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FINITENESS OF K3 SURFACES
AND THE TATE CONJECTURE

 M LIEBLICH, D MAULIK  A SNOWDEN

A. – Given a finite field k of characteristic p ≥ 5, we show that the Tate conjecture holds
for K3 surfaces over k if and only if there are only finitely many K3 surfaces defined over each finite
extension of k.

R. – Étant donné un corps k fini de caractéristique p ≥ 5, nous montrons que la conjecture
de Tate pour les surfaces K3 sur k est vérifiée si et seulement s’il existe un nombre fini de surfaces K3
définies sur chaque extension finie de k.

1. Introduction

Given a class of algebraic varieties, it is reasonable to ask if there are only finitely many
members defined over a given finite field. While this is clearly the case when the appropriate
moduli functor is bounded, matters are often not so simple. For example, consider the case
of abelian varieties of a given dimension g. There is no single moduli space parameterizing
them; rather, for each integer d ≥ 1 there is a moduli space parameterizing abelian varieties
of dimension g with a polarization of degree d. It is nevertheless possible to show (see [23,
Theorem 4.1], [14, Corollary 13.13]) that there are only finitely many abelian varieties over a
given finite field, up to isomorphism. Another natural class of varieties where this difficulty
arises is the case of K3 surfaces. As with abelian varieties, there is not a single moduli space
but rather a moduli space for each even integer d ≥ 2, parameterizing K3 surfaces with a
polarization of degree d.

In this paper, we consider the finiteness question for K3 surfaces over finite fields. Given
a K3 surface X defined over a finite field k of characteristic p, the Tate conjecture predicts
that the natural map

Pic(X)⊗Q` → H2
ét(Xk,Q`(1))Gal(k/k)

is surjective for ` 6= p. It admits many alternate formulations; for example, it is equivalent to
the statement that the Brauer group ofX is finite. We say thatX/k satisfies the Tate conjecture
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over some extension k′/k (resp. k) if the Tate conjecture holds for the base change Xk′ (resp.
for all base changes Xk′ with k′/k finite).

Our main result is that this conjecture is essentially equivalent to the finiteness of the set
of K3 surfaces over k. Precisely:

M T. – Let k be a finite field of characteristic p.

1. Assume p ≥ 3. There are only finitely many isomorphism classes of K3 surfaces over k
that satisfy the Tate conjecture over k.

2. Assume p ≥ 5. If there are only finitely many isomorphism classes of K3 surfaces over
the quadratic extension k′ of k then every K3 surface over k satisfies the Tate conjecture
over k′.

In particular, if p ≥ 5, the Tate conjecture holds for all K3 surfaces over k if and only if there
are only finitely many K3 surfaces defined over each finite extension of k.

As the Tate conjecture is known for K3 surfaces of finite height in characteristic at
least 5 [16], we obtain the following unconditional corollary:

C. – If p ≥ 5 then there are only finitely many isomorphism classes of K3 sur-
faces of finite height defined over k.

Our argument proceeds as follows. To obtain finiteness from Tate, it suffices to prove the
existence of low-degree polarizations on K3 surfaces over k. In order to do this, we use the
Tate conjecture in both `-adic and crystalline cohomology to control the possibilities of the
Néron-Severi lattice. For the other direction, we use the finiteness statement and the existence
of infinitely many Brauer classes to create a K3 surface with infinitely many twisted Fourier-
Mukai partners. Since this cannot happen in characteristic zero, we obtain a contradiction
by proving a lifting result. This argument does not rely on [16] (as it did in an earlier version
of this paper).

Notation. Throughout, k denotes a finite field of characteristic p and cardinality q = pf . We
fix an algebraic closure k of k.

Acknowledgments. We would like to thank Jean-Louis Colliot-Thélène, Daniel Huybrechts,
Abhinav Kumar, Keerthi Madapusi Pera, Matthias Schütt, Damiano Testa, Yuri Zarhin,
and the referees for many helpful comments and discussions. M.L. is partially supported
by NSF grant DMS-1021444, NSF CAREER grant DMS-1056129, and the Sloan Foun-
dation. D.M. is partially supported by a Clay Research Fellowship.

2. Tate implies finiteness

2.1. Discriminant bounds for the étale and crystalline lattices

In this section, we produce bounds on the discriminants of certain lattices constructed
from the étale and crystalline cohomologies of K3 surfaces over k. We begin by recalling
some terminology. Let A be a principal ideal domain. By a lattice over A, we mean a finite
free A module M together with a symmetric A-linear form (, ) : M ⊗A M → A. We say
that M is non-degenerate (resp. unimodular) if the map M → HomA(M,A) provided by the
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pairing is injective (resp. bijective). The discriminant of a lattice M , denoted disc(M), is the
determinant of the matrix (ei, ej), where {ei} is a basis for M as an A-module; it is a well-
defined element ofA/(A×)2. The latticeM is non-degenerate (resp. unimodular) if and only
if its discriminant is non-zero (resp. a unit). Note that the valuation of disc(M) at a maximal
ideal of A is well-defined.

We will need a simple lemma concerning discriminants:

L 2.1.1. – Let A be a discrete valuation ring with uniformizer t. Let M be a lattice
over A and let M ′ ⊂ M be an A-submodule such that M/M ′ has length r as an A-module.
Regard M ′ as a lattice by restricting the form from M . Then disc(M ′) = t2r disc(M) up to
units of A.

Proof. – Let e1, . . . , en be a basis forM and let f1, . . . , fn be a basis forM ′. LetB be the
matrix (ei, ej) and let B′ be the matrix (fi, fj). Thus disc(M) = detB and disc(M ′) = detB′.
Let C ∈ Mn(A) be the change of basis matrix, so that fi = Cei. Then det(C) = tr up to
units of A. As B′ = CtBC, the result follows.

The following general result on discriminant bounds will be used several times in what
follows.

P 2.1.2. – Fix a positive integer r and a non-negative even integer w. There
exist constants C and C ′, depending only on r, w and q, with the following property.

LetE be a finite unramified extension of Q` with ring of integers O. LetM be a lattice over O
of rank r equipped with an endomorphism φ. Let v0 be the `-adic valuation of disc(M). Assume
that the characteristic polynomial of φ belongs to Z[T ], that all eigenvalues of φ on M [1/`] are
Weil q-integers of weight w and that qw/2 is a semi-simple eigenvalue of φ on M [1/`].

1. If ` > C then the discriminant Mφ=qw/2 has `-adic valuation at most v0.
2. The discriminant of Mφ=qw/2 has `-adic valuation at most C ′ + v0.

Proof. – We first define the constants C and C ′. Let W be the set of all Weil q-integers of
weightw and degree at most r. It is easy to bound the coefficients of the minimal polynomial
of an element of W , and so one sees that W is a finite set. Let S denote the set of elements
of Z[T ] which are monic of degree r and whose roots belong to W . Clearly, S is a finite set;
enumerate its elements as f1(T ), . . . , fm(T ). We can factor each fi(T ) as gi(T )hi(T ), where
gi(T ) is a power of T − qw/2 and hi(T ) is an element of Z[T ] which does not have qw/2 as a
root. For each i, pick rational polynomials ai(T ) and bi(T ) such that

ai(T )gi(T ) + bi(T )hi(T ) = 1.

Let Q be the least common multiple of the denominators of the coefficients of ai(T )

and bi(T ). Let s be the maximal integer such that `s divides Q, for some prime `, and let `0
be the largest prime dividing Q. We claim that we can take C = `0 and C ′ = 2rs.

We now prove these claims. Thus let M and φ be given, and put N = Mφ=qw/2 . The
characteristic polynomial of φ belongs to S, and is thus equal to fi(T ) for some i. Put
M1 = hi(φ)M andM2 = gi(φ)M . One easily sees thatM1⊕M2 is a finite index O-submodule
of M and that M1 and M2 are orthogonal. Furthermore, M1 is contained in N , since
qw/2 is a semi-simple eigenvalue of φ, and has finite index.
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Suppose that ` > C. Then ai(T ) and bi(T ) belong to O[T ] and so M = M1 ⊕M2. Thus
disc(M) = disc(M1) disc(M2). It follows that disc(M1) has `-adic valuation at most v0. As
N and M1 are saturated in M and M1 ⊂ N , we have N = M1, and so (1) follows.

Now suppose that ` is arbitrary. Then `sai(T ) and `sbi(T ) belong to O[T ]. It follows
that M1 ⊕M2 contains `sM , and so M/(M1 ⊕M2) has length at most rs as an O-module.
Lemma 2.1.1 shows that disc(M1) disc(M2) divides `2rs disc(M), and thus has `-adic val-
uation at most 2rs + v0 = C ′ + v0. The lemma also shows that disc(N) divides disc(M1),
which proves (2).

Let X be a K3 surface over k. For a prime number ` 6= p put

M`(X) = H2
ét(Xk,Z`), N`(X) = M`(X)φ=q.

Then M`(X) is a free Z`-module of rank 22, and the cup product gives it the structure of
a unimodular lattice. The space M`(X) admits a natural Z`-linear automorphism φ, the
geometric Frobenius element of Gal(k/k). The map φ does not quite preserve the form, but
satisfies (φx, φy) = q2(x, y). It is known [4] that the action of φ on M`(X) is semi-simple.
We give N`(X) the structure of a lattice by restricting the form from M`(X).

P 2.1.3. – There exist constants C1 = C1(k) and C2 = C2(k) with the
following properties. Let X be a K3 surface over k and let ` 6= p be a prime number. Then

1. For ` > C1, the discriminant of N`(X) has `-adic valuation zero.
2. The discriminant of N`(X) has `-adic valuation at most C2.

Proof. – This follows immediately from Proposition 2.1.2 with r = 22 andw = 2, applied
to M = M`(X). Note that v0 = 0.

We also need a version of the above result at p. Let W = W (k) be the Witt ring of k. Put

Mp(X) = H2
cris(X/W ), Np(X) = Mp(X)φ0=p.

Then Mp(X) is a free W -module of rank 22, and the cup product gives it the structure of
a unimodular lattice. The lattice Mp(X) admits a natural semilinear automorphism φ0, the
crystalline Frobenius. The map φ = φf0 is W -linear (where q = pf ). We have (φ0x, φ0y) =

p2φ0((x, y)). (Note: the φ0 on the right is the Frobenius on W .) Since φ0 is only semi-linear,
Np(X) is not aW -module, but a Zp-module. We giveNp(X) the structure of a lattice via the
form on Mp(X).

We say that an eigenvalue α of a linear map is semi-simple if the α-eigenspace coincides
with the α-generalized eigenspace. We now come to the main result at p:

P 2.1.4. – There exists a constant C3 = C3(k) with the following property.
Let X be a K3 surface over k. Assume that q is a semi-simple eigenvalue of φ on Mp(X)[1/p].
Then the discriminant of Np(X) has p-adic valuation at most C3.

Proof. – Let X be given, and put N ′ = Mp(X)φ=q, so that Np(X) = (N ′)φ0=p.
Proposition 2.1.2, with r = 22 and w = 2, bounds the p-adic valuation of disc(N ′) (as a
lattice overW ) in terms of k; in fact, the produced bound is the numberC2 from the previous
proposition. The following lemma (which defines a constant C4) now shows that the p-adic
valuation of disc(Np(X)) is bounded by C3 = C2f + 44C4f .
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L 2.1.5. – There exists a constant C4 = C4(k) with the following property. Let N ′

be a lattice over W of rank n. Let φ0 be a semi-linear endomorphism of N ′ satisfying φf0 = q

and (φ0x, φ0y) = p2φ0((x, y)), and put N = (N ′)φ0=p. Then vp(disc(N)) is at most
fvp(disc(N ′)) + 2C4nf .

Proof. – Let g(T ) = T − p and let h(T ) = (T f − q)/(T − p), two monic polynomials
in Zp[T ]. Pick polynomials a(T ) and b(T ) in Qp[T ] such that

a(T )g(T ) + b(T )h(T ) = 1.

Let r be such that pra(T ) and prb(T ) belong to Zp[T ]. We claim that we can take C4 = r.
Thus letN ′ with φ0 be given. Let L′ beN ′, regarded as a Zp-lattice with pairing 〈, 〉 given

by 〈x, y〉 = trW/Zp(x, y). We have rk(L′) = fn and disc(L′) = N(disc(N ′)), where N is the
norm fromW to Zp. We regard φ0 as a linear map of L′. As such, it is semi-simple (when p is
inverted) with minimal polynomial T f − q. The identity 〈φ0x, φ0y〉 = p2〈x, y〉 holds. Let L
be the p eigenspace of φ0, regarded as a sublattice of L′. Then L and N are the same subset
of N ′, but the form on L is that on N scaled by f . It follows that disc(N) divides disc(L).

Put L1 = h(φ0)L′ and L2 = g(φ0)L′. Then L1 and L2 are orthogonal under 〈, 〉 and
L1 ⊕ L2 has index at most pfnr in L′. It follows from Lemma 2.1.1 that disc(L1) divides
p2fnr disc(L′). Since L1 is contained in L, we find that disc(L) divides p2fnr disc(L′) as
well. Finally, we see that disc(N) divides p2fnrN(disc(N ′)), and so vp(disc(N)) is bounded
by 2fnr + fvp(discN ′).

R 2.1.6. – As far as we are aware, it is not known if the action ofφ onMp(X)[1/p]

is semi-simple. See Corollary 7.5 of [18] for a partial result. However, for K3 surfaces which
satisfy the Tate conjecture, semi-simplicity is known, and can be easily deduced from the
aforementioned result of Ogus.

2.2. Controlling the Néron–Severi lattice

Let X be a K3 surface over k. Write NS(X) for the Néron-Severi group of X, which is a
lattice (over Z) under the intersection pairing. The main result of this section is the following:

P 2.2.1. – There exists a finite set L = L (k) of lattices over Z with the
following property: ifX is a K3 surface over k which satisfies the Tate conjecture (over k) then
NS(X) is isomorphic to a member of L .

L 2.2.2. – Let X be a K3 surface over k that satisfies the Tate conjecture and let
` 6= p be a prime. Then the map

c1 : NS(X)⊗ Z` → N`(X)(1)

is an isomorphism.

Proof. – The Kummer sequence on Xk gives a short exact sequence

0→ NS(Xk)⊗ Z/`nZ→ H2
ét(Xk,Z/`

nZ(1))→ Br(Xk)[`n]→ 0.

Taking the inverse limit over n, we obtain an exact sequence

0→ NS(Xk)⊗ Z` → H2
ét(Xk,Z`(1))→ T`(Br(Xk))→ 0,
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where T` here denotes the Tate module. The first map above is c1. Since the `-adic Tate
module of any abelian group has no `-torsion, we see that the image of NS(Xk) ⊗ Z`
in H2

ét(Xk,Z`(1)) is saturated. As NS(X) is saturated in NS(Xk), it follows that the image
of the map

c1 : NS(X)⊗ Z` → N`(X)(1)

is saturated. Since X satisfies the Tate conjecture, the above map is an isomorphism when
` is inverted. From saturatedness, it is therefore an isomorphism without ` inverted.

R 2.2.3. – The Chern class map appearing in the statement of the lemma may
look odd, as NS(X) carries no Galois action but it appears as if N`(X)(1) does. However,
one should regardN`(X) as carrying an action by the inverse of the cyclotomic character (as
it is a φ = q eigenspace), and so the Tate twist cancels this action.

In the following lemma and proof, let {1} denote the Tate twist in crystalline and de Rham
cohomology.

L 2.2.4. – Let X be a K3 surface over k which satisfies the Tate conjecture. Then
the map

c1 : NS(X)⊗ Zp → Np(X){1}

is an isomorphism.

Proof. – Since X satisfies the Tate conjecture, c1 is an isomorphism after inverting p. It
is therefore enough to show that the image of NS(X) ⊗ Zp in H2

cris(X/W ){1} is saturated,
or equivalently, that

c1 : NS(X)⊗ Z/pZ→ H2
cris(X/W ){1} ⊗ Z/pZ = H2

dR(X/k){1}

is injective. This follows from [5, Remark 3.5].

We now return to the proof of the proposition.

Proof of Proposition 2.2.1. – LetX be a K3 surface over k satisfying the Tate conjecture.
Let ` 6= p be a prime number. By Lemma 2.2.2, NS(X) ⊗ Z` is isomorphic, as a lattice,
toN`(X)(1). SinceN`(X)(1) is isomorphic, as a lattice, toN`(X), we find that disc(NS(X))

and disc(N`(X)) have the same `-adic valuations. Similarly, appealing to Lemma 2.2.4, we
find that disc(NS(X)) and disc(Np(X)) have the same p-adic valuations. Applying Propo-
sitions 2.1.3 and 2.1.4, we find that |disc(NS(X))| is at most pC3

∏
`≤C1

`C2 . As there are
only finitely many isomorphism classes of lattices of a given rank and discriminant [3, Ch. 9,
Thm. 1.1], it follows that there are only finitely many possibilities for NS(X) (up to isomor-
phism).
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2.3. Constructing low-degree ample line bundles

We assume for the rest of §2 that p ≥ 3. Let K be the extension of k of degree

6 983 776 800 = 25 · 33 · 52 · 7 · 11 · 13 · 17 · 19.

The fieldK is relevant for the following reason (explained below): ifX is a K3 surface over k
then any line bundle on Xk descends to one on XK . The purpose of this section is to prove
the following proposition:

P 2.3.1. – There exists a constant C5 = C5(k) with the following property: if
X is a K3 surface over k that satisfies the Tate conjecture over K then X admits an ample line
bundle of degree at most C5 defined over K.

We begin with a lemma.

L 2.3.2. – Let X and X ′ be K3 surfaces over algebraically closed fields such that
NS(X) and NS(X ′) are isomorphic as lattices. Then the sets of degrees of ample line bundles
on X and X ′ coincide.

Proof. – Put N = NS(X) and NR = N ⊗R. Let ∆ be the set of elements δ in N such
that (δ, δ) = −2. For δ ∈ ∆, let rδ : NR → NR be the reflection given by rδ(x) = x+(x, δ)δ.
Let Γ be the group generated by the rδ, with δ ∈ ∆. Finally, let V be the set of elements x
in NR such that (x, x) > 0 and (x, δ) 6= 0 for all δ ∈ ∆. Then V is an open subset of NR

and the group±Γ acts transitively on the set of connected components of V [17, Prop. 1.10].
Furthermore, there exists a unique connected component V0 of V such that an element ofN
is ample if and only if it lies in V0 [17, p. 371].

Let N ′, etc., be as above but for X ′. Choose an isomorphism of lattices i : N → N ′.
Clearly, i induces a bijection ∆ → ∆′ and a homeomorphism V → V ′. Thus i(V0) is some
connected component of V ′. We can find an element γ of±Γ′ such that γ(i(V0)) = V ′0 . Thus,
replacing i by γi, we can assume that i(V0) = V ′0 . It then follows that i induces a bijection
between the set of ample elements inN and the set of ample elements inN ′. Since i preserves
degree, this proves the lemma.

C 2.3.3. – For every lattice L there is an integer d(L) with the following prop-
erty: if X is a K3 surface over an algebraically closed field such that NS(X) is isomorphic to L
then X admits an ample line bundle of degree d(L).

We now return to the proof of Proposition 2.3.1.

Proof of Proposition 2.3.1. – Let X be a K3 surface over k. The Frobenius element φ of
the absolute Galois group of k acts on NS(Xk) as a finite order endomorphism. It is therefore
semi-simple. Furthermore, since its characteristic polynomial has degree at most 22 and has
at least one eigenvalue equal to 1, its remaining eigenvalues which are roots of unity of degree
at most 21. At this point, we use the defining property of K. By construction, any integer m
with ϕ(m) ≤ 21 must divide N = deg[K : k]. It follows that φN = 1 holds. In particular, we
see that NS(Xk) = NS(XK).

Let L = L (K) be the set of lattices provided by Proposition 2.2.1. Let C5 be the
maximum value of d(L) for L ∈ L , where d(L) is as defined in Corollary 2.3.3. Let X be
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a K3 surface over k satisfying the Tate conjecture overK. Then NS(XK), and thus NS(Xk),
belongs to L . It follows that Xk, and thus XK , admits an ample line bundle of degree at
most C5. This proves the proposition.

2.4. Finiteness of twisted forms

Recall that a twisted form of a K3 surfaceX/k is a K3 surface over k which is isomorphic
to X over k. The purpose of this section is to establish the following result.

P 2.4.1. – LetX be a K3 surface over the finite field k. ThenX has only finitely
many twisted forms, up to isomorphism.

The set of isomorphism classes of twisted forms of X is in bijection with the non-abelian
cohomology set H1(Gal(k/k),Autk(Xk)), and so to prove the proposition it suffices to
show finiteness of this set. We begin with two lemmas. In what follows, Ẑ denotes the
profinite completion of Z and φ a topological generator. Suppose Ẑ acts continuously on
a discrete group E. A 1-cocycle for this action is given by an element x ∈ E such that
xxφ · · ·xφn−1

= 1 for all sufficiently divisible integers n. Moreover, cocycles represented by x
and y are cohomologous if there exists an element h ∈ E such that x = h−1yhφ

L 2.4.2. – Let G and G′ be discrete groups on which Ẑ acts continuously and
let f : G→ G′ be a Ẑ-equivariant homomorphism whose kernel is finite and whose image has
finite index. If H1(Ẑ, G′) is finite then H1(Ẑ, G) is finite.

Proof. – Let x1, . . . , xn ∈ G′ be cocycles representing the elements of H1(Ẑ, G′) and
y1, . . . , yj ∈ G′ representatives for the right cosets of f(G) in G′. Given a cocycle x ∈ G,
there is i and h ∈ G′ such that

h−1f(x)hφ = xi.

Choosing j and z ∈ G such that h = f(z)yj yields

y−1
j f(z)−1f(x)f(z)φyφj = xi,

whence
f(z−1xzφ) = yjxi(y

φ
j )−1.

Since f has finite kernel, each element yjxi(y
φ
j )−1 has finitely many preimages in G, and we

see that the union of this finite set of finite sets contains cocycles representing all of H1(Ẑ, G),
as desired.

L 2.4.3. – LetG be a discrete group and let Ẑ→ G be a continuous homomorphism;
regard Ẑ as acting on G by inner automorphisms via the homomorphism. Assume that G has
only finitely many conjugacy classes of finite order elements. Then H1(Ẑ, G) is finite.

Proof. – Let g be the image of φ under the map Ẑ → G. Continuity forces g to have
finite order. Because Ẑ acts by conjugation, the cocycle condition for an element x ∈ G

simply amounts to xg having finite order, and x and y are cohomologous if xg and yg are
conjugate. We thus find that multiplication by g gives a bijection between H1(Ẑ, G) and the
set of conjugacy classes of finite order elements of G. This completes the proof.

We now prove the proposition.
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Proof of Proposition 2.4.1. – Let N = NS(Xk) and let N ′ ⊂ NR be the nef cone. Let G′

be the group of automorphisms of the lattice N which map N ′ to itself, let G = Autk(Xk),
let G◦ = Autk(Xk), and let Γ = Aut(k/k) ∼= Ẑ. Since the natural action of G◦ on N

preserves N ′, there are homomorphisms

Γ→ G◦ → G′.

In addition, conjugation by the image of φ inG◦ preservesG and gives the natural Frobenius
action on the automorphism group. Thus, the natural map

f : G→ G′

is Ẑ-equivariant with respect to the natural action on G and the conjugation action on G′.
The map f has finite kernel and its image has finite index by [11, Thm 6.1]. Furthermore,
G′ has finitely many conjugacy classes of finite order elements (see [21, §6]). The above two
lemmas thus imply that H1(Γ, G) is finite, which completes the proof.

2.5. Proof of Main Theorem (1)

We now complete the proof of the first part of the main theorem. Let Md be the stack
over k of pairs (X,L) where X is a K3 surface and L is a polarization of degree d. It follows
from Artin’s representability theorem thatMd is Deligne–Mumford and locally of finite type
over k; since the third power of any polarization is very ample [19], the stack is of finite type.
Let C5 be the constant produced by Proposition 2.3.1. Consider the diagram

C5∐
d=1

Md(K)
α // {isomorphism classes of K3’s over K}

{isomorphism classes of K3’s over k satisfying Tate over K}

β

OO

By the definition of C5, any element in the image of β is also in the image of α. Since the
domain of α is finite, it follows that the image of β is finite. Any two elements of a fiber of β
are twisted forms of each other, and so the fibers of β are finite by Proposition 2.4.1. We thus
find that the domain of β is finite, which completes the proof.

3. Finiteness implies Tate

3.1. Twisted sheaves

We use the notions and notation from [8], [9], and the references therein. Recall the basic
definition. Fix a µr-gerbe over an algebraic space Z → Z.

D 3.1.1. – A sheaf F of (left) OZ -modules is λ-fold Z -twisted if the natural
left inertial µr-action µr ×F → F of a section ρ of µr is scalar multiplication by ρλ.

N 3.1.2. – Given a µn-gerbe Z → Z, write Dtw(Z ) for the derived category
of perfect complexes of Z -twisted sheaves and D−tw(Z ) for the derived category of perfect
complexes of (−1)-fold Z -twisted sheaves.
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3.2. `-adic B-fields

Let Z be a separated scheme of finite type over the field k. The following is an “`-adi-
fication” of a notion familiar from mathematical physics. For the most part, this rephrases
well-known results in a form that aligns them with the literature on twisted Mukai lattices,
to be developed `-adically in the next section.

D 3.2.1. – An `-adic B-field on Z is an element

B ∈ H2
ét(Z,Q`(1)).

We can write any B-field as α/`n with

α ∈ H2
ét(Z,Z`(1))

a primitive element. When we write B in this form we will always assume (unless noted
otherwise) that α is primitive.

D 3.2.2. – Given a B-field α/`n on Z, the Brauer class associated to B is the
image of α under the map

H2
ét(Z,Z`(1))→ H2

ét(Z,µ`n)→ Br(Z)[`n].

N 3.2.3. – Givenα ∈ H2
ét(Z,Z`(1)) we will write αn for the image in H2

ét(Z,µ`n).
We will use brackets to indicate the map H2

ét(Z,µ`n)→ Br(X).

Thus, the Brauer class associated to the B-field α/`n is written [αn].

L 3.2.4. – Given α ∈ H2
ét(Z,Z`(1)) and positive integers n, n′, we have that

`n[αn+n′ ] = [αn′ ] ∈ Br(Z).

Proof. – Consider the commutative diagram of Kummer sequences

1 // µ`n+n′ //

`n

��

Gm
`n+n′

//

`n

��

Gm
//

id

��

1

1 // µ`n′ // Gm
`n
′
// Gm

// 1.

The induced map
`n : H2

ét(Z,µ`n+n′ )→ H2
ét(Z,µ`n′ )

is identified with the reduction map

H2
ét(Z,Z`(1)⊗Z/`n+n′Z)→ H2

ét(Z,Z`(1)⊗Z/`n
′
Z),

so it sends αn+n′ to αn′ . On the other hand, `n acts by multiplication by `n on H2
ét(Z,Gm).

The result follows from the resulting diagram of cohomology groups.

L 3.2.5. – The Brauer classes associated to `-adic B-fields on X form a subgroup

BrB` (Z) ⊂ Br(Z)(`)

of the `-primary part of the Brauer group of Z.
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Proof. – Let α/`n and β/`m be B-fields with Brauer classes [αn] and [βm]. By
Lemma 3.2.4 we have that [αn] = `m[αn+m] and [βm] = `n[βn+m]. Let γ = `mα+ `nβ. We
have that

[γn+m] = `m[αn+m] + `n[βn+m] = [αn] + [βm],

as desired.

Given a smooth projective geometrically connected algebraic surface X over k, the inter-
section pairing defines a map

H2
ét(X,Z`(1))×H2

ét(X,Z`(1))→ H4
ét(Xk,Z`(2)) = Z`.

There is a cycle class map

Pic(X)⊗Z` → H2
ét(X,Z`(1)).

Write P (X,Z`) for its image, which is a Z`-sublattice.

D 3.2.6. – The `-adic transcendental lattice of X is

T (X,Z`) := P (X,Z`)
⊥ ⊂ H2

ét(X,Z`(1)).

L 3.2.7. – The map

β : T (X,Z`)⊗Q`/Z` → BrB` (X), α⊗ (1/`n) 7→ [αn]

is surjective with finite kernel. It is an isomorphism if ` - disc(Pic(X)).

Proof. – The map β extends to a map

β : H2
ét(X,Z`(1))⊗Q` → Br`(X)

by sending α/`n to the element [αn] as above. One easily checks that this map is well-defined,
and it is surjective by the definition of Br`(X). Moreover, by construction

P (X,Z`)⊗Q` + H2
ét(X,Z`(1))

lies in the kernel of β. Since

H2
ét(X,Z`(1))⊗Q` = P (X,Z`)⊗Q` ⊕ T (X,Z`)⊗Q`,

we see that the map defined in the statement of the lemma is surjective. It remains to prove
the assertions about its kernel.

Suppose α/`n maps to 0 in Br(X). We have that [αn] = 0, so that

αn ∈ Pic(X)/`n Pic(X) ⊂ H2
ét(X,µ`n).

Taking the cohomology of the exact sequence

0→ Z`(1)→ Z`(1)→ µ`n → 0,

we see that
α ∈ P (X,Z`) + `n H2

ét(X,Z`(1)).

Since H2(X,Z`(1)) is unimodular, P (X,Z`) ⊕ T (X,Z`) contains `νH2(X,Z`(1)), where
ν is the `-adic valuation of disc(Pic(X)). It follows that

(P (X,Z`) + `nH2
ét(X,Z`(1))) ∩ T (X,Z`) ⊂ `n−νT (X,Z`).
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We thus see that α ∈ `n−νT (X,Z`), and so `ν kills α/`n as an element of T (X,Z`)⊗Q`/Z`.
It follows that the kernel of β is contained in T (X,Z`)⊗ 1

`νZ`/Z`, which is always finite and
is zero when ν = 0.

P 3.2.8. – If X is a smooth projective surface over the finite field k of charac-
teristic p then the following are equivalent:

1. Br(X) is infinite,
2. BrB` (X) 6= 0 for all `,
3. BrB` (X) 6= 0 for some `,
4. T (X,Z`) 6= 0.

Proof. – By [13], Br(X) is infinite if and only if Br(X)(`) is infinite for one ` if and only
if Br(X)(`) is infinite for all `. To prove the proposition it suffices to prove that BrB` (X) 6= 0

if Br(X)(`) is infinite. So suppose αn ∈ Br(X)(`n) is a sequence of classes. Choose lifts

α̃n ∈ H2
ét(X,µ`n)

for each n. Let β0 = 0 ∈ H2
ét(X,µ`0). Assume we have constructed β1, . . . , βm, βi ∈ H2

ét(X,µ`i)

such that `βi+1 = βi and `jα̃m+j = βm for all j > 0. The group H2
ét(X,µ`m+1) is finite, so

there is one element βm+1 that is a multiple of infinitely many α̃n such that `βm+1 = βm.
Replacing the sequence of α̃n with the subsequence mapping to βm+1, we see that we can
proceed by induction, yielding an element

β ∈ H2
ét(X,Z`(1))

giving infinitely many distinct elements of BrB` (X).

3.3. Twisted `-adic Mukai lattices

Fix a K3 surface X over the field k and an element α ∈ T (X,Z`). Fix a B-field α/r with
r = `n for somen. Note that becauseX is simply connected it follows from the Leray spectral
sequence that

H4(X,Z`(2)) = H4(Xk,Z`(2)) = Z`.

D 3.3.1. – The `-adic Mukai lattice of X is the free Z`-module

Hét(X,Z`) := H0
ét(X,Z`)⊕H2

ét(X,Z`(1))⊕H4
ét(X,Z`(2))

with the intersection pairing

(a, b, c) · (a′, b′, c′) = bb′ − ac′ − a′c ∈ H4
ét(X,Z`(2)) = Z`.

The algebraic part of the cohomology gives a sublattice

CH(X,Z`) = Z` ⊕ P (X,Z`)⊕ Z`.

It is easy to see that
CH(X,Z`)

⊥ = T (X,Z`),

as sublattices of Hét(X,Z`). We will write Hét(X,Q`) (resp. CH(X,Q`), resp. T (X,Q`))
for Hét(X,Z`)⊗Z` Q` (resp. CH(X,Z`)⊗Q`), resp. T (X,Z`)⊗Q`). The lattice CH(X,Z`)

has an integral structure:
CH(X,Z) = Z⊕ Pic(X)⊕ Z
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such that CH(X,Z)⊗Z` = CH(X,Z`). We will also write CH(X,Q) for CH(X,Z)⊗Q.
Following [22], we consider the map

T−α/r : Hét(X,Z`)→ Hét(X,Q`)

that sends x to the cup product x ∪ e−α/r.

D 3.3.2. – The α/r-twisted Chow lattice of X is

CHα/r(X,Z`) := (T−α/r)
−1(CH(X,Q`)).

There is also an integral structure on the twisted Chow lattice.

L 3.3.3. – Suppose α is primitive. Let

CHα/r(X,Z) = {(ar,D + aα, c) | a, c ∈ Z, D ∈ Pic(X)}

⊂ T−1
−α/r(CH(X,Q)) ⊂ CHα/r(X,Z`).

The natural map
CHα/r(X,Z)⊗Z` → CHα/r(X,Z`)

is an isomorphism.

Proof. – A basis for CHα/r(X,Z) is given by (r, α, 0), the vectors (0, b, 0) where b ranges
over a basis for Pic(X), and (0, 0, 1). Since Pic(X) is a lattice, we see that these vectors
all remain linearly independent over Z` (inside Hét(X,Z`)), so that the displayed scalar
extension map is injective. To see surjectivity, suppose (x, y, z) ∈ Hét(Z,Z`) is an element
such that e−α/r ∪ (x, y, z) ∈ CH(X,Q`). Computing the components of the cup product
shows that (x, y, z) must satisfy the conditions: x, y ∈ Z` (via the natural identifications
H0(X,Z`) = Z` and H4(X,Z`(2)) = Z`) and−αx/r+y ∈ Pic(X)⊗Q`. Sinceα is primitive
and orthogonal to Pic(X) and y ∈ H2(X,Z`), we see that we must have x = ar for some a
and then−aα+ y ∈ Pic(X)⊗Z`, so y = aα+D for someD ∈ Pic(X,Z`). This shows that
the displayed map is surjective.

The (integral) twisted Chow lattice is a natural recipient of Chern classes for twisted
sheaves. Let π : X → X be a µr-gerbe representing the class−[αn] associated to theB-field
−α/r, r = `n. Suppose P is a perfect complex of X -twisted sheaves of positive rank.

D 3.3.4. – The Chern character of P is the unique element

chX (P) ∈ CH(X,Q)

such that
rk chX (P) = rk P

and

chX (P)r = ch

(
Rπ∗(P

L
⊗ r)

)
∈ CH(X,Q).

R 3.3.5. – A less ad hoc approach is to define rational Chern classes using a split-
ting principle, etc. This can be done and yields the same result (and works for complexes of
rank 0). In particular, the Chern character defined here satisfies the Riemann-Roch theorem
in the following sense: given two perfect complexes P and Q of X -twisted sheaves, we can
compute χ(Hom(P,Q)) as deg(ch(P∨) · ch(Q) · TdX).
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D 3.3.6. – Given a perfect complex P of X -twisted sheaves as above, we
define the twisted Mukai vector of P to be

vα/r(P) := eα/r chX (P)
√

TdX .

L 3.3.7. – Given perfect complexes P and Q of X -twisted sheaves as above, the
following hold:

1. the element vα/r(P) lies in the integral subring CHα/r(X,Z),
2. we have that

χ(P,Q) = −vα/r(P) · vα/r(Q).

Proof. – To see the integrality, we may assume that the base field is algebraically closed.
Since the calculation of vα/r factors through numerical K-theory, it is enough to show
the analogous result for a class in the integral (numerical) K-theory of twisted sheaves. In
particular, since X satisfies the resolution property [8, Corollary 2.2.7.21], we may assume
that P is a locally free X -twisted sheaf.

Given a sheaf F on X , write DefX,F for the deformation functor parametrizing pairs
of a deformation of X and a deformation of F over the induced deformation of X . By [10,
Lemma 5.2.8], there is a finite-colength subsheaf P ′ ⊂P such that the trace map

Ext2(P ′,P ′)→ H2(X,O)

is an isomorphism. Applying [8, Proposition 2.2.4.9], this implies that the morphism of
formal deformation functors

DefX,P′ → DefX,det P′

is formally smooth. In particular, P ′ is unobstructed on any infinitesimal deformation over
which its determinant deforms. Since X is smooth, the morphism of deformation functors

DefP/P′ → DefX

is also formally smooth.

Replacing P by P ′ ⊕P/P ′, we may thus assume that the functor

DefX,P → DefX,det P

is formally smooth. Note that det P is naturally the pullback of an invertible sheaf on X,
since P has rank divisible by `n (α being primitive by assumption). We can thus work
with the universal deformation of X over which a chosen ample divisor H and det P

remain algebraic, so that P also deforms. By Grothendieck Existence for twisted sheaves
[8, Lemma 2.3.1.3], the formal deformation of P algebraizes, so we see that we may prove
the result under the assumption that the base field has characteristic 0. Since the integrality
is invariant under algebraically closed base field extension, we may assume that the base field
is C. Lemma 3.1, Lemma 3.3, and Remark 3.2 of [22] then imply that vα/r(P) has precisely
the form described in Lemma 3.3.3.
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To see the second statement, note that

−vα/r(P) · vα/r(Q) = deg

(
chX (P∨ L

⊗Q) TdX

)
= deg (ch(Rπ∗(RHom(P,Q)) TdX)

= χ(Rπ∗RHom(P,Q))

= χ(P,Q).

3.4. Moduli spaces of twisted sheaves

We recall the essential details of the moduli theory of twisted sheaves on K3 surfaces that
we will need, building on the foundational work in [15]. The reader can consult [22] for a
development of a more general theory using a stack-free formulation of the notion of twisted
sheaf. In particular, we only consider the case in which the rank equals the order of the Brauer
class in order to simplify the exposition; [22] contains the general theory (over C).

Fix a K3 surface X over k, α/`n a primitive `-adic B-field, and v = (r,D, s) ∈ CHα/`n(X,Z)

a Mukai vector.

D 3.4.1. – The stack of simple X -twisted sheaves with Mukai vector v is the
stack MX (v) whose objects over a k-scheme T are pairs (F , φ), where F is a T -flat quasi-
coherent XT -twisted sheaf of finite presentation and φ : det F

∼→ O(D) is an isomorphism
of invertible sheaves on X , such that for every geometric point t→ T , the fiber sheaf Ft has
Mukai vector v and endomorphism ring κ(t).

Using Artin’s Representability Theorem, one can show that MX (v) is an Artin stack
locally of finite type over k. This is proven in Section 2.3.1 of [8].

P 3.4.2. – Given an `-adic B-field α/`n and a primitive Mukai vector

v ∈ CHα/`n(X,Z)

such that rk v = `n and v2 = 0, we have that

1. the stack MX (v) of simple X -twisted sheaves with Mukai vector v is a µ`n -gerbe over
a K3 surface MX (v);

2. the universal sheaf E on X ×MX (v) defines an equivalence of derived categories

Dtw(X )
∼→ D−tw(MX (v));

3. if there is a vector u ∈ CHα/`n(X,Z) such that (u · v, `) = 1 then the Brauer class of the
gerbe

MX (v)→MX (v)

is trivial. In particular, there is an equivalence of derived categories

D−tw(MX (v))
∼→ D(MX (v)).
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Proof. – It suffices to prove the first statement after extending scalars to k. First note that
since the sheaves in question have rank `n and the order of the Brauer class is `n, every object
is automatically stable with respect to any polarization: any subsheaf has rank either 0 or `n,
so stability conditions become vacuous. (See, e.g., Sections 2.2.5 and 3.2.4 of [8] for further
details.)

Let L be the second component of v. Tensoring the sheaves parametrized by MX (v) by
an invertible sheaf M results in an isomorphic moduli problem parametrizing sheaves with
determinant L⊗M⊗ `n . Thus, takingM ∈ Pic(X)\pPic(X) to be sufficiently ample we see
that we can assume that L is ample and not contained in pPic(X).

By Deligne’s theorem [5] and the smooth and proper base change theorems in étale
cohomology, there is a pointed connected smoothW (k)-scheme (M,m), a projective relative
K3 surface X → M , a class ṽ = (`n,L , c) ∈ CH( X), a class α̃ ∈ H2( X ,Z`(1)), and
an isomorphism between the fiber of the triple ( X , ṽ, α̃) over m and the triple (X, v, α).
Moreover, the geometric generic fiber of X → M has Picard group generated by the
restriction of L . We choose a Henselian discrete valuation ring R with algebraically closed
residue field dominatingM and centered atm and pull the family back toR. This results in a
triple ( XR, ṽR, α̃R) with closed fiber (X, v, α) (up to algebraically closed base field extension)
and geometric generic fiber having Picard number 1 and characteristic 0, on which v remains
primitive. Write H for the relative polarization from L and v for ṽR.

Consider the relative moduli space M (v) → SpecR parametrizing H-stable X -twisted
sheaves with Mukai vector v. Since any simple twisted sheaf with unobstructed determi-
nant is unobstructed, we know that M (v) is a µ`n -gerbe over a smooth algebraic space
M → SpecR. By Theorem 3.16 of [22], the geometric generic fiber of M over R is a K3 sur-
face. By Lemma 2.3.3.2 of [8], the algebraic space M is proper overR. It follows that M → R

is a relative K3 surface, as claimed. In particular, the special fiber is a K3 surface.

By the foundational results on Fourier-Mukai transforms (see, for example, [2]), the
second statement is equivalent to the adjunction maps

(3.4.2.1) O∆X → R(pr13)∗

(
L pr∗12 E

L
⊗L pr∗23 E ∨

)
and

(3.4.2.2) R(pr13)∗

(
L pr∗12 E

L
⊗L pr∗23 E ∨

)
→ O∆X

being quasi-isomorphisms. (See Proposition 3.3 of [12] for a proof without any assumptions
on the base field.) It thus suffices to prove the result after base change to k. In this case,
the proof proceeds precisely as in Section 5.2 (proof of Theorem 1.2) of [2]: one verifies the
classical criterion of Bridgeland for the Fourier-Mukai functor to give an equivalence of
derived categories.

We now return to the situation in which our base field is the original finite field k. To prove
the last statement, it suffices to prove the following lemma.

L 3.4.3. – Given a Mukai vector

u ∈ CHα/`n(X,Z),
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there is a perfect complex P of X -twisted sheaves such that

vα/`
n

(P) = u.

Let us accept the lemma for a moment and see why this implies the result. Write E for the
universal sheaf on

X ×MX (v),

and let p and q denote the first and second projections of that product, respectively. The
sheaf E is simultaneously X - and MX (v)-twisted. Given a complex P as in Lemma 3.4.3,
consider the perfect complex of MX (v)-twisted sheaves

Q := Rq∗(Lp
∗P∨ L

⊗E ).

The rank of this complex over a geometric point m of M is calculated by

χ(P,Em) = −vα/`
n

(P) · v = −u · v,

which is relatively prime to `. By standard results, we have that the Brauer class of MX (v)

satisfies
[MX (v)] ∈ Br(MX (v))[u · v].

On the other hand, MX (v)→MX (v) is a µ`n -gerbe, which implies that

[MX (v)] ∈ Br(MX (v))[`n].

Combining the two statements yields the result.
It remains to prove Lemma 3.4.3.

Proof of Lemma 3.4.3. – We know that

u = (ra,D + aα, c),

so we seek a perfect complex of rank ra, determinantD, and appropriate second Chern class.
By Theorem 4.3.1.1 of [9], there is a locally free X -twisted sheaf V of rank r. Moreover,
since any curve over a finite field has trivial Brauer group the restriction X ×X C has trivial
Brauer class, hence supports twisted sheaves LC of rank 1 by Lemma 3.1.1.8 of [9]. Since
detLC ∼= O(C), we see that we can get any determinant by adding (in the derived category)
a sum of shifts of invertible sheaves supported on curves. Finally, Wedderburn’s theorem
yields invertible twisted sheaves supported at any closed point p of X, and they have twisted
Mukai vector (0, 0, d), where d is the degree of p. By the Lang-Weil estimates [7, Corollary 3]
X has a 0-cycle of degree 1, so there is a sum of (shifted) twisted skyscraper sheaves giving the
desired second Chern class. Since any bounded complex on X is perfect (X being regular),
the lemma is proven.

This completes the proof of Proposition 3.4.2.

R 3.4.4. – We note that Theorem 4.3.1.1 of [9] is far from trivial; it relies on de
Jong’s period-index theorem and a careful analysis of the asymptotic geometry of moduli
spaces of twisted sheaves on surfaces (in particular, their asymptotic irreducibility). In this
sense, the last part of Proposition 3.4.2, giving a “numerical” criterion linking a twisted
derived category to an untwisted one, is the deepest. As we will see below, this equivalence is
the glue that holds this direction of the argument together.
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3.5. Twisted partners of K3 surfaces over a finite field

Fix a K3 surfaceX over the finite field k of characteristic p ≥ 5. Let k′/k be the quadratic
extension of k.

L 3.5.1. – Let V be a non-degenerate quadratic space over a field F and let φ be
a semi-simple element of the orthogonal group of V , all of whose eigenvalues belong to F . Then

disc(V φ=1 ⊕ V φ=−1) = (−1)n/2 disc(V ),

where n = dim(V )− dim(V φ=1 ⊕ V φ=−1).

Proof. – Write Vλ for the λ eigenspace of φ. Suppose λ 6= ±1. Since φ preserves the form,
elements of Vλ pair to zero with elements of Vµ unless µ = λ−1. Note that λ−1 6= λ. The
discriminant of Vλ ⊕ Vλ−1 is (−1)d/2, where d = dim(Vλ), as is easily seen by choosing a
basis for Vλ, taking the dual basis for Vλ−1 and computing the matrix of pairings. Now, list
the eigenvalues of φ, other than±1, as λ1, λ

−1
1 , . . . , λk, λ

−1
k . Then V decomposes as a direct

sum of V1, V−1 and the Vλi ⊕ Vλ−1
i

. We thus find that disc(V ) = disc(V1 ⊕ V−1)(−1)n/2, as
was to be shown.

L 3.5.2. – Suppose that Br(Xk′) is infinite, and let d be a rational number. Then there
are infinitely many primes ` for which T (Xk′ ,Z`) contains an element γ with γ2 = d.

Proof. – Let φ′ = φ2 be the Frobenius over k′. If ` does not divide the discriminant
of Pic(Xk′) then the discriminant of P (Xk′ ,Z`) is an `-adic unit, and we have an orthogonal
decomposition

(3.5.2.3) H2
ét(Xk,Z`(1))φ

′=1 = P (Xk′ ,Z`)⊕ T (Xk′ ,Z`).

By Proposition 2.1.3, the discriminant of the lattice H2
ét(Xk,Z`(1))φ

′=1 is an `-adic unit
for ` � 0. We thus find that the discriminant of T (Xk′ ,Z`) is an `-adic unit for ` � 0.
Therefore, if T (Xk′ ,Z`) has rank at least two then any element of Z` is of the form γ2 for
some γ ∈ T (Xk′ ,Z`). (This follows from [20, §IV.1.7, Prop. 4] and Hensel’s lemma.)

We must now handle the case where the transcendental lattice has rank one. Let E be
the number field generated by the eigenvalues of φ and the square roots of −1, d and the
discriminant of Pic(Xk′). Let `� 0 be a large prime that splits completely in E. Recall
from [4] that the action of φ on H2

ét(Xk,Q`(1)) is semi-simple. We have

H2
ét(Xk,Q`(1))φ

′=1 = H2
ét(Xk,Q`(1))φ=1 ⊕H2

ét(Xk,Q`(1))φ=−1.

Lemma 3.5.1 thus shows that the discriminant of H2
ét(Xk,Q`(1))φ

′=1 is±1, and therefore a
square in Q`; the same is true when we use Z` coefficients. Since the discriminant of Pic(Xk′)

is also a square in Q`, the Equation (3.5.2.3) shows that the discriminant of T (Xk′ ,Z`) is a
square in Q`. As in the previous paragraph, we know this discriminant is also a unit. Since
the transcendental lattice has rank 1, we thus find that it has an element α such that α2 = 1.
Since d is a square in Q`, we can find a multiple γ of α with γ2 = d.

Now assume that X is a K3 surface over the finite field k such that Br(X) is infinite.
Fix a primitive ample divisor D ∈ Pic(X) and choose an odd prime ` relatively prime
to disc Pic(X) andD2 and an element γ ∈ T (Xk′ ,Z`) such that γ2 = −D2. (This is possible
by the above lemma.)
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D 3.5.3. – Given a relative K3 surface Y → S, an invertible sheaf L ∈ Pic( Y),
and positive integers r and s, let

Sh Y/S(w)→ S

be the stack of simple locally free sheaves with Mukai vector w = (r,L , s) on each fiber.

R 3.5.4. – A family in this moduli problem over T consists of a locally free
sheaf V of constant rank on YT and an isomorphism

detV
∼→ L Y

T

such that for each geometric point t→ T , the restriction Vt has Mukai vector w.

L 3.5.5. – If w is primitive and w2 = 0 then Sh Y/S(w) is a µr-gerbe over a smooth
algebraic space Sh Y/S(w) of relative dimension 2 over S with non-empty geometric fibers.

Proof. – Non-emptiness of the geometric fibers is proven in Proposition 3.15 of [22].
The smoothness follows from the fact that obstruction theory of a locally free sheaf V with
determinant L on a fiber Ys is given by the kernel of the trace map

Ext2(V, V )→ H2
ét( Ys,O),

which vanishes when V is simple. The relative dimension is

dim Ext1(V, V ) = w2 + 2 = 2,

as desired.

When S = SpecL and the base field is understood, we will write simply Sh Y(w) and
Sh Y(w).

P 3.5.6. – In the above situation, there is an infinite sequence of pairs (γn,Mn)

such that

1. γn ∈ H2
ét(Xk′ ,µ`n) with [γn] of exact order `n in Br(Xk);

2. Mn is a K3 surface over k′ such that ρ(Mn) = ρ(Xk′) and

rkT (Mn,Z`) = rkT (Xk′ ,Z`);

3. given a gerbe Xn → Xk′ representing γn, we have thatMn is a fine moduli space of stable
Xn-twisted sheaves with determinant D;

4. for each n, there is a (classical) Mukai vector wn ∈ CH(Mn) such that
(a) a tautological sheaf E on Xn ×Mn induces an open immersion

Xn ↪→ ShMn(wn);

(b) given a complete dvrR with residue field k′′ containing k′ and a relative K3 surface
M over R with M⊗R k′′ = Mn⊗k′ k′′ such that Pic( M) = Pic(Mn), there is a
relative K3 surface X → SpecR such that X ⊗R k′′ = X, a µ`n -gerbe X → X
such that X⊗RK = Xn, and a locally free X × M-twisted sheaf E such that
E⊗R k′′ = E . For any inclusion R ↪→ C, the base changed family (XC, MC,EC)

yields a twisted Fourier-Mukai partnership

( XC, [XC]) ∼ MC,

where [XC] ∈ Br( XC) is a Brauer class of exact order `n.
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Proof. – Consider the Mukai vector

vn := (`n, γ +D, 0) ∈ CHγ/`n(Xk′ ,Z).

We have that

v2
n = γ2 +D2 = 2q2 +D2 = 0

and

vn · (`n, γ, 0) = γ2 = 2q2 = −D2 6≡ 0 mod `.

It is easy to see that γ is primitive. Consider the diagram

0 // Pic(Xk′)⊗Z` //

��

H2(Xk′ ,Z`(1)) //

��

T` Br(Xk′) //

��

0

0 // Pic(Xk)⊗Z` // H2(Xk,Z`(1)) // T` Br(Xk) // 0,

where T` denotes “`-adic Tate module”.

We claim that the left square is Cartesian. Indeed, it follows from the Hochschild-Serre
spectral sequence that the middle vertical arrow identifies the top group with the Frobenius-
invariants in the bottom group. Similarly, since the Brauer obstruction to the existence of
invertible sheaves on proper varieties over finite fields is trivial, the left vertical arrow is also
the group invariants. But the invariants in a submodule are just the intersection with the
ambient invariants, showing that the square is Cartesian. It follows that for each n, the image
of γn in Br(Xk) has order exactly `n, as claimed.

Let Xn be a gerbe representing −γn (see Notation 3.2.3 for the definition of γn in terms
of γ). Applying Proposition 3.4.2, we have that MXn

(vn) is a µ`n -gerbe over a K3 sur-
face Mn whose Brauer class is killed by

vn · (`n, γ, 0) = −D2,

hence is trivial. This yields an equivalence

Dtw(Xn)
∼→ D(Mn).

Finally, the universal sheaf E on Xn ×MXn
(vn) induces an isometry

Hét(Xk′ ,Q`)
∼→ Hét(Mn,Q`)

that restricts to an isometry

CH(Xk′ ,Q`)
∼→ CH(Mn,Q`)

(see Section 4.1.1 of [22] for the proof, written using Yoshioka’s notation), establishing the
first three statements of the proposition.

Let E be a tautological sheaf on Xn ×Mn. The determinant of E is naturally identified
with the pullback of an invertible sheaf

LXn � LMn
∈ Pic(Xn ×Mn),

and each geometric fiber Ex has a second Chern class c ∈ Z. Letting

wn = (`n, LMn
, c),

4 e SÉRIE – TOME 47 – 2014 – No 2



FINITENESS OF K3 SURFACES AND THE TATE CONJECTURE 305

the sheaf E gives a morphism of µ`n -gerbes

Xn → ShMn
(wn).

Since E is a Fourier-Mukai kernel, this morphism is an étale monomorphism (see e.g.,
Section 4 of [12]), so it is an open immersion.

To prove the last part, we may replace k with k′′ and ignore the residue field extensions.
Fix a lift M of Mn over R over which all of Pic(Mn) lifts (by assumption). Since Pic(Mn)

lifts, so does wn and ShM/R(wn) is a µ`n -gerbe over a smooth algebraic space Sh M/R(wn)

over R. Write V for the universal sheaf on ShM/R(wn)×R M. We can write

det V = U � LMn

with
U ∈ Pic(Sh M/R(wn)),

and by assumption the pullback of U along the map

X → ShMn
(wn) ↪→ Sh M/R(wn)

is isomorphic toD, hence is ample (by the assumption onD). Since Xn is open in ShMn
(wn),

the induced open formal substack

Z ⊂ ŜhM/R(wn)→ Spf R

is a µ`n -gerbe over a formal deformationZ ofX over Spf R. The determinant of the universal
formal sheaf gives a formal lift of D over Z, hence a polarization. It follows that Z → Z is
algebraizable, giving a µ`n -gerbe over a relative K3 surface

G → X → SpecR

and an open immersion
G ↪→ ShM/R(wn)

extending
Xn ↪→ ShMn

(wn).

Restricting the universal sheaf gives the desired deformation E of E . Nakayama’s lemma
shows that E is the kernel of a relative Fourier-Mukai equivalence (i.e., the adjunction maps
(3.4.2.1) and (3.4.2.2) are quasi-isomorphisms because their derived restrictions to the fiber
are quasi-isomorphisms). Foundational details are contained in Section 3 of [12], and a
similar deformation argument is contained in Section 6 of [12].

3.6. Proof of Main Theorem (2)

Fix a finite field k of characteristic p, and let k′ be the quadratic extension of k. We now
prove the second part of the main theorem from the introduction.

T 3.6.1. – Suppose p ≥ 5. If there are only finitely many K3 surfaces over k′ then
for any K3 surfaceX over k, the Brauer groupXk′ is finite, i.e., the Tate conjecture holds forXk′ .

Proof. – Suppose thatX is a K3 surface over k such that Br(Xk′) is infinite. We know by
Proposition 3.5.6 that there is an infinite sequence of Brauer classes γn ∈ Br(Xk′) such that

1. γn has exact order `n over k, and
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2. the twisted K3 surface (Xk′ , γn) is Fourier-Mukai equivalent to a K3 surface Mn

over k′.

If there are only finitely many K3 surfaces over k′, there is a subsequence ni such that all
of the Mni are the same surface, say M . Since M has infinite Brauer group (by Propo-
sition 3.5.6(2)), it is not Shioda-supersingular. Thus, M has Picard number at most 4 by
Theorem 1.7 of [1] (see [11, §3]). Proposition 3.1 and Corollary 4.2 of [11] show that

1. M admits a deformation over k′[[t]] over which all of Pic(M) deforms, whose generic
fiber has finite height;

2. any finite height K3 surface admits a lift to characteristic 0 over which its entire Picard
group deforms.

Suppose L ∈ Pic(M) is ample of degree 2d. Let D denote the finite-type DM stack
parametrizing pairs (X,Λ) with Λ ample of degree 2d, so that (M,L) is a k′-point of D .
There is relative scheme I → D locally of finite type defined by sending a pair (X,Λ)

to Isom(N,Pic(X)), where N = Pic(M) and the isomorphisms are lattice isomorphisms.
Let O be the strict local ring of the object (M, id) in I ; since I is locally of finite type

over W (k′), the ring O is the henselization of a ring essentially of finite type over W (k′)

and is thus Noetherian. Moreover, the two statements above imply that O has a point of
characteristic 0 (that necessarily specializes to the unique closed point). It follows that there
exists a lift M of M over a complete dvr R with residue field algebraic over k′ such that
Pic( M) = Pic(M). Since the residue field is algebraic over k′, there is an embeddingR ↪→ C.
Applying Proposition 3.5.6(4)(b) we end up with a complex K3 surface MC with a sequence
of twisted derived partners (Xi, ηi) with ηi ∈ Br(Xi) of exact order `ni for a strictly
increasing sequence ni. In particular, MC has infinitely many twisted partners. But this is
a contradiction by Corollary 4.6 of [6].
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