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LEFSCHETZ FOR LOCAL PICARD GROUPS

 B BHATT  A J DE JONG

A. – We prove a strengthening of the Grothendieck-Lefschetz hyperplane theorem for
local Picard groups conjectured by Kollár. Our approach, which relies on acyclicity results for absolute
integral closures, also leads to a restriction theorem for higher rank bundles on projective varieties in
positive characteristic.

R. – Nous prouvons un renforcement du théorème de l’hyperplan de Grothendieck-
Lefschetz pour les groupes locaux de Picard conjecturés par Kollár. Notre approche, qui s’appuie sur
des résultats en fermetures absolues, conduit également à un théorème de restriction pour les faisceaux
de rang supérieur sur les variétés projectives en caractéristique positive.

A classical theorem of Lefschetz asserts that non-trivial line bundles on a smooth pro-
jective variety of dimension ≥ 3 remain non-trivial upon restriction to an ample divisor,
and plays a fundamental role in understanding the topology of algebraic varieties. In [6],
Grothendieck recast this result in more general terms using the machinery of formal geom-
etry and deformation theory, and also stated a local version. With a view towards moduli
of higher dimensional varieties, especially the deformation theory of log canonical singular-
ities, Kollár recently conjectured [15] that Grothendieck’s local formulation remains true un-
der weaker hypotheses than those imposed in [6]. Our goal in this paper is to prove Kollár’s
conjecture for rings containing a field.

Statement of results

Let (A,m) be an excellent normal local ring containing a field. Fix some 0 6= f ∈ m.
Let V = Spec(A)− {m}, and V0 = Spec(A/f)− {m}. The following result is the key
theorem in this paper; it solves [15, Problem 1.3] completely, and [15, Problem 1.2] in
characteristic 0:

T 0.1. – Assume dim(A) ≥ 4. The restriction map Pic(V )→ Pic(V0) is:

1. injective if depthm(A/f) ≥ 2 and A has characteristic 0;
2. injective up to p∞-torsion if A has characteristic p > 0.
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834 B. BHATT AND A. J. DE JONG

This result is sharp: surjectivity fails in general, while injectivity fails in general if
dim(A) ≤ 3, in characteristic 0 if depthm(A/f) < 2, and in characteristic p if one in-
cludes p-torsion. Theorem 0.1 leads to a fibral criterion for a Weil divisor to be Cartier
in a family, see Theorem 1.30. A stronger analogue of Theorem 0.1, including the mixed
characteristic case, is due to Grothendieck [6, Expose XI] under the stronger condition
depthm(A/f) ≥ 3; complex analytic variants of Grothendieck’s theorem are proven in [7],
while topological analogues are discussed in [9]. Without this depth constraint, a previously
known case of Theorem 0.1 was when A has log canonical singularities in characteristic 0,
and {m} ⊂ Spec(A) is not an lc center (see [15, Theorem 19]).

Our approach to Theorem 0.1 relies on formal geometry over absolute integral closures [2,
11], and applies to higher rank bundles as well as projective varieties. This technique then
leads to a short proof of the following result:

T 0.2. – Let X be a normal projective variety of dimension d ≥ 3 over an alge-
braically closed field of characteristic p > 0. If a vector bundle E on X is trivial over an ample
divisor, then (FrobeX)∗E ' O⊕rX for e� 0.

The numerical version of Theorem 0.2 for line bundles is due to Kleiman [13, Corollary 2,
page 305]. The non-numerical version of the rank 1 case, with stronger assumptions on the
singularities, is studied in [8]. This result may also be deduced from the boundedness [16] of
semistable sheaves. We do not know the correct characteristic 0 analogue of this result.

An outline of the proof

Both theorems are similar in spirit, so we only discuss Theorem 0.1 here. We first prove the
characteristic p result, and then deduce the characteristic 0 one by reduction modulo p and
an approximation argument; the reduction necessitates the (unavoidable) depth assumption
in characteristic 0. The characteristic p proof follows Grothendieck’s strategy of decoupling
the problem into two pieces: one in formal f -adic geometry, and the other an algebraiza-
tion question. Our main new idea is to replace (thanks entirely to the Hochster-Huneke van-
ishing theorem [11]) our ring A with a very large extension A with better depth properties;
Grothendieck’s deformation-theoretic approach then immediately solves the formal geome-
try problem over A. Next, we algebraize the solution over A by algebraically approximating
formal sections of line bundles; the key here is to identify the cohomology of the formal com-
pletion of a scheme as the derived completion of the cohomology of the original scheme, i.e.,
a weak analogue of the formal functions theorem devoid of the usual finiteness constraints.
Finally, we descend from A to A; this step is trivial in our context, but witnesses the torsion
in the kernel.
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1. Local Picard groups

The goal of this section is to prove Theorem 0.1. In §1.1, we study formal geometry
along a divisor on a (punctured) local scheme abstractly, and establish certain criteria for
restriction map on Picard groups to be injective. These are applied in §1.2 to prove the
characteristic p part of Theorem 0.1. Using the principle of “reduction modulo p” and a
standard approximation argument (sketched in §1.4), we prove the characteristic 0 part of
Theorem 0.1 in §1.3. The afore-mentioned fibral criterion is recorded in §1.5. Finally, in §1.6,
we give examples illustrating the necessity of the assumptions in Theorem 0.1.

1.1. Formal geometry over a punctured local scheme

We establish some notation that will be used in this section.

N 1.1. – Let (A,m) be a local ring, and fix a regular element f ∈ m. Let
X = Spec(A), V = Spec(A)− {m}. For an X-scheme Y , write Yn for the reduction of Y
modulo fn+1, and Ŷ for the formal completion(1) of Y along Y0. Let Vect(Y ) be the category
of vector bundles (i.e., finite rank locally free sheaves) on Y , and write Pic(Y ) and Pic(Y )

for the set and groupoid of line bundles respectively. Set Pic(Ŷ ) := lim Pic(Yn) (where the
limit is in the sense of groupoids), and Pic(Ŷ ) := π0(Pic(Ŷ )). For any A-module M with
associated quasi-coherent sheaf M̃ on Spec(A), we defineHi

m(M) as cohomology supported
along {m} ⊂ X of M̃ , i.e., as the ith cohomology of the complex RΓm(M) defined as the
homotopy-kernel of the map RΓ(Spec(A), M̃)→ RΓ(V, M̃).

We will use formal schemes associated to certain non-Noetherian X-schemes later in this
paper. Rather than developing the general theory of such schemes, we simply define the
concept that will be most relevant: cohomology.

D 1.2. – Fix an X-scheme Y . For F ∈ D( OY ), set F̂ := R lim(F ⊗LOY
OYn

);

we view F̂ as an OŶ := limn OYn
-complex on |Ŷ | := Y0, so RΓ(Ŷ , F̂ ) := RΓ(Y0, F̂ ) '

R lim RΓ(Y0, F ⊗LOY
OYn

).

The following two examples help explain the meaning of this definition:

E 1.3. – If F is a quasicoherent OX -module associated to anA-moduleM , then
RΓ(X̂, F̂ ) ' R lim(M ⊗LAA/(fn)). In particular, ifM isA-flat, then RΓ(X̂, F̂ ) is the f -adic
completion of M in the usual sense. Note that if M is not A-flat, then RΓ(X̂, F̂ ) could have
cohomology in negative degrees.

E 1.4. – Fix a quasicoherent flat OV -module F , assumed to be obtained
from an A-module M via localization. Then RΓ(V̂ , F̂ ) is computed as follows. Fix
an ideal (g1, . . . , gr) ⊂ A with V (g1, . . . , gr) = {m} set-theoretically (assumed to exist).

Let C(M ; g1, . . . , gr) :=
⊗r

i=1

(
M

1→Mgi

)
be the displayed Cech complex, and let K(M)

be the cone of the natural map C(M ; g1, . . . , gr)→M . Then the (termwise) f -adic com-
pletion of K computes RΓ(V̂ , F̂ ). To see this, observe first that K(M)/fnK(M) computes

(1) The formal scheme Ŷ is used as a purely linguistic device to talk about compatible systems of sheaves on each Yn,
and not in a deeper manner.
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836 B. BHATT AND A. J. DE JONG

RΓ(Vn, F ⊗LOV
OVn

). It follows that the term-wise f -adic completion of K computes

R lim RΓ(Vn, F ⊗ OV
OVn

) ' RΓ(V̂ , F̂ ).

The derived completion functor K 7→ R lim(K ⊗LA A/fn) already appears implicitly in
the above definition. To access its values, recall the following definition:

D 1.5. – Given an A-module M , we define the f -adic Tate module as
Tf (M) := limM [fn] with transition maps given by powers of f ; note that Tf (M) = 0

if fN ·M = 0 for some N > 0.

The Tate module leads to the second of the following two descriptions of the cohomology
of a formal completion:

L 1.6. – LetY be anX-scheme such that OY has bounded f∞-torsion. For F ∈ D( OY ),
there are exact sequences

1→ R1 limHi−1(Yn, F ⊗LOY
OYn)→ Hi(Ŷ , F̂ )→ limHi(Y, F ⊗LOY

OYn)→ 1,

and

1→ limHi(Y, F )/fn → Hi(Ŷ , F̂ )→ Tf (Hi+1(Y, F ))→ 1.

Proof. – We first give a proof when OY has no f -torsion (which will be the only relevant
case in the sequel). The first sequence is then obtained from the formula

RΓ(Ŷ , F̂ ) ' R lim RΓ(Y, F ⊗LOY
OYn

)

and Milnor’s exact sequence for R lim (see [18]). Applying the projection formula (since
A/fn is A-perfect) to the above gives

RΓ(Ŷ , F̂ ) ' R lim
(
RΓ(Y, F )⊗LA A/fn).

The second sequence is now obtained by applying the derived f -adic completion functor
R lim(−⊗LA A/fn) to the canonical filtration on RΓ(Y, F ), which proves the claim. In

general, the boundedness of f -torsion in OY shows that the map { OY
fn

→ OY } → { OYn
} of

projective systems is a (strict) pro-isomorphism, and hence {F fn

→ F} → {F ⊗LOY
OYn
} is

also a pro-isomorphism. Now the previous argument applies.

The following conditions on the data (A, f) will be assumed throughout this subsection;
we do not assume A is Noetherian as this will not be true in applications.

A 1.7. – Assume that the data from Notation 1.1 satisfies the following:

– X is integral, i.e., A is a domain;
– j : V ↪→ X is a quasi-compact open immersion, i.e., m is the radical of a finitely

generated ideal;
– H0(V, OV ) is a finite A-module;
– fN ·H1(V, OV ) = 0 for N � 0.
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E 1.8. – Any S2 Noetherian local domain (A,m) of dimension ≥ 3 admitting a
dualizing complex satisfies Assumption 1.7: the A-module H2

m(A) ' H1(V, OV ) has finite
length (see [6, Corollary VIII.2.3]), while H0(V, OV ) ' A as A is S2. The absolute integral
closure of a complete Noetherian local domain of dimension ≥ 3 in characteristic p also
satisfies these conditions (see Theorem 1.21), and is a key example for the sequel.

We now study formal geometry over V̂ . The following elementary bound on the f∞-tor-
sion of certain cohomology groups will help relate sheaf theory on V̂ to that on V .

L 1.9. – For E ∈ Vect(V ), one has fk ·H1(V,E) = 0 for k � 0.

Proof. – Fix an N with fN ·H1(V, OV ) = 0, and set m′ := AnnA(fN ·H1(V,E)) ⊂ m.
For each p ∈ V ⊂ Spec(A), there is a g ∈ m− p and an isomorphism E|D(g) ' ( O⊕rV )|D(g).
Clearing denominators gives an exact sequence

1→ O⊕rV → E → Q→ 1

with gn ·Q = 0 for some n > 0 (by quasi-compactness). Then gn ∈ m′, so m′ 6⊂ p. Varying
over all p ∈ V shows that A/m′ is a local ring with a unique prime ideal m/m′, so fm ∈ m′
for m� 0, and hence fN+m ·H1(V,E) = 0.

We can now algebraically approximate formal sections of vector bundles on V :

L 1.10. – For E ∈ Vect(V ), one has ̂H0(V,E) ' H0(V̂ , Ê).

Proof. – Lemma 1.9 shows that {H1(V,E)[fn]} is essentially 0, so Tf (H1(V,E)) = 0. It

remains to observe that ̂H0(V,E) ' π0( ̂H0(V,E)) since f is a non-zero divisor onH0(V,E).

One can also prove the following Lefschetz-type result for π1:

C 1.11. – The natural map π1,ét(V0)→ π1,ét(V ) is surjective ifA is Noetherian
and f -adically complete.

Proof. – We want π0(W ) ' π0(W0) for any finite étale cover W → V . If A is a finite

flat quasi-coherent OV -algebra, thenH0(V, A) ' ̂H0(V, A) ' H0(V̂ , Â) ' limH0(Vn, An)

by the Noetherian assumption and Lemma 1.10. Hence, if OV → A is also étale, then
H0(V, A)→ H0(Vn, An)→ H0(V0, A0) induce bijections on idempotents.

Next, we show that pullback along V̂ → V is faithful on line bundles.

L 1.12. – The natural map Pic(V )→ Pic(V̂ ) is injective.

Proof. – Fix an L ∈ ker(Pic(V )→ Pic(V0)). Lemma 1.10 gives an injective map
s : L→ OV with s|V0

an isomorphism. Hence, ifQ = coker(s), then multiplication by f is an
isomorphism onQ, soH0(V,Q) is uniquely f -divisible. Lemma 1.9 shows fN ·H1(V,L) = 0

for N � 0, so H0(V, OV )→ H0(V,Q) is surjective, and hence H0(V,Q) is a finitely gener-
ated f -divisible A-module. By Nakayama, H0(V,Q) = 0, so Q = 0 as OV is ample.
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R 1.13. – The same argument shows Vect(V )→ Vect(V̂ ) is injective on isomor-
phism classes. If V0 is S2, then one can show that each Ê ∈ Vect(V̂ ) algebraizes to some tor-
sion freeE ∈ Coh(V ) (see [6, Theorem IX.2.2]); examples such as [15, Example12] show that
E need not be a vector bundle, even in the rank 1 case.

The next observation is a manifestation of the formula V̂ = colimn Vn and some book-
keeping of automorphisms:

L 1.14. – The natural map Pic(V̂ )→ lim Pic(Vn) is bijective.

Proof. – Since Pic(V̂ ) ' lim Pic(Vn) as groupoids, it suffices to show {π1(Pic(Vn))} :=

{H0(Vn, O
∗
Vn

)} satisfies the Mittag-Leffler (ML) condition. The assumption on V shows that
{H1(V, OV )[fn]} is essentially 0, and hence {H0(Vn, OVn

)} satisfies ML. Since |V0| = |Vn|,
we have

{H0(Vn, O
∗
Vn

)} = {H0(Vn, OVn)×H0(V0, OV0
) H

0(V0, O
∗
V0

)}

as projective systems. The claim now follows from Lemma 1.15.

L 1.15. – If {Xn} is a projective system of sets that satisfies ML, and Y0 → X0 is
some map, then the base change system {Yn} := {Y0 ×X0

Xn} also satisfies ML.

Proof. – Let Zn,k ⊂ Xk be the image of Xn → Xk for any k ≤ n. The assumption
says: for fixed k, one has Zn,k = Zn+1,k for n� 0. Since im(Xn ×X0

Y0 → Xk ×X0
Y0) =

Zn,k ×X0
Y0, the claim follows.

We quickly recall the standard deformation-theoretic approach to studying line bundles
on V̂ :

L 1.16. – The map Pic(Vn+1)→ Pic(Vn) is injective if H1(V0, OV0) = 0, and sur-
jective if H2(V0, OV0) = 0.

Proof. – Standard using the exact sequence 1→ OV0

a→ O∗Vn+1
→ O∗Vn

→ 1 where
a(g) = 1 + g · fn.

We end by summarizing the relevant consequences of the preceding discussion:

C 1.17. – For A satisfying Assumption 1.7, we have:

1. The map Pic(V )→ Pic(V̂ ) is injective.
2. The map Pic(V̂ )→ lim Pic(Vn) is bijective.
3. The map Pic(V̂ )→ Pic(V0) is injective if H1(V0, OV0

) = 0.

Proof. – We simply combine Lemmas 1.12, 1.14, and 1.16.
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1.2. Characteristic p

We follow Notation 1.1. Our goal is to prove the following:

T 1.18. – Fix an excellent normal local Fp-algebra (A,m) of dimension ≥ 4, and
some 0 6= f ∈ m. Then the kernel of Pic(V )→ Pic(V0) is p∞-torsion.

The rest of §1.2 is dedicated to proving Theorem 1.18, so we fix an (A,m, f) as in Theo-
rem 1.18 at the outset. The first reduction is to the complete case:

L 1.19. – If π : Spec(R)→ Spec(A) is them-adic completion of A, then Pic(V )→
Pic(π−1(V )) is injective.

In the proof below, we write ModfA for the category of finitely generated A-modules.

Proof. – A line bundle L ∈ Pic(V ) extends to a unique finite A-module M with
depthm(M) ≥ 2, and similarly for line bundles on Pic(π−1(V )). Since π∗ : ModfA → ModfR
preserves depth, it suffices to prove: if M ∈ ModfA with M ⊗A R ' R, then M ' A. For
this, we simply observe that an isomorphism R 'M ⊗A R can be approximated modulo m
by a map A → M which is injective (since A is a domain) and surjective by Nakayama, so
M ' A.

By Lemma 1.19 and the preservation of normality under completion of excellence rings,
to prove Theorem 1.18, we can (and do) assumeA is anm-adically complete Noetherian local
normal ring. To proceed further, we define:

N 1.20. – Let A denote a fixed absolute integral closure of A. For any
A-scheme Y , we write Y := YA.

Our strategy for proving Theorem 1.18 is to first prove that Pic(V )→ Pic(V 0) is injective,
and then descend to a finite level conclusion by norms. The situation over V is analyzed
via the formal geometry of §1.1. The reason we work at the infinite level first is that formal
geometry is easier over V than over V , thanks entirely to the following vanishing result:

T 1.21. – A is Cohen-Macaulay, i.e., Hi
m(A) = 0 for i < dim(A).

R 1.22. – Strictly speaking, the local cohomology groups used in Theorem 1.21
are defined as the derived functors of sections supported at {m} ⊂ Spec(A) applied to A.
These do not a priori agree with those arising from the definition adopted in Notation 1.1.
However, both approaches to local cohomology commute with filtered colimits. Hence,
for both definitions, we have Hi

m(A) = colimHi
m(B) where the colimit ranges over finite

extensions A→ B contained in A. By reduction to the Noetherian case, the two definitions
of Hi

m(A) coincide.

Theorem 1.21 is due to Hochster-Huneke [11], and can be found in [12, Corollary 2.3] in
the form above. It implies Hi(V , OV ) = 0 for 0 < i < dim(A) − 1, so Hi(V 0, OV 0

) = 0

for 0 < i < dim(A)− 2. We use this to prove an infinite level version of Theorem 1.18:

P 1.23. – The map Pic(V )→ Pic(V 0) is injective if dim(A) ≥ 4.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



840 B. BHATT AND A. J. DE JONG

Proof. – This follows from Corollary 1.17 as A satisfies the relevant conditions by Theo-
rem 1.21 since dim(A) ≥ 4.

We can now descend down to prove the main theorem:

Proof of Theorem 1.18. – Fix an L ∈ ker(Pic(V ) → Pic(V0)). Proposition 1.23 shows
L ∈ ker(Pic(V ) → Pic(V )). By expressing A as a filtered colimit of finite extensions, it
follows that L ∈ ker(Pic(V ) → Pic(W )) for a finite surjective map W → V . As V is
normal, using norms (see [3, §XVII.6.3]), we conclude thatL is torsion. It now suffices to rule
out the presence of prime-to-p torsion in ker(Pic(V )→ Pic(V0)). Corollary 1.17 shows that
this kernel is contained in the kernel of lim Pic(Vn)→ Pic(V0). The kernel of Pic(Vn+1)→
Pic(Vn) is an Fp-vector space for eachn, so lim Pic(Vn)→ Pic(V0) has no prime-to-p torsion
in the kernel.

R 1.24. – In the setting of Theorem 1.18, the proof above also shows: if
E ∈ Vect(V ) is trivial over V0, i.e., satisfies E|V0

' O⊕nV0
, then E is trivialized by a finite

extension of V .

R 1.25. – Using the strategy outlined in Remark 1.27 and the p-adic exponen-
tial, one can show the following mixed characteristic version of Theorem 1.18: if (A,m) is
an excellent normal local flat Zp-algebra of dimension ≥ 4 which is S3, and f ∈ m satis-
fies p ∈

√
(f), then Pic(V )→ Pic(V0) is injective up to p∞-torsion. As we do not know how

to proceed further, we do not elaborate this argument here.

1.3. Characteristic 0

We follow Notation 1.1. Our goal is to prove the following:

T 1.26. – Fix an excellent normal local Q-algebra (A,m) of dimension ≥ 4, and
some 0 6= f ∈ m. Assume depthm(A/f) ≥ 2. Then Pic(V )→ Pic(V0) is injective.

Proof. – By Lemma 1.29 below, we may assume thatA is an essentially finitely presented
Q-algebra. The depth assumption implies that depthm(A) ≥ 3 as f acts nilpotently H2

m(A)

with kernel H1
m(A/f) = 0. Now fix a line bundle L in the kernel of Pic(V ) → Pic(V0). By

spreading out (see [10, §2]), we can find:

1. A mixed characteristic dvr ( O, (π)) with perfect residue field of characteristic p > 0.
2. A normal Noetherian O-flat local ring Ã satisfying:

(a) There is a map Ã[1/π]→ A.
(b) B := Ã/π is normal of dimension dim(A) and has depth≥ 3 at its closed point.

3. A section Ã → O of the structure map O → Ã defined by an ideal m̃ ⊂ Ã that, after
inverting π, gives the image of the closed point under Spec(A)→ Spec(Ã[1/π]).

4. An element t̃ ∈ Ã such that Ã/t̃ is O-flat and maps to t along Ã→ Ã[1/π]→ A.
5. A line bundle L̃ on Ṽ which induces L over V and lies in the kernel of Pic(Ṽ )→ Pic(Ṽ0);

here Ṽ = Spec(Ã)− {m̃}, and the subscript 0 denoting passage to the t̃ = 0 fibre.
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Write U = Spec(B) − {m̃ · B} for the punctured spectrum of B, and use the subscript 0 to
indicate passage to the t̃ = 0 fibre. Then we have a commutative diagram

Pic(Ṽ )
a //

b

��

Pic(Ṽ0)

c

��
Pic(U)

d // Pic(U0)

where the vertical maps are induced by reduction modulo π, while the horizontal maps are
induced by reduction modulo t̃. Theorem 1.18 tells us that the kernel of d is p∞ torsion.
Corollary 1.17 shows b is injective, so L̃ (and hence L) is killed by a power of p. Repeating
the above construction by spreading out over a mixed characteristic dvr whose residue
characteristic is ` 6= p, it follows that L is also killed by a power of `, and is hence trivial.

R 1.27. – We do not know a proof of Theorem 1.26 that avoids reduction
modulo p except when A is S3, where one can argue directly as follows. By Lemma 1.12, it
suffices to prove Pic(V̂ )→ Pic(V0) is injective. The kernel of this map isH1(V̂ , 1+ Î), where
I = (f) ⊂ OV is the ideal defining V0. In characteristic 0, the exponential gives an isomor-
phism Î ' 1 + Î of sheaves on V̂ , so it suffices to prove H1(V̂ , Î) = 0. Using f : OV ' I
and H1(V, OV ) = 0 (since depthm(A) ≥ 3), it suffices to show Tf (H2(V, OV )) = 0. The
A-module H2(V, OV ) has finite length as A is S3, so Tf (H2(V, OV )) = 0. If depthm(A) ≥ 3

butA is not S3, then the last step fails; in fact, there are examples [15, Example 12] of suchA
where Pic(V̂ )→ Pic(V0) is not injective, rendering this approach toothless in general.

1.4. An approximation argument

We now explain the approximation argument used to reduce Theorem 1.26 to the case of
essentially finitely presented algebras over Q. First, we show how modules over the comple-
tion of an excellent ring can be approximated by modules over a smooth cover while preserv-
ing homological properties.

L 1.28. – Fix an excellent Henselian local ring (P, n) with n-adic completion P̂ .
Let I be the category of diagrams P → S → P̂ with P → S essentially smooth and S local.
Then one has

1. I is filtered, and P̂ ' colimI S.
2. colimI ModfS ' Modf P̂ via the natural functor.
3. If M ∈ Modf

P̂
has pdP̂ (M) <∞, then there exist S ∈ I and N ∈ ModfS such that

N ⊗LS P̂ 'M .

Recall that a map P → S of rings is essentially smooth if S is a localization of a smooth
P -algebra.

Proof. – (1) is Popescu’s theorem [20], while (2) is automatic from (1) as all rings in sight
are Noetherian. Now pick M ∈ Modf

P̂
as in (3) with a finite free resolution K → M

over P̂ . Then there exist an S ∈ I and a finite free S-complex L such that L ⊗S P̂ = K as
complexes. It suffices to thus check that L ∈ D≥0(S). Write j : P → S and a : S → P̂

for the given maps. As P is Henselian, for each integer c, there exists a section S → P
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of j such that the composite b : S → P → P̂ agrees with a modulo nc. Then [4, Lemma 3.1]
shows that L⊗S,b P̂ is acyclic outside degree 0 (for sufficiently large c). The same is also true
for L ⊗S P by faithful flatness. If I = ker(S → P ), then I is a regular ideal contained in
the Jacobson radical of S (since S is local and essentially P -smooth). Let Ŝ be the I-adic
completion of S, so S → Ŝ is faithfully flat. By the formula L ⊗S Ŝ ' R lim(L ⊗S S/In),
it suffices to show that the right hand side lies in D≥0(S). The regularity of I shows that
each In/In+1 is a free S/I-module (as S/I = P is local), so L ⊗S S/In ∈ D≥0(S) by
devissage as L⊗S S/I ∈ D≥0(S).

The approximation argument used above permits us to make the promised reduction:

L 1.29. – To prove Theorem 1.26, it suffices to do so when A is essentially finitely
presented over Q.

Proof. – We may assume that the conclusion of Theorem 1.26 is known for all essentially
finitely presented normal local k-algebras A of depth ≥ 3 over a characteristic 0 field k

(the passage from k = Q to general k is routine and left to the reader). By Lemma 1.19
and excellence of A, it suffices to show the conclusion holds for all triples (A,m, f) where
(A,m) is a complete Noetherian local normal ring with depthm(A) ≥ 3 in characteristic 0,
and 0 6= f ∈ m.

If k = A/m, then we choose a Cohen presentation A = P̂ /I where P is the Henselisation
at 0 over k[x1, . . . , xn], and P̂ is the completion. Choose an element f ∈ P̂ lifting f ∈ A,
and a finite A-module M with depthm(M) ≥ 2 corresponding to an element in the kernel
of Pic(V ) → Pic(V0), where V = Spec(A)− {m}, and V0 = V ∩ Spec(A/f). Observe that
pdP̂ (A) ≤ n− 3 and pdP̂ (M) ≤ n− 2 by Auslander-Buschbaum. We will show A 'M .

By Lemma 1.28, we can find:

1. A factorization P
j→ S

a→ P̂ with (S, n) a local essentially smooth P -algebra.
2. A quotient S → B such that B ⊗LS P̂ ' A.
3. A finite B-module M ′ invertible on VB = Spec(B)− V (x1, . . . , xn) such that M ′ ⊗LB
A 'M .

4. A lift of f to n ⊂ S such that M ′ is the trivial line bundle on VB ∩ Spec(B/f).

We remark that pdS(B) ≤ n− 3 as B ⊗LS P̂ ' A, and similarly pdS(M ′) ≤ n− 2. As P is
Henselian and S is P -smooth with a section over P̂ , we may choose a large enough con-
stant c (depending on M and A as P̂ -modules) and a section sc : S → P of j that coincides
with a modulo (x1, . . . , xn)c. Set Ac = B ⊗LS P and Mc = M ′ ⊗LS P . Then, by choice of c,
both these complexes are in fact discrete, and henceAc is a local quotient of P . Letmc ⊂ Ac
be the maximal ideal; this is the image of n, and also generated by {x1, . . . , xn}. We call this
triple (Ac,mc,Mc) an approximation of (A,m,M), and observe that better approximations
can be found by replacing cwith a larger integer. At the expense of performing this operation,
we have:

1. (Ac,mc) coincides with (A,m) modulo (x1, . . . , xn)c, and dim(Ac) = dim(A) as the
Hilbert series of (Ac,mc) and (A,m) coincide (see [4, Theorem 3.2]).

2. depthmc
(Ac) ≥ 3, and depthmc

(Mc) ≥ 2 by Auslander-Buschbaum over P .
3. The singular locus of Spec(Ac) has codimension ≥ 2 by the Jacobian criterion.
4. Mc is invertible over U := Spec(Ac)− V (x1, . . . , xn) = Spec(Ac)− {mc}.
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5. Mc restricts to the trivial line bundle over U ∩ Spec(Ac/f).

By (2) and (3), such an Ac is in particular normal. As Theorem 1.26 is assumed to hold
over Ac, we conclude that Mc ' Ac. Nakayama’s lemma lifts this to a surjection B → M ′,
which yields a surjection A → M . As A is a domain and M is torsion free, we get A ' M ,
as desired.

1.5. A fibral criterion

The results of the previous sections lead to a fibre-by-fibre criterion for a Weil divisor on
the total space of a flat family to be Cartier:

T 1.30. – LetS be the spectrum of a complete discrete valuation ring over a perfect
field k. Let f : X → S be a separated flat finite type morphism with normal special fibre X0.
Let D be a Weil divisor on X satisfying:

1. D is Cartier on the fibres of f .
2. There exists a closed subsetZ ⊂ X0 of codimension≥ 3 such thatD is Cartier onX−Z.

Then

1. D is Cartier on X if k has characteristic 0.
2. pnD is Cartier on X for some n > 0 if k has characteristic p > 0.

Proof. – We first give a proof in characteristic 0. As Z ⊂ X0, we may replace X
with its normal locus and assume that X is normal. Then, as X and X0 are both normal
and separated, we identify Cartier divisors with their corresponding Weil divisors on either
scheme. If Z = ∅, we are done. If not, choose a generic point z ∈ Z, and let A = OX,z with
f ∈ A defining X0. Then Spec(A) ∩ Z = {z}, so dim(A) ≥ 4. If V = Spec(A) − {z} and
V0 = V ∩ X0, then D|V ∈ ker(Pic(V ) → Pic(V0)). Theorem 1.26 then shows that D|V is
trivial, so D is Cartier at z ∈ X. Noetherian induction then finishes the proof as the non-
Cartier locus of D is a closed subset of X. In characteristic p, we simply use Theorem 1.18
in lieu of Theorem 1.26 in this argument.

1.6. Examples

We now give examples illustrating the necessity of the depth assumption in Theorem 1.26
as well as the occurrence of p-torsion in Theorem 1.18. We begin with an example of the non-
injectivity of the restriction map for coherent cohomology; this leads to the desired examples
via the exponential.

E 1.31. – Fix a non-hyperelliptic smooth projective curveC of genus g > 1 over
a field k. Let L = OPn(1) � KC be the displayed line bundle on Pn × C (for n > 0), and
let V(L−1)→ Pn×C be its total space. Let (X,x) be the affine cone over Pn×C with respect
to L, i.e., X = Spec(A) where A := Γ(V(L−1), OV(L−1)) = ⊕i≥0H

0(Pn × C,Li), x is the
origin, and let V = X −{x} ⊂ X be the punctured cone; note that L is very ample and A is
normal. The affinization map V(L−1)→ X is the contraction of the 0 section of V(L−1), so
we can view V as the complement of the zero section in V(L−1). In particular, the Künneth
formula shows

H0(V, OV ) = H0(X, OX) '
⊕
i≥0

H0(Pn, OPn(i))⊗H0(C,K⊗iC )
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and

H1(V, OV ) =
⊕
i∈Z

H1(Pn × C,Li)

'
(
H0(Pn, OPn)⊗H1(C, OC)

)
⊕
(
H0(Pn, OPn(1))⊗H1(C,KC)

)
,

with the evidentH0(V, OV )-module structure. Pick non-zero sections s1 ∈ H0(Pn, OPn(1))

and s2 ∈ H0(C,KC), and set f = s1 ⊗ s2 ∈ A. We will show that multiplication by f

on H1(V, OV ) has non-zero image. First, note that s2 defines a map OC → KC that induces
a surjective non-zero map H1(C, OC)→ H1(C,KC). Since s1 induces an injective map
H0(Pn, OPn)→ H0(Pn, OPn(1)), it follows f = s1 ⊗ s2 induces a non-zero map

H0(Pn, OPn)⊗H1(C, OC)→ H0(Pn, OPn(1))⊗H1(C,KC),

and hence a non-zero endomorphism of H1(V, OV ) by the description above. In particular,
if we set V0 = V ∩Spec(A/f) ⊂ V , then the mapH1(V, OV )→ H1(V0, OV0

) is not injective.
The same calculation is valid after replacing X with its completion Y at x, and V and V0

with their preimages U and U0 respectively in Y (as H1(V, OV ) ' H1(U, OU ), and similarly
for V0). Finally, sinceH1(V, OV )[f ] 6= 0, the inclusionA/f ↪→ H0(V0, OV0

) is not surjective,
so depthx(A/f) = 1; this reasoning also shows depthx(A/g) = 1 for any 0 6= g ∈ A vanish-
ing at x.

R 1.32. – The construction and conclusion of Example 1.31 works over any
normal ring k, and specializes to the desired conclusion over the fibres as long as the
sections si are chosen to be non-zero in every fibre.

Via the exponential, we obtain an example illustrating the depth condition in Theo-
rem 1.26:

E 1.33. – Consider Example 1.31 over k = C. The exponential sequence shows
Pic(V an)→ Pic(V an

0 ) is not injective as H1(V an,Z) is countable. One then also has non-
injectivity of Pic(W )→ Pic(W0), where W is any link of x ∈ Xan, i.e., W = W − {x}
for a small contractible Stein analytic neighborhood W of x in Xan; this is because
H1(V an,Z) ' H1(W,Z) (as both sides are homotopy equivalent to the circle bundle
over Pn ×C defined by L−1), and H1(V an, OV an) ' H1(W, OW ) (by excision and Cartan’s
Theorem B). By [19, Theorem 5], since any such W is normal of dimension ≥ 3, we may
identify Pic(W ) with isomorphism classes of analytic coherent S2 sheaves on W free of
rank 1 over W . Nakayama then shows non-injectivity of Pic(U)→ Pic(U0).

R 1.34. – The (punctured) local scheme of Example 1.33 is not essentially of
finite type over k, but rather the (punctured) completion of such a scheme; an essentially
finitely presented example can be obtained via Artin approximation. Note that some ap-
proximation is necessary to algebraically detect the analytic line bundles from Example 1.33
since Pic(V ) = Pic(C ×P2)/Z · L is smaller than Pic(V an).

Reducing modulo p (suitably) shows that the map of Theorem 1.18 often has a non-trivial
p-torsion kernel:
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E 1.35. – Consider Example 1.31 over k = Z[1/N ] for n ≥ 3, and suitable
choices of N , C, s1, and s2. Let B be the blowup of Y at x; this may be viewed as the base
change to Y of the contraction V(L−1)→ X. Write B̂ for the formal completion ofB along
i : Pn × C ↪→ B (coming from the 0 section), and let I ⊂ OB denote the ideal defining i,
so i∗(I) ' L. Using formal GAGA forB → Y , one can check that there is an exact sequence

1→ H1(B̂, 1 + I)→ Pic(B)→ Pic(Pn × C)→ 1

with a canonical splitting provided by the composite projection B → V(L−1)→ Pn × C.
As n ≥ 3, using Künneth, one computes

(1.1) H1(B̂, 1 + I)
can' H1(B̂, (1 + I)/(1 + I2))

log
' H1(B̂, I/I2) ' H1(Pn × C,L),

which, again thanks to Künneth, gives an exact sequence

1→
(
H0(Pn, OPn(1))⊗H1(C,KC)

)
→ Pic(B)→ Pic(Pn × C)→ 1.

The restriction map Pic(B)→ Pic(U) has kernel Z ·L ⊂ Pic(Pn×C) ⊂ Pic(B), where the
last inclusion comes from the splitting. Thus, there is an injective map(

H0(Pn, OPn(1))⊗H1(C,KC)
)
↪→ Pic(U).

We leave it to the reader to check that this map coincides with the one coming from the
exponential when specializing to k = C. In particular, after replacing everything in sight
with its base change along k → Fp for suitable p, we see that Pic(U)→ Pic(U0) has a non-
zero kernel; note that, as predicted by Theorem 1.18, this kernel is visibly p-torsion.

2. A vector bundle analogue

The main goal of this section is to explain how the techniques used to prove Theorem 1.18
can also be applied in a global setting. We will do so by explaining a quick proof of the
following vector bundle analogue of Theorem 1.18:

T 2.1. – Let X be a normal connected projective variety of dimension d ≥ 3 over
an algebraically closed field k of characteristic p > 0. If E ∈ Vect(X) is trivial over an ample
divisor, then E is trivialized by a torsor for a finite connected k-group scheme. In particular,
(FrobeX)∗E ' O⊕rX for e� 0.

As it does not seem straightforward to deduce Theorem 2.1 from the statement of
Theorem 1.18, we simply redo the relevant arguments in a slightly different setting. As
explained below, Theorem 2.1 can be also easily deduced from the boundedness of semistable
sheaves [16]. For the rest of this section, we adopt the following notation:

N 2.2. – Fix a normal connected projective variety X of dimension d over an
algebraically closed field k ⊃ Fp, and an ample divisor H ⊂ X. Let X be a fixed
absolute integral closure of X. For any geometric object F over X, write F for its pullback
to X. For any X-scheme Y , we write Yn for the n-th infinitesimal neighborhood of the
inverse image of H, and Ŷ for the formal completion of Y along Y0. For K ∈ D( OY ), write
K̂ ' R lim(K ⊗ OY

OYn), viewed as an object on Ŷ . We use Vect(Y ) to denote the groupoid of
vector bundles on Y , i.e., the category whose objects are finite rank locally free OY -modules,
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and morphisms are isomorphisms of OY -modules. Finally, recall that a vector bundle on Ŷ is
a compatible collection of vector bundles on each Yn; hence, we set Vect(Ŷ ) := lim Vect(Yn),
where the limit is computed in sense of groupoids.

We first recall a classical observation, the Lemma of Enriques-Severi-Zariski:

L 2.3. – Assume d ≥ 2. For any E ∈ Vect(X), one has Hi(X,E(−kH)) = 0

for i ≤ 1 and k � 0.

Proof. – For any E ∈ Vect(X), Grothendieck-Serre duality gives Hi(X,E(−kH))∨ =

H−i(X,E∨ ⊗ ω•X(kH)), where ω•X is the dualizing complex of X normalized to have the
dualizing sheaf in homological degree d. As X is normal, we have ω•X ∈ D

[−d,−2]
coh ( OX). The

claim now follows by Serre vanishing.

Over X, we have significantly better vanishing:

P 2.4. – For E ∈ Vect(X), i < d and n� 0, we have Hi(X,E(−nH)) = 0.

Proof. – IfE is a finite direct sum of twists of OX byH, then the claim follows from [11].
For the general case, fix a sufficiently large integerN . Then the standard construction of free
resolutions (applied to the dual of E at some finite level) shows that one can find an exact
triangle E → P → Q in D≥0( OX) such that

1. P =
(
P 0 → P 1 → · · · → PN

)
with P i a finite direct sum of twists of OX (in

cohomological degree i).
2. Q lies in D≥N ( OX).

Then (2) shows that Hi(X,E(−nH)) ' Hi(X,P (−nH)) for i < d and any n. By (1),
each Hi(X,P (−nH)) admits a finite filtration with graded pieces being subquotients
of Hi−j(X,P j(−nH)). Each of these subquotients vanishes for i < d and n� 0. The
desired conclusion follows as the filtration is finite.

We can now algebraize some cohomology groups:

L 2.5. – Assume d ≥ 2. For any E ∈ Vect(X), we have Hi(X,E) ' Hi(X̂, Ê)

for i < d− 1. The analogous claim for i = 0 is also valid on X.

Proof. – We first show the claim for X. The projective system of exact sequences
1→ E(−nH)→ E → E|Xn−1

→ 1 gives a triangle

R lim RΓ(X,E(−nH))→ RΓ(X,E)
a→ RΓ(X̂, Ê).

The left hand side lies in D[d,d+1](k) by Proposition 2.4, so Hi(a) is an isomorphism
for i < d− 1. For i = 0, the same argument also applies for X using Lemma 2.3 instead of
Proposition 2.4.

Passage to formal completions of ample divisors faithfully reflects the geometry of bun-
dles:

L 2.6. – Assume d ≥ 2. The functor Vect(X)→ Vect(X̂) is fully faithful, and sim-
ilarly on X.
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Proof. – Lemma 2.5 shows that Hom(E,F ) ' Hom(Ê, F̂ ) for E,F ∈ Vect(X) (or
Vect(X)). It now suffices to check that if f : E → F induces an isomorphism f̂ : Ê → F̂ ,
then f is itself an isomorphism. By taking determinants, we may assume E and F are line
bundles. As the reduction f0 : E0 → F0 is an isomorphism, the support of coker(f) is a
divisor that does not intersect H, contradicting ampleness.

We obtain a Lefschetz-type result for π1:

C 2.7. – Assume d ≥ 2. The map π1(X0)→ π1(X) is surjective.

Proof. – We first observe that X0 is connected by Lemma 2.3, so the notation is
unambiguous. As π1(X0) ' π1(Xn) ' π1(X̂), it suffices to observe: for any finite étale
OX -algebra A, the natural map H0(X, A)→ H0(X̂, Â) is an isomorphism of algebras by
Lemma 2.5, and hence identifies idempotents.

Using the vanishing of cohomology on X, deformations of the trivial bundle on X0 are
easy to classify:

L 2.8. – Assume d ≥ 3. The fibre over the trivial bundle of Vect(X̂)→ Vect(X0) is
contractible.

Here a groupoid F is called “contractible” if it is equivalent, as a category, to the category
with a single object and a single (identity) automorphism, i.e., if π0(F ) = ∗, and π1(F, f) = 0

for any f ∈ F .

Proof. – Let E = O⊕rX . It suffices to show that the fibre Fn over En−1 of Vect(Xn) →
Vect(Xn−1) is contractible for n ≥ 1. One has π0(Fn) = H1(X0,End(E0)(−nH)) '
H1(X0, OX0

(−nH))⊕r
2

. This group vanishes by Proposition 2.4 and the exact sequence

1→ OX(−(n+ 1)H)→ OX(−nH)→ OX0
(−nH)→ 1

as d ≥ 3. A similar argument shows that π1(Fn) = ker(H0(X0,End(E0)(−nH))) = 0,
which proves the claim.

We can now prove the promised result:

Proof of Theorem 2.1. – Fix an E ∈ Vect(X) with E|H ' O⊕rH . Then Lemmas 2.6 and
2.8 show thatE is the trivial bundle overX. Hence, there is a finite cover ofX trivialisingE.
By [1], there is a finite k-group scheme G such that E is trivialized by a G-torsor over X.
Using Corollary 2.7 and the connected-étale sequence forG (see [21]), we may chooseG to be
connected, proving half the claim. The last part follows from the observation that any finite
surjective purely inseparable map Y → X is dominated by a power of Frobenius on X.

Langer’s alternative proof (independent of Proposition 2.4) is:
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Alternative proof of Theorem 2.1. – SinceE|H ' O⊕rH , the collection {(Frobe)∗E} forms
a bounded collection of semistable sheaves by [16] as d ≥ 3. Hence, by Lemma 2.3 applied
to the base of a quasi-compact parametrising family, there exists an integer m ≥ 0 such that

Hi(X, (Frobe)∗E(−pmH)) = 0

for all e ≥ 0 and i ≤ 1. Applying (Frobm)∗ to the sequence 1→ E(−H)→ E → E|H → 1

then shows that (Frobm)∗E → (Frobm)∗(E|H) ' O⊕rpmH induces an isomorphism on global
sections. An analogue of the argument in Lemma 2.6 then finishes the proof.

We end by noting that the proof of Corollary 2.7, Fujita vanishing [5, Theorem 10], and
standard representability results for Picard functors (see, for example, [14]) can be used to
prove the following Lefschetz-type result for base-point free big divisors on normal varieties.

T 2.9. – Let X be a normal connected projective variety of dimension d ≥ 2 over
a field k, and fix a Cartier divisor D ⊂ X such that O(D) is semiample and big. Then the
restriction map Picτ (X)→ Picτ (D) is:

1. injective if k has characteristic 0;
2. injective up to a finite and p∞-torsion kernel if k has characteristic p > 0.

In [17], one finds a stronger result with stronger assumptions: they completely describe
the kernel and cokernel of Pic(X)→ Pic(D) when X is a smooth projective variety in
characteristic 0, and D is general in its linear system.
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