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GLOBAL EXISTENCE
FOR THE EULER-MAXWELL SYSTEM

 P GERMAIN  N MASMOUDI

A. – The Euler-Maxwell system describes the evolution of a plasma when the collisions
are important enough that each species is in a hydrodynamic equilibrium. In this paper we prove global
existence of small solutions to this system set in the whole three-dimensional space, by combining the
space-time resonance method (to obtain decay) and energy estimates (to control high frequencies).
The non-integrable decay of the solutions makes it necessary to examine resonances within the energy
estimate argument.

R. – Le système d’Euler-Maxwell décrit l’évolution d’un plasma quand les collisions sont
suffisamment importantes pour que chaque espèce soit dans un état d’équilibre hydrodynamique.
On prouve dans cet article l’existence globale de petites solutions à ce système, posé en dimension 3
d’espace, en combinant la méthode des résonances en espace-temps (pour obtenir la décroissance des
solutions) et des estimations d’énergie (pour contrôler la régularité des solutions). La décroissance non
intégrable des solutions impose de combiner étroitement ces deux arguments en examinant le rôle des
résonances au sein des estimations d’énergie.

1. Introduction

1.1. Plasma physics and Euler-Maxwell

There are different models to describe the state of a plasma depending on several para-
meters such as the Debey length, the plasma frequency, the collision frequencies between the
different species... Formal derivation of these models can be found in Plasma Physics text-
books (see for instance Bellan [1], Boyd and Sanderson [4], Dendy [8] and the paper [2]...).

Since the plasma consists of a very large number of interacting particles, it is appropriate
to adopt a statistical approach to describe it. In the kinetic description, it is only necessary
to evolve the distribution function fα(t, x, v) for each species in the system. The Vlasov
equation is used in this case with the Lorentz force term and a collision term. It is coupled
with the Maxwell equations for the electromagnetic fields.

If collisions are important, then each species is in a local equilibrium and the plasma is
treated as a fluid. More precisely it is treated as a mixture of two or more interacting fluids.
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470 P. GERMAIN AND N. MASMOUDI

This is the two-fluid model or the so-called Euler-Maxwell system. We refer to [22] for a
discussion about the possible derivation of this system from kinetic models, namely from the
two species Vlasov-Boltzmann-Maxwell system. We also refer to [24, 17, 23] for more about
hydrodynamic limits of the Boltzmann equation. Another level of approximation consists in
treating the plasma as a single fluid either by using the fact that the mass of the electrons is
much smaller than the mass of the ions or from the hydrodynamic limit which requires (in
a particular limit) that the two species evolve with a common velocity and temperature [22].
This is the model which we are going to consider in this paper.

1.2. The Euler-Maxwell equation

The Cauchy problem for the one-fluid version of the Euler-Maxwell system reads

(1.1)



ρ (∂tu+ u · ∇u) = −p
′(ρ)
m ∇ρ−

eρ
m

(
E + 1

cu×B
)

∂tρ+∇ · (ρu) = 0

∂tB + c∇× E = 0

∂tE − c∇×B = 4πeρu

∇ · E = 4πe(ρ̄− ρ)

∇ ·B = 0

(u, ρ,E,B)(t = 0) = (u0, ρ0, E0, B0).

The unknown functions are: ρ, the density of electrons; u, the average velocity of the elec-
trons; E, the electric field; B the magnetic field. The physical constants are: c, the speed of
light; e, the charge of the electron; m, the mass of the electron. Finally, ρ̄ is the uniform
density of ions, and the electron gas is supposed to be barotropic, the pressure being given
by p(ρ).

Let us first recall a few results related to (1.1). Global existence of weak solutions was
obtained for a related 1d model in [5] using compensated compactness. Also, several asymp-
totic problems (WKB asymptotics, incompressible limit, non-relativistic limit, quasi-neutral
limit...) were studied to derive simplified models starting from the Euler-Maxwell system
[33, 35, 34, 30]. We also refer to [27] where the incompressible Navier-Stokes system is
studied.

Going back to our system (1.1), we notice that the last two equations above can be
removed, as soon as they are satisfied at the initial time, which we assume from now on: they
are then conserved by the flow given by the first four.

1.3. Vicinity of the trivial equilibrium state

An obvious equilibrium state of the above system is (ρ, u,E,B) = (ρ̄, 0, 0, 0). In order
to study its stability, it is instructive to linearize the above system, and compute evolution
equations for its unknowns. It is convenient to introduce at this point the projections P ,
respectively Q onto divergence-free, respectively curl-free vector fields; they are given by

Qu :=

(
∇
∆

)
∇ · u and Pu := u−Qu.
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GLOBAL EXISTENCE FOR THE EULER-MAXWELL SYSTEM 471

Split then accordingly u and E: u = Pu + Qu and E = PE + QE. The linearized system
can be written 

(
∂2
t − c2s∆ + ω2

p

)
QE

ρ− ρ̄
Qu

 = 0

(
∂2
t − c2∆ + ω2

p

)( PE

∇×B + 4πeρ̄
c Pu

)
= 0

∂t
(
B − cm

e ∇× u
)

= 0

where the speed of sound cs and the plasma frequency ωp are given by

cs =

√
p′(ρ̄)

m
and ωp =

√
4πe2ρ̄

m
.

Thus around the equilibrium, and at a linear level, some unknowns are governed by the
Klein-Gordon equation (with different speeds), whereas the quantity B − cm

e ∇ × u is
conserved. The Klein-Gordon equations entail decay, which is one of the keys of the global
stability result which we will prove; as for the quantityB− cme ∇×u, no decay is to be expected
a priori. We will therefore set it to zero, which, as it turns out, is conserved by the nonlinear
flow.

1.4. Adimensionalization and reductions

In the following, we set for simplicity the physical constants m, e, c, as well as ρ̄ to 1. We
also drop the 4π factors, since they are irrelevant. However c2s = p′(ρ̄) = p′(1) remains a
number less than 1. In order to simplify a little bit the estimates, we assume

p(ρ)
def
=

c2s
3
ρ3.

Finally, set

n
def
= ρ− 1.

The Cauchy problem becomes

(EM)



∂tu+ u · ∇u = −c2sρ∇ρ− E − u×B
∂tρ+∇ · (ρu) = 0

∂tB +∇× E = 0

∂tE −∇×B = ρu

∇ · E = −n
∇ ·B = 0

(u, n,E,B)(t = 0) = (u0, n0, E0, B0).

We shall furthermore assume that, initially,

(1.2) B = ∇× u.
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472 P. GERMAIN AND N. MASMOUDI

This condition is conserved by the flow of the above system: in order to see this, use the
identity u · ∇u = −u× (∇× u) +∇ |u|

2

2 to compute

∂t(B −∇× u) = ∇× (u · ∇u+ u×B)

= ∇×
(
−u× (∇× u) +∇|u|

2

2

)
−∇× (u×B)

= ∇× (u× (B −∇× u)) .

The linearized system reads now

(1.3)



(
∂2
t − c2s∆ + 1

)
Qu

n

QE

 = 0

(
∂2
t −∆ + 1

)
Pu

PE

B

 = 0.

1.5. Obtained results

Prior to stating our theorem, we need to define the operator A def
= 〈D〉
|D| (see Section 2 for

the precise definition of this operator).

T 1.1. – Assume that the resonance separation condition (4.1) holds; it is the case
generically in cs. Fix α0 > 0. Then there exist C0, ε0, N0 > 0 such that: if ε < ε0, N > N0

and ∥∥〈x〉1+α0(u0, An0, E0, AB0)
∥∥
HN

< ε,

then there exists a unique global solution of (EM) such that

sup
t

[
〈t〉−C0ε‖(u,An,E,AB)(t)‖HN +

√
〈t〉‖(u,An,E,AB)(t)‖3

]
. ε

(we refer to Section 2 for the definition of the norms appearing above). Furthermore, it scatters
as t goes to infinity in that there exists a solution (u`, n`, E`, B`) of the linear system (1.3)
corresponding to initial data in HN−2 such that

‖(u, n,E,B)(t)− (u`, n`, E`, B`)(t)‖HN−2 → 0 as t→∞.

R 1.2. – A few observations on the hypotheses on the initial data:

– What is meant by the condition (4.1) being generic? This condition amounts to requir-
ing that a finite number of real analytic functions of the speed of sound cs do not van-
ish. The actual system seems to be too complicated to be solved analytically, but a nu-
merical computation in [10] reveals that the condition (4.1) is met for the value cs = 1

5 .
Since non-zero analytic functions have separated zeros, the condition (4.1) holds except
at most for a discrete set of cs.

– The requirements on An0 and AB0 imply necessarily that
∫
n0 = 0 and

∫
B0 = 0.

In particular this is consistent with the electric neutrality. Notice that this electric
neutrality assumption could recently be removed for the related Euler-Poisson system,
see [12].
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GLOBAL EXISTENCE FOR THE EULER-MAXWELL SYSTEM 473

– We did not try to optimize the number of derivatives in L2 required (N ), but rather
aimed at a proof as simple as possible. On the other hand, the weight appearing above
(〈x〉1+α) seems nearly optimal; a more precise analysis would maybe allow 〈x〉 instead
of 〈x〉1+α.

The proof will be essentially split into two parts: controlling theHN norm of (u, n,E,B);
and proving the decay in various norms. The former is achieved by an energy estimate; and
the latter by the method of space-time resonances, which was introduced in [13]. It was also
used to prove global existence of small data solutions for water waves [14, 15].

One of the main novelties in this paper appears in the energy estimate performed in Sec-
tion 9 in order to control ‖u‖HN . The non-integrable decay of the solution (it decays slightly
better than 1√

t
in L∞) prevents one from obtaining control (or slow growth) of ‖u‖HN in

a straightforward way. Instead, one needs to perform a transformation similar to a normal
form transform within the energy estimate. More precisely, one can identify in the term ap-
pearing in the right-hand side of the energy estimate, (10.10), a factor oscillating in time, and
integrate by parts to take advantage of it. This improves the decay, but leads to a new loss of
derivatives, which can be once again absorbed thanks to a manipulation reminiscent of an
energy estimate. See Section 9 for the full details.

1.6. Stability of compressible Euler and related models in dimension 3

It is instructive to compare the above results to earlier works on compressible Euler in di-
mension 3, or couplings of compressible Euler with various fields (electrostatic, electromag-
netic, gravitational...). For all these models, a fundamental question is whether given data
lead to blow-up or a global solution.

A first class of results gives blow-up for various types of data. The fundamental work is
due to Sideris [32], who proved finite time blow-up of the C1 norm for compressible Euler;
he was able to obtain this result for data arbitrarily close to the equilibrium state given by a
zero velocity, and a constant density. Many results followed: finite time blow-up was showed
for the compressible Euler equation with compactly supported data by Makino, Ukai,
and Kawashima [26]; for the attractive Euler-Poisson equation with compactly supported
data by Perthame [31]; for the Euler-Poisson equation with compactly supported data by
Makino and Perthame [25]; and for the relativistic compressible Euler equation by Guo and
Tahvildar-Zadeh [20] (this paper also addressing relativistic Euler-Maxwell) and Pan and
Smoller [29].

All of the aforementioned results rely on a non-constructive proof, and do not say much
about the nature of the singularity. Recently, Christodoulou [6] was able to describe in a very
precise manner the blow-up process for the relativistic compressible Euler equation.

Another line of research gives global existence (and scattering) for data close to the
equilibrium state given by constant density, and all the fields (including the velocity) equal
to zero. Such a result was first obtained by Guo [18] for the Euler-Poisson equation for the
electrons; and by Guo and Pausader [19] for the Euler-Poisson equation for the ions. In both
cases, the curl of the data is assumed to be zero, and this condition is conserved by the flow
of the equation. Finally, global existence for Euler-Maxwell with relaxation was obtained by
Duan [9].
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474 P. GERMAIN AND N. MASMOUDI

Focusing on the case of small data (i.e., close to an equilibrium), some common features
emerge from the results which have been mentioned. Global existence is only known under
the assumption that the flow is irrotational: this eliminates a mode which is linearly non-
decaying. Under this assumption, a crucial point is then the nature of the linearized equation:
roughly speaking, blow-up may occur if it is a wave equation, whereas global existence
is expected if it is a Klein-Gordon equation. The relevant difference between these two
situations is that the latter gives a decay ∼ 1

t3/2
, whereas the former only decays ∼ 1

t .

In the case of Euler-Maxwell, which is treated in this paper, the conditionB = ∇×u is also
meant to restrict the solution to the subspace along which the linearized problem is governed
by Klein-Gordon equations. The novelty is that these Klein-Gordon equations have different
speeds, making the nonlinear interaction more intricate.

2. Notations

We shall use the following standard notations:

– A . B if A ≤ CB for some implicit constant C. The value of C may change from line
to line.

– A ∼ B means that both A . B and B . A.
– For any real number α, the “Japanese brackets” 〈·〉α stand for 〈x〉α =

√
1 + α2x2. We

also denote 〈x〉 = 〈x〉1.
– If f is a function over R3 then its Fourier transform, denoted by f̂ , or F f , is given by

f̂(ξ) = F f(ξ) =
1

(2π)3/2

∫
e−ixξf(x) dx thus f(x) =

1

(2π)3/2

∫
eixξ f̂(ξ) dξ.

In the text, we systematically drop the constants such as 1
(2π)3/2

since they are not
relevant.

– The Fourier multiplier with symbol m(ξ) is defined by

m(D)f = F −1 [m F f ] .

– The bilinear pseudo-product with symbol m(ξ, η) is given by its Fourier transform

F [Tm(f, g)] (ξ) =

∫
m(ξ, η)f̂(η)ĝ(ξ − η) dη.

Similarly, the trilinear pseudo-product with symbol m(ξ, η, ν) is given by

F [Tm(f, g, h)] (ξ) =

∫
m(ξ, η, ν)f̂(ν)ĝ(η)ĥ(ξ − η − ν) dη dν.

– The norm of the Lebesgue space Lp is denoted ‖ · ‖p.
– HN is given by the norm ‖f‖HN = ‖〈D〉Nf‖2.
– W s,p is given by the norm ‖f‖W s,p = ‖〈D〉sf‖p.
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GLOBAL EXISTENCE FOR THE EULER-MAXWELL SYSTEM 475

3. A formulation adapted to energy estimates

Our aim here is to rewrite the equation in such a way that its dispersive properties become
more transparent, but energy estimates can also be easily obtained.

Split 
u

n

E

B

 =


Qu

n

QE

0

+


Pu

0

PE

B

 def
= Va + Vp

where Vp contains the unknowns which (in the linearization (1.3)) propagate as Klein-
Gordon waves at the speed of light, and Va the unknowns which (still in the lineariza-
tion (1.3)) propagate as Klein-Gordon waves at the speed of sound.

3.1. The fluid system

We focus here on the evolution of Va = (Qu , n , QE , 0). It is governed by the system
∂tQu = −QE −∇ |u|

2

2 − c
2
sρ∇ρ

∂tn = −∇ · (ρu)

∇ · E = −n.

In order to diagonalize this system, let us switch to the unknown function

A =
1

2

(
〈D〉cs
|D|

n+ i
∇
|D|
· u
)

so that

Qu = −2
∇
|D|
Im A, n = 2

|D|
〈D〉cs

Re A and QE =
2∇

|D|〈D〉cs
Re A.

Therefore, Va can be fully described by the complex function A. The evolution of A is given
by

(3.1) 2∂t A = 2i〈D〉cs A − 〈D〉cs∇
|D|

· (nu) +
i|D|

2

(
|u|2 + c2s|n|2

)
.

3.2. The electromagnetic system

We focus here on the evolution of Vp = (Pu , 0 , PE , B). By (1.2), it suffices to consider
PE and B. These fields are governed by the equations{

∂tB = −∇× E
∂tPE = ∇×B + P (ρu)

which implies
∂2
tB −∆B +B = −∇× (nu).

Setting

B =
∂t
|D|

B + i
〈D〉
|D|

B, B
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476 P. GERMAIN AND N. MASMOUDI

it satisfies

∂t B− i〈D〉B = − ∇
|D|
× (nu),

and the original unknown functions Pu, PE and B can be recovered by

(3.2) Pu =
∇

|D|〈D〉
× Im B , PE = − ∇

|D|
×Re B and B =

|D|
〈D〉
Im B.

Thus Vb can be fully described by the curl-free function B valued in C3.

3.3. Summarizing

The Euler-Maxwell system now reads

(EM ′)


∂t A − i〈D〉cs A = − 1

2
〈D〉cs∇
|D| · (nu) + 1

4 i|D|
(
|u|2 + |n|2

)
∂t B− i〈D〉B = − ∇|D| × (nu)

( A, B)(t = 0) = ( A0, B0)

with 
Qu = −2 ∇|D|Im A

n = 2 |D|
〈D〉cs

Re A

Pu = ∇
|D|〈D〉 × Im B.

It is interesting at this point to count dimensions: we started with (EM), a system whose
unknown functions form a 10-vector, with 2 scalar constraints; we added the constraint (1.2),
which corresponds to 2 scalar dimensions, since both sides of the equality are curl-free. All
in all, the unknown is 6-dimensional. We represent it by A and B, valued respectively in C
andC3. Notice however that B is curl-free, which corresponds to a 2-dimensional constraint:
therefore, A and B together give 6 degrees of freedom.

The data ( A0, B0) of (EM ′) are easily expressed in terms of the data (u0, n0, E0, B0)

of (EM):

A0
def
=

1

2

(
〈D〉cs
|D|

n0 + i
∇
|D|
· u0

)
and B0 = − ∇

|D|
× E0 + i

〈D〉
|D|

B0.

Let us finally define the profiles of A and B

a(t)
def
= e−it〈D〉cs A(t) and b(t)

def
= e−it〈D〉 B(t).

4. A formulation adapted to decay estimates

As we saw, the system (EM ′) written above is equivalent to (EM); it will be the correct
formulation to perform energy estimates. However, as far as dispersive estimates go, we will
not need all the structure of (EM ′): only resonances will play an important rôle. It will be
convenient to write (EM ′) in a more compact form.
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4.1. Duhamel’s formula in Fourier space

Writing Duhamel’s formula in terms of a and b givesa(t) = A0 +
∫ t

0
e−is〈D〉cs

[
− 1

2
〈D〉cs∇
|D| · (nu) + 1

4 i|D|
(
|u|2 + |n|2

)]
ds

b(t) = B0 −
∫ t

0
e−is〈D〉

[
∇
|D| × (nu)

]
ds.

Taking the Fourier transform gives{
â(t, ξ) = Â0(ξ) + “nonlinear term”

b̂(t, ξ) = B̂0(ξ) + “nonlinear term”.

In order to make notations lighter and estimates easier, we will now give up some of the
structure of the above system.

C 1. – We will denote indifferently C(t) for A(t) or B(t), or their complex
conjugates, and c(t) for a(t) or b(t), or their complex conjugates. Similarly, we denote
e±it〈D〉` for any of the groups eit〈D〉, e−it〈D〉, eit〈D〉cs , or e−it〈D〉cs .

For instance, u or n is a linear combination of terms of the type e±it〈D〉`cwith coefficients
in the class of Fourier multipliers of order zero.

It is always understood that, in an expression of the form e±it〈D〉`c(t), the meaning
of e±it〈D〉` is consistent with that of c. For instance, if c stands for a, then e±it〈D〉` stands
for eit〈D〉cs .

With this convention, it is easy to see from the above that the “nonlinear terms” can all be
written as a linear combination of terms of the following type (which we denote generically
by g)

(4.1) ĝ(t, ξ) =

∫ t

0

∫
eisφ(ξ,η)m(ξ, η)ĉ(η, s)ĉ(ξ − η, s) dη ds,

where m is such that
(4.2)

m(ξ, η) = m0(ξ)m1(η)m2(ξ − η) with


∣∣∣∂αξm0(ξ)

∣∣∣ . 1
|ξ||α| if |ξ| ≤ 1∣∣∣∂αξm0(ξ)

∣∣∣ . 1
|ξ||α|−1 if |ξ| ≥ 1∣∣∣∂αξm1(ξ)

∣∣∣ , ∣∣∣∂αξm2(ξ)
∣∣∣ . 1

|ξ||α| for any ξ

(notice here that m0 is order 1 whereas m1 and m2 are order 0) and φ is one of the φε1,ε2k,`,m

given by

(4.3) φε1,ε2k,`,m(ξ, η)
def
= −〈ξ〉k + ε1〈η〉` + ε2〈ξ − η〉m

where ε1, ε2 = ± and k, `,m are either 1 or cs.
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4.2. Space-time resonances in the context of Euler-Maxwell

Seeing (4.1) as an oscillatory integral, it becomes clear that the cancellation properties of φ
and ∂ηφwill provide a key to understanding the large time behavior of our system: this is the
idea of space time resonances. See [10] for a general presentation, and [11] for the case of
(semilinear) Klein-Gordon equations with different propagation speeds.

Recall that the phase functions were defined in (4.3), and define for each interaction the
space, time, and space-time resonant sets

Sε1,ε2k,`,m
def
= {(ξ, η) |φε1,ε2k,`,m = 0} (“space resonances”)

T ε1,ε2k,`,m
def
= {(ξ, η) | ∂ηφε1,ε2k,`,m = 0} (“time resonances”)

Rε1,ε2k,`,m
def
= Sε1,ε2k,`,m ∩ T ε1,ε2k,`,m (“space-time resonances”).

The set of all space-time resonances is

R = ∪ε1,ε2,k,`,m Rε1,ε2k,`,m;

it is compact (actually, it is a union of sets of the form {|ξ| = M,η = λξ} for constants M
and λ, see [10]). We denote by CR − 1 the radius of a ball that contains R. Finally, define
the outcome and germ, or source frequencies for space-time resonances: these are simply the
projections of Rε1,ε2k,`,m in the ξ variable, and the union of the projections in the η and ξ − η
variables, respectively. More precisely if πξ(ξ′, η′) = ξ′, πη(ξ′, η′) = η′ and πξ−η(ξ′, η′) =

ξ′ − η′, we set

O def
= πξ ( R)

G def
= πη ( R) ∪ πξ−η ( R) .

D 4.1. – Space-time resonances are said to be separated if no outcome frequency
is also a germ frequency. In mathematical terms, G ∩ O = ∅.

5. Some linear and bilinear cutoff Fourier multipliers

We use here some of the cut-off functions defined in [11]; see Proposition 12.1 for results
on the boundedness of the associated operators.

5.1. Low or high frequency cutoff: Zl, Zh

First pick M0 large enough (the precise value of M0 will be fixed in the following, for the
moment it is simply ≥ CR defined in Section 4.2).

It will be necessary in the proof to distinguish between high and low frequencies. To this
end, we introduce the cut off function θ, which is such that

(5.1) θ ∈ C∞0 , θ = 1 on B(0, 1) and θ = 0 on B(0, 2)c.

We restrict to low or high frequencies using the operators Zl and Zh, respectively. These
operators are given by

Zh
def
= 1− θ

(
D

M0

)
Zl

def
= θ

(
D

M0

)
.

4 e SÉRIE – TOME 47 – 2014 – No 3



GLOBAL EXISTENCE FOR THE EULER-MAXWELL SYSTEM 479

5.2. Cutoff for O: the operators Z O, Z̃ O

Recall that O and G were defined in Section 4.2.
Under the resonance separation condition (Definition 4.1), it is possible to find δ0 such

that no frequency in B10δ0( O) (a 10δ0-neighborhood of O) is a source of a space-time
resonance:

B10δ0( O) ∩ G = ∅.
Define χ O a smooth cut-off function such that

χ O = 1 on Bδ0/2( O)

χ O = 0 outside of Bδ0( O)

and then let χ̃ O satisfy
χ O + χ̃ O = 1.

The corresponding operators are

Z O
def
= χ O(D) and Z̃ O

def
= χ̃ O(D).

5.3. Cutoff for S and T : the symbols χ S and χ T

The cut-off functions which we are about to define will, for a given set of indices
ε1, ε2, k, `,m separate T ε1,ε2k,`,m from Sε1,ε2k,`,m; of course this can only be done away from
a neighborhood of Rε1,ε2k,`,m, where these two sets intersect. Dropping for simplicity the in-
dices, the function χ S localizes away from T , whereas χ T localizes away from S. Since
T = {φ = 0} whereas S = {∂ηφ = 0}, this explains the inequalities (5.2).

L 5.1. – For each set of indices ε1, ε2, k, `,m, it is possible to find cut-off functions

χ T ε1,ε2k,`,m
(ξ, η) , χ Sε1,ε2k,`,m

(ξ, η)

such that (in the following, we drop the indices ε1, ε2, k, `,m for simplicity)

– χ T , χ S are smooth;
– their sum equals one away from R: χ T + χ S = 1 if dist((ξ, η), R) > δ0/10;
– the derivatives of χ S

φ and χ T ∂ηφ
|∂ηφ|2 satisfy

(5.2) if |α| ≤ 20, then
∣∣∣∣∂αξ,η χ S

φ

∣∣∣∣ , ∣∣∣∣∂αξ,η χ T ∂ηφ

|∂ηφ|2

∣∣∣∣ . |ξ, η|n0

for some integer n0.

5.4. Paraproduct decomposition: the symbols ζ1 and ζ2

Following the original idea of Bony [3], we would like to distinguish between regions where
|η| & |ξ − η| or |ξ − η| & |η|.

We pick two functions ζ1(ξ, η) and ζ2(ξ, η) such that

– ζ2 and ζ1 are smooth.
– ζ2 and ζ1 are homogeneous of degree zero outside of B(0, 1).
– ζ2(ξ, η) + ζ1(ξ, η) = 1 for any (ξ, η).
– If |(ξ, η)| ≥ 1 and (ξ, η) ∈ Supp(ζ1), then |ξ − η| ≤ c|η| for a constant c.
– If |(ξ, η)| ≥ 1 and (ξ, η) ∈ Supp(ζ2), then |η| ≤ c|ξ − η| for a constant c.
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6. Plan of the proof

6.1. The a priori estimates

In order to prove Theorem 1.1, we will prove the following a priori estimates, valid if ε is
small enough.

Energy estimate:

– ‖( A, B)‖HN . ε〈t〉C0ε for a constant C0, and any t (regularity in L2).

Decay estimates:

– ‖( A, B)‖
W
N′′,( 1

3
−δ1)

−1 .
ε

〈t〉 12 +3δ1
(square integrable decay above L3).

–
∥∥∥Z̃ O ( A, B)

∥∥∥
W
N′′,( 1

6
+δ1)

−1 .
ε

〈t〉1−3δ1
(decay slightly below L6 for “non-outcome”

frequencies).

–
∥∥∥Z̃ O ( A, B)

∥∥∥
W 2,∞

,
∥∥∥Z̃ O (u, n)

∥∥∥
W 2,∞

.
ε

〈t〉
(decay ∼ 1

t in L∞ for “non-outcome”

frequencies).

Localization estimates:

– ‖|x|(a, b)‖HN′ . ε
√
〈t〉 (localization in HN ′ )

–
∥∥∥|x|1/8Z̃ O(a, b)

∥∥∥
2
. ε (localization in L2 for “non-outcome” frequencies).

The constants N , N ′, N ′′ are chosen such that N − N1 > N ′′ − N1 > N ′ > N1, for a
sufficiently big constant N1; in particular, N is sufficiently big for the necessary arguments
in [11] to apply. The constant δ1 is chosen sufficiently small for the necessary parts of the
argument in [11] to apply.

6.2. The continuation argument

We encapsulate the above quantities in the norm ‖ · ‖X given by

‖( A, B)‖X
def
= sup

t

[
〈t〉−C0ε ‖( A, B)‖HN + 〈t〉 12 +3δ1 ‖( A, B)‖

W
N′′,( 1

3
−δ1)

−1

+ 〈t〉1−3δ1
∥∥∥Z̃ O( A, B)

∥∥∥
W
N′′,( 1

6
+δ1)

−1

+ 〈t〉
∥∥∥Z̃ O( A, B, u, n)

∥∥∥
W 2,∞

+
1√
〈t〉
‖|x|(a, b)‖HN′ +

∥∥∥|x|1/8Z̃ O(a, b)
∥∥∥

2

]
(recall that a(t) = e−it〈D〉cs A(t) and b(t) = e−it〈D〉 B(t)).

Local well-posedness is classical, since the system is hyperbolic symmetrizable; it is also
classical to show that, if the norm W 1,∞ remains bounded, so does the HN norm. Since
X controls the norm L∞t W

1,∞, it suffices to show the following a priori estimate, which can
be turned into an existence proof by a continuation argument.

The crucial a priori estimate, from which the energy, decay and localization estimates in
Subsection 6.1 follow, is given by: for data such that

‖(eit〈D〉cs A0, e
it〈D〉 B0)‖X . ε,
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there holds

‖( A, B)‖X . ‖(eit〈D〉cs A0, e
it〈D〉 B0)‖X + ‖( A, B)‖2X + ‖( A, B)‖3X

(the cubic term, which can seem out of place since the nonlinearity is quadratic, follows from
normal form transforms). We will proceed by showing that all the quantities appearing in the
definition of X can be controlled by the above right-hand side. More precisely, the plan is as
follows:

– Decay estimates are proved in Section 7.
– Localization estimates are proved in Section 8.
– The energy estimate for A: supt〈t〉−C0ε‖A(t)‖HN . ε is proved in Section 10.
– The energy estimate for B: supt〈t〉−C0ε‖B(t)‖HN . ε is proved in Section 9.
– Finally, in Section 11 we give a sketch of the proof of the scattering.

7. Decay estimates

We want to prove here that

sup
t

[
〈t〉 12 +3δ1 ‖( A, B)‖

W
N′′,( 1

3
−δ1)

−1 + 〈t〉1−3δ1
∥∥∥Z̃ O( A, B)

∥∥∥
W
N′′,( 1

6
+δ1)

−1 + 〈t〉
∥∥∥Z̃ O( A, B, u, n)

∥∥∥
W 2,∞

]
.
∥∥∥(eit〈D〉cs A0 + eit〈D〉 B0)

∥∥∥
X

+ ‖( A, B)‖2X .

(7.1)

7.1. Control of the WN ′′,( 1
6 +δ1)

−1

and WN ′′,( 1
3−δ1)

−1

norms

This can be achieved as in [11]:

– First, the normWN ′′,( 1
6 +δ1)

−1

is controlled in [11] in Section 5.5. As far as the control
of this norm goes, the main difference between the Euler-Maxwell system and the
setting of [11] is the quasilinearity of Euler-Maxwell. This induces a further loss of
regularity in the nonlinear term, which is however easily absorbed using theHN norm.

– Second, the norm WN ′′,( 1
3−δ1)

−1

is controlled in [11] in Section 5.6. This estimate is
only problematic on O: away from this set, it can be obtained by interpolating between

WN ′′,( 1
6 +δ1)

−1

and the conserved energy, which gives an L2 bound. Therefore, this is
a low frequency question, and the argument of [11] applies identically.

We do not detail these two points, and focus directly on the third norm in (7.1).

7.2. Control of the W 2,∞ norm

Proceeding as in Subsection 4.1, we can derive a generic term g corresponding to the
nonlinear term in Duhamel’s formula for u andn. It turns out, since u andn are given from A
and B by the action of a Fourier multiplier, that this g would satisfy exactly the properties
listed in Subsection 4.1.

Thus all we need to do is to prove that, for g as in Subsection 4.1,∥∥∥Z̃ Oe
it〈D〉`g(t)

∥∥∥
W 2,∞

.
1

〈t〉
‖( A, B)‖2X .
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In order to prove this, we shall split Z̃ Og(t) as follows

F (Z̃ Og(t)) =

∫ 1

0

∫
χ̃ O(ξ)eisφm(ξ, η)ĉ(s, η)ĉ(s, ξ − η) dη ds(7.2a)

+

∫ t

1

∫
χ̃ O(ξ)χ S(ξ, η)eisφm(ξ, η)ĉ(s, η)ĉ(s, ξ − η) dη ds(7.2b)

+

∫ t

1

∫
χ̃ O(ξ)χ T (ξ, η)eisφm(ξ, η)ĉ(s, η)ĉ(s, ξ − η) dη ds.(7.2c)

In the above, we have used the cut-off functions χ S and χ T . Remember that these were de-
fined in 5.1 depending on the quadratic interaction considered; they were therefore labeled
χ Sk,l,mε1,ε2

and χ T k,l,mε1,ε2

. The above equation is written in generic terms, but it is tacitly under-

stood that the cut-off functions used are the ones corresponding to the quadratic interaction
at hand.

7.3. Preliminary estimate on ∂sc

Observe from Subsection 4.1 that eis〈ξ〉k∂sĉ(ξ) can be written as a sum of terms of the
type ∫

m(ξ, η) Ĉ(η) Ĉ(ξ − η) ds,

where m satisfies the estimates of that section. Therefore, by Proposition 12.1 (i),

(7.3)
∥∥∥eis〈D〉∂sc∥∥∥

WN′′−1,3/2
. ‖ C‖2

WN′′,3 .
1

t
‖ C‖2X .

7.4. The small time term (7.2a)

Using repeatedly the Sobolev embedding theorem, and the dispersive estimate (12.3) gives
(assuming t > 1, the case t < 1 being trivial)∥∥∥eit〈D〉` F −1(7.2a)

∥∥∥
W 2,∞

.

∥∥∥∥∫ 1

0

ei(t−s)〈D〉`Tχ̃ O(ξ)m(ξ,η)( C , C) ds

∥∥∥∥
W 3,6

.
1

t

∫ 1

0

∥∥Tχ̃ O(ξ)m(ξ,η)( C , C)
∥∥
W 5,6/5 ds

.
1

t

∫ 1

0

‖ C‖2W 6,12/5 ds

.
1

t

∫ 1

0

‖ C‖2H7 ds .
1

t
‖ C‖2X .

7.5. The term away from T (7.2b)

In order to deal with this term, integrate by parts in time using the identity 1
iφ∂se

isφ = eisφ.
Thus

(7.2b) =

∫
χ̃ O(ξ)χ S(ξ, η)m(ξ, η)

e−it〈ξ〉`

iφ
Ĉ(t, η) Ĉ(t, ξ − η) dη(7.4a)

−
∫ t

1

∫
χ̃ O(ξ)χ S(ξ, η)m(ξ, η)

1

iφ
eisφ∂sĉ(s, η)ĉ(s, ξ − η) dη ds(7.4b)

+ {symmetric and easier terms},(7.4c)
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where the “symmetric and easier terms” correspond to the case where the partial derivative ∂s
hits the other c, and to the boundary term at s = 1. Using successively the Sobolev embed-
ding Theorem 12.1 and Proposition 12.1 (ii) gives∥∥∥eit〈D〉` F −1(7.4a)

∥∥∥
W 2,∞

=
∥∥∥Tχ̃ O(ξ)χ S(ξ,η)m(ξ,η) 1

iφ
( C , C)

∥∥∥
W 2,∞

.
∥∥∥Tχ̃ O(ξ)χ S(ξ,η)m(ξ,η) 1

iφ
( C , C)

∥∥∥
W

4,( 2
3
−2δ1)

−1

. ‖ C‖
W
n+4,( 1

3
−δ1)

−1‖ C‖
W
n+4,( 1

3
−δ1)

−1

.
1

t1+6δ1
‖ C‖2X .

In order to estimate (7.4b), split it as follows

F −1(7.4b) =

∫ t

1

∫
χ̃ O(ξ)χ S(ξ, η)m(ξ, η)

1

iφ
eisφ∂sĉ(s, η)ĉ(s, ξ − η) dη ds

=

∫ t−1

1

+

∫ t

t−1

· · · def
= I + II.

Use the Sobolev embedding theorem, the dispersive estimate (12.3), Proposition 12.1 and the
preliminary estimate (7.3) to get, for δ > 0 small enough,∥∥∥eit〈D〉` F −1I

∥∥∥
W 2,∞

=

∥∥∥∥eit〈D〉` ∫ t−1

1

Tχ̃ O(ξ)χ S(ξ,η)m(ξ,η) 1
iφ

(
e±is〈D〉`(∂sc), C

)
ds

∥∥∥∥
W 2,∞

.
∫ t−1

1

1

(t− s)(3/2−3δ)

∥∥∥Tχ̃ O(ξ)χ S(ξ,η)m(ξ,η) 1
iφ

(
e±is〈D〉`(∂sc), C

)∥∥∥
W 5,(1−δ)−1

ds

.
∫ t−1

1

1

(t− s)3/2−3δ

∥∥∥e±is〈D〉`(∂sc)∥∥∥
W 5+n,3/2

‖ C‖W 5+n,(1/3−δ)−1 ds

.
∫ t−1

1

1

(t− s)3/2−3δ

1

s

1

s1/2+3δ
‖ C‖3X ds

. ‖ C‖2X
1

t3/2−3δ
.

As for II, use repeatedly the Sobolev embedding Theorem 12.1, Proposition 12.1 and the
preliminary estimate (7.3) to get∥∥∥eit〈D〉` F −1II

∥∥∥
W 2,∞

.
∥∥∥eit〈D〉` F −1II

∥∥∥
W 4,2

=
∥∥∥ F −1II

∥∥∥
W 4,2

.
∫ t

t−1

∥∥∥Tχ̃ O(ξ)χ S(ξ,η)m(ξ,η) 1
iφ

(
e±is〈D〉`(∂sc), C

)∥∥∥
W 4,2

ds

.
∫ t

t−1

∥∥∥Tχ̃ O(ξ)χ S(ξ,η)(ξ,η)m(ξ,η) 1
iφ

(
e±is〈D〉`(∂sc), C

)∥∥∥
W 6,(1−δ)−1

ds

.
∫ t

t−1

∥∥∥e±is〈D〉`(∂sc)∥∥∥
W 6+n,3/2

‖ C‖W 6+n,(1/3−δ)−1 ds

.
∫ t

t−1

1

s

1

s1/2+3δ
‖ C‖2X ds

. ‖ C‖2X
1

t3/2+3δ
.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



484 P. GERMAIN AND N. MASMOUDI

7.6. The term away from S (7.2c)

First transform this term by an integration by parts using the identity ∂ηφ
is|∂ηφ|2 · ∂ηe

isφ = eisφ.
This gives

(7.2c) = −
∫ t

1

∫
χ̃ O(ξ)χ T (ξ, η)

∂ηφ

is|∂ηφ|2
m(ξ, η)eisφ∂η ĉ(η)ĉ(ξ − η) dη ds(7.5a)

−
∫ t

1

∫
χ̃ O(ξ)χ T (ξ, η)

∂ηφ

is|∂ηφ|2
∂ηm(ξ, η)eisφĉ(η)ĉ(ξ − η) dη ds(7.5b)

+ {symmetric and easier terms}.(7.5c)

Let us begin with (7.5a), which we split as follows:

−(7.5a) =

∫ t

1

∫
χ̃ O(ξ)χ T (ξ, η)

∂ηφ

is|∂ηφ|2
m(ξ, η)eisφ∂η ĉ(η)ĉ(ξ − η) dη ds

=

∫ t/2

1

+

∫ t

t/2

· · · def
= I + II.

(7.6)

For δ < 0, |δ| small, apply successively the Sobolev embedding theorem, the dispersive
estimate (12.3), and Proposition 12.1 to get

∥∥∥eit〈D〉` F −1I
∥∥∥
W 2,∞

.
∫ t/2

1

∥∥∥∥ei(t−s)〈D〉 1sTχ̃ O(ξ)χ T (ξ,η)
∂ηφ

i|∂ηφ|2
m(ξ,η)

(
e±is〈D〉`(xc), C

)∥∥∥∥
W

3,( 1
6
+δ)
−1 ds

.
∫ t/2

1

1

(t− s)1−3δ

1

s

∥∥∥∥Tχ̃ O(ξ)χ T (ξ,η)
∂ηφ

i|∂ηφ|2
m(ξ,η)

(
e±is〈D〉`(xc), C

)∥∥∥∥
W

5,( 5
6
−δ)
−1 ds

.
∫ t/2

1

1

(t− s)1−3δ

1

s
‖xc‖Hn+5 ‖ C‖

W
n+5,( 1

3
−δ)
−1 ds

.
∫ t/2

1

1

(t− s)1−3δ

1

s
‖ C‖2X

√
s

1

s
1
2 +3δ

ds

. ‖ C‖2X
1

t
.

(7.7)

Taking this time δ > 0 and small, and retracing the above steps, one gets∥∥∥eit〈D〉` F −1II
∥∥∥
W 2,∞

. ‖ C‖2X
1

t
.

The term (7.5b) can be estimated in a very similar way. Indeed, since m satisfies the esti-
mates (4.2), ∂ηm(ξ, η) yields at worst singularities of the type 1

|η| ,
1
|ξ−η| . The above scheme

can then be employed since by Hardy’s inequality, and Plancherel’s equality,
∥∥∥ 1
|ξ| ĉ(ξ)

∥∥∥
2
.

‖∂ξ ĉ(ξ)‖2 = ‖xc‖2.

8. Localization estimates

We want to prove here that

sup
t

[
1√
t
‖|x|(a, b)‖HN′ +

∥∥∥|x|1/8Z̃ O(a, b)
∥∥∥

2

]
.
∥∥∥(eit〈D〉cs A0, e

it〈D〉 B0)
∥∥∥
X

+ ‖( A, B)‖2X .
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As above, this reduces to proving that the generic term

g(t) = F −1
∫ t

0

eisφ(ξ,η)m(ξ, η)ĉ(η, s)ĉ(ξ − η, s) ds

defined in (4.1) satisfies the localization estimates

(8.1) sup
t

[
1√
t
‖|x|g‖HN′ +

∥∥∥|x|1/8Z̃ Og
∥∥∥

2

]
. ‖( A, B)‖2X .

By symmetry, it suffices to control

g′(t) = F −1
∫ t

0

eisφ(ξ,η)m(ξ, η)ζ1(ξ, η)ĉ(η, s)ĉ(ξ − η, s) ds

(where the cut-off symbol ζ1, defined in Section 5, ensures that |ξ− η| . |η| for (ξ, η) large).
The bound for the second norm in (8.1) was derived in [11] (in Section 5.7), and the same
scheme of proof applies here (once again, the novelty compared to [11] is that the Euler-
Maxwell system is quasilinear, but the resulting loss of regularity in the nonlinear term is
easily absorbed by the HN norm). Therefore, we focus on the first norm in (8.1), for which
some new difficulties arise. It will be helpful to splitm asm = m0m1m2 (see Subsection 4.1).
Multiplying g by the weight x corresponds in Fourier space to differentiating ĝ with respect
to ξ. This gives

∂ξ ĝ′(ξ) =

∫ t

0

∫
eisφm(ξ, η)ζ1(ξ, η)ĉ(η)∂ξ ĉ(ξ − η) dη ds(8.2a)

+

∫ t

0

∫
is∂ξφe

isφm(ξ, η)ζ1(ξ, η)ĉ(η)ĉ(ξ − η) dη ds(8.2b)

+

∫ t

0

∫
eisφm0(ξ)m1(η)∂ξm2(ξ − η)ζ1(ξ, η)ĉ(η)ĉ(ξ − η) dη ds(8.2c)

+

∫ t

0

∫
eisφm0(ξ)m1(η)m2(ξ − η)∂ξζ

1(ξ, η)ĉ(η)ĉ(ξ − η) dη ds(8.2d)

+ ∂ξm0(ξ)

∫ t

0

∫
eisφm1(η)m2(ξ − η)ζ1(ξ, η)ĉ(η)ĉ(ξ − η) dη ds.(8.2e)

8.1. Estimate of (8.2a)

To estimate (8.2a), use the Strichartz estimate (12.4) and Proposition 12.1 (iii) to get∥∥∥ F −1(8.2a)
∥∥∥
HN′

.

∥∥∥∥∫ t

1

eis〈D〉Tm(ξ,η)ζ1(ξ,η)( C , eis〈D〉xc) ds
∥∥∥∥
HN′

.
∥∥∥Tm(ξ,η)ζ1(ξ,η)( C , eis〈D〉xc)

∥∥∥
L
( 1

2
+ 3

2
δ1)
−1

t W
N′+1,( 5

6
−δ1)

−1

x

.

∥∥∥∥‖ C‖
W
n+N′+1,( 1

3
−δ1)

−1 ‖xc‖2

∥∥∥∥
L
( 1

2
+ 3

2
δ1)
−1

t

. ‖ C‖2X
∥∥∥√〈s〉〈s〉− 1

2−3δ1
∥∥∥
L
( 1

2
+ 3

2
δ1)
−1

t

. ‖ C‖2X
√
〈t〉.
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8.2. Estimate of (8.2b)

To estimate (8.2b), distinguish three types of interactions, by writing c = Z Oc+ Z̃ Oc. The
term (8.2b) can be written as

F −1(8.2b) =

∫ t

0

eis〈D〉sTm(ξ,η)ζ1(ξ,η)∂ξφ(Z O C , Z O C) ds(8.3a)

+

∫ t

0

eis〈D〉sTm(ξ,η)ζ1(ξ,η)∂ξφ(Z̃ O C , Z̃ O C) ds(8.3b)

+

∫ t

0

eis〈D〉sTm(ξ,η)ζ1(ξ,η)∂ξφ(Z̃ O C , Z O C) ds(8.3c)

+

∫ t

0

eis〈D〉sTm(ξ,η)ζ1(ξ,η)∂ξφ(Z O C , Z̃ O C) ds.(8.3d)

Examining all these terms, only the ones involving high frequencies are harder to treat
than in [11], due to the quasilinearity of Euler-Maxwell. For this reason, the term (8.3a)
can be treated exactly as in [11], and we skip it. Next we shall bound the term (8.3c). The
term (8.3b) is comparatively easier, since the two interacting waves correspond to non-
outcome frequencies, thus enjoying better bounds. As for the term (8.3d) it is also easier:
indeed for this term, the symbol ζ1(ξ, η) imposes that Z̃ O C is lower frequency than Z O C ;
but this is possible only if both are low frequency.

Coming back to (8.3c), use Proposition 12.1 to get

‖8.3c‖HN′ .
∫ t

0

s
∥∥∥eis〈D〉Tm(ξ,η)ζ1(ξ,η)∂ξφ(Z̃ O C , Z O C)

∥∥∥
HN′

ds

.
∫ t

0

s ‖Z O C‖
L( 1

3
−δ1)

−1

∥∥∥Z̃ O C
∥∥∥
W
N′+n,( 1

6
+δ1)

−1 ds

. ‖ C‖2X
∫ t

0

s
1

s
1
2 +3δ1

1

s1−3δ1
ds . ‖ C‖2X

√
t.

8.3. Estimate of (8.2c)

By (4.2), ∂ξm2(ξ − η) can be bounded by C
|ξ−η| . Bounding by Hardy’s inequality 1

|ξ−η| ĉ(ξ − η)

in L2 by ∂ξ ĉ(ξ − η) in L2, the estimate for (8.2a) can be easily adapted.

8.4. Estimate of (8.2d)

Since ∂ξζ1(ξ, η) does not have a singularity, this term is easy and we skip it.

8.5. Estimate of (8.2e)

By (4.2), ∂ξm0(ξ) can be bounded by 1 for high frequencies, and 1
|ξ| for small frequencies.

Forgetting about high frequencies, which are easily dealt with, we need to bound

F −1 1

|ξ|

∫ t

0

∫
eisφm1(η)m2(ξ − η)ζ1(ξ, η)ĉ(η)ĉ(ξ − η) dη ds

in HN ′ . By Hardy’s inequality, it suffices to bound

F −1∂ξ

∫ t

0

∫
eisφm1(η)m2(ξ − η)ζ1(ξ, η)ĉ(η)ĉ(ξ − η) dη ds
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in HN ′ . But expanding the ξ derivative yields terms similar to (8.2a) (8.2b) (8.2c) (8.2d),
which we have just seen how to estimate.

9. Sobolev regularity for the electromagnetic part

We shall prove in this section that

(9.1) ‖B‖HN . ‖( A0, B0)‖HN + ‖( A, B)‖2X + ‖( A, B)‖X
∫ t

0

1

〈s〉
‖( A, B)‖HN ds.

Together with (10.1), this will imply that

‖( A, B)‖HN . ε〈t〉C0ε.

The following observation will be crucial: it follows from their definition that A and B
control the physical unknowns u and n as follows:

(9.2) ‖Qu‖HN . ‖A‖HN , ‖Pu‖HN+1 . ‖B‖HN , and ‖n‖HN . ‖A‖HN .

9.1. Preliminary estimate: ∂sa

It follows from (EM ′) that

∂ta = e−it〈D〉cs
[
−1

2

〈D〉∇
|D|

· (nu) +
i

4
|D|
(
|u|2 + |n|2

)]
.

Therefore by the product estimates (12.2),

‖∂ta‖HN−1 . ‖nu‖HN +
∥∥u2
∥∥
HN

+
∥∥n2

∥∥
HN

. (‖n‖HN + ‖u‖HN ) (‖n‖∞ + ‖u‖∞)

.
1

〈t〉 12 +3δ1−C0ε
‖( A, B)‖2X .

(9.3)

9.2. Distinction between outcome and non-outcome frequencies

Consider the integral equation satisfied by b:

b(t) = B0 −
∫ t

0

e−is〈D〉
∇
〈D〉
× (nu) ds.

Split n and u into Z On+ Z̃ On, respectively Z Ou+ Z̃ Ou. This gives

b(t) = B0 +

∫ t

0

e−is〈D〉
∇
〈D〉
× (Z̃ On Z̃ Ou) ds(9.4a)

+

∫ t

0

e−is〈D〉
∇
〈D〉
× (Z OnZ Ou) ds(9.4b)

+

∫ t

0

e−is〈D〉
∇
〈D〉
× (Z On Z̃ Ou+ Z̃ OnZ Ou).(9.4c)
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The term (9.4a) is easily estimated: using the product law (12.2), and the Sobolev embedding
theorem:

‖(9.4a)‖HN =

∥∥∥∥∫ t

0

e−is〈D〉
∇
〈D〉
× (Z̃ On Z̃ Ou) ds

∥∥∥∥
HN

.
∫ t

0

[∥∥∥Z̃ On
∥∥∥
HN

∥∥∥Z̃ Ou
∥∥∥
L∞

+
∥∥∥Z̃ On

∥∥∥
L∞

∥∥∥Z̃ Ou
∥∥∥
HN

]
ds

. ‖( A, B)‖X
∫ t

0

1

〈s〉
‖(u, n)‖HN ds

. ‖( A, B)‖X
∫ t

0

1

〈s〉
‖( A, B)‖HN ds.

For the term (9.4b), we take advantage of the frequency localization ofZ On andZ Ou to write,
with the help of Bernstein’s inequality,

‖(9.4b)‖HN =

∥∥∥∥∫ t

0

e−is〈D〉
∇
〈D〉
× (Z OnZ Ou) ds

∥∥∥∥
HN

.
∫ t

0

‖Z OnZ Ou‖( 2
3−2δ)

−1 ds

.
∫ t

0

‖Z On‖( 1
3−δ)

−1 ‖Z Ou‖( 1
3−δ)

−1 ds

. ‖( A, B)‖2X
∫ t

0

ds

〈s〉1+6δ1
ds . ‖( A, B)‖2X

(here we used ‖Z O(u, n)‖p . ‖( A, B)‖p for 1 < p < ∞, which follows from the formulas
giving u and n appearing in Section 3).

9.3. Interactions between outcome and non-outcome frequencies

Thus we now take a closer look at (9.4c), wich reads

(9.4c) =

∫ t

0

e−is〈D〉
∇
〈D〉
× (Z On Z̃ OPu) ds(9.5a)

+

∫ t

0

e−is〈D〉
∇
〈D〉
× (Z On Z̃ OQu) ds(9.5b)

+

∫ t

0

e−is〈D〉
∇
〈D〉
× (Z̃ OnZ Ou) ds.(9.5c)

The first term, (9.5a), can be estimated with the help of the Strichartz estimate (12.4) and the
standard product law 12.2:

‖(9.5a)‖HN =

∥∥∥∥∫ t

0

e−is〈D〉
∇
〈D〉
× (Z On Z̃ OPu) ds

∥∥∥∥
HN

.
∥∥∥Z On Z̃ OPu

∥∥∥
L
( 1

2
+ 3

2
δ1)
−1

t W
(1− 5

2
δ1+N),( 5

6
−δ1)

−1

x
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.

∥∥∥∥∥‖Z On‖
L
( 1

3
−δ1)

−1

x

∥∥∥Z̃ OPu
∥∥∥
HN+1
x

+ ‖Z On‖HN+1
x

∥∥∥Z̃ OPu
∥∥∥
L
( 1

3
−δ1)

−1

x

∥∥∥∥∥
L
( 1

2
+ 3

2
δ1)
−1

t

. ‖( A, B)‖2X
∥∥∥〈t〉− 1

2−3δ1
∥∥∥
L
( 1

2
+ 3

2
δ1)
−1

t

. ‖( A, B)‖2X .

The estimates for the terms (9.5b) and (9.5c) are exactly the same, changing the roles of n
and Qu. We will only treat (9.5b). The term (9.5b) can be decomposed as

(9.5b) =

∫ t

0

e−is〈D〉
∇
〈D〉
× (Z On Z̃ OZlQu) ds(9.6a)

+

∫ t

0

e−is〈D〉
∇
〈D〉
× (Z OnZhQu) ds(9.6b)

(recall that Zl and Zh have been defined in Section 5, and that M0 has been chosen so big
that ZhZ̃ O = Zh). The term (9.6a) can be estimated exactly as (9.4b); thus we skip it. We are
left with (9.6b). Recall now that n and Qu can be written as

n(t) = 2
|D|
〈D〉cs

Re eit〈D〉csa(t) and Qu(t) = −2
∇
|D|
Im eit〈D〉csa(t).

This implies that the Fourier transform of (9.6b) can be written as a sum of terms of the type

(9.7) F (9.6b) =

∫ t

0

∫
eisφ(ξ,η)χ O(η)

(
1− χ

(
ξ − η
M0

))
m̃(ξ, η)â(η, s)â(ξ − η, s) dη ds

where, for simplicity, â stands for â and ̂̄a, φ has the form

φ(ξ, η) = −〈ξ〉+ ε1〈η〉cs + ε2〈ξ − η〉cs with ε1, ε2 ∈ {±1},

and m̃(ξ, η) is a (matrix-valued) symbol of the form m1(ξ)m2(η)m3(ξ − η) with

for any i = 1, 2, 3,
∣∣∂αξmi(ξ)

∣∣ . 1

|ξ||α|
.

A crucial point will be that, on the support of χ O(η)
(

1− θ
(
ξ−η
M0

))
, since M0 is chosen big

enough, |ξ| � |η| ∼ 1, and φ satisfies the inequalities∣∣∣∣∂αξ ∂βη 1

φ(η, ξ)

∣∣∣∣ . 1

|ξ||α|+|β|+1
.

Integrating by parts in (9.7) using the identity 1
iφ∂se

isφ = eisφ, and denoting

µ(ξ, η)
def
=

χ O(η)
(

1− θ
(
ξ−η
M0

))
m̃(η, ξ)

φ(ξ, η)
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gives

F (9.6b) =−
∫ t

0

∫
eisφ(ξ,η)µ(ξ, η)∂sâ(η, s)â(ξ − η, s) dη ds(9.8a)

−
∫ t

0

∫
eisφ(ξ,η)µ(ξ, η)â(η, s)∂sâ(ξ − η, s) dη ds(9.8b)

+

∫
eitφ(ξ,η)µ(ξ, η)â(η, t)â(ξ − η, t) dη ds(9.8c)

−
∫
µ(ξ, η)â(η, 0)â(ξ − η, 0) dη ds.(9.8d)

We only estimate (9.8b): indeed, (9.8a) is symmetrical, and (9.8c) as well as (9.8d) are easier
since they do not involve a time integral. Proposition 12.1 (v) gives that∥∥∥ F −1(9.8b)

∥∥∥
HN

=

∥∥∥∥∫ t

0

eis〈D〉Tµ( A, eit〈D〉∂sa(s)) ds

∥∥∥∥
HN

.
∫ t

0

∥∥∥Tµ (A , eit〈D〉∂sa(s)
)∥∥∥

HN
ds

.
∫ t

0

‖A‖∞ ‖∂sa(s)‖HN−1 ds

. ‖( A, B)‖3X
∫ t

0

1

〈s〉
1

〈s〉1/2+3δ1−C0ε
ds . ‖( A, B)‖3X .

10. Sobolev regularity for the fluid part

We shall prove in this section that

(10.1) ‖A‖HN . ‖( A0, B0)‖HN + ‖( A, B)‖2X +

∫ t

0

1

〈s〉
‖( A, B)‖HN ds.

Together with (9.1), this will imply that

‖( A, B)‖HN . εtC0ε.

10.1. The Equation (3.1)

First we rewrite the evolution Equation (3.1) satisfied by A. We will use the notation
D̃ =

〈D〉cs∇
|D| . We start by expanding the first nonlinear terms appearing in (3.1).

We start by taking N derivatives of (3.1). We get

(10.2)

∂t∂
N A = i〈D〉cs∂N A − 1

2
D̃ · (∂Nnu+ n∂Nu)

+
i|D|

2

(
u∂Nu+ c2sn∂

Nn
)

+RN1

= i〈D〉cs∂N A − 1

2
u · D̃∂Nn− 1

2
nD̃ · ∂Nu

+ iu · |D|
2
∂Nu+ ic2sn

|D|
2
∂Nn+RN2

= i〈D〉cs∂N A − u · ∇∂N A + in〈D〉cs∂N A +RN3
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where the rest terms RNi consist of quadratic lower order terms. In particular, we have

RN1 = D̃ ·
(
∂N (nu)− ∂Nnu+ n∂Nu

)
+
i|D|

4

(
∂N (|u|2)− 2u∂Nu+ c2s∂

N (|n|2)− 2c2sn∂
Nn
)

2RN2 = 2RN1 − [D̃, u]∂Nn− [D̃·, n]∂Nu

+ i[|D|, u]∂Nu+ ic2s[|D|, n]∂Nn

RN3 = RN2 − in
1

2|D|
∂Nn+ iu

|D|
2
∂NPu := RN .

Notice that RN is quadratic in (n, u) and that there are no terms where N + 1 derivatives
hit n or u, except for Pu which has already a gain of 1 derivative on B (see (3.2)). Summa-
rizing, R is of the form

(10.3) RN =
∑

k,l≤N,k+l≤N+1

Qk,l(∂
k( A, B), ∂l( A, B))

where the Qk,l are pseudo-product operators

(10.4) Qk,l(u, v) =

∫
mk,l(ξ, η)û(η)v̂(ξ − η) dη

of order 0. Finally, the following estimate holds

(10.5) ‖RN‖L2 ≤ ‖(n, u)‖W 2,∞‖( A, B)‖HN .

Hence RN does not lose derivatives, and an energy estimate with a Gronwall inequality will
give the desired control, as long as (u, n) decays sufficiently fast. This is the case for non-
outcome frequencies; for outcome frequencies, another argument is needed, as we will see in
the following.

10.2. Non resonant phase

Due to the slow decay of the Z Ou and Z On, we have to use non resonant properties of the
second and third terms on the right-hand side of (3.1).

L 10.1. – There exist a positive number κ0 > 0 and a constant C0 > 0 such that
for |ξ| ≥ C0 and |η| ≤ CR, we have

(10.6)

∣∣∣∣∣∂αξ ∂βη 1

φε1,ε2cs,k,`
(ξ, η)

∣∣∣∣∣ . 1

|ξ||α|

for ε1, ε2 = ± and k, ` = 1, cs.

Proof. – We will only consider the phase φ−,+cs,cs,cs=− 〈ξ〉cs − 〈η〉cs + 〈ξ − η〉cs since the
other phases are easier. Furthermore, we only prove the estimate on 1

φ , not its derivatives. We
have

〈ξ − η〉cs = c|ξ|

√
1 +

1

c2s|ξ|2
− 2

ξ.η

|ξ|2
+
|η|2
|ξ|2

= cs|ξ|
[
1 +

1

2c2s|ξ|2
− 2

ξ.η

2|ξ|2
+
|η|2

2|ξ|2
+O(

1

|ξ|2
)

]
.
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Hence, we see that −〈ξ − η〉cs + cs|ξ|+ cs|η| ≥ − C
|ξ| , from which we deduce that

φ−,+cs,cs,cs ≤ −〈ξ〉cs − 〈η〉cs + cs|ξ|+ cs|η|+
C

|ξ|
.

Hence, if C0 is big enough then, φ−,+cs,cs,cs ≤ −
√

1+(csC R)2−csC R

2 < 0.

10.3. Sobolev regularity

The Sobolev estimates for the electromagnetic part were performed using simply
Strichartz estimates and integration by parts in time depending on the cases. Due to the
further loss of a derivative, this method does not apply here. Instead we will perform an
iterated energy estimate that we find interesting in its own right.

Using that u and n are both real, we deduce that

(10.7) ∂t
‖∂N A‖2L2

2
= Re

∫
∇.u|∂N A|2 + i[〈D〉cs , n]∂N A∂N A +RN∂N A.

Hence

(10.8)
‖∂N A(t)‖2L2

2
−
‖∂N A0‖2L2

2

=

∫ t

0

Re

∫ (
∇.u|∂N A|2 + i[〈D〉cs , n]∂N A∂N A +RN∂N A

)
ds.

We would like now to explain how to control the three terms on the right-hand side of (10.8).
For the first term, we split u into the outcome and non-outcome parts u = Z Ou+ Z̃ Ou. The
non-outcome part has enough decay to apply directly the Gronwall argument. Hence, we
will only concentrate on the outcome part. We recall that the profile a(t) associated to A is
defined by A(t) = ei〈D〉cs ta(t). Also, we have

(10.9) Z Ou = Z O
∇

|D|〈D〉
× (

eit〈D〉b− e−it〈D〉b
2i

) + iZ O
∇
|D|

(ei〈D〉cs ta− ei〈D〉cs ta).

We denote by e±it〈D〉ld(t) = D(t) the divergence of any one of the four terms appearing in
(10.9). To control the first term in the right-hand side of (10.8), it is enough to rewrite it in
Fourier space. Hence, it is enough to consider

(10.10)
∫ t

0

∫∫
eisφ(ξ,η)m̃(ξ, η)d̂(s, η)∂̂Na(s, ξ − η)∂̂Na(s, ξ)dη dξ ds

where the phase φ is given by φ(ξ, η) = 〈ξ − η〉cs − 〈ξ〉cs ± 〈η〉land m̃(ξ, η)
def
= χ O(η).

Split m̃(ξ, η) = θ
(

ξ
M0

)
m̃(ξ, η) +

[
1− θ

(
ξ
M0

)]
m̃(ξ, η). The first term corresponds to low

frequencies of ∂N A, which are easily estimated; thus, we shall consider in the following that

m̃(ξ, η) =

[
1− θ

(
ξ

M0

)]
χ O(η).

From Lemma 10.1, we know that φ is always bounded away from zero in the support of m̃.
Hence, we can integrate by parts in time (using the identity 1

iφ∂se
isφ = eisφ) in (10.10) and
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get

i(10.9) = −
∫ t

0

∫∫
m̃(ξ, η)

eisφ

φ
d̂(s, η)∂s

(
∂̂Na(s, ξ − η)∂̂Na(s, ξ)

)
dη dξ ds(10.11a)

−
∫ t

0

∫∫
m̃(ξ, η)

eisφ

φ

(
∂sd̂(s, η)∂̂Na(s, ξ − η)∂̂Na(s, ξ)

)
dη dξ ds(10.11b)

+

∫∫
eitφ

φ
m̃(ξ, η)d̂(t, η)∂̂Na(t, ξ − η)∂̂Na(t, ξ)dη dξ(10.11c)

−
∫∫

1

φ
m̃(ξ, η)d̂(0, η)∂̂Na(0, ξ − η)∂̂Na(0, ξ)dη dξ.(10.11d)

We rewrite the time derivative in (10.11a) as(
∂s∂̂Na(ξ − η)∂̂Na(ξ) + ∂̂Na(ξ − η)∂s∂̂Na(ξ)

)
.(10.12)

From (10.2), we deduce that

(10.13) eit〈D〉cs∂t∂
Na = −u · ∇∂N A + in〈D〉cs∂N A +RN .

Hence, (10.11a) can be expanded as

(10.11a) = −
∫ t

0

∫∫
m̃(ξ, η)

1

φ
D̂(η)

[
̂[u · ∇∂N A](ξ − η)∂̂N A(ξ)

(10.14a)

+ [̂∂N A](ξ − η) ̂[u · ∇∂N A](ξ)

]
dη dξ ds

−
∫ t

0

∫∫
m̃(ξ, η)

i

φ
D̂(η)

[
̂[n〈D〉cs∂N A](ξ − η)∂̂N A(ξ)(10.14b)

− ∂̂N A(ξ − η) ̂[n〈D〉cs∂N A](ξ)

]
dη dξ ds

−
∫ t

0

∫∫
m̃(ξ, η)

1

φ
D̂(η)

[
R̂N (ξ − η)∂̂N A(ξ)− ∂̂N A(ξ − η)R̂N (ξ)

]
dη dξ ds.(10.14c)

The difficulty in bounding (10.14a) is that A appears with N + 1 derivatives. The main idea
here is to use once again a cancellation coming from the energy structure to perform an
integration by part so that the extra derivative can be moved on a term with fewer derivatives.
Keeping in mind that u is real-valued, we can rewrite (10.14a) as

(10.14a) = −
∫ t

0

∫∫∫
m̃(ξ, η)

i

φ
D̂(η)

[
û(ν) · (ξ − η − ν)∂̂N A(ξ − η − ν)∂̂N A(−ξ)

+ ∂̂N A(ξ − η)û(ν) · (−ξ − ν)∂̂N A(−ξ − ν)

]
dη dξ dν ds

=− i
∫ t

0

∫∫∫
D̂(η)û(ν) ·

[
µ(ξ, η)(ξ − η − ν)∂̂N A(ξ − η − ν)∂̂N A(−ξ)

+ µ(ξ − ν, η)∂̂N A(ξ − η − ν)(−ξ)∂̂N A(−ξ)
]
dη dξ dν ds
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where µ(ξ, η) = m̃(ξ,η)
φ(ξ,η) and we made the change of variable ξ → ξ − ν in the last line. The

integrand of the term appearing in the last two lines can be rewritten as

D̂(η)û(ν)∂̂N A(ξ − η − ν)∂̂N A(−ξ) · [µ(ξ, η)(ξ − η − ν) + µ(ξ − ν, η)ξ]

and the term between brackets is equal to

(10.15) M(ξ, η, ν) = −µ(ξ, η)(η + ν) + [µ(ξ, η)− µ(ξ − ν, η)] ξ.

Proposition 12.3 gives the desired conclusion, namely that

‖(10.10a)‖2 .
∫ t

0

∣∣∣∣∫∫∫ M(ξ, η, ν) D̂(η)û(ν)∂̂N A(ξ − η − ν)∂̂N A(−ξ)dη dξ dν
∣∣∣∣ ds

.
∫ t

0

‖u‖W 2,∞‖ C‖∞
∥∥∂N A

∥∥2

2
ds

. ‖( A, B)‖4X
∫ t

0

1

〈s〉1+6δ1
ds . ‖( A, B)‖4X .

(10.16)

The treatement of (10.14b) is very similar and we do not detail it here. Finally, (10.14a) is
much simpler since it involves at most N derivatives hitting A.

To control the second term on the right-hand side of (10.8), we rewrite it in Fourier space.
Hence, it is enough to consider

(10.17)
∫ t

0

∫∫
eisφd̂(η)(〈ξ − η〉cs − 〈ξ〉cs)∂̂Na(ξ − η)∂̂Na(ξ)dηdξds

where the phase φ is given by φ(ξ, η) = 〈ξ− η〉cs −〈ξ〉cs ±〈η〉cs and e±i〈D〉cs td is one of the
two terms appearing in the decomposition of n as n = ei〈D〉cs tN+e−i〈D〉cs tN . The estimate
of (10.17) is exactly the same as the estimate of (10.10) and we do not detail it again.

Now, it remains to control the last term on the right-hand side of (10.8), namely the term
involving the rest term. As expressed in ((10.3)), it is a sum of trilinear expressions in ( A, B),
each of the functions ( A, B) carrying a certain number of derivatives. Again, if the frequency
of the function with the fewer number of derivatives is non-outcome then we can estimate the
term directly using (10.5) and the almost integrable decay of the non-outcome part.

Hence, the only difficult terms are those for which the term that has the lower number of
derivatives in (10.3) is outcome. The most difficult terms are very similar to those we treated
above by integration by parts in time, namely (10.10) and (10.17). This is the case for instance
when k = 1 and l = N in (10.3) and the phase is similar to the one in (10.10). In addition we
have better terms of the type

(10.18)
∫ t

0

∫∫
eisφm̃(ξ, η)d̂(η)∂̂Na(ξ − η)∂̂Na(ξ)dηdξds

where the phase φ is given by φ(ξ, η) = −〈ξ − η〉cs − 〈ξ〉cs ± 〈η〉cs and terms obtained by
taking the complex conjugate. These two types of terms are better than (10.10) due to the
presence of the same sign in front of 〈ξ − η〉cs and 〈ξ〉cs and hence integration by parts in
time gains a factor 1

|φ| that behaves like 1
|ξ| in the dangerous region |η| � |ξ|.
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We also have terms of the form

(10.19)
∫ t

0

∫∫
m̃(ξ, η)eisφd̂(η)∂̂N−ka(ξ − η)∂̂Na(ξ)dηdξds

where 1 ≤ k ≤ N/2 and the phase φ is given by φ(ξ, η) = ±〈ξ − η〉cs ± 〈ξ〉cs ± 〈η〉l
and e±it〈D〉ld(t) = D(t) denote outcome (low frequency) terms and we denote undistinctly
â for â or ̂̄a or their complex conjugate. Note here that compared to the definition of d
and D after Equation (10.9), we have k more derivatives onZ O( A, B). Besides, the multiplier
m̃(ξ, η) has the same properties as the multiplies mk,l defined in (10.4). From Lemma 10.1,
we know that φ is always bounded away from zero in the region we are interested in, namely
ξ large and |η| ≤ CR. Integration by parts in time yields terms that are easier to control than
above. In particular the corresponding term to (10.11a) can be expressed as

= −
∫ t

0

∫∫
m̃(ξ, η)

1

φ
D̂(η)

[
̂u · ∇∂N−k A(ξ − η)∂̂N A(ξ) + ∂̂N−k A(ξ − η) ̂u · ∇∂N A(ξ)

](10.20)

−
∫ t

0

∫∫
m̃(ξ, η)

i

φ
D̂(η)

[
̂n〈D〉cs∂N−k A(ξ − η)∂̂N A(ξ)− ∂̂N−k A(ξ − η) ̂n〈D〉cs∂N A(ξ)

](10.21)

−
∫ t

0

∫∫
m̃(ξ, η)

1

φ
D̂(η)

[
R̂N−k(ξ − η)∂̂N A(ξ)− ∂̂N A(ξ − η)R̂N (ξ)

](10.22)

which can be easily estimated.
Finally, we also have terms for which Pu carries the greatest number of derivatives. For

these terms, we cannot use the cancellation coming from the energy estimate. To gain the two
factors of |ξ|, we take advantage of the fact that Pu is more regular, namely it is in HN+1

and the fact that the phase φ involved in this case is bounded below by |ξ|/C. The term
corresponding to (10.10) is of the form

(10.23)
∫ t

0

∫∫
m̃(ξ, η)eisφd̂(η)∂̂N+1b(ξ − η)∂̂Na(ξ)dηdξds

where the phaseφ is given byφ(ξ, η) = ±〈ξ−η〉1−〈ξ〉cs±〈η〉l and e±it〈D〉ld(t) = D(t) denote
outcome (low frequency) terms. It is clear that |φ| ≥ |ξ|/C in the region we are interested in,
namely ξ large and |η| ≤ CR. Hence, we can perform an integration by parts in time and
conclude as before.

11. Scattering

Let us prove for instance that A scatters. We write symbolically the equation (3.1) on A
as

∂t A − i〈D〉cs A = ∂ C C .

By definition, A will scatter in HN−2, say at +∞, if and only if∫ t

0

eis〈D〉cs∂ C(s) C(s)ds
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converges as t → ∞. By the Strichartz estimates (12.4), it suffices that the right-hand side

∂ C C belongs to L
( 1

2 + 3
2 δ1)

−1

t

(
[0,∞), L

( 1
3−δ1)

−1

x

)
. This is the case since

‖∂ C C‖
L
( 1

2
+ 3

2
δ1)
−1

t L
( 1

3
−δ1)

−1

x

. ‖ C‖2X
∥∥∥〈t〉C0ε〈t〉− 1

2−
3
2 δ1
∥∥∥
L( 1

2
+ 3

2
δ1)
−1 <∞,

where the last inequality follows since ε is small enough.

12. Appendix: analytical tools

12.1. Sobolev embedding theorem

If 1 ≤ p ≤ q ≤ ∞ and

k >
3

p
− 3

q
,

then

(12.1) ‖f‖p . ‖f‖Wk,q .

12.2. Product laws

If 1 < p, r <∞, 1 ≤ q ≤ ∞, k ≥ 0 and

1

p
+

1

q
=

1

r
,

then

(12.2) ‖fg‖Wk,r . ‖f‖Wk,p ‖g‖q + ‖f‖q ‖g‖Wk,p .

12.3. Dispersive and Strichartz estimates

The standard dispersive estimates for Klein-Gordon can be found in Ginibre and
Velo [16]. We only state them for eit〈D〉, but the same estimates (with different implicit
constants) hold for eit〈D〉cs :

(12.3)
∥∥∥eit〈D〉f∥∥∥

p
. t

3
p−

3
2 ‖f‖

W
5( 1

2
− 1
p )+ε,p′ if 2 ≤ p ≤ ∞ and ε > 0.

We need the following Strichartz estimate for the Klein-Gordon equation (see for instance
Ibrahim, Masmoudi and Nakanishi [21]): if ε > 0 and 0 ≤ δ ≤ 1

3 ,

(12.4)

∥∥∥∥∫ t

0

eis〈D〉F (s) ds

∥∥∥∥
2

. ‖F‖
L( 1

2
+ 3

2
δ)
−1

W( 5
6
− 5

2
δ+ε),( 5

6
−δ)
−1 .

For the reader familiar with Besov spaces, this estimate follows from the interpolation be-
tween ∥∥∥∥∫ t

0

eis〈D〉F (s) ds

∥∥∥∥
2

. ‖F‖L1L2

and ∥∥∥∥∫ t

0

eis〈D〉F (s) ds

∥∥∥∥
2

. ‖F‖
L2B

5/6

6/5,2

.
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12.4. Boundedness of multilinear Fourier multipliers

After cutting off with the help of the functions defined in Section 5, the manipulations
which we perform lead to various pseudo product operators. Their boundedness properties
are stated in the following proposition; it is very far from optimal, but sufficient for our
purposes.

This proposition uses classical harmonic analysis tools, and does not rely on the structure
of Euler-Maxwell, except for the order of the multipliers, or the estimates on φ.

P 12.1. – Assume that m satisfies the estimates (4.2).
(i) Then for any p, q, r in (1,∞) satisfying 1

r = 1
p + 1

q , and k ≥ 0,

‖Tm(f, g)‖Wk,r . ‖f‖Wk+1,p ‖g‖Wk+1,q .

Furthermore, if pk > 3,

‖Tm(f, g)‖Wk,p . ‖f‖Wk+1,p ‖g‖Wk+1,p .

(ii) Assume

µ(ξ, η) = χ̃ O(ξ)χ S(ξ, η)m(ξ, η)
1

φ
or χ̃ O(ξ)χ T (ξ, η)m(ξ, η)

∂ηφ

|∂ηφ|2
.

Then there exists a constant, which we denoten ≥ 0, such that for any p, q, r in (1,∞) satisfying
1
r = 1

p + 1
q , and k ≥ 0,

‖Tµ(f, g)‖Wk,r . ‖f‖Wk+n,p ‖g‖Wk+n,q .

(iii) Assume

µ(ξ, η) = m(ξ, η)ζ1(ξ, η) or m(ξ, η)ζ1(ξ, η)∂ξφ(ξ, η).

Then there exists a constant, which we stil denote n ≥ 0, such that for any p, q, r in (1,∞)

satisfying 1
r = 1

p + 1
q , and k ≥ 0,

‖Tµ(f, g)‖Wk,r . ‖f‖Wk+n,q ‖g‖p .

(iv) Assume

µ(ξ, η) = m(ξ, η)ζ2(ξ, η) or m(ξ, η)ζ2(ξ, η)∂ξφ(ξ, η).

Then there exists a constant, which we stil denote n ≥ 0, such that for any p, q, r in (1,∞)

satisfying 1
r = 1

p + 1
q , and k ≥ 0,

‖Tµ(f, g)‖Wk,r . ‖f‖p ‖g‖Wk+n,p .

(v) Assume

µ(ξ, η)
def
=

χ O(η)
(

1− θ
(
ξ−η
M0

))
m̃(η, ξ)

φ(ξ, η)

where m̃(ξ, η) = m1(ξ)m2(η)m3(ξ − η) and 1
φ satisfy the estimates

for any i = 1, 2, 3,
∣∣∂αξmi(ξ)

∣∣ . 1

|ξ||α|
and

∣∣∣∣∂αξ ∂βη 1

φ

∣∣∣∣ . (|ξ|+ |η|)−|α|−|β|−1.

Then
‖Tµ(f, g)‖Hk . ‖f‖∞‖g‖Hk+1 .
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Proof. – Estimates similar to the first four points above were proved in [11]. It essentially
suffices to use the basic estimate

‖Tµ(f, g)‖r . ‖µ‖H3/2+ε‖f‖p‖g‖q

if ε > 0 and 1
p + 1

q = 1
r , the estimates given in Section 5 on the various symbols, and a

paraproduct decomposition to handle large frequencies.

The fifth point follows from the classical Coifman-Meyer theorem [7], see the recent book
of Muscalu and Schlag [28], Section 2.13, for a more modern presentation.

Next, we want to study a particular kind of symbol, which will not satisfy standard
Coifman-Meyer bounds, but still admit Hölder-like bounds (in the bilinear case for instance,
we only focus on the case L∞ × L2 → L2 bound, but it should be clear from the proof that
more general Lp × Lq → Lr bounds, with 1

p + 1
q = 1

r , also hold).

L 12.2. – Let R be a fixed constant.

(i) Let µ(ξ, η) be a smooth symbol such that

Suppµ ⊂ {|η| ≤ R} and
∣∣∂αξ ∂βη µ(ξ, η)

∣∣ . 1

|ξ||α|
for any ξ, η.

Then ‖Tµ(f, g)‖2 . ‖f‖∞‖g‖2.

(ii) Let µ(ξ, η, ν) be a smooth symbol such that

Suppµ ⊂ {|η| ≤ R , |ν| ≤ 1

200
|ξ|} and

∣∣∂αξ ∂βη ∂γνµ(ξ, η, ν)
∣∣ . 1

|ξ||α|+|γ|
for any ξ, η, ν.

Then ‖Tµ(f, g, h)‖2 . ‖f‖∞‖g‖∞‖h‖2.

Proof. – We take for simplicity R = 1, and first define standard Fourier space decompo-
sitions:

– Let ζ be a non-negative function, equal to 1 on B(0, .9), zero outside of B(0, 2), and
such that

∑
j∈Z3 ζ(ξ − j) = 1 for any ξ. Denote

Qj
def
=

j+3∑
j−3

ζ(D − j).

– Let ψ be a non-negative function, equal to 1 onB(1, 1.5), zero outside ofB(.5, 4), and

such that
∑
j∈Z3 ψ

(
ξ
2j

)
= 1 for any ξ 6= 0. Further denote

ψ̃(ξ) =

+1∑
j=−1

ψ

(
ξ

2j

)
and χ(ξ) =

+1∑
j=−∞

ψ

(
ξ

2j

)
and the associated Fourier multipliers

Pj = ψ

(
D

2j

)
, P̃j = ψ̃

(
D

2j

)
and Sj = χ

(
D

2j

)
.
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Proof of (i). – Split µ as follows

µ(ξ, η) =
∑
j∈Z3

ζ(ξ − j)µ(ξ, η)
def
=
∑
j

µj(ξ, η).

The symbols µj are uniformly controlled in Ck for any k. Thus they define operators which
are uniformly bounded L∞ × L2 → L2. Observe furthermore that, due to frequency
localization properties, Tµj (f, g) = Tµj (f,Qjg); and that for the same reason, the families
(Tµj (f, g))j and (Qjg)j are almost orthogonal in L2. These arguments lead to the following
inequalities

‖Tµ(f, g)‖22 .
∑
j

∥∥Tµj (f, g)
∥∥2

2
.
∑
j

‖f‖2∞ ‖Qjg‖
2
2 . ‖f‖2∞ ‖g‖

2
2,

proving (i).

Proof of (ii). – We will essentially run the original argument of Coifman and Meyer [7].
First set µ(ξ, η, ν) = µ̃(ξ − η − ν, η, ν), and observe that the bounds on µ translate into

(12.5)
∣∣∂αξ ∂βη ∂γν µ̃(ξ, η, ν)

∣∣ . 1

|ξ||α|+|γ|
.

Next split µ̃ as follows

µ̃(ξ, η, ν) =
∑
j

ψ

(
ξ

2j

)
µ̃(ξ, η, ν)

def
=
∑
j≥1

µ̃j(ξ, η, ν) up to a remainder

(where the remainder is smooth and compactly supported, thus we can forget about it and
focus on the sum over j). The support of µ̃j(ξ, η, ν) is contained in a box {|η| ≤ 1, |ξ| ≤ 2j+1,
|ν| ≤ 1

2002j+1}. It can be expanded in (periodic) Fourier series adapted to the larger box
{|η| ≤ 2 , |ξ| ≤ 2j+2 , |ν| ≤ 2j−7, and then recovered by restriction. This gives

µ̃j(ξ, η, ν) = ψ̃

(
ξ

2j

)
χ(2η)χ

(
ν

2j − 5

) ∑
k,`,m∈Z3

αjk,`,me
i2πmξ2−j−2

ei2πkηei2π`ν2−j+7

,

or, coming back to µ,

µj(ξ, η, ν) = ψ̃

(
ξ − η − ν

2j

)
χ(2η)χ

(
ν

2j − 5

) ∑
k,`,m

αjk,`,me
i2πm(ξ−η−ν)2−j−2

ei2πkηei2π`ν2−j+7

.

Next notice that the αjk,` are uniformly bounded in j, with arbitrarily quickly decaying
(inverse) polynomial bounds:

(12.6) for any N , sup
j
|αjk,`,m| = αk,`,m .

1

|(k, `,m)|N
.

This can be seen by simply coming back to their definition:

αjk,`,m = C2−6j

∫
|ξ|≤2j+2

∫
|η|≤1

∫
|ν|≤2j−7

µ̃j(ξ, η, ν)e−i2πmξ2
−j−2

e−i2πkηe−i2π`ν2−j+7

dν dη dξ

= C

∫
|ξ|≤1

∫
|η|≤1

∫
|ν|≤1

µ̃j(2
j+2ξ, η, 2j−7ν)e−i2πmξe−i2πkηe−i2π`ν dν dη dξ,

and the conclusion follows since the bounds (12.5) imply a uniform control (in j) of the
symbols µ̃j(2j+2ξ, η, 2j−7ν).
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Coming back to physical space, we have achieved the following decomposition for Tµ:

Tµ(f, g, h) =
∑

j,k,`,m

αjk,`,mSj−5f(·+ k)S0g(·+ `2−j+7)P̃jh(·+m2−j−2).

The desired estimates follow easily by almost orthogonality between the j-summands

‖Tµ(f, g, h)‖2 .
∑
k,`,m

∑
j

αjk,`,m

∥∥∥Sj−5f(·+ k)S0g(·+ `2−j+7)P̃jh(·+m2−j−2)
∥∥∥2

2

1/2

.
∑
k,`,m

αjk,`,m‖f‖2∞‖g‖2∞∑
j

‖P̃jh(·+m2−j−2)‖22

1/2

.
∑
k,`,m

αk,`,m
[
‖f‖2∞‖g‖2∞‖h‖22

]1/2
. ‖f‖∞‖g‖∞‖h‖2,

where we used in the last inequality the bound (12.6).

Equipped with the previous lemma, we can prove the following proposition.

P 12.3. – Let M be as in (10.15), and fix α > 0. Then the following estimate
holds:

‖TM (f, g, h)‖2 . ‖f‖W 1+α,∞‖g‖∞‖h‖2.

Proof. – Recall that

M(ξ, η, ν) = −µ(ξ, η)(η + ν) + [µ(ξ, η)− µ(ξ − ν, η)] ξ
def
= M1(ξ, η, ν) +M2(ξ, η, ν),

where the operator µ is supported in a strip {|η| . 1 , |ξ| � 1} and satisfies the bounds∣∣∂αξ ∂βη ∣∣ . 1

|ξ||α|
.

We will treat separately the operators TM1 and TM2 , further distinguishing for the latter
between the regions where |ξ − η − ν| . ν, and those where |ξ − η − ν| � |ν|, by writing

TM2
(f, g, h) =

∑
j≥0

TM2
(Pjf, g, Sj+10h) +

∑
j≥0

TM2
(Sj−10f, g, Pjh) up to a remainder.

Since the remainder is smooth and compactly supported, it is easily estimated, and we forget
about it in the following in order to concentrate on the sum over j. Notice that we overtook
the Littlewood-Paley operators Pj and Sj defined in Lemma 12.2.

The operator TM1 . – Simply observe that

TM1
(f, g, h) = Tµ(∇f, gh) + Tµ(f, (∇g)h).

Thus Lemma 12.2 gives the conclusion.

4 e SÉRIE – TOME 47 – 2014 – No 3



GLOBAL EXISTENCE FOR THE EULER-MAXWELL SYSTEM 501

The operatorTM2
in the case |ξ−η−ν| . ν. – Recall thatM2 is given by [µ(ξ, η)− µ(ξ − ν, η)] ξ.

There is no cancellation between the two summands in the range we consider, so µ(ξ, η)ξ

and µ(ξ − ν, η)ξ can be considered separately. Since they are estimated in similar ways, we
focus on the first one. Notice that Tµ(ξ,η)ξ = ∇Tµ. Using Lemma 12.2 and proceeding in a
straightforward way, we get the desired estimates:∥∥∥∥∥∥
∑
j

∇Tµ(Pjf, gSj+10h)

∥∥∥∥∥∥
2

.
∑
j

2j ‖Tµ(Pjf, gSj+10h)‖2 .
∑
j

2j‖Pjf‖∞‖g‖∞‖Sjh‖2

. ‖f‖W 1+α,∞‖g‖2‖h‖2
(notice that α > 0 enables to sum over the dyadic blocks).

The operator TM2 in the case |ξ − η − ν| � ν. – In this case, we observe that the operator

(f, g, h) 7→
∑
j

TM2
(Sj−10f, g, Pjh)

has a symbol

M ′2(ξ, η, ν) = M2(ξ, η, ν)
∑
j

ψ

(
ξ − η − ν

2j

)
χ
( ν

2j−10

)
which can be written

M ′2(ξ, η, ν) = M̃2(ξ, η, ν) · ν
with

M̃2(ξ, η, ν)
def
=
∑
j

ψ

(
ξ − η − ν

2j−10

)
χ
( ν

2j

)
ξ

∫ 1

0

∂ξµ(ξ − tν, η) dt.

The key observation is that, due to the hypotheses on µ, M̃2 satisfies the conditions of
Lemma 12.2. The estimate follows easily:

‖TM2(Sjf, g, Pjh)‖2 =
∥∥∥TM̃2

(∇f, g, h)
∥∥∥

2
. ‖∇f‖∞ ‖g‖∞ ‖h‖2 .
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