2,R) acts freely and transitively on the unit
tangent bundle of the Poincaré disk, the unit tangent bundleSM of the hyperbolic surfaceM
can be identified with the homogeneous space Γ\PSL(2,R). Let {X,U, V } be the basis of
the Lie algebra sl(2,R) of PSL(2,R) given by the infinitesimal generators of the geodesic
flow and of the stable and unstable horocycle flows. The following commutation relations
hold:

(1.1) [X,U ] = U , [X,V ] = −V , [U, V ] = 2X .

Let {X̂, Û , V̂ } be the frame of the cotangent bundle dual to the frame {X,U, V } of the
tangent bundle, that is,

X̂(X) = 1 , X̂(U) = 0 X̂(V ) = 0 ;

Û(X) = 0 , Û(U) = 1 Û(V ) = 0 ;

V̂ (X) = 0 , V̂ (U) = 0 V̂ (V ) = 1 .

Let |X̂|, |Û | and |V̂ | denote the 1-dimensional measures on SM transverse to the 2-di-
mensional foliations {X̂ = 0}, {Û = 0} and {V̂ = 0} given respectively by the 1-forms X̂,
Û and V̂ . In other terms, if γ is any rectifiable path transverse to the foliation {X̂ = 0},
({Û = 0}, {V̂ = 0}), then respectively,∫

γ

|X̂| =
∣∣∣∣∫
γ

X̂

∣∣∣∣ (∫
γ

|Û | =
∣∣∣∣∫
γ

Û

∣∣∣∣ , ∫
γ

|V̂ | =
∣∣∣∣∫
γ

V̂

∣∣∣∣) .
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Let gt := exp(tX), hUt = exp(tU) and hVt = exp(tV ) be the corresponding one-
parameter groups. Since PSL(2,R) acts on SM on the right, the following commutation
relations hold for the flows:

(1.2) gt ◦ hUs = hUe−ts ◦ gt and gt ◦ hVs = hUets ◦ gt , for all s, t ∈ R .

Thus the flows {hUt } and {hVt } are respectively the stable and unstable horocycle flows for
the hyperbolic geodesic flow {gt} on SM .

Let L2(SM) be the Hilbert space of square-integrable complex-valued functions on SM ,
endowed with its usual Hilbert space norm ‖ · ‖. By the theory of unitary representations of
the unimodular group (see for instance [2, 18] [19]), the Hilbert space L2(SM) splits as an
orthogonal sum

(1.3) L2(SM) =
⊕

µ∈Spec(�)

Hµ

of irreducible unitary representations of PSL(2,R) which are parametrized by the value
µ ∈ R+ ∪ {−n2 + n|n ∈ Z+} of the Casimir operator

� := X2 +X + V U = X2 −X + UV = X2 + UV + V U .

The Casimir operator is a second order differential operator which generates the center of
the enveloping algebra of the Lie algebra sl(2,R), hence its restriction to every irreducible
unitary representation is a scalar multiple of the identity. The unitary type of irreducible
unitary representations of PSL(2,R) is uniquely determined by the value of the Casimir
parameter. Irreducible unitary representations are divided into three series: the principal
series consists of all representations with Casimir parameter µ ≥ 1/4, the complementary
series of all representations with Casimir parameter 0 < µ < 1/4 and the discrete series of
representations with Casimir parameter µ = −n2 + n.

R. – In formula (1.3) and everywhere below the eigenvalues of the Casimir oper-
ator are always understood with multiplicities.

Let us consider the stable horocycle flow {hUt }. Similar statements hold for the un-
stable horocycle flow. It was proved in [12] that for every Casimir parameter µ ∈ R+ the
space of invariant distributions for the horocycle flow which are non-trivial on the space
C∞(Hµ) := C∞(SM) ∩Hµ has dimension equal to 2 and (if µ 6= 1/4) it is generated by
eigenvector for the action of the geodesic flow.

We recall that an invariant distribution for the stable horocycle flow is a distribution
D ∈ D′(SM) such that LUD = 0 in the sense of distributions. Let IU (SM) ⊂ D′(SM)

denote the space of all invariant distributions for the stable horocycle flow.

For every Casimir parameter µ ∈ R+ let ν :=
√

1− 4µ. We remark that ν ∈ C is purely
imaginary if µ ≥ 1/4 (principal series) and ν ∈ (0, 1) if 0 < µ < 1/4 (complementary series).
By [12], Theorem 3.2 and Lemma 3.5, the space of invariant distributions for the stable
horocycle flow which are non-trivial onC∞(Hµ) has a basis {D+

µ , D
−
µ } such that (in the sense

of distributions)

(1.4) LXD±µ = −1± ν
2

D±µ , for all µ ∈ R+ \ {1/4} ,
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while for the special case µ = 1/4 (ν = 0),

(1.5) LX

(
D+
µ

D−µ

)
= −1

2

(
1 0

1 1

) (
D+
µ

D−µ

)
.

Invariant distributions for the horocycle flow are naturally associated (by a general con-
struction which holds for any volume preserving flow) with basic currents for the horocycle
foliation. A current C of degree 2 (and dimension 1) is called basic for the orbit foliation of
the stable horocycle flow if and only if

(1.6) LUC = ıUC = 0 in D′(SM) .

(The operators LU and ıU are respectively the Lie derivative and the contraction with
respect to the horocycle generator U acting on currents according to the standard defini-
tion). Let BU (SM) denote the space of all basic currents for the stable horocycle foliation.

For any s > 0, let W s(SM) and Ωs1(SM) be respectively the L2 Sobolev spaces of func-
tions and of 1-forms on SM and let W−s(SM) and Ω−s1 (SM) denote the dual Sobolev
spaces of distributions. Let then

I−sU (SM) := IU (SM) ∩W−s(SM) ,

B−sU (SM) := BU (SM) ∩ Ω−s1 (SM) .

Let ω denote the volume form on SM and let ηU := ıUω denote the contraction of the
volume form along the stable horocycle. The 2-form ηU is closed since the horocycle flow is
volume preserving. We will show in Lemma 2.1 below that the space IU (SM) of all invariant
distributions and the space BU (SM) are identified by the isomorphism

(1.7) D → DηU

which maps the Sobolev space I−sU (SM) isometrically onto the Sobolev space B−sU (SM),
for all s > 0, hence it maps IU (SM) onto BU (SM).

It was proved in [12], §3.2, that the invariant distributions D±µ have Sobolev orders equal
to (1 ± Re ν)/2 (that is, D±µ ∈ W−s(SM) for all s > (1 ± Re ν)/2). It was later proved by
S. Cosentino in [9] thatD±µ are in fact Hölder of the same orders (that is, they can be written
as first derivatives of Hölder continuous functions of exponent (1 ∓ Re ν)/2, except for the
distribution D−1/4 which can be written as a first derivative of a Hölder continuous function
of any exponent α < 1/2).

Notation: The Lie derivative LW of a distribution or a current with respect to a smooth
vector field W is defined in the standard weak sense (based on the formula of integration by
parts). For consistence, the action of a smooth flow {φt} on a current C is defined by pull-
back as follows:

(φ∗tC)(λ) = C(φ∗−tλ) , for any smooth form λ .

In particular, with the above convention the following identity holds. Let W be the infinites-
imal generator of the smooth flow {φt}. For all t ∈ R,

d

dt
φ∗tC = φ∗t LWC .
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1.4. Hölder currents and Hölder cocycles

One of the main objects of this paper is a space of finitely-additive Hölder measures
defined on the semi-ring of all rectifiable arcs in SM . These measures are invariant under the
unstable horocycle flow {hVt } and will be seen to govern the asymptotics of ergodic integrals
for the stable horocycle flow {hUt }. The Hölder property of the finitely additive measures we
will construct holds locally for all rectifiable arcs and in general for admissible rectifiable arcs
in the following sense.

Let us recall that the strong unstable foliation of the geodesic flow {gt} is precisely the
orbit foliation of the unstable horocycle flow {hVt }, while the weak stable foliation for the
geodesic flow is the foliation tangent to the integrable distribution {X,U} of the tangent
bundle T (SM).

D 1.1. – A rectifiable arc on SM will be called admissible if it can be projected
onto a rectifiable arc contained in a single leaf of the weak stable foliation of the geodesic flow
by holonomy along the unstable horocycle foliation.

The above definition makes sense for any Anosov flow. In our case admissible arcs are
characterized by the following necessary and sufficient condition. A rectifiable arc γ is ad-
missible if there exists x ∈ SM such that, for all y ∈ γ, the forward orbit {gt(y)|t > 0} does
not converge to the same boundary point as the backward orbit {gt(x)|t < 0}. Under the
above condition, by definition of the horocycles on the Poincaré disk, it is possible to project
the arc γ by holonomy along the unstable horocycle onto an arc contained in the weak sta-
ble leaves of x ∈ SM . In particular, by the above condition every rectifiable arc is locally
admissible.

We now state the fundamental properties of the finitely-additive Hölder measures intro-
duced in this paper.

D 1.2. – Let B̂V (SM) be the space of all functionals β̂ which to every rectifi-
able arc γ ⊂ SM assign a complex number β̂(γ) ∈ C so that the following hold:

1. (Additive property) For any decomposition γ = γ1 + γ2 into subarcs,

β̂(γ) = β̂(γ1) + β̂(γ2) .

2. (Weak unstable vanishing) For all γ tangent to the weak unstable foliation,

β̂(γ) = 0 .

3. (Unstable horocycle invariance) For all t ∈ R,

β̂(hVt γ) = β̂(γ) .

4. (Hölder property) There exist an exponent α ∈ (0, 1) and a constant C > 0 such that
for all admissible rectifiable arcs γ satisfying∫

γ

|Û | ≤ 1

we have

|β̂(γ)| ≤ C
(

1 +

∫
γ

|X̂|+
∫
γ

|Û |
∫
γ

|V̂ |
)(∫

γ

|Û |
)α

.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



858 A. BUFETOV AND G. FORNI

The space B̂V (SM) contains a sequence of special elements

{β̂±µ |µ ∈ Spec(�) ∩ R+}

described in the following theorem. We prove below that the above set is in fact a basis
of B̂V (SM) endowed with a natural Sobolev-type Hilbert space structure.

T 1.1. – For any Casimir parameter µ > 0 there exist two independent (normal-
ized) finitely-additive measures β̂±µ such that the following holds.

For all rectifiable arcs γ in SM the following properties hold:

1. (Additive property) For any decomposition γ = γ1 + γ2 into subarcs,

β̂±µ (γ) = β̂±µ (γ1) + β̂±µ (γ2) .

2. (Geodesic scaling) For all t ∈ R and for µ 6= 1/4,

β̂±µ (g−tγ) = exp(
1∓ ν

2
t)β̂±µ (γ) ,

while for µ = 1/4 (ν = 0),(
β̂+

1/4(g−tγ)

β̂−1/4(g−tγ)

)
= exp(

t

2
)

(
1 − t

2

0 1

)(
β̂+

1/4(γ)

β̂−1/4(γ)

)
.

3. (Unstable horocycle invariance) For all t ∈ R,

β̂±µ (hVt γ) = β̂±µ (γ) .

4. (Hölder property) There exists a constant C > 0 such that, for all admissible rectifiable
arc γ ⊂ SM , for all µ 6= 1/4,

(1.8) |β̂±µ (γ)| ≤ C
(

1 +

∫
γ

|X̂|+
∫
γ

|Û |
∫
γ

|V̂ |
)(∫

γ

|Û |
) 1∓Re ν

2

and, for µ = 1/4 (ν = 0),

(1.9)

|β̂+
1/4(γ)| ≤ C

(
1 +

∫
γ

|X̂|+
∫
γ

|Û |
∫
γ

|V̂ |
)(∫

γ

|Û |
) 1

2 +

,

|β̂−1/4(γ)| ≤ C
(

1 +

∫
γ

|X̂|+
∫
γ

|Û |
∫
γ

|V̂ |
)(∫

γ

|Û |
) 1

2

.

Notation: In the above formulas (1.8) and (1.9), the symbols |X̂|, |Û | and |V̂ | stand for the
transverse measures given by the forms X̂, Û and V̂ respectively, and, for any L > 0, we set

L
1
2 + = L

1
2 (1 + | logL|).

Recall that by definition the weak unstable manifolds of the geodesic flow are the 2-dimen-
sional manifolds tangent to the integrable distribution {X,V } in the tangent bundle of SM .
If follows immediately from the Hölder property that the restrictions of the finitely-additive
measures β̂±µ to the weak unstable manifolds of the geodesic flow vanish.
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C 1.1. – For all Casimir parameters µ ∈ R+ and for any rectifiable arc γwu
contained in a (single) weak unstable manifold of the geodesic flow, we have

β̂±µ (γwu) = 0 .

In particular, all the finitely-additive measures β̂±µ belong to the space B̂V (SM).

For any s > 0, let B−s+ (SM) be the (closed) subspace of basic currents for the stable
horocycle foliation supported on irreducible unitary representations of the principal and
complementary series and let B−s+ : Ω−s1 (SM) → B−s+ (SM) be the orthogonal projection.
By the Sobolev embedding theorem, for any s > 3/2, any rectifiable arc γ can be seen as a
current in the dual Sobolev space Ω−s1 (SM).

C 1.2. – For any r > 9/2, for any s > r+1 and for any rectifiable arc γ ⊂ SM ,
the limit

B̂(γ) := lim
t→+∞

(g∗−t ◦ B−r+ ◦ g∗t )(γ) ∈ Ω−s1 (SM)

exists and is equal to a uniquely determined basic current for the stable horocycle foliation. In
fact, there exists a basis {B±µ } ⊂ BU (SM) of (generalized) eigenvectors for the action of the
geodesic flow on the space of basic currents such that

B̂(γ) =
∑

µ∈Spec(�)∩R+

β̂+
µ (γ)B+

µ + β̂−µ (γ)B−µ .

For all rectifiable arcs γ in SM the following properties hold:

1. (Additive property) For any decomposition γ = γ1 + γ2 into subarcs,

B̂(γ) = B̂(γ1) + B̂(γ2) .

2. (Weak unstable vanishing) For all γ tangent to the weak unstable foliation,

B̂(γ) = 0 .

3. (Unstable horocycle invariance) For all t ∈ R,

B̂(hVt γ) = B̂(γ) .

4. (Hölder property) There exist exponents α± ∈ (0, 1) and a constant C > 0 such that,
for all admissible rectifiable arc γ ⊂ SM , we have

‖B̂(γ)‖−s ≤ C
(

1 +

∫
γ

|X̂|+
∫
γ

|Û |
∫
γ

|V̂ |
)

max
α∈{α+,α−}

(∫
γ

|Û |
)α

.

R 1.1. – It is unclear to the authors whether the dependence of the current
B̂(γ) ∈ Ω′1(SM) on the rectifiable arc γ ⊂ SM is continuous with respect to a natural
topology (for instance the Hausdorff topology) on the space of bounded rectifiable arcs
(with common endpoints).

For any sufficiently smooth 1-form λ ∈ Ω1(SM), let β̂λ be the finitely additive functional
defined on rectifiable arcs γ ⊂ SM as

(1.10) β̂λ(γ) := <B̂(γ), λ> .
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It follows from Corollary 1.2 that β̂λ ∈ B̂V (SM). In particular, for any sufficiently smooth
complex-valued function f onSM , let β̂f ∈ B̂V (SM) be the finitely additive functional β̂fÛ ,
that is, for any rectifiable arc γ ⊂ SM ,

(1.11) β̂f (γ) = β̂fÛ (γ) = <B̂(γ), fÛ> .

By Corollary 1.2 and the identification between basic currents and invariant distributions
given by (1.7), the finitely-additive measure β̂f has the expansion:

(1.12) β̂f =
∑

µ∈Spec(�)∩R+

D+
µ (f)β̂+

µ +D−µ (f)β̂−µ .

R 1.2. – The formula (1.12) yields a duality between the spaces of invariant dis-
tributions for the unstable horocycle flow {hVt } and basic currents for the stable horocycle
flow {hUt }. We describe this duality in detail in §1.6.

By restriction of the finitely additive measures β̂ ∈ B̂V (SM) to horocycle arcs, we obtain
finitely-additive Hölder cocycles β for the stable horocycle flow {hUt }.

For any (x, T ) ∈ SM × R, let γU (x, T ) denote the oriented horocycle arc

γU (x, T ) := {hUt (x)|t ∈ [0, T ]} .

For every Casimir parameter µ > 0 the cocycles β±µ are defined as follows:

(1.13) β±µ (x, T ) := β̂±µ [γU (x, T )] , for all (x, T ) ∈ SM × R .

For any sufficiently smooth complex-valued function f on SM , the cocycle βf is similarly
defined by the formula

(1.14) βf (x, T ) := β̂f [γU (x, T )] , for all (x, T ) ∈ SM × R .

By construction and by formula (1.12), the following expansion formula holds:

(1.15) βf (x, T ) =
∑

µ∈Spec(�)∩R+

D+
µ (f)β+

µ +D−µ (f)β−µ .

Thus for every Casimir parameter µ ∈ R+ we obtain a pair of (linearly independent) additive
Hölder cocycles β±µ : SM × R → C for the stable horocycle flow. Such cocycles have the
following properties.

T 1.2. – For any Casimir parameter µ ∈ R+ the following hold.

1. (Cocycle property) For all x ∈ SM and for all S, T ∈ R,

β±µ (x, S + T ) = β±µ (x, S) + β±µ (hUS x, T ) .

2. (Geodesic scaling) For µ 6= 1/4, for all x ∈ SM , for all t, T ∈ R,

β±µ (g−tx, Te
t) = exp(

1∓ ν
2

t)β±µ (x, T ) ,

and for µ = 1/4 (ν = 0), for all x ∈ SM , for all t, T ∈ R,(
β+

1/4(g−tx, Te
t)

β−1/4(g−tx, Te
t)

)
= exp(

t

2
)

(
1 − t

2

0 1

)(
β+

1/4(x, T )

β−1/4(x, T )

)
.
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3. (Hölder property) There exists a constantC > 0 such that, for all pairs (x, T ) ∈ SM × R+,
for all µ 6= 1/4,

|β±µ (x, T )| ≤ C |T |
1∓Re ν

2 ,

and for µ = 1/4 (ν = 0),

|β+
1/4(x, T )| ≤ C |T | 12 + ,

|β−1/4(x, T )| ≤ C |T | 12 .

4. (Orthogonality) For any T ∈ R, the bounded function β±µ (·, T ) belongs to the irreducible
component Hµ ⊂ L2(SM).

1.5. Hölder cocycles and ergodic integrals

The asymptotics and limit distributions of ergodic integrals of smooth functions is con-
trolled by the additive Hölder cocycles for the horocycle flow introduced above. More pre-
cisely, the following approximation theorem holds.

T 1.3. – For any s > 11/2 there exists a constant Cs > 0 such that for every
rectifiable arc γ ⊂ SM and for all 1-forms λ ∈ Ωs1(SM) supported on irreducible components
of the principal and complementary series, we have∣∣∣∣∫

γ

λ− B̂λ(γ)

∣∣∣∣ ≤ Cs‖λ‖s(1 +

∫
γ

|X̂|+
∫
γ

|V̂ |) .

In particular, for all functions f ∈ W s(SM) supported on irreducible components of the
principal and complementary series, we have∣∣∣∣∫

γ

fÛ − β̂f (γ)

∣∣∣∣ ≤ Cs‖f‖s(1 +

∫
γ

|X̂|+
∫
γ

|V̂ |) .

By the results of [12] it is possible to derive a logarithmic upper bound in the uniform norm
for the the ergodic integrals along horocycle orbits of functions supported on irreducible
components of the discrete series. Theorem 1.3 therefore implies the following:

C 1.3. – For any s > 11/2 there exists a constant Cs > 0 such that for all
zero-average functions f ∈W s(SM) and all (x, T ) ∈ SM × R+ we have∣∣∣∣∣

∫ T

0

f ◦ hUt (x)dt− βf (x, T )

∣∣∣∣∣ ≤ Cs‖f‖s(1 + log+ |T |) .

R 1.3. – Corollary 1.3 and the lower bounds proved in [12] on the L2 norm of
ergodic integrals imply, in particular, that the cocycles β±µ (x, T ) do not vanish identically as
a function of x ∈ SM , for any T 6= 0. Indeed, to see this, it suffices to apply Corollary 1.3 to
any function f ∈ C∞(SM) such that βf = β±µ . Observe also that, by the Ergodic Theorem,
if f has zero average on SM , then, for any fixed T > 0, the function βf (x, T ) also has zero
average on SM .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



862 A. BUFETOV AND G. FORNI

From Corollary 1.3 we derive the following limit theorems. Recall that for any function
f ∈ L2(SM) the symbol ‖f‖ stands for its L2-norm. For any zero-average real-valued func-
tion f ∈ L2(SM), for all t > 0 and T ∈ R, letMt(f, T ) be the probability distribution on
the real line of the random variable on SM defined by the formula

(1.16) Et(f, T ) :=

Tet∫
0

f ◦ hUτ (·) dτ∥∥∥∥∥Tet∫0 f ◦ hUτ (·) dτ

∥∥∥∥∥
.

We are interested in the asymptotic behavior (as t→ +∞) of the probability distribu-
tionsMt(f, T ) for T ∈ [0, 1].

Let f be a smooth function with non-zero orthogonal projection onto irreducible compo-
nents of the complementary series. Let

f =
∑

µ∈Spec(�)

fµ

denote the decomposition of f with respect to a splitting of the space L2(SM) into irre-
ducible components. Let

µf := min{µ ∈ Spec(�) \ {0}|fµ 6= 0}

let H1, . . . ,Hk ⊂ L2(SM) be all the irreducible components of Casimir parameters
µ1 = · · · = µk = µf . Let {D±1 , . . . , D

±
k } denote the basis of distributional eigenvectors

of the geodesic flow of the space of invariant distributions for the horocycle flow supported
on D′(H1)⊕· · ·⊕ D′(Hk). Let {β±1 , . . . , β

±
k } be the corresponding cocycles for the horocycle

flow. For every T ∈ R, let Pcp(f, T ) denote the probability distribution on the real line of
the random variable on SM ∑k

i=1D
−
i (f)β−i (·, T )(∑k

i=1 |D
−
i (f)|2‖β−i ‖2

)1/2
.

By Remark 1.3 and the orthogonality of cocycles, the above function is bounded, non-
constant and has zero average on SM . The probability measure Pcp(f, T ) is therefore non-
atomic and has compact support on the real line.

Let dLP denote the Lévy-Prohorov metric on the space of probability measures on the
real line. We recall that on any separable metric space, hence, in particular, on the real line,
the Lévy-Prohorov metric induces the weak∗ topology on the space of probability measures
(see, e.g., [3]).

T 1.4. – There exists a constant α > 0 depending only on the surface M such
that the following holds. For any s > 11/2 there exists a constant Cs > 0 depending only
on s such that the following holds. Let f ∈W s(SM) be any real-valued function of zero
average such that the Casimir parameter µf ∈ (0, 1/4) and (D−1 (f), . . . , D−k (f)) 6= (0, . . . , 0).
Let νf :=

√
1− 4µf ∈ (0, 1). Then
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1. For all T ∈ [0, 1] and all t > 0, we have

(1.17)

∣∣∣∣∣∣∣
‖
∫ Tet

0
f ◦ hUτ (x)dτ‖

e
1+νf

2 t
(∑k

i=1 |D
−
i (f)|2‖β−i ‖2

)1/2
− 1

∣∣∣∣∣∣∣ ≤ Cs‖f‖se−αt .
2. For any T ∈ [0, 1] we have the convergence in distribution

(1.18) Mt(f, T )→ Pcp(f, T ) as t→∞

with the following estimate that holds for all t > 0 uniformly in T ∈ [0, 1]:

(1.19) dLP (Mt(f, T ), Pcp(f, T )) ≤ Cs‖f‖se−αt .

R 1.4. – The estimate in formula (1.19), uniform in T ∈ R over any compact
interval, implies, in particular, that Theorem 1.4 can be strengthened to a functional limit
theorem: the convergence in distribution holds in the space of measures on the space C[0, 1]

as well, similarly to the limit theorems of [5, 6], [4].

Now we prove that, for sufficiently smooth functions supported on irreducible compo-
nents of the principal series, normalized ergodic integrals converge in distribution on SM to
a quasi-periodic motion on an infinite-dimensional torus.

Let {µn} be the sequence of Casimir parameter in the interval (1/4,+∞) (listed with
multiplicities). The isotypical components of the decomposition of L2(SM) into irreducible
representations, being eigenspaces of the Casimir operator, are closed under complex
conjugation. It follows that there exists an orthogonal decomposition of L2(SM) into
irreducible components each closed under complex conjugation. Let {D±µn} denote the
corresponding sequence of horocycle invariant distributions, and let {β±µn} be the sequence
of additive Hölder cocycles described in Theorem 1.2. By the characterization of the distri-
butions {D±µn} as distributional eigenvectors of the geodesic flow and by the construction
of the cocycles {β±µn}, it follows that, for all n ∈ N,

(1.20) D−µn = D+
µn and β−µn = β+

µn .

For any s > 11/2, let f ∈W s(SM) be a real-valued function supported on irreducible
components of the principal series. By definition and by formula (1.20), the cocycle
βf : SM × R→ C is also real-valued, and from (1.12) we have

βf (x, T ) = Re[
∑
n∈N

D+
µn(f)β+

µn(x, T )] , for all (x, T ) ∈ SM × R .

Let T∞ := (R/2πZ)∞ be the infinite-dimensional torus endowed with the product topology.
We will consider the linear flow on T∞ with frequency vector υ/2 ∈ R∞ defined as follows.
For all n ∈ N, let υn :=

√
4µn − 1 ∈ R+, and let

υ := (υ1, . . . , υn, . . .) .

For any real-valued function f ∈W s(SM) supported on irreducible unitary components of
the principal series and for all θ ∈ T∞, let

β(f, θ, x, T ) := Re[
∑
n∈N

D+
µn(f)eiθnβ+

µn(x, T )] , for all (x, T ) ∈ SM × R .
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For θ ∈ T∞ and T > 0, letPpr(f, θ, T ) be the probability distribution of the random variable
given by the formula

(1.21)
β(f, θ, x, T )

‖β(f, θ, x, T )‖
, for all x ∈ SM .

Since the random variables β(f, θ, ·, T ) on SM are non-constant and bounded, the proba-
bility distributions P (f, θ, T ) are non-atomic compactly supported measures on the real line
(uniformly with respect to T ∈ [0, 1]).

Our main result on the asymptotics of distributions of normalized ergodic integrals for
real-valued functions supported on the principal series is the following.

T 1.5. – For any s > 11/2 there exists a constant Cs > 0 such that the following
hold for any real-valued function f ∈W s(SM) supported on the irreducible components of the
principal series such that {D+

µn(f)} 6= 0 in `1(N,C).

1. For all T ∈ [0, 1] and all t > 0, we have

(1.22)

∣∣∣∣∣‖
∫ Tet

0
f ◦ hUτ (x)dτ‖

e
t
2 ‖β(f, υt2 , ·, T )‖

− 1

∣∣∣∣∣ ≤ Cs‖f‖se− t2 .
2. For all T ∈ [0, 1] and all t > 0, we have

dLP

(
Mt(f, T ), Ppr(f,

υt

2
, T )

)
≤ Cs‖f‖se−

t
2 .

The above theorem implies that for real-valued functions supported on the principal series
limit distributions exist along sequences of times such that the orbit of the toral translation of
frequency υ/2 ∈ R∞ on the infinite torusT∞ converges. We conjecture that the limit does not
exist otherwise. Below from Theorem 1.5 we derive some restrictions on limit distributions.

D 1.3. – Let H ⊂ L2(SM) be a PSL(2,R)-invariant subspace which is a
direct sum of finitely many irreducible components of the principal series, that is,

H =

n∑
i=1

Hi .

The subspace H is called Casimir simple if all the corresponding Casimir parameters
{ν1, . . . , νn} are distinct. The subspace H is called Casimir irrational if the Casimir para-
meters {ν1, . . . , νn} are rationally independent.

We derive the following conditional uniqueness result for the principal series.

C 1.4. – Let H ⊂ L2(SM) be any Casimir simple PSL(2,R)-invariant sub-
space. If the limit distribution of the family of random variables∫ T

0
f ◦ hUt dt

‖
∫ T

0
f ◦ hUt dt‖

exists for any given f ∈ C∞(H) with the property that none of its projections onto the irre-
ducible components ofH is a coboundary, then the limit distribution is unique in the sense that,
for functions in H which are not coboundaries, it does not depend on the function.
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Finally, we derive restrictions on the joint probability distribution of the cocycle functions
in case limit distributions exist for all function supported on a Casimir irrational subspace.

For any irreducible representation Hµ ⊂ L2(SM) of the principal series, we have con-
structed Hölder cocycle functions β := β+

µ and β̄ = β−µ : SM → C. For any PSL(2,R)-in-
variant subspace H ⊂ L2(SM) supported on finitely many irreducible components of the
principal series, let

βH := (β1, . . . , βn) : SM → Cn

be the corresponding vector-valued cocycle function.
Given any function β : SM → C, let Tβ : C→ C be the affine transformation defined as

follows. Let Rβ be the rotation by the angle θβ ∈ [0, 2π) such that

e2iθβ

∫
SM

β2dvol ∈ R+ ∪ {0} .

For any pair (A,B) of positive real numbers, let TA,B : C→ C be the affine map

TA,B(x, y) := (x/A, y/B) , for all (x, y) ∈ R2 ≡ C .

Let (Aβ , Bβ) be the positive real numbers given by the formulas:{
A2
β = (‖β‖2 + |

∫
SM

β2ω|)/2 ,
B2
β = (‖β‖2 − |

∫
SM

β2ω|)/2 .

It is proved in §5.3 that
∫
SM

β2ω 6= 0, hence A2
β > B2

β . Let then Tβ be given by the formula

Tβ := TAβ ,Bβ ◦Rβ .

Given any function β := (β1, . . . , βn)→ Cn, let Tβ be the product affine map

Tβ = Tβ1
× . . . Tβn : Cn → Cn .

C 1.5. – Let H ⊂ L2(SM) be any Casimir irrational PSL(2,R)-invariant
subspace. The limit distribution of the family of random variables∫ T

0
f ◦ hUt dt

‖
∫ T

0
f ◦ hUt dt‖

exists for all f ∈ C∞(H) which is not a coboundary if and only if the function TβH ◦ βH : SM → Cn

has a rotationally invariant probability distribution.

1.6. Duality theorems

The formalism of finitely-additive measures allows us to establish a duality between the
spaces of distributions invariant under the stable and the unstable horocycle flows, respec-
tively; more precisely, between the subspaces of invariant distributions corresponding to the
positive eigenvalues of the Casimir operator.

Finitely additive V -invariant 1-dimensional Hölder measures on rectifiable arcs induce
by integration currents of dimension 2 (and degree 1). In fact, let β̂ ∈ B̂V (SM). Given a
smooth 2-form η, using the Hölder property and the (finite) additivity of β̂, one can define
the integral ∫

SM

β̂ ⊗ η
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as the limit of Riemann sums. The correspondence

η →
∫
SM

β̂ ⊗ η

now yields a current on SM of dimension 2 (and degree 1), which, slightly abusing notation,
we denote by the same symbol β̂. The current β̂ defined above in fact extends to continuous
forms and, by the Sobolev embedding theorem, to forms in Sobolev spaces.

Our next aim is to describe the currents β̂±µ in terms of distributions invariant under the
unstable horocycle flow {hVt }.

Given a Casimir parameter µ > 0, consider the finitely-additive measure

(1.23) D̂±µ = X̂ ⊗ β̂±µ ⊗ V̂ .

Since, for any f ∈ C∞(SM), the integral of f with respect to the measure D̂±µ can be
defined as the limit of Riemann sums, the measure D̂±µ yields a distribution (in the sense
of S. L. Sobolev and L. Schwartz) on C∞(SM); slightly abusing notation, we denote the
distribution by the same symbol D̂±µ .

T 1.6. – For every Casimir parameter µ ∈ R+, the distributions D̂±µ given
by (1.23) are V -invariant. For µ 6= 1/4, they satisfy the identities

LXD̂±µ =
1± ν

2
D̂±µ ,

while for µ = 1/4 (ν = 0), they satisfy the identity

LX

(
D̂+

1/4

D̂−1/4

)
=

1

2

(
1 1

0 1

)(
D̂+

1/4

D̂−1/4

)
.

Theorem 1.6 can be equivalently reformulated as follows.
Given a distributionD acting on C∞(SM), letD∧ Û denote the current of degree 1 (and

dimension 2) defined as the exterior product of the distribution D, identified to a current
of degree 0 (and dimension 3) via the normalized volume form ω, times the smooth 1-form Û

on SM ; that is, the current given by the following formula: for any smooth 2-form η on SM ,

(D ∧ Û)(η) := D

(
Û ∧ η
ω

)
.

T 1.7. – For every Casimir parameter µ ∈ R+, there exist V -invariant distribu-
tions D̂±µ ∈ D′(Hµ) such that

β̂±µ = D̂±µ ∧ Û .
For all µ 6= 1/4, the distributions D̂±µ are eigenvectors of the geodesic flow, that is, they satisfy
the identities

LXD̂±µ =
1± ν

2
D̂±µ ,

while for µ = 1/4 (ν = 0) they are generalized eigenvectors, that is,

(1.24) LX

(
D̂+

1/4

D̂−1/4

)
=

1

2

(
1 1

0 1

)(
D̂+

1/4

D̂−1/4

)
.
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The duality theorem (Theorem 1.7) leads to the classification theorem stated below.
Let B̂V (SM) be the space of all finitely additive 1-dimensional Hölder measures introduced
in Definition 1.2. For any s > 0, let Ω−s2 (SM) be the Sobolev space of currents of dimen-
sion 2 (and degree 1) defined as the dual space of the Sobolev space Ωs2(SM) of 2-forms
on SM . By the Sobolev embedding theorem, the space B̂V (SM) embeds as closed subspace,
denoted as B̂−sV (SM), into Ω−s2 (SM).

T 1.8. – For all s > 3/2, the Hilbert space B̂−sV (SM) is spanned by the system of
finitely-additive measures {β̂±µ |µ ∈ Spec(�) ∩ R+}.

The duality theorem (Theorem 1.7) also leads to a direct bijective correspondence be-
tween the lift of the finitely-additive measures β̂±µ to PSL(2,R) (denoted below by the same
symbol) and the Γ-invariant conformal distributions on the boundary of the Poincaré disk
studied by S. Cosentino in [9].

T 1.9. – For any Casimir parameter µ ∈ R+ \ {1/4}, there exist on the boundary
of the Poincaré disk Γ-invariant conformal distributions φ±µ of exponents (1 ∓ ν)/2 such that
the following identities hold on PSL(2,R):

β̂±µ ⊗ dt = φ±µ ⊗ e−( 1∓ν
2 )tdt .

For µ = 1/4 (ν = 0), on the boundary of the Poincaré disk there exist a Γ-invariant conformal
distribution φ1/4 of exponent 1/2 and a distribution φ′1/4 of order 1/2+ (in the Hölder sense)
such that

β̂+
1/4 ⊗ dt = φ′1/4 ⊗ e

− t2 dt+ φ1/4 ⊗
t

2
e−

t
2 dt ,

β̂−1/4 ⊗ dt = φ1/4 ⊗ e−
t
2 dt .

R 1.5. – For µ = 1/4, the space of all Γ-invariant conformal distributions of
exponent 1/2 is 1-dimensional in each irreducible component.

1.7. Organization of the paper

The paper is organized as follows. In §2 we construct finitely additive measures of recti-
fiable arcs and prove our main results about them (in particular Theorem 1.1, Corollary 1.1
and Corollary 1.2 up to a technical estimate (Lemma 2.4) which will be proved in §5.2. In §3
we prove our results on additive cocycles for the horocycle flow (Theorem 1.2) and the ap-
proximation theorem for ergodic integrals (Theorem 1.3). From the approximation theorem,
we then derive our results on limit distributions (Theorem 1.4, Theorem 1.5, Corollary 1.4
and Corollary 1.5). §4 is devoted to the proof of the duality theorem (Theorem 1.7), of the
classification theorem (Theorem 1.8) and to the relations with Γ-invariant conformal distri-
butions (Theorem 1.9). In §5 we collect several technical auxiliary results. In §5.2 we prove
the above-mentioned estimate we need in the construction of finitely additive measures and
additive cocycles (Lemma 2.4). In §5.3 and §5.4 we prove the technical lemmas needed in the
proof of our conditional theorems on existence of limit distributions for functions supported
on irreducible components of the principal series.
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2. Basic currents and finitely-additive measures on rectifiable arcs

In this section we prove Theorem 1.1 up to a technical estimate which will be proved
in §5.2. We then derive Corollary 1.1 and Corollary 1.2.

2.1. Basic currents

By definition, the volume form ω on SM can be written as

ω = X̂ ∧ Û ∧ V̂ .

The contractions ηX := ıXω, ηU := ıUω and ηV := ıV ω are closed 2-forms which can be
written as follows:

ηX = Û ∧ V̂ , ηU = −X̂ ∧ V̂ , ηV = X̂ ∧ Û .

We recall that a distribution D ∈ D′(SM) (in the sense of S.L. Sobolev and L. Schwartz)
is called U -invariant (or invariant under the stable horocycle flow {hUt }) iff LUD = 0

in D′(SM). A current C of degree 2 (and dimension 1) is called basic for the orbit foliation
of the stable horocycle flow if and only if

(2.1) LUC = ıUC = 0 in D′(SM) .

(The operators LU and ıU are respectively the Lie derivative and the contraction with respect
to the horocycle generator U acting on currents according to the standard definition.)

Let IU (SM) denote the space of all U -invariant distributions and BU (SM) denote the
space of all basic currents of degree 2 (and dimension 1) for the orbit foliation of the stable
horocycle flow.

For every s ≥ 0, let W s(SM) be the standard Sobolev space on the compact mani-
folds SM and let Ωs1(SM) be the Sobolev space of all 1-forms on SM defined as follows:

λ := λXX̂ + λU Û + λV V̂ ∈ Ωs1(SM)⇔ (λX , λU , λV ) ∈ [W s(SM)]3 .

Let W−s(SM) and Ω−s1 (SM) denote the Sobolev spaces dual of the (Hilbert) spaces
W s(SM) and Ωs1(SM) respectively. The space W−s(SM) which can be viewed either as
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currents of degree 3 and dimension 0 (linear functionals on functions) or as currents of
degree 0 and dimension 3 (linear functional on 3-forms). A standard SL(2,R)-invariant
identification between functions and 3-forms is in fact given by the volume form on SM .
The space Ω−s1 (SM) is a space of currents of degree 2 and dimension 1 (linear functionals
on 1-forms). Let B−sU (SM) ⊂ Ω−s1 (SM) denote the subspace of basic currents for the orbit
foliation of the stable horocycle flow, that is, of currents satisfying the identities (2.1). It is a
standard fact, easy to prove, that the space B−sU (SM) of basic currents is isomorphic to the
space I−sU (SM) of U -invariant distributions:

L 2.1. – For any s ∈ R the correspondence D → DηU defines an isomorphism
from the space I−sU (SM) of invariant distributions for the stable horocycle flow onto the space
B−sU (SM) of basic currents for its orbit foliation.

Proof. – Let D be any U -invariant distribution. It follows that C := DηU is closed. By
definition ıUC = 0. It follows that

LUC = ıUdC + dıUC = 0 ,

hence C is a basic current for the stable horocycle foliation. Conversely, let C be any basic
current for the stable horocycle foliation and letD := C∧Û . We claim thatD isU -invariant.
Since LUC = ıUC = 0, a computation yields

LUD = LUC ∧ Û + C ∧ LU Û = C ∧ ıU (dÛ) = ıUC ∧ dÛ = 0 .

Finally, since ıUC = 0, it follows that

DηU ≡ ıUD = ıU (C ∧ Û) = C ,

hence the map D → DηU is a bijection of the space of all invariant distributions onto the
space of all basic currents with inverse given by the map C → C ∧ Û . It follows from the
definition of the Sobolev spaces of currents that the above maps are isomorphisms between
the dual Sobolev spaces I−sU (SM) and B−sU (SM).

2.2. Geodesic scaling of basic currents

Let Hµ ⊂ L2(SM) be any non-trivial irreducible component with Casimir parame-
ter µ ∈ R \ {0}. Let W−s(Hµ) and Ω−s1 (Hµ) denote the associated Sobolev spaces of
distributions and, respectively, currents of dimension 1 (and degree 2). The subspaces
W−s(Hµ) and Ω−s1 (Hµ) are SL(2,R)-invariant irreducible components of the decomposi-
tion of the dual Sobolev spacesW−s(SM) and Ω−s1 (SM) respectively. Let B−sU (Hµ) denote
the associated SL(2,R)-invariant irreducible component of the space B−sU (SM) of basic
currents for the stable horocycle foliation, that is, for all µ ∈ R \ {0},

B−s(Hµ) := B−s(SM) ∩ Ω−s1 (Hµ) .

The following result describes the (infinitesimal) action of the geodesic flow on the
space B−sU (Hµ) of basic currents for all Casimir parameters µ ∈ R \ {0}.
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L 2.2. – For any s > 1 andµ ∈ R+ \ {1/4}, the space B−sU (Hµ) has complex dimen-
sion 2 and has a basis {B+

µ , B
−
µ } of eigenvectors for the action of the geodesic flow. In fact, the

following formulas hold:

(2.2) LXB±µ =
1∓ ν

2
B±µ .

For µ = 1/4 (ν = 0), the space B−sU (Hµ) has complex dimension 2 and has a basis {B+
µ , B

−
µ }

of generalized eigenvectors for the action of the geodesic flow. The following formula holds:

(2.3) LX

(
B+

1/4

B−1/4

)
=

1

2

(
1 0

−1 1

)(
B+

1/4

B−1/4

)
.

For µ = −n2 + n < 0 (ν = 2n− 1) and s > n, the space B−sU (Hµ) has complex dimension 1

and has a basis {Bµ}, containing a single eigenvector for the action of the geodesic flow. In fact,
the following formula holds:

(2.4) LXBµ =
1− ν

2
Bµ = (1− n)Bµ .

Proof. – It follows by Lemma 2.1 that the space B−sU (Hµ) is isomorphic to the space
I−sU (Hµ) := IU (SM) ∩W−s(Hµ) of invariant distributions. By [12], Theorem 3.2, for any
µ ∈ R+ \ {1/4}, the space I−sU (Hµ) has complex dimension 2 and has a basis {D+

µ , D
−
µ } of

eigenvectors of the geodesic flow, in the sense that the following formulas hold:

LXD±µ = −1± ν
2

D±µ .

LetB±µ := D±µ ηU . SinceU is the generator of the stable horocycle flow, we have the following
equality of currents:

(2.5) LXηU = ηU .

The statement for the case µ 6= 1/4 then follows since

LXB±µ = ( LXD±µ +D±µ )ηU =
1∓ ν

2
B±µ .

In the case µ = 1/4, by [12], Lemma 3.5, the space I−sU (Hµ) has complex dimension 2 and
has a basis {D+

µ , D
−
µ } of generalized eigenvectors of the geodesic flow, in the sense that the

following formulas hold:

LX

(
D+
µ

D−µ

)
= −1

2

(
1 0

1 1

)(
D+
µ

D−µ

)
.

Let B±µ := D±µ ηU . Formula (2.3) then follows by Leibniz rule from the above formula and
formula (2.5). In fact,

LX

(
B+
µ

B−µ

)
=

[
−1

2

(
1 0

1 1

)
+

(
1 0

0 1

)](
B+
µ

B−µ

)
.
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Similarly, formula (2.4) follows from [12], Lemma 3.5. In fact, for any Casimir parameter
µ = −n2 + n < 0, the space I−sU (Hµ) has complex dimension 1 and has a basis {Dµ} con-
taining a single eigenvector of the geodesic flow such that

LXDµ = −1 + ν

2
Dµ = −nDµ .

From the above formula it follows that

LXBµ = ( LXDµ +Dµ)ηU =
1− ν

2
Bµ = (1− n)Bµ .

The lemma is proved.

2.3. Orthogonal projections on basic currents

For any s > 1/2 we have the orthogonal direct sum decomposition

Ω−s1 (SM) = B−sU (SM)⊕⊥ B−sU (SM)⊥.

Let B−s : Ω−s1 (SM) → B−sU (SM) denote the orthogonal projection onto the subspace of
basic currents and R−s : Ω−s1 (SM) → B−sU (SM)⊥ denote the orthogonal projection onto
its orthogonal complement .

Let Π−sµ : Ω−s1 (SM)→ Ω−s1 (Hµ) be the orthogonal projection. We remark that the pro-
jections Π−sµ commute with the action of SL(2,R), hence in particular with the action of the
geodesic flow, on the Sobolev space Ω−s1 (SM).

Let B−sµ := Π−sµ ◦ B−s = B−s ◦ Π−sµ be the orthogonal projection onto the subspace

B−sU (Hµ) ⊂ Ω−s1 (Hµ). Let R−sµ := Π−sµ ◦ R−s = R−s ◦Π−sµ be the complementary projec-

tion on the space B−sU (SM)⊥ ∩ Ω−s1 (Hµ). We remark that the projections B−sµ and R−sµ do
not necessarily commute with the action of the geodesic flow. However, the range of the pro-
jection B−sµ , which is the space B−sU (Hµ) of basic currents, is invariant under the action of
the geodesic flow.

By the Sobolev embedding theorem, any rectifiable arc γ can be viewed as a current of di-
mension 1 (and degree 2) in Ω−s1 (SM) for any s > 3/2. For all non-trivial irreducible unitary
representations of Casimir parameter µ ∈ R, let B−sµ (γ) ∈ Ω−s1 (Hµ) denote the projection

Π−sµ ◦ B−s(γ) of the current B−sµ (γ) onto the irreducible subspace Ω−s1 (Hµ) ⊂ Ω−s1 (SM).
We then write

(2.6) B−sµ (γ) :=

{
α̂+
µ,−s(γ)B+

µ + α̂−µ,−s(γ)B−µ , for µ ∈ Spec(�) ∩ R+ ;

α̂µ,−s(γ)Bµ , for µ ∈ Spec(�) ∩ R− .

In other words, the complex numbers α̂±µ,−s(γ), α̂µ(γ) are the components of the current γ
in the direction of the basic currents B±µ , Bµ (that is, by definition, the coefficients of the
currents B±µ , Bµ in the orthogonal projection of the current γ onto the closed subspace of
all basic currents).

We recall that the subspace B−sU (Hµ) ⊂ Ω−s1 (Hµ) is trivial for all Casimir parameters
µ = −n2 + n (discrete series) whenever s ≤ n ∈ Z+. In this case the component α̂µ,−s is
defined as zero.
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L 2.3. – For every µ0 > 1/4 and for every s > 1/2 the system {B+
µ , B

−
µ } has

uniformly bounded distortion in Ω−s1 (SM) for all Casimir parameters µ ≥ µ0, that is, there
exists a constant Cs(µ0) > 0 such that, for all µ ≥ µ0,

(2.7) sup
(α+,α−)∈R2\{0}

‖α+B+
µ ‖−s + ‖α−B−µ ‖−s

‖α+B+
µ + α−B−µ ‖−s

≤ Cs(µ0) .

Proof. – As observed in the proof of Lemma 5.1 in [12], if the Casimir parame-
ter µ ≥ µ0 > 1/4, for any s > 1/2, the distortion in W−s(SM) of the system of distri-
butions {D+

µ , D
−
µ } stays uniformly bounded above (in other terms, the angle in W−s(SM)

betweenD+
µ andD−µ stays uniformly bounded below), and in fact this bound is also uniform

with respect to s > 1. By Lemma 2.1, the map D → DηU defines an isomorphism from
the space I−sU (SM) of invariant distribution onto the space B−sU (SM) of basic currents. It
follows that for all Casimir parameters µ > 0 the distortion in Ω−s1 (SM) of the system of
basic current {B+

µ , B
−
µ } is equal to the distortion in W−s(SM) of the system of invariant

distributions {D+
µ , D

−
µ }, in particular the distortion of the system {B+

µ , B
−
µ } in Ω−s1 (SM)

is uniformly bounded above for all µ ≥ µ0 > 1/4.

2.4. The construction of the finitely-additive measures

The core of our argument is the following construction of finitely-additive measures on
rectifiable arcs.

T 2.1. – For any rectifiable arc γ ⊂ SM the following holds. For any Casimir
parameter µ ∈ R+ \ {1/4} the following limits exist and do not depend on s > 9/2:

(2.8) β̂±µ (γ) := lim
t→+∞

α̂±µ,−s(g
∗
t γ)

exp( 1∓ν
2 t)

.

For µ = 1/4 the limits below exist and do not depend on s > 9/2:

(2.9)

β̂+
1/4(γ) := lim

t→+∞

(α̂+
1/4,−s + t

2 α̂
−
1/4,−s)(g

∗
t γ)

exp( t2 )
,

β̂−1/4(γ) := lim
t→+∞

α̂−1/4,−s(g
∗
t γ)

exp( t2 )
.

The convergence in the limits (2.8), (2.9) is exponential in the following precise sense. For
all t > 0, let us introduce the rescaled weak unstable length

(2.10) |γ|XV,t :=

∫
γ

|X̂|+ e−t
∫
γ

|V̂ | .

There exists a constant Cs > 0 such that, for any µ 6= 1/4,

(2.11)

∣∣∣∣∣β̂±µ (γ)−
α̂±µ,−s(g

∗
t γ)

exp( 1∓ν
2 t)

∣∣∣∣∣ ≤ Cs

‖B±µ ‖−s
1 + |γ|XV,t
exp( 1∓ν

2 t)
,
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while for µ = 1/4,

(2.12)

∣∣∣∣∣β̂+
1/4(γ)−

(α̂+
1/4,−s + t

2 α̂
−
1/4,−s)(g

∗
t γ)

exp( t2 )

∣∣∣∣∣ ≤ Cs(1 + t)

‖B±µ ‖−s
(1 + |γ|XV,t)

exp( t2 )
,∣∣∣∣∣β̂−1/4(γ)−

α̂−1/4,−s(g
∗
t γ)

exp( t2 )

∣∣∣∣∣ ≤ Cs(1 + t)

‖B±µ ‖−s
(1 + |γ|XV,t)

exp( t2 )
.

For all Casimir parameters µ ∈ R+, the following bound holds:

(2.13) |β̂±µ (γ)| ≤ Cs

‖B±µ ‖−s
(1 +

∫
γ

|X̂|+
∫
γ

|Û |+
∫
γ

|V̂ |) .

Proof of Theorem 2.1. – The argument is a refinement of the method of [12], § 5.3. The
main technical improvement consists in replacing the difference equations of [12] by ordinary
differential equations. Here we also work in the more general setting of currents instead of
distributions.

For any s > 3/2, consider the decomposition of the current γ ∈ Ω−s1 (SM) given by inte-
gration along a rectifiable arc. By definition we have:

(2.14) γ = B−s(γ) + R−s(γ) .

We are interested in the evolution of this decomposition under the action of the geodesic flow.
By the group property of the geodesic flow {gt} and by formula (2.14), for any t, τ ∈ R we
obtain:

(2.15) g∗t+τγ = g∗τ B−s(g∗t γ) + g∗τ R−s(g∗t γ) = B−s(g∗t+τγ) + R−s(g∗t+τγ) .

By projection of (2.15) under B−sµ : Ω−s1 (SM)→ B−sU (Hµ) we therefore have

(2.16) B−sµ (g∗t+τγ) = g∗τ B−sµ (g∗t γ) + B−sµ g∗τ R−sµ (g∗t γ) .

We would like to differentiate the above identity (2.16) with respect to the parame-
ter τ ∈ R. That is made possible by the following technical result whose proof we postpone
until §5.2:

L 2.4. – For any s ≥ r > 7/2, for any rectifiable arc γ in SM and for any irreducible
componentHµ ⊂ L2(SM) of Casimir parameter µ ∈ R\{0}, the current R−sµ (γ) ∈ Ω−s1 (Hµ)

has a unique continuous extension R−s,−rµ (γ) ∈ Ω−r1 (Hµ) and the following uniform bound
holds. There exists a constant Cr,s > 0 such that

‖R−s,−rµ (γ)‖−r ≤ Cs,r(1 +

∫
γ

|X̂|+
∫
γ

|V̂ |) .

Now, assuming Lemma 2.4, we conclude the proof of Theorem 2.1.

Let s > 9/2. By Lemma 2.4, the current R̃
−s
µ (γ) := R−s,−(s−1)

µ (γ) is well-defined, and
the following limit exists in the Hilbert space Ω−s1 (Hµ):

lim
τ→0

g∗τ R−sµ (g∗t γ)− R−sµ (g∗t γ)

τ
= LX R̃

−s
µ (g∗t γ) ∈ Ω−s1 (Hµ) .

Thus, by differentiating (2.16) with respect to τ at τ = 0, we obtain, for all t ∈ R,

(2.17)
d

dt
B−sµ (g∗t γ) = LX B−sµ (g∗t γ) + B−sµ LX R̃

−s
µ (g∗t γ) .
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We now write the above differential equation in coordinates. We write

(2.18)
B−sµ (g∗t γ) = α̂+

µ,−s(t)B
+
µ + α̂−µ,−s(t)B

−
µ ,

B−sµ LX R̃
−s
µ (g∗t γ) = ρ+

µ,−s(t)B
+
µ + ρ−µ,−s(t)B

−
µ .

If µ 6= 1/4, by Lemma 2.2 and equation (2.17) we obtain the following formulas:

(2.19)
d

dt
α̂±µ,−s =

1∓ ν
2

α̂±µ,−s + ρ±µ,−s .

If µ = 1/4, we obtain the following formulas:

(2.20)
d

dt

(
α̂+
µ,−s

α̂−µ,−s

)
=

1

2

(
1 −1

0 1

)(
α̂+
µ,−s

α̂−µ,−s

)
+

(
ρ+
µ,−s

ρ−µ,−s

)
.

By writing down solutions of the above O.D.E.’s we conclude that, for µ 6= 1/4,

(2.21)
α̂±µ,−s(t)

exp( 1∓ν
2 t)

= α̂±µ,−s(0) +

∫ t

0

ρ±µ,−s(τ)e−
1∓ν
2 τ dτ

while for µ = 1/4, after some elementary calculations,

(2.22)

α̂+
1/4,−s(t) + t

2 α̂
−
1/4,−s(t)

exp( t2 )
= α̂+

1/4,−s(0) +

∫ t

0

[ρ+
1/4,−s(τ) +

τ

2
ρ−1/4,−s(τ)]e−τ/2 dτ ;

α̂−1/4,−s(t)

exp( t2 )
= α̂−1/4,−s(0) +

∫ t

0

ρ−1/4,−s(τ)e−τ/2 dτ .

We conclude the argument by proving that the integrals in formulas (2.21) and (2.22) are
absolutely convergent (as t → +∞) and are absolutely and uniformly bounded in terms of
the transverse lengths of the rectifiable arc γ in SM .

Since M is a compact hyperbolic surface, the Casimir spectrum of the standard unitary
representation of SL(2,R) on L2(SM) is discrete, in particular there are at most finitely
many irreducible components of the complementary series. By the distortion Lemma 2.3,
it follows that for every s > 1/2 the distortion of the basis {B+

µ , B
−
µ } ⊂ Ω−s1 (SM),

defined by formula (2.7), is uniformly bounded for all Casimir parameters µ > 0. Thus,
by formula (2.18), for all s > 9/2 there exists a constant Cs > 0 such that, for all µ ∈ R+,
the following estimate holds:

(2.23) |ρ±µ,−s(t)| ≤
Cs

‖B±µ ‖−s
‖ LX R̃

−s
µ (g∗t γ)‖−s ≤

Cs

‖B±µ ‖−s
‖ R̃
−s
µ (g∗t γ)‖−s+1 ,

hence by Lemma 2.4 there exists a constant C ′s > 0 such that

(2.24) |ρ±µ,−s(t)| ≤
C ′s

‖B±µ ‖−s
(1 +

∫
γ

|X̂|+ e−t
∫
γ

|V̂ |) .

The above bound (2.24) immediately implies that the integrals in formulas (2.21) and (2.22)
are absolutely and uniformly bounded and convergent (as t→ +∞), hence the limits in the
left hand side of both formulas exist. The bound (2.24) also implies that such limits are
independent of s > 9/2. In fact, by the distortion Lemma 2.3 and by Lemma 2.4, for
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any s ≥ r > 9/2 there are constants Cs, Cs,r > 0 such that, for any rectifiable arc γ and
for all Casimir parameters µ > 0,

(2.25)

‖B±µ ‖−s |α̂±µ,−s(t)− α̂±µ,−r(t)| ≤ Cs‖B
−s
µ (g∗t γ)− B−rµ (g∗t γ)‖−s

= Cs‖R
−s
µ (g∗t γ)− R−rµ (g∗t γ)‖−s

≤ Cs,r(1 +

∫
γ

|X̂|+ e−t
∫
γ

|V̂ |) .

Thus the limits β̂±µ (γ) of formulas (2.8) and (2.9) exist and are well-defined and the speed of
convergence is correctly given by the estimates in formulas (2.11) and (2.12).

Finally, the bound in formula (2.13) follows from the estimate (2.24) and the following
bound. By the distortion Lemma 2.3 and by the Sobolev embdedding theorem, there exist
constants C ′′s , C ′′′s > 0 such that, for all Casimir parameters µ > 0,

|α̂±µ,−s(0)| ≤ C ′′s
‖B±µ ‖−s

‖γ‖−s ≤
C ′′′s

‖B±µ ‖−s
(1 +

∫
γ

|X̂|+
∫
γ

|Û |+
∫
γ

|V̂ |) .

The proof of Theorem 2.1 is therefore complete.

2.5. Proof of the main properties (Theorem 1.1)

The proof of the theorem requires a stronger estimate on the current β̂µ than the one given
above in Theorem 2.1. The following result is a crucial step in that direction as well as in the
proof of the invariance under the unstable horocycle.

For any admissible rectifiable arc γ, let Γws(γ) be the set of all rectifiable arcs obtained
projecting the arc γ under the unstable horocycle holonomy on any leaf of the weak stable
foliation of the geodesic flow. The weak stable foliation of the geodesic flow is the 2-dimen-
sional foliation tangent to the integrable distribution {X,U} in the tangent bundle of SM .
Let us recall that by the Definition 1.1 of an admissible arc, the set Γws(γ) is non-empty.

For any γws ∈ Γws(γ), let D(γws, γ) be the surface spanned by the trajectories of the
unstable horocycle flow projecting γ onto γws. The following uniform area bound holds.

L 2.5. – The area of g−tD(γws, γ) is uniformly bounded for all t > 0.

Proof. – For p ∈ γ, let τ(p) > 0 be the length of the unstable horocycle arc lying
in D := D(γws, γ). By construction the function τ : γ → R+ is continuous, hence
τγ := sup{τ(p)|p ∈ γ} < +∞. We write

(2.26) D =
⋃
p∈γ

⋃
τ∈[0,τ(p)]

hVτ (p),

whence, letting dl be the length parameter on SM , for the area of D we may write

(2.27) Area(D) =

∫
γ

τdl .

Since, by formula (2.26), for any t ∈ R,

g−tD =
⋃

p∈g−tγ

⋃
τ∈[0,e−tτ(p)]

hVτ (p),
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and, since Length(g−tγ) ≤ etLength(γ), by formula (2.27) we have

(2.28) Area(g−tD) =

∫
g−tγ

e−tτdl ≤ τγe−tLength(g−tγ) ≤ τγLength(γ) ,

thus the lemma is proved.

L 2.6. – For any µ ∈ R+, for any admissible rectifiable arc γ and any γws ∈ Γws(γ),

β̂±µ (γ) = β̂±µ (γws) .

Proof. – The surfaceD(γws, γ) is the union of all unstable horocycle arcs I such that the
boundary of I is contained in γws∪γ and the interior of I is disjoint from γws∪γ. The surface
D(γws, γ) defines by integration a current of dimension 2 (and degree 1). Let g−t(γws) and
g−t(γ) be the rectifiable arcs which are direct images of γws and γ under the diffeomorphism
g−t : SM → SM respectively. By definition the arcs g−t(γws) and g−t(γ) are respectively
the support of the currents g∗t γws and g∗t γ. By definition we have the following identity of
currents

g∗tD(γws, γ) = D(g−t(γws), g−t(γ)) .

Since the current ∂D(γws, γ) − (γ − γws) is composed of two arcs of orbits of the unstable
horocycle flow, it follows that

(2.29) ∂[g∗tD(γws, γ)]− (g∗t γ − g∗t γws) = g∗t [∂D(γws, γ)− (γ − γws)]→ 0 .

It follows from Lemma 2.5 and formula (2.29) that for any s > 7/2,

sup
t>0
‖g∗t γ − g∗t γws‖−s < +∞ ,

hence by continuity of orthogonal projections

sup
t>0
|α̂±µ,−s(γ)− α̂±µ,−s(γws)| < +∞ .

The statement now follows immediately from the definition of the currents β̂±µ in the state-
ment of Theorem 2.1.

We return to the proof of Theorem 1.1.

Additivity. It follows from the definition of β̂±µ in the statement of Theorem 2.1 and from
the linearity of projections.

Geodesic scaling. It follows immediately from the definitions in Theorem 2.1 and from the
group property of the geodesic flow. In fact, for any µ 6= 1/4,

(2.30)

β̂±µ (g−tγ) = lim
τ→+∞

α̂±µ,−s(g
∗
t+τγ)

exp( 1∓ν
2 τ)

= e
1∓ν
2 t lim

τ→+∞

α̂±µ,−s(g
∗
t+τγ)

exp( 1∓ν
2 (t+ τ))

= e
1∓ν
2 t β̂±µ (γ) .
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For µ = 1/4, the geodesic scaling properties of the current β̂−1/4 can be proved as above (as

for µ 6= 1/4), while for the current β̂+
1/4, the following holds:

(2.31)

β̂+
1/4(g−tγ) = lim

τ→+∞

(α̂+
1/4,−s + τ

2 α̂
−
1/4,−s)(g

∗
t+τγ)

exp( τ2 )

= e
t
2 lim
τ→+∞

(α̂+
1/4,−s + τ

2 α̂
−
1/4,−s)(g

∗
τγ)

exp( τ−t2 )

= e
t
2

(
β̂+

1/4(γ)− t

2
β̂−1/4(γ)

)
.

Unstable horocycle invariance. It follows from Lemma 2.6. In fact, for any admissible
rectifiable arc γ and for any t > 0, the arcs γ and hVt (γ) have common weak stable pro-
jections. In other terms, the identity Γws(γ) = Γws(h

V
t γ) holds by definition. Let then

γws ∈ Γws(γ) = Γws(h
V
t γ). By Lemma 2.6 we have:

β̂±µ (hVt γ) = β̂±µ (γws) = β±µ (γ) .

Since any rectifiable arc is a finite union of admissible rectifiable arcs and the function-
als β̂±µ are finitely additive, the property of unstable horocycle invariance extends by finite
additivity to all rectifiable arcs.

Hölder property. Let γws be any rectifiable arc contained in a weak stable manifold of the
geodesic flow and let

t = log(

∫
γws

|Û |) .

By construction the transverse lengths of the rectifiable arc γws(t) := gt(γws) satisfy the
following properties: ∫

γws(t)

|X̂| =
∫
γws

|X̂| and
∫
γws(t)

|Û | = 1 .

Thus by Theorem 2.1 and by the geodesic scaling properties of the finitely-additive mea-
sures β̂±, the following bounds hold: for all s > 9/2 there exists a constantCs > 0 such that,
for µ 6= 1/4, the following bound holds:

(2.32)
|β̂±µ (γws)| = e

1∓Re ν
2 t|β̂±µ (γws(t))|

≤ Cs

‖B±µ ‖−s
(1 +

∫
γws

|X̂|)(
∫
γws

|Û |)
1∓Re ν

2 ;

for µ = 1/4, the following bounds hold:

(2.33)

|β̂+
1/4(γws)| = e

t
2 |
(
β̂+

1/4 −
t

2
β̂−1/4

)
(γws(t))|

≤ Cs

‖B+
1/4‖−s

(1 +

∫
γws

|X̂|)(
∫
γws

|Û |) 1
2 + ;

|β̂−1/4(γws)| = e
t
2 |β̂−1/4(γws(t))|

≤ Cs

‖B−1/4‖−s
(1 +

∫
γws

|X̂|)(
∫
γws

|Û |) 1
2 .
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We recall that we adopt the notation

L
1
2 + = L

1
2 (1 + | logL|) , for all L > 0 .

Let now γ be any admissible rectifiable arc. By the SL(2,R) commutation relations, there
exists a rectifiable arc γws ∈ Γws(γ) such that

(2.34)
∫
γws

|X̂| ≤
∫
γ

|X̂|+
∫
γ

|Û |
∫
γ

|V̂ | and
∫
γws

|Û | =
∫
γ

|Û | .

It follows from estimates (2.32) and (2.34) that, for µ 6= 1/4,

|β̂±µ (γws)| ≤
Cs

‖B±µ ‖−s

(
1 +

∫
γ

|X̂|+
∫
γ

|Û |
∫
γ

|V̂ |
)(∫

γ

|Û |
) 1∓Re ν

2

,

while for µ = 1/4 (ν = 0), by estimates (2.33) and (2.34),

|β̂+
1/4(γws)| ≤

Cs

‖B+
1/4‖−s

(
1 +

∫
γ

|X̂|+
∫
γ

|Û |
∫
γ

|V̂ |
)(∫

γ

|Û |
) 1

2 +

,

|β̂−1/4(γws)| ≤
Cs

‖B−1/4‖−s

(
1 +

∫
γ

|X̂|+
∫
γ

|Û |
∫
γ

|V̂ |
)(∫

γ

|Û |
) 1

2

.

By Lemma 2.6 the above bounds immediately imply the Hölder property stated in Theo-
rem 1.1, which is therefore completely proved.

2.6. Proof of weak unstable vanishing (Corollary 1.1)

On one hand, by the geodesic scaling property of Theorem 1.1, for any rectifiable arc γ
in SM

β̂±µ (γ) = exp(−1∓ ν
2

t)β±µ (g−tγ) ;

on the other hand, for any rectifiable arc γwu contained in a weak unstable manifold for the
geodesic flow, by the Hölder property of Theorem 1.1,

|β̂±µ (g−tγwu)| ≤ Cµ
(

1 +

∫
γ

|X̂|
)
.

It follows immediately that β̂±µ (γwu) = 0 as stated.

2.7. Proof of existence of dynamical projections (Corollary 1.2)

For any r > 0, let B−r+ (SM) ⊂ Ω−r1 (SM) be the closed subspace of basic currents for the
stable horocycle foliation, supported on irreducible unitary representations of the principal
and complementary series, and let B−r+ : Ω−r1 (SM)→ B−r+ (SM) be the orthogonal projec-
tion.

By definition (see formula (2.6)), the orthogonal projection B−r+ (g∗t γ) is given by the
formula:

B−r+ (g∗t γ) =
∑

µ∈Spec(�)∩R+

α̂+
µ,−r(g

∗
t γ)B+

µ + α̂−µ,−r(g
∗
t γ)B−µ .

By Lemma 2.2 we have that, for Casimir parameters µ ∈ R+ \ {1/4},

g∗−t(B
±
µ ) = exp(−1∓ ν

2
t)B±µ ,
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while for µ = 1/4,

g∗−t

(
B+

1/4

B−1/4

)
= exp(− t

2
)

(
1 0
t
2 1

)(
B+

1/4

B−1/4

)
.

It follows then from Theorem 2.1 that the series

g∗−t B
−r
+ (g∗t γ) =

∑
µ∈Spec(�)∩R+

α̂+
µ,−r(g

∗
t γ)g∗−tB

+
µ + α̂−µ,−r(g

∗
t γ)g∗−tB

−
µ(2.35)

converges in the distributional sense as t→ +∞ to the series

B̂(γ) =
∑

µ∈Spec(�)∩R+

β̂+
µ (γ)B+

µ + β̂−µ (γ)B−µ .(2.36)

In fact, by Theorem 2.1 there exists a constant C > 0 such that, for all s ≥ r > 9/2, for all
Casimir parameter µ > 0 and for all t ∈ R+ the following bound holds:

|α̂±µ,−r(g∗t γ)|‖g∗−tB±µ ‖−s ≤ C
‖B±µ ‖−s
‖B±µ ‖−r

.

The dual Sobolev norms in the above estimate can be compared as follows: since the distri-
butions D±µ ∈ D′(Hµ) for all µ > 0, for any σ ∈ R+,

(1 + µ)
σ
2 ‖D±µ ‖−s = ‖(I + �)

σ
2D±µ ‖−s ≤ ‖D±µ ‖−s+σ .

By the Weyl asymptotics for the Laplace-Beltrami operator on a compact hyperbolic surface,
for any σ > 1,

(2.37)
∑

µ∈Spec(�)∩R+

(
1

1 + µ

)σ
< +∞ ,

hence for every s > r+ 1 > 11/2 the series in formula (2.35) is absolutely uniformly conver-
gent to the current B̂ defined in formula (2.36) in the Sobolev space of currents Ω−s1 (SM).
Finally, by the uniform convergence of the series in formula (2.36), all the properties of the
current B̂(γ) stated in the corollary (additive property, weak unstable vanishing, unstable
horocycle invariance and Hölder property) follow from the corresponding properties for the
finitely additive measures β̂±µ (γ) stated in Theorem 1.1 and Corollary 1.1.

3. Additive cocycles and limit distributions

In this section we prove our results on additive Hölder cocycles for the horocycle flow
(Theorem 1.2). We then derive the approximation theorem (Theorem 1.3) and our results
on limit distributions of ergodic integrals of the horocycle flow.

3.1. Proof of the cocycle theorem (Theorem 1.2)

Let us recall that the functions β±µ : SM × R→ C are defined in terms of the finitely
additive measures β̂±µ on rectifiable arcs. For any (x, T ) ∈ SM × R, let γU (x, T ) be the
oriented horocycle arc

γU (x, T ) := {hUt (x)|t ∈ [0, T ]} .
For every Casimir parameter µ > 0, let

β±µ (x, T ) := β̂±µ [γU (x, T )] .
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By Corollary 1.3, we derive the following approximation results for functions supported on a
single irreducible component. For functions supported on the complementary series we have

C 3.1. – For any µ ∈ (0, 1/4), there exists εµ > 0 such that the following holds.
Let f ∈W s(Hµ) (s > 11/2) be any function such that D−µ (f) 6= 0. Then

max
T∈[0,1]

∣∣∣∣∣ 1

D−µ (f) exp( 1+ν
2 t)

∫ Tet

0

f ◦ hUτ (x)dτ − β−µ (gtx, T )

∣∣∣∣∣ = O(exp(−εµt)).

Let f ∈W s(Hµ) (s > 11/2) be any function such that D−µ (f) = 0, but D+
µ (f) 6= 0. Then

max
T∈[0,1]

∣∣∣∣∣ 1

D+
µ (f) exp( 1−ν

2 t)

∫ Tet

0

f ◦ hUτ (x)dτ − β+
µ (gtx, T )

∣∣∣∣∣ = O(exp(−εµt)).

For functions supported on the principal series we have

C 3.2. – For all µ > 1/4, there exists εµ > 0 such that the following holds. For
any function f ∈W s(Hµ) (s > 11/2),

max
T∈[0,1]

∣∣∣∣ 1

exp( t2 )

∫ Tet

0

f ◦ hUτ (x)dτ − β+
µ (gtx, T )D+

µ (f) exp(−νt
2

)

− β−µ (gtx, T )D−µ (f) exp(
νt

2
)

∣∣∣∣ = O(exp(−εµt)) .

For µ = 1/4, there exists ε > 0 such that, for any f ∈W s(H1/4) (s > 11/2),

max
T∈[0,1]

∣∣∣∣ 1

exp( t2 )

∫ Tet

0

f ◦ hUτ (x)dτ − β+
1/4(gtx, T )D+

1/4(f)

− β−1/4(gtx, T )[D−1/4(f)− t

2
D+

1/4(f)]

∣∣∣∣ = O(exp(−εt)) .

We proceed with the proof of Theorem 1.2.

Cocycle property. It follows from the additivity property of the measures β̂±µ and from the
cocycle properties of horocycle arcs:

γ(x, S + T ) = γ(x, S) ∪ γ(hUS x, T ) , for all (x, S, T ) ∈ SM × R2 .

Geodesic scaling. It follows from the geodesic scaling property of the measures β̂±µ , since by
the commutation relation (1.2),

g−tγ(x, T ) = γ(g−tx, Te
t) , for all (x, T, t) ∈ SM × R2 .

Hölder property. It follows from the Hölder property of the currents β̂±µ . In fact, if
γ := γ(x, T ) is a stable horocycle arc, then∣∣∣∣∫

γ

Û

∣∣∣∣ = |T | ,
∫
γ

X̂ =

∫
γ

V̂ = 0 .

Orthogonality. Take T ∈ R. By Corollaries 3.1 and 3.2, the function β±µ (·, T ) is the uniform
limit of normalized ergodic integrals, i.e., continuous functions lying in the spaceHµ, and so
the function β±µ (·, T ) must itself belong to Hµ ⊂ L2(SM).
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3.2. Proof of the approximation theorem (Theorem 1.3)

For all rectifiable arcs γ ⊂ SM and for all Casimir parameters µ > 0, let B̂µ(γ) ∈ B−sU (SM)

be the basic current defined as follows:

B̂µ(γ) := β̂+
µ (γ)B+

µ + β̂−µ (γ)B−µ .

It follows from the bounds (2.11) and (2.12) in Theorem 2.1 that, for any r > 9/2 there exists
a constant Cr > 0 such that, for all t ≥ 0,

‖( B−rµ ◦ g∗t )(γ)− (B̂µ ◦ g∗t )(γ)‖−r ≤ Cr(1 +

∫
γ

|X̂|+ e−t
∫
γ

|V̂ |) .

By Lemma 2.4 and from the splitting formula (2.14) there exists a constantC ′r > 0 such that,
for all t ≥ 0,

‖( B−rµ ◦ g∗t )(γ)− (Π−rµ ◦ g∗t )(γ)‖−r ≤ C ′r(1 +

∫
γ

|X̂|+ e−t
∫
γ

|V̂ |) .

It follows that for any σ > 1 there exists a constant C ′′r > 0 such that

‖(Π−sµ ◦ g∗t )(γ)− (B̂µ ◦ g∗t )(γ)‖−(r+σ) ≤
C ′′r

(1 + µ)
σ
2

(1 +

∫
γ

|X̂|+ e−t
∫
γ

|V̂ |) .

Let γ+ denote the projection of the current γ onto the components of the principal and com-
plementary series. By the Weyl asymptotics formula (2.37) holds, hence by orthogonality, for
any s > r + 1, there exists Cs > 0 such that

(3.1) ‖g∗t (γ+)− (B̂ ◦ g∗t )(γ)‖−s ≤ Cs(1 +

∫
γ

|X̂|+ e−t
∫
γ

|V̂ |) .

From the bound (3.1) we obtain Theorem 1.3 by taking t = 0. In fact, for any 1-form
λ ∈ Ωs1(SM) (s > 11/2) supported on the irreducible components of the principal and com-
plementary series we have∣∣∣∣∫

γ

λ− B̂λ(γ)

∣∣∣∣ = |<γ+ − B̂(γ), λ>| ≤ Cs‖λ‖s(1 +

∫
γ

|X̂|+
∫
γ

|V̂ |) .

The proof is complete.

3.3. Proof of the limit theorems: complementary series (Theorem 1.4)

We now assume that our hyperbolic surface admits complementary series, that is, the
spectrum of the Laplace operator has eigenvalue in the open interval (0, 1/4). Let s > 11/2

and consider smooth functions with non-trivial projection on the complementary series
components. Let µf ∈ (0, 1/4) be the smallest Casimir parameter appearing (non-trivially)
in the decomposition of a zero-average function f ∈ C∞(SM). Let νf :=

√
1− 4µf .

Let H1, . . . ,Hk ⊂ L2(SM) be the collection of all irreducible components of Casimir pa-
rameters µ1 = · · · = µk = µf and let {D±1 , . . . , D

±
k } be the basis of eigenvectors of the

geodesic flow of the space of invariant distributions supported on W s(H1 ⊕ · · · ⊕Hk) and
let β±, . . . , β±k : SM × R→ C be the corresponding cocycles for the horocycle flow.

The main step in the proof is the following approximation lemma which immediately
follows from the approximation theorem (Theorem 1.3).
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L 3.1. – There exists α > 0 such that the following holds. For every s > 11/2 there
exists a constant Cs > 0 such that, for every function f ∈ W s(SM) of zero average, for all
(x, T ) ∈ SM × R and t > 0,∣∣∣∣∣ 1

e
1+νf

2 t

∫ Tet

0

f ◦ hUτ (x)dτ −
k∑
i=1

D−i (f)β−i (gtx, T )

∣∣∣∣∣ ≤ Cs‖f‖se−αt .
The cocycles β−1 , . . . , β

−
k (in fact, all cocycles β±µ ) have zero average but are not identically

zero on SM . It follows that, for all i ∈ {1, . . . , k}, we have

‖β−i (·, T )‖ 6= 0 , for all T ∈ R \ {0} .

By the orthogonality property of Theorem 1.2, the random variables

β−1 (·, T ), . . . , β−k (·, T )

are orthogonal (uncorrelated). By Lemma 3.1, for any s > 11/2 and for any function
f ∈W s(SM) of zero average such that (D−1 (f), . . . , D−k (f)) 6= (0, . . . , 0), we have

(3.2)

∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥Te
t∫

0

f ◦ hUt (x) dt

∥∥∥∥∥
e

1+νf
2 t
(∑k

i=1 |D
−
i (f)|2‖β−i (·, T )‖2

)1/2
− 1

∣∣∣∣∣∣∣∣∣∣
≤ Cse−αt .

Finally, by Lemma 3.1 and by definition of the Lévy-Prohorov metric [3], for all T ∈ [0, 1]

and all t > 0, we have

(3.3) dLP (Mt(f, T ), Pcp(f, T )) ≤ Cs‖f‖se−αt .

The theorem is proved.

3.4. Proof of the limit theorems: principal series (Theorem 1.5)

We turn next to limit theorems for functions supported on the principal series. We prove
our main theorem (Theorem 1.5) on the asymptotics of probability distributions of normal-
ized ergodic integrals and derive our conditional results on the uniqueness of the limit dis-
tributions (Corollary 1.4 and Corollary 1.5).

Let us recall that, by construction, for any Casimir parameter µ > 1/4,

D−µ = D+
µ and β−µ = β+

µ .

It follows that for any real-valued function f ∈W s(Hµ),

βf (x, T ) = Re[D+
µ (f)β+

µ (x, T )] , for all (x, T ) ∈ SM × R .

Let {µn} be the sequence of Casimir parameter in the interval (1/4,+∞) (listed with multi-
plicities), let {D±µn} denote the sequence of normalized horocycle invariant distributions and
let {β±µn} denote the corresponding sequence of additive Hölder cocycles. For any sequence
z ∈ `1(N,C), let βz : SM × R → R be the Hölder additive cocycle for the horocycle flow
defined as follows:

(3.4) βz := Re[
∑
n∈N

znβ
+
µn ] =

∑
n∈N

(znβ
+
µn + z̄nβ

−
µn) .
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It follows from Theorem 1.2, in particular from the uniform bound on additive cocycles given
in the Hölder property, that the series in formula (3.4) is convergent for any z ∈ `1(N,C),
hence the additive cocycle βz is well-defined. By the orthogonality property of the sys-
tem {β+

µn} of additive cocycles, it follows that, for any z ∈ `1(N,C) \ {0}, the zero-average
function βz(·, T ) is non-constant, hence

‖βz(·, T )‖ 6= 0 , for all T > 0 .

Let s > 11/2. For any real-valued function f ∈W s(SM) supported on irreducible compo-
nents of the principal series, we have

βf (x, T ) = Re[
∑
n∈N

D+
µn(f)β+

µn(x, T )] , for all (x, T ) ∈ SM × R .

Theorem 1.5 follows from the following lemma that can in turn be derived from the approx-
imation theorem (Theorem 1.3). For all n ∈ N, let υn :=

√
4µn − 1 ∈ R+.

L 3.2. – For every s > 11/2 there exists Cs > 0 such that, for any real-valued
function f ∈W s(Hµ) supported on irreducible components of the principal series, for all
(x, T ) ∈ SM × R and t > 0, we have∣∣∣∣∣ 1

e
t
2

∫ Tet

0

f ◦ hUτ (x)dτ − Re[
∑
n∈N

D+
µn(f)e

iυnt
2 β+

µn(gtx, T )]

∣∣∣∣∣ ≤ Cs‖f‖se− t2 .
By Theorem 1.5 for real-valued functions supported on the principal series limit distri-

butions exist along time sequences such that the orbit of the toral translation of frequency
υ/2 ∈ R∞ on the infinite torus T∞ converges. Conjecturally the limit does not exist other-
wise. However, for no function and no time sequence we are able to prove that the limit dis-
tribution fails to exist. Nevertheless, as a straightforward consequence of Theorem 1.5, we
derive the following result.

C 3.3. – Let f ∈ C∞(SM) be any real-valued function supported on the irre-
ducible components of the principal series. If the family of probability distributionsMt(f, T )

has a (unique) limit as t→ +∞ for some T ∈ [0, 1], then for all T ∈ [0, 1] the family of prob-
ability distributions Ppr(f, ·, T ) is constant on any minimal set of the linear flow of frequency
υ/2 ∈ R∞ on the infinite torus T∞.

Finally, Corollary 1.4 and Corollary 1.5 follow from the above Corollary 3.3 and, respec-
tively, from Lemma 5.8 and Lemma 5.9 in §5.4.

By Lemma 5.2, proved in §5.3, for every n ∈ N there exists θ∗n ∈ T such that the cocycle
βn := eiθ

∗
nβ+

µn has the property that, for all T ∈ R,

(3.5) <βn(·, T ), βn(·, T )> = e2iθ∗n<β+
µn(·, T ), β−µn(·, T )> ∈ R+ .

Let us assume that there exists a real-valued function f ∈W s(SM) supported on finitely
many irreducible components H1, . . . ,Hm of the principal series with the following prop-
erties: none of the projections of f onto the irreducible components H1, . . . ,Hm is a
coboundary and, for some T > 0, the probability distribution Ppr(f, ·, T ) is constant on
a d-dimensional subtorus of the infinite dimensional torus T∞. If the Casimir spectrum is
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simple on H1 ⊕ · · · ⊕Hm, then there exist distinct integral vectors v(1), . . . , v(m) ∈ Rd such
that the probability distribution of the random variables

(3.6)
Re[
∑m
k=1 |D

+
k (f)|ei<v(k),θ>βk(·, T )]

‖Re[
∑m
k=1 |D

+
k (f)|ei<v(k),θ>βk(·, T )]‖

does not depend on θ ∈ Td. By formula (3.5), we have

(3.7)
A2
k := ‖Reβk(·, T )‖2 > B2

k := ‖Imβk(·, T )‖2 ,
<Reβk(·, T ), Imβk(·, T )> = 0 .

Thus by the orthogonality property, a calculation yields

(3.8) ‖Re[

m∑
k=1

|D+
k (f)|ei<v

(k),θ>βk(·, T )]‖20 =

m∑
k=1

|D+
k (f)|2(A2

k cos2<v(k), θ>+B2
k sin2<v(k), θ>) ,

hence Lemma 5.8 and Lemma 5.9 in §5.4 do apply to the family of probability distributions
in formula (3.6). Corollary 1.4 and Corollary 1.5 follow.

4. Duality and classification

In this section we prove the duality theorem (Theorem 1.7) and we derive the classification
theorem for finitely-additive measures on rectifiable arcs (Theorem 1.8). We conclude with a
short discussion of the relations between finitely additive measures on rectifiable arcs and the
induced cocycles for the horocycle flow on one hand, and invariant conformal distributions
on the boundary of the Poincaré disk (see [9]).

4.1. Proof of the duality theorems (Theorem 1.6 and Theorem 1.7)

Recall that any 1-dimensional, finitely-additive measures can be naturally interpreted as
currents of dimension 2 (and degree 1).

L 4.1. – For any 1-dimensional, finitely-additive measure β̂ ∈ B̂V (SM) there exists
a V -invariant distribution D̂β ∈ I V (SM) such that we have the following identity of currents:

β̂ = D̂β ∧ Û .

Proof. – Let β̂ ∈ BV (SM). We recall that the 2-dimensional current β̂ is defined by
Riemann integration as follows: for all smooth 2-form η ∈ Ω∞2 (SM),

(4.1) <β̂, η> :=

∫
SM

β̂ ⊗ η .

By the weak unstable vanishing property (property (2) in Definition 1.2), the current β̂ has
zero contraction on the vector fields X, V . In fact, for any smooth 3-form ω on SM , the

4 e SÉRIE – TOME 47 – 2014 – No 5



LIMIT THEOREMS FOR HOROCYCLE FLOWS 885

restrictions of the 2-forms ıXω and ıV ω to any leaf of the weak unstable foliation (tangent
to the integrable distribution {X,V }) vanish. It follows that, for all smooth 3-formω onSM ,

<ıX β̂, ω> =

∫
SM

β̂ ⊗ ıXω = 0 ;

<ıV β̂, ω> =

∫
SM

β̂ ⊗ ıV ω = 0 .

Since the dual forms {X̂, Û , V̂ } yield a frame of the cotangent bundle, it follows from the
identities ıX β̂ = ıV β̂ = 0, that there exists a distribution D̂β ∈ D′(SM) such that

(4.2) β̂ = D̂β ∧ Û .

In fact, any current of dimension 2 and degree 1 can be written as a linear combination of
the 1-forms {X̂, Û , V̂ } with distributional coefficients.

We claim that the distribution D̂β is V -invariant. By the property of unstable horocycle
invariance (property (3) in Definition 1.2) the current β̂ = D̂β ∧ Û is invariant under the
unstable horocycle flow {hVt }, hence

(4.3) 0 = LV (D̂β ∧ Û) = ( LV D̂β) ∧ Û + D̂β ∧ ( LV Û) .

A straightforward calculation yields LV Û = 0. Indeed, first write

LV Û = ıV dÛ + dıV Û = ıV dÛ .

By a standard formula, for any pair of vector fields W1, W2, we have

dÛ(W1,W2) = W1Û(W2)−W2Û(W1)− Û([W1,W2]) .

Recall that U , being the infinitesimal generator of the stable horocycle, satisfies the commu-
tation relation [X,U ] = U (see (1.1)), whence

dÛ(X,U) = 1 and dÛ(X,V ) = dÛ(U, V ) = 0 .

We have derived the identity

(4.4) dÛ = −X̂ ∧ Û ,

which implies that LV Û = ıV dÛ = 0, as stated.

Formula (4.3) then implies that LV D̂β ∧ Û = 0, hence LV D̂β = 0, that is, the distribu-
tion D̂β is V -invariant.

We now complete the proof of the duality theorem (Theorem 1.7). By Theorem 1.1 and
by Corollary 1.1, the measures β̂±µ belong to the space B̂V (SM). By Lemma 4.1, there exist
V -invariant distributions D̂±µ ∈ I V (SM) such that

β̂±µ = D̂±µ ∧ Û .

Finally we prove that the V -invariant distributions D̂±µ are eigenvectors for the action of the

geodesic flow. An immediate computation yields

g∗t (Û) = e−tÛ , for all t ∈ R .
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By Theorem 1.1, for µ 6= 1/4, we have the following identity of currents

g∗t (β̂±µ ) = exp(−1∓ ν
2

t)β̂±µ , for all t ∈ R ,

while for µ = 1/4 (ν = 0) and all t ∈ R, we have

g∗t

(
β̂+

1/4

β̂−1/4

)
= exp(− t

2
)

(
1 t

2

0 1

)(
β̂+

1/4

β̂−1/4

)
.

It follows that, for µ 6= 1/4,

g∗t D̂
±
µ = exp(

1± ν
2

t)D̂±µ , for all t ∈ R ,

and finally, for µ = 1/4 and all t ∈ R,

g∗t

(
D̂+

1/4

D̂−1/4

)
= exp(

t

2
)

(
1 t

2

0 1

)(
D̂+

1/4

D̂−1/4

)
.

The proof of the duality theorem is complete.

R 4.1. – Note that the currents β̂±µ are not closed. In fact, for all µ 6= 1/4 we have

(4.5) dβ̂±µ =
(1∓ ν)

2
β̂±µ ∧ X̂

and, for µ = 1/4 (ν = 0), we have

(4.6) d

(
β̂+

1/4

β̂−1/4

)
=

1

2

(
1 −1

0 1

)(
β̂+

1/4

β̂−1/4

)
∧ X̂ .

Proof. – By (4.4), since D̂±µ are V -invariant distributions, for µ 6= 1/4 we have

(4.7)
d(D̂±µ ∧ Û) = dD̂±µ ∧ Û + D̂±µ ∧ dÛ

= ( LXD̂±µ − D̂±µ )X̂ ∧ Û =
(1∓ ν)

2
(D̂±µ Û) ∧ X̂ ,

which is precisely formula (4.5). Similarly, for µ = 1/4,

(4.8)
d(D̂+

1/4 ∧ Û) = ( LXD̂+
1/4 − D̂

+
1/4)X̂ ∧ Û = (

1

2
D+

1/4Û −
1

2
D−1/4Û) ∧ X̂ ,

d(D̂−1/4 ∧ Û) = ( LXD̂−1/4 − D̂
−
1/4)X̂ ∧ Û =

1

2
(D̂−1/4Û) ∧ X̂ ,

which yields formula (4.6).

4.2. Proof of the classification theorem (Theorem 1.8)

By Lemma 4.1, for any β̂ ∈ B̂V (SM) there exists a V -invariant distribution D̂β ∈ I V (SM)

such that the following identity holds in the sense of currents:

β̂ = D̂β ∧ Û .
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By the Hölder property (property (4) in Definition 1.2), there exist α > 0 and a con-
stant C > 0 such that for any rectifiable arc γ of length not exceeding 1 we have

|β̂(gtγ)| ≤ Ce−αt , for all t ∈ R .

It follows by the above formulas that for all s > 3/2 there exists Cs > 0 such that

(4.9) ‖g∗t D̂β‖−s ≤ Cse(1−α)t , for all t ∈ R .

The results of [12] yield a complete classification of all U -invariant and, equivalently, of
all V -invariant distributions by constructing a basis of generalized distributional eigen-
vectors for the action of geodesic flow on IU (SM) and I V (SM). For any V -invariant
distribution Dµ supported on an irreducible subrepresentation of the discrete series of
Casimir parameter µ = −n2 + n (n ∈ Z+), the action of the geodesic flow is given by the
formula (see [12])

g∗t D̂µ = entD̂µ , for all t ∈ R ,

which is not compatible with the bound in formula (4.9) for t > 0 large. It follows that the
distribution D̂β ∈ I V (SM) is supported on irreducible unitary subrepresentations of the
principal and complementary series.

By the duality theorem, for any s > 3/2, there is a bounded (in fact, isometric) linear

map I from the span B̂
s

+(SM) of the system

{β̂±µ |µ ∈ Spec(�) ∩ R+} ⊂ Ω−s2 (SM)

into the Sobolev space W−s(SM). The map I is defined as follows. For a current β̂±µ ∈ B̂
s

+(SM)

introduce a current

I (β̂±µ ) = X̂ ∧ β̂±µ ∧ V̂ .
It is immediate from the definitions of the Sobolev norms that the map I is isometric on the
system {β̂±µ |µ ∈ Spec(�) ∩ R+} with respect to the Sobolev norms on the space Ω−s2 (SM)

of 2-dimensional currents into the spaceW−s(SM) of distributions, hence it can be extended

by linearity and continuity to an isometry defined on the space B̂
s

+(SM). We claim that
the range of the isometry I coincides with the space I sV,+(SM) of all V -invariant distri-
butions supported on the principal and complementary series. In fact, the map I is injec-
tive, hence by a dimension argument it is also surjective from the finite dimensional space
B̂
s

µ(SM) := B̂
s

+(SM) ∩ Ω−s2 (Hµ) onto the space I sV,µ(SM) := I V (SM) ∩W−s(Hµ), for
any fixed Casimir parameter µ ∈ Spec(�) ∩ R+.

We can thus conclude that, since for every functional β̂ ∈ BV (SM), the distribution

D̂β ∈ I sV,+(SM) and since the isometry I maps B̂
s

+(SM) onto I sV,+(SM), the image

BsV (SM) of the space BV (SM) in Ω−s(SM) coincide with the span B̂
s

+(SM) of the
system {β̂±µ |µ ∈ Spec(�) ∩ R+}, as stated.

4.3. Γ-invariant conformal distributions

We now describe the relation between the finitely additive measures β̂±µ (lifted to the
Lobachevsky plane) and the Γ-invariant conformal distributions on the boundary of the
Poincaré disk.
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Let L denote the Lebesgue measure on the circle S1 seen as the boundary of the Poincaré
disk D. Given a Fuchsian group Γ, let

ρg =
dg−1 L
d L

, g ∈ Γ

be the Radon-Nikodym multiplicative coycle for the action of Γ on (S1, L).

Given any complex number σ ∈ C, following S. Cosentino [9] we let Γ D′σ(S1) be the
space of Γ-invariant conformal distributions with exponent σ, that is, those distributions
φ ∈ D′(S1) such that

gφ = ρ−σg · φ , for any g ∈ Γ.

As explained in [9], there is a natural (linear) identification between Γ-invariant conformal
distributions of exponent σ ∈ C and invariant distributions for the stable [unstable] horocy-
cle on the quotient Γ\PSL(2,R) which are eigenvectors of the geodesic flow of eigenvalue
σ − 1 [1− σ].

In fact, let hU , hV denote the stable, resp. unstable horocycle subgroups of PSL(2, R).
To any U -invariant [V -invariant] distribution DU [DV ] on the space Γ\PSL(2,R) there
corresponds a Γ-invariant distribution D̃U [D̃V ] on the space of stable [unstable] horocycles
PSL(2,R)/hU [PSL(2,R)/hV ] (by the so-called KAN decomposition of PSL(2,R) such
space can be identified with the space KA). If DU [DV ] is also an eigenfunction of the
geodesic flow of eigenvalue σ−1 [1−σ], by the natural identificationKA ≡ S1×R one can
write

D̃U = φU ⊗ eσtdt and D̃V = φV ⊗ e−σtdt

(the parameter t ∈ R denotes the geodesic arc-length) for some distributions φU , φV ∈ D′(S1).
This decomposition follows from the fact that the Lebesgue measure is the only trans-
lation invariant distribution on R up to constant factors. It can be checked that φU and
φV ∈ Γ D′σ(S1) since D̃U and D̃V are Γ-invariant.

Conversely, given φ ∈ Γ D′σ(S1) one can check that φ⊗ eσtdt is a Γ-invariant distribution
on KA ≡ S1 × R, hence a Γ-invariant distribution on the space of stable [unstable] horocy-
cles, PSL(2,R)/hU [PSL(2,R)/hV ] (which can both be identified to KA). It follows that
the distribution

(4.10) φ⊗ eσtdt⊗ dhU [φ⊗ e−σtdt⊗ dhV ] ,

appropriately defined on PSL(2,R), is Γ-invariant, hU -invariant [hV -invariant] and projects
to a hU -invariant [hV -invariant] distribution Dφ

U [Dφ
V ] on the manifold Γ\PSL(2,R). By

Fubini theorem for distributions, it follows that

g∗t (Dφ
U ) = e(σ−1)tDφ

U , and g∗t (Dφ
V ) = e(1−σ)tDφ

V ,

that is, Dφ
U [Dφ

V ] is an eigenvector for the geodesic flow of eigenvalue σ − 1 [1− σ].

Cosentino (see [9], Prop. 1.2) proves the following result:

L 4.2. – If σ(1− σ) ∈ R+ \ {1/4} is a Casimir parameter, the map

φ→ Dφ
U := φ⊗ eσtdt⊗ dhU [φ→ Dφ

V := φ⊗ e−σtdt⊗ dhV ]
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defines a linear isomorphism of the space Γ D′σ(S1) of Γ-invariant conformal distributions of
exponent σ ∈ C onto the spaces I σU [ I σV ] of U -invariant [V -invariant] distributions, which
are eigenvectors of eigenvalue σ − 1 [1− σ] with respect to the action of the geodesic flow.

Cosentino then derives a regularity result for invariant distribution from a theorem of
J. P. Otal on the Poisson-Helgason transform.

T 4.1 ([9], Cor. 1.4). – If σ(1−σ) ∈ R+\{1/4} is a Casimir parameter, the space
Γ D′σ(S1) ⊂ CRe(σ)−1(S1), hence I σ ⊂ CRe(σ)−1(Γ\PSL(2,R)).

(Let Cα(S1) be the space of all Hölder functions of exponent α ∈ (0, 1). Let Cα−1(S1)

denote the space of all distributions in D′(S1) which are locally derivatives of functions
in Cα(S1).)

In the exceptional case µ = 1/4, the above construction yields a 1-dimensional subspace
of the 2-dimensional space of U -invariant [V -invariant] distribution, that is, the subspace of
distributional eigenvectors for the geodesic flow. Cosentino [9] proves that a second indepen-
dent distribution can be constructed as follows.

L 4.3. – For any Γ-invariant conformal distribution φ ∈ Γ D′1/2(S1), there exists a
distribution φ′ ∈ Cα−1(S1) for any α < 1/2 such that the distribution

(4.11)
Dφ,−
U :=

(
φ′ ⊗ e t2 dt− φ⊗ t

2
e
t
2 dt

)
⊗ dhU ,

[Dφ,+
V :=

(
φ′ ⊗ e− t2 dt+ φ⊗ t

2
e−

t
2 dt

)
⊗ dhV ]

is Γ-invariant and U -invariant [V -invariant] on PSL(2,R), hence it projects to a U -invariant
[V -invariant] distribution on the manifold Γ\PSL(2,R).

The distribution φ′ is constructed in [9] as the inverse Poisson-Helgason transform (the
boundary value) of the function on the Poincaré disk D given by the pairing of the distribu-
tion φ ∈Γ D′1/2(S1) with the function on S1 defined as P (z, ·)1/2 logP (z, ·) in terms of the
Poisson kernel P on D × S1.

Let φ ∈ Γ D′1/2(S1) be a Γ-invariant conformal distribution of exponent 1/2 and

let Dφ,+
U ∈ I 1/2

U [Dφ,−
V ∈ I 1/2

V ] be the U -invariant [V -invariant] distribution defined as
in formula (4.10). A direct calculation shows that formula (1.5) holds for the distributional
vector (D+

1/4, D
−
1/4) := (Dφ,+

U , Dφ,−
U ) [formula (1.24) holds for the distributional vector

(D̂+
1/4, D̂

−
1/4) := (Dφ,+

V , Dφ,−
V )].

4.4. Proof of the correspondence (Theorem 1.9)

By Theorem 1.7 there exist V -invariant distributions D̂±µ , which are eigenvectors of eigen-
values (1± ν)/2 for the geodesic flow, such that the following identities hold on SM , hence
on PSL(2,R):

dt ∧ β̂±µ ∧ dhV = D̂±µ .

(We remark that the distributions D̂±µ are here identified with currents of degree 3 and
dimension 0, acting on functions, and the 1-dimensional finitely-additive measures β±µ to
currents of degree 1 and dimension 2, acting on 2-forms.)
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By Lemma 4.2, it follows that, for µ 6= 1/4, there exist Γ-invariant conformal distribu-
tions φ±µ of exponent σ± := 1− (1± ν)/2 = (1∓ ν)/2 such that

D̂±µ = dt⊗ β̂±µ ⊗ dhV = dt ∧ β̂±µ ∧ dhV = φ±µ ⊗ e−
1∓ν
2 tdt⊗ dhV ;

for µ = 1/4 there exist a Γ-invariant conformal distribution φ of exponent 1/2 and a distri-
bution φ′ ∈ Cα−1(S1), for all α < 1/2, such that

D̂+
1/4 = dt⊗ β̂+

1/4 ⊗ dh
V = φ′ ⊗ e− t2 dt⊗ dhV + φ⊗ t

2
e−

t
2 dt⊗ dhV ,

D̂−1/4 = dt⊗ β̂−1/4 ⊗ dh
V = φ⊗ e− t2 dt⊗ dhV .

The statement of the theorem follows immediately.

5. Proofs of technical lemmas

5.1. Outline of the section

In § 5.2 we prove the key estimate on coboundaries stated in Lemma 2.4. In § 5.3 we
compute the L2 inner products of the additive cocycles coming from a single irreducible
component of the principal series and establish a non-vanishing result (Lemma 5.2). In §5.4
we prove a couple of results on rotationally invariant measures (up to affine transformations)
on complex Euclidean spaces (Lemma 5.7 and Lemma 5.8 ). These results hold for the
probability distributions of additive cocycles coming from irreducible components of the
principal series by the above-mentioned non-vanishing result (Lemma 5.2 of §5.3) and are
motivated by the conditional results on the existence of limit distributions (Corollary 1.4 and
Corollary 1.5 in §3).

5.2. Estimates on coboundaries

We prove below the key Lemma 2.4 which is part of the proof of Theorem 2.1 in §2. The
subspace Ker( I−sU (Hµ)) is closed in W s(Hµ) and we introduce the orthogonal projection

P sµ : W s(Hµ)→ Ker( I−sU (Hµ)) .

As above let ν =
√

1− 4µ. Let sµ := (1+|Reν|)/2, that is, sµ = (1+ν)/2 for 0 < µ < 1/4;
sµ = 1/2 for µ ≥ 1/4 and sµ = n for µ = −n2 + n.

L 5.1. – For any non-trivial irreducible unitary representation of Casimir parameter
µ ∈ R \ {0} and for any s ≥ r > sµ there exists a constant Cr,s(µ) > 0 such that the following
holds. For any f ∈W s(Hµ) we have

‖P sµf‖r ≤ Cr,s(µ)‖f‖r.

For any µ0 > 1/4 and for all s ≥ r > 1/2, there exists a constant Cr,s(µ0) > 0 such that, for
all µ ≥ µ0 and for all f ∈W s(Hµ),

‖P sµf‖r ≤ Cr,s(µ0)‖f‖r.
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Proof. – Consider first the case of the principal and the complementary series. Let
χ±µ (s) ∈ (Ker( I−sU (Hµ))s)⊥ ⊂W s(Hµ) be functions such that

(5.1)
D+
µ (χ+

µ (s)) = D−µ (χ−µ (s)) = 1 ,

D+
µ (χ−µ (s)) = D−µ (χ+

µ (s)) = 0 .

Such functions exist since {D+
µ , D

−
µ } is a basis for I−sU (Hµ) and, by definition of the

space Ker( I−sU (Hµ)), the functionals D±µ induce linearly independent functionals on the

2-dimensional quotient space W s(Hµ)/Ker( I−sU (Hµ)). In fact, take a pair of functions
{χ+, χ−} ⊂ W s(Hµ) which project onto a dual basis of {D+

µ , D
−
µ } under the projection

W s(Hµ) → W s(Hµ)/Ker( I−sU (Hµ)) and define χ±µ (s) as the orthogonal projections onto

Ker( I−sU (Hµ))⊥ ⊂W s(Hµ) of χ± respectively. By construction we have

(5.2) P sµf = f −D+
µ (f)χ+

µ (s)−D−µ (f)χ−µ (s).

Indeed, by formula (5.1) the right hand side of the formula clearly belongs to the kernel of
both D±µ and, besides, if P sµf is defined by (5.2), then we clearly have f − P sµf ⊥ Ker( I−sU (Hµ)).
It follows that for any sµ < r ≤ s and for any function f ∈W s(Hµ) the following bound
holds:

‖P sµf‖r ≤ ‖f‖r + ‖χ+
µ (s)‖r‖D+

µ ‖−r‖f‖r + ‖χ−µ (s)‖r‖D−µ ‖−r‖f‖r,
and, since ‖χ±µ (s)‖r < +∞ for any r ≤ s andD±µ ∈W−r(Hµ) for r > sµ ([12], Theorem 1.1
or Theorem 3.2), the proof is complete for the principal and the complementary series.

The proof for the discrete series is similar, in fact simpler, since in each irreducible com-
ponent of the discrete series there is only one invariant distribution Dµ (up to constant
factors), and we only need one smooth function χµ(s) such that Dµ(χµ(s)) = 1 and
χµ(s) ⊥ Ker( I−sU (Hµ)). We then write P sµf = f −Dµ(f)χµ(s), and the rest of the proof is
identical.

It remains to be proved that the family of projection operators P sµ extends to a uniformly
bounded family of operators on W r(Hµ) for µ ≥ µ0 > 1/4.

As observed in the proof of Lemma 5.1 in [12], if the Casimir parameter µ ≥ µ0 > 1/4,
for any r > 1, the distortion in W−r(SM) of the system of distributions {D+

µ , D
−
µ } stays

bounded above (in other terms, the angle in W−r(SM) between D+
µ and D−µ stays bounded

below), and in fact this bound is uniform with respect to r > 1. Hence there exists a constant
Cr,s(µ0) > 0 such that, for all r > 1,

‖χ±µ (s)‖r ≤ Cr,s(µ0)/‖D±µ ‖−r .

The above argument then yields the uniform bound on the norm of the operators
P sµ : W r(Hµ)→ Ker( I−rU (Hµ)) for µ ≥ µ0 > 1/4.

Let us recall that we have defined R−s : Ω−s1 (SM)→ B−sU (SM)⊥ as the orthogonal pro-
jection onto the orthogonal complement of the subspace of basic currents for the stable horo-
cycle. For any irreducible component Hµ ⊂ L2(SM), of Casimir parameter µ ∈ R \ {0},
we have defined Π−sµ : Ω−s1 (SM)→ Ω−s1 (Hµ) as the orthogonal projection onto the corre-

sponding Sobolev space. We have then defined R−sµ = Π−sµ ◦ R−s : Ω−s1 (SM)→ B−sU (Hµ)⊥

as the orthogonal projection onto the orthogonal complement of the subspace of basic cur-
rents in Ω−s1 (Hµ).
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Proof of Lemma 2.4. – The argument is similar to the proof of Lemma 5.5 in [12].
By Hilbert space theory, any current R−s ∈ B−sU (SM)⊥ ⊂ Ω−s1 (SM) (orthogonal to the

subspace of basic currents) has the following property:

(5.3) R−s(λ) = 0 , for any λ ∈ [Ker( B−sU (Hµ))]⊥ .

In fact, the Hilbert space Ω−s1 (Hµ) is defined as the dual space Ωs1(Hµ)∗, which in turn is
isomorphic to Ωs1(Hµ). Thus we have

Ker(S⊥) = [Ker(S)]⊥ , for any subspace S ⊂ Ω−s1 (Hµ) .

It follows that Ker[ B−sU (Hµ)⊥] = [Ker( B−sU (Hµ))]⊥ , hence, in particular,

R−s ∈ B−sU (Hµ)⊥ = Ker[Ker( B−sU (Hµ))]⊥ .

By the characterization of basic currents for the stable horocycle flow given by Lemma 2.1,
the kernel Ker( B−sU (Hµ)) can be described as follows:

(5.4) Ker( B−sU (Hµ)) := {λ = λXX̂ + λU Û + λV V̂ |λU ∈ Ker( I−sU (Hµ))} .

By the definition of the Hilbert structure of the space Ωs1(SM) ≡W s(SM)3, it follows that
the orthogonal projection Πs

µ : Ωs1(Hµ) → Ker( B−sU (Hµ)) can be written in terms of the

orthogonal projection P sµ : W s(Hµ)→ Ker( I−sU (Hµ)):

(5.5) Πs
µ(λ) = Πs

µ(λXX̂ + λU Û + λV V̂ ) = λXX̂ + P sµ(λU )Û + λV V̂ .

For any λ ∈ Ωs1(Hµ), since by definition B−s(γ) ◦ Πs
µ = 0, by definition of R−sµ (γ) and

by the vanishing established in formula (5.3),

(5.6) R−sµ (γ)(λ) = ( R−s(γ) ◦Πs
µ)(λ) = γ(Πs

µ(λ)) .

By [12], Theorem 4.1, since P sµ(λU ) ∈ Ker( I−sU (Hµ)), there exists a unique solution
fλ ∈W r(Hµ) (for all r < s− 1) of the cohomological equation

Ufλ = P sµ(λU ).

Moreover, for any sµ < r ≤ s and any ρ < r − 1, we have fλ ∈W ρ(Hµ), and there exists a
constant Cρ,r, depending only on ρ, r such that we have

(5.7) ‖fλ‖ρ ≤ Cρ,r‖P sµ(λU )‖r .

Thus by Lemma 5.1 we can conclude that for all Casimir parameters µ 6= 0, for any
sµ < r ≤ s and any ρ < r − 1, there exists Cs,ρ,r(µ) > 0 such that

(5.8) ‖fλ‖ρ ≤ Cs,ρ,r(µ)‖λU‖r ≤ Cs,ρ,r(µ)‖λ‖r
and that for any µ0 > 1/4 and for 1/2 < r ≤ s and any ρ < r − 1 there exists a constant
Cs,ρ,r(µ0) > 0 such that, for all µ ≥ µ0,

(5.9) ‖fλ‖ρ ≤ Cs,ρ,r‖λU‖r ≤ Cs,ρ,r(µ0)‖λ‖r .

Let x, y ∈ SM be the endpoints of the arc γ. By the formula

dfλ = XfλX̂ + UfλÛ + V fλV̂ ,

it follows that the following identity holds:

(5.10) γ(Πs
µ(λ)) = γ[(λX −Xfλ)X̂ + (λV − V fλ)V̂ ] + fλ(y)− fλ(x) .
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The above identity yields the following estimate:

|γ(Πs
µ(λ))| ≤ (‖λX‖∞ + ‖λV ‖∞ + ‖dfλ‖∞)

(∫
γ

|X̂|+
∫
γ

|V̂ |
)

+ 2‖fλ‖∞ .

By the Sobolev Embedding Theorem, for any ρ ∈ (5/2, s − 1), there exists a positive
constant Cρ(M) depending only on M such that

‖fλ‖∞ + ‖dfλ‖∞ ≤ Cρ(M)‖fλ‖ρ.

We thus obtain that for any s ≥ r > 7/2 and for all Casimir parameters µ > 0 there esists a
constant Cr,s(µ) > 0 such that, for all λ ∈ Ωs1(Hµ),

|R−sµ (γ)(λ)| = |γ(Πs
µ(λ))| ≤ Cr,s(µ)

(
1 +

∫
γ

|X̂|+
∫
γ

|V̂ |
)
‖λ‖r ;

for any s ≥ r > 7/2 and for any µ0 > 1/4, there exists a constant Cr,s(µ0) > 0 such that,
for all µ ≥ µ0 and for all λ ∈ Ωs1(SM),

|R−sµ (γ)(λ)| = |γ(Πs
µ(λ))| ≤ Cr,s(µ0)

(
1 +

∫
γ

|X̂|+
∫
γ

|V̂ |
)
‖λ‖r .

Since Ωs1(Hµ) is dense in Ωr1(Hµ) for s ≥ r, it follows that the distribution R−sµ (γ) ∈ Ω−s1 (Hµ)

has a unique continuous extension R−s,−rµ (γ) to the space Ωr1(Hµ) such that

‖R−s,−rµ (γ)(λ)‖−r ≤ Cr,s(µ)

(
1 +

∫
γ

|X̂|+
∫
γ

|V̂ |
)

;

for all µ0 > 1/4, there exists a constant Cr,s(µ0) > 0 such that for all µ ≥ µ0,

(5.11) ‖R−s,−rµ (γ)(λ)‖−r ≤ Cr,s(µ0)

(
1 +

∫
γ

|X̂|+
∫
γ

|V̂ |
)
.

Since M is a compact hyperbolic surface, the Casimir operator of the standard unitary
representation of SL(2,R) on L2(SM) has discrete spectrum, hence for any s ≥ r > 7/2

there is a constant Cr,s > 0 (depending only on r, s) such that, for all Casimir parameters
µ > 0 and for every rectifiable arc γ in SM , we have

(5.12) ‖R−s,−rµ (γ)‖−r ≤ Cr,s
(

1 +

∫
γ

|X̂|+
∫
γ

|V̂ |
)
.

Thus Lemma 2.4 is completely proved.

5.3. Inner products of cocycles

Cocycles which belong to different irreducible components are orthogonal. We compute
below the inner product of the two complex-conjugate coycles which belong to a given
component principal series type and prove that it is non-zero.

L 5.2. – For any µ > 1/4 and any T ∈ R \ {0}, the L2 inner product

<β+
µ (·, T ), β−µ (·, T )> 6= 0 .
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Proof. – The computation proceeds as follows. Let {f+, f−} ∈ C∞(Hµ) be a pair of
functions dual to the basis {D+

µ , D
−
µ } of invariant distributions, that is,

D+
µ (f+) = D−µ (f−) 6= 0 , D+

µ (f−) = D−µ (f+) = 0 .

It follows from Corollary 3.2 that

(5.13) e−(1−ν)t<

∫ Tet

0

f+ ◦ hUσ dσ,
∫ Tet

0

f− ◦ hUτ dτ>

−D+
µ (f+)D−µ (f−)<β+

µ (·, T ), β−µ (·, T )> = O(exp(−εµt)) .

Our goal is therefore to compute the asymptotics of the normalized inner product

ET,t(f+, f−) := e−(1−ν)t

∫ Tet

0

∫ Tet

0

<f+ ◦ hUσ , f− ◦ hUτ >dσdτ .

The above computation can be performed explicitly in the standard model for representa-
tions of the principal series on the Hilbert space L2(R, dx).

In this model, the horocycle flow is represented by the group of translations, hence its
infinitesimal generator is the operator d/dx. In general, the action of SL(2,R) on L2(R, dx)

for the irreducible representation πµ of the principal series is given by the formula:

πµ

[(
a b

c d

)]
f(x) := |cx+ d|−(1+ν)f

(
ax+ b

cx+ d

)
.

Hence the derived representation dπµ of the Lie algebra sl(2,R) of SL(2,R) is described by
the following formulas:

(5.14)

dπµ(U) =
d

dx
,

dπµ(V ) = −x2 d

dx
− (1 + ν)x ,

dπµ(X) = x
d

dx
+

1 + ν

2
.

From the above formulas one can also deduce the formula for the representation of the
generator Θ of the circle action on the unit tangent bundle. In fact, since Θ = U − V , we
have

dπµ(Θ) = (1 + x2)
d

dx
+ (1 + ν)x .

A calculus exercise shows that, up to normalization, the unique Θ-invariant function
u0 ∈ C∞(Hµ) is given in the representation model by the formula:

u0(x) :=
1

(1 + x2)
1+ν
2

, x ∈ R .

It follows from the construction of theU -invariant distributions in [12], §3, that the following
holds:

D+
µ (u0) 6= 0 .

Given any function f− such that D+
µ (f−) = 0 and D−µ (f−) 6= 0, we can therefore choose

f+ := u0 −
D−µ (u0)

D−µ (f−)
f− .
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We will choose f− to be represented by any function in C∞0 (R) ⊂ L2(R, dx) with non-
zero integral over the real line. In order to justify this choice we remark that the U -invariant
distribution D−µ is an extension to C∞(Hµ) of the distribution A ∈ D′(R) given by the
average over the real line, while the U -invariant distribution D+

µ vanishes identically on
the (non-dense!) subspace C∞0 (R) ⊂ C∞(Hµ). In fact, since D±µ are U -invariant and the
average A is dπµ(U)-invariant, there exist constants c± ∈ R such that

D±µ = c± A on C∞0 (R) ⊂ C∞(Hµ) .

However, the following formulas hold in D′(R):

dπµ(X) A = −1− ν
2

A .

It follows that c+ = 0, since dπµ(X)D+
µ = − 1+ν

2 D+
µ , and that c− 6= 0, that is, D−µ is, up

to a non-zero multiplicative constant, an extension of the distribution A to C∞(Hµ). Hence
for any function f− represented by a smooth real-valued function with compact support and
non-zero integral,

D+
µ (f−) = 0 and D−µ (f−) = c− A(f−) 6= 0 .

We remark that by Corollary 3.2 the normalized inner product

ET,t(f−, f−) := e−(1−ν)t‖
∫ Tet

0

f− ◦ hUσ dσ‖2

is given asymptotically by the following formula:

(5.15) ET,t(f−, f−)− eνt|D−µ (f−)|2‖β−µ (·, T )‖2 = O(exp(−εµt)) .

Our task is therefore reduced to estimate the integral∫ Tet

0

∫ Tet

0

∫
R

f−(x+ τ)

(1 + (x+ σ)2)
1+ν
2

dxdσdτ .

By Fubini’s and change of variables theorems, it is enough to compute the integral

(5.16) IT (x) :=

∫ T

0

∫ T

0

1

(1 + (x+ σ − τ)2)
1+ν
2

dx .

By explicit integration we obtain that as T → +∞ the function

T−(1−ν)IT (x)− T ν
∫ T

−T

du

(1 + u2)
1+ν
2

− 2

1− ν
→ 0

uniformly on compact intervals. By integration by parts the integral

JT :=

∫ T

−T

du

(1 + u2)
1+ν
2

satisfies the following formula:

JT =
2T

(1 + T 2)
1+ν
2

+ (1 + ν)JT − (1 + ν)

∫ T

−T

du

(1 + u2)
3+ν
2

.

It follows immediately that

JT = −1

ν

2T

(1 + T 2)
1+ν
2

+
1 + ν

ν

∫ T

−T

du

(1 + u2)
3+ν
2

.
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Since the convergence in formula (5.16) is uniform on compact sets and the improper integral

Iν :=

∫ ∞
−∞

du

(1 + u2)
3+ν
2

= lim
T→+∞

∫ T

−T

du

(1 + u2)
3+ν
2

is absolutely convergent, we obtain that the normalized integral

(5.17) ET,t(u0, f
−) := e−(1−ν)t<

∫ Tet

0

u0 ◦ hUσ dσ,
∫ Tet

0

f− ◦ hUτ dτ>

is given asymptotically (as t→ +∞) by the following formula:

(5.18) ET,t(u0, f
−) +

2(1− 2ν)

ν(1− ν)
T 1−νD−µ (f−)− 1 + ν

ν
IνTD

−
µ (f−)eνt → 0 .

By definition we have

ET,t(f+, f−) = ET,t(u0, f
−)−

D−µ (u0)

D−µ (f−)
ET,t(f−, f−).

Since the normalized inner product ET,t(f+, f−) converges, by formulas (5.15) and (5.18) it
follows that

(5.19)

ET,t(f+, f−)→ −2(1− 2ν)

ν(1− ν)
T 1−νD−µ (f−) ;

e−νt ET,t(f−, f−)→ 1 + ν

ν
IνT

D−µ (f−)2

D−µ (u0)
.

We have thus proved the lemma and in addition we obtain the formulas:

(5.20)
<β+

µ (·, T ), β−µ (·, T )> = −2(1− 2ν)

ν(1− ν)

T 1−ν

D−µ (u0)
;

‖β±µ (·, T )‖2 =
1 + ν

ν

IνT

D−µ (u0)
.

5.4. Rotationally symmetric measures

We prove below some elementary results about compactly supported measures on the
complex plane and on higher dimensional cartesian products of the complex plane. These
results characterize probability distributions with rotational symmetries up to an affine
change of coordinates.

L 5.3. – Let µ be a compactly supported Borel measure on the complex plane. If for
any a < b ∈ R there exists a constant m(a, b) such that, for all v ∈ C \ {0},

µ{z ∈ C|a ≤ Re(zv)

|v|
< b} = m(a, b) ,

then the measure µ on C is rotationally invariant.

Proof. – It follows from the assumption that the probability distribution with respect to
the measure µ on C of the function

Re(eiθz) =
eiθz + e−iθ z̄

2
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does not depend on θ ∈ R, hence for every k ∈ Z the integral∫
C

(eiθz + e−iθ z̄)kdµ

does not depend on θ ∈ R as well. It follows that∫
C
zr z̄sdµ = 0 for all r, s ∈ N , r − s 6= 0 .

Let Rθ be the rotation of angle θ ∈ R on C. For any real analytic function f on C, we have
by power series expansion∫

C
f ◦Rθ dµ =

∑
r∈N

1

(r!)2

∂2f

∂zr∂z̄r
(0)

∫
C
|z|2rdµ =

∫
C
f dµ .

Since µ has compact support and polynomials are dense in the uniform topology on any
compact subset of the complex plane, the result follows.

For any A, B ∈ R+ , let TA,B : C→ C be the affine map defined as follows:

TA,B(x, y) = (x/A, y/B) , for all (x, y) ∈ C ≡ R2 .

L 5.4. – Let µ be a compactly supported Borel probability measure on the complex
plane. Assume that there exist (A,B) ∈ (R+)2 such that for any a, b ∈ R there exists a
constant m(a, b) such that, for all θ ∈ R,

µ{z ∈ C | a ≤ Re(eiθz)

(A2 cos2 θ +B2 sin2 θ)1/2
< b} = mA,B(a, b) .

Then the measure µ has the following form: there exists a rotationally invariant measure ρ on C
such that

µ = (T−1
A,B)∗(ρ) .

Proof. – We claim that, by Lemma 5.3, the measure ρ := (TA,B)∗µ is rotationally invari-
ant. In fact, for any θ ∈ R, let vA,B(θ) ∈ C be the unit complex number defined as follows:

vA,B(θ) :=
(A cos θ,B sin θ)

(A2 sin θ +B2 cos2 θ)1/2
.

A straightforward calculation yields that, for any a < b and for all θ ∈ R,
(5.21)

ρ{z ∈ C | a ≤ Re[zvA,B(θ)]

|vA,B(θ)|
< b} = µ{z ∈ C | a ≤ Re(eiθz)

(A2 cos2 θ +B2 sin2 θ)1/2
< b} .

Since the family {vA,B(θ) | θ ∈ R} coincides with {v ∈ C | |v| = 1}, it follows that

ρ{z ∈ C | a ≤ Re(zv)

|v|
< b} = mA,B(a, b),

hence ρ is rotationally invariant by Lemma 5.3, as claimed.
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L 5.5. – Let β : (X,µ) → C be a bounded measurable function on the probability
space (X,µ). The family of real-valued functions{

Re(eiθβ)

‖Re(eiθβ)‖
|θ ∈ R

}
has a constant probability distribution if and only if there exists an affine map T : C→ C such
that the function T ◦ β : X → C has a rotationally invariant probability distribution.

Proof. – Up to composition with a rotation of the complex plane it is possible to assume
that ∫

X

(Reβ)(Imβ)dµ =
1

2
Im(

∫
X

β2dµ) = 0 .

Under that assumption, it follows that

‖Re(eiθβ)‖2 = ‖Reβ‖2 cos2 θ + ‖Imβ‖2 sin2 θ .

Thus the statement follows from Lemma 5.4.

The above results generalize to functions with values in higher dimensional complex
spaces. In fact, the following holds:

L 5.6. – Let µ be a compactly supported Borel probability measure on Cn. Assume
that for any a, b ∈ R there exists a constant m(a, b) such that, for all v ∈ Cn \ {0},

µ{z ∈ C | a ≤ Re(z · v)

|v|
< b} = m(a, b) ,

then µ is rotationally invariant, that is, it is invariant under the action of the orthogonal group
SO(2n,R) on Cn ≡ R2n.

Proof. – We claim that there exists a compactly supported probability measure m on
the real line such that the constants m(a, b) = m{x ∈ R|a ≤ x < b} and that measure µ is
uniquely determined by the measure m on the real line. In fact, the measure m is just
the probability distribution of the function Re(z · v)/|v| for any given v ∈ Cn \ {0}. The
uniqueness of the measure µ follows from the fact the computation of the moments of the
probability distribution m on R yields the values of all integrals of the form∫

Cn
zαz̄β dµ

(in terms of binomial coefficients and of the moments of the probability measure m). Since
µ has compact support and polynomials are dense in the space of continuous functions on
compact sets, the uniqueness follows.

Finally, the measure µ is rotationally invariant as it is the unique measure which satisfies
a rotationally invariant condition.

For any (A,B) ∈ (R+)n , let TA,B : Cn → Cn be the invertible affine map defined as
follows: for all (x1, y1, . . . , xn, yn) ∈ Cn ≡ R2n,

TA,B(x1, y1, . . . , xn, yn) = (x1/A1, y1/B1, . . . , xn/An, yn/Bn) .
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L 5.7. – Let µ be a compactly supported Borel probability measure on Cn.
Assume that there exist (A,B) ∈ (R+)n × (R+)n such that for any a, b ∈ R there exists
a constant mA,B(a, b) such that, for all (r, θ) ∈ (R+)n × Rn,

µ{z ∈ Cn | a ≤
Re(
∑n
s=1 rse

iθszs)[∑n
s=1 r

2
s(A

2
s cos2 θs +B2

s sin2 θs)
]1/2 < b} = mA,B(a, b) .

Then the measureµ has the following form: there exists a rotationally invariant measure ρ onCn

such that
µ = (T−1

A,B)∗(ρ) .

In fact, a stronger result holds. The key step is given by the following result.

L 5.8. – Let µ be a compactly supported Borel probability measure on Cn.
Let (A,B) ∈ (R+)n × (R+)n be a pair of vectors such that

A1 6= B1 · · · An 6= Bn .

If there exist distinct integral vectors v(1), . . . , v(n) ∈ Zd (d ≥ 1) such that the probability
distribution mA,B,r,θ of the function

Re(
∑n
s=1 rse

i<v(s),θ>zs)[∑n
s=1 r

2
s(A

2
s cos2<v(s), θ>+B2

s sin2<v(s), θ>)
]1/2 ,

defined on the probability space (Cn, µ), is independent of θ ∈ Td, for any given r ∈ (R+)n,
then it is also independent of r ∈ Rn \ {0}, hence there exists a probability distribution mA,B

on the real line such that

mA,B,r,θ = mA,B , for all (r, θ) ∈ Rn \ {0} × Td .

Proof. – By assumption there exists a compactly supported measure mA,B,r on the real
line such that mA,B,r,θ = mA,B,r for all θ ∈ Tn. A computation of the moments M(k)

A,B,r

of the measure mA,B,r yields that all the odd moments M(2k+1)
A,B,r vanish while from the

computation of even moments M(2k)
A,B,r we can derive the identities below. Let PA,B,r(θ) be

the trigonometric polynomial

PA,B,r(θ) :=

n∑
s=1

r2
s(A

2
s cos2<v(s), θ>+B2

s sin2<v(s), θ>) ,

which after a simple calculation can be written as follows:

PA,B,r(θ) =

n∑
s=1

r2
s

(A2
s −B2

s

4
(e2i<v(s),θ> + e−2i<v(s),θ>) +

A2
s +B2

s

2

)
.

The calculation of even moments yields:

(5.22)
∫
Cn

Re(

n∑
s=1

rse
i<v(s),θ>zs)

2k = M(2k)
A,B,rPA,B,r(θ)

k .

Since by assumption the set of integral vectors {v(1), . . . , v(n)} has distinct elements, it
has a unique maximal element v(l) with respect to the lexicographic order on Zd. Thus by
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comparing the coefficients of the exponential exp(2ik<v(l), θ>) on the left and right hand
sides of formula (5.22), it follows that

r2k
l

∫
Cn
z2k
l dµ = M(2k)

A,B,r(
A2
l −B2

l

2
)kr2k

l .

By assumption Al 6= Bl, hence on the set Rn \ {rl = 0} the moment M(2k)
A,B,r is given by the

formula

M(2k)
A,B,r =

2k
∫
Cn z

2k
l dµ

(A2
l −B2

l )k
.

It follows that the function M(2k)
A,B,r is constant on Rn \ {rl = 0}. Since, by formula (5.22), it

is continuous on Rn \ {0}, it follows that M(2k)
A,B,r is equal to a constant M(2k)

A,B on Rn \ {0}.
Thus all the even moments M(2k)

A,B,r as well as all the odd moments M(2k+1)
A,B,r of the compactly

supported probability measure mA,B,r do not depend on r ∈ Rn \ {0}. It follows that there
exists a probability distribution mA,B on the real line, with zero odd moments and even
moments equal to M(2k)

A,B , such that mA,B,r,θ = mA,B for all (r, θ) ∈ (Rn \ {0}) × Td, as
stated.

By Lemma 5.7 and Lemma 5.8, we can then derive the following characterization:

L 5.9. – Let µ be a compactly supported Borel probability measure on Cn. Assume
that there exist (A,B, r) ∈ (R+)n × (R+)n × (R+)n such that for any a, b ∈ R there exists a
constant mA,B,r(a, b) such that, for all θ ∈ Rn,

µ{z ∈ Cn | a ≤
Re(
∑n
s=1 rse

iθszs)[∑n
s=1 r

2
s(A

2
s cos2 θs +B2

s sin2 θs)
]1/2 < b} = mA,B,r(a, b) .

IfA1 6= B1, . . . , An 6= Bn, then the measureµ has the following form: there exists a rotationally
invariant measure ρ on Cn such that

µ = (T−1
A,B)∗(ρ) .
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