
aNNALES
SCIENnIFIQUES

      SUPÉRIEUkE

de
L ÉCOLE
hORMALE

ISSN 0012-9593

ASENAH

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

quatrième série - tome 47 fascicule 4 juillet-août 2014

Matthew EMERTON & David HELM

The local Langlands correspondence for GLn in families



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 47, 2014, p. 655 à 722

THE LOCAL LANGLANDS CORRESPONDENCE
FOR GLn IN FAMILIES

 M EMERTON  D HELM

A. – Let k be a finite field of characteristic p, and letE be an `-adic field for ` 6= p. Given a
representation ρ : GE → GLn(A) whereA is a localW (k)-algebra, we study the problem of finding an
admissibleA[GLn(E)]-module π(ρ) that “interpolates the local Langlands correspondence” for ρ over
the points of SpecA. We formulate a precise version of this problem and show that it has at most
one solution, up to isomorphism. The first author has shown [6] that when A is a Hecke algebra, and
ρ : GQ` → GL2(A) is the natural representation ofGQ` overA, the correspondingA[GLn(E)]-module
π(ρ) exists and arises naturally in the completed cohomology of the tower of modular curves.

R. – Soit k un corps fini de caractéristique p et soit E un corps `-adique où ` 6= p. Étant
donnée une représentation ρ : GE → GLn(A), où A est une W (k)-algèbre locale, nous étudions le
problème de la recherche deA[GLn(E)]-module admissible π(ρ) qui « interpole la correspondance de
Langlands locale » pour ρ sur les points de SpecA. Nous formulons une version précise de ce problème
et montrons qu’il a au plus une solution, à isomorphisme près. Le premier auteur a montré [6] que
lorsqueA est une algèbre de Hecke, et ρ : GQ` → GL2(A) est la représentation naturelle deGQ` surA,
alors le A[GL2(E)]-module π(ρ) existe et apparaît naturellement dans la cohomologie de la tour des
courbes modulaires.

1. Introduction

The goal of this paper is to extend, for any non-Archimedean local field E of residue
characteristic `, the local Langlands correspondence between n-dimensional Weil-Deligne
representations of the Weil group WE and admissible smooth representations of GLn(E)

to a correspondence defined on p-adic families of representations of the absolute Galois
group GE of E (for primes p distinct from `).

Fix an algebraically closed fieldK containingQp. Then on one side of the local Langlands
correspondence are the n-dimensional, Frobenius-semisimple Weil-Deligne representations
of WE ; that is, pairs (ρ,N), where ρ is an n-dimensional, semisimple representation of WE
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656 M. EMERTON AND D. HELM

over K, and N is a nilpotent endomorphism of the representation space of ρ such that
ρ(w)Nρ(w)−1 = q|w|N for all w ∈WE .

On the other side are the admissible smooth K-representations of GLn(E); that is, repre-
sentations π of GLn(E) such that every element of π is fixed by some compact open subsetU
of GLn(E), and such that, for all such U , the space πU of U -invariant vectors in π is finite-
dimensional.

The most naive thing one could hope for would be the following: given a family of repre-
sentations of GE over a complete, Noetherian, local, p-torsion free ring A of characteristic
zero and residue characteristic p (that is, a representation ρ : GE → GLn(A) for such an A),
one could hope to find an admissible smooth A[GLn(E)]-module π such that, for every
characteristic zero prime ideal p of A, with residue field κ(p), the representation π ⊗A κ(p)

of GLn(E) corresponds, via local Langlands, with the Frobenius-semisimple Weil-Deligne
representation attached to ρ⊗A κ(p).

A moment’s consideration will show that this is far too much to hope for. Indeed, if
ρ is a direct sum of two unramified characters that specializes at a single characteristic zero
point p0 to the trivial character plus the cyclotomic character, then the local Langlands
correspondence would tell us that π⊗A κ(p0) would be one-dimensional. On the other hand
at general points p one would need π ⊗A κ(p) to be infinite-dimensional.

Indeed, as this example suggests, even formulating a precise statement of a “local
Langlands correspondence in families” is nontrivial. Our approach is motivated by global
considerations, suggested by work of the first author [6].

1.1. Global motivation

In the setting of [6], the ring A is typically a p-adically completed Hecke algebra, and ρ is
the two dimensional representation of GQ over A arising from the theory of p-adic modular
forms. For a certain finite set of primes Σ containing p, the Hecke algebraA acts on a suitable
localization of p-adically completed cohomologyH1(XΣ) of the tower of modular curves of
levels divisible by primes in Σ. This cohomology is also equipped with commuting actions
of GQ, of GL2(Qp), and of GL2(Q`) for ` a prime of Σ not equal to p.

What is shown in [6] is that the spaceH1(XΣ) has a natural tensor factorization, and that
the tensor factor corresponding to ` interpolates the local Langlands correspondence in a
natural way. More precisely, one has a factorization:

H1(XΣ) ∼= ρ⊗ πp ⊗
⊗

`∈Σ\{p}

π`

where πp is a certain representation of GL2(Qp) attached to ρ|GQp
via considerations arising

from the p-adic local Langlands correspondence, and the representations π` depend only on
the restriction of ρ to GQ` , and interpolate the local Langlands correspondence in a natural
way. (We refer the reader to Conjecture 6.1.6 of [6] for a precise statement; Proposition 6.2.13
of [6] establishes this conjecture under mild hypotheses.)

The representations π` have a number of nice properties, which suggest the “shape” that
the desired “local Langlands correspondence in families” should take:
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LOCAL LANGLANDS IN FAMILIES 657

– π` is the smooth W (k)-dual of a (unique) admissible smooth A[GL2(Q`)]-module π′`,
where k is the residue field ofA. (Modules with this property are called “coadmissible”
and studied in detail in Appendix C of [6].)

– π` is “A-cotorsion free” in the sense of Definition C.37 of [6].
– For a Zariski dense set of characteristic zero primes p of A, the space π`[p] of p-tor-

sion vectors in π` is the representation attached to ρ ⊗A κ(p) by a “generic” version
of the local Langlands correspondence due to Breuil and Schneider. (This correspon-
dence differs from the usual local Langlands correspondence in several ways. Rather
than being a bijection it is a map from isomorphism classes of n-dimensional represen-
tations of GE to indecomposable (but not necessarily irreducible) generic representa-
tions of GL2(E). We refer the reader to Section 4 for the definition and basic properties
of the Breuil-Schneider correspondence.)

– The space (π`/pπ`)[m] (where m is the maximal ideal of A) has an absolutely irre-
ducible generic socle, and no other generic subquotients. (Here recall that the socle of
a k[GLn(E)]-module is its maximal semisimple submodule; that is, the sum of all of its
irreducible submodules. A generic representation of GLn(E) is one whose restriction
to the unipotent radical of a Borel contains a generic character; for GL2(Q`) an irre-
ducible admissible representation is generic if, and only if, it is infinite dimensional.)
In the setting above, the genericity of the socle of (π`/pπ`)[m] is a consequence of
Ihara’s lemma.

Given an arbitrary A, and an arbitrary family ρ : GE → GLn(A), it is natural in light of
the above properties to ask if one can attach an A[GLn(E)]-module π to ρ, with properties
similar to those above, and to ask if such properties characterize such a module uniquely. In
fact, in order to avoid the complication of dealing with the theory of coadmissible modules,
we will work in a setting dual to the above picture.

1.2. The local Langlands correspondence for GLn in p-adic families

We are now in a position to state our main result. Before we do so, we introduce further
notation: LetK be a field of characteristic zero. Then given ρ : GE → GLn(K) as above, we
writeπ(ρ) for the representation attached to ρ by the generic local Langlands correspondence
of Breuil-Schneider, and we write π̃(ρ) to denote the smooth contragredient of π(ρ).

1.2.1. T. – Let A be a reduced complete p-torsion free Noetherian local ring with
maximal idealm and finite residue field k of characteristic p. If ρ : GE → GLn(A) is continuous
(when the target is given its m-adic topology), then there exists at most one admissible smooth
GLn(E)-representation V over A, up to isomorphism, satisfying the following conditions:

1. V is A-torsion free.
2. If a is a minimal prime of A, with residue field κ(a), then there is a κ(a)-linear

GLn(E)-equivariant isomorphism

π̃
(
κ(a)⊗A ρ

) ∼−→ κ(a)⊗A V.

3. If we writeV := k⊗AV , then the GLn(E) cosocle cosoc(V ) ofV is absolutely irreducible
and generic, while the kernel of the surjection V → cosoc(V ) contains no generic Jordan-
Hölder factors.
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658 M. EMERTON AND D. HELM

Furthermore, if such a V exists, then:

4. There exists an open dense subset U of SpecA[ 1
p ], such that for each prime p in U , there

is a GLn(E)-equivariant, nonzero surjection

π̃
(
κ(p)⊗A ρ

)
→ κ(p)⊗A V,

where κ(p) is the residue field of p. Moreover, there is an open dense subset U ′ of U such
that if p lies in U ′ then this surjection is an isomorphism.

The admissibility condition on V , together with properties (1) through (3) above, are
(roughly) dual to the properties satisfied by the tensor factors π`. Indeed, we prove a “recog-
nition theorem” (Theorem 6.2.15 below) that states that if the smooth W (k)-dual of V
satisfies the properties listed for π` above (for a given ρ), then V is admissible and satisfies
properties (1) through (3).

If a representation V satisfying the conditions of this theorem with respect to a given
Galois representation ρ : GE → GLn(A) exists, then we write V := π̃(ρ). (Note that
the theorem ensures that V is unique up to isomorphism, so that π̃(ρ) is then uniquely
determined by ρ, up to isomorphism, if it exists.) We justify this notation by thinking of
representations of GE over fields of characteristic zero as “families over a single point”,
so that the map ρ 7→ π̃(ρ), where it is defined, extends the dual of the Breuil-Schneider
correspondence from one-point families to families over local rings A as in the theorem.

Part (4) of the theorem describes the precise sense in which V interpolates the local
Langlands correspondences attached to the Galois representations κ(p)⊗A ρ as p ranges
over the points of SpecA[ 1

p ]. Conjecturally, we can take U equal to all of SpecA[ 1
p ] in

statement (4), although our results fall short of establishing this. (We refer the reader to
Theorems 6.2.5 and 6.2.6 for the precise results.) On the other hand, we will give examples
in Section 6 showing that the subset U ′ is, in general, not equal to all of SpecA[ 1

p ].

1.2.2. R. – Our convention for the generic local Langlands correspondence
is that the GLn( K )-representation π(ρ) attached to a continuous Galois representation
ρ : GE → GLn( K ) should have generic socle. It is this convention that seems to fit best with
global applications of the type considered in [6] and [7], for example. On the other hand,
when working with families, it turns out to be easier to interpolate representations whose
cosocle is generic. This is because one may work with admissible A[GLn(E)]-modules,
rather than the less-familiar coadmissible modules of [6]. This explains the appearance of
the various contragredient representations in Theorem 1.2.1, and in our notation for the
representations that it describes.

1.3. Global applications

Although we have used the results of [6] to motivate our formulation of the local
Langlands correspondence in families, in fact Theorem 1.2.1, together with the “recog-
nition theorem” (Theorem 6.2.15) described above, are essential ingredients in the proofs of
the main results of [6].

In the language of Theorem 1.2.1, the results of [6] state that (again, under mild hypothe-
ses) when A is a suitable p-adically completed Hecke algebra, and ρ : GQ → GLn(A) is the
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representation arising from Eichler-Shimura theory, then the representations π̃(ρ|GQ`
) exist

for all ` not equal to p, and one has a tensor factorization:

H1(XΣ) ∼= ρ⊗ πp ⊗
⊗

`∈Σ\{p}

π̃(ρ|GQ`
)∨.

The resulting structure theory for completed cohomology of the modular tower has strik-
ing arithmetic applications; in particular [6] establishes many cases of the Fontaine-Mazur
conjecture as a corollary of the tensor factorization described above (see in particular [6],
Corollary 1.2.2). It thus is natural to attempt to seek a framework in which one can describe
completed cohomology of Shimura towers in as broad a context as possible; a primary goal
of this paper is to develop a language which should apply to the factors of completed coho-
mology at primes ` 6= p.

It is important to note that the arguments of [6] do not require one to know, a priori, that
representations of the form π̃(ρ) exist. Instead, they rely on Theorem 6.2.15 below to deduce
from considerations at a dense set of points (together with a genericity condition that, in the
setting of [6], essentially reduces to Ihara’s lemma) that a module with an action of GLn(Q`i)
for each `i in a finite collection of primes admits a tensor factorization as a product of families
of the form π̃(ρ). Whereas the proof of Theorem 1.2.1 is relatively elementary (essentially
relying on an integral version of the Bernstein-Zelevinski theory of the derivative), the proof
of Theorem 6.2.15 requires detailed information about the behavior of the generic local
Langlands correspondence under specialization, which we develop in Section 4.

1.4. Existence of the correspondence: results and conjectures

Just as in the traditional setting, it seems to be easier to characterize the local Langlands
correspondence in families than to prove its existence. However, we make the following
conjecture.

1.4.1. C. – IfA is a reduced p-torsion free complete Noetherian local ring with
maximal ideal m and finite residue field k of characteristic p, and if ρ : GE → GLn(A) is
continuous, then π̃(ρ) exists.

One instance in which we can verify the conjecture is the case when A is the ring of
integers in a finite extension of Qp. (In this case, it is a consequence of Theorem 3.3.2.)
Forthcoming work of the second author [11], [12] will establish many additional cases of this
conjecture, using the second author’s theory of the integral Bernstein center [9]. In particular
the conjecture holds for n = 2 and p odd, and also for p a banal prime; that is, a prime for
which the integers 1, q, . . . , qn are distinct modulo p, where q is the order of the residue field
of E. (This means that for any fixed n, there are only finitely many p at which the conjecture
can fail.)

1.5. A mod p local Langlands correspondence for GLn

In [20], Vigneras defines a mod p local Langlands correspondence for GLn. However, this
correspondence seems ill-suited for arithmetic applications (and in particular for describing
the mod p cohomology of the modular tower.) In particular, it lacks the good behavior of the
Breuil-Schneider correspondence under specialization.
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In Section 5 we define a “modified” mod p local Langlands correspondence, that is more
suited to our needs. It differs from the correspondence of Vigneras in the following ways:

(a) The input is a Galois representation (not a Weil-Deligne representation).
(b) The output is an admissible smooth GLn(E)-representation that is possibly reducible,

but always generic.
(c) The correspondence is compatible with reduction modulo p in the direct sense given

by parts (2) and (3) of Theorem 1.5.1 below. (The Zelevinski involution does not
intervene.)

This being said, we rely on the results of [20] for the construction of our correspondence.
The key point, whose proof relies on [20], is that for any deformation ρ of ρ, the representa-
tion π̃(ρ) reduces modulo m to a representation whose cosocle is absolutely irreducible and
generic, and is independent, up to isomorphism, of the choice of ρ. (See the discussion fol-
lowing Corollary 5.1.2 below.)

The key properties of the correspondence of Section 5 are summarized in the following
theorem:

1.5.1. T. – There is a map ρ 7→ π(ρ) from the set of isomorphism classes of
continuous representationsGE → GLn(k) (where k is a finite field of characteristic p) to the set
of isomorphism classes of finite length admissible smooth GLn(E)-representations on k-vector
spaces, uniquely determined by the following conditions:

1. For any ρ, the G-socle soc
(
π(ρ)

)
of the associated GLn(E)-representation π(ρ) is

absolutely irreducible and generic, and the quotient π(ρ)/ soc
(
π(ρ)

)
contains no generic

Jordan-Hölder factors.
2. Given ρ : GE → GLn(k), together with a deformation ρ : GE → GLn( O) of ρ, where

O is a characteristic zero discrete valuation ring with uniformizer $ and residue field k′

containing k, there is a GLn(E)-equivariant surjection π̃(ρ)⊗k k′ → π̃(ρ)/$π̃(ρ). (Note
that π̃(ρ) must exist as O is a finite extension of Qp.)

3. The representation π(ρ) is minimal with respect to satisfying conditions (1) and (2),
i.e., given any continuous representation ρ : GE → GLn(k) and any representation π
of GLn(E) satisfying these two conditions with respect to ρ, there is a GLn(E)-equiv-
ariant embedding π(ρ) ↪→ π.

As with the local Langlands correspondence in families, our motivation for introducing
this modified mod p local Langlands correspondence is that it arises in global contexts.
Indeed, consider the limitH1(XΣ, k) of the cohomology of the towerXΣ of modular curves,
where the levels of curves inXΣ are divisible precisely by the primes in Σ. This has an action
of a completed Hecke algebraA, and if one considers the maximal ideal ofA corresponding
to a suitable irreducible representation ρ : GQ → GL2(k), then one has an isomorphism:

H1(XΣ, k)[m] ∼= ρ⊗ πp ⊗
⊗

`∈Σ\{p}

π(ρ|GQ`
).

Thus the modified mod p local Langlands correspondence gives a framework in which one
may describe the mod p cohomology of towers of modular curves, and one expects that this
should apply to more general towers of Shimura varieties as well.
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The modified mod p local Langlands correspondence admits a completely concrete
description for n = 2 and p odd; we briefly describe some cases of this in Section 5, and
refer the reader to [10] for the complete picture.

1.5.2. R. – One can consider the following stronger form of condition (2) of
Theorem 1.5.1:

2′. Given ρ : GE → GLn(k), together with a deformation ρ : GE → GLn(A) of ρ, where
A is a reduced complete Noetherian local W (k)-algebra, flat over W (k), with maximal
ideal m and residue field k, and π̃(ρ) exists, there is a GLn(E)-equivariant surjection
π̃(ρ)→ π̃(ρ)/$π̃(ρ).

In some circumstances, we are able to verify that π(ρ) is in fact minimal with respect
to conditions (1) and (2′). (In other words, π(ρ) contains as a submodule the dual of any
module that arises by specializing a family π̃(ρ) attached to a deformation of ρ.) This is
essentially a characteristic p analog of Theorems 6.2.5 and 6.2.6. We conjecture that this
stronger minimality property holds in general.

1.5.3. R. – In general, π(ρ) is not irreducible, and if this is the case, then it is
not possible to strengthen “surjection” to “isomorphism” in the statement of part (2) of
Theorem 1.5.1.

1.6. The organization of the paper

We begin by establishing some basic facts about admissible smooth representations of
certain topological groups over a Noetherian local ring A; we apply this machinery in Sec-
tion 2.2 to the study of invariant lattices in representations of topological groups over the field
of fractions of a complete discrete valuation ring. The key result we establish is Lemma 2.2.6,
which in certain circumstances allows us to construct an invariant lattice in such a represen-
tation whose reduction has a prescribed socle.

Section 3 establishes results specific to the representation theory of GLn(E) over certain
local ringsA. In 3.1 we construct a theory of Kirillov models over a large class of base rings.
Our approach essentially follows that of [1], but as we are not working over algebraically
closed fields issues of descent arise. In spite of this one recovers almost all of the theory of
the Kirillov functors developed in [1, §4]. Particularly useful for us is the notion of a “generic”
irreducible representation over an arbitrary field.

Section 3.2 introduces an essential concept for our results: that of an essentially absolutely
irreducible and generic representation (“essentially AIG” in short.) These are representations
whose socles are absolutely irreducible and generic, and that satisfy a certain finiteness
property. The importance of these representations stems from the fact that the “modified
Langlands correspondences” we consider send Galois representations to essentially AIG
representations. In Section 3.3 we apply the results of Section 2.2 to establish some basic facts
about the reduction theory of essentially AIG representations.

In Section 4 we study the behavior of the local Langlands correspondence (over fields of
characteristic zero) under specialization. As we have previously discussed, the usual local
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Langlands correspondence is not suitable for our purposes, and we instead consider a mod-
ification of this correspondence due to Breuil and Schneider. Our first main result (Corol-
lary 4.3.3) establishes that the admissible representations of GLn(E) produced by the Breuil-
Schneider correspondence are essentially AIG. Once we have this, we apply the reduction
theory of Section 3.3, together with ideas from the Zelevinski classification, to establish The-
orem 4.5.7, which relates the behavior of a Galois representation under specialization to a
characteristic zero residue field to the behavior (under the same specialization) of the corre-
sponding admissible representation constructed by Breuil-Schneider.

Section 5 constructs a “modified local Langlands correspondence” in characteristic p, by
analogy with the Breuil-Schneider correspondence; in particular we define this correspon-
dence to be the “minimal” correspondence that satisfies a mod p analogue of Theorem 4.5.7.
We refer the reader to Theorem 5.1.5 for the precise definition.

We finally turn to the study of the local Langlands correspondence for families of admissi-
ble representations in Section 6. Section 6.2 discusses the main results of our theory; to avoid
obscuring this discussion with technicalities we postpone the proofs to Section 6.3. Surpris-
ingly little beyond the theory of Kirillov models is necessary to prove the basic uniqueness
result of Theorem 6.2.1. On the other hand, establishing more precise results about the struc-
ture of the family of admissible representations attached to a given family of Galois represen-
tations (for instance, the interpolation Theorems 6.2.5 and 6.2.6) requires the full strength of
the specialization results in Section 4.
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2. Representation theory—general background

2.1. Admissible smooth representations

Let A be a Noetherian local ring with maximal ideal m and residue field k. In this
subsection we recall some basic facts about admissible smooth representations over A.
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2.1.1. D. – An A-linear representation of a topological group H on an
A-module V is called smooth if any element of V is fixed by an open subgroup of H.

Clearly anyH-invariant sub- or quotientA-module of a smoothH-representation overA
is again a smooth H-representation over A.

2.1.2. D. – A smooth representation of a topological group H on an A-mo-
dule V is called admissible if for any open subgroup H0 ⊂ H, the A-module of fixed points
V H0 is finitely generated.

Clearly any H-invariant A-submodule of an admissible smooth H-representation over A
is again an admissible smooth H-representation over A. (For the case of H-invariant quo-
tients, see Lemma 2.1.6 below.)

Consider the following condition on H:

2.1.3. C. – H contains a profinite open subgroup, admitting a countable basis
of neighborhoods of the identity, whose pro-order is invertible in A.

Suppose that H satisfies Condition 2.1.3, and let {Hi}i≥0 denote a decreasing sequence
of open subgroups of H, each of whose pro-order is invertible in A, and which forms a
neighborhood basis of the identity in H. If V is a smooth H-representation over A, then for
each n ≥ 1,we may define the idempotent projector πi : V → V Hi via v 7→

∫
Hi
hvdµi,where

µi denotes Haar measure on Hi, normalized so that Hi has total measure 1. If we define
Vi := kerπi

⋂
V Hi+1 , then the inclusion Vi ⊂ V induces an isomorphism of A-modules

(2.1)
⊕
i

Vi
∼−→ V.

The formation of Vi is evidently functorial on the category of smooth representations of H
overA, and thus so is the direct sum decomposition (2.1). In fact one can say something more
precise:

2.1.4. L. – Suppose that H satisfies Condition 2.1.3. If W is an H-invariant A-sub-
module of the smooth H-representation A over V , then the natural maps Wi ↪→ Vi

⋂
W and

Vi/(Vi
⋂
W )→ (V/W )i are isomorphisms.

Proof. – This is evident.

2.1.5. L. – Suppose that H satisfies Condition 2.1.3. A smooth H-representation V
over A is admissible if and only if each of the A-modules Vi is finitely generated.

Proof. – This follows from the isomorphisms
⊕

j≤i Vj
∼−→ V Hi for each i, and the fact

that the sequence {Hi} is cofinal in the collection of all of open subgroups of H.

2.1.6. L. – Suppose that H satisfies Condition 2.1.3. If V is an admissible smooth
H-representation over A, and if W is a G-invariant A-submodule of V , then V/W is again an
admissible smooth H-representation over A.

Proof. – This follows from the preceding lemma, and the fact that Vi → (V/W )i is
surjective.
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If V is anA-module equipped with an admissible smoothH-representation, then typically
V itself will not be finitely generated as an A-module. Nevertheless, the existence of the
decomposition (2.1) allows us to extend many results about finitely generated A-modules to
the situation of admissible smooth G-representations.

2.1.7. L. – If H satisfies Condition 2.1.3, and if V is an admissible smooth H-repre-
sentation for which V/mV = 0, then V = 0.

Proof. – The decomposition (2.1) yields the isomorphism
⊕

i Vi/mVi
∼−→ V/m. Thus

V/mV = 0 implies that Vi/mVi = 0 for each value of i. Since each Vi is finitely generated
over A, this in turn implies that Vi = 0 for each i, by Nakayama’s lemma. Thus V = 0, as
claimed.

2.1.8. L. – If H satisfies Condition 2.1.3, and if V is an admissible smooth represen-
tation such that V/mV is finitely generated over k[H], then V is finitely generated over A[H].

Proof. – Let S ⊂ A be a finite subset whose image in V/mV generates this quotient
over k[H], and let W be the A[H]-submodule of V generated by S. Lemma 2.1.6 implies
that (V/W ) is admissible, and by construction we see that (V/W )/m(V/W ) = 0. Thus
Lemma 2.1.7 shows that W = V , and so V is also finitely generated.

It will be technically useful to consider a related notion of admissible representation.

2.1.9. D. – If V is an A-module equipped with an A-linear representation
of H, we say that V is an admissible continuous H-representation if:

1. V is m-adically complete and separated.
2. The H-action on V is continuous, when V is equipped with its m-adic topology (i.e.,

the action map H × V → V is jointly continuous).
3. The induced H-representation on V/mV (which is automatically smooth, by (1)) is

admissible smooth.

2.1.10. L. – Suppose thatH satisfies Condition 2.1.3. If V is a continuous admissible
H-representation over A, then for each n > 0, the induced H-representation on V/mnV is
admissible smooth.

Proof. – Condition (2) of Definition 2.1.9 implies that the H-action on V/mnV is con-
tinuous, when the latter is equipped with its discrete topology. In other words, V/mnV is a
smooth representation of H. Since the formation of Hi-invariants is exact, for any i ≥ 0,
we find that (V/mnV )Hi/m(V/mnV )Hi

∼−→ (V/mV )Hi is finite dimensional over A/m, by
Condition (3) of Definition 2.1.9. Lemma 2.1.16 below (applied to the module (V/mnV )Hi

of the Artinian local ringA/mn) then shows that (V/mnV )Hi is finitely generated overA/mn.
Consequently V/mnV is admissible.

2.1.11. D. – If V is anA-module, we let V̂ denote them-adic completion of V .

2.1.12. D. – If V is an A-module equipped with an H-representation, we
let Vsm denote the subset of V consisting of vectors which are smooth, i.e., which are fixed
by some open subgroup of H. One immediately verifies that Vsm is an A-submodule of V ,
closed under the action of H. Thus Vsm is a smooth H-representation.
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2.1.13. P. – Suppose that H satisfies Condition 2.1.3, and let V be an admis-
sible smooth H-representation over A.

1. V̂ is a continuous admissible H-representation over A.
2. If A is m-adically complete, then the natural map V → V̂sm is an isomorphism.

Proof. – The H-action on V is smooth, and thus so is the H-action on V/mnV , for each
n ≥ 0. Passing to the projective limit over n, we find that the H-action on V̂ is m-adically
continuous. Since V̂ /mV̂ = V/mV, it follows from Lemma 2.1.6 that theH-action on V̂ /mV̂
is admissible. Thus V̂ satisfies both the conditions of Definition 2.1.9. This proves (1).

We now turn to proving (2), and so in particular, assume that A is m-adically complete.
For each i ≥ 0, we find that

V̂ Hi
∼−→ lim←−n

(V/mnV )Hi
∼−→ lim←−n

V Hi/mnV Hi
∼−→ V Hi

(the second isomorphism following from the exactness of the formation of Hi-invariants,
and the third following from the fact that V Hi is finitely generated over A, by assumption,
and hence m-adically complete, since A is m-adically complete). Consequently, the map
V Hi → V̂ Hi is an isomorphism for each i ≥ 0, and thus, passing to the inductive limit over i,
we find that V ∼−→ V̂sm, as claimed.

2.1.14. P. – Suppose thatH satisfies Condition 2.1.3 and thatA ism-adically
complete, and let V be an admissible continuous H-representation over A.

1. Vsm is an admissible smooth H-representation.
2. The natural map V̂sm → V is an isomorphism.

Proof. – Since V is m-adically complete and separated, we see that V Hi is m-adically
complete and separated for each i ≥ 0. Since the formation of Hi-invariants is exact, we
see that V Hi/mV Hi ∼−→ (V/mV )Hi , which by assumption is finite dimensional over A/m.
Lemma 2.1.16 below then implies that V Hi is finitely generated overA. Since (Vsm)Hi = V Hi

by the very definition of Vsm, we see that Vsm is admissible, proving (1).

If i ≥ 0 and n > 0, then

(Vsm)Hi/mn(Vsm)Hi = V Hi/mnV Hi
∼−→ (V/mnV )Hi ,

the equality holding (as was already noted above) by the very definition of Vsm, and the
isomorphism following from the exactness of the formation of Hi-invariants. Passing to the
inductive limit over i, and taking into account the fact that Vsm and V/mnV are both smooth
H-representations, we find that Vsm/m

nVsm
∼−→ V/mnV. Passing to the projective limit

over n, we find that V̂sm
∼−→ V, proving (2).

2.1.15. R. – It follows from the preceding propositions that if A is m-adically
complete, then the functors V 7→ V̂ and V 7→ Vsm are mutually quasi-inverse, and induce
an equivalence of categories between the category of admissible smooth H-representations
over A, and the category of admissible continuous H-representations over A.

We close this subsection by recalling a version of Nakayama’s lemma in the setting
of m-adically separated modules over complete local rings.
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2.1.16. L. – Suppose that A is m-adically complete. If M is an m-adically separated
A-module such thatM/mM is finite dimensional overA/m, thenM is finitely generated overA.

Proof. – Choose S = {s1, . . . , sm} ⊂ M to be finite, and such that the image of S
in M/mM spans M over A/m, and let N denote the A-submodule of M generated by S.
We then have that M = N +mM, and so arguing inductively, for each v ∈M we may find,
for each i = 1, . . . , s, a sequence of elements ai,n of A with ai,n ∈ mn for each n, such that
for each n we have

v ∈
m∑
i=1

(ai,0 + ai,1 + · · ·+ ai,n)si +mn+1M.

Writing ai = ai,0 +ai,1 + · · · (a well-defined element ofA, sinceA ism-adically complete by
assumption), we then find (since M is m-adically separated) that v =

∑s
i=1 aisi ∈ N, and

thus that M = N , proving the lemma.

2.2. Invariant lattices

Let O be a complete discrete valuation ring, with field of fractions K and residue field K
of characteristic different from `. Let $ be a choice of uniformizer of O. If V is a K -vector
space, then by a lattice in V we mean an O-submodule V ◦ which spans V over K .

2.2.1. D. – We say that a representation V of a group H over K is a good
integral representation if V contains a $-adically separated H-invariant lattice V ◦ with the
property that V

◦
:= V ◦/$V ◦ has finite length as a K[H]-module.

We now prove some basic results pertaining to this definition.

2.2.2. L. – Any subrepresentation of a good integral representation V of H over K
is again a good integral representation of H.

Proof. – If V ◦ is a $-adically separated H-invariant lattice in V for which V
◦

is of finite
length over K[H], then W ◦ := V ◦ ∩W is a $-adically separated H-invariant lattice in W ,
and since the natural map W

◦ → V
◦

is injective, we see that W
◦

also has finite length
over K[H].

2.2.3. L. – Let V be a good integral representation of a groupH, and fix a$-adically
separated H-invariant lattice V ◦ ⊂ V such that V

◦
has finite length over K[H]. If M is an

H-invariant O-submodule of V/V ◦, then either M is of bounded exponent as an O-module, or
else M contains a non-zero H-invariant divisible O-submodule.

Proof. – If M is not of bounded exponent, then the map M [$n] → M [$m] induced
by multiplication by $n−m has non-zero image for each n ≥ m ≥ 1, and hence, since
each M [$n] has finite length, we find that lim←−n

M [$n] 6= 0 (the transition maps being given

by multiplication by $). If (mn)n≥0 is a non-zero element of this projective limit, then the
O-submodule of M generated by the elements mn is evidently non-zero and divisible. Thus
the maximal divisible submodule of M is non-zero; it is also clearly H-invariant.

2.2.4. L. – If H is a topological group satisfying Condition 2.1.3, and if V is a good
integral admissible smooth representation of H over K , then:
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1. Any two $-adically separated H-invariant lattices in V are commensurable.
2. If V ◦ is a $-adically separated H-invariant lattice in V , then V ◦ is finitely generated

over O[H], the K[H]-module V
◦

:= V ◦/$V ◦ is of finite length, and the isomorphism
class of (V

◦
)ss (the semisimplification of V

◦
as a k[H]-module) is independent of the

choice of V ◦.

Proof. – Since V is good integral by assumption, we may and do choose an $-adically
separated H-invariant lattice V ◦ ⊂ V such that V

◦
is of finite length. Then V

◦
is certainly

finitely generated over K[H], and so Lemma 2.1.8 implies that V ◦ is finitely generated
over O[H].

Let V � be another$-adically separatedH-invariant lattice in V . We will prove that V � is
commensurable with V ◦. This will prove (1). An easy (and standard) argument then proves
that V

�
is of finite length over K[H], and that (V

◦
)ss and (V

�
)ss are isomorphic. Also

Lemma 2.1.8 will imply that V � is finitely generated over O[H]. Thus (2) will also follow.

Since V ◦ is finitely generated over O[H], we may find m ≥ 0 such that V ◦ ⊂ $−mV �. In
proving the commensurability of V ◦ and V �, it is clearly no loss of generality to replace V �

by $−mV �, and so we may and do assume for the remainder of the proof that V ◦ ⊂ V �.
Consider now the quotient V �/V ◦ ⊂ V/V ◦. If V �/V ◦ is not of bounded exponent, then

Lemma 2.2.3 shows that it contains a non-zeroH-invariant divisible submoduleD. The Tate
module TpD := lim←−n

D[$n] (the transition maps being given by multiplication by$) is then a

non-zero $-adically complete and separated O-module, equipped with an action of H, and
an injection

(2.2) TpD ↪→ Tp(V/V
◦)

∼−→ V̂ ◦.

Now

TpD/$TpD
∼−→ D[$] ⊂ 1

$
V ◦/V ◦,

and hence TpD/$TpD is an admissible smooth H-representation. Thus TpD is an admis-
sible continuous H-representation over O, and so by Remark 2.1.15, the injection (2.2) is
obtained from the induced embedding (TpD)sm ↪→ V ◦ by passing to$-adic completions. In
particular (TpD)sm 6= 0. Also, the image of the composite

K ⊗ O (TpD)sm → V → V/V ◦

is precisely D, and so (since D ⊂ V �/V ◦), we conclude that K ⊗ O (TpD)sm ⊂ V �. But
K ⊗ O (TpD)sm is a non-zero K -vector space, and hence is not $-adically separated. This
contradicts our assumption on V �, and hence we conclude that V �/V ◦ is indeed of bounded
exponent, and thus that V ◦ and V � are commensurable, as required.

2.2.5. D. – Let H be a topological group satisfying Condition 2.1.3, and let
V be a good integral admissible smooth representation of H over K . If V ◦ is a $-adically
separatedH-invariant lattice in V such that V

◦
:= V ◦/$V ◦ is of finite length as aK[H]-mo-

dule (which exists, by assumption), then we write V
ss

to denote the semisimplification of V
◦

as aK[H]-module. (The preceding lemma shows that, up to isomorphism,V
ss

is independent
of the choice of V ◦.)
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The following lemma will allow us to choose lattices in good integral admissible smooth
representations whose reductions modulo $ have certain specified H-socles.

2.2.6. L. – Let H be a topological group satisfying Condition 2.1.3, and let V be
a good integral admissible smooth representation of H over K . Let S denote the set of
isomorphism classes of Jordan-Hölder factors of V

ss
(as a K[H]-module; the discussion of

Definition 2.2.5 shows that this set is well-defined), let T be a subset of S, and suppose that
V contains no non-zero subrepresentation W (necessarily also good integral, by Lemma 2.2.2)
such that every Jordan-Hölder factor of W

ss
belongs to T . Then there exists a $-adically

separated H-invariant lattice V � contained in V ◦ with the property that V
�

:= V �/$V �

contains no subobject isomorphic to an element of T .

Proof. – Choose (as we may, by assumption) a $-adically separated H-invariant lat-
tice V ◦ with the property that V

◦
:= V ◦/$V ◦ is of finite length as a K[H]-module.

Let M ⊂ V/V ◦ be the maximal O[H]-submodule all of whose Jordan-Hölder factors are
isomorphic to an element of T .

If we form the projective limit lim←−n
M [$n] 6= 0 (the transition maps being given by multi-

plication by $), then lim←−n
M [$n] ↪→ lim←−n

1
$nV

◦/V ◦
∼−→ V̂ ◦, with saturated and $-adically

complete image. If we write W = K ⊗ O (lim←−n
M [$n])sm, then Remark 2.1.15 implies that

W vanishes if and only if lim←−n
M [$n] does. On the other hand, by construction W is a sub-

representation of V with the property that all the Jordan-Hölder factors ofW
ss

belong to T ,
and so by assumptionW must vanish. Thus lim←−n

M [$n] = 0, and so Lemma 2.2.3 implies that

M is of bounded exponent, say M = M [$n].

Let V � denote the preimage of M in V . Since V ◦ ⊂ V � ⊂ $−nV ◦, we see that V � is
$-adically separated. Since V

� ∼−→ $−1V �/V � ↪→ V/M, our choice of M ensures that
V
�

contains no subobject isomorphic to an element of T .

3. Representation theory—the case of GLn

3.1. Kirillov models

Let k be a perfect field. Let ` be a prime distinct from the characteristic of k, and let k̃ be
a Galois extension of k containing all `-power roots of unity.

In this section we set G = GLn(E), where E is a non-Archimedean local field of residue
characteristic `. We will define a notion of Kirillov models for smooth representations of G
over a W (k)-algebra A.

We begin by recalling the basic properties of Kirillov models associated to smooth
W (k̃)[G]-modules.

In the case of smooth C[G]-modules, these results are found in [1, §4]; over more general
algebraically closed fields they can be found in [17, Ch. III.1]. The extension of these results
to coefficients in W (k̃) is more or less immediate. We summarize the key facts:
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Define subgroups Pn and Nn of GLn(E) by setting:

Pn =

{(
a b

0 1

) ∣∣∣∣∣ a ∈ GLn−1(E), b ∈ En−1

}
,

Nn =

{(
Idn−1 b

0 1

) ∣∣∣∣∣ b ∈ En−1

}
.

We consider GLn−1(E) as a subgroup of Pn in the obvious way, and identifyNn withEn−1.
Note that Pn = GLn−1(E)Nn. Any character ψ : En−1 → W (k̃)× induces a character
of Nn via (

Idn−1 b

0 1

)
7→ ψ(b),

which we again denote by ψ.
We fix, for the remainder of this section, a character ψ : E →W (k̃)× whose kernel

is equal to the subgroup OE of E. We consider ψ as a character of En−1 by setting
ψ(e1, . . . , en−1) = ψ(en−1), and also as a character of Nn via the isomorphism of En−1

with Nn. The subgroup GLn−1(E) of Pn normalizes Nn, and therefore acts on the set of
characters of Nn by conjugation. The stabilizer of ψ under this action is the subgroup Pn−1

of GLn−1(E).

3.1.1. D. – For a W (k̃)-algebra A, let RepA(G) denote the category of smooth
A[G]-modules. Define functors Ψ−,Ψ+,Φ−,Φ+, Φ̂+ by:

– Ψ− : RepW (k̃)(Pn) → RepW (k̃)(GLn−1(E)) is given by Ψ−(V ) = VNn , the module
of Nn-coinvariants of V .

– Ψ+ : RepW (k̃)(GLn−1(E)) → RepW (k̃)(Pn) is the functor that takes a GLn−1-mo-
dule V and extends the action of GLn−1 to Pn by letting Nn act trivially.

– Φ− : RepW (k̃)(Pn) → RepW (k̃)(Pn−1) is given by Φ−(V ) = Vψ, where Vψ is the
largest quotient of V on which Nn acts by ψ. (As Pn−1 normalizes ψ, Vψ is naturally
a Pn−1-module.)

– Φ+ : RepW (k̃)(Pn−1)→ RepW (k̃)(Pn) is given by

Φ+(V ) = c-IndPnPn−1Nn
V ′,

where V ′ is the Pn−1Nn-module obtained from V by letting Nn act via ψ, and c-Ind

denotes smooth induction with compact support.
– Φ̂+ : RepW (k̃)(Pn−1)→ RepW (k̃)(Pn) is given by

Φ̂+(V ) = IndPnPn−1Nn
V ′.

The natural surjections of V onto Ψ−V and of V onto Φ−V are GLn−1(E) and
Pn−1-equivariant, respectively.

3.1.2. R. – Note that these functors differ from the ones defined in [1] in that
they are not “normalized.” More precisely, the functors defined in [1] are twists of the above
functors by the square roots of certain modulus characters. This makes them unsuitable for
most of our purposes, as the descent arguments we make at the end of this section do not
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apply to the twisted functors defined in [1]. We will thus use the “non-normalized” functors
defined above throughout the bulk of the paper.

An unfortunate exception to this is in the proof of Proposition 4.3.2. While it would in
principle be possible to give a proof of Proposition 4.3.2 using the non-normalized functors
that we use elsewhere, the normalization of [1] simplifies the combinatorics immensely. We
have thus chosen to adopt this normalization for the purposes of that proof only.

The arguments of [1, §3.2] carry over to this setting to show:

3.1.3. P. – 1. The functors Ψ−,Ψ+,Φ−,Φ+, Φ̂+ are exact.
2. Φ+ is left adjoint to Φ−, Ψ− is left adjoint to Ψ+, and Φ− is left adjoint to Φ̂+.
3. Ψ−Φ+ = Φ−Ψ+ = 0.
4. The composite functors Ψ−Ψ+, Φ−Φ̂+, and Φ−Φ+ are naturally isomorphic to identity

functors.
5. One has an exact sequence of functors:

0→ Φ+Φ− → Id→ Ψ+Ψ− → 0.

For our purposes, it will be necessary to have versions of these functors for representations
over W (k), rather than W (k̃). The key difficulty is that the character ψ is not defined
over W (k). Nonetheless, one has:

3.1.4. P. – The functors Ψ−,Ψ+,Φ−,Φ+, Φ̂+ descend to functors defined on
representations over W (k). That is, one has a functor:

Ψ− : RepW (k)(Pn)→ RepW (k)(GLn−1(E))

such that for any W (k)[Pn]-module V , one has

Ψ−(V ⊗W (k) W (k̃)) = Ψ−(V )⊗W (k) W (k̃),

and similarly for the remaining functors. Moreover, the statements of Proposition 3.1.3 apply
to these functors.

Proof. – For the functors Ψ− and Ψ+ this is clear, as the character ψ does not intervene
in their definition. We thus begin with the functor Φ−.

Note that Gal(k̃/k) acts naturally onW (k̃), and fixesW (k). Moreover,W (k̃) is faithfully
flat overW (k). For σ ∈ Gal(k̃/k), let ψσ be the character σ ◦ψ ofE×. There exists a unique
eσ ∈ O×E such that ψσ(e) = ψ(eσe). The map σ 7→ eσ is a homomorphism from Gal(k̃/k)

to O×E .
Consider each eσ as an element of Pn−1 via the inclusions:

O×E ⊂ E× ⊂ GLn−1(E) ⊂ Pn−1.

If we consider ψ as a character of Nn, we have ψσ(u) = ψ(eσue
−1
σ ) for all u ∈ Nn.

Now let V be a smooth Pn-representation over W (k), and let Ṽ be the representation
V ⊗W (k) W (k̃). Then we have a W (k̃)-semilinear action of Gal(k̃/k) on Ṽ , that fixes V . By
definition, Φ−Ṽ is the quotient of Ṽ by theW (k̃)[Pn−1]-submodule generated by all vectors
of the form uv − ψ(u)v, for u ∈ Nn and v ∈ Ṽ .

The Galois action on Ṽ does not descend to Φ−Ṽ , but a twist of it does. For an element
[v] ∈ Φ−Ṽ , represented by an element v of Ṽ , define σ[v] = [eσσv]. This is well-defined,
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since if v = uw − ψ(u)w for some w ∈ Ṽ and u ∈ Nn, we can set w′ = eσσw, u′ = eσue
−1
σ ,

and then eσσv = u′w′ − ψ(u′)w′. We thus obtain a W (k̃)-semilinear action of Gal(k̃/k)

on Φ−Ṽ ; we define Φ−V to be the invariants under this action. This is clearly functorial with
the desired properties. (Note, however, that the surjection Ṽ → Φ−Ṽ does not descend to a
natural surjection of V onto Φ−V .)

Now let V be a smooth Pn−1-representation over W (k). Then Φ+Ṽ and Φ̂+Ṽ can both
be realized as spaces of functions: f : Pn → Ṽ , such that for any h ∈ Pn−1 and any u
in Nn, we have f(ghu) = ψ(u)hf(g). Define an action of Gal(k̃/k) on the space of such
functions by setting (σf)(g) = e−1

σ σf(g). This preserves the identity f(ghu) = ψ(u)hf(g),
and so defines a W (k̃)-semilinear action of Gal(k̃/k) on Φ+Ṽ and Φ̂+Ṽ . We set Φ+V and
Φ̂+V to be the invariants of this action in Φ+Ṽ and Φ̂+Ṽ , respectively. Note that if V is
a smooth Pn-representation, then the natural maps: Φ+Φ−Ṽ → Ṽ and Ṽ → Φ̂+Φ−Ṽ

are Gal(k̃/k)-equivariant, and hence descend to V .
Using this, one easily verifies the adjointness property (2) of Proposition 3.1.3 for the

functors over W (k). Properties (1), (3), (4), and (5) then follow by base change and the fact
that W (k̃) is faithfully flat over W (k).

Note that if A is a Noetherian W (k)-algebra, and V is a smooth representation of Pn−1

over A, then the modules Ψ−V , Φ−V obtained by treating V as a representation of Pn−1

overW (k) and applying the appropriate functors inherit anA-module structure. We can thus
define the functors Ψ−,Ψ+,Φ−, etc. on suitable categories of smooth representations overA.
It is then clear that if B is a Noetherian A-algebra, one has Ψ−(V ⊗A B) = Ψ−(V ) ⊗A B,
and similarly for the remaining functors.

Finally, observe that the functors Ψ−,Ψ+,Φ−,Φ+, Φ̂+ commute with tensor products;
that is, ifM is anA-module, then Ψ−(V ⊗AM) ∼= Ψ−(V )⊗AM , and similarly for the other
functors.

We now define the “derivatives” of a smooth Pn-representation V . For 0 ≤ r ≤ n, we
set V (r) = Ψ−(Φ−)r−1V ; V (r) is a representation of GLn−r(E). If A is a W (k̃)-algebra,
then one has a GLn−r(E)-equivariant surjection V → V (r) (but this is not true if A is only
a W (k)-algebra.)

Note that V (n) is simply an A-module. The adjointness properties of Proposition 3.1.3
give, for any V , maps:

V → (Φ̂+)(n−1)Ψ+(V (n)).

(Φ+)n−1Ψ+(V (n))→ V.

(Note that in the setting of the second of these maps, the Ψ+ that appears, and the Ψ− that
arises in the definition of V (n), are both the identity functor, and thus the fact that Ψ+ is
usually a right adjoint to Ψ− rather than a left adjoint is not an issue.) The image of V
in (Φ̂+)(n−1)Ψ+(V (n)) is called the Kirillov model of V .

The exact sequence of Proposition 3.1.3 implies that the map

(Φ+)n−1Ψ+(V (n))→ V

is injective; we denote its image by J(V ). The space J(V ) is often referred to as the space of
Schwartz functions in V .
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3.1.5. L. – Let V be a smooth Pn-module over A. Set Ã = A ⊗W (k) W (k̃), and
let Ṽ = V ⊗W (k) W (k̃). The modules V and J(V ) each contain an A-submodule W such that
W is isomorphic to V (n), and W ⊗A Ã maps isomorphically to Ṽ (n) under the surjection Ṽ → Ṽ (n).

Proof. – It suffices to show that J(V ) contains such a submodule, as J(V ) embeds in V .
We have

J(V ) = (Φ+)n−1Ψ+V (n) = [(Φ+)n−1Ψ+W (k)]⊗W (k) V
(n).

Moreover, the map J(Ṽ )→ Ṽ (n) arises from the surjection:

(Φ+)n−1Ψ+W (k̃)→W (k̃)

by tensoring over W (k̃) with Ṽ (n). It thus suffices to construct a submodule W of
[(Φ+)n−1Ψ+W (k)] that is free of rank one over W (k) and such that W ⊗W (k) W (k̃)

maps isomorphically onto W (k̃) under the surjection

(Φ+)n−1Ψ+W (k̃)→W (k̃).

This amounts to simply choosing any element of (Φ+)(n−1)Ψ+W (k) that maps to an element
of W (k̃) \ $W (k̃), where $ is the uniformizer of W (k̃). Such an element clearly exists, as
otherwise the image of the composition:

[(Φ+)n−1Ψ+W (k)]⊗W (k) W (k̃)
∼−→ (Φ+)n−1Ψ+W (k̃)→W (k̃)

would be contained in $W (k̃).

Over a field, the top derivatives are multiplicative with respect to parabolic induction:

3.1.6. P. – Let V and W be admissible k-representations of GLn(E)

and GLm(E), respectively. Let P ⊂ GLn+m(E) be the parabolic subgroup of G given by:

P =

{(
a b

0 d

) ∣∣∣∣∣ a ∈ GLn(E), d ∈ GLm(E)

}
,

and consider V ⊗W as a representation of P by letting the unipotent radical of P act trivially.
Then

(Ind
GLn+m(E)
P V ⊗W )(n+m) = V (n) ⊗W (m).

Proof. – This is a special case of [17, Lem. 1.10]. Note that the derivative functors used
in [17] are normalized differently than ours; this normalization does not affect the top
derivative V (n) of a representation V of GLn(E).

We also have:

3.1.7. T. – LetV be an absolutely irreducible admissible representation of GLn(E)

over a field K that is a W (k)-algebra. Then V (n) is either zero or a one-dimensional K-vector
space, and is one-dimensional if V is cuspidal.

Proof. – This is [17, III.5.10], over Fp or Qp; the same argument works over an arbitrary
field containing the `-power roots of unity. The general case follows by extending scalars.

3.1.8. D. – We say that an absolutely irreducible admissible representation V
of GLn(E) over a field K that is a W (k)-algebra is generic if V (n) is one-dimensional over K.
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We now turn to finiteness properties of the derivative.

3.1.9. L. – Let A be a Noetherian local ring, with maximal ideal m, and suppose
that M is a submodule of a direct sum of finitely generated A-modules. If M/mM is finite
dimensional, then M is finitely generated.

Proof. – Our assumption on M/mM allows us to choose a finitely generated submo-
dule N of M such that N +mM = M, or equivalently such that m(M/N) = M/N .
Nakayama’s Lemma then shows that any finitely generated quotient of M/N must va-
nish. Since by assumption M embeds into a direct sum of finitely generated A-modules, we
may find a finitely generated A-module X, and an A-module Y which is a direct sum of
finitely generated A-modules, and an embedding M ⊂ X

⊕
Y , such that N ⊂ X. On the

one hand M/(M
⋂
X) is a quotient of M/N , and hence has no non-vanishing finitely gen-

erated quotients. On the other hand, the projection ofX
⊕
Y onto Y induces an embedding

of M/(M
⋂
X) into Y . Thus M/(M

⋂
X) = 0, and so M ⊂ X is finitely generated.

We note for future reference the following corollary of the preceding lemma.

3.1.10. C. – LetA be a Noetherian local ring, and suppose thatM is a submodule
of a direct sum of finitely generated A-modules. If M/mM vanishes, then M itself vanishes.

Proof. – The preceding result implies that M is finitely generated. The corollary thus
follows from Nakayama’s Lemma.

3.1.11. T. – Suppose that A is a Noetherian local W (k)-algebra with maximal
ideal m. Let V be an admissible representation of GLn over A, and suppose that (V/mV )(n) is
finite dimensional over A/m. Then V (n) is a finitely generated A-module.

Proof. – As derivatives commute with tensor products, we have

V (n)/mV (n) ∼= (V/mV )(n).

On the other hand, we have already observed that J(V ) (and hence V ) contains an A-sub-
module isomorphic to V (n). As V is a direct sum of finitely generated A-modules, the result
follows from Lemma 3.1.9.

3.1.12. R. – In the setting of Theorem 3.1.11, if V/mV has finite length, then
(V/mV )(n) is finite dimensional over A/m by Theorem 3.1.7. Thus Theorem 3.1.11 applies
to all admissible representations of GLn over A such that V/mV has finite length.

Theorem 3.1.11 allows us to establish the following extension of Proposition 3.1.6:

3.1.13. C. – Let A be a reduced Noetherian local W (k)-algebra with maximal
ideal m. Let V and W be admissible smooth A-representations of GLn(E) and GLm(E), and
let P be the parabolic subgroup of GLn+m(E) defined in the statement of Proposition 3.1.6.
Then, if V (n) and W (m) are free of rank one over A, so is the A-module:

(Ind
GLn+m(E)
P V ⊗W )(n+m).
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Proof. – For each minimal prime a of A, let κ(a) be its residue field. Set Va = V ⊗A κ(a)

and Wa = W ⊗A κ(a). We have isomorphisms:

(Ind
GLn+m(E)
P V ⊗W )(n+m) ⊗A κ(a)

∼−→ (Ind
GLn+m(E)
P Va ⊗Wa)(n+m),

and the latter is one-dimensional by Proposition 3.1.6. Thus in particular the annihilator
of (Ind

GLn+m(E)
P V ⊗W )(n+m) as an A-module is the zero ideal of A.

On the other hand, let V = V/mV and W = W/mW . Then we have isomorphisms:

(Ind
GLn+m(E)
P V ⊗W )(n+m) ⊗A A/m

∼−→ (Ind
GLn+m(E)
P V ⊗W )(n+m),

and the latter is again one-dimensional by Proposition 3.1.6. Theorem 3.1.11 shows that
(Ind

GLn+m(E)
P V ⊗W )(n+m) is furthermore finitely generated over A, and thus it follows by

Nakayama’s lemma that (Ind
GLn+m(E)
P V ⊗W )(n+m) is a cyclicA-module, and hence (taking

into account that it is faithful, as we proved above) is free of rank one.

We will also need a generalization of this machinery to a product of GLn(Ei) for various
local fields Ei of residue characteristics `i, all prime to the residue characteristic of k. Fix
a finite collection of such Ei, indexed by a set S, and let G be the product of the groups
GLn(Ei) for all i. Let Pn be the product of the subgroups Pn(Ei) of GLn(Ei).

Now if we fix for each i a character ψi : Nn(Ei)→W (k̃)×, we can define func-
tors Ψ−,i,Φ−,i,Ψ+,i,Φ+,i, Φ̂+,i as follows: if H is any topological group, and V is a
Pn(Ei)×H-module, then Ψ−,i(V ) is the GLn−1(Ei) ×H-module defined by applying Ψ−

to V (considered as a Pn(Ei)-module), and then taking the natural action of H on Ψ−(V ).
The other functors are defined similarly. Note that if V is a G-module over A (or even a
module over the product of the Pn(Ei)), then Ψ−,iΨ−,jV = Ψ−,jΨ−,iV (here the equality
denotes a natural isomorphism), and the other functors have similar commutativity proper-
ties. If S′ is a subset of S, the composition of functors Ψ−,i for all i ∈ S′ is thus a functor
that takes an A-module V over the product of the groups Pn(Ei) to an A-module with an
action of Pn−1(Ei) for each i ∈ S′ and of Pn(Ei) for each i not in S′. This composition is
independent (up to natural isomorphism) of the order in which we compose the functors;
we denote it by Ψ−,S

′
. Similarly define Φ−,S

′
, Ψ+,S′ , etc. Finally, if V is an A[G]-module,

define V (n),S′ to be the representation Ψ−,S
′
(Φ−,S

′
)n−1V . Note that the functors Φ−,S

′
,

Ψ+,S′ , etc. satisfy analogues of properties (1)-(4) of Proposition 3.1.3.

When it is clear from the context what S andEi we are working with, we will denote Φ+,S ,
Ψ+,S , etc. by Φ+,Ψ+, and so forth.

Similarly, if V is anA[G]-module, we define Ji(V ) to be space of Schwartz functions in V
for the action of GLn(Ei) on V ; this has an action of Pn(Ei) and of GLn(Ej) for j not equal
to i. Note that JiJj(V ) = JjJi(V ), so that we can define, for any S′ ⊂ S, the functor JS′ to
be the composition (in any order) of the functors Ji for i in S′. Then JS′(V ) is the smallest
A-submodule of V , stable under Pn(Ei) for i in S′ and GLn(Ei) for i not in S′, such that
the map JS(V )(n),S′ → V (n),S′ is an isomorphism. By construction, the functor JS′ is
left adjoint to the functor V 7→ V (n),S′ (when the latter is considered as a functor from
A[Pn]-modules to A-modules).

Now, precisely as in the proof of Theorem 3.1.11, we have:
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3.1.14. T. – Let V be an admissible representation of G over a Noetherian local
W (k)-algebra A, and suppose that (V/mV )(n) is finite dimensional over A/mA. Then V (n) is
a finitely generated A-module.

We also have an analogue of Theorem 3.1.7

3.1.15. T. – Let V be an absolutely irreducible admissible representation of G
over k. Then V (n) is either zero or a one-dimensional k-vector space.

Proof. – The representation V splits as a tensor product of absolutely irreducible repre-
sentations Vi of GLi(Ei) for all i ∈ I. It follows that V (n) is the tensor product of the V (n)

i .
Hence this result is an immediate consequence of Theorem 3.1.7.

3.1.16. P. – Let V be an A[G]-module, and suppose that V (n) is free of rank
one over A. Then the map A→ EndPn(J(V )) is an isomorphism.

Proof. – By the adjointness properties of the functors Ψ+ and Φ+ we have natural iso-
morphisms:

EndPn(J(V ))
∼−→ HomA(V (n),Ψ−(Φ−)n−1J(V ))

∼−→ EndA(V (n)).

The result follows immediately.

3.2. Essentially AIG representations

Let K be a field of characteristic different from `.

3.2.1. D. – We say that a smooth representation V of G := GLn(E) is essen-
tially absolutely irreducible and generic (“essentially AIG” for short) if:

1. The G-socle soc(V ) is absolutely irreducible and generic.
2. The quotient V/ soc(V ) contains no generic Jordan-Hölder factors; equivalently,(

V/ soc(V )
)(n)

= 0.
3. The representation V is the sum (or equivalently, the union) of its finite length submo-

dules.

3.2.2. L. – 1. If V is an essentially AIG smooth representation of G, and if
χ : E× → k× is a continuous character, then (χ ◦ det)⊗ V is again essentially AIG.

2. If V is an essentially AIG smooth G-representation, and if U ⊂ V is a non-zero smooth
G-subrepresentation, then U is also essentially AIG, and furthermore soc(U) = soc(V ).

3. If U and V are essentially AIG admissible smooth G-representations, then restricting to
socles induces an embedding

HomG(U, V ) ↪→ HomG

(
soc(U), soc(V )

)
.

4. Any non-zero G-equivariant homomorphism between essentially AIG admissible smooth
G-representations is an embedding.
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Proof. – Claim (1) is clear.
If U ⊂ V is as in (2), then 0 6= soc(U) ⊂ soc(V ). Since the latter is absolutely irreducible,

we find that soc(U) = soc(V ), and so in particular soc(U) is absolutely irreducible and
generic. Furthermore, we see that U/ soc(U) ↪→ V/ soc(V ). Since the latter representation
contains no generic Jordan-Hölder factors, neither does the former. Finally, every element
ofU is contained in a finite length submodule ofV ; the intersection of this withU is also finite
length. Thus U is the union of its finite length submodules, and is therefore essentially AIG,
proving (2).

Now suppose that φ : U → V is a map of essentially AIG representations, as in (3).
If φ

(
soc(U)

)
= 0, then φ factors to induce a map U/ soc(U) → V. But the source of this

map has no generic Jordan-Hölder factors, while its target has generic socle. Thus this map
vanishes, and hence φ vanishes. This proves (3).

To prove (4), suppose given φ : U → V as above. If kerφ 6= 0, then it has a non-
zero socle. As soc(U) is irreducible, we conclude that soc(U) ⊂ kerφ. Part (3) then implies
that φ = 0.

3.2.3. L. – If V is an essentially AIG smooth representation of G over K, and if
U is a non-zero submodule of V, then HomG(U, V ) is one-dimensional over K. In particular,
EndG(V ) = K.

Proof. – Part (2) of the preceding lemma shows that U is again essentially AIG and that
soc(U) = soc(V ). Part (3) of the same lemma shows that restriction to socles induces an
embedding

HomG(U, V ) ↪→ HomG

(
soc(U), soc(V )

)
= EndG

(
soc(V )

)
= K

(where the first equality follows from the already noted equality of socles, and the second
equality following from the absolute irreducibility of soc(V )). Since HomG(U, V ) is non-zero
(as U embeds into V by assumption), it must therefore be one-dimensional, as claimed.

3.2.4. L. – If V is an essentially AIG smooth representation of G over K, then
V admits a central character.

Proof. – The preceding lemma shows that AutG(V ) = K×. Since the centre Z of G acts
as automorphisms of V , the lemma follows.

3.2.5. L. – Let V andW be essentially AIG smooth representations ofG overK, and
let K ′ be a finite separable extension of K. For any map f : V ⊗K K ′ → W ⊗K K ′, there
exists a scalar c ∈ (K ′)× such that cf descends uniquely to a map V →W .

Proof. – We may assume K ′ is Galois over K, and that f is nonzero (and thus injective).
For σ ∈ Gal(K ′/K), define fσ by fσ(x) = σf(σ−1x). Then fσ = cσf for a scalar
cσ ∈ (k′)×.The cσ give a cocycle inH1(Gal(K ′/K), (K ′)×) and are therefore a coboundary;
that is, there exists a c ∈ (K ′)× such that cσ = c

σc for all σ. Then cf is Galois-equivariant,
and thus descends to K.

3.2.6. D. – If V is an essentially AIG admissible smooth G-representation,
then we say that a smooth representation W is an essentially AIG envelope of V if:

1. W is itself essentially AIG.
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2. There is a G-equivariant embedding V ↪→ W (which Lemma 3.2.3 shows is then
unique up to multiplication by a non-zero scalar).

3. W is maximal with respect to properties (1) and (2), i.e., if V ↪→ Y is anyG-equivariant
embedding with Y essentially AIG admissible smooth, then there is a G-equivariant
embedding Y ↪→W.

3.2.7. P. – IfV is an essentially AIG admissible smoothG-representation, then
V admits an essentially AIG envelope, which is unique up to isomorphism.

Proof. – Let V ↪→ I be an injective envelope of V in the category of smooth rep-
resentations. Let U denote the subrepresentation of I/V obtained by taking the sum of
all the non-generic subrepresentations of I/V (so U is the maximal subrepresentation
of I/V for which U (n) = 0), and define X to be the preimage of U in I. Let W be the
sum of all of the finite length submodules of X. By construction, the socle of W is generic,(
W/ soc(W )

)(n)
= 0, and W is the sum of its finite length submodules, so W is essen-

tially AIG.

If V ↪→ Y is an embedding as in (3), then (since I is injective) we may extend the
embedding of V into I to an embedding of Y into I. Since every Jordan-Hölder constituent
of Y/V is nongeneric, the image of Y lies in X. Moreover, Y is the sum of its finite length
submodules, so the image of Y lies in W .

If V is an essentially AIG smooth G-representation, then we write env(V ) to denote the
essentially AIG envelope of V (which by the preceding proposition exists, and is unique up
to isomorphism).

3.2.8. L. – Let V be an essentially AIG admissible smooth G-representation. If
χ : E× → K× is a continuous character, then there is an isomorphism

env
(
(χ ◦ det)⊗ V

) ∼−→ (χ ◦ det)⊗ env(V );

i.e., the formation of essentially AIG envelopes is compatible with twisting.

Proof. – This is immediate from Lemma 3.2.2.

In fact, essentially AIG representations actually have finite length. This will be proven in
forthcoming work of the second author [12]. In this paper, we will content ourselves with
somewhat weaker results whose proofs are more elementary. In the case when K is of char-
acteristic zero, this finiteness follows from Theorem 4.3.9 below, while in the case whenn = 2,
it is easy to establish for arbitraryK. (See Proposition 3.2.18 below.) In the remainder of this
section, we establish a weaker finiteness result for essentially AIG representations that will
suffice for our purposes. The key tool will be the notions of cuspidal and supercuspidal sup-
port; we recall the definitions below.

Let {π1, . . . , πr} be a multiset of irreducible cuspidal representations of the groups
GLn1(E), . . . ,GLnr (E), for n1, . . . , nr such that

∑
ni = n.
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3.2.9. D. – Let π be an irreducible representation of G over K. The multiset
{π1, . . . , πr} is a cuspidal support of π if there exists a parabolic subgroup P = MU of G,
with M isomorphic to the product of the GLni , such that π is isomorphic to a quotient of the
normalized parabolic induction

IndGP π1 ⊗ · · · ⊗ πr,
for some choice of ordering of π1, . . . , πr.

It is an easy consequence of the “geometric lemma” of Bernstein-Zelevinski, and adjoint-
ness of parabolic induction and restriction, that every irreducible π has a cuspidal support,
and this cuspidal support is uniquely determined (as a multiset of isomorphism classes of
irreducible representations.) We refer the reader to [17], II.2.4, for the details. By contrast,
the notion of supercuspidal support lies considerably deeper:

3.2.10. D. – Let π be an irreducible representation of G over K. The multiset
{π1, . . . , πr} is a supercuspidal support of π if each πi is supercuspidal, and there exists a
parabolic subgroupP = MU ofG, withM isomorphic to the product of the GLni , such that π is
isomorphic to a Jordan-Hölder constituent of the normalized parabolic induction

IndGP π1 ⊗ · · · ⊗ πr.

In characteristic zero the notions of cuspidal and supercuspidal support coincide. This
is false, however, in characteristic p, where there are cuspidal representations that are not
supercuspidal. In this setting it is a deep result of Vigneras ([19], V.4) that every irreducible π
has a supercuspidal support that is uniquely determined by π.

Let scs(π) (resp. cs(π)) denote the supercuspidal support (resp. cuspidal support) of π.

3.2.11. P. – Let P = MU be a parabolic subgroup of G, with M isomorphic
to
∏
i GLni . Then:

1. Let πi be an irreducible admissible representation of GLni for all i. If π is an irreducible
submodule or quotient of

IndGP π1 ⊗ · · · ⊗ πr,
then cs(π) is the multiset sum of cs(πi) for all i.

2. Letπi be an irreducible admissible representation of GLni for all i. Ifπ is a Jordan-Hölder
constituent of

IndGP π1 ⊗ · · · ⊗ πr,
then scs(π) is the multiset sum of scs(πi) for all i.

3. Let π be an irreducible admissible representation of G over k, and let π′ = π1 ⊗ · · · ⊗ πr
be a Jordan-Hölder constituent of ResPG π. Then scs(π) is the multiset sum of scs(πi) for
all i.

Proof. – Statements (1) and (2) are easy consequences of the definitions, together with the
transitivity of parabolic induction. The details of the proof of (1) can be found in [17], II.2.20,
for instance. Statement (3) follows from the “geometric lemma” of Bernstein-Zelevinski
(which holds in characteristic p as well as characteristic zero by [17], II.2.19.)
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3.2.12. P. – Let {π1, . . . , πr} be a multiset of supercuspidal representations
of GLni over K. There exists, up to isomorphism, exactly one irreducible generic representa-
tion π of G over K with supercuspidal support equal to {π1, . . . , πr}.

Proof. – A representation π with supercuspidal support {π1, . . . , πr} is isomorphic to a
generic Jordan-Hölder constituent of IndGP π1 ⊗ · · · ⊗ πr. By Theorem 3.1.7 and Proposi-
tion 3.1.6, the top derivative of (IndGP π1⊗· · ·⊗πr) is one-dimensional, so it has exactly one
generic Jordan-Hölder constituent.

We are now in a position to show:

3.2.13. T. – Let π, π′ be irreducible admissible representations of G over K, or
more generally of a Levi subgroup M of G. If Exti(π, π′) is nonzero for some i, then π and π′

have the same supercuspidal support.

Proof. – By [19, IV.6.2], the category of smooth representations of M factors as a
product of blocks; two irreducible representations of M are in the same block if, and only
if, their supercuspidal supports are inertially equivalent, that is, if and only if they coincide
up to twisting by unramified characters. We thus reduce to the case where the supercuspidal
supports of π and π′ differ by at most an unramified twist.

First consider the case in which π and π′ are both cuspidal representations of G. In this
case, Vigneras’ classification of the supercuspidal supports of cuspidal representations (see
for instance the proof of [19], V.4) shows that π′ is an unramified twist of π. In this case, there
exists a maximal distinguished cuspidal type (K,κ ⊗ σ) (in the sense of [19], Section IV)
contained in both π and π′.

We recall some basic facts from [19] about the pair (K,κ ⊗ σ). In particular, K is a
compact open subgroup of G, with a normal pro-` subgroup K1. Moreover, there exists a
finite extension E′ of E, an embedding of GLr( OE′) into K, and an isomorphism of K/K1

with G := GLr( OE′/$E′) such that the composition

GLr( OE′)→ K → K/K1
∼= G

is equal to the reduction map GLr( OE′) → G. Moreover, κ is a representation of K
whose restriction to K1 is irreducible, and σ is a cuspidal representation of G viewed as a
representation of K trivial on K1.

The composition
O×E′ → GLr( OE′)→ K

extends to a map (E′)× → G such that theG-intertwining of (K,κ⊗σ) is precisely (E′)×K.
It follows that there are extensions τ and τ ′ of κ⊗σ to (E′)×K such that π = c-IndG(E′)×K τ

and π′ = c-IndG(E′)×K τ
′.

The choice of extension τ defines an action of (E′)×K/K1 on HomK1
(κ|K1

, V ) for any
representation V of (E′)×K; this makes the functor HomK1

(κ|K1
,−) into an equivalence

between the category of representations of (E′)×K whose restriction to K1 is a direct sum
of copies of κ and the category of representations of (E′)×K/K1.

Frobenius reciprocity and the Mackey formula yield an isomorphism of ExtiG(π, π′)

with Exti(E′)×K/K1
(τ, τ ′). Applying the equivalence of the previous paragraph, and

using the fact that τ ′ is an unramified twist of τ , we find that the latter is isomorphic
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to Exti(E′)×K/K1
(σ, σ ⊗ χ), for some unramified character χ of (E′)×K/K1. On the other

hand, we have an isomorphism of (E′)×K/K1 with ($E′)
Z × G. It is thus clear that

Exti(E′)×K/K1
(σ, σ⊗χ) can only be nonzero if $E′ acts on σ and σ⊗χ via the same scalar;

if this happens then σ and σ⊗χ are isomorphic and so τ is isomorphic to τ ′. Then π and π′

are isomorphic as claimed.
The case in which π and π′ are cuspidal representations of M now follows, as any such

representation is a tensor product of cuspidal representations of the factors GLni of M .
We handle the remaining cases by induction on i; the case i = 0 is clear. Now assume

exactly one of π and π′ is cuspidal; without loss of generality (taking duals if necessary) we
may assume π is cuspidal. We then have a proper parabolic subgroup P ′ = M ′U ′ of M , and
a cuspidal representation σ of M ′, such that π′ arises as a submodule of IndMP ′ σ. We thus
have an exact sequence:

0→ π′ → IndMP ′ σ → C → 0

where C is the cokernel of the inclusion of π′ in IndMP ′ σ. By Frobenius reciprocity
Extj(π, IndMP ′ σ) = Extj(ResP

′

M π, σ) for all j, and the latter vanishes because π is cusp-
idal. Thus Exti(π, π′) is isomorphic to Exti−1(π,C). By the inductive hypothesis, the latter
vanishes unless π has the same supercuspidal support as some subquotient of C; since every
subquotient of C has the same supercuspidal support as π′ the claim follows in this case.

Finally, assume that neither π nor π′ is cuspidal. We again fix a proper parabolic subgroup
P ′ = M ′U ′ of M , and a cuspidal representation σ of M ′, such that π′ arises as a submodule
of IndMP ′ σ. Now the exact sequence:

0→ π′ → IndMP ′ σ → C → 0

yields an exact sequence:

Exti−1(π,C)→ Exti(π, π′)→ Exti(π, IndMP ′ σ).

By the inductive hypothesis Exti−1(π,C) is nonzero only if π has the same supercuspidal
support as π′. On the other hand, we again have an isomorphism of Exti(π, IndMP ′ σ) with
Exti(ResP

′

M π, σ), and (as σ is cuspidal) the previous case shows that this too vanishes unless
π and π′ have the same supercuspidal support.

3.2.14. C. – If V is an essentially AIG representation of G over K, then all the
Jordan-Hölder constituents of V have the same supercuspidal support.

Proof. – Suppose otherwise. As V is the sum of its finite length submodules, there is
then a finite length submodule W of V that is minimal among submodules of V that have
a Jordan-Hölder constituent with supercuspidal support different from that of soc(V ).
Let W ′ be the kernel of the map W → cosoc(W ). The minimality of W implies that
cosoc(W ) is irreducible and that every Jordan-Hölder constituent of W ′ has the same
supercuspidal support as soc(V ). Thus Exti(W ′, cosoc(W )) vanishes for all i, by the pre-
ceding theorem; in particular cosoc(W ) is a direct summand of W . This is impossible, since
Lemma 3.2.3 implies that any essentially AIG representation is indecomposable.

3.2.15. C. – Let V be an essentially AIG representation of G over K. If V is
admissible, then V has finite length.
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Proof. – By Corollary 3.2.14 there are only finitely many isomorphism classes of Jordan-
Hölder constituents of V , and one can bound the number of times any given Jordan-Hölder
constituent appears in terms of the dimension of theU -invariants of V for a sufficiently small
compact open subgroup U of G.

Corollary 3.2.14 has additional finiteness implications for essentially AIG representations.
More precisely, for a smooth representation V of G, define socc(V ) inductively by setting
soc1(V ) = soc(V ), and defining socc(V ) to be the preimage of soc(V/ socc−1(V )) under the
surjection

V → V/ socc−1(V ).

We then have:

3.2.16. T. – LetV be an essentially AIG representation ofG overK. Then socc(V )

has finite length for all c.

Proof. – By induction it suffices to show that socc(V )/ socc−1(V ) has finite length for
all c ≥ 2. The space socc(V )/ socc−1(V ) is semisimple, and every irreducible summand
of socc(V )/ socc−1(V ) is an irreducible non-generic representation of G with the same
supercuspidal support as soc(V ). There are finitely many isomorphism classes of such rep-
resentations. It thus suffices to show, for every irreducible non-generic representation π of G
with the same supercuspidal support as soc(V ), that Hom(π, socc(V )/ socc−1(V )) is finite
dimensional. We have an exact sequence:

0→ socc−1(V )→ socc(V )→ socc(V )/ socc−1(V )→ 0.

As the socle of socc(V ) is generic, we have Hom(π, socc(V )) = 0. We thus obtain an
injection:

Hom(π, socc(V )/ socc−1(V ))→ Ext1(π, socc−1(V )).

But socc−1(V ) has finite length by the induction hypothesis, and so by [18], Corollary 2.12,
Ext1(π, socc−1(V )) is finite dimensional.

3.2.17. C. – Let V be an essentially AIG representation of G, let c be a positive
integer, and let Vi be an arbitrary collection of submodules of V of length less than or equal to c.
Then the sum of the Vi has finite length.

Proof. – Each Vi is contained in socc(V ), so their sum is as well. The result thus follows
immediately from the theorem above.

We close this subsection with the following result treating essentially AIG representations
in the case n = 2.

3.2.18. P. – Any essentially AIG representation over GL2(E) is of finite
length.
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Proof. – Let V be an essentially AIG representation over GL2(E); we must show that
V has finite length. Clearly we may check this after making an extension of scalars, and so
without loss of generality we may and do assume that K = K.

If V/ soc(V ) is trivial then V = soc(V ) is irreducible, and we are done. Thus we assume
from now on that V/ soc(V ) is non-trivial. The quotient V/ soc(V ) contains no generic
constituent, hence its Jordan-Hölder factors are all one-dimensional, and so each is of
the form χ ◦ det for some character χ. Moreover, if there exist Jordan-Hölder factors
of V/ soc(V ) isomorphic to χ ◦ det and χ′ ◦ det, then Corollary 3.2.14 implies χ ◦ det and
χ′ ◦ det have the same supercuspidal support. From this it is easy to see that χ2 = (χ′)2.
Replacing V by an appropriate twist, we may thus assume that the center E× of G acts
trivially on each Jordan-Hölder factor of V/ soc(V ).

Since V/ soc(V ) is the sum of its finite length subrepresentations (as V is; this is one
of the conditions of being essentially AIG), and since each of its Jordan-Hölder factors is
one-dimensional, V is a sum of finite-dimensional representations of GL2(E). The action
of GL2(E) on any finite dimensional representation factors through det, so the action
of GL2(E) on V/ soc(V ) must also factor through det. In this way we regard V/ soc(V )

as a representation of E×. Since V admits a central character, by Lemma 3.2.4, and since
the centre acts trivially on each Jordan-Hölder factor of V/ soc(V ), we see that the cen-
tre must act trivially on V . (This is where we use the non-triviality of V/ soc(V ).) Thus
V/ soc(V ) is in fact a representation of the group E×/(E×)2. Theorem 3.2.16 shows that
the socle of V/ soc(V ) is finite length, and it follows from the fact that E×/(E×)2 is finite
that V/ soc(V ) itself is of finite length, as required.

3.3. Invariant lattices

We now prove some results about the reduction of finite length essentially AIG represen-
tations of GLn(E). Let O be a complete discrete valuation ring, with field of fractions K and
residue field K of characteristic different from `. Fix a uniformizer $ of O.

If V is an integral admissible smooth representation of GLn(E) of finite length, then by
the “Brauer-Nesbitt Theorem” of ([17, Ch. II.5.11]), V is a good integral representation in
the sense of Definition 2.2.1, and hence Lemma 2.2.4 shows that if V ◦ is a GLn(E)-invariant
O-lattice in V , then (V ◦/$V ◦)ss is independent of V ◦; we denote it V

ss
.

3.3.1. P. – If V is an essentially AIG admissible smooth representation
of GLn(E) over K which is integral and of finite length, then V

ss
contains a unique irreducible

generic summand.

Proof. – Fix an invariant O-lattice V ◦ in V . Then (V ◦)(n) is a finitely generated O-sub-
module of V (n), and the latter is a one-dimensional K -vector space. Thus (V ◦)(n) is free of
rank one over O. As the derivative commutes with tensor products, it follows that (V

ss
)(n) is

a one-dimensional K-vector space; the result follows.

3.3.2. T. – If V is an essentially AIG admissible smooth representation of GLn(E)

over K which is integral and of finite length, then V admits a$-adically separated GLn(E)-in-
variant lattice V ◦ which is admissible as a GLn(E)-representation, and such that
V
◦

:= V ◦/$V ◦ is essentially AIG. Moreover, V ◦ is unique up to homothety.
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Proof. – We apply Lemma 2.2.6 to V , taking T to consist of all the nongeneric Jordan-
Hölder factors. This yields an O-lattice V ◦, such that V

◦
contains no nongeneric subrepre-

sentations. As V
ss

has only one irreducible generic submodule, this submodule is the socle
ofV

ss
, and

(
V

ss
/ soc(V

ss
)
)(n)

= 0. IfH is any open subgroup ofG, then (V ◦)H is$-adically
separated, and its E-span coincides with V H , which is finite dimensional, since V is admis-
sible. It follows that (V ◦)H is finitely generated over O, and so V ◦ is an admissible smooth
representation of GLn(E). Thus V

◦
is admissible smooth, and therefore essentially AIG.

Suppose now that V � is a second lattice in V satisfying the conditions of the corollary.
Scaling it appropriately, we may assume that V � ⊂ V ◦, but that the induced map V

� → V
◦

is non-zero. Since both source and target are essentially AIG, this map is necessarily injective
by Lemma 3.2.2, and hence (since source and target are of the same length) an isomorphism.

4. The local Langlands correspondence in characteristic zero

Let F be an algebraically closed field of characteristic zero. The local Langlands corre-
spondence for GLn(E) [8] establishes a certain bijection between the set of isomorphism
classes of irreducible admissible smooth representations of GLn(E) on F -vector spaces, and
the set of isomorphism classes of n-dimensional Frobenius semisimple Weil-Deligne repre-
sentations over F (as defined in [5, §8] or [16, §4]).

In fact there are various choices of correspondence, depending on the desired normaliza-
tion. The so-called unitary correspondence is uniquely determined by the requirement that
the local L-and ε-factors attached to a pair of corresponding isomorphism classes should
coincide. On the other hand, this correspondence depends on the choice of a square root of `
in F , and (because of this) is not compatible in general with change of coefficients (although
a suitably chosen twist will be; we refer the reader to 4.2 for details).

However, even if we normalize the local Langlands correspondence to be compatible
with change of coefficients, the correspondence as usually defined is not suitable for the
applications we have in mind. In particular, the usual local Langlands correspondence fails
to be compatible with specialization. More precisely, let O be a complete discrete valuation
ring containing Qp, with field of fractions K and residue field K, and let ρ : GE → GLn( O)

be a continuous Galois representation. Then the local Langlands correspondence associates
admissible representations π and π to the Weil-Deligne representations induced by ρ ⊗ O K
and ρ ⊗ O K, but there need not be a close relationship between π and the reduction of π.
(For example, π could be a character even if π is infinite-dimensional.)

We therefore work with a modification of the usual local Langlands correspondence,
which we describe fully in 4.2. We denote this correspondence by ρ 7→ π(ρ), where ρ is a
continuous n-dimensional representation of GE over an extension K of Qp. The correspon-
dence ρ 7→ π(ρ) is essentially the generic local Langlands correspondence introduced by
Breuil and Schneider in [2]. Unlike more standard formulations of local Langlands, the rep-
resentation π(ρ) of GLn(E) will in general be reducible (in fact, it will be an essentially AIG
representation of GLn(E)). The map ρ 7→ π(ρ) will not be a bijection in any meaningful
sense but simply a map from isomorphism classes of n-dimensional representations of GE
over K to indecomposable admissible representations of GLn(E) over K. The advantage of
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this choice is that the map ρ 7→ π(ρ) will be compatible with change of coefficients (in the
sense that π(ρ ⊗K K ′) will be isomorphic to π(ρ) ⊗K K ′ for an extension K ′ of K), and
also compatible with specialization (in the sense of Theorem 4.5.7 below.)

4.1. Galois representations and Weil-Deligne representations

In order to give a precise description of the map ρ 7→ π(ρ), we first recall some basic
facts about Frobenius-semisimple Weil-Deligne representations. Recall that a Weil-Deligne
representation over a field K containing Qp is a pair (ρ′, N), where ρ′ : WE → GLn(K) is
a smooth representation of WE with coefficients in K and N is a nilpotent endomorphism
of Kn satisfying ρ′(w)Nρ′(w)−1 = |w|N . The representation (ρ′, N) is called Frobenius-
semisimple if ρ′ is absolutely semisimple.

We first consider absolutely irreducible representations ρ′ : WE → GLn(K). Let IE be the
inertia subgroup of E. Then ρ′(IE) is a finite group, and so all of its irreducible representa-
tions are defined over a finite extension K0 of Qp. After replacing K with an algebraic ex-
tension we may assume K contains a subfield isomorphic to K0. Then the restriction of ρ′

to IE splits as a direct sum of absolutely irreducible representations τi of IE over K0.
Let Φ be a Frobenius element ofWE , and letV be an IE-stable subspace ofKn isomorphic

to τ1⊗K0
K as an IE-representation. Then IE acts on ΦV by the conjugate τΦ

1 of τ1. In fact,
we have:

4.1.1. L. – Let r be the order of the orbit of τ1 under the action of Φ on the set of
isomorphism classes of absolutely irreducible representations of IE over K0. Then we have a
direct sum decomposition:

ρ′|IE =

r−1⊕
i=0

τΦi

1 ⊗K0
K

and the action of Φ on this decomposition permutes the summands.

Proof. – As IE is normal in WE , this is a standard result in Clifford theory.

In particular, the vector space HomK[IE ](τ1⊗K0K, ρ
′|IE ) is one-dimensional. If we fix an

isomorphism τ1
∼−→ τΦr

1 , then we get an endomorphism Ψ of this vector space via:

HomK[IE ](τ1 ⊗K0
K, ρ′)

Φr→ HomK[IE ](τ
Φr

1 ⊗K0
K, ρ′)

∼−→ HomK[IE ](τ1 ⊗K0
K, ρ′).

The action of Ψ is given by a scalar λ in K×.

4.1.2. L. – For any λ ∈ K× there is a unique absolutely irreducible represen-
tation ρ′ over K (up to isomorphism) such that ρ′|IE contains τ1 ⊗K0

K and Ψ acts
on HomK[IE ](τ1 ⊗K0

K, ρ′) via λ.

Proof. – If r = 1, then the restriction of ρ′ to IE is given by τ1 ⊗K0
K, and so to

determine ρ′ it suffices to give an action of Φ on the representation space of τ1, compatible
with the action of IE . This amounts to giving an isomorphism τ1 ⊗K0

K
∼−→ (τ1 ⊗K0

K)Φ.
As we have already fixed an isomorphism τ1

∼−→ τΦ
1 , such an isomorphism is determined

by λ.
If r > 1, let E′ be the unramified extension of E of degree r. The restriction of ρ′ to WE′

breaks up as a sum of irreducible representations ρ′0, . . . , ρ
′
r−1 such that the restriction
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of ρ′i to IE is isomorphic to τΦi

1 . Thus ρ′i is determined by λ and τ1, and ρ′ is isomorphic
to IndWE

WE′
ρ′0 by Frobenius reciprocity.

4.1.3. L. – Let K be a field containing Qp, and let ρ′ be an absolutely irreducible
representation of WE over K. Then there exists an unramified character χ : WE → K

×
such

that the twist ρ′ ⊗ χ is defined over Qp.

Proof. – The representation τ1 is defined over a finite extension of Qp, so it suffices to
show that after a twist we can take the scalar λ to be in Qp. Twisting by an unramified χ
changes λ to χ(Φ)rλ, so this is clear.

4.1.4. D. – Let ρ′ be an absolutely irreducible smooth representation
WE → GLn(K), and let d be a positive integer. The special representation Spρ′,d is the pair

Spρ′,d = (V0 ⊕ · · · ⊕ Vd−1, N),

where WE acts on Vi by | |iρ′ and N maps Vi isomorphically onto Vi+1 for 0 ≤ i ≤ d− 2.

The representation Spρ′,d is well-defined up to isomorphism, and is an absolutely inde-
composable Weil-Deligne representation. If K is algebraically closed, then every indecom-
posable Frobenius-semisimple Weil-Deligne representation has the form Spρ′,d for a unique
absolutely irreducible representation ρ′ of WE over K. Combining this with the previous
lemma, we find:

4.1.5. L. – Let K be a field containing Qp, and let (ρ′, N) be an indecomposable
Frobenius-semisimple Weil-Deligne representation over K. Then there exists a character
χ : WE → K

×
such that the twist (ρ′ ⊗ χ,N) is defined over Qp.

In those situations in which we will apply the local Langlands correspondence, we will
be beginning not with Weil-Deligne representations, but with Galois representations. Thus
we recall the recipe of Deligne for associating a Weil-Deligne representation to a continuous
Galois representation, in a slightly broader context than that in which it is usually considered.

Let A be a complete Noetherian local domain of residue characteristic p different from `,
maximal ideal m, and field of fractions K of characteristic zero. Let R be any subring of K
containingA and 1

p . (In most applications,R will equal either K , or else a complete discrete
valuation ring O containing A and contained in K .)

For any n ≥ 0,we say that a representation ρ : GE → GLn(R) is continuous if we can find
a finitely generated A-submodule M of Rn that is invariant under ρ(GE), spans Rn over R,
and such that the induced GE-action on M is m-adically continuous. (Note that if R = K ,
and K is a finite extension of Qp, then this coincides with the usual notion of continuity of
a GE-representation.)

As in [16, (4.2)], we fix a non-zero homomorphism tp : IE → Qp. (When comparing
the present discussion with that of [16], note that the roles of ` and p are reversed.) This
homomorphism is uniquely determined up to scaling by an element of Q×p . The following
result then extends a theorem of Deligne [5, §8], [16, Thm. (4.2.1)] (which treats the case when
the coefficient field is a finite extension of Qp).

4.1.6. P. – A continuous representation ρ : GE → GLn(R) uniquely deter-
mines the following data:
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1. a representation ρ′ : WE → GLn(R) that is continuous when the target is equipped with
its discrete topology;

2. a nilpotent matrix N ∈ Mn(R);

subject to the following condition:

3. ρ(Φrσ) = ρ′(Φrσ) exp(tp(σ)N) for all σ ∈ IE and r ∈ Z.

Furthermore, as a Weil-Deligne representation, the pair (ρ′, N) is independent, up to isomor-
phism, of the choice of tp and Φ.

Proof. – Let (ρ′1, N1) and (ρ′2, N2) be two Weil-Deligne representations satisfying the
condition of the proposition. Then there is an open subgroup of IE on which both ρ′1 and ρ′2
are trivial; we can thus find an element σ of IE for which ρ′1(σ) and ρ′2(σ) are the identity but
tp(σ) is nonzero. Then N1 = 1

tp(σ) log ρ(σ) = N2. The identity

ρ(Φrσ) = ρ′i(Φ
rσ) exp(tp(σ)Ni)

then forces ρ′1 = ρ′2.
It thus suffices to construct a (ρ′, N) as above. Choose a finitely-generated A-submo-

duleM ofRn that is preserved by ρ and spansRn overR. ThenGE acts via ρ onM/mi+1M

for all i, and these A-modules are discrete with respect to the m-adic topology. In particular
for each i the subgroup Hi of IE that acts trivially on M/miM is a compact open subgroup
of IE .

The group of automorphisms of M/mi+1M that reduce to the identity in M/miM is
an abelian p-group for all i ≥ 2. Thus the action of H2 on M factors through the map
tp : IE → Qp. Let σ be an element of H2; the action of σ on M yields an element of α
of End(M) that is congruent to the identity modulo m2. The power series log(α) thus
converges in the m-adic topology on End(M); set N = 1

tp(σ) log(α). Then any τ ∈ H2 acts

on M via exp(tp(τ)N). It follows that for all τ ∈ GE , ρ(τ)Nρ(τ)−1 = |τ |N . In particular
N must be nilpotent.

We can then set ρ′(Φrσ) = ρ(Φrσ) exp(tp(σ)N)−1 for all σ ∈ IE and r ∈ Z; this gives a
well-defined ρ′ that is trivial on the compact open subgroup H2 of WE .

Let O be a discrete valuation ring containing A and contained in K , with residue field K
of characteristic zero and uniformizer $. We will be interested in the reduction mod $ of
both Galois representations and Weil-Deligne representations over O. One has:

4.1.7. L. – Let ρ′ : WE → GLn( O) be a representation of WE over O such that
ρ′ ⊗ O K is absolutely irreducible. Then ρ′ := ρ′ ⊗ O K is also absolutely irreducible.

Proof. – By Lemma 4.1.1, over a finite extension of K , the restriction of ρ′ to IE splits as a
direct sum of absolutely irreducible representations ρ′i of IE , each of which factors through
a finite quotient if IE is defined over Qp. The representations ρ′i are distinct and cyclically
permuted by conjugation by Φ. As K has characteristic zero, the ρ′i remain irreducible and
distinct after “reduction mod $”.

Thus, over a finite extension of K, ρ′ splits as a direct sum of absolutely irreducible
representations ρ′i which are distinct and cyclically permuted under conjugation by Φ. It is
thus clear that ρ′ is absolutely irreducible.
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It follows that if ρ′ : WE → GLn( K ) is absolutely irreducible and contains an O-latticeL,
then the mod$ reduction ofL is independent, up to isomorphism, of the latticeL. We denote
this reduction by ρ′.

The passage from Galois representations to Weil-Deligne representations commutes with
reduction modulo $:

4.1.8. L. – Let ρ : GE → GLn( O) be a continuous Galois representation, with
mod $ reduction ρ, and let (ρ′, N) and (ρ′, N) be the Weil-Deligne representations attached
to ρ and ρ, respectively. Then (ρ′, N) is isomorphic to (ρ′ ⊗ O K,N ⊗ O K).

Proof. – This follows immediately from the identities

ρ(Φrσ) = ρ′(Φrσ) exp(tp(σ)N)

ρ(Φrσ) = ρ′(Φrσ) exp(tp(σ)N)

and the fact that the latter identity characterizes (ρ′, N) up to isomorphism.

Given a Weil-Deligne representation (ρ′, N) over K , one can associate a natural
Frobenius-semisimple representation (ρ′, N)F-ss (the Frobenius-semisimplification of (ρ′, N)).
We recall the definition; see [5, 8.5] for details.

The matrix ρ′(Φ) factors uniquely as a product su, with s and u elements of GLn( K )

that are semisimple and unipotent, respectively, and commute with each other. Moreover,
if ρ′(Φ) lies in GLn( O), then so do s and u. The element u then commutes with N , and one
defines (ρ′)F-ss to be the representation of WF that satisfies (ρ′)F-ss(Φrσ) = u−rρ′(Φrσ).
Then (ρ′)F-ss is a semisimple representation of WF over K , and the pair ((ρ′)F-ss, N) is a
Frobenius-semisimple Weil-Deligne representation which we write (ρ′, N)F-ss.

It will be necessary for us to understand how Frobenius-semisimplification commutes
with reduction modulo $. Note that even if (ρ′, N) is a Frobenius-semisimple Weil-Deligne
representation over O, its reduction modulo $ need not be, as the mod $ reduction of a
semisimple element of GLn( O) need not be semisimple.

4.1.9. L. – Let (ρ′, N) be a Weil-Deligne representation over O, and let (ρ′, N) be
its reduction mod $. Then (ρ′, N)F-ss is defined over O. Moreover, the reduction mod $

of (ρ′, N)F-ss has Frobenius-semisimplification (ρ,N)F-ss.

Proof. – If ρ′(Φ) decomposes as su, with s and u as above, then s and u lie in GLn( O),
so (ρ′, N)F-ss is defined over O. Thus ρ′(Φ) = su, where s and u are the mod $ reductions
of s and u.

The element s decomposes uniquely as s′u′, where s′ is semisimple and u′ is unipotent
and commutes with s′. As u commutes with s, s also decomposes as a product of us′u−1

with uu′u−1; the uniqueness of this decomposition shows that these two decompositions
coincide. That is, u commutes with s′ and u′.

We have ρ′(Φ) = s′u′u, and the unipotent element u′u commutes with s′. Thus the
Frobenius-semisimplification of (ρ′, N) sends Φ to s′. On the other hand, the reduction
of (ρ′, N)F-ss takes Φ to s, which equals s′u′. Hence the Frobenius-semisimplification of the
reduction of (ρ′, N)F-ss takes Φ to s, and therefore coincides with (ρ′, N

′
)F-ss.
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4.2. The generic local Langlands correspondence of Breuil and Schneider

We are now in a position to describe the “generic local Langlands correspondence” of
Breuil and Schneider [2, pp. 162–164]. This is a map (ρ′, N) 7→ π(ρ′, N) from Frobenius-
semisimple Weil-Deligne representations over a finite extension K of Qp to indecomposable
admissible representations of GLn(E) over K. Fix a choice of `

1
2 in Qp (and thus a choice

of square root of the character | | ◦ det of GLn(E), as well as a unitary local Langlands
correspondence for representations over Qp). With this choice, the properties of this corre-
spondence can be summarized as follows (cf. [2, 4.2]):

1. For any character χ : WF → Q×p , one has π(ρ′ ⊗ χ,N) = π(ρ′, N)⊗ χ.
2. If K ′ is a finite extension of K, then π(ρ′ ⊗K K ′, N) = π(ρ′, N)⊗K K ′.
3. If (ρ′, N) is a direct sum of representations of the form Spρ′i,ni over Qp, then π(ρ′, N)

is defined by the parabolic induction:

π(ρ′, N) = (| | ◦ det)−
n−1

2 Ind
GLn(E)
Q Stπ1,n1

⊗ · · · ⊗ Stπr,nr ,

where πi corresponds to ρi under the unitary local Langlands correspondence, Stπi,ni is
the generalized Steinberg representation (and thus corresponds to Spρi,ni under uni-
tary local Langlands), and Q is the upper triangular parabolic subgroup of GLn(E)

whose Levi subgroup is block diagonal with block sizes (n1 dim ρ′1, . . . , nr dim ρ′r).
The symbol Ind

GLn(E)
Q denotes normalized parabolic induction. The representa-

tions Stρi,ni are ordered so that the condition of [14, Def. 1.2.4] holds. (As long as
this condition is satisfied, the resulting parabolic induction is independent, up to
isomorphism, of the precise choice of ordering, as well as of the choice of the square
root of ` needed to define (| | ◦ det)

1
2 .)

These properties uniquely characterize the generic local Langlands correspondence. We
will need a slight extension of this correspondence to the case of coefficients in an arbitrary
field extension K of Qp. Let (ρ′, N) be a Frobenius-semisimple Weil-Deligne representation
over K, and suppose that it decomposes over K as a direct sum of representations of the
form Spρ′i,ni . Then by Lemma 4.1.5, there exist charactersχi : WE → K

×
such that ρ′i⊗χi is

defined over Qp. For such representations the unitary local Langlands correspondence is
defined, and we can take πi to be the representation over K such that πi ⊗ χi corresponds
to ρ′i ⊗ χi via the unitary local Langlands correspondence over Qp.

Stπi,ni = Stπ′i⊗χi ,ni ⊗ (χ−1
i ◦ det),

π(ρ′, N) = (| | ◦ det)−
n−1

2 Ind
GLn(E)
Q Stπ1,n1

⊗ · · · ⊗ Stπr,nr ,

where the Stπi,ni are ordered as before. A priori, this is a representation of GLn(E) over K,
but the argument of [2, Lem. 4.2] shows that π(ρ′, N) is defined over K itself. Moreover,
π(ρ′, N) is independent of the choices of χi.

As was the case over finite extension of Qp, the map (ρ′, N) 7→ π(ρ′, N) is compatible
with twists, and also with arbitrary field extensions.

We extend this definition to a map from representations of GE to admissible representa-
tions of GLn(E) as follows:
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4.2.1. D. – Let ρ be a continuous n-dimensional representation of GE over K,
and let (ρ′, N) be the corresponding Weil-Deligne representation. We define π(ρ) to be
π((ρ′, N)F-ss).

4.3. Segments and the Zelevinski classification

Our next goal is to establish key properties of the generic local Langlands correspondence
(in particular, we will show that π(ρ′, N) is essentially AIG).

Following [21], we define a segment to be a set of supercuspidal representations of the
form: [π, (| | ◦ det)π, . . . , (| | ◦ det)r−1π], where π is an irreducible supercuspidal repre-
sentation of GLn(E) over K. We think of the segment ∆ given by [π, (| | ◦ det)π, . . . ,

(| | ◦ det)r−1π] as corresponding to the generalized Steinberg representation Stπ,r; this
gives a bijection between segments and generalized Steinberg representations. If Stπ,r corre-
sponds to a segment ∆, we will often write St∆ for Stπ,r. Similarly, we will write Sp∆ for the
indecomposable Weil-Deligne representation Spρ,r, where ρ is the irreducible Weil-Deligne
representation corresponding to π under the unitary local Langlands correspondence.

Two segments ∆,∆′ are said to be linked if neither contains the other, and if ∆ ∪ ∆′

is a segment. The segment ∆ precedes ∆′ if ∆ and ∆′ are linked and ∆′ has the form
[(| | ◦ det)π, . . . , (| | ◦ det)r−1π] for some π in ∆.

We consider the following condition on a sequence ~S of segments ∆i:

4.3.1. C. – For all i < j, the segment ∆i does not precede the segment ∆j .

It is clear that any multiset of segments can be given an ordering that satisfies Condi-
tion 4.3.1. If S is a multiset of segments (henceforth referred to as a multisegment), then we
let π( S) denote the normalized parabolic induction

Ind
GLn(E)
Q St∆1

⊗ · · · ⊗ St∆n
,

where ∆1, . . . ,∆n are the segments in S, taken with multiplicities and ordered so that Condi-
tion 4.3.1 holds, and Q is a suitable, block upper triangular parabolic subgroup of GLn(E).
By [21, Prop. 6.4], the representation π( S) does not depend, up to isomorphism, on the or-
der of the collection of segments in S (as long as Condition 4.3.1 holds). Note that if (ρ′, N)

is an n-dimensional Frobenius-semisimple Weil-Deligne representation that decomposes as
the direct sum of Sp∆i

for ∆i ∈ S, then π(ρ′, N) is isomorphic to (| | ◦ det)−
n−1

2 π( S).
By [14, 1.2.5], π( S) admits a unique irreducible quotient Q( S), and Q( S) is the irreducible
representation corresponding to (ρ′, N) under the unitary local Langlands correspondence.

4.3.2. P. – If S is a multisegment, then every irreducible submodule of π( S) is
generic.

Proof. – We will prove a stronger statement—namely, that every irreducible Pn-submod-
ule of the restriction π( S)|Pn is generic. (In other words, π( S) embeds in its Kirillov model.)
Over the complex numbers this is a result of Jacquet-Shalika [13]. Their argument does not
seem to adapt easily to other fields of characteristic zero. One could reduce this proposition to
their result by choosing an isomorphism ofK with C; we instead give an algebraic argument
overK that is an adaptation of the argument of [1, 4.15]. Their argument necessarily uses Ψ±
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and Φ± functors that are normalized differently from ours, to avoid unpleasant combinato-
rial issues. Therefore, for the purposes of this proof only we take the functors Ψ± and Φ± to
be normalized as in [1], rather than as in Section 3.1.

Let S be the multisegment (∆1, . . . ,∆n), where ∆i does not precede ∆j for any j > i.
We can assume without loss of generality that the ∆i are ordered so that if
∆i = [πi, (| | ◦ det)πi, . . . (| | ◦ det)ri−1πi], where πi is a supercuspidal representation
of GLni(E), then (| | ◦ det)riπi is not contained in any segment ∆j with j > i; clearly
for such an ordering ∆i never precedes a ∆j with j > i. We proceed by induction on the
sum of the lengths of the segments ∆i. Note that the result is clear for a single segment,
as St∆i

is absolutely irreducible and generic. Let S′ be the multisegment (∆2, . . . ,∆n); by
the induction hypothesis every irreducible submodule of π( S′) is generic.

Suppose we have an irreducible, non-generic submodule ω of π( S)|Pn . We have π( S) =

St∆1 × π( S′), where “×” is the product defined in [1, 4.12]. By [1, 4.13a], we have an exact
sequence:

0→ (St∆1
)|Pr1n1

× π( S′)→ π( S)|Pn → St∆1
× π( S′)|Pn−r1n1

→ 0.

In particular, ω is a submodule of one of (St∆1
)|Pr1n1

× π( S′) or St∆1
× π( S′)|Pn−r1n1

.

Suppose first that ω is contained in (St∆1
)|Pr1n1

× π( S′). By [21, 9.6], St
(k)
∆i

is zero if k is

not divisible by ni, whereas St
(kni)
∆i

is St
∆

(k)
i

, where ∆
(k)
i is the segment [(| | ◦ det)kπi, . . . ,

(| | ◦ det)r−1πi]. It follows by [1, 4.13c], that, for i < n1,

(Φ−)i((Φ−)kn1(St∆1
|Pr1n1

)× π( S′)) = (Φ−)kn1+i(St∆1
|Pr1n1

)× π( S′),

so that for such i, ((Φ−)kn1(St∆1
|Pr1n1

)× π( S′))(i) = 0. For i = n1, [1, 4.13c] shows
that the representation (Φ−)(k+1)n1(St∆1

|Pr1n1
)× π( S′) is instead a proper submodule

of (Φ−)n1((Φ−)kn1(St∆1
|Pr1n1

)×π( S′)); the quotient of the latter by the former is isomor-
phic to St

∆
(k+1)
1

× π( S′)|Pn−r1n1
.

Since ω is contained in (St∆1)|Pr1n1
× π( S′), we have ω(i) = 0 for i < n1. As ω has at

least one nonzero derivative it follows that (Φ−)n1−1ω is nonzero. On the other hand, we
have (Φ−)n1−1ω ⊂ (Φ−)n1−1((St∆1

)|Pr1n1
× π( S′)); by [1, 4.13d] it follows that (Φ−)n1ω is

nonzero.

Then (Φ−)n1ω is a non-generic submodule of (Φ−)n1((St∆1
)|Pr1n1

× π( S′)), and is therefore
a non-generic submodule of either (Φ−)n1((St∆1

)|Pr1n1
)× π( S′), or St

∆
(1)
1
× π( S′)|Pn−r1n1

.

It is easy to rule out the latter case: by the inductive hypothesis π( S′)|Pn−r1n1
has no non-

generic submodules; by [21, 5.3] neither does St
∆

(1)
1
× π( S′)|Pn−r1n1

.

Thus (Φ−)n1ω is a non-generic submodule of (Φ−)n1((St∆1
)|Pr1n1

)× π( S′). In particu-
lar ((Φ−)n1ω)(i) = 0 for i < n1; it follows as above that (Φ−)2n1−1ω is nonzero, and by [1,
4.13d], that (Φ−)2n1ω is nonzero. Then (Φ−)2n1ω is a nonzero non-generic submodule
of (Φ−)n1((Φ−)n1((St∆1

)|Pr1n1
)× π( S′)), and hence (with another use of the inductive hy-

pothesis and [21, 5.3]), is a nonzero non-generic submodule of (Φ−)2n1((St∆1
)|Pr1n1

)× π( S′).
Proceeding in this fashion we find that (Φ−)kn1ω is a nonzero non-generic submodule

of (Φ−)kn1((St∆1)|Pr1n1
) × π( S′) for all k, which is impossible since the latter vanishes for

large k.
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We have thus ruled out the possibility that ω is contained in (St∆1
)|Pr1n1

× π( S′). The
other alternative is that ω is contained in St∆1

× π( S′)|Pn−r1n1
. Suppose this were the case,

and let k be the largest integer such that ω(k) is nonzero. Then ω(k) is nonzero and embeds
in the k-th derivative of St∆1

× π( S′)|Pn−r1n1
, which is St∆1

× π( S′)(k). It follows that the
supercuspidal support of ω(k) contains that of St∆1

; in particular it contains (| | ◦ det)r−1π1.
By [1, 4.7b], it follows that (| | ◦ det)rπ1 is contained in the supercuspidal support of π( S);
this is impossible by our choice of ordering on the ∆i.

4.3.3. C. – If π is an admissible representation of GLn over a field K of charac-
teristic zero, such that π⊗KK is isomorphic to π( S) for some S satisfying Condition 4.3.1, then
π is essentially AIG. In particular, every representation π(ρ′, N) over a fieldK of characteristic
zero is essentially AIG.

Proof. – It suffices to show that π ⊗K K is essentially AIG, as then the socle of π
must be absolutely irreducible and generic, and π must contain no other irreducible generic
subquotients. But π⊗KK has the form π( S) for some S, so the previous proposition shows
that the socle of π( S) is a direct sum of irreducible generic representations. It thus suffices to
show that π( S)(n) is one-dimensional; this follows from the fact that St∆i

is irreducible and
generic, together with Theorem 3.1.7 and Proposition 3.1.6.

If S and S′ are two multisegments, we say S′ arises from S by an elementary opera-
tion if S′ is obtained from S by replacing a pair of linked segments ∆,∆′ in S with the
pair ∆ ∪∆′,∆ ∩∆′. We say that S′ � S if S′ can be obtained from S by a sequence of
elementary operations. This partial order contains information about the Jordan-Hölder
constituents of a given π( S). In particular, one has the following:

4.3.4. T ([15], Theorem 5.3). – If S is a multisegment, then every Jordan-Hölder
constituent of π( S) is isomorphic toQ( S′) for some S′ � S, and each suchQ( S′) appears with
positive multiplicity in π( S).

In fact, the relationship between π( S) and π( S′) is considerably stronger than the theorem
above suggests. We will construct maps of π( S′) into π( S) for all S′ � S, and show that any
nonzero such map is an embedding, and unique up to scaling. Before we do so, however, we
need a preliminary result about the partial order �. Let S be a multisegment, and suppose
that S′ is obtained from S by a single elementary operation. We say this elementary operation
is primitive if there is no multisegment S′′ with S′ � S′′ � S other than S′′ = S and S′′ = S′.

4.3.5. L. – Let S be a multisegment, let ∆ and ∆′ be two linked segments in S, such
that ∆ precedes ∆′. Suppose that the elementary operation that replaces ∆ and ∆′ with ∆∩∆′,
∆ ∪ ∆′ is primitive. Then there exists an ordering on S that satisfies Condition 4.3.1, and in
which ∆′ and ∆ appear consecutively.

Proof. – Choose an ordering on S that satisfies Condition 4.3.1, and that minimizes the
number of segments that appear between ∆′ and ∆. Suppose there is a segment ∆′′ between
∆ and ∆′.

By our assumption on the chosen ordering, the ordering on S obtained by moving ∆′′

after ∆ fails to satisfy Condition 4.3.1. There must thus be a segment ∆′′′ that appears
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between ∆′′ and ∆ in the chosen ordering, for which ∆′′′ precedes ∆′′. Similarly, ∆′′ must
precede a segment that appears between ∆′ and ∆′′ in the chosen ordering.

Applying these considerations repeatedly we obtain a chain:

∆′ = ∆0,∆1, . . . ,∆r = ∆

such that each ∆i precedes ∆i−1, and appears after ∆i−1 in the chosen order on S. Moreover,
since ∆ precedes ∆′, it follows that ∆ precedes ∆1. The elementary operation on S that
replaces ∆ and ∆′ with ∆ ∩∆′ and ∆ ∪∆′ then factors as:

1. Replace ∆ and ∆1 with ∆ ∪∆1 and ∆ ∩∆1.
2. Replace ∆′ and ∆∪∆1 with ∆∪∆1 ∪∆′ and ∆′ ∩ (∆∪∆1). (Note that ∆∪∆1 ∪∆′

is equal to ∆ ∪∆′.)
3. Replace ∆′ ∩ (∆ ∪∆1) and ∆ ∩∆1 with [∆′ ∩ (∆ ∪∆1)] ∪ [∆ ∩∆1] (which is equal

to ∆1), and [∆′ ∩ (∆ ∪∆1)] ∩ [∆ ∩∆1] (which is equal to ∆ ∩∆′).

In particular the elementary operation that replaces ∆ and ∆′ with ∆∩∆′ and ∆∪∆′ is not
primitive, as required.

4.3.6. P. – Suppose that S and S′ are multisegments, and that S′ � S. Then
HomK[GLn(E)](π( S′), π( S)) is one-dimensional overK, and every nonzero map π( S′)→ π( S)

is an embedding.

Proof. – As π( S′) and π( S) are essentially AIG, it suffices to show that there exists a
nonzero map π( S′)→ π( S). Moreover, we may reduce to the case where S′ and S differ by a
single, primitive, elementary operation. Let S′ differ from S by replacing ∆,∆′ with ∆ ∪∆′,
∆ ∩∆′, where ∆′ precedes ∆. By the above lemma we may choose an ordering on S that
satisfies Condition 4.3.1 in which ∆ and ∆′ are adjacent. We obtain from this ordering on S
an ordering on S′ in which ∆ ∩ ∆′ replaces ∆ and ∆ ∪ ∆′ replaces ∆′; this ordering also
satisfies Condition 4.3.1. Let S0 be the multisegment consisting of the segments that appear
in S before ∆ and ∆′ in this chosen ordering, and let S1 be the multisegment consisting of
the segments that appear in S after ∆ and ∆′.

By [15, Prop. 4.3], we find that π(∆ ∪ ∆′,∆ ∩ ∆′) embeds in π(∆,∆′). But π( S′) is
isomorphic to

IndGLn
P π( S0)⊗ π(∆ ∪∆′,∆ ∩∆′)⊗ π( S1),

for P a suitable block upper triangular parabolic subgroup of GLn, and π( S) is isomorphic
to

IndGLn
P π( S0)⊗ π(∆,∆′)⊗ π( S1).

The embedding of π(∆ ∪∆′,∆ ∩∆′) in π(∆,∆′) thus gives rise to a nonzero map of π( S′)
into π( S), as required.

Moreover, the embeddings of π( S′) into π( S) constructed above descend to fields of
definition:

4.3.7. P. – Let π and π′ be admissible representations over K, and suppose
there are multisegments S and S′, with S′ � S, such that π ⊗K K is isomorphic to π( S)

and π′ ⊗K K is isomorphic to π( S′). Then HomK[GLn(E)](π
′, π) is one-dimensional over K,

and every nonzero map π′ → π is an embedding.

4 e SÉRIE – TOME 47 – 2014 – No 4



LOCAL LANGLANDS IN FAMILIES 693

Proof. – As π and π′ are essentially AIG, HomK[GLn(E)](π
′, π) is either zero or one-

dimensional over K, and every nonzero map π′ → π is an embedding. It thus suffices to
construct a nonzero map from π′ to π. Let φ : π′ ⊗K K → π ⊗K K be an embedding. By
Lemma 3.2.5, a scalar multiple of φ descends to the desired embedding of π′ in π.

We immediately deduce:

4.3.8. C. – Let ρ be a continuous n-dimensional representation of GE over K,
and let π be an admissible representation of GLn(E) over K, such that π ⊗K K is isomorphic
to π(ρ⊗K K). Then π is isomorphic to π(ρ).

The above results allow us to establish some useful facts about essentially AIG envelopes
in characteristic zero, that will be useful in the proof of Proposition 6.2.8.

4.3.9. T. – Let π be an irreducible generic representation of GLn(E) over an
algebraically closed fieldK of characteristic zero, and letπ1, . . . , πr be the supercuspidal support
of π, ordered so that Condition 4.3.1 holds (when the πi are treated as one-element segments.)
Then the parabolic induction

Ind
GLn(E)
P π1 ⊗ · · · ⊗ πr

is an essentially AIG envelope ofπ. (HereP = MU is a suitable block upper triangular parabolic
subgroup of GLn(E), with Levi subgroup M and unipotent radical U .)

Proof. – By Corollary 4.3.3, the representation

Ind
GLn(E)
P π1 ⊗ · · · ⊗ πr

is essentially AIG. Its socle is thus an irreducible generic representation with the same su-
percuspidal support as π, and is therefore isomorphic to π, by Proposition 3.2.12. It thus
remains to show that any essentially AIG representation W whose socle is isomorphic to π
embeds in

Ind
GLn(E)
P π1 ⊗ · · · ⊗ πr.

Note that as any map of essentially AIG representations is injective, it suffices to construct a
map:

W → Ind
GLn(E)
P π1 ⊗ · · · ⊗ πr.

By Frobenius reciprocity, this is equivalent to constructing a map:

ResPGLn(E)W → π1 ⊗ · · · ⊗ πr.

As every Jordan-Hölder constituent of W has supercuspidal support {π1, . . . , πr} by
Corollary 3.2.14, it follows that every Jordan-Hölder constituent of ResPGLn(E)W is a su-
percuspidal representation of M , and at least one of these Jordan-Hölder constituents is
isomorphic to π1⊗ · · · ⊗πr. By Theorem 3.2.13, π1⊗ · · · ⊗πr only admits nontrivial exten-
sions (as an M -representation) with irreducible representations isomorphic to π1⊗· · ·⊗πr.
Thus ResPGLn(E)W admits a quotient isomorphic to π1⊗· · ·⊗πr and the result follows.

4.3.10. C. – Let W be an essentially AIG representation of GLn(E) over a
field K of characteristic zero. Then W has finite length.

Proof. – Let W ′ be the essentially AIG envelope of soc(W ). By the preceding lemma,
W ′ ⊗K K has finite length, so W ′, and hence W , has finite length.
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It will be useful later, in the proof of Proposition 6.2.8, to have control over the multi-
plicities of Jordan-Hölder constituents of essentially AIG representations. We observe:

4.3.11. C. – LetW be an essentially AIG representation of GL2(E) or GL3(E)

over a field K of characteristic zero. Then no Jordan-Hölder constituent of W appears with
multiplicity greater than one.

Proof. – Theorem 4.3.9 above shows that W embeds in some parabolic induction

Ind
GLn(E)
P π1 ⊗ · · · ⊗ πr

with each πi cuspidal. Zelevinski’s computations of multiplicities of the Jordan-Hölder con-
stituents of such inductions ([21, §11]) show that when r ≤ 3, each Jordan-Hölder constituent
of such an induction occurs with multiplicity one. The result follows immediately.

4.3.12. R. – In contrast to the preceding proposition, if n = 4, and if we choose
a Levi subgroup of the form (E×)4 of GL4(E),

Ind
GLn(E)
P | |2 ⊗ | | ⊗ | | ⊗ 1

has a Jordan-Hölder constituent that appears with multiplicity two.

4.4. Reduction of π( S)

We now turn to integrality considerations. We continue to suppose that O is a discrete
valuation ring, with residue field K of characteristic zero, uniformizer $, and field of frac-
tions K . We say an admissible representationπ over K is O-integral if it contains a$-adically
separated O-lattice.

4.4.1. L. – Letπ be an absolutely irreducible supercuspidal representation of GLn(E)

over K . Then π is O-integral if and only if its central character takes values in O×. In this case
there is a $-adically separated GLn(E)-stable O-lattice π◦ in π, unique up to homothety, such
that the reduction π◦/$π◦ is absolutely irreducible and supercuspidal.

Proof. – Clearly if π is O-integral, then its central character takes values in O×. Let K ′

be a finite Galois extension of K , such that there exists a character χ : E× → K× whose
nth power is the central character of π. If the central character of π takes values in O×, then
χ takes values in ( O′)×, where O′ is the integral closure of O in K ′.

The central character of π⊗χ−1◦det is trivial. By [17, II.4.9], π⊗χ−1◦det is defined over a
finite extensionF ofQp, contained in K ′. That is, there exists an admissible representation π0

over F such that π0 ⊗F K ′ is isomorphic to π ⊗ χ−1 ◦ det. As O′ has residue characteristic
zero, F is contained in O′. Thus π◦ := (π0 ⊗F O′) ⊗ (χ ◦ det) is a $′-adically separated
O′-lattice in π ⊗K K ′, where $′ is a uniformizer of O′.

The reduction modulo $′ of π◦ is (π0 ⊗F K ′) ⊗ (χ ◦ det), where K ′ is the residue field
of O′ and χ is the reduction of χ modulo $′. In particular π◦/$π◦ is absolutely irreducible
and supercuspidal (and therefore π◦ is unique up to homothety.) It follows that π◦ is stable
under the action of Gal( K ′/K ), and hence descends to a GLn(E)-stable lattice in π (which
must also be unique up to homothety.)
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Given an O-integral absolutely irreducible supercuspidal representation π of GLn(E)

over K , we can thus define π to be the reduction mod $ of any $-adically separated
GLn(E)-stable O-lattice in π. For a segment ∆ = [π, (| |◦det)π, . . . , (| |◦det)r−1π], let ∆ be
the segment [π, (| | ◦det)π, . . . , (| | ◦det)r−1π]. If S is a multiset of integral segments, define
S to be the multisegment consisting of the segments ∆i for ∆i ∈ S.

4.4.2. L. – Letπ be an O-integral, absolutely irreducible supercuspidal representation
of GLn(E) over K , and let ∆ be the segment [π, (| | ◦ det)π, . . . , (| | ◦ det)r−1π]. There
is a $-adically separated, GLn(E)-stable O-lattice St◦∆ in St∆, unique up to homothety, and
St◦∆/$St◦∆ is isomorphic to St∆.

Proof. – This follows by precisely the same argument as in Lemma 4.4.1.

If we want to consider the reduction mod$ of representations of the form π( S), then the
situation is more complicated, as π( S) typically contains more than one homothety class of
lattices. However, Theorem 3.3.2 allows us to single out a preferred such homothety class.

4.4.3. P. – If S is a multisegment over K that are O-integral, then there is an
O-lattice π( S)◦ in π( S), unique up to homothety, such that π( S)◦/$π( S)◦ is essentially AIG.
Moreover, π( S)◦/$π( S)◦ is isomorphic to π( S).

Proof. – Theorem 3.3.2 shows that π( S)◦ exists and is unique up to homothety.
Let ∆1, . . . ,∆r be the segments in S, and fix for each i a $-adically separated O-lattice Li
in St∆i

. Then Li/$Li is isomorphic to St∆i
. Recall that

π( S) = Ind
GLn(E)
P St∆1

⊗ · · · ⊗ St∆r
,

and hence contains the integral induction Ind
GLn(E)
P L1 ⊗ · · · ⊗ Lr as a lattice. The mod $

reduction of this lattice is clearly isomorphic to π( S), which is essentially AIG. Thus
Ind

GLn(E)
P L1 ⊗ · · · ⊗ Lr is homothetic to π( S)◦, and hence π( S)◦/$π( S)◦ is indeed

isomorphic to π( S), as claimed.

4.4.4. C. – Let K ′ be a finite Galois extension of K , and let O′ be the integral
closure of O in K ′. Let π be an admissible representation of GLn(E) over K , and let S be a
multisegment consisting of O′-integral segments over K ′. Suppose that π⊗K K ′ is isomorphic
to π( S). Then π is O-integral, and there is a $-adically separated O-lattice π◦ in π, unique up
to homothety, such that π◦/$π◦ is essentially AIG. Moreover, π◦/$π◦ ⊗K K ′ is isomorphic
to π( S).

Proof. – It suffices to show that the lattice π( S)◦ constructed in the previous proposition
is stable under the action of Gal( K ′/K ). This is clear since π( S)◦ is unique up to homothety.
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4.5. Compatibility with specialization

We now use the results of the previous sections to understand the relationship between
π(ρ⊗ O K ) and π(ρ⊗ O K), where ρ : GE → GLn( O) is a continuous Galois representation.
The key idea is a geometric interpretation of the partial order � on multisegments, due to
Zelevinski [22].

Let V = ⊕πVπ be a finite-dimensional vector space over a field F , “graded” by the set
of isomorphism classes of irreducible supercuspidal representations of GLm(E) over K ,
for all m. We denote the automorphisms of V as a graded F -vector space by Aut(V ), and
let End+(V ) denote the space of F -linear endomorphisms of V that take Vπ to V(| |◦det)π for
all π. Let NV be an element of End+(V ); it is a nilpotent endomorphism of V .

We construct a bijection between the set of isomorphism classes of pairs (V,NV ) and
the set of multisegments S over K , as follows: For any segment ∆ = [π, (| | ◦ det)π, . . . ,

(| | ◦ det)r−1π], let V∆,F be the vector space defined by (V∆,F )π′ = F if π′ is in ∆, and
zero otherwise. We define an endomorphism N∆,F of V∆,F that is an isomorphism
(V∆,F )(| |◦det)iπ → (V∆,F )(| |◦det)i+1π for 0 ≤ i < r − 1, and zero otherwise.

For a multisegment S, we define:

(V S,F , N S,F ) =
⊕
∆∈ S

(V∆,F , N∆,F ).

It is easy to see (for instance, by the structure theory of graded F [N ]/Nr-modules) that the
association S 7→ (V S,F , N S,F ) yields a bijection between multisegments and isomorphism
classes of pairs (V,NV ).

4.5.1. T ([22, §2]). – Let S′ and S be multisegments over K. Then S′ � S if and
only if V S,F is isomorphic to V S′,F as a graded F -vector space, andN S,F is in the closure of the
orbit of N S′,F under the action of Aut(V S′,F ) on End+(V S′,F ).

As a result, if S′ � S, then, for all i, the rank ofN i
S,F is less than or equal to that ofN i

S′,F .

These ranks are equal for all i if, and only if, S′ = S.

If (ρ′, N) is a Frobenius-semisimple Weil-Deligne representation over K , and if S is the
multisegment such that π( S) = (| | ◦ det)

n−1
2 π(ρ′, N), then the pair (V S,K , N S,K ) can be

described easily in terms of (ρ′, N). Indeed, one has:

4.5.2. L. – For any supercuspidal representation π of GLm(E) over K , there is a
natural isomorphism:

(V S,K )π
∼−→ Hom K [WE ](ρ, ρ

′),

where ρ is the absolutely irreducible representation of WE that corresponds to π under the
unitary local Langlands correspondence. Moreover, under these isomorphisms, the map

N S,K : (V S,K )π → (V S,K )(| |◦det)π

is identified with the map

Hom K [WE ](ρ, ρ
′)→ Hom K [WE ](| | ⊗ ρ, ρ

′)

induced by N .
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Proof. – This is true by construction if (ρ′, N) is indecomposable, and extends to the
general case by taking direct sums.

Zelevinski’s result strongly suggests a connection between the Zelevinski partial order and
reduction of Weil-Deligne representations. In order to make this connection precise we need
a compatibility between the reduction mod $ and local Langlands:

4.5.3. L. – If ρ′ is absolutely irreducible, and π⊗K K corresponds to ρ′⊗K K under
the unitary local Langlands correspondence, then π ⊗K K and ρ′ ⊗K K correspond under the
unitary local Langlands correspondence.

Proof. – We first translate this into a statement in terms of the generic local Lang-
lands correspondence. From this point of view the representation π(ρ′) is isomorphic
to (| | ◦ det)−

n−1
2 π, and we must show that π(ρ′) is isomorphic to (| | ◦ det)−

n−1
2 π.

There is a finite extension K ′ of K , and a character χ : WE → ( K ′)×, such that
ρ′ ⊗ χ is defined over Qp; as ρ′ is integral χ takes values in ( O′)×, where O′ is the integral
closure of O in K ′. In particular, there is a finite extension K0 of Qp, contained in K ′, and
a representation ρ0 : WE → GLn(K0), such that ρ0 ⊗K0 K ′ is isomorphic to ρ′ ⊗ χ. If we
let K ′ be the residue field of O′, and let χ be the reduction mod $′ of the character χ, then
K0 is contained in K ′ and ρ0 ⊗K0 K

′ is isomorphic to ρ′ ⊗ χ. It follows that π(ρ′) ⊗ χ is
isomorphic to (| | ◦ det)−

n−1
2 π(ρ0)⊗ χ.

Let π0 = (| |◦det)
n−1

2 π(ρ0). As the generic local Langlands correspondence is compatible
with twists and base change, the representation π⊗χ is isomorphic to π0⊗K0 K ′. Thus π⊗χ
is isomorphic to π0 ⊗K0 K

′, and hence to (| | ◦ det)
n−1

2 π(ρ′)⊗ χ. The result follows.

If S is obtained from a multisegment S by reduction mod $, the pairs (V S,F , N S,F ) and
(V S,F , N S,F ) are related by (V S,F )π = ⊕π′(V S,F )π′ , where the sum is over π′ with π′ = π.

Now let (ρ′, N) be a Weil-Deligne representation over O such that the restriction
of ρ′ ⊗ O K to IE is a direct sum of absolutely irreducible representations of IE over K ,
and such that ρ′ ⊗ O K is a direct sum of absolutely irreducible representations ρ′i of WE .
(We can always arrange this by replacing K with a finite extension.) Let S be the segment
associated to (ρ′, N)⊗ O K ; we have

(V S,K )πi = Hom K [WE ](ρi, ρ
′ ⊗ O K ),

where πi corresponds to ρi under unitary local Langlands. We also consider the K-vector-
space V S,K .

Let (ρ′, N) be the Weil-Deligne representation (ρ′, N) ⊗ O K, and let S′ be the multiseg-
ment associated to (ρ′, N)F-ss. Our goal is to compare S′ to S; we will do this by compar-
ing V S,K to V S′,K . The key difficulty is to construct an O-lattice in V S,K , stable under N S,K ,
whose reduction mod $ is isomorphic to V S′,K .

By Lemma 4.1.1 there is a finite extension K0 of Qp and representations τ1, . . . , τn of IE
over K0, each in its own orbit under conjugation by Φ, such that the restriction ρ′ ⊗ O K is
a direct sum of Φ-conjugates of the τi, each with multiplicity one. For each i, let Li be the
O-module Hom O[IE ](τi ⊗K0 O, ρ′).
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For each j such that the restriction of ρ′j to IE contains a copy of τi⊗K0
K , the restriction

map
Hom K [WE ](ρ

′
j , ρ
′)→ Hom K [IE ](τi ⊗K0

K , ρ′)

is an injection. We thus obtain an isomorphism:

Li ⊗ O K ∼−→ Hom K [IE ](τi ⊗K0 K , ρ′) ∼−→
⊕
j

Hom K [WE ](ρ
′
j , ρ
′),

where the latter sum is over those j such that the restriction of ρ′j to IE contains a copy
of τi ⊗K0

K . This condition is satisfied if, and only if, the restriction of ρ′j to IE contains
a copy of τi ⊗K0

K. We can thus view Li as a sublattice of ⊕j(V S,K )πj , where the sum is
over those j such that the restriction of ρ′j to IE contains a copy of τi⊗K0

K. For any such j,
let Lπj be the intersection Li ∩ (V S,K )πj .

In fact, this gives a direct sum decomposition of Li. To see this, first observe:

4.5.4. L. – Let M be a free O-module of finite rank, and Ψ is an O-linear endomor-
phism ofM that acts semisimply onM⊗ O K . Suppose that all of the eigenvalues of Ψ⊗ O K lie
in K , and for each eigenvalue λ̃ of Ψ⊗ O K , letMλ̃ be the intersection ofM with the λ̃-eigenspace
of Ψ⊗ O K . Then M decomposes as

M = ⊕λMλ,

where λ runs over the eigenvalues of Ψ : M/$M → M/$M and Mλ is the sum of Mλ̃ for
those λ̃ congruent to λ modulo $. The endomorphism Φ acts on Mλ/$Mλ as the product of λ
with a unipotent endomorphism of Mλ/$Mλ.

Proof. – Let P (t) be the minimal polynomial of Ψ, and considerM as an O[t]/P (t)-mo-
dule on which t acts by Ψ. The connected components of Spec O[t]/P (t) are in bijection with
the roots λ of the mod $ reduction Ψ of Ψ; these are the eigenvalues of Ψ. Thus, considered
as a sheaf on Spec O[t]/P (t), M decomposes as a direct sum of sheaves Mλ supported on
each connected component. On each Mλ, the minimal polynomial of Ψ is a power of t− λ,
so λ−1Ψ is unipotent on Mλ.

4.5.5. L. – We have a direct sum decomposition: Li = ⊕jLπj , where the sum is over
those j such that the restriction of ρ′j to IE contains a copy of τi ⊗K0

K.

Proof. – Let r be the size of the orbit of τi under the conjugation action of Φ, and
fix an isomorphism τΦr

i
∼−→ τi. This isomorphism induces an endomorphism Ψ of

Hom O[IE ](τi ⊗K0 O, ρ′) via

Hom O[IE ](τi ⊗K0
O, ρ′) Φr→ Hom O[IE ](τ

Φr

i ⊗K0
O, ρ′) ∼−→ Hom O[IE ](τi ⊗K0

O, ρ′).

Let ρ′j be an absolutely irreducible summand of ρ′⊗ O K whose restriction to IE contains
a copy of τi ⊗K0

K . This copy is unique, and yields a restriction map:

Hom K [WE ](ρ
′
j , ρ
′ ⊗ O K )→ Hom K [IE ](τi, ρ

′ ⊗ O K ).

This restriction map is injective, and its image can be characterized in terms of Ψ. In
particular, the endomorphism:

Hom K [IE ](τi ⊗K0
K , ρ′j)

Φr→ Hom K [IE ](τ
Φr

i ⊗K0
K , ρ′j)

∼−→ Hom K [IE ](τi ⊗K0
K , ρ′j)

4 e SÉRIE – TOME 47 – 2014 – No 4



LOCAL LANGLANDS IN FAMILIES 699

is an endomorphism of one-dimensional K vector spaces and is thus given by a scalar λ̃; it
follows by Lemma 4.1.2 that ρ′j is determined by λ̃ and τi, and that the image of the map:

Hom K [WE ](ρ
′
j , ρ
′ ⊗ O K )→ Hom K [IE ](τi, ρ

′ ⊗ O K )

is the λ̃-eigenspace of Ψ.

Now let ρj be an absolutely irreducible summand of ρ′ ⊗ O K whose restriction to IE
contains a copy of τi⊗K0

K, and let πj be the corresponding admissible representation. Then
the endomorphism Ψ of HomK[IE ](τi⊗K0

K, ρi) is a scalar λ, and, by the same reasoning as
above, (V S,K )πj is the sum of the λ̃-eigenspaces of Ψ for those λ̃ congruent to λ modulo $.
Thus, by the preceding lemma, Lπj is a direct summand of Li.

Let L be the lattice in V S,K defined by:

L = ⊕πLπ.

Note that as N S,K preserves each Li, it also preserves L.

4.5.6. L. – There is a natural isomorphism L/$L
∼−→ V S′,K . Moreover, the endo-

morphism N S,K of L reduces to N S′,K under this isomorphism.

Proof. – Recall that S′ is the multisegment associated to (ρ′, N)F-ss. Let ρi be any abso-
lutely irreducible Jordan-Hölder constituent ρi of (ρ′)ss, corresponding to an admissible re-
presentation πi under unitary local Langlands. Then (V S′,K)πi is equal to HomK[WE ](ρi, (ρ

′)ss).
It thus suffices to construct, for each i, a natural isomorphism of (L/$L)πi with (V S′,K)πi .

Let τ be an absolutely irreducible representation of IE over K0 such that ρi con-
tains τ ⊗K0

K; let r be the order of the orbit of τ under conjugation by Φ, and fix
an isomorphism of τ with τΦr . Let λ ∈ K× be the scalar giving the action of Φr

on Homk[IE ](τ ⊗K0
K, ρi|IE ) under this identification.

We also have an action of Φr on HomK[IE ](τ ⊗K0 K, (ρ′)ss|IE ); this yields a linear
endomorphism Ψ

ss
of HomK[IE ](τ ⊗K0

K, (ρ′)ss|IE ). The natural map

(V S′,K)πi → HomK[IE ](τ ⊗K0 K, (ρ
′)ss|IE )

identifies (V S′,K)πi with the λ-eigenspace of Ψ
ss

.

On the other hand, the previous lemma shows that Lπi is the sum of the λ̃-eigenspaces
of Ψ on Hom O[IE ](τ⊗K0 O, ρ′|IE ); it follows thatLπi/$Lπi is the λ-generalized eigenspace
of Ψ/$Ψ on HomK[IE ](τ ⊗K0 K, ρ

′|IE ).

Finally, observe that Ψ
ss

is the semisimplification of Ψ/$Ψ, so that the λ-generalized
eigenspace of Ψ/$Ψ is equal to the λ-eigenspace of Ψ

ss
, and hence to (V S′,K). One verifies

easily that these identifications are all compatible with the monodromy operators.

By Theorem 4.5.1 it follows that for S and S′ as in Lemma 4.5.6, we must have S � S′.
Moreover, we have equality if, and only if, the ranks of the operators N i

S,K and N i
S′,K agree

for all i. We are thus finally in a position to prove:
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4.5.7. T. – Let ρ : GE → GLn( O) be a continuous Galois representation, and
(ρ′, N) the Frobenius-semisimplification of the corresponding Weil-Deligne representation.
Then there is a $-adically separated O-lattice π(ρ)◦ in π(ρ ⊗ O K ), unique up to homothety,
such that π(ρ)◦/$π(ρ)◦ is essentially AIG, and an embedding

π(ρ)◦/$π(ρ)◦ → π(ρ),

where ρ = ρ⊗ O K. This embedding is an isomorphism if, and only if, the K-rank of N
i

equals
the K -rank of (N ⊗ O K )i for all i.

Proof. – Let (ρ′, N) be the reduction mod$ of (ρ′, N). Then, by Lemmas 4.1.8 and 4.1.9,
(ρ′, N)F-ss is the Frobenius-semisimplification of the Weil-Deligne representation attached
to ρ.

Over a finite extension K ′ of K , we may assume that ρ′ splits as a direct sum of absolutely
irreducible representations of WE , and similarly for its restriction to IE . The corresponding
statements then hold for the semisimplification of ρ′.

Let O′ be the integral closure of O in K ′, and let K ′ be its residue field. Let S and S′ be
the segments associated to (ρ′, N)⊗ O O′ and (ρ′, N)F-ss⊗KK ′. We have shown that S � S′.

On the other hand, we have that π(ρ ⊗ O K ′) is isomorphic to (| | ◦ det)−
n
2 π( S); by

Corollary 4.4.4 there is, up to homothety, a unique lattice π(ρ)◦ in π(ρ ⊗ O K ) such that
π(ρ)◦/$π(ρ)◦ is essentially AIG; moreover one has an isomorphism

[π(ρ)◦/$π(ρ)◦]⊗K K ′
∼−→ π( S).

As π(ρ ⊗K K ′) is isomorphic to (| | ◦ det)−
n
2 π( S′), and S � S′, we have an embedding

of [π(ρ)◦/$π(ρ)◦]⊗KK ′ in π(ρ⊗KK ′). This embedding descends toK by Proposition 4.3.7.

Finally, this embedding is an isomorphism if, and only if, S is equal to S′. This is true if,
and only if, the ranks of N i

S,K
and N i

S′,K agree for all i; it is easy to see this is equivalent to

requiring that the ranks of (N ⊗ O K)i and N
i

agree for all i.

4.5.8. R. – An alternative approach to some of the above questions is given in [3],
particularly Proposition 3.11. Chenevier constructs, for each Bernstein component B of the
category of smooth representations of GLn(E), a pseudocharacter of WE valued in the
algebra of functions on B that “is compatible with the local Langlands correspondence”,
in the sense that if one specializes this pseudocharacter at any irreducible representation
of GLn(E) that lies in B, one obtains the pseudocharacter of the semisimplification of the
corresponding representation of WE . From our perspective, this result allows us to deduce
that the supercuspidal support of π(ρ) is the reduction modulo $ of the supercuspidal
support of π(ρ), but it does not contain any information about the monodromy operator.

In cases where the embedding arising in the previous proposition is an isomorphism, we
say that ρ is a minimal lift of ρ. (Such lifts are lifts of ρ in which the ramification arising from
the monodromy operator is as small as possible.) We will need this language in a broader
context than that of representations over discrete valuation rings:
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4.5.9. D. – LetA be a reduced complete Noetherian local ring with finite residue
field k of characteristic p, that is flat overW (k), and let ρ be a continuous representation ofGE
into GLn(A). Let (ρ′, N) be the associated Weil-Deligne representation over GLn(A[ 1

p ]). If p is
a characteristic zero prime of A, and a is a prime of A whose closure contains p, we say ρa is a
minimal lift of ρp if, for all i, the rank of (N ⊗A κ(a))i is equal to the rank of (N ⊗A κ(p))i.

Note that, for any given a, the locus of p such that ρa is a minimal lift of ρp is Zariski open
in the closure of a in SpecA[ 1

p ].

5. The local Langlands correspondence in characteristic p

5.1. Definition and basic properties

We now construct an analogue of the Breuil-Schneider local Langlands correspondence
for representations ofGE over finite fields of characteristic p. Such a correspondence should
satisfy an analog of Theorem 4.5.7 for representations over discrete valuation rings of char-
acteristic zero and residue characteristic p. Throughout this section we fix a finite field k of
characteristic p, and let O denote a complete discrete valuation ring of characteristic zero
with field of fractions K and finite residue field k′ containing k.

Our starting point is the semisimple mod p local Langlands correspondence of
Vigneras [20]. This is a map ρ 7→ πss(ρ) that associates to each n-dimensional irreducible rep-
resentation ρ : WE → GLn(Fp) an irreducible supercuspidal representation πss(ρ) over Fp.
If q denotes the order of the residue field of E, and if k′ is a finite field of characteris-
tic p containing a square root of q, then this correspondence is defined over k′; that is,
if ρ is defined over k′, then π(ρ) descends uniquely to a representation over k′. Moreover,
the correspondence is compatible with “reduction mod p” in the following sense:

5.1.1. T ([20, Thm. 1.6]). – Suppose that k′ contains a square root of q. Let (ρ,N)

be an n-dimensional Frobenius-semisimple Weil-Deligne representation of WE over O, and let
π be the irreducible representation of GLn(E) over K attached to (ρ,N)⊗ O K by the unitary
local Langlands correspondence. Let ρ = ρ⊗ O Fp, and let

ρss = ρ1 ⊕ · · · ⊕ ρr

be a decomposition of ρss into irreducible representations of WE over Fp. Then π is O-integral,
and for any GLn(E)-stable O-lattice L in π, and any Jordan-Hölder constituent π of L⊗ O Fp,
one has:

scs(π) = {πss(ρ1), . . . , πss(ρr)}.

5.1.2. C. – Suppose that k′ contains a square root of q. Let ρ : GE → GLn(k)

be a Galois representation, and let ρ : GE → GLn( O) be a lift of ρ ⊗k k′. Then π(ρ ⊗ O K )

is O-integral, and for any O-lattice L in π(ρ ⊗ O K ), the supercuspidal support of any Jordan-
Hölder constituent π of L⊗ O Fp depends only on ρ.
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Proof. – Let (ρ′, N) be the Frobenius-semisimple Weil-Deligne representation over K
attached to ρ. Then ρ′ is O-integral and the semisimplification of its reduction mod p de-
pends only on ρ. By the definition of the Breuil-Schneider local Langlands correspondence,
π(ρ⊗ O K ) is (up to a twist by an integral character) a parabolic induction of representations
that correspond (via unitary local Langlands) to irreducible summands of ρ′ ⊗ O K . These
summands are integral, so π(ρ ⊗ O K ) is as well, and so is π(ρ ⊗ O K ). Moreover, (up to a
twist by (| | ◦ det)

n−1
2 ), every Jordan-Hölder constituent of π(ρ⊗ O K ) corresponds via uni-

tary local Langlands to a Weil-Deligne representation of the form (ρ′ ⊗ O K , N ′) for some
choice of monodromy operator N ′.

Now if L is a lattice in π(ρ⊗ O K ), and π is a Jordan-Hölder constituent of L⊗ O Fp, then
there exist a Jordan-Hölder constituent of π(ρ⊗ O K ), and a latticeL′ in this constituent, such
that π is a Jordan-Hölder constituent of the mod p reduction of L′. The result thus follows
from Theorem 5.1.1.

Let L be a lattice in π(ρ ⊗ O K ), where ρ : GE → GLn( O) is a lift of ρ ⊗k k′ for
some ρ : GE → GLn(k). As L ⊗ O Fp has a unique generic Jordan-Hölder constituent,
and up to isomorphism there is only one irreducible generic representation of G with given
supercuspidal support, the generic Jordan-Hölder constituent of L ⊗ O Fp likewise depends
only on ρ.

We will also need to control the length of L/$L, for lattices L of the sort appearing in the
corollary above. We first show:

5.1.3. P. – Let P = MU be a parabolic subgroup of GLn(E), and let
π = π1 ⊗ · · · ⊗ πr be an irreducible representation of M . There exists an integer c, depending
only on n, such that the length of Ind

GLn(E)
P π1 ⊗ · · · ⊗ πr is bounded above by c.

Proof. – This follows easily from [17], Proposition III.1.12.

5.1.4. P. – Let ρ : GE → GLn(k) be a Galois representation, let
ρ : GE → GLn( O) be a lift of ρ⊗k k′, and let L be a GLn(E)-stable lattice in π(ρ⊗ O K ).
There exists an integer c, depending only on n, such that the length of L/$L is bounded above
by c.

Proof. – The length of L/$L is independent of L. As π(ρ⊗ O K ) is a parabolic induction
of a tensor product of integral Steinberg representations, we can write

π(ρ⊗ O K ) = Ind
GLn(E)
P Stπ1,n1

⊗ · · · ⊗ Stπi,ni ,

where the πi are integral cuspidal representations of GLn. For each i, Stπi,ni arises as the
normalized parabolic induction of a tensor product of the form:

(| | ◦ det)−
ni−1

2 πi ⊗ · · · ⊗ (| | ◦ det)
ni−1

2 πi.

Thus there is a parabolic induction of a tensor product of irreducible, integral, cuspidal
representations π′j (all of which are twists of the πi) that maps surjectively onto π(ρ⊗ O K );
if we choose a lattice Lj inside each of the π′j , the parabolic induction of the tensor product
of the Lj maps into a lattice L in π(ρ ⊗ O K ). We then have a surjection of the parabolic
induction of the tensor product ofLj/$Lj ontoL/$L. As each π′j is cuspidal, so isLj/$Lj ;
as (Lj/$Lj)

(n) is one-dimensional we must have Lj/$Lj irreducible for all j. Thus the
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length of L/$L is bounded above by the maximum length of a parabolic induction of an
irreducible representation of a Levi subgroup of GLn(E), and the desired result follows by
Proposition 5.1.3.

We can now prove the main result of this subsection.

5.1.5. T. – There is a map ρ 7→ π(ρ) from the set of isomorphism classes of contin-
uous representationsGE → GLn(k) to the set of isomorphism classes of finite length admissible
smooth GLn(E)-representations on k-vector spaces, uniquely determined by the following three
conditions:

1. For any ρ, the associated GLn(E)-representation π(ρ) is essentially AIG.
2. If K is a finite extension of Qp, with ring of integers O, uniformizer$, and residue field k′

containing k, ρ : GE → GLn( O) is a continuous representation lifting ρ⊗k k′, and L is
a GLn(E)-invariant O-lattice in π(ρ) such that L/$L is essentially AIG, then there is
a GLn(E)-equivariant embeddingL/$L ↪→ π(ρ)⊗k k′. (Note that Theorem 3.3.2 shows
that such an L always exists, and that it is unique up to homethety.)

3. The representation π(ρ) is minimal with respect to satisfying conditions (1) and (2),
i.e., given any continuous representation ρ : GE → GLn(k), and any representation π
of GLn(E) satisfying these two conditions with respect to ρ, there is a GLn(E)-equiv-
ariant embedding π(ρ) ↪→ π.
Furthermore:

4. The formation of π(ρ) is compatible with extending scalars, i.e., given ρ : GE → GLn(k),
and a finite extension k′ of k, one has

π(ρ⊗k k′) ∼= π(ρ)⊗k k′.

5. The formation of π(ρ) is compatible with twists, i.e., given ρ : GE → GLn(k), and
a continuous character χ : GE → k×, one has

π(ρ⊗ χ) = π(ρ)⊗ (χ ◦ det).

6. EndGLn(E)(π(ρ)) = k.

7. The representation π(ρ) has central character equal to | |
n(n−1)

2 (det ρ).
8. Suppose (ρ⊗k k)ss is the direct sum of irreducible representations ρ1, . . . , ρr. Then every

Jordan-Hölder constituent of π(ρ) has supercuspidal support equal to

| |
n−1

2 {πss(ρ1), . . . , πss(ρr)}.

Proof. – We first establish uniqueness: If π and π′ are two finite length admissible smooth
representations of GLn(E) that satisfy properties (1), (2), and (3) with respect to ρ, then by
property (3) we have embeddings of π in π′ and vice versa. As both π and π′ have finite length
these embeddings are isomorphisms.

We now turn to the construction of π(ρ). Let ρ : GE → GLn( O) be a lift of ρ ⊗k k′,
for some O, k′ as in property (2). (Choi ([4], Theorem 3.0.13) has shown that the character-
istic zero fiber of the universal framed deformation ring of ρ is generically smooth of dimen-
sion n2, so such a lift always exists.) Suppose L is an O-lattice in π(ρ) such that L/$L is
essentially AIG. The socle V of L/$L is absolutely irreducible and generic, and its super-
cuspidal support depends only on ρ and not the specific lift ρ chosen. As there is a unique
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generic representation with given supercuspidal support, V depends only on ρ up to isomor-
phism. In particular V is defined over k, as we can take O to have residue field k.

Let env(Vk) be the essentially AIG envelope of V ⊗k k. For each lift ρ of ρ, and each
lattice L in π(ρ) such that L/$L is essentially AIG, the socle of (L/$L)⊗k k is isomorphic
to V ⊗k k. Hence (L/$L) ⊗k′ k embeds uniquely (up to the action of k

×
) in env(Vk).

Let π(ρ)k be the sum, in env(Vk), of the images of (L/$L)⊗k k in env(Vk) as ρ ranges over
all lifts of ρ.

By construction, Gal(k/k) acts on env(Vk). This action preserves π(ρ)k, as it permutes
the images ofL/$L for various O and ρ. Thus π(ρ)k descends uniquely to a submodule π(ρ)

of env(V ). Clearly, π(ρ) satisfies properties (1) and (2). On the other hand, if π is any other
representation satisfying properties (1) and (2), then the socle of π is isomorphic to V and
hence env(V ) contains a unique submodule isomorphic to π. As π satisfies property (2),
π⊗kk contains the images ofL/$L in env(Vk) for all lifts ρ of ρ, and thus contains π(ρ)⊗kk.
It follows that π contains π(ρ), so π(ρ) satisfies property (3). Finally, π(ρ) is of finite length
by Proposition 5.1.4 and Corollary 3.2.17.

Now let k′ be a finite extension of k. Then π(ρ)⊗k k′ clearly satisfies properties (1) and (2)
with respect to ρ ⊗k k′, and thus admits an embedding of π(ρ ⊗k k′) that is unique up to
rescaling. The above construction shows that π(ρ) ⊗k k and π(ρ ⊗k k′) ⊗k k coincide as
submodules of env(Vk), so this embedding is an isomorphism.

Similarly, if χ is a character of E× with values in k×, we can choose a lift χ of χ to
a character with values in W (k)×. Then if ρ⊗ χ is a lift of ρ⊗ (χ ◦ det) to a representation
over O, and L ⊗ χ is a lattice in π(ρ ⊗ χ) with (L ⊗ (χ ◦ det))/$(L ⊗ (χ ◦ det))

essentially AIG, then L is a lattice in π(ρ) with L/$L essentially AIG. Thus L/$L embeds
in π(ρ)⊗k k′, so (L/$L)⊗ (χ ◦ det) embeds in π(ρ)⊗ (χ ◦ det). Thus π(ρ)⊗ (χ ◦ det) has
property (2) and hence contains π(ρ ⊗ χ). Conversely, replacing ρ with ρ ⊗ χ, we find that
π(ρ⊗ χ)⊗ (χ−1 ◦ det) contains π(ρ). Thus π(ρ) and π(ρ⊗χ) have the same length, and so
π(ρ⊗ χ) and π(ρ)⊗ (χ ◦ det) are isomorphic.

The endomorphisms of π(ρ) are all scalar because π(ρ) is essentially AIG. In particular
the center of GLn(E) acts on π(ρ) (and hence on all of its submodules) via a character.
To compute this character, let ρ be any lift of ρ, and let L be a lattice in π(ρ) such that
L/$L is essentially AIG. The center of GLn(E) acts on π(ρ) via the character | |

n(n−1)
2 det ρ,

and hence onL/$L via the character | |
n(n−1)

2 det ρ. AsL/$L embeds inπ(ρ), this character
is also the central character of π(ρ).

As π(ρ) is essentially AIG, every Jordan-Hölder constituent of π(ρ) has the same super-
cuspidal support. To determine this supercuspidal support, let ρ be any lift of ρ, and letL be a
lattice in π(ρ) such thatL/$L is essentially AIG. The representations | |−n−1

2 π(ρ) and ρ then
correspond under unitary local Langlands, and so, by Theorem 5.1.1, the supercuspidal sup-
port of any Jordan-Hölder constituent of | |−n−1

2 L/$L is equal to {πss(ρ1), . . . πss(ρr)}.

5.2. The local Langlands correspondence for GL2 in characteristic p

For GL2(E), at least in odd characteristic, the correspondence ρ 7→ π(ρ) can be made
fairly concrete. We give a complete picture (for p odd) in [10]; the approach described there
runs into difficulties when p = 2 because the essentially AIG envelope of a cuspidal (but not
supercuspidal) representation is rather complicated in this case. The first thing to observe is:
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5.2.1. P. – Let ρ : GE → GL2(Fp) be a representation, and suppose that ρss is
not a twist of 1⊕ | |. Then π(ρ) is the unique representation of GL2(E) whose supercuspidal
support is given by part (8) of Theorem 5.1.5.

Proof. – Part (8) of Theorem 5.1.5, together with our hypothesis on ρ implies that the su-
percuspidal support of any Jordan-Hölder constituent of π(ρ) is either a single supercuspidal
representation of GL2(E), or a pair of characters of GL1(E) that do not differ by a factor
of | |. In either case, there is, up to isomorphism, a unique irreducible representation π of GL2

that has that particular supercuspidal support; in particular π is generic. Thus every Jordan-
Hölder constituent of env(π) is isomorphic to π; as π is generic and env(π) is essentially AIG
there is only one such Jordan-Hölder constituent. In particular π = env(π), and so as π(ρ) is
contained in env(π), we must have π(ρ) = π.

When ρss is a twist of 1⊕ | |, the situation is more complicated, as π(ρ) will typically
not be irreducible. As the correspondence ρ 7→ π(ρ) is compatible with twists, it suffices
to describe π(ρ) when ρss = 1⊕ | |. In this case π(ρ) has supercuspidal support {1, | |}. The
details of this will be carried out in [10]; here we content ourselves with summarizing the
results.

First, assume that the order q of the residue field of E is not congruent to ±1 modulo p.
(This is the so-called banal situation.) Here there are two irreducible representations of G
with supercuspidal support {1, | |}: the character | | ◦ det and the twisted Steinberg repre-
sentation St⊗ (| | ◦ det). The latter representation is generic, and its envelope is the unique
nonsplit extension of | | ◦ det by St⊗ (| | ◦ det).

On the Galois side there is, up to isomorphism, a unique nonsplit ρwhose semisimplifica-
tion is 1⊕ | |. Then π(ρ) is equal to St⊗ (| | ◦ det) if ρ is nonsplit, and to the unique nonsplit
extension of | | ◦ det by St⊗ (| | ◦ det) if ρ is split.

Next, assume that p is odd and q is congruent to−1 modulo p. In this case there are three
irreducible representations ofG with supercuspidal support {1, | |}: the trivial character, the
character | | ◦ det, and a cuspidal generic representation that Vigneras denotes by π(1) (see
[17, II.2.5] for a discussion of this). Up to isomorphism, there is a unique nonsplit extension
of the trivial character by π(1) and similarly a unique nonsplit extension of | | ◦ det by π(1).
The envelope env(π(1)) is the unique extension of 1⊕ (| | ◦ det) by π(1) that contains both
of these nonsplit extensions as submodules.

In this case, π(ρ) = env(π(1)) if ρ is split. If ρ is not split, it is either an extension of | |
by 1 or an extension of 1 by | |. In the first case, π(ρ) is the nonsplit extension of (| | ◦ det)

by π(1); in the second case π(ρ) is the nonsplit extension of the trivial character by π(1).
Finally, assume that p is odd and q is congruent to 1 modulo p. In this case | | is

the trivial character. The only irreducible representations of G with supercuspidal sup-
port {1, 1} in this case are the Steinberg representation St and the trivial representation.
Moreover, Ext1(1,St) is two-dimensional, and naturally isomorphic to H1(GE , 1). The
envelope env(St) is isomorphic to the universal extension of 1 by St, and thus has length
three.

In this case, π(ρ) is equal to env(St) if ρ is split. On the other hand, the nonsplit ρ with
trivial semisimplification are in bijection with the one-dimensional subspaces of H1(GE , 1),
and hence in natural bijection with the one-dimensional subspaces of Ext1(1,St). These

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



706 M. EMERTON AND D. HELM

in turn correspond to the nonsplit extensions of 1 by St. For any nonsplit ρ, π(ρ) is the
corresponding extension of 1 by St.

6. The local Langlands correspondence in families

6.1. The set-up

Throughout this section we will be considering representations over ringsA satisfying the
following condition:

6.1.1. C. – A is a complete reduced Noetherian local ring, with finite residue
field k of characteristic p, which is flat over the ring of Witt vectors W (k).

We will typically write m for the maximal ideal of A. Note that the condition of being
flat over W (k) is equivalent to A being p-torsion free, or again (since A is reduced), to each
minimal prime ofA being of residue characteristic 0. We will write κ(p) to denote the residue
field of a prime ideal p ofA; thus κ(p) is the fraction field of the complete local domainA/p.
We write K (A) :=

∏
aminimal κ(a) (where, as indicated, the product is taken over the finitely

many minimal primes of A) for the total quotient ring of A. Since A is reduced, the natural
map A→ K (A) is an embedding.

6.2. Statement of the correspondence and related results

Now let E be a number field. Let v be a non-Archimedean place of E, and let
ρ : GEv → GLn(A) be a continuous representation (when the target is equipped with
its m-adic topology). For each prime ideal p of A, let ρp : GEv → GLn

(
κ(p)

)
denote the

representation obtained from ρ by extending scalars from A to κ(p). In the particular case
of the maximal ideal, we also write ρ := ρm. If p is a prime of A with residue character-
istic zero, we write π̃(ρp) for the smooth κ(p)-dual of the representation π(ρp) defined in
Definition 4.2.1.

In the situations that we will consider below, we will have a finite S of non-Archimedean
places of E, all prime to p, and for each v ∈ S we will have a continuous representation
ρv : GEv → GLn(A).

We are now ready to describe the local Langlands correspondence for local Galois repre-
sentations over A.

6.2.1. T. – Let S denote a finite set of non-Archimedean places ofE, none of which
lie over p, and suppose for each v ∈ S that we are given a representation ρv : GEv → GLn(A).
If we write G :=

∏
v∈S GLn(Ev), then there is (up to isomorphism) at most one admissible

smooth representation V of G over A satisfying the following conditions:

1. V is A-torsion free (i.e., all associated primes of V are minimal primes of A, or equiva-
lently, the natural map V → K (A)⊗A V is an embedding).

2. For each minimal prime a of A, there is a G-equivariant isomorphism⊗
v∈S

π̃(ρv,a)
∼−→ κ(a)⊗A V.
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3. The G-cosocle cosoc(V/mV ) of V/mV is absolutely irreducible and generic, while the
kernel of the natural surjection V/mV → cosoc(V/mV ) contains no generic subrepre-
sentations. (In other words, the smooth dual of V/mV is essentially AIG.)
Any such V satisfies the following additional conditions:

4. V is cyclic as an A[G]-module.
5. EndA[G](V ) = A.

We postpone the proof of the theorem to the following subsection.

6.2.2. D. – If in the context of the preceding theorem an A[G]-module V
satisfying conditions (1), (2), and (3) exists, then we write π̃({ρv}v∈S) := V . (This is justi-
fied by the uniqueness statement of the theorem.) If S consists of a single place v then we
write π̃(ρv) rather than π̃({ρv}v∈S).

6.2.3. R. – We don’t consider here the problem of proving in general that a repre-
sentation V satisfying conditions (1), (2) and (3) of Theorem 6.2.1 exists, although we con-
jecture that it does. (This is Conjecture 1.4.1 of the introduction.) When n = 2 and p is odd,
or when p is a banal prime, this conjecture is a result of the second author [11], [12].

In the global applications considered in the work of the first author [6, 7], and in subse-
quent applications, the problem that we will confront will rather be that of having a smooth
G-representation at hand (for a certain ringA), which we wish to show satisfies the conditions
to be π̃({ρv}v∈S) for an appropriate ρ. Thus one of our goals in the following subsection is to
establish a workable criterion for recognizing π̃({ρv}v∈S) (namely Theorem 6.2.15 below).

The following result shows that the existence of π̃({ρv}v∈S) is equivalent to the existence
of the collection of representations π̃(ρv), and explains the relation between them. We post-
pone its proof to the following subsection.

6.2.4. P. – In the context of Theorem 6.2.1, the A[G]-module π̃({ρv}v∈S)

exists if and only if each of the individual A[GLn(Ev)]-modules π̃(ρv) exist. Furthermore,
π̃({ρv}v∈S) is isomorphic to the maximal torsion free quotient of the tensor product (taken
over A)

⊗
v∈S π̃(ρv).

The following two theorems, whose proofs we again postpone, describe the sense in which
the representation π̃({ρv}) interpolates the Breuil-Schneider modified local Langlands cor-
respondence over SpecA[ 1

p ].

6.2.5. T. – Let p be a prime of A[ 1
p ], and suppose that p lies on exactly one irre-

ducible component of SpecA[ 1
p ]. Then, assuming that π̃({ρv}v∈S) exists, there is a κ(p)-linear

G-equivariant surjection ⊗
v∈S

π̃(ρv,p)→ κ(p)⊗A π̃({ρv}v∈S).

Moreover, if there exists a minimal prime a of A such that ρa is a minimal lift of ρp, then this
surjection is an isomorphism.
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It seems likely that the above result holds even when p is contained in multiple irreducible
components of SpecA[ 1

p ]. Nonetheless we are at present only able to prove a somewhat
weaker statement:

6.2.6. T. – Assume that π̃({ρv}v∈S) exists, let p be a prime of SpecA[ 1
p ],

let a1, . . . , ar be the minimal primes of A contained in p, for each i = 1, . . . , r let Vi be
the maximal A-torsion free quotient of π̃({ρv}v∈S) ⊗A A/ai, and denote by W the image of
the diagonal map

κ(p)⊗A π̃({ρv}v∈S)→
∏
i

κ(p)⊗A/ai Vi.

Then there is a κ(p)-linear G-equivariant surjection⊗
v∈S

π̃(ρv,p)→W.

Moreover, if there exists a minimal prime a of A such that ρa is a minimal lift of ρp, then this
surjection is an isomorphism.

6.2.7. C. – Under the hypotheses of Theorem 6.2.6, the map

κ(p)⊗A π̃({ρv}v∈S)→W

is an isomorphism. In particular the conclusion of Theorem 6.2.5 holds for all p.

Although this conjecture seems difficult to establish in general, we have the following
result for small n, which we prove in the next section.

6.2.8. P. – Conjecture 6.2.7 holds when n = 2 or n = 3.

In a similar vein, we conjecture:

6.2.9. C. – Assuming that π̃({ρv}v∈S) exists, there is aG-equivariant k-linear
surjection: ⊗

v∈S
π̃(ρ)→ k ⊗A π̃({ρv}v∈S).

One can also describe the behavior of π̃({ρv}v∈S) under base change. Suppose that B is
another ring satisfying Condition 6.1.1, and that f : A → B is a local homomorphism. If
we are given a Galois representation ρv : GEv → GLn(A) where v does not lie over p, then
we may then apply the preceding considerations to the Galois representations B⊗A ρv. The
following proposition relates π̃(ρv) and π̃(B ⊗A ρv). (We again postpone the proof to the
following subsection.)

6.2.10. P. – Suppose that for every minimal prime of SpecB, its image p
in SpecA is contained in a minimal prime a of A such that ρv,a is a minimal lift of ρv,p.
(For example, suppose that each component of SpecB dominates a component of SpecA.)
Then if π̃({ρv}v∈S) exists, so does π̃({B ⊗A ρv}v∈S), and there is a natural surjection:
B ⊗A π̃({ρv}v∈S)→ π̃({B ⊗A ρv}v∈S).

We now give some examples illustrating Definition 6.2.2.
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6.2.11. E. – Suppose that A = O is the ring of integers in a finite extension K
of Qp. If ρ : GEv → GLn( O) is continuous (for some place v of E that does not lie over p),
write ρK := K⊗ Oρ. Then π̃(ρ) exists, and is the smooth contragredient to the lattice π(ρK )◦

of Theorem 3.3.2.

6.2.12. R. – Suppose given A as in Theorem 6.2.1, and a continuous representa-
tion ρ : GQ` → GL2(A) for some ` 6= p. Consider a point p ∈ SpecA[ 1

p ]. If ρp is not of the
form χ⊕ | |χ for some character χ of GQ` , then for any minimal prime a of A, containing p,
ρa is necessarily a minimal lift of ρp, and so (assuming that V := π̃(ρ) exists), the surjection
of Theorem 6.2.5 is an isomorphism; that is, Vp is isomorphic to π̃(ρp). On the other hand
if ρp does have the form χ⊕| |χ, then there exist non-minimal lifts of ρp, and so Vp need not
a priori be isomorphic to π̃(ρp). We now give an example showing that it can indeed happen
that Vp is not isomorphic to π̃(ρp).

6.2.13. E. – Suppose that ` and p are distinct, and that ` 6≡ 1 mod p. If A is as
in Theorem 6.2.1, then Ext1

Zp[GQ` ]
(| |, 1) is free of rank 1 over A. Let c denote a generator of

this Ext1-module, and for any a ∈ A, let ρa : GQ` → GL2(A) be the rank two representation
underlying a · c. One checks that if a is a regular element, then V := π̃(ρa) exists, and in
fact is isomorphic to StA (the Steinberg representation of GL2(Q`) with coefficients in A);
in particular, it is independent of the regular element a. Note that if a ∈ p ∈ SpecA[ 1

p ] (i.e.,
the regular function associated to a vanishes at p), then ρa,p := κ(p)⊗ ρa is split and hence
unramified, and thus π̃(ρa,p) is a non-split extension of Steinberg by trivial. In particular, at
such a point p, Vp fails to be isomorphic to π̃(ρa,p).

6.2.14. E. – Suppose that ` and p are distinct, p is odd, and ` 6≡ ±1 mod p.
Let A be the ring W (k)[[a, b]]/ab. Fix a Frobenius element Fr of GQ` and a generator σ of
the p-power inertia in GQ` . Let ρ be the representation of GQ` such that ρ is trivial on the
prime-to-p inertia in GQ` , and such that:

ρ(Fr) =

(
q(1 + a) 0

0 1

)

ρ(σ) =

(
1 b

0 1

)
.

It is not hard to show in this situation that V := π̃(ρ) exists. On the other hand, V is principal
series at the minimal prime ideal 〈b〉 of A, and Steinberg along the minimal prime ideal 〈a〉
ofA. In particular the Iwahori invariants of V have different ranks along these two branches,
showing that V cannot be free as an A-module.

We conclude with a “recognition theorem” that is useful for verifying that a given A[G]-mo-
dule is isomorphic to π̃({ρv}v∈S). As with the other results of this section, we defer its proof
to the next subsection.

6.2.15. T. – Let V be an admissible smooth A[G]-module, such that the smooth
dual of V/mV is essentially AIG, and suppose that there exists a Zariski dense subset Σ

of SpecA[ 1
p ] such that:
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1. For all v ∈ S, and all p in Σ, there exists a minimal prime a ofA such that ρv,a is a minimal
lift of ρv,p.

2. For each point p of Σ there exists an isomorphism:

κ(p)⊗A V
∼−→
⊗
v∈S

π̃(ρv,p).

3. The diagonal map:

V →
∏
p∈Σ

⊗
v∈S

π̃(ρv,p)

is an injection.

Then V satisfies conditions (1), (2), and (3) of Theorem 6.2.1; that is, π̃({ρv}v∈S) exists and is
isomorphic to V .

6.3. The proofs of Theorem 6.2.1 and some related results

We develop a series of deductions involving the various conditions of Theorem 6.2.1.
These will be used not only to prove Theorem 6.2.1, and the other outstanding results from
the preceding subsection, but also to provide a criterion for verifying the conditions of
Theorem 6.2.1, which will be useful in applications.

If A is a local ring with residue field K, and V is a representation of F over A, we let
V denote the representation V ⊗A K.

6.3.1. L. – Let A be a Noetherian W (k)-algebra that is a local ring with residue

field K. If V is an admissible smooth representation of G over A, then V
(n)

is 1-dimensional
over K if and only if V (n) is a cyclic A-module.

Proof. – Theorem 3.1.14 shows that if V
(n)

is one-dimensional then V (n) is a finitely
generated A-module, and so the lemma follows from Nakayama’s lemma together with the

isomorphism V (n) ⊗A K
∼−→ V

(n)
.

6.3.2. L. – Let A be a Noetherian W (k)-algebra that is a local ring with residue
field K in which all `i are invertible. If V is an admissible smooth representation of G over A,
then the following are equivalent:

1. For any non-zero quotient K[G]-module W of V , one has W
(n) 6= 0.

2. For any non-zero quotient A[G]-module W of V , one has W (n) 6= 0.
3. J(V ) generates V over K[G].
4. J(V ) generates V over A[G].

Proof. – It is clear that (2) implies (1), as any quotient of V is also a quotient of V .

Suppose that (1) holds and that W is a quotient of V with W (n) = 0. Then W
(n)

= 0, and
so (1) implies that W = 0. Then W = 0 by Nakayama’s Lemma, so (1) implies (2).

If W is a quotient of V , then we have that W
(n)

is a quotient of V
(n)

since the derivative
functor is exact. If we let U denote the K[G]-submodule of V generated by J(V ), we see

that W
(n)

vanishes if and only if W is a quotient of V /U . Thus (1) and (3) are equivalent.
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Clearly (4) implies (3), since J(V ) is the image of J(V ) in V . Conversely, suppose
J(V ) generates V over K[G]. Since J(V ) maps surjectively onto J(V ), Lemma 2.1.7 implies
that J(V ) generates V over A[G].

6.3.3. L. – Let A be a local ring satisfying Condition 6.1.1. If V is an admissible
smooth representation of G over A, and if V (n)

a is nonzero for each minimal prime a of A, then
if V (n) is a cyclic A-module, it is in fact free of rank 1 over A.

Proof. – Since (V (n))a = (Va)
(n), we have that (V (n))a is nonzero for all a. Our hypothe-

ses on A imply that A injects into the product of the fields Aa; it follows that the annihilator
of V (n) in A is the zero ideal. The lemma follows.

6.3.4. P. – Let A be a local ring satisfying Condition 6.1.1, let V be an
admissible smooth representation of G over A, and suppose that (Va)

(n) is nonzero for each

minimal prime a of A, that V
(n)

is one-dimensional, and that for any non-zero quotient
k[G]-module W of V , one has W

(n) 6= 0. Then:

1. V (n) is free of rank 1 over A.
2. J(V ) generates V over A[G].
3. EndA[G](V ) = A.

Proof. – The first claim follows immediately from Lemmas 6.3.1 and 6.3.3. The second
is a consequence of Lemma 6.3.2.

By Proposition 3.1.16, the natural map A → EndA[Pn](J(V )) is an isomorphism. This
latter map factors as the composition

A→ EndA[G](V )→ EndA[Pn](J(V )),

and restriction of endomorphisms from V to J(V ) is injective because J(V ) generates V .
Thus EndA[G](V ) = A.

The following result gives some equivalent formulations of the hypotheses on V appearing
in the preceding proposition.

6.3.5. L. – LetK be a field in which all `i are invertible. If V is an admissible smooth
representation of G over K, then the following are equivalent:

1. V
(n)

is one-dimensional, and for any non-zero quotient K[G]-module W of V , one has

W
(n) 6= 0 (and henceV

(n)
is isomorphic toW

(n)
, so thatW

(n)
is again one-dimensional).

2. V
(n)

is one-dimensional, and J(V ) generates V over K[G].
3. V is of finite length (and hence has a cosocle), cosoc(V ) is absolutely irreducible, and

V
(n)

is isomorphic to
(
cosoc(V )

)(n)
, with both being non-zero.

4. The smooth K-dual V
∨

of V is essentially AIG.
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Proof. – The equivalence of conditions (1) and (2) follows from Lemma 6.3.2 (applied
with A = K and V = V ).

If condition (2) holds, then V is finitely generated over K[G], and hence of finite length,
by [17], II.5.10. Write cosoc(V ) =

⊕
jW j , where each W j is irreducible. Condition (1)

(which also holds, since it is equivalent to condition (2), as we have already observed) shows

that W
(n)

j is one-dimensional for each j. Since the composition:

V
(n) →

(
cosoc(V )

)(n) ∼−→
⊕
j

W
(n)

j

is surjective (the derivative functor is exact), we see that in fact there is only one summand,
and hence that cosoc(V ) is irreducible. Proposition 6.3.4 (applied with A = K and V = W )
then implies that EndG

(
cosoc(V )

)
) = K, and hence that cosoc(V ) is in fact absolutely

irreducible. Thus (2) implies (3).

If condition (3) holds, then by assumption
(
cosoc(V )

)(n)
is nonzero. It is therefore one-

dimensional by Theorem 3.1.15. Thus V
(n)

is one-dimensional, giving the first half of con-
dition (1). The second half of condition (1) follows from the fact that cosoc(V ) is irreducible,

and satisfies
(
cosoc(V )

)(n) 6= 0. Thus (3) implies (1).

Now consider the smooth dual V
∨

. If V is of finite length, the socle of V
∨

is the smooth
dual of the cosocle of V . In particular soc(V

∨
) is absolutely irreducible and generic if

and only if cosoc(V ) is. Moreover, the map
(
soc(V

∨
)
)(n) → (V

∨
)(n) is dual to the map

V
(n) →

(
cosoc(V )

)(n)
so that one is an isomorphism if and only if the other is. Thus (3) is

equivalent to (4).

6.3.6. L. – If A is a reduced Noetherian W (k)-algebra, and if V is an admissible
A[G]-module, then the following are equivalent:

1. V is A-torsion free, i.e., every associated prime of V is a minimal prime of A.
2. The natural mapV → V ⊗A K (A) is an injection, where K (A) is the product over minimal

primes a of A of the fields Aa.
3. The natural map

V →
∏
a

(V/aV )tf

is injective, where a runs over the minimal primes of A and (V/aV )tf is the maximal
A/a-torsion free quotient of V/aV .

If these equivalent conditions hold, then for any Zariski dense set of primes Σ of SpecA, the
map

V →
∏
p∈Σ

V ⊗A κ(p)

is injective.

Proof. – If one replaces V with a finitely generated A-module M in conditions (1), (2)
and (3), then the equivalence of these conditions is standard commutative algebra. On the
other hand, if U is a sufficiently small compact open subgroup of G, then V U is a direct
summand of V that is finitely generated as an A-module, and V is the union of the V U .
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On the other hand, it is easy to see that each of conditions (1), (2) and (3) holds forV if, and
only if, it holds with V U in place of V for each sufficiently small compact open subgroup U
of V . As (1), (2) and (3) are equivalent conditions on each such V U , they are equivalent
conditions on V .

Now let Σ be a Zariski dense set of primes of A, suppose that the equivalent conditions
(1), (2), and (3) hold, and suppose that x is an element of V that maps to zero in V ⊗Aκ(p) for
all p ∈ Σ. Choose a compact open subgroup U of G fixing x; then V U is finitely generated
over A, and x maps to zero in V U ⊗A κ(p) for all p in Σ. It follows that the support of x
(considered as an element of V U ) is a closed subset of SpecA contained in the complement
of Σ. In particular that the annihilator of x is not contained in any minimal prime of A,
contradicting condition (1).

6.3.7. L. – Let A be a reduced Noetherian W (k)-algebra, and let V1 and V2 be two
admissible smooth A[G]-modules such that:

1. For each i, V (n)
i is free of rank one over A.

2. For each i, Vi is generated by J(Vi) as an A[G]-module.
3. There exists a Zariski dense set Σ of primes of A such that for all p ∈ Σ, (V1)p is

isomorphic to (V2)p, as Ap[G]-modules.
4. The natural map:

Vi →
∏
p∈Σ

Vi ⊗A κ(p)

is injective for each i. (This is automatic if Vi is A-torsion free.)

Then there is an A-linear G-equivariant isomorphism V1
∼−→ V2.

Proof. – Let K ′ be the product over p ∈ Σ of the residue fields κ(p). Condition (3) gives
us an isomorphism ∏

p

V1 ⊗A κ(p)
∼−→
∏
p

V2 ⊗A κ(p).

There are natural injections:

Vi ⊗A K ′ →
∏
p

Vi ⊗A κ(p)

for each i; these are not in general isomorphisms. However, for sufficiently small compact
open subgroups U of G, V Ui is a direct summand of Vi that is finitely generated as an
A-module. For each such U , the induced map:

V Ui ⊗A K ′ →
(∏
p

Vi ⊗A κ(p)
)U

is an isomorphism. Passing to the limit on both sides, we obtain an isomorphism of Vi⊗A K ′

with the space of smooth elements of
∏
p Vi ⊗A κ(p). Thus the isomorphism:∏

p

V1 ⊗A κ(p)
∼−→
∏
p

V2 ⊗A κ(p)

induces an isomorphism of V1 ⊗A K ′ with V2 ⊗A K ′.
Moreover, by Condition (4), Vi embeds in Vi ⊗A K ′ for each i. We may thus regard V1

and V2 as submodules of V1 ⊗A K ′.
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By (1), (V1 ⊗A K ′)(n) is free of rank one over K ′, and V
(n)
i is a free A-submodule

of (V1 ⊗A K ′)(n) for each i. There thus exists an element c of ( K ′)× such that cV (n)
2 and V (n)

1

coincide as submodules of (V1 ⊗A K ′)(n). It follows that cJ(V2) and J(V1) coincide as
submodules of J(V1 ⊗A K ′). Since V1 and V2 are generated by J(V1) and J(V2) over A[G],
we must have V1 = cV2; in particular V1 and V2 are isomorphic.

We can now prove the uniqueness claim of Theorem 6.2.1.

6.3.8. P. – Let A be a local ring satisfying Condition 6.1.1, and let V1 and V2

be two admissible smooth A[G]-modules. Suppose that:

1. The Vi are A-torsion free.
2. For each minimal prime a of A, (Vi)

(n)
a is nonzero.

3. For each i, V i satisfies the equivalent conditions of Lemma 6.3.5.
4. For each minimal prime a of A, there is a G-equivariant isomorphism (V1)a

∼−→ (V2)a.

Then there is an A-linear G-equivariant isomorphism V1
∼= V2 (which, by part (3) of Proposi-

tion 6.3.4, is uniquely determined up to multiplication by an element of A×).

Proof. – By part (1) of Proposition 6.3.4, we have that V (n)
i is free of rank 1 over A for

each i. As the minimal primes of A are dense in SpecA, it thus follows by Lemma 6.3.7 that
V1 is isomorphic over A[G] to V2.

The purpose of our next collection of results, which are rather technical, is to allow us to
make a tensor factorization in the context of Theorem 6.2.1, and hence work with one Ev at
a time.

6.3.9. P. – Let K be a field in which all `i are invertible. If V is an admissible
smooth representation of G over K satisfying the equivalent conditions of Lemma 6.3.5, there
exist admissible smooth representations V v of Gv (v ∈ S), each individually satisfying the
equivalent conditions of Lemma 6.3.5 (with G replaced by Gv), together with a G-equivariant
surjection

⊗
v V v → V .

Proof. – We proceed by induction on the cardinality s ofS. In the case when s = 1 there is
nothing to prove, and so we assume that s > 1, and write S = v1, . . . , vs,
G′ = Gv2 × · · · ×Gvs , so that G = Gv1 ×G′. Since cosoc(V ) is absolutely irreducible,
there is an isomorphism cosoc(V )

∼−→ πv1 ⊗ π′, where πv1 (resp. π′) is a generic absolutely
irreducible representation of Gv1 (resp. G′).

Since V is of finite length, we may and do choose a quotient W of V which is maximal
with respect to the following property: there is a surjective map

φ : V v1 ⊗ V
′ →W,

where V v1 and V
′
each satisfy the equivalent conditions of Lemma 6.3.5 (with respect toGv1

and G′ respectively). Since cosoc(V ) satisfies these conditions, we see that W 6= 0. Thus

cosoc(V ) is a quotient of W , and hence V
(n)

is isomorphic to W
(n)

, as both are one-
dimensional.

Let U be the kernel of the quotient map V → W , and suppose that U is non-zero.
Extending scalars if necessary, we then may find a non-zero absolutely irreducible quotient
θv1⊗θ

′
of U , where θv1 (resp. θ

′
) is an absolutely irreducible representation ofGv1 (resp.G′).
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If we let T denote the kernel of the quotient map U → θv1 ⊗ θ
′
, and if we write X := V /T ,

then there is a short exact sequence

(6.1) 0→ θv1 ⊗ θ
′ → X →W → 0,

which we may pull back via φ to obtain a short exact sequence

(6.2) 0→ θv1 ⊗ θ
′ → Y → V v1 ⊗ V

′ → 0.

Applying the n-th derivative functor to (6.1), (and recalling that the surjections

V
(n) → X

(n) →W
(n)

are in fact isomorphisms), we obtain an isomorphism:

θ
(n)

v1 ⊗K (θ
′
)(n) ∼−→ (θv1 ⊗K θ

′
)(n) = 0.

Hence either θ
(n)

v1 = 0 or (θ
′
)(n) = 0. Also, we conclude that θv1 ⊗ θ cannot be a quotient

of V , and hence cannot be a quotient of X. Thus (6.1) is non-split, and hence (6.2) is also
non-split (since φ is surjective).

The non-split short exact sequence (6.2) corresponds to a non-trivial element of
Ext1

G(V v1 ⊗ V
′
, θv1 ⊗ θ

′
), which by the Künneth formula admits the description

Ext1
G(V v1 ⊗ V

′
, θv1 ⊗ θ

′
)

∼−→ HomGv1
(V v1 , θv1)⊗ Ext1

G′(V
′
, θ
′
)⊕ Ext1

Gv1
(V v1 , θv1)⊗HomG′(V

′
, θ
′
).

Now by assumption, the nth derivative (as a GLn(Ev1)-module) of any non-zero quotient
of V v1 is a non-zero space, while thenth derivative (as aG′-module) of any non-zero quotient
of V

′
is a non-zero space. Thus if (θv1)(n) = 0, then HomG1(V v1 , θv1) = 0, and thus Y cor-

responds to a non-trivial element of the tensor product Ext1
G1

(V v1 , θv1) ⊗ HomG′(V
′
, θ
′
).

Concretely, this means we may form a non-trivial extensionE1 of V v1 by θv1 , and find a non-
zero map ψ : V

′ → θ
′

(which is then surjective, since θ
′

is irreducible), so that Y is obtained
as the pushforward of E1 ⊗ V

′
via the map

id⊗ ψ : θv1 ⊗ V
′ → θv1 ⊗ θ

′
.

Thus Y , and henceX, is a quotient ofE1⊗V
′
, contradicting the maximality ofW . If instead

we had (θ
′
)(n) = 0, then we would similarly conclude that X may be written as a quotient

of V 1⊗E2, for some non-trivial extensionE2 of V
′
by θ

′
, again contradicting the maximality

of W .

From these contradictions we conclude that in fact U = 0, and thus that V = W . Thus
we may write V as a quotient of V v1 ⊗V

′
as above. Applying the inductive hypothesis to V

′
,

the proposition follows.

6.3.10. C. – If V is an admissible smooth representation of G over a local
ring A satisfying Condition 6.1.1, such that V := V/mV satisfies the equivalent conditions of
Lemma 6.3.5, and if S′ ⊂ S is any subset, then the GS′-representation V (n),S\S′/mV (n),S\S′

satisfies the conditions of Lemma 6.3.5 (with respect to A[GS′ ]).
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Proof. – Choose a surjection
⊗

v∈S V v → V satisfying the conditions of the preced-

ing proposition. Since V
(n)

v is one-dimensional for each v (and so in particular for each

v ∈ S \ S′), applying the exact functor V 7→ V
(n),S\S′

yields a surjection⊗
v∈S′

V v
∼−→
(⊗
v∈S

V v
)(n),S\S′ → V

(n),S\S′ ∼−→ V (n),S\S′/mV (n),S\S′ .

The lemma follows.

We now return to the setting of the previous subsection. That is, for each v in S we
are given a representation ρv : GEv → GLn(A). The above results allow us to establish
Theorem 6.2.1 and Proposition 6.2.4 more or less immediately.

Proof of Theorem 6.2.1. Suppose we have V1, V2 satisfying conditions (1), (2), and (3) of
Theorem 6.2.1. Then for all minimal primes a of A, we have a κ(a)-linearG-equivariant iso-
morphism (V1)a

∼−→ (V2)a. Thus V1 and V2 satisfy all of the hypotheses of Proposition 6.3.8,
and are therefore isomorphic. Moreover, V (n)

1 is cyclic as anA-module by Lemma 6.3.1. Let
x be any element of V1 whose image in V (n)

1 generates V (n)
1 as an A-module, and let W be

the A[G]-submodule of V1 generated by x. Then the image of W (n) in V (n)
1 contains the im-

age of x, and hence is all of V (n)
1 . It follows that J(W ) is equal to all of J(V1), and hence,

by Proposition 6.3.4, part (2), we must have W = V1. Thus V1 is cyclic as an A[G]-module.
Finally, EndA[G](V1) is isomorphic to A by Proposition 6.3.4, part (3).

Proof of Proposition 6.2.4. Suppose that for each v, we have a representation π̃(ρv) satisfying
conditions (1), (2), and (3) of Theorem 6.2.1 for ρv. Then it is clear that the maximal
A-torsion free part of the tensor product over all v of π̃(ρv) satisfies the conditions of
Theorem 6.2.1 for the collection {ρv}.

Conversely, suppose we have a representation π̃({ρv}v∈S) satisfying the hypotheses of
Theorem 6.2.1 for the collection {ρv}. Then for any minimal prime a of A, we have an
isomorphism:

π̃({ρv}v∈S)⊗A κ(a)
∼−→
⊗
v∈S

π̃(ρv,a).

Fixing a place v, and taking derivatives at all v′ 6= v, we obtain an isomorphism:

(π̃({ρv}v∈S))
(n),S\{v}
a

∼−→ π̃(ρv,a).

Moreover (π̃({ρv}v∈S))(n),S\{v} is A-torsion free, and (by Corollary 6.3.10) satisfies condi-
tion (3) of Theorem 6.2.1. Thus π̃({ρv}v∈S)(n),S\{v} is isomorphic to π̃(ρv) (so in particular
the latter exists).

We now turn to Theorems 6.2.5 and 6.2.6. Once we have established these, Proposi-
tion 6.2.10 will be an easy consequence. We first need the following lemma:

6.3.11. L. – Let A be a normal Qp-algebra that is an integral domain with field of
fractions K , and let (ρ′, N) be a Frobenius-semisimple Weil-Deligne representation over A
that splits (over K ) as a direct sum of absolutely indecomposable Weil-Deligne representa-
tions Spρi,ni . There exist characters χi : WE → A× such that ρi ⊗K χi is defined over a finite
extension K 0 of Qp contained in A.
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Proof. – By Lemma 4.1.5 we know that such characters χi exist with values in K×; it
suffices to show that they take values in A×. Let O be the localization of A at a height
one prime. Then ρ′ ⊗A K is O-integral, so each ρi is O-integral as well. Thus det ρi is a
character with values in O×. Since this is true for all O, det ρi takes values in A×. Moreover,
(det ρi) ⊗K χi takes values in K×0 , and K 0 is contained in A, so some power of χi takes
values in A×. But then χi must take values in A× as well since A is normal.

6.3.12. L. – Let A be a local ring satisfying Condition 6.1.1, let {ρv} be a collection
of representations GEv → GLn(A), and suppose that π̃({ρv}v∈S) exists. Then, for each
minimal prime a of A, the representation π̃({ρv ⊗A A/a}v∈S) exists, and is isomorphic to the
maximal A/a-torsion free part of π̃({ρv}v∈S)⊗A A/a.

Proof. – It is straightforward to see that π̃({ρv}v∈S)⊗A A/a satisfies conditions (2)
and (3) of Theorem 6.2.1, so its maximal A/a-torsion free quotient does as well. This
quotient also satisfies condition (1) of Theorem 6.2.1 by construction.

Proof of Theorem 6.2.5. – By Proposition 6.2.4, it suffices to consider the case whenS has
only one element v. By Lemma 6.3.12 we may assumeA is a domain with field of fractions K .
Fix an algebraic extension K ′ of K such that K ′ contains a square root of `, where ` is
the residue characteristic of v, and such that the Frobenius-semisimple Weil-Deligne repre-
sentation associated to ρv ⊗A K ′ splits as a direct sum of absolutely indecomposable Weil-
Deligne representations Spρi,Ni over K ′. Let K 0 be the maximal subfield of K ′ that is alge-
braic over Qp.

Let A′ be the integral closure of Ap in K ′, and let p′ be a prime ideal of A′ over p. Then,
by Lemma 6.3.11, there exist characters χi, with values in (A′p′)

×, such that for each i,
ρi ⊗ χ−1

i is defined over K 0.

Let πi be the admissible representation of GLn(Ev) over K 0 that corresponds to ρi ⊗ χi un-
der the unitary local Langlands correspondence. Then for each i, (Stπi,Ni ⊗K0

K ′)⊗ (χi ◦ det)

corresponds to Spρi,Ni under unitary local Langlands. Without loss of generality, we assume
that the representations πi are ordered so that for all i < j, (Stπi,Ni ⊗K0

κ(p′)) ⊗ χi does
not precede (Stπj ,Nj ⊗K0

κ(p′)) ⊗ χj . (It is then also true that (Stπi,Ni ⊗K0
K ′) ⊗ χi does

not precede (Stπj ,Nj ⊗K0
K ′)⊗ χj .) Let M be the smooth A′p′ -linear dual of the module:

(| | ◦ det)−
n−1

2 Ind
GLn(Ev)
Q

⊗
i

[
(Stπi,Ni ⊗K0

A′p′)⊗ χi
]
,

where Q is a suitable block upper triangular parabolic subgroup of GLn(Ev). Then, by con-
struction, M ⊗A′

p′
K ′ is isomorphic to π̃(ρ⊗A K ′). Moreover, because of our assumptions

on the ordering of the πi, the smooth κ(p′)-dual of M/p′M is essentially AIG by Corol-
lary 4.3.3, and hence J(M) generatesM as anA′p′ [G]-module. MoreoverM (n) is free of rank
one overA′p′ by Corollary 3.1.13. Finally,M isA′p′ -torsion free by construction (in fact,M is
free over A′p′ ). Thus by Lemma 6.3.7, M is isomorphic to π̃(ρv)⊗A A′p′ .

The injection of Theorem 4.5.7 yields a surjection:

π̃(ρv ⊗A κ(p′))→M ⊗A′
p′
κ(p′)

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



718 M. EMERTON AND D. HELM

that is an isomorphism if, and only if, ρv⊗AK is a minimal lift of ρv⊗Aκ(p). Taking smooth
duals and applying Lemma 3.2.5, we see that this surjection descends to the desired surjection

π̃(ρv,p))→ π̃(ρv)⊗A κ(p).

Proof of Theorem 6.2.6. – As above, it suffices by Proposition 6.2.4 to consider the case
whenS has only one element v. By Lemma 6.3.12, for each minimal prime a ofA containing p
we have a surjection:

π̃(ρv)⊗A κ(p)→ π̃(ρv ⊗A A/a)⊗A κ(p).

Then W is the image of π̃(ρv)⊗A κ(p) in the product∏
a

π̃(ρv ⊗A A/a)⊗A κ(p).

By Theorem 6.2.5 we also have surjections:

fa : π̃(ρv,p)→ π̃(ρv ⊗A A/a)⊗A κ(p)

for all minimal primes a of A contained in p. This gives a diagonal map:

π̃(ρv,p)→
∏
a

π̃(ρv ⊗A A/a)⊗A κ(p).

Let W ′ be the image of this map. It suffices to show that W ′ is isomorphic to W .
The spaces W (n) and (W ′)(n) are one-dimensional κ(p)-subspaces of∏

a

[
π̃(ρv ⊗A A/a)⊗A κ(p)

](n)

that project isomorphically onto each factor. There thus exists for each a a scalar ca in κ(p)×

such that c(W ′)(n) coincides with W (n) as subspaces of∏
a

[
π̃(ρv ⊗A A/a)⊗A κ(p

](n)
,

where c is the automorphism of this product given by multiplication by ca on the factor
corresponding to a.

As the K-duals of W ⊗κ(p) K and W ′ ⊗κ(p) K are essentially AIG, this implies that W
and cW ′ coincide, and thus W and W ′ are isomorphic.

Proof of Proposition 6.2.8. – As usual, we invoke Proposition 6.2.4 to reduce to the case
where S has a single element v. As in the proof of Theorem 6.2.6, let W be the image
of κ(p)⊗A π̃(ρv) under the diagonal map

κ(p)⊗A π̃(ρv)→
∏
i

κ(p)⊗A/ai Vi,

where a1, . . . , ai are the minimal primes of A contained in p and, for each i, Vi is the
maximal A-torsion free quotient of π̃(ρv)⊗A A/ai.

As π̃(ρv) embeds in the product of the Vi, every Jordan-Hölder constituent of κ(p)⊗A π̃(ρv)

is isomorphic to a Jordan-Hölder constituent of κ(p)⊗A/ai Vi for some i, and hence to a
Jordan-Hölder constituent of W . In particular, every Jordan-Hölder constituent of the
kernel of the map

κ(p)⊗A π̃(ρv)→W
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is a Jordan-Hölder constituent of κ(p)⊗A π̃(ρv) that appears with multiplicity at least two.
Since the smooth dual of κ(p)⊗A π̃(ρv) is essentially AIG, Corollary 4.3.11 above shows that
no such Jordan-Hölder constituent can exist when n = 2 or 3.

Proof of Proposition 6.2.10. – By Proposition 6.2.4 we may assume S consists of a single
element. For any minimal prime b of B, we have by Theorem 6.2.6 a surjection:

π̃(ρv)⊗A κ(f−1(b))→ π̃(ρv,f−1(b))

and hence (after a base change) a surjection:

π̃(ρv)⊗A κ(b)→ π̃(ρv ⊗A κ(b)).

Let V be the image of the composed map:

π̃(ρv)⊗A B →
∏
b

π̃(ρv)⊗A κ(b)→
∏
b

π̃(ρv ⊗A κ(b)).

One easily verifies that V satisfies conditions (1), (2) and (3) of Theorem 6.2.1 for the repre-
sentation ρv ⊗A B over B.

We now turn to the proof of Theorem 6.2.15. This will require several preliminary lemmas.

6.3.13. L. – Suppose that Theorem 6.2.15 holds when S has only one element. Then
Theorem 6.2.15 holds for an arbitrary finite set S.

Proof. – Suppose we have established Theorem 6.2.15 in the case in which S has only one
element. We can then establish the general case as follows: suppose V satisfies the conditions
of Theorem 6.2.15 for the collection {ρv}. If we fix a place v ∈ S, then V (n),S\{v} satisfies
the conditions of Theorem 6.2.15 for the representation ρv. Thus V (n),S\{v} is isomorphic
to π̃(ρv). It follows by Proposition 6.2.4 that π̃({ρv}v∈S) exists and is isomorphic to the
maximal torsion-free quotient of the tensor product of the representations V (n),S\{v}.

For any prime p of A lying over a prime of Σ, we have an isomorphism:

V ⊗A κ(p)
∼−→
⊗
v∈S

V (n),S\{v} ⊗A κ(p).

It thus follows by Lemma 6.3.7 that V and π̃({ρv}v∈S) are isomorphic, as required.

6.3.14. P. – Let A be a local ring satisfying Condition 6.1.1, let ρv be an
n-dimensional representation ofGEv overA, and let V be an admissibleA[G]-module such that:

1. V is torsion free over A.
2. The smooth dual of V/mV is essentially AIG.
3. There exists a Zariski dense set of primes Σ in SpecA[ 1

p ] such that for each prime p ∈ Σ,
V ⊗A κ(p) is isomorphic to π̃(ρv,p),

Then V satisfies conditions (1), (2), and (3) of Theorem 6.2.1 with respect to ρv; that is,
π̃(ρv) exists and is isomorphic to V .
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Proof. – Note that conditions (1) and (3) of Theorem 6.2.1 are immediate from the
hypotheses. It thus suffices to construct, for each minimal prime a of A, an isomorphism
Va

∼−→ π̃(ρv,a).

Fix a minimal prime a of A. The map V → (V/aV )tf becomes an isomorphism after
localizing at any prime p of A that contains a but no other minimal prime of A. Thus,
replacing V with (V/aV )tf , A with A/a, and Σ with the set of p in Σ that contain a but
no other minimal prime of A, we reduce to the case where A is a domain with field of
fractions K .

Let K ′ be an algebraic extension of K such that K ′ contains a square root of `, where
` is the residue characteristic of v, and such that the Frobenius-semisimple Weil-Deligne
representation associated to ρv ⊗A K ′ splits as a direct sum of absolutely indecomposable
Weil-Deligne representations Spρi,Ni over K ′. Let K 0 be the maximal subfield of K ′ that is
algebraic over Qp.

Let A′ be the integral closure of A[ 1
p ] in K ′. By Lemma 6.3.11, there exist characters χi,

with values in (A′)×, such that for each i, ρi ⊗ χi is defined over K 0.

Let πi be the admissible representation of GLn(Ev) over K0 that corresponds to ρi ⊗ χi under
the unitary local Langlands correspondence. Then for each i, (Stπi,Ni ⊗K0

K ′)⊗ (χi ◦ det)

corresponds to Spρi,Ni under unitary local Langlands. Without loss of generality, we assume
that the representations πi are ordered so that for all i < j, (Stπi,Ni ⊗K0

K ′) ⊗ (χi ◦ det)

does not precede (Stπj ,Nj ⊗K0
K ′) ⊗ (χj ◦ det). Then, for all p in an open dense sub-

set U1 of SpecA′, and all i < j, (Stπi,Ni ⊗K0
κ(p)) ⊗ (χi ◦ det) does not precede

(Stπj ,Nj ⊗K0
κ(p))⊗ (χj ◦ det).

Let M be the smooth A′-linear dual of the module:

(| | ◦ det)−
n−1

2 Ind
GLn(Ev)
Q

⊗
i

[
(Stπi,ni ⊗K0

A′)⊗ χi
]
,

where Q is a suitable block upper triangular parabolic subgroup of GLn(Ev). Let U2 be the
open dense subset of SpecA′ consisting of those p′ such that ρv ⊗A K ′ is a minimal lift
of ρv ⊗A κ(p′). Then for all p′ ∈ U2, M ⊗A′ κ(p′) is isomorphic to π̃(ρv ⊗A κ(p′)).

Now let M ′ be the A′[G]-submodule of M generated by J(M). Then (M ′)(n) is isomor-
phic to M (n), and the latter is locally free of rank one over A′ by Corollary 3.1.13. The
module M ′ is A′-torsion free, as it is contained in the free A′-module M . Moreover, for
all p′ ∈ U1 ∩ U2, we have isomorphisms:

M ′ ⊗A′ κ(p′)
∼−→M ⊗A′ κ(p′)

∼−→ π̃(ρv ⊗A κ(p′)).

Set

M ′′ = M ′ ⊗A′
(
(M ′)(n)

)−1
.

Then (M ′′)(n) is free of rank one over A′.

Let Σ′ be the set of primes of A′ lying over primes in Σ. Then Σ′ ∩ U1 ∩ U2 is dense
in SpecA′, and we have isomorphisms: V ⊗Aκ(p′)

∼−→M ′′⊗A′κ(p′) for all p′ ∈ Σ′∩U1∩U2.
It follows by Lemma 6.3.7 that V ⊗A A′ is isomorphic to M ′′. In particular V ⊗A K ′ is
isomorphic to π̃(ρv⊗A K ′), and hence V ⊗A K is isomorphic to π̃(ρv⊗A K ), as required.
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Proof of Theorem 6.2.15. – By Lemma 6.3.13 it suffices to consider the case where S has
a single element. Let V tf be the maximal A-torsion free quotient of V , and let V tor be the
kernel of the map V → V tf . Then V tor/mV tor embeds in V/mV , and the latter has finite
length by Lemma 6.3.5. It follows that V tor/mV tor is finitely generated as an A[G]-module,
and (since V is m-adically separated), thus V tor is finitely generated as well. In particular its
support is a closed subset Z of SpecA. Let U be the complement of Z in SpecA. Then for
all p in Σ ∩ U , we have isomorphisms:

π̃(ρv,p)
∼−→ V ⊗A κ(p)

∼−→ V tf ⊗A κ(p).

It follows by Proposition 6.3.14 thatV tf satisfies conditions (1), (2), and (3) of Theorem 6.2.1;
in particular π̃(ρv) exists and is isomorphic to V tf . Thus, by Theorem 6.2.5, V tf ⊗A κ(p) is
isomorphic to π̃(ρv ⊗A κ(p)) for all p for which there exists a minimal prime a of A such
that ρv,a is a minimal lift of ρv,p. In particular this holds for all p in Σ. Thus we have an
isomorphism:

V ⊗A κ(p)
∼−→ V tf ⊗A κ(p)

for all p ∈ Σ; by Lemma 6.3.7 it follows that V is isomorphic to V tf , and hence that V satisfies
conditions (1), (2), and (3) of Theorem 6.2.1.
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