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SOLUTION ALGEBRAS
OF DIFFERENTIAL EQUATIONS

AND QUASI-HOMOGENEOUS VARIETIES:
A NEW DIFFERENTIAL GALOIS CORRESPONDENCE

 Y ANDRÉ

A. – We develop a new connection between Differential Algebra and Geometric Invariant
Theory, based on an anti-equivalence of categories between solution algebras associated to a linear
differential equation (i.e., differential algebras generated by finitely many polynomials in a fundamental
set of solutions), and affine quasi-homogeneous varieties (over the constant field) for the differential
Galois group of the equation.

Solution algebras can be associated to any connection over a smooth affine variety. It turns out
that the spectrum of a solution algebra is an algebraic fiber space over the base variety, with quasi-
homogeneous fiber. We discuss the relevance of this result to Transcendental Number Theory.

R. – Nous tissons un lien nouveau entre algèbre différentielle et théorie géométrique des
invariants, basé sur une anti-équivalence de catégories entre algèbres de solutions associées à une
équation différentielle linéaire (i.e., algèbres différentielles engendrées par un nombre fini d’expressions
polynomiales en les solutions), et variétés quasi-homogènes affines sur le corps de constantes, pour
l’action du groupe de Galois différentiel de l’équation.

On peut associer des algèbres de solutions à toute connexion sur une base affine lisse. Il s’avère
que leurs spectres sont toujours des fibrés algébriques sur la base, de fibre quasi-homogène. Nous
soulignons le rôle de ce résultat en théorie des nombres transcendants.

Introduction

LetK be a field endowed with a non-zero derivation ∂, with algebraically closed constant
field C = Ker ∂. Let

φ(y) = ∂ny + an−1∂
n−1y + · · ·+ a0y = 0

be a linear differential equation with coefficients ai inK, and let y0, . . . , yn−1 form aC-basis
of solutions in some differential extension of K with constant field C.

The Picard-Vessiot algebra of φ is theK-algebra generated by the derivatives ∂jyi and the
inverse of the Wronskian det(∂jyi). It is the ring of coordinates of a principal homogeneous
space over K under the differential Galois group G of φ. Through Kolchin’s work, this fact
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450 Y. ANDRÉ

has been a source of motivation and applications in the early development of the theory of
linear algebraic groups and their principal homogeneous spaces (cf. [8, chap. VIII]).

In this paper, we study the finitely generated differential subalgebras of a Picard-Vessiot
algebra, which we call solution algebras.

Curiously, traditional differential Galois theory has little to say about solution algebras
beyond the Picard-Vessiot case—for instance about the algebraic relations between a single
solution y0 and its derivatives (a problem which occurs in transcendental number theory,
cf. 1.7(1)).

The traditional differential Galois correspondence classifies differential subfields of the
fraction field of the Picard-Vessiot algebra. No such classification in terms of subgroups of
the differential group G exists at the level of differential subalgebras.

For instance, the Picard-Vessiot algebra C(z)-algebra R′ of the Airy equation d2y
dz2 = zy

is the coordinate ring of SL2, and the subalgebra A generated by the logarithmic derivative
of a single non-zero solution y0 is a finitely generated differential subalgebra of the fraction
field Q(R′) (not of R′); the fraction field of A corresponds to a Borel subgroup B of SL2:
one has Q(R′)B = Q(A); but (R′)B = C, not A.

As we shall see, the study of solution algebras involves finer notions from geometric
invariant theory than just algebraic groups and torsors: in fact, the whole theory of affine
quasi-homogeneous varieties comes into play.

The differential Galois correspondence can be restored at the level of solution algebras
in the form of an anti-equivalence of categories between solution algebras as above and affine
quasi-homogeneous G-varieties over C.

After pioneering work by Grosshans, Luna, Popov, Vinberg and others in the seventies,
the study of quasi-homogeneous G-varieties, i.e., algebraic G-varieties with a dense G-orbit,
has now become a rich and deep theory. The precise dictionary given below between the
theory of affine quasi-homogeneous varieties and differential Galois theory should thus
enrich considerably the latter, and may provide a source of motivation and applications
for the former. We take advantage of this correspondence to study the algebraic structure
of solution algebras (for instance, linear relations between solutions), with an eye towards
transcendental number theory.

1. Statement of the main results

Our results take place in the general context of modules with connection over an affine
basis(2), but in this introduction, we restrict ourselves to the context of differential modules
over a differential ring (in the classical sense).

(1) After completion of this work, D. Bertrand pointed out to us the paper [10], in which this problem is studied for
generalized confluent hypergeometric differential equations (cf. also [9]).
(2) For a more geometric setting, see 6.5 (2).
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SOLUTION ALGEBRAS AND QUASI-HOMOGENEOUS VARIETIES 451

1.1. Picard-Vessiot fields (reminder, cf. [15, 19])

Let (K, ∂) be a differential field with algebraically closed constant field C = K∂ of
characteristic 0. Let K〈∂〉 denote the corresponding ring of differential operators. Let M
be a differential module over K, that is, a K〈∂〉-module of finite dimension n over K (for
instance M = K〈∂〉/K〈∂〉φ, where φ is a differential operator as above). The finite direct
sums of tensor products M⊗i ⊗ (M∨)⊗j and their subquotient differential modules form
a Tannakian category 〈M〉⊗ over C.

A Picard-Vessiot field K ′ for M is a differential field extension of K with constant
field C, in which M and its dual M∨ are solvable (i.e., Sol(M,K ′) := HomK〈∂〉(M,K ′)

and Sol(M∨,K ′) have dimension n over C), and which is minimal for this property. Such a
differential field exists and is unique up to non-unique isomorphism. The differential Galois
group of M ,

G = Aut∂K
′/K,

is a linear algebraic group over C which acts faithfully on Sol(M,K ′).
The differential Galois correspondence is an order-reversing bijection between in-

termediate differential extensions K ⊂ L ⊂ K ′ and closed subgroups H < G, given
by H = Aut∂K

′/L and L = (K ′)H . One has tr.degKL = dimG− dimH.

1.2. Solution fields

1.2.1. D. – A solution field (L, ∂) for M is a differential field extension
of (K, ∂) with constant field L∂ = C, which is generated by the image of a K〈∂〉-morphism
v : M → L.

For instance, the Picard-Vessiot field K ′ is a solution field for Mn ⊕ (M∨)n.
In the next theorem, “solution field” means “solution field for some N ∈ 〈M〉⊗”.

1.2.2. T. – 1. Any solution field L embeds as a differential subfield of the
Picard-Vessiot field K ′.

2. Conversely, an intermediate differential field K ⊂ L ⊂ K ′ is a solution field if and only
if the corresponding subgroup H < G is observable (i.e., G/H is quasi-affine). In fact,
H is the isotropy group of any solution v ∈ Sol(N,K ′) whose image generates L.

3. For any solution field L = (K ′)H , Aut∂L/K = NG(H)/H.

1.3. Picard-Vessiot algebras

Even though this result is formulated in terms of traditional differential Galois theory of
differential fields, our proof uses the generalized differential Galois theory for differential
rings developed in [3] (working over differential rings rather than fields is natural, useful, and
sometimes necessary in some contexts).

Let (R, ∂) be a differential ring with constant fieldC. We assume that (R, ∂) is simple, i.e.,
has no non-zero proper differential ideal. It is then known that R is an integral domain, and
we denote by K its quotient field.

LetM be a differential module of finite type overR. It can be shown thatM is projective,
and so are all the finite direct sums of tensor productsM⊗i⊗ (M∨)⊗j and their subquotient
differential modules, which form a Tannakian category 〈M〉⊗ overC (equivalent to 〈MK〉⊗),
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452 Y. ANDRÉ

cf. 2.2.1 below (instead ofM⊗i⊗(M∨)⊗j , one may considerM⊗i⊗(detM)⊗−j , where detM

denotes the top exterior power).

The Picard-Vessiot algebra R′ for M is the R-subalgebra of the Picard-Vessiot field K ′

for MK generated by 〈M, Sol(M,K ′)〉 and 〈M∨,Sol(M∨,K ′)〉, its spectrum is a torsor
under GR, and G = Aut∂(R′/R).

1.4. Solution algebras

1.4.1. D. – A solution algebra (S, ∂) for M is a differential R-algebra without
zero-divisor, whose quotient field has constant field C, and which is generated by the image
of a R〈∂〉-morphism v : M → S.

The link with the previous definition is the following (cf. 4.2.2): a differential algebra
extension S/R is a solution algebra for M if and only if it is a finitely generated R-algebra
without zero-divisor and its quotient field L is a solution field for MK ; any solution field L
for MK is the quotient field of a solution algebra for M .

In the next theorem, “solution algebra” means “solution algebra for some N ∈ 〈M〉⊗”.

1.4.2. T. – 1. Any differential finitely generated sub-R-algebra of the Picard-
Vessiot algebra R′ is a solution algebra.

2. If S is a solution algebra, then for any embedding of the quotient field L of S into K ′,
S is contained in the Picard-Vessiot algebra R′.

3. For any solution algebra S generated by a solution v, Spec(SK′)
∂ is the closure G.v of

the orbit G.v ⊂ Sol(M,K ′). This provides an anti-equivalence of categories between
solution algebras and affine quasi-homogeneous G-varieties.

4. If H < G is observable, (R′)H is a solution algebra if and only if H is Grosshans (i.e.,
C[G/H] is finitely generated).

5. A solution algebra S is simple (as a differential ring) if and only if it is generated by
a solution v for which the orbit G.v is closed. In that case, S = (R′)H .

6. A solution field L is the quotient field of a unique solution algebra S if and only if the
image H̄ of H in the reductive quotient Ḡ of G is reductive and NḠ(H̄)/H̄ is finite. In
that case, S is simple.

7. Assume thatR is finitely generated overC. Then, locally for the étale topology on SpecR,
the spectrum of a solution algebra S generated by a solution v is isomorphic to (G.v)R
(in particular, it is an algebraic fiber bundle over SpecR).

1.5. From affine quasi-homogeneous varieties to differential modules

On combining the previous theorem with the constructive solution [16] of inverse differ-
ential Galois problem and the triviality of torsors over C[z] under (pull-back of) reductive
groups over C [20], one obtains the following

1.5.1. T. – 1. The differential Galois group G of any semisimple differential
module M over (C[z], ddz ) is connected reductive, and the spectrum of any solution
algebraS forM satisfies SpecS ∼= ZC[z] for some affine quasi-homogeneousG-varietyZ
over C.
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2. Conversely, to any connected reductive groupG overC and any affine quasi-homogeneous
G-variety Z, one can attach in a constructive way a semisimple differential module M
over C[z] with differential Galois group G, and a solution algebra S for M such that
SpecS ∼= ZC[z].

Using work by Arzhantsev and Timashev [5] on quasi-homogeneous varieties with in-
finitely many orbits, one can construct in this way solution algebras over C[z] or C(z) which
admit infinitely many quotients which are solution algebras (cf. Remark 3.2.3): this occurs for
any connected reductive differential Galois groupG, taking for isotropy groupH the unipo-
tent radical of any non-minimal parabolic subgroup of G.

On the other hand, the negative solution of Hilbert’s XIVth problem provides observable
subgroups H which are not Grosshans, and one can construct in that way (cf. 6.2 (4))
integrally closed solution algebras S over C[z] or C(z) whose maximal localization Q(S)∩R′
in the Picard-Vessiot algebra is not finitely generated.

The classification of solution algebras is an arduous task, even over C[z] or C(z): for
instance,C(z)-algebras generated by polynomials in solutions of the Airy equation, and their
derivatives, correspond to affine quasi-homogeneous SL(2)-varieties; the normal ones are
classified by discrete invariants, but the non-normal ones may form continuous families [6].

1.6. Homogeneous relations

LetS be a solution algebra generated by a solution v : M → S. Then v extends to a surjec-
tive homomorphism of differential rings v· : Sym·M → S. Let S̃ be the quotient of Sym·M
by the (differential) ideal generated by homogeneous relations with respect to M in Kerv·.

1.6.1. T. – 1. S is homogeneous (i.e., S = S̃) if and only if there exist g ∈ G
and λ ∈ C, not a root of unity, such that g.v = λv.
Assume that R is finitely generated over C. Then

2. ProjS̃ is an algebraic fiber bundle over SpecR (locally trivial for the étale topology).
3. K is algebraically closed in L ⇔ all fibers of SpecS are integral⇒ all fibers of ProjS̃

are integral.

1.7. Relevance to transcendental number theory

Let us consider a solution y =
∑
amz

m ∈ Q̄ [[z]] of a linear differential equation φ(y) = 0

of order n with coefficients in R = Q̄ [z, 1
T (z) ].

1.7.1. C. – Assume that Q̄(z) is algebraically closed in Q̄ (z, y, . . . , y(n−1) = dn−1y
dzn−1 ).

Let ξ ∈ Q̄∗ be in the domain of convergence of y, and not a zero of the polynomial T .
Assume that the transcendence degree (resp. homogeneous transcendence degree) of

Q̄ [y(ξ), , . . . , y(n−1)(ξ)] over Q̄ equals the transcendence degree (resp. homogeneous transcen-
dence degree) of Q̄ (z)[y, . . . , y(n−1)] over Q̄ (z).

Then any polynomial relation (resp. homogeneous polynomial relation) with coefficients in Q̄
between y(ξ), . . . , y(n−1)(ξ) is the specialization at ξ of a polynomial relation (resp. homoge-
neous polynomial relation) of the same degree with coefficients in R between y, . . . , y(n−1).

In particular, if the functions y, . . . , y(n−1) are linearly independent over Q̄ (z), their values
y(ξ), . . . , y(n−1)(ξ) are linearly independent over Q̄.
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Indeed, since Q̄ (z) is algebraically closed in the solution fieldL = Q̄ (z, y, . . . , y(n−1)), the
fiber of SpecS (resp. ProjS̃) at ξ is integral according to 1.4.2 (7) (resp. 1.6.1 (3)). It contains
the affine (resp. projective) variety defined by the (resp. homogeneous) polynomial relations
with coefficients in Q̄ between y(ξ), . . . , y(n−1)(ξ). Hence these Q̄-varieties coincide if they
have the same dimension.

The assumptions of the corollary are notably satisfied when y is an E-function (for in-
stance y = sin z), or more generally an arithmetic Gevrey series of negative rational order s
[2], i.e., when the absolute logarithmic height of (a1.1!−s, . . . , am.m!−s) grows at most lin-
early with m. In that case, L consists of meromorphic functions on C, hence Q̄ (z) is alge-
braically closed in L, and the condition about transcendence degrees is essentially the classi-
cal Siegel-Shidlovsky theorem, which can be also derived rather directly from the fact (proven
in [1]) that differential operators φ of minimal order annihilating such series y have no non
trivial singularities at finite distance.

In [7], Beukers uses this fact to deduce, forE-functions, the conclusion of the above corol-
lary from the Siegel-Shidlovsky theorem (answering an old question of Lang [13, p. 100]).
However, as we have seen (cf. also 6.5), such a deduction actually follows from general re-
sults of (generalized) differential Galois theory, independently of [1].

2. Generalized Picard-Vessiot theory. A reminder and some complements to [3]

2.1. – In order to extend the scope of our results and cover the case of simultaneous action
of several derivations, and connections on higher dimensional varieties, we shall work with
generalized differential rings as in [3], which keeps the spirit of classical differential algebra.

Let R = (R, d : R→ Ω) be a generalized differential ring, i.e., the data of a commutative
ringR and a derivation d : R→ Ω to aR-module Ω, which we always assume to be projective
of finite rank (the classical notion of differential ring corresponds to the case Ω = R). We
denote by C = Kerd the ring of constants.

An extension S/R consists of a ring extension S/R together with an extension S → Ω⊗R S
of the derivation d.

A differential module M = (M,∇) over R is an R-module M with a connection ∇, i.e.,
an additive map M →M ⊗R Ω satisfying the Leibniz rule. We write M∇ for the kernel of∇
(a C-module).

A differential ideal I is a differential submodule of R (equivalently, the data of an ideal I
of R such that 〈Ω∨, dI〉 ⊂ I).

One says that R is simple if it has no non-zero proper differential ideal.

2.1.1. E. – If X is an affine smooth geometrically connected variety over a
field C and Ω = Γ(X,Ω1

X/C), then ( O(X), d) is a simple differential ring.
Local rings of complex analytic manifolds are simple differential rings.

2.1.2. L. – Let us assume that R is simple. Then

1. C is a field.
Assume that charC = 0. Then

2. R is an integral domain.
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3. There is a unique extension of d to the quotient field K of R which defines a differential
extension K/R, with constant ring C.

Proof. – For items (1) and (3), see [3, 2.1.3.5]. The proof of (2) given in [19, Lemma 1.17]
in the case Ω = R extends to the general case: one first shows that every zero-divisor a ∈ R
is nilpotent (considering the differential ideal of elements b such that amb = 0 for some m);
then that the nilradical of R is a differential ideal (the image by any ∂ ∈ Ω∨ of a nilpotent
element is a zero-divisor).

2.1.3. L. – Let M = (M,∇) be a differential module over a simple differential
ring R. Then the natural morphism M∇ ⊗C R→M is injective.

Proof. – Cf. [3, 3.1.2.1].

2.1.4. C. – For any field extension C ′/C, RC′ is simple.

Proof. – Let I ⊂ RC′ be a proper differential ideal, and let M = RC′/ I . Then
M∇ contains C ′, and the natural projection RC′ → M can be written as the composition
RC′ ↪→M∇ ⊗C R → M, and is injective by the previous lemma, whence I = 0.

2.1.5. L. – Let M = (M,∇) be a differential module over a simple differential
ring R. Assume that M is finitely generated and torsion over R. Then M = 0.

Proof. – Indeed, the annihilator I of M is a non-zero differential ideal, hence I = R and
M = 0.

2.2. – In algebraic geometry, it is well-known that coherent modules with integrable connec-
tion over a smooth basis are locally free. It is less known that the integrability condition is
superfluous. An abstract explanation is provided by the following theorem.

We assume henceforth that R is simple and charC = 0, and denote by K = (K, d) its
quotient field (considered as a differential extension of R).

2.2.1. T. – Let M be a differential module over R. Assume that the underlying
R-module M is finitely generated.

1. Then M is projective. The same holds for any subquotient of M.
2. The finite direct sums of tensor products M⊗i ⊗ ( M∨)⊗j and their subquotient differ-

ential modules form a Tannakian category 〈M〉⊗ over C, and the natural ⊗-functor
〈M〉⊗ → 〈M K 〉⊗ is an equivalence.

Proof. – (1) We use the natural structure of differential module on HomR(N,P ), denoted
by IHom( N , P) (cf. [3, 4.4]; note that since Ω is assumed to be finitely generated projective,
HomR(N,P )⊗R Ω = HomR(N,P ⊗R Ω)). In particular the dual M∨ of M is a differential
module, and there is a natural morphism M ⊗ M∨ → ( M∨ ⊗ M)∨. Its cokernel is finitely
generated and torsion, hence 0 by Lemma 2.1.5. If M is torsionfree, one concludes that it is
projective using the following

Fact: any finitely generated torsionfree module M over an integral domain R, such that
M ⊗M∨ → (M∨ ⊗M)∨ is surjective, is projective.
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Indeed, let ε : M∨ ⊗M → R be the evaluation map, and let
∑
mi ⊗m∗i ∈M ⊗M∨ lift

the element ε∨(1) ∈ (M∨ ⊗M)∨. Then every m ∈M satisfies m =
∑
m∗i (m)mi, since this

holds after tensoring with the fraction field of R (the kernel of M ⊗M∨ → (M∨ ⊗M)∨ is
torsion).

This settles the torsionfree case. In general, the torsion part is a differential sub-
module Mtor of M. We have shown that M/Mtor is projective, so that the exact sequence
0 → Mtor → M → M/Mtor → 0 splits and Mtor is finitely generated. By Lemma 2.1.5
again, Mtor = 0, so that M is projective by the above.

Any quotient of M is again finitely generated over R, hence projective. And so is any
subobject, viewed as the kernel of a quotient morphism.

(2) The finite direct sums of tensor productsM⊗i⊗ (M∨)⊗j and their subquotient differ-
ential modules form an abelian C-linear⊗-category 〈M〉⊗ with unit R, and End R = C. By
item (1), this is a rigid ⊗-category. The forgetful functor

ϑ : 〈M〉 → ProjR, N 7→ N

is a fiber functor. Hence 〈M〉⊗ is tannakian over C.

The ⊗-functor 〈M〉⊗ → 〈M K 〉⊗ is faithful since the modules are torsionfree.

It is full: if f ∈ Hom( N K , P K ), f( N ) is an R-differential submodule of P K and the
quotient f( N )/(f( N )∩ P) is a differential R-module which is fnitely generated and torsion
over R. By lemma 2.1.5 again, f( N )/(f( N ) ∩ P) = 0, hence f ∈ Hom( N , P).

Finally, it is essentially surjective since given N ∈ 〈M〉⊗, every subobject P in 〈M K 〉⊗
of N K comes from a subobject of N (with underlying R-module N ∩ P ).

2.3. – We assume henceforth that C is algebraically closed of characteristic 0. It follows that
〈M〉⊗ admits a fiber functor

ω : 〈M〉⊗ → VecC ,

which is unique up to non-unique isomorphism (if R is finitely generated over C, one may
take ω = ϑx = the fiber at any closed point x of Spec R, i.e., the reduction modulo any
maximal ideal of R).

The automorphism group scheme ofω is the differential Galois group of M (“pointed atω”)

G = Gal( M, ω) = Aut⊗ω,

a closed subgroup ofGL(ω( M)), and one has equivalences of Tannakian categories 〈M〉⊗ ∼=
〈M K 〉⊗ ∼= RepG. In particular, M is semisimple if and only if the faithful G-module is
semisimple, which is equivalent to: G is reductive (since charC = 0).

The isomorphism scheme

Σ = Iso⊗(ω ⊗C R,ϑ)

is a torsor under the right action of GR (the torsor of solutions of M).
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2.4. – A solution of M in a differential extension S/R is a morphism of differential mod-
ules M v→ S over R. Since M is projective of finite rank, this is the same as an element
v ∈ ( M∨ ⊗R S)∇.

We say that M is solvable in S if the solutions of M in S generate HomR(M,S) over S.
Assume that S is simple with constant field C ′. Then, by Lemma 2.1.3, M is solvable in S if
and only if ( M∨S)∇⊗C′ S ∼= M∨S . If moreover S is faithfully flat overR, and both M and M∨

are solvable in S (equivalently: M and (detM)∨ are solvable in S), then any N ∈ 〈M〉⊗ is
solvable in S and ω S := (−

⊗
R S)∇ is a fiber functor on 〈M〉⊗ with values in VecC′ (cf. [3,

3.1.3.2]).

A Picard-Vessiot algebra R′ for M is a faithfully flat simple differential extension of R with
constant field C in which M and M∨ are solvable, and which is minimal for these properties
(which amounts to saying that S is generated by 〈M,ω( M∨)〉 and 〈M∨, ω( M)〉).

Starting with a fiber functor ω, there is a canonical structure of differential ring on O(Σ)

which makes it a Picard-Vessiot algebra for M, and ω is canonically isomorphic to ωR′ (cf. [3,
3.4.2.1]). Any Picard-Vessiot algebra for M arises in this way up to isomorphism. One has

G = AutR′/R,

an equality compatible with the G-action on ω( M) in the pairing M∨ ⊗C ω( M) → R′. For
all this, we refer to [3, §3.2, 3.4].

2.4.1. R. – It is worth pointing out that we have not assumed any finiteness
condition on R, nor any integrability condition on M. At first, it might seem strange that a
non-integrable connection is solvable in some differential extension R′/R. This is discussed
in detail in [3, 3.1.3.3]: the point is that for two commuting derivationsD1, D2 ∈ Ω∨ (viewed
as derivations of A), the eventuality that ∇D1

and ∇D2
do not commute is no obstruction

for solvability in a differential extension R′ in which the extension of D1 and D2 may not
commute any longer.

2.4.2. R (On the triviality of Σ). – From Lemma 2.1.2 and the fact that O(Σ) is
a simple differential ring, it follows that Σ is an integral domain. In general, this torsor is non
trivial, since the differential Galois group G need not be connected.

However, when G is connected, and when R is any localization of C[z] (viewed as a dif-
ferential ring in the standard way), then Σ is a trivial torsor under GR: this follows from the
triviality of torsors over open subsets of the affine C-line, under (pull-back of) connected
linear algebraic C-groups, cf. [18, prop. 5].

2.4.3. L. – 1. For any field extension C ′/C, the differential Galois group of MC′

is GC′ , and R′C′ is a Picard-Vessiot algebra for MC′ .
2. R′K is the Picard-Vessiot algebra for M K .

Proof. – (1) Note that RC′ and R′C′ are simple with constant field C ′ by Corol-
lary 2.1.4. On the other hand, MC′ and its dual are solvable in R′C′ ; and R′C′ is generated
by 〈M∨C′ , ( M R′

C′
)∇〉 and 〈MC′ , ( M∨R′

C′
)∇〉. Hence R′C′ is a Picard-Vessiot algebra for MC′ .

Hence the torsor of solutions of MC′ is ΣC′ , its right automorphism group isGRC′ , and one
concludes that the differential Galois group is GC′ .
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(2) follows from the equivalence of categories established in item (2) of the previous
theorem.

2.5. – We still denote by ω the equivalence of ind-Tannakian categories

ω = (−
⊗
R

R′)∇ : Ind〈M〉⊗ → IndRepG.

Note that Ind RepG is nothing but the category of rationalG-modules, i.e., C-vector spaces
on which G acts as a group of automorphisms, and which are sums of finite-dimensional
G-stable subspaces on which the given action ofG is by some rational representation, cf. e.g.,
[11, p. 7]. For any N ∈ Ind〈M〉⊗, there is a canonical isomorphism of R′-differential
modules

(2.1) ω( N )⊗C R′ ∼→ N ⊗R R′

(coming from the canonical R′-point of Σ). Since R′ is faithfully flat over R, we conclude
that

2.5.1. C. – For any object N in Ind〈M〉⊗, the underlying R-module N is
faithfully flat.

Via ω, differential algebra extensions of R contained in Ind〈M〉⊗ correspond to rational
G-algebras (for instance R′ corresponds toC[G] withG-action by left translations), and their
differential ideals correspond to G-ideals.

2.5.2. C. – Assume that R is finitely generated over C. Let S ∈ Ind〈M〉⊗ be
a differential algebra extension of R. Then locally for the étale topology on SpecR, Spec S is
isomorphic to Specω( S)×C R.

Proof. – By (2.1), S and ω( S)R become isomorphic after smooth surjective base change
SpecR′ → SpecR, hence after étale surjective base change since SpecR′ = Σ → SpecR is
smooth surjective (cf. [12, 17.6.3]).

3. Solution algebras and affine quasi-homogeneous varieties

Here again, R is a simple (generalized) differential ring with algebraically closed field
of constants C of characteristic 0, K is its quotient field, and M is a finitely generated
differential module.

3.1. – Let S/R be a differential extension.

3.1.1. D. – S is a solution algebra for M if

1. S is a domain,
2. the constant field of its quotient fieldL (viewed as a differential extension L of K ) isC,
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3. there is a solution v of M in S (i.e., a morphism M v→ S of differential modules over R)
such that the image of v generates the R-algebra S.

A solution algebra for 〈M〉⊗ is a solution algebra for some N ∈ 〈M〉⊗.

3.1.2. E. – A Picard-Vessiot algebra R′ for M is a solution algebra for Mr ⊕ ( M∨)r,
with r = rkM (the solution v being given by (v1, . . . , vr, v

∨
1 , . . . , v

∨
r ), where (v1, . . . , vr) is a

C-basis of solutions of M in R′ and (v∨1 , . . . , v
∨
r ) is the dual basis).

3.1.3. R. – Condition (2) is stronger than requiring that the constant ring of S
is C. For instance, if R = (C[z], d = d

dz ), M = (C[z]2,∇ = d− diag(1, 2)), S = C[x, y, z],

with dx = x, dy = 2y, and v maps the canonical basis of M to (x, y), then the constant ring
of S isC, but the constant field of its quotient field isC(x

2

y ), so that S is not a solution algebra
for M in the sense of Definition 3.1.1 (but its quotient by the differential ideal generated
by y − x2 is a solution algebra for M).

3.1.4. E. – If Ω = R and M ∼= R/R.φ is a cyclic differential module, then
a solution algebra for M is the differential R-algebra generated by a solution of φ (in some
differential extension field with constant field C).

3.1.5. P. – Any solution algebra for 〈M〉⊗ belongs to Ind〈M〉⊗, hence is
faithfully flat over R.

Proof. – The morphism v : N → S extends to a morphism v· : Sym· N → S which
is surjective by item (3) of Definition 3.1.1, hence S ∈ Ind〈M〉⊗. Faithful flatness over R
follows, due to Corollary 2.5.1.

We fix a fiber functor ω : 〈M〉⊗ → VecC . Let G ⊂ GL(ω(V )) be the differential Galois
group of M, and let R′ be the Picard-Vessiot algebra of M, so that R′ = O(Σ), and ω is
canonically isomorphic to (−

⊗
R R′)∇.

3.1.6. P. – 1. Any solution algebra S for 〈M〉⊗ embeds as a differential
sub-extension of R′/R.

2. Conversely, any differential sub-extension S of R′/R which is finitely generated over R
is a solution algebra for 〈M〉⊗.

3. Given N ∈ 〈M〉⊗, S 7→ S K , SK 7→ S K ∩ R′ are inverse bijections between solution
algebras for N in R′ and solution algebras for N K in R′K .

Proof. – (1) Since the Picard-Vessiot algebra of N embeds in R′, it suffices to consider
the case N = M.

Let S′1 be a Picard-Vessiot algebra for M L . It is simple, contains S, and its constant field
is C (since the constant field of L is C by condition (2) in Definition 3.1.1).

Any object of 〈M K 〉⊗ is solvable in S′1, whence a fiber functor on the Tannakian
C-category 〈MC〉⊗ ∼= 〈M K 〉⊗ (cf. 2.2.1 (2)). The coordinate ring of the associated tor-
sor of solutions is a Picard-Vessiot algebra R′1 for M contained in S′1. Since R′1 contains∑
k〈Symk M, (Symk M∨S′1)∇〉, it also contains S by condition (3) in Definition 3.1.1.

On the other hand, by Lemma 2.4.3, R′1 is isomorphic to R′.
(2) According to §2.5, ω( S) is a rationalG-algebra of finite type overC. Let v1, . . . , vm be

generators. The G-module Vi generated by vi is of the form ω( N ∨i ) for some N i ∈ 〈M〉⊗.
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One has ω(〈N i, vi〉) = 〈ω( N i), vi〉 = 〈V ∨i , vi〉 = Vi ⊂ ω( S). Hence vi( N i) = 〈N i, vi〉 ⊂ S,
and the image of the solution v =

∑
vi of N =

⊕
N i generates the R-algebra S. Since

Q( S)∇ ⊂ ( K ′)∇ = C, we conclude that S is a solution algebra for N .

(3) follows from the equivalence of categories established in item (2) of Theorem 2.2.1.

3.1.7. E. – If Ω = R and M ∼= R/R.φ is a cyclic differential module, then by
item (2), a solution algebra for 〈M〉⊗ is the differential R-algebra generated by finitely many
polynomials Pj(yi, y′i, . . . , 1/w) in solutions of φ (in some differential extension field with
constant field C), their derivatives, and the inverse of the Wronskian.

3.2. – Let us further apply the considerations of §2.5 to solution algebras. In the following
theorem, “solution algebra” means “solution algebra for some N ∈ 〈M〉⊗.” They form
a category (a full subcategory of the category of algebras in Ind〈M〉⊗).

3.2.1. T. – 1. S 7→ Z = Specω( S) gives rise to an anti-equivalence of
categories between solution algebras for 〈M〉⊗ and affine quasi-homogeneousG-varieties.

2. More precisely, it gives rise to a bijection between intermediate solution algebras
R ⊂ S ⊂ R′ and pairs (Z, v) (up to unique isomorphism) where Z is an affine quasi-
homogeneous G-variety and v ∈ Z is a closed point of the dense orbit.

3. Differential ideals of S correspond to closed G-subsets of Z.
4. For any solution algebra S ⊂ R′, R′ is flat (and even smooth) over S. Moreover, R′ is

faithfully flat over S ⇔ S is simple⇔ Z is a homogeneous G-variety.

Proof. – (1) (2) If one embeds S into the Picard-Vessiot algebra R′ (Proposition 3.1.6 (1))
and apply ω to the following morphisms of differential algebra extensions of R in Ind〈M〉⊗:

Sym·M v·→→ S ↪→ R′, one gets morphisms of rational G-algebras

C[ω( M∨)] = Sym·ω( M)
v·→→ ω( S) ↪→ ω( R′) = C[G].

Identifying v with a point in the vector space V = ω( M∨), the composed morphism
C[V ]→ ω( S) ↪→ C[G] is nothing but the comorphism of the morphism G → V given
by g 7→ g.v, which factors through the dominant morphism π : G → Z = Specω( S). It
follows that the closed subset Z of V is the closure G.v ⊂ V .

The ⊗-equivalence Ind〈M〉⊗ ω→ Ind RepG thus induces a fully faithful contravariant
functor from solution algebras S for 〈M〉⊗ to affine quasi-homogeneous G-varieties Z, and
an injection from intermediate solution algebras R ⊂ S ⊂ R′ to pairs (Z, π(1)).

Conversely, let Z be an affine quasi-homogeneous G-variety, and v ∈ Z be in the dense
orbit, whence a dominant G-morphism G

π→ Z = Specω( S), v = π(1). Since C[Z] is a
rational G-algebra, it is a quotient of Sym·V ∨ for some finite G-module V . This provides
a closed G-embedding Z ↪→ V . Since Z is quasi-homogeneous, it is the closure of a G-orbit
G.v ∈ V .

Let N ∈ 〈M〉⊗ be such that ω( N ) = V ∨, let S be the algebra in Ind〈M〉⊗ such that
ω( S) = C[Z], and let v : N → S be the morphism whose image by ω is the given
point v ∈ V . Then Sym· N → S is an epimorphism since Sym·V ∨ → C[Z] is. The choice
of v specifies the dominant G-morphism G → Z, and corresponds via ω to an embedding
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S ↪→ R′. It follows that S is a domain and that the field of constant of its quotient field is C.
We conclude that S is a solution algebra for 〈M〉⊗ generated by the image of the solution v.

(3) is clear: I ↔ Specω( S/ I ).
(4) Applying the isomorphism (2.1) to N = S and N = R′, smoothness (resp. faithful

flatness) of R′ over S′ follows from smoothness (resp. is equivalent to faithful flatness)
of G→ Z. By item (3), one has: S is simple⇔ G.v = G.v ⇔ G→ Z is faithfully flat.

3.2.2. R. – Any solution algebra S is a domain by definition, but the associated
quasi-homogeneous varietyZ = G.vmay be reducible. It may even occur thatZ is connected
but its dense orbit G.v is disconnected, as the following example shows:

M =

(
C(z)2,∇ = d−

(
0 1
1
4z −

1
2z

))
,

S = C(z)[e
√
z,
√
ze
√
z] ∼= C(z)[x, y]/(y2 − zx2) ⊂ R′ = C(z)[e±

√
z,
√
z],

and v sends the canonical basis of M to (e
√
z, 0). Then Z is the union of the axes in ω( M∨) = C2,

which are permuted by µ2 ⊂ G = Gm × µ2.
This example also shows that, whereas R′ is always a smooth S-algebra, S may not be

a smooth R-algebra.

3.2.3. R. – An integral quotient S′ = S/ I of a solution algebra for 〈M〉⊗ is
a solution algebra for 〈M〉⊗ if and only if the constant field of Q( S′) is C. This occurs if
and only if theG-variety Specω( S′) is quasi-homogeneous. Such quotient solution algebras
correspond exactly to G-orbits in Z.

The question of finiteness of G-orbits is a classical problem in the study of quasi-
homogeneous varieties (cf. e.g., [5, 4] in the affine case). In the case of Z, this corresponds
to the question of finiteness of quotient solution algebras of S.

4. Solution fields and observable subgroups

4.1. – Let K be the quotient field of R as in the previous section.
The quotient field K ′ of R′ is a Picard-Vessiot field for M K . It is minimal among the

differential field extensions of K with constant field C in which M K and M∨K are solvable.
The differential Galois group of M K (or M) is G = Aut K ′/K .

The (generalized) differential Galois correspondence is an order-reversing bijection
between intermediate differential extensions K ⊂ L ⊂ K ′ and closed subgroups H < G,
given by H = Aut K ′/ L and L = ( K ′)H . Moreover K ′ is a Picard-Vessiot field for M L ,
and L is a Picard-Vessiot field for some N ∈ 〈M K 〉⊗ if and only if H / G, cf. [3, 3.5.2.2].

4.1.1. R. – Let VecK
′

K,C be the category of triples (P,W, ι) where P is a finite-
dimensional K-vector space, W is a finite-dimensional C-vector space and ι : W ⊗C K ′ →
P ⊗K K ′ is an isomorphism. This is actually a Tannakian category over C. One has
a ⊗-functor 〈M K 〉⊗ → VecK

′

K,C which sends N K to (P = NK ,W = (NK ⊗K K ′)∇,

canonical isomorphism ι). This makes 〈M K 〉⊗ a Tannakian subcategory of VecK
′

K,C (one
easily checks that any subobject of (NK , (NK ⊗K K ′)∇), ι) comes from 〈M K 〉⊗).
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4.2. – Let L/K be a differential field extension, and let v : M K → L be a solution of M K

in L (i.e., a morphism of differential modules).

4.2.1. D. – L is a solution field for M K if its constant field is C and there
is a morphism M K → L of differential modules over K whose image generates the field
extension L/K.

A solution field for 〈M K 〉⊗ is a solution field for some N K ∈ 〈M K 〉⊗.

4.2.2. L. – 1. The quotient field of a solution algebra S for M is a solution field
for M K .

2. Conversely, any solution field L for M K is the quotient field of a (non unique) solution
algebra S for M.

Proof. – (1) is immediate. For (2), let S be theR-subalgebra ofL generated by v(M). It is
clear that this is a differential algebra with quotient field L, and the conditions for a solution
algebra are satisfied.

4.2.3. T. – Let K ′/K be a Picard-Vessiot field for M K .

1. Any solution field L for 〈M K 〉⊗ embeds as a differential sub-extension of K ′/K .
2. If L ⊂ K ′ is the quotient field of a solution algebra S for 〈M K 〉⊗, then S ⊂ R′.
3. An intermediate differential field K ⊂ L ⊂ K ′ is a solution field for 〈M K 〉⊗ if and only

if H = Aut K ′/ L is an observable subgroup of G = Aut K ′/K .
In fact,H is the isotropy group of any solution v : N K → L whose image generates L.

4. For any solution field L = ( K ′)H for 〈M K 〉⊗, NG(H)/H = Aut L/K .

There are many equivalent characterizations of observable subgroups H < G, cf. [11,
Th. 2.1]. One is that G/H is quasi-affine. Another is that every finite-dimensional rational
H-module extends to a finite-dimensional rational G-module. A third one is that H is the
isotropy group of a vector v in some rational G-module (and one may even require that
H is also the stabilizer of the line Cv, cf. [17]). Recall also that G is observable if it has no
non-trivial rational character.

Proof. – (1) is a consequence of Proposition 3.1.6 via item (2) of Lemma 4.2.2.
(2) Let ι1 be the given embedding L → K ′. By Proposition 3.1.6 again, there is an

embedding S → R′, which gives rise to a second embedding ι2 : L → K ′. Since K ′ is a
Picard-Vessiot field for M L with automorphism group H, ι1 = h ◦ ι2 for some h ∈ H ⊂ G.
Since G preserves R′ and ι2( S) ⊂ R′, one has ι1( S) ⊂ R′.

In (3) and (4), one may replace R by its quotient field K (taking into account item (3) of
Proposition 3.1.6).

(3) Let V be a finite-dimensional G-module, and H be the isotropy group of a vector
v ∈ V . Let us write V = ω( N ∨) for some N ∈ 〈M〉⊗. Then (K ′)H is the subfield of K ′

generated by 〈N, v〉.
Indeed, let H < H ′ < G be the intermediate group attached to this subfield. Then for

any n ∈ N and any h ∈ H ′, 〈n, h.v〉 = h(〈n, v〉) = 〈n, v〉, and one concludes that h.v = v,
whence H = H ′.

Now, any observable subgroupH is such an isotropy group, and the previous observation
shows that L = (K ′)H is a solution field generated by v. Conversely, if L is a function field
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generated by a solution v of N ∈ 〈M〉⊗, and H ′ is the subgroup attached to L = (K ′)H
′
,

the previous observation shows that H ′ coincides with the isotropy group H of v in ω( N ∨),
hence is observable.

(4) One has ω(( R′)H) = C[G]H = C[G/H], hence Aut( R′)H/K = AutGω(( R′)H) =

AutGC[G/H] = AutGG/H = NG(H)/H (acting on G/H by nH · gH = gn−1H).
Note that L is the quotient field of L ∩ R′ = ( R′)H (this follows from item (2) above

and the previous lemma); hence Aut( R′)H/K ⊂ Aut L/K . It remains to show that any
automorphism of L preserves ( R′)H . One observes that Aut L/K permutes the differential
subalgebras of L which are finitely generated overK, hence preserves their union. This union
is contained in ( R′)H , in fact equal to it since it is an algebra in Ind〈M〉⊗.

4.2.4. R. – Aut S/R may be smaller than Aut L/K . Equality occurs precisely
when the corresponding quasi-homogeneous variety G.v is very symmetric in the sense of
[4, §4.3], cf. also [5, §2] (this is the case whenever H is a spherical observable subgroup of a
connected reductive group G).

On the other hand, Aut R′/ S coincides with Aut K ′/ L = H since H preserves R′ and
L is the quotient field of S.

5. Homogeneous solution algebras

5.1. – Let S be a solution algebra generated by a solution v : M → S, and let v· be
its canonical extension to a surjective homomorphism of differential rings Sym·M → S.
Let S̃ be the quotient of Sym·M by the graded ideal I generated by homogeneous relations
in Kerv·, which is clearly a differential ideal:

I =
⊕

I i, I i = Ker(SymiM → S), S̃ =
⊕

S̃i, S̃i = (SymiM)/ I i ↪→ S.

We first observe that, like S, S̃ is a domain: if a, b ∈ S̃ have homogeneous decompositions∑
ai and

∑
bi respectively, and satisfy a.b = 0, then the product of

∑
ait

i and
∑
bit

i must
be 0 in

⊕
S̃iti ⊂ S̃[t] (since S̃ is a graded ring), hence goes to 0 in S[t]. Since S[t] is a domain,

and
⊕
S̃iti maps injectively into S[t], we conclude that a = 0 or b = 0.

On the other hand, S̃ ∈ Ind〈M〉⊗, hence is faithfully flat over R by Corollary 2.5.1. Thus
ProjS̃ is an integral closed subscheme of P(M), faithfully flat over R.

5.2. – Note that ω(S̃) is a graded G-algebra, and Projω(S̃) is a closed G-subvariety of the
projective space P(ω( M)) of lines in V = ω( M∨), which contains the image
ṽ = [Cv] ∈ P(ω( M)) of v ∈ V . Let H̃ be the isotropy group of ṽ in G. The isotropy
group H of v is normal in H̃ and the quotient H̃/H is a closed subgroup of Gm.

If S = S̃, one has a commutative square

G/H −−−−→ (Specω( S)) \ 0y y
G/H̃ −−−−→ Projω( S).

Since the horizontal morphisms are immersions, the top one being open, and since the right
vertical morphism is the quotient map by Gm, one must have H̃/H ∼= Gm.
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Conversely, assume that H̃/H ∼= Gm. It can be considered as a closed subgroup
of NG(H)/H = Aut L/K (Th. 4.2.3 (4)). Denoting by t ∗ ` the action of t ∈ C∗ on ` ∈ L,
one has t ∗ (vi(n)) = (tivi)(n), for any i ≥ 0 and any n ∈ SymiM, so that the action ∗
induces a graduation of S compatible with Sym·M → S. This means that S = S̃.

In that case, Projω( S) is a projective quasi-homogeneous G-variety: indeed, in the above
commutative diagram, the top and right morphisms are dominant, hence the bottom mor-
phism is dominant as well.

5.2.1. R. – This situation occurs for instance when H is a quasi-parabolic sub-
group ofG, i.e., the isotropy subgroup of a highest weight vector in some irreducibleG-mod-
ule. In that case, the horizontal maps of the above commutative diagram are isomorphisms
(cf. [21]).

6. Proof of the statements of §1

These statements concern classical differential rings (i.e., the case Ω = R), but extend to
the case of generalized differential rings, where Ω is any projective R-module of finite rank.

6.1. – Theorem 1.2.2 follows immediately from Theorem 4.2.3.

6.2. Proof of Theorem 1.4.2

(1) follows from Proposition 3.1.6 (2).

(2) follows from Theorem 4.2.3 (2).

(3) follows from Theorem 3.2.1 (1).

(4) follows from the fact that R′H ∈ Ind〈M〉⊗ corresponds via ω to C[G]H = C[G/H].
Hence R′H (which is the maximal localization Q( S) ∩ R′ of S in R′) generated by some
object in 〈M〉⊗ if and only if C[G/H] is generated by a finite G-module, which amounts to
saying that H is Grosshans.

(5) follows from Theorem 3.2.1(4) (note that if S is simple, G/H is affine, hence is the
spectrum of C[G/H] = ω( R′)H = ω( R′H).

(6) Let L = ( K ′)H be a solution field for 〈M K 〉⊗. Then L is the quotient field of a unique
solution algebra S (necessarily contained in R′H ) if and only if there is a unique affine quasi-
homogeneous variety Z with dense orbit G/H (hence Z = G/H). In the terminology of
invariant theory, G/H is affinely closed. According to Luna [14] in case G is reductive, and
to Arzhantsev and Timashev [5, §3.3] in general, this occurs precisely when the image H̄ ofH
in the reductive quotient Ḡ of G is reductive and NḠ(H̄)/H̄ is finite.

(7) follows from Corollary 2.5.2.
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6.3. Proof of Theorem 1.5.1

(1) M is semisimple if and only if G is reductive. For any W ∈ RepG such that the
action of G factors through a finite group G′, the corresponding Picard-Vessiot algebra is
a finite connected torsor under G′ over C[z], hence G′ = {1}. Therefore G is connected.
According to Raghunathan and Ramanathan [20], any torsor under a connected reductive
group over C[z] is trivial, hence the torsor of solutions of M is trivial, which means that
ωC[z]

∼= ϑ (cf. §2.3). In particular, ω( S)C[z]
∼= S asR-algebras, andZ = Specω( S) is a quasi-

homogeneous G-variety by Theorem 3.2.1 (1).
(2) Let G be connected reductive, and let Z be an affine quasi-homogeneous G-variety.

As in the proof of 3.2.1 (2), one can embed Z as a closed G-subset in a finite-dimensional
G-module V (which we may assume to be faithful). The constructive solution (by Mitschi
and Singer [16]) of inverse differential Galois theory attaches toG ↪→ GL(V ) a (semisimple)
differential module M over C[z] with differential Galois group G. Theorem 3.2.1 (1) shows
how to construct a solution algebra S for M, with ω( S) = C[Z], and by the previous item,
ω( S)C[z]

∼= S as R-algebras.

6.4. Proof of Theorem 1.6.1

(1) has been proven in §5.
(2) follows from Corollary 2.5.2.
(3) Since SpecS is an algebraic fiber bundle over SpecR, all fibers are integral if and only if

the generic fiber is geometrically integral, i.e.,K is algebraically closed inL = Q(S). Assume
that this is the case.

Since ProjS̃ is an algebraic fiber bundle over SpecR, all fibers are integral if and only if
the generic fiber of the affine cone is geometrically integral. One may assume that R = K,
and one has to show that for any finite extension K 1/K in S̃, S̃ ⊗K K1 is a domain. This
is done by the same argument as in §5, taking into account the fact that (S ⊗K K1)[t] is a
domain.

6.5. Final remarks

(1) In the context of Corollary 2.5.2, one can deduce directly the homogeneous case
from the inhomogeneous case, as follows. Let P (y, . . . , y(n−1)) = 0 be a polynomial re-
lation of degree D with coefficients in R, which becomes homogeneous of degree d ≤ D
after specialization at z = ξ. Let Pd be the homogeneous part of degree d of P , and write
P = Pd + (z − ξ)Q. Then Q (resp. Pd) maps naturally to an element of S≤D = im(S̃≤D → S)

(resp. Sd = im(S̃d → S)). The quotient S≤D/Sd is a finitely generated differential R-mod-
ule, hence torsion-free since R is simple. Since (z − ξ)Q goes to 0 in S≤D/Sd, so does Q,
i.e., there is Qd homogeneous of degree d such that (Pd + (z − ξ)Qd)(y, . . . , y(n−1)) = 0.

(2) One question frequently asked by algebraic geometers regarding differential Galois
theory is the following: is there a “sheaf-theoretic version” valid over any smooth connected
algebraic C-variety X (not necessarily affine)? Here is an answer.

The generalized differential ring R should be replaced by (X, dX : OX → Ω1
X). Being

in characteristic 0 ensures that Ker dX is the constant sheaf C. Differential extensions S/R

should be replaced by (not necessarily smooth) morphismsY
f→ X together with a retraction
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ρ : Ω1
Y → f∗Ω1

X of the natural morphism f∗Ω1
X → Ω1

Y (assumed to be injective); whence a
derivation d = ρ ◦ dY : OY → f∗Ω1

X extending f−1dX .

Let M be a coherent OX -module with a (not necessarily integrable) connection. The
underlying module is locally free and the category of subquotients of finite direct sums
of M⊗i ⊗ ( M∨)⊗j is neutral Tannakian over C. The fiber at any closed point x is a fiber
functor ωx with values in VecC . The differential Galois group pointed at x isGx = Aut⊗ωx.
One constructs the torsor of solutions Σx as in the affine case; it is a torsor under the affine
X-group (Gx)X , and it admits a canonical structure of differential extension in the above
sense. All this is a straightforward modification of §2.2, 2.3, 2.4.

(3) We expect that a similar theory of solution algebras holds in characteristic p, provided
one uses Schmidt “iterated derivatives” or (in higher dimension) the ring of differential
operators in the sense of Grothendieck [12, 16.8].

We also expect a similar theory for difference equations, or mixed difference-differential
equations (for instance p-adic differential equations with Frobenius structure), and we even
expect a common framework with the above theory, using non-commutative bimodules Ω

as in [3], which unifies differential algebra and difference algebra. One should however pay
attention to the fact that simple difference rings may have zero divisors. In the definition of
(difference) solution algebras, one should then replace the condition that S is a domain by
the condition that it is contained in a simple difference algebra.

Acknowledgements. – I thank A. Pianzola for several useful discussions about torsors on
open subsets of the line (cf. 2.4.2), and S. Gorchinsky for a remark which led to a simplifica-
tion of the proof of Proposition 3.1.6.
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