
aNNALES
SCIENnIFIQUES

      SUPÉRIEUkE

de
L ÉCOLE
hORMALE

ISSN 0012-9593

ASENAH

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

quatrième série - tome 47 fascicule 4 juillet-août 2014

Yonatan HARPAZ & Alexei N. SKOROBOGATOV

Singular curves and the étale Brauer-Manin obstruction for surfaces



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 47, 2014, p. 765 à 778

SINGULAR CURVES AND THE ÉTALE
BRAUER-MANIN OBSTRUCTION FOR SURFACES

 Y HARPAZ  A N. SKOROBOGATOV

A. – We give an elementary construction of a smooth and projective surface over an
arbitrary number field k that is a counterexample to the Hasse principle but has infinite étale Brauer-
Manin set. Our surface has a surjective morphism to a curve with exactly one k-point such that the
unique k-fibre is geometrically a union of projective lines with an adelic point and the trivial Brauer
group, but no k-point.

R. – Nous présentons une construction élémentaire d’une surface lisse et projective sur
un corps de nombres quelconque k qui constitue un contre-exemple au principe de Hasse et possède
l’ensemble de Brauer-Manin infini. La surface est munie d’un morphisme surjectif vers une courbe avec
un seul k-point tel que l’unique fibre rationnelle, qui géométriquement est l’union de droites projectives,
a un point adélique et le groupe de Brauer trivial, mais pas de k-points.

Introduction

For a variety X over a number field k one can study the set X(k) of k-points of X by
embedding it into the topological space of adelic pointsX(Ak). In 1970 Manin [10] suggested
to use the pairing

X(Ak)× Br(X)→ Q/Z
provided by local class field theory. The left kernel of this pairingX(Ak)Br is a closed subset
of X(Ak), and the reciprocity law of global class field theory implies that X(k) is contained
in X(Ak)Br. The first example of a smooth and projective variety X such that X(k) = ∅
but X(Ak)Br 6= ∅ was constructed in [18] (see [1] for a similar example; an earlier example
conditional on the Bombieri-Lang conjecture was found in [14]). Later, Harari [6] found
many varieties X such that X(k) is not dense in X(Ak)Br. For all of these examples except
for that of [14] the failure of the Hasse principle or weak approximation can be explained by
the étale Brauer-Manin obstruction (introduced in [18], see also [13]): the closure of X(k)

in X(Ak) is contained in the étale Brauer-Manin set X(Ak)ét,Br ⊂ X(Ak)Br which in these
cases is smaller than X(Ak)Br. Recently Poonen [13] constructed threefolds (fibred into
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766 Y. HARPAZ AND A. N. SKOROBOGATOV

rational surfaces over a curve of genus at least 1) such that X(k) = ∅ but X(Ak)ét,Br 6= ∅.
It is known that X(Ak)ét,Br coincides with the set of adelic points surviving the descent
obstructions defined by torsors of arbitrary linear algebraic groups (as proved in [3, 17] using
[7, 19]).

In 1997 Scharaschkin and the second author independently asked the question whether
X(k) = ∅ if and only if X(Ak)Br = ∅ when X is a smooth and projective curve. They also
asked if the embedding ofX(k) intoX(Ak)Br defines a bijection between the closure ofX(k)

inX(Ak) and the set of connected components ofX(Ak)Br. Despite some evidence for these
conjectures, it may be prudent to consider also their weaker analogues with X(Ak)ét,Br in
place of X(Ak)Br.

In this note we give an elementary construction of a smooth and projective surfaceX over
an arbitrary number field k that is a counterexample to the Hasse principle and has infinite
étale Brauer-Manin set (Section 3). Even simpler is our counterexample to weak approxima-
tion (Section 2). This is a smooth and projective surfaceX over k with a unique k-point and
infinite étale Brauer-Manin setX(Ak)ét,Br; moreover, infinitely many elements ofX(Ak)ét,Br

have all their local components in the Zariski open set X \X(k). Following Poonen we con-
sider families of curves parameterized by a curve with exactly one k-point. The new idea is to
make the unique k-fibre a singular curve, geometrically a union of projective lines, and then
use properties of rational and adelic points on singular curves.

The structure of the Picard group of a singular projective curve is well known, see [2, Sec-
tion 9.2] or [9, Section 7.5]. In Section 1 we give a formula for the Brauer group of a reduced
projective curve, see Theorem 1.3. A singular curve over k can have surprising properties
that no smooth curve can ever have: it can contain infinitely many adelic points, only finitely
many k-points or none at all, and yet have the trivial Brauer group. See Corollary 3.2 for a
singular, geometrically connected, projective curve over an arbitrary number field k that is a
counterexample to the Hasse principle not explained by the Brauer-Manin obstruction. In [8]
the first author proves that every counterexample to the Hasse principle on a curve which
geometrically is a union of projective lines, can be explained by finite descent (and hence by
the étale Brauer-Manin obstruction). Here we note that geometrically connected and simply
connected projective curves over number fields satisfy the Hasse principle, a statement that
does not generalize to higher dimension, see Proposition 2.1 and Remark 2.2.

This paper was written while the authors were guests of the Centre interfacultaire
Bernoulli of the École polytechnique fédérale de Lausanne.

1. The Brauer group of singular curves

Let k be a field of characteristic 0 with an algebraic closure k̄ and the Galois group
Γk = Gal(k̄/k). For a schemeX over kwe writeX = X ×k k̄. All cohomology groups in this
paper are Galois or étale cohomology groups. Let C be a reduced, geometrically connected,
projective curve over k. We define the normalization C̃ as the disjoint union of normalizations
of the irreducible components of C. The normalization morphism ν : C̃ → C factors as

C̃
ν′−→ C ′

ν′′−→ C,
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SINGULAR CURVES AND THE ÉTALE BRAUER-MANIN OBSTRUCTION 767

where C ′ is a maximal intermediate curve universally homeomorphic to C, see [2, Sec-
tion 9.2, p. 247] or [9, Section 7.5, p. 308]. The curve C ′ is obtained from C̃ by identifying
the points which have the same image in C. In particular, there is a canonical bijection
ν′′ : C ′(K)−̃→C(K) for any field extension K/k. The curve C ′ has mildest possible sin-
gularities: for each singular point s ∈ C ′(k̄) the branches of C

′
through s intersect like

n coordinate axes at 0 ∈ Ank .
Let us define the following reduced 0-dimensional schemes:

(1.1) Λ = Spec(H0(C̃, OC̃)), Π = Csing, Ψ =
(
Π×C C̃

)
red
.

Here Λ is the k-scheme of geometric irreducible components of C (or the geometric con-
nected components of C̃); it is the disjoint union of closed points λ = Spec(k(λ)) such that
k(λ) is the algebraic closure of k in the function field of the corresponding irreducible com-
ponent k(Cλ) = k(C̃λ). Next, Π is the union of singular points of C, and Ψ is the union of
fibres of ν : C̃ → C over the singular points ofC with their reduced subscheme structure. The
morphism ν′′ induces an isomorphism

(
Π×C C ′

)
red
−̃→Π, so we can identify these schemes.

Let i : Π → C, i′ : Π → C and j : Ψ → C̃ be the natural closed immersions. We have a
commutative diagram

C̃
ν′ // C ′

ν′′ // C

Ψ

j

OO

ν′ // Π.

i′

OO

i

??

The restriction of ν to the smooth locus of C induces isomorphisms

C̃ \ j(Ψ)−̃→C ′ \ i′(Π)−̃→C \ i(Π).

An algebraic group over Π is a product G =
∏
π iπ∗(Gπ), where π ranges over the irre-

ducible components of Π, iπ : Spec(k(π))→ Π is the natural closed immersion, and Gπ is
an algebraic group over the field k(π).

P 1.1. – (i) The canonical mapsGm,C′ → ν′∗Gm,C̃ andGm,C′ → i′∗Gm,Π give
rise to the exact sequence of étale sheaves on C ′

(1.2) 0→ Gm,C′ → ν′∗Gm,C̃ ⊕ i
′
∗Gm,Π → i′∗ν

′
∗Gm,Ψ → 0,

where ν′∗Gm,Ψ is an algebraic torus over Π.
(ii) The canonical map Gm,C → ν′′∗Gm,C′ gives rise to the exact sequence of étale sheaves

on C:

(1.3) 0→ Gm,C → ν′′∗Gm,C′ → i∗ U → 0,

where U is a commutative unipotent group over Π.

Proof. – This is essentially well known, see [2], the proofs of Propositions 9.2.9 and 9.2.10,
or [9, Lemma 7.5.12]. By [11, Thm. II.2.15 (b), (c)] it is enough to check the exactness of (1.2)
at each geometric point x̄ ofC ′. If x̄ /∈ i′(Π), this is obvious since locally at x̄ the morphism ν′

is an isomorphism, and the stalks (i′∗Gm,Π)x̄ and (i′∗ν
′
∗Gm,Ψ)x̄ are zero. Now let x̄ ∈ i′(Π),

and let Ox̄ be the strict Henselisation of the local ring of x̄ in C ′. Each geometric point ȳ
of C̃ belongs to exactly one geometric connected component of C̃, and we denote by Oȳ
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768 Y. HARPAZ AND A. N. SKOROBOGATOV

the strict Henselisation of the local ring of ȳ in its geometric connected component. By the
construction of C ′ we have an exact sequence

0 −→ Ox̄ −→ k(x̄)×
∏

ν′(ȳ)=x̄

Oȳ −→
∏

ν′(ȳ)=x̄

k(ȳ) −→ 0,

where Oȳ → k(ȳ) is the reduction modulo the maximal ideal of Oȳ, and k(x̄)→ k(ȳ) is the
multiplication by −1. We obtain an exact sequence of abelian groups

1 −→ O∗x̄ −→ k(x̄)∗ ×
∏

ν′(ȳ)=x̄

O∗ȳ −→
∏

ν′(ȳ)=x̄

k(ȳ)∗ −→ 1.

Using [11, Cor. II.3.5 (a), (c)] one sees that this is the sequence of stalks of (1.2) at x̄, so that
(i) is proved.

To prove (ii) consider the exact sequence

0→ Gm,C → ν′′∗Gm,C′ → ν′′∗Gm,C′/Gm,C → 0.

Since ν′′ is an isomorphism away from i(Π), the restriction of the sheaf ν′′∗Gm,C′/Gm,C
to C \ i(Π) is zero, hence ν′′∗Gm,C′/Gm,C = i∗ U for some sheaf U on Π. To see that
U is a unipotent group scheme it is enough to check the stalks at geometric points.
Let x̄ be a geometric point of i(Π), and let ȳ be the unique geometric point of C ′ such
that ν′′(ȳ) = x̄. Let Ox̄ and Oȳ be the corresponding strictly Henselian local rings. The
stalk (ν′′∗Gm,C′/Gm,C)x̄ is O∗ȳ/ O∗x̄, and according to [9, Lemma 7.5.12 (c)], this is a unipo-
tent group over the field k(x̄). This finishes the proof.

R 1.2. – The first part of Proposition 1.1 has an alternative proof which is easier
to generalize to higher dimension. Let X be a projective k-variety with normalization mor-
phism ν : X̃ → X. Assume that X̃, Xsing and X̃crit are smooth, where Xsing is the singular
locus of X and X̃crit = ν−1(Xsing) ⊆ X̃ is the critical locus of ν. (This assumption is auto-
matically satisfied when X is a curve.) The analogue of C ′ is the K-variety X ′ given by the
pushout in the square

X̃crit
j //

g

��

X̃

ν′

��
Xsing

i′ // X ′.

This pushout exists in the category of K-varieties since i′ is a closed embedding and g is an
affine morphism of smooth projective varieties (see [4, Thm. 5.4]). One then proves that the
sequence of sheaves

0 −→ Gm,X′ −→ ν′∗Gm,X̃ ⊕ i
′
∗Gm,Xsing

−→ ν′∗j∗Gm,X̃crit
−→ 0

is exact, as follows. From the definition of X ′ we obtain that the square

OX′ //

��

ν′∗ OX̃

��
i′∗ OXsing

// ν′∗j∗ OX̃crit
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SINGULAR CURVES AND THE ÉTALE BRAUER-MANIN OBSTRUCTION 769

is a Cartesian diagram of sheaves of rings on X ′ (where Cartesian for sheaves means Carte-
sian on the stalks). The functor Gm from the category of rings with 1 to the category of
abelian groups that associates to a ring its group of units, commutes with limits and filtered
colimits (e.g., with taking stalks). This implies that the diagram

Gm,X′ //

��

ν′∗Gm,X̃

��
i′∗Gm,Xsing

// ν′∗j∗Gm,X̃crit

is Cartesian. Hence the exactness of the sequence

0 −→ Gm,X′ −→ ν′∗Gm,X̃ ⊕ i
′
∗Gm,Xsing

−→ ν′∗j∗Gm,X̃crit
.

It remains to check that the last map here is surjective. The morphism ν is finite, hence the
functor ν∗ is exact [11, Cor. II.3.6]. The map Gm,X̃ → j∗Gm,X̃crit

is surjective, because

j : X̃crit → X̃ is a closed embedding, and thus ν′∗Gm,X̃ → ν′∗j∗Gm,X̃crit
is surjective too.

For fields k1, . . . , kn, we have Br
(∐n

i=1 Spec(ki)
)

= ⊕ni=1 Br(ki).

T 1.3. – Let C be a reduced, geometrically connected, projective curve, and let Λ,
Π and Ψ be the schemes defined in (1.1). Let Λ =

∐
λ Spec(k(λ)) be the decomposition into

the disjoint union of connected components, so that C̃ =
∐
λ C̃λ, where C̃λ is a geometrically

integral, smooth, projective curve over the field k(λ). Then there is an exact sequence

(1.4) 0 −→ Br(C) −→ Br(Π)⊕
⊕
λ∈Λ

Br(C̃λ) −→ Br(Ψ),

where the maps are the composition of canonical maps

Br(C̃λ)→ Br(C̃λ ∩Ψ)→ Br(Ψ),

and the opposite of the restriction map Br(Π)→ Br(Ψ).

Proof. – Let π range over the irreducible components of Π, so that U =
∏
π iπ∗(Uπ),

where Uπ is a commutative unipotent group over the field k(π). Since i∗ is an exact func-
tor [11, Cor. II.3.6], we have Hn(C, i∗ U) = Hn(Π, U) =

∏
πH

n(k(π), Uπ). The field k

has characteristic 0, and it is well known that this implies that any commutative unipo-
tent group has zero cohomology in degree n > 0. (Such a group has a composition series
with factors Ga, and Hn(k,Ga) = 0 for any n > 0, see [15, X, Prop. 1].) Thus the long
exact sequence of cohomology groups associated to (1.3) gives rise to an isomorphism
Br(C) = H2(C,Gm,C)−̃→H2(C, ν′′∗Gm,C′). Since ν′′ is finite, the functor ν′′∗ is exact
[11, Cor. II.3.6], so we obtain an isomorphism Br(C)−̃→Br(C ′). We now apply similar
arguments to (1.2). Hilbert’s Theorem 90 gives H1(Π, ν′∗Gm,Ψ) = H1(Ψ,Gm,Ψ) = 0, so we
obtain the exact sequence (1.4).

Recall that a reduced, geometrically connected, projective curve S over a field k is called
semi-stable if all the singular points of S are ordinary double points [2, Def. 9.2.6].

D 1.4. – A semi-stable curve is called bipartite if it is a union of two smooth
curves without common irreducible components.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



770 Y. HARPAZ AND A. N. SKOROBOGATOV

C 1.5. – Let S = S+ ∪ S− be a bipartite curve, where S+ and S− are smooth
curves such that S+ ∩ S− is finite. Then there is an exact sequence

(1.5) 0 −→ Br(S) −→ Br(S+)⊕ Br(S−) −→ Br(S+ ∩ S−),

where Br(S) → Br(S+) ⊕ Br(S−) is the natural map, and Br(S±) → Br(S+ ∩ S−) is the
restriction map multiplied by ±1.

Proof. – In our previous notation we have S̃ = S+
∐
S−, Π = S+ ∩ S−, and Ψ is the

disjoint union of two copies of Π, namely Ψ+ = Ψ ∩ S+ and Ψ− = Ψ ∩ S−. In particular,
the restriction map Br(Π) → Br(Ψ) is injective. Thus taking the quotients by Br(Π) in the
middle and last terms of (1.4), we obtain (1.5).

The constructions in Sections 2 and 3 use singular curves of the following special kind.

D 1.6. – A reduced, geometrically connected, projective curve C over k is
called conical if every irreducible component of C is rational.

For bipartite conical curves the calculation of the Brauer group can be carried out using
only the Brauer groups of fields.

C 1.7. – Let C = C+ ∪C− be a bipartite conical curve, and let Λ = Λ+
∐

Λ−

be the corresponding decomposition of Λ. Then Br(C) is the kernel of the map⊕
λ∈Λ+

Br(k(λ))/[C̃λ] ⊕
⊕
λ∈Λ−

Br(k(λ))/[C̃λ] −→ Br(C+ ∩ C−),

where [C̃λ] ∈ Br(k(λ)) is the class of the conic C̃λ over the field k(λ), and the map
Br(k(λ))/[C̃λ]→ Br(C+ ∩ C−) is the restriction followed by multiplication by ±1 when λ ∈ Λ±.

Proof. – This follows directly from Proposition 1.5 and the well known fact that the
Brauer group of a conic over k is the quotient of Br(k) by the cyclic subgroup generated by
the class of this conic.

In some cases one can compute Br(C) using the Hochschild-Serre spectral sequence
Hp(k,Hq(C,Gm))⇒ Hp+q(C,Gm). In [5, III, Cor. 1.2] Grothendieck proved that Br(C) = 0

for any curve C. Hence the spectral sequence identifies the cokernel of the natural map
Br(k)→ Br(C) with a subgroup of H1(k,Pic(C)).

The structure of Γk-module Pic(C) is well known, at least up to its maximal unipo-
tent subgroup. It is convenient to describe this structure in combinatorial terms. Recall
that Λ, Π, Ψ are the k̄-schemes obtained from Λ, Π, Ψ by extending the ground field to k̄.
We associate to C the incidence graph X(C) defined as the directed graph whose vertices
are X(C)0 = Λ ∪Π and the edges are X(C)1 = Ψ. The edge Q ∈ Ψ goes from L ∈ Λ

to P ∈ Π when ν(Q) = P and Q is contained in the irreducible component L of C̃. The
source and target maps X(C)1 → X(C)0 can be described as a morphism of k-schemes

(s, t) : Ψ −→ Λ
∐

Π,

where t : Ψ→ Π is induced by ν′, and s is the composition of the closed immersion
j : Ψ→ C̃ and the canonical morphism C̃ → Λ. By construction X(C) is a connected
bipartite graph with a natural action of the Galois group Γk.
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For a reduced 0-dimensional k-scheme p : Σ→ Spec(k) of finite type, the k-group
scheme p∗Gm is an algebraic torus over k. If we write Σ =

∐n
i=1 Spec(ki), where k1, . . . , kn

are finite field extensions of k, then p∗Gm is the product of Weil restrictions
∏n
i=1Rki/k(Gm).

For a reduced 0-dimensional scheme p′ : Σ′ → Spec(k) of finite type a morphism of k-schemes
f : Σ′ → Σ gives rise to a canonical morphism Gm,Σ → f∗Gm,Σ′ , and hence to a canonical
homomorphism of k-tori p∗Gm → p′∗Gm, which we denote by f∗. Let us denote the struc-
ture morphism Λ→ Spec(k) by pΛ, and use the same convention for Ψ and Π. Let T be the
algebraic k-torus defined by the exact sequence

1 −→ Gm −→ pΛ∗Gm ⊕ pΠ∗Gm −→ pΨ∗Gm −→ T −→ 1,

where the middle arrow is s∗(t∗)−1.

R 1.8. – The character group T̂ with its natural action of the Galois group Γk,
is canonically isomorphic to H1(X(C),Z), the first homology group of the graph X(C).
Since X(C) is connected, we have T = {1} if and only if X(C) is a tree.

P 1.9. – Let C be a reduced, geometrically connected, projective curve over k.
We have the following exact sequences of Γk-modules:

0 −→ T (k̄) −→ Pic(C ′) −→ Pic(C̃ ×k k̄) −→ 0,(1.6)

0 −→ U(k̄) −→ Pic(C) −→ Pic(C ′) −→ 0,(1.7)

where U is a commutative unipotent algebraic group over k.

Proof. – To obtain (1.6) we apply the direct image functor with respect to the struc-
ture morphism C ′ → Spec(k) to the exact sequence (1.2). The sequence (1.7) is obtained
from (1.3) in a similar way.

C 1.10. – If C is a conical curve such that X(C) is a tree, then H1(k,Pic(C)) = 0,
so that the natural map Br(k)→ Br(C) is surjective.

Proof. – Since k has characteristic 0, we have Hn(k, U) = 0 for n > 0. Thus (1.7) gives
an isomorphism H1(k,Pic(C)) = H1(k,Pic(C ′)). We have T = {1}, hence Pic(C ′) =

Pic(C̃ ×k k̄). The curve C̃ is the disjoint union of conics defined over finite extensions
of k, thus the free abelian group Pic(C̃ ×k k̄) has a natural Γk-stable Z-basis. Hence
H1(k,Pic(C̃ ×k k̄)) = 0.

2. Weak approximation

Let k be a number field. Recall that the étale Brauer-Manin set X(Ak)ét,Br is the set of
adelic points (Mv) ∈ X(Ak) satisfying the following property: for any torsor f : Y → X of
a finite k-group scheme G there exists a k-torsor Z of G such that (Mv) is the image of an
adelic point in the Brauer-Manin set of (Y ×k Z)/G. Here G acts simultaneously on both
factors, and the morphism (Y ×k Z)/G→ X is induced by Y → X. It is clear that the étale
Brauer-Manin obstruction is a functor from the category of varieties over k to the category
of sets. Note that (Y ×kZ)/G→ X is a torsor of an inner form ofG, called the twist of Y/X
by Z, see [16, pp. 20–21] for details.
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772 Y. HARPAZ AND A. N. SKOROBOGATOV

In this section we construct a simple example of a smooth projective surfaceX over k such
that X(Ak)ét,Br is infinite but X(k) contains only one point. Thus X(k) is far from dense
in X(Ak)ét,Br; in fact, infinitely many points of X(Ak)ét,Br have all their local components
in the complement to X(k) in X.

We start with the following statement which shows that on an everywhere locally soluble
conical curve C such thatX(C) is a tree all the adelic points survive the étale Brauer-Manin
obstruction.

P 2.1. – Let k be a number field, and let C be a conical curve over k such that
X(C) is a tree and C(Ak) 6= ∅. Then

1. C(k) 6= ∅;
2. the natural map Br(k)→ Br(C) is an isomorphism;
3. C(Ak)ét,Br = C(Ak).

R 2.2. – Proposition 2.1 (1) implies that geometrically connected and simply con-
nected projective curves over number fields satisfy the Hasse principle. It is easy to see that
this statement does not generalize to higher dimension. Consider a conic C ⊂ P2

k without
a k-point, and choose a quadratic extension K/k so that all the places v with C(kv) = ∅
are split in K. Then the union of two planes conjugate over K and intersecting at C is a
geometrically connected and simply connected projective surface that is a counterexample
to the Hasse principle.

Proof of Proposition 2.1. – Let us prove (1). It is well known that any group acting on a fi-
nite connected tree fixes a vertex or an edge. (This is easily proved by induction on the diame-
ter of a tree, that is, on the length of a longest path contained in it.) We apply this to the action
of the Galois group Γk on X(C). If Γk fixes a point of Π or Ψ, then C(k) 6= ∅. If Γk fixes a
point of Λ, thenC has an irreducible componentC0 which is a geometrically integral geomet-
rically rational curve. Let C̃0 be the normalization ofC0. SinceX(C) is a tree, the morphism
C̃0 → C0 is a bijection on points. Thus if we can prove that C0(Ak) 6= ∅, then C̃0(Ak) 6= ∅,
and by the Hasse-Minkowski theorem C̃0(k) 6= ∅, so that finally C0(k) 6= ∅. Since X(C) is
a connected tree, each connected component of C \C0 meets C0 in exactly one point. Let kv
be a completion of k. Suppose that C0(kv) = ∅. Since C(kv) 6= ∅, at least one of the con-
nected components of C \C0 is fixed by the Galois group Γkv

, and hence it intersects C0 in
a kv-point. This contradiction proves (1).

By (1) the natural map Br(k) → Br(C) has a retraction, and so is injective, but it is also
surjective by Corollary 1.10. This proves (2).

Let us prove (3). Let G be a finite k-group scheme, and let T → C be a torsor of G. Fix
a k-point P in C. The fibre T P is then a k-torsor. The twist of T by T P is the quotient
of T ×k T P by the diagonal action of G. This is a C-torsor of an inner form of G such
that the fibre at P has a k-point, namely the quotient by G of the diagonal in T P ×k T P .
Thus, twisting T by a k-torsor of G, and replacing G by an inner form we can assume that
T P contains a k-point Q. Since all irreducible components of C are homeomorphic to P1

k̄
,

the torsor T → C trivializes over each component of C. ButX(C) is a tree, and this implies
that the torsor T → C is trivial, that is, T ' (C ×k G) ×k k̄. The connected component
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of T that contains Q is thus defined over k, and hence it gives a section s of T → C such
that s(P ) = Q. Hence any adelic point on C lifts to an adelic point on s(C) ⊂ T . Since
Br(C) = Br(k) we conclude that C(Ak) is contained in, and hence is equal to the étale
Brauer-Manin set C(Ak)ét,Br.

Let k be a number field, and let f(x, y) be a separable homogeneous polynomial such that
its zero locus Zf ⊆ P1

k is a 0-dimensional scheme violating the Hasse principle. It is easy to
see that such a polynomial exists for any number field k. For example, for k = Q one can
take

(2.1) f(x, y) = (x2 − 2y2)(x2 − 17y2)(x2 − 34y2).

For an arbitrary number field k the following polynomial will do:

f(x, y) = (x2 − ay2)(x2 − by2)(x2 − aby2)(x2 − cy2),

where a, b, c ∈ k∗ \ k∗2 are such that ab /∈ k∗2, whereas c ∈ k∗2v for all places v such that
valv(a) 6= 0 or valv(b) 6= 0, and also for the Archimedean places, and the places with residual
characteristic 2. (For fixed a and b one finds c using weak approximation.) Let d = deg(f).

LetCf ⊆ P2
k be the curve with the equation f(x, y) = 0. It is geometrically connected and

has a unique singular point P = (0 : 0 : 1) ∈ Cf ⊂ P2
k which is contained in all irreducible

components ofCf . SinceZf (k) = ∅we see thatP is the only k-point ofCf . The intersection
ofCf with any line in P2

k that does not pass through P is isomorphic toZf , hence the smooth
locus of Cf contains an infinite subset of Cf (Ak) = Cf (Ak)ét,Br, where the equality is due to
Proposition 2.1 (3).

Now let g(x, y, z) be a homogeneous polynomial over k of the same degree as f(x, y)

such that the subset of P2
k given by g(x, y, z) = f(x, y) = 0 consists of d2 distinct k̄-points.

Consider the projective surface Y ⊆ P2
k × P1

k given by the equation

λf(x, y) + µg(x, y, z) = 0,

where (λ : µ) are homogeneous coordinates onP1
k. One immediately checks thatY is smooth.

The fibre of the projection Y → P1
k over∞ = (1 : 0) is Cf .

Let E be a smooth, geometrically integral, projective curve over k containing exactly
one k-rational pointM . By [12] such curves exist over any global field k. Choose a dominant
morphism ϕ : E → P1

k such that ϕ(M) =∞, and ϕ is not ramified over all the points of P1
k

where Y has a singular fibre (including∞). Define

(2.2) X = E ×P1
k
Y.

P 2.3. – The surface X is smooth, projective and geometrically integral. The
set X(k) has exactly one point, whereas the set X(Ak)ét,Br is infinite. Furthermore, infinitely
many elements ofX(Ak)ét,Br have all their local components in the Zariski open setX \X(k).

Proof. – The inverse image of the unique k-point of E in X is Cf , hence X has exactly
one k-point. Since the étale Brauer-Manin obstruction is a functor from the category of
k-varieties to the category of sets, the inclusion ι : Cf ↪→ X induces an inclusion

ι∗ : Cf (Ak) = Cf (Ak)ét,Br ↪→ X(Ak)ét,Br.
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We conclude that X(Ak)ét,Br contains infinitely many points all of whose local components
belong to the Zariski open set X \X(k).

R 2.4. – Following a suggestion of Ambrus Pál made in response to the first
version of this paper we now sketch a more elementary construction of a counterexample
to weak approximation not explained by the étale Brauer-Manin obstruction. Consider any
irreducible binary quadratic form f(x, y) over k. Then our method produces a smooth,
projective and geometrically integral surface X fibred into conics over E. The fibre over
the unique k-point of E is the irreducible singular conic Cf , hence the set X(k) con-
sists of the singular point of Cf . Let D be the discriminant of f(x, y). If v is a finite
place of k that splits in k(

√
D), then Cf (kv) is the union of two projective lines over kv.

Thus Cf (Ak) = Cf (Ak)ét,Br is infinite, and hence so is X(Ak)ét,Br. This construction gives
a surface of simpler geometric structure than the surface in Proposition 2.3, but it does not
possess the stronger property of the previous example: here no element of X(Ak)ét,Br is
contained in the Zariski open set X \X(k). For this argument we assume that the Jacobian
of E has rank 0 and a finite Shafarevich-Tate group, e.g., E is an elliptic curve over Q of
analytic rank 0. Let (Mv) be an adelic point in X(Ak)ét,Br. Its image (Nv) in E is contained
in E(Ak)Br, but this set is just the connected component of 0 = E(k) in E(Ak), see [16,
Prop. 6.2.4]. Thus for all finite places v we have Nv = 0. For any place v that does not split
in k(

√
D), this implies Mv ∈ X(k).

3. The Hasse principle

In this section we construct a smooth projective surfaceX over an arbitrary number field k
such that X(Ak)ét,Br is infinite and X(k) is empty. This means that X does not satisfy the
Hasse principle and this failure is not explained by the étale Brauer-Manin obstruction.

Let f(x, y) and Zf be as in the previous section. The scheme Zf is the disjoint union
of Spec(Ki) for i = 1, . . . , n, whereKi is a finite extension of k. We assume d = deg(f) ≥ 5.
(For k = Q one can take f(x, y) of degree 6 as in (2.1), and in general degree 8 will
suffice.) We choose field extensions L/k and F/k such that L⊗k Ki and F ⊗k Ki are
fields for all i = 1, . . . , n, and, moreover, [L : k] = d/2− 1, [F : k] = d/2 if d is even,
and [L : k] = (d− 1)/2, [F : k] = (d+ 1)/2 if d is odd. Fix an embedding

Spec(L)
∐

Spec(F ) ↪→ P1
k

and let D be the following curve in P1
k × P1

k:

D =
(
Zf × P1

k

)
∪
(
P1
k × Spec(L)

)
∪
(
P1
k × Spec(F )

)
.

This is a bipartite conical curve without k-points, see Definition 1.4. The class of D
in Pic(P1

k × P1
k) is (d, d− 1) or (d, d) depending on the parity of d.

P 3.1. – The natural map Br(k)→ Br(D) is an isomorphism.

Proof. – Since D(L) 6= ∅, the natural map Br(L)→ Br(D ×k L) has a retraction, and
so is injective. The composition of the restriction Br(k)→ Br(L) and the corestriction
Br(L)→ Br(k) is the multiplication by [L : k], hence for any x in the kernel of the natural
map Br(k)→ Br(D) we have [L : k]x = 0. Similarly, D(F ) 6= ∅ implies that [F : k]x = 0.
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But [F : k] = [L : k] + 1, therefore the natural map Br(k)→ Br(D) is injective. By Corol-
lary 1.7 we need to prove that Br(k) is the kernel of the map

Br(L)⊕ Br(F )⊕
n⊕
i=1

Br(Ki) −→
n⊕
i=1

Br(LKi)⊕
n⊕
i=1

Br(FKi).

Recall that the maps Br(L)→ Br(LKi) are the restriction maps, whereas Br(Ki)→ Br(LKi)

are opposites of the restriction maps. The same convention applies with F in place of L.

Suppose that we have αi ∈ Br(Ki), i = 1, . . . , n, β ∈ Br(L) and γ ∈ Br(F ) such that
(αi, β, γ) goes to zero. Let v be a place of k, and let kv be a completion of k at v. Since
Zf (kv) 6= ∅, there is an index i such that v splits inKi. Letw be a degree 1 place ofKi over v,
so that the natural map kv → Ki,w is an isomorphism. Let av ∈ Br(kv) = Br(Ki,w) be the
image of αi under the restriction map Br(Ki)→ Br(Ki,w). This defines av ∈ Br(kv) for any
place v of k, moreover, we have av = 0 for almost all v since each αi is unramified away from
a finite set of places (and the Brauer group of the ring of integers of kν is trivial). We have a
commutative diagram of restriction maps

Br(L) −→ Br(L⊗k Ki) ←− Br(Ki)

↓ ↓ ↓
Br(L⊗k kv) −̃→ Br(L⊗k Ki,w) ←− Br(Ki,w).

Here for a family of fields {Fi} we write Br(⊕Fi) = ⊕Br(Fi). Since (αi, β, γ) goes
to zero, the restrictions of αi and β to Br(L ⊗k Ki) coincide. Hence the image βv
of β in Br(L ⊗k kv) is the image of av ∈ Br(kv). From the global reciprocity law
applied to β ∈ Br(L) we deduce [L : k]

∑
v invv(av) = 0. The same argument with γ

instead of β gives [F : k]
∑
v invv(av) = 0. Since [L : k] and [F : k] are coprime we obtain∑

v invv(av) = 0. By global class field theory there exists α ∈ Br(k) such that av is the image
of α in Br(kv). Since the map Br(L)→ ⊕v Br(L⊗k kv) is injective it follows that α goes to β
under the restriction map Br(k)→ Br(L), and similarly for γ. Modifying αi, β and γ by
the image of α we can now assume that β = 0 and γ = 0. Since αi goes to zero in Br(LKi),
a standard restriction-corestriction argument gives [L : k]α = 0. Similarly, αi goes to zero
in Br(FKi), and hence [F : k]α = 0. Therefore, α = 0.

C 3.2. – We have D(Ak)Br = D(Ak).

We now construct a conical curveC ⊂ P1
k × P1

k with one singular point such thatC andD
are linearly equivalent. Let P = (P1, P2) be a k-point in P1

k × P1
k. In the tangent plane

to P1
k × P1

k at P choose a line ` through P such that ` is not one of the two tangent direc-
tions. Assume first that d is odd, so that O(D) = O(d, d). For i = 1, . . . , d let Ci ⊂ P1

k × P1
k

be pairwise different geometrically irreducible curves through P tangent to ` such that
O(Ci) = O(1, 1). (If one embeds P1

k × P1
k as a quadric Q ⊂ P3

k, then Ci are smooth conic
sections of Q by pairwise different hyperplanes passing through `.) Define the curve C as
the union of the conics Ci, for i = 1, . . . , d. Since (C2

i ) = 2 and all the curves Ci are tangent
to each other, we have Ci ∩ Cj = P if i 6= j. Thus P is the unique singular point of C.
If d is even, we define C as the union of Ci, for i = 1, . . . , d− 1, and L = P1 × P1

k. We have
L ∩ Ci = P for i = 1, . . . , d− 1, so P is a unique singular point of C. Therefore, for any d
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the curve C is conical and X(C) is a tree, and C and D have the same class in Pic(P1
k × P1

k),
and so are linearly equivalent.

By choosing P outsideD we can arrange thatC does not meetDsing. Then each k̄-point s
ofC∩D belongs to exactly one geometric irreducible component of eachC andD, and these
components meet transversally at s.

Let r(x, y;u, v) and s(x, y;u, v) be the bi-homogeneous polynomials of bi-degree (d, d)

if d is odd, and (d, d − 1) if d is even, such that their zero sets are the curves D and C,
respectively. Let Y ⊂ (P1

k)3 be the surface given by

λr(x, y;u, v) + µs(x, y;u, v) = 0,

where (λ : µ) are homogeneous coordinates on the third copy of P1
k. It is easy to check that

Y is smooth. The projection to the third factor (P1
k)3 → P1

k defines a surjective morphism
Y → P1

k with fibres Y0 = C and Y∞ = D. The generic fibre of Y → P1
k is geometrically

integral.
As in the previous section, we pick a smooth, geometrically integral, projective curve E

with a unique k-pointM , and a dominant morphism ϕ : E → P1
k such that ϕ(M) =∞, and

ϕ is not ramified over all points ofP1
k whereY has a singular fibre (including 0 and∞). We de-

fineX by (2.2); this is a smooth, geometrically integral and projective surface. Let p : X → E

be the natural projection. Since E(k) = {M} and D = p−1(M) has no k-points, we see that
X(k) = ∅.

To study the étale Brauer-Manin set ofX we need to understandX-torsors of an arbitrary
finite k-group schemeG. In the following general proposition the word ‘torsor’ means ‘torsor
with structure group G’.

P 3.3. – Let k be a field of characteristic zero, and let X and B be varieties
over k. Let p : X → B be a proper morphism with geometrically connected fibres. Assume
that p has a simply connected geometric fibre. Then for any torsor f : X ′ → X there exists a
torsor B′ → B such that torsors X ′ → X and X ×B B′ → X are isomorphic.

Proof. – Let δ = |G(k̄)|. Let X ′
g→ B′

h→ B be the Stein factorization of the composed

morphism X ′
f→ X

p→ B (EGA III.4.3.1). Thus we have a commutative diagram

X ′
f //

g

��

X

p

��
B′

h // B

where g is proper with geometrically connected fibres, and h is a finite morphism. (The
variety B′ can be defined as the relative spectrum of (pf)∗ OX′ .) The Stein factorization is a
functor from the category of proper schemes overB to the category of finite schemes overB.
Thus we obtain an induced action of G on B′ such that g is G-equivariant.

Let δ′ be the degree of h. We claim that δ′ ≥ δ. Indeed, let x̄ be a geometric point of B
such that p−1(x̄) is simply connected. Thus f−1(p−1(x̄)) is isomorphic to a disjoint union
of δ copies of p−1(x̄). Hence h−1(x̄) has cardinality δ, and so δ′ ≥ δ.

The projection πX : X ×B B′ → X is a finite morphism of degree δ′. The composition of
the natural mapX ′ → X×BB′ with πX is f : X ′ → X, and this is a finite étale morphism of
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degree δ. Since δ′ ≥ δ it follows thatX ′ → X ×B B′ is finite and étale of degree 1, and hence
is an isomorphism. We also see that δ′ = δ and that πX is an étale morphism of degree δ. It
follows that h is also étale of degree δ. Now the action of G equips B′ with the structure of
a B-torsor.

Finally, we can prove the main result of this section.

T 3.4. – The set X(k) is empty, whereas the set X(Ak)ét,Br contains D(Ak) and
so is infinite.

Proof. – SinceC is a connected and simply connected variety over k̄ which is a geometric
fibre of X → E, we can use Proposition 3.3. Thus any X-torsor of a finite k-group scheme
has the form T X = T ×E X for some torsor T → E. After twisting we can assume that
the fibre of T over the unique k-point of E has a k-point. Thus the restriction of the
torsor T X → X to the curveD ⊂ X has a section σ. Therefore every adelic point onD ⊂ X
is the image of an adelic point on σ(D) ⊂ T X . By Corollary 3.2 and the functoriality of the
Brauer-Manin set we have

σ(D)(Ak) = σ(D)(Ak)Br ⊂ T X(Ak)Br.

Thus, by the definition of the étale Brauer-Manin set, X(Ak)ét,Br contains the infinite
set D(Ak), and hence is infinite.
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