
aNNALES

SCIENnIFIQUES

      SUPÉRIEUkE

d�

L ÉCOLE

hORMALE

ISSN 0012-9593

ASENAH

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

quatrième série - tome 46 fascicule 3 mai-juin 2013

Daniel GREB & Christian LEHN & Sönke ROLLENSKE

Lagrangian fibrations

on hyperkähler manifolds

–

On a question of Beauville



Ann. Scient. Éc. Norm. Sup.
4 e série, t. 46, 2013, p. 375 à 403

LAGRANGIAN FIBRATIONS
ON HYPERKÄHLER MANIFOLDS –

ON A QUESTION OF BEAUVILLE

ʙʏ D�ɴɪ�ʟ GREB, Cʜʀɪ��ɪ�ɴ LEHN �ɴ� S�ɴ�� ROLLENSKE

Aʙ��ʀ���. – Let X be a compact hyperkähler manifold containing a complex torus L as a
Lagrangian subvariety. Beauville posed the question whether X admits a Lagrangian fibration with
fibre L. We show that this is indeed the case if X is not projective. If X is projective we find an almost
holomorphic Lagrangian fibration with fibre L under additional assumptions on the pair (X, L),
which can be formulated in topological or deformation-theoretic terms. Moreover, we show that for
any such almost holomorphic Lagrangian fibration there exists a smooth good minimal model, i.e., a
hyperkähler manifold birational to X on which the fibration is holomorphic.

R�����. – Soit X une variété hyperkählérienne compacte contenant un tore complexe L en tant
que sous-variété lagrangienne. A. Beauville a posé la question suivante : la variété X admet-elle une
fibration lagrangienne de fibre L? Nous démontrons que c'est le cas si X n'est pas projective. Si X
est projective nous montrons l’existence d’une fibration lagrangienne presque holomorphe de fibre L
sous des hypothèses plus restrictives sur la paire (X, L). Ces hypothèses peuvent se formuler de deux
manières : en termes topologiques ou grâce à la théorie des déformations de (X, L). Par ailleurs, nous
démontrons que pour une telle fibration lagrangienne presque holomorphe il y a toujours un bon
modèle minimal lisse, c'est-à-dire une variété hyperkählérienne birationelle à X sur laquelle la fibration
est holomorphe.

Introduction

By the classical decomposition theorem of Beauville-Bogomolov, every compact Käh-
ler manifold with vanishing first Chern class admits a finite cover which decomposes as a
product of tori, Calabi-Yau manifolds, and hyperkähler manifolds, see e.g., [5, Thm. 1].
While tori are quite well-understood, a classification of Calabi-Yau and hyperkähler
manifolds is still far out of reach. Only in dimension 2, where Calabi-Yau and hyperkähler
manifolds coincide, the theory of K3-surfaces provides a fairly complete picture.

Let now X be a hyperkähler manifold, that is, a compact, simply-connected Kähler
manifold X such that H

0(X,Ω2
X

) is spanned by a holomorphic symplectic form σ. From a
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376 D. GREB, C. LEHN AND S. ROLLENSKE

differential geometric point of view hyperkähler manifolds are Riemannian manifolds with
holonomy the full unitary-symplectic group Sp(n).

An important step in the structural understanding of a manifold is to decide whether
there is a fibration f : X → B over a complex space of smaller dimension. For hyperkähler
manifolds it is known that in case such f exists, it is a Lagrangian fibration: dim X = 2dim B,
and the holomorphic symplectic form σ restricts to zero on the general fibre. Additionally, by
the Arnold-Liouville theorem the general fibre is a smooth Lagrangian torus, see Section 1.2
for a detailed discussion.

In accordance with the case of K3-surfaces (and also motivated by mirror symmetry)
a simple version of the so-called Hyperkähler SYZ-conjecture(1) asks if every hyperkähler
manifold can be deformed to a hyperkähler manifold admitting a Lagrangian fibration. With
this as a starting point, an approach to a rough classification of hyperkähler manifolds has
been proposed, see e.g., [41]. A more sophisticated version of the SYZ-conjecture is discussed
in Section 6.1.

Here we approach the question of existence of a Lagrangian fibration on a given hyper-
kähler manifold X under a geometric assumption proposed by Beauville [7, Sect. 1.6]:

Q����ɪ�ɴ B. – Let X be a hyperkähler manifold and L ⊂ X a Lagrangian submanifold

biholomorphic to a complex torus. Is L a fibre of a (meromorphic) Lagrangian fibration

f : X → B?

Building on work of Campana, Oguiso, and Peternell [10] we give a positive answer in case
X is not projective.

Tʜ��ʀ�� 4.1. – Let X be a non-projective hyperkähler manifold of dimension 2n contain-

ing a Lagrangian subtorus L. Then the algebraic dimension of X is n, and there exists an alge-

braic reduction f : X → B of X that is a holomorphic Lagrangian fibration with fibre L.

In the case of projective hyperkähler manifold X containing a Lagrangian subtorus L,
we work out a necessary and sufficient criterion for the existence of an almost holomorphic
fibration with fibre L, i.e., for a slightly weaker positive answer to Beauville’s question.

Tʜ��ʀ�� 5.3. – Let X be a projective hyperkähler manifold and L ⊂ X a Lagrangian

subtorus. Then the following are equivalent.

1. X admits an almost holomorphic Lagrangian fibration with strong fibre L.

2. The pair (X,L) admits a small deformation (X �
, L

�) with non-projective X
�
.

3. There exists an effective divisor D on X such that c1(OX(D)|L) = 0 ∈ H
1,1

�
L, R

�
.

Here, strong fibre means that f is holomorphic near L, and L is a fibre of the corresponding
holomorphic map. The proof of Theorem 5.3 consists of two major steps: First, assuming
the existence of a small deformation of (X,L) to a non-projective pair (X �

, L
�), we use

Theorem 4.1 to produce a Lagrangian fibration with fibre L
� on X

� and then degenerate this
fibration to an almost-holomorphic fibration on (X,L) using relative Barlet spaces. Second,
the existence of a small deformation to a non-projective pair (X �

, L
�) is characterised in terms

(1) We refer the reader to [42] for a historical discussion concerning the emergence of this conjecture.
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LAGRANGIAN FIBRATIONS ON HYPERKÄHLER MANIFOLDS 377

of periods in H
2
�
X, C

�
. This finally leads to the condition on the existence of a special

divisor, as stated in part (iii) of Theorem 5.3.(2)

From the discussion above the question arises how far an almost holomorphic fibration
is away from answering Beauville’s question in the strong form. If f : X ��� B is an almost
holomorphic Lagrangian fibration, then it is natural to search for a holomorphic model of f

in the same birational equivalence class. This is done in the final section, where using the
recent advances in higher-dimensional birational geometry ([8, 19]) the following result is
proven.

Tʜ��ʀ�� (see Theorem 6.3). – Let X be a projective hyperkähler manifold with an almost

holomorphic Lagrangian fibration f : X ��� B. Then there exists a holomorphic model for f

on a birational hyperkähler manifold X
�
. In other words, there is a commutative diagram

X

f

��

�� X �

f
�

��
B �� B�

where f
�

is a holomorphic Lagrangian fibration on X
�

and the horizontal maps are birational.

Theorem 6.3 proves a special version of the Hyperkähler SYZ-conjecture. Related results
were obtained by Amerik and Campana [1, Thm. 3.6] in dimension four. Note furthermore
that birational hyperkähler manifolds are deformation-equivalent by work of Huybrechts
[20, Thm. 4.6], so Theorem 6.3 might also lead to a new approach to the general case of the
Hyperkähler SYZ-conjecture.

The connection to this circle of ideas is also manifest in the following generalization of a
result of Matsushita, which we obtain as a corollary of Theorem 6.3.

Tʜ��ʀ�� 6.12. – Let X be a projective hyperkähler manifold and f : X ��� B

an almost holomorphic map with connected fibres onto a normal projective variety B.

If 0 < dim B < dim X, then dim B = 1
2 dim X, and f is an almost holomorphic Lagrangian

fibration.
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1. Preliminaries on hyperkähler manifolds

We collect a few basic definitions and properties of the objects of our study.

D��ɪɴɪ�ɪ�ɴ 1.1. – An irreducible holomorphic symplectic manifold or hyperkähler mani-

fold is a simply-connected compact Kähler manifold X such that H
0
�
X, Ω2

X

�
is spanned by

an everywhere non-degenerate holomorphic two-form σ.

Actually, the notion of hyperkähler manifold is of differential-geometric origin and stands
for a Ricci-flat Kähler manifold with holonomy group Sp(n). It was shown by Beauville in
[5, Prop 4] that this condition is equivalent to the existence of a holomorphic symplectic
form unique up to scalars; often the terms irreducible holomorphic symplectic manifold and
hyperkähler manifold are therefore used synonymously.

1.1. The Beauville-Bogomolov form

The second cohomology H
2
�
X, Z

�
of a hyperkähler manifold X carries a natural, inte-

gral symmetric bilinear form

q = qX : H
2
�
X, Z

�
×H

2
�
X, Z

�
→ Z,

the so-called Beauville-Bogomolov-Fujiki form (see [5, Thm. 5] or [21, Def. 22.8]). Since we
need to consider the restriction of this form to subspaces where it might be degenerate, we
give its signature as a triple containing (in this order) the number of positive, zero, and
negative eigenvalues of the associated real symmetric bilinear form. In this notation q has
signature (3, 0, b2(X) − 3), and its restriction to H

1,1(X, R) has signature (1, 0, h
1,1 − 1),

see [21, Cor. 23.11].

Let ρ = ρ(X) be the Picard number of X, that is, the rank of the Néron-Severi group
NS(X) = H

1,1(X) ∩ H
2(X, Q). We distinguish hyperkähler manifolds according to the

signature of the restriction of q to NS(X). We call X hyperbolic if q|NS(X) has signature
(1, 0, ρ−1), parabolic if q|NS(X) has signature (0, 1, ρ−1), and elliptic if q|NS(X) has signature
(0, 0, ρ). The relevance of these notions is underlined by the following result of Huybrechts.

Tʜ��ʀ�� 1.2 (Prop. 26.13 of [21]). – A hyperkähler manifold X is projective if and only

if X is hyperbolic.
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1.2. Lagrangian fibrations

D��ɪɴɪ�ɪ�ɴ 1.3. – An n-dimensional analytic subvariety Z of a 2n-dimensional hyper-
kähler manifold X is called Lagrangian if the holomorphic symplectic form σ restricts to a
trivial two-form on the smooth part of Z.

As a consequence of Kodaira’s embedding theorem, Lagrangian submanifolds turn out
to be projective, independent of the projectivity of the ambient hyperkähler manifold.

Pʀ����ɪ�ɪ�ɴ 1.4 (Prop. 2.1 of [9]). – Let X be a hyperkähler manifold and L ⊂ X a

Lagrangian submanifold. Then L is projective.

D��ɪɴɪ�ɪ�ɴ 1.5. – Let X be a hyperkähler manifold. A Lagrangian fibration on X is
a holomorphic map f : X → B with connected fibres onto a normal complex space B

such that every irreducible component of the reduction of every fibre of f is a Lagrangian
subvariety of X.

Due to work of Matsushita one knows that Lagrangian fibrations are the only non-trivial
maps from hyperkähler manifolds to lower-dimensional spaces:

Tʜ��ʀ�� 1.6 ([31, 32, 33, 34]). – Let X be a hyperkähler manifold of dimension 2n. If

f : X → B is a holomorphic map with connected fibres onto a normal complex space B with

0 < dim B < dim X, then f is a Lagrangian fibration. In particular, f is equidimensional and

dim B = n. Furthermore, every smooth fibre of f is a complex torus.

In fact, using Proposition 1.4 we see that every smooth fibre of f is projective, that is, an
abelian variety.

1.3. Almost holomorphic Lagrangian fibrations

Let X be a hyperkähler manifold and let f : X ��� B be a dominant meromorphic map.
Recall that f is called almost holomorphic if there is a (Zariski) open subset U ⊂ B such
that the restriction f |f−1(U) : f

−1(U) → U is holomorphic and proper. A strong fibre of an
almost holomorphic map f is a fibre of f |f−1(U).

D��ɪɴɪ�ɪ�ɴ 1.7. – A dominant meromorphic map f : X ��� B is called almost holomor-

phic Lagrangian fibration if f is almost holomorphic with connected fibres and the reduction
of every irreducible component of a fibre of f |f−1(U) is a Lagrangian subvariety of X.

If f is not almost holomorphic, the naïve notion of Lagrangian fibre is not too well
behaved. In particular, there might not be a single fibre which is isomorphic to a complex
torus. For an explicit example consider a pencil of higher-genus curves on a K3-surface.
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R���ʀ� 1.8. – Recall that if A is a divisor on B, then its pullback via f is defined either
geometrically as the closure of the pullback on the locus where f is holomorphic, or on the
level of locally free sheaves as f

∗ OB(A) := (p∗ �f∗ OB(A))∨∨, where p : ‹X → X is a resolution
of indeterminacies leading to a diagram

‹X
p

��

�f
��

X
f �� B,

see also [10, Setup 3.2].

2. Preliminaries on Barlet spaces

The Barlet space of a complex space X is the complex-analytic analogue of the Chow
variety of a projective algebraic variety. It parametrizes compact cycles (with multiplicity)
in X. We shortly recall the relevant definitions as well as important criteria to recognize
analytic families. The authoritative reference on the subject is [2], a survey of the circle of
ideas surrounding this fundamental construction can be found in [18].

In this section, all complex spaces are assumed to be reduced.

2.1. Basic definitions and properties

D��ɪɴɪ�ɪ�ɴ 2.1. – Let X be a complex space and n ∈ N an integer. An n-cycle in X

is a finite linear combination Z =
�

i∈I
kiZi where ki ∈ N>0 and the Zi’s are pairwise

distinct, irreducible, n-dimensional compact analytic subsets of X. The support of Z, denoted
supp(Z), is the union of the Zi’s. The set of all n-cycles in X is denoted by Bn(X); the set
of all cyclesB(X) =

�
n∈NBn(X) is called the Barlet space of X.

In [2] a natural complex structure is constructed onB(X). With the appropriate definition
of analytic family of compact n-cycles, see [2, définition fondamentale, p. 33], Barlet showed
thatBn(X) represents the functor

Fn

X
: (reduced complex spaces) → (sets)

S �→ {analytic families of compact n-cycles parametrised by S}

In particular, there exists a universal family (Zs)s∈Bn(X) of compact n-cycles in X para-
metrised byBn(X). Furthermore, if (Zs)s∈S is an analytic family of compact n-cycles in X,
then there exists a holomorphic map µ : S → Bn(X) inducing (Zs)s∈S , the so-called
classifying map.

We are not going to use the definition of analytic family explicitly, but rather apply the
following useful criterion, see also [2, Ch. I, §2, Thm. 1]:

Pʀ����ɪ�ɪ�ɴ 2.2 (Thm. 2 of [3]). – Let X be a complex manifold and S a normal complex

space. Let Γ ⊂ S × X be an analytic subset which is proper and equidimensional over S with

purely n-dimensional fibres. Then, there exists a unique analytic family of compact n-cycles

(Zs)s∈S parametrized by S satisfying the following conditions:
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1. For general s ∈ S, we have Zs = supp(Zs); in other words, all multiplicities are equal

to 1.

2. For all s ∈ S, we have {s}× supp(Zs) = Γ ∩ ({s}×X) as sets.

Sometimes it is useful to discuss families of cycles where the dimension is allowed to vary.
This leads to the concept of a meromorphic family of cycles, which is an analytic family of
cycles on a dense open set such that its classifying map is meromorphic. The following result
relates this notion to geometry:

Pʀ����ɪ�ɪ�ɴ 2.3 (Prop. 2.20 in Ch. VIII of [18]). – Let X and S be irreducible complex

spaces, dim S = d. There exists a natural identification between

1. meromorphic maps µ : S ��� Bn(X), and

2. S-proper purely (n + d)-dimensional cycles Γ in X × S,

given by considering the graph of the meromorphic map µ. Accordingly, we call Γ the graph of
the meromorphic family determined by µ.

A drawback of the Barlet space is that it does not lend itself to infinitesimal computations;
to understand its local structure we need to relate it to the the Douady space D(X), which is
the complex-analytic analogue of the Hilbert scheme (see for example [15] or [18, Ch. VIII]).
The local structure of the Douady space can be studied via deformation theory of submani-
folds in X, and the following comparison result then allows to obtain local information about
the corresponding Barlet space.

Pʀ����ɪ�ɪ�ɴ 2.4 (petit théorème in Ch. V, §3 of [2])). – Let X be a complex manifold,

and let Z be a compact submanifold of X. Let Dn(X) be the (open and closed) subspace of the

Douady space D(X) that parametrizes ideals with purely n-dimensional support in X. Then, the

natural holomorphic map Dn(X)red → Bn(X) is locally biholomorphic at [Z] ∈ Dn(X)red.

The following fundamental result was proven by Lieberman and Fujiki. It often allows to
argue along similar lines as in an algebraic setup.

Tʜ��ʀ�� 2.5 ([30], [16]). – Let X be a compact Kähler space. Then, every connected

component ofB(X) is compact.

It is folklore that this result can be extended to the relative case. Since a reference was hard
to track down, for the convenience of the reader we give a short argument inspired by [13,
Prop. 1.1].

Pʀ����ɪ�ɪ�ɴ 2.6. – Let h : X → T be a smooth family of compact complex manifolds

over a smooth space T . If some fibre X0 is Kähler, then there is an open neighborhood U of 0
in T such that each connected component of the relative Barlet spaceB(h−1(U)/U) is proper

over U .
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Proof. – For simplicity, we may assume that T is a polydisc with centre 0. Then T does
not contain any compact cycles except points, and hence the relative Barlet space B(X/T )
and the absolute Barlet spaceB(X) coincide near any cycle which is associated with a smooth
manifold completely contained in one fibre. In order to apply a result of Barlet [3, Thm. 1]
that ensures properness we need to bound the volume of cycles with respect to a suitable
hermitian metric, which we will now construct.

By [25, Thm. 15] we can find a smaller polydisc U ⊂ T containing 0 such that there
exists a real smooth 2-form ω1 on XU := h

−1(U) which restricts to a Kähler form on each
fibre. Let ω2 be the 2-form on U associated to an arbitrary hermitian metric on U . Then,
possibly replacing U with a relatively compact open subset, there exists a constant M such
that ω = ω1 + M · h∗(ω2) is an everywhere positive 2-form on XU that additionally restricts
to a Kähler form on each fibre. (Note that ω need not be closed on the total space.) Then,
the volume function is defined as

volω : B(XU ) → R, [C] �→
�

C

ω
n
.

Choosing a differentiable trivialization XU
∼= X0 × U we identify the real (co)homology

of XU with the (co)homology of X0. With this identification ω induces for each n a family of
classes [ωn

t
] ∈ H

2n(X0, R) depending on t ∈ U .

Now let g : B → U be a connected component of Bn(XU/U) together with the projec-
tion to U . Every cycle in B induces the same homology class α = αB ∈ H2n(X0, R). Con-
sequently, the volume of a cycle [C] ∈ B with h([C]) = t can be expressed in terms of the
pairing,

volω(C) =

�

C

ω
n = �[ωn

t
], α�,

which implies that vol|B = g
∗
ϕ for a continuous function ϕ : U → R.

For every relatively compact subset K ⊂ U every cycle in g
−1(K) is contained in the

compact set h
−1(K̄) ⊂ XU and its volume is bounded by the maximum of ϕ on K̄. Thus

g
−1(K) satisfies the assumptions of [3, Thm. 1] and is hence relatively compact in B(XU ).

In particular, g
−1(K) is proper over K.

R���ʀ� 2.7. – Fujiki [16, Rem. 4.3] shows that properness may fail for B(X/T ) → T

even if X is compact and all fibres of h : X→ T are projective.

2.2. Barlet spaces and meromorphic fibrations

Recall that if (Zs)s∈S is an analytic family of compact n-cycles in X, then its graph

{(x, s) ∈ X × S | x ∈ supp(Zs)} is an analytic subset of X × S by [18, Ch. VIII, Thm. 2.7].
If we equip this analytic subset with the reduced structure we obtain a complex space, which
is proper over S. If S = B(X) and (Zs)s∈S is the universal family, we will write

(1)

U(X)
ε ��

π

��

X

B(X)
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for the complex space associated to the universal family where π and ε are induced by the
projections. The following lemma (most parts of which are certainly well-known to experts)
will be applied in our study of Lagrangian fibrations.

L���� 2.8. – Let X be a compact and connected Kähler manifold and f : X → B a

surjective map with connected fibres to a normal complex space B. Let Upure ⊂ B be the

Zariski-open set over which the fibres are of pure dimension d = dimX − dim B. Let Breg

denote the set of smooth points of B. Then, the following hold:

1. The graph of f defines a meromorphic family of cycles in X.

Let B be the union of the irreducible components of the Barlet space B(X) that contain all

fibres [Xb] of f over points b ∈ Upure, and let π : U → B be the projection of the graph of the

universal family overB.

2. B(X) is smooth at [Xb] for any point b ∈ Upure ∩ Breg such that Xb is smooth.

Consequently,B is irreducible.

3. The (meromorphic) classifying map µ : B ��� B induces a holomorphic bijection

of Upure onto its Zariski-open image µ(Upure) ⊂ B.

4. The evaluation map ε : U→ X is an isomorphism on π
−1 (µ(Upure)) satisfying

µ ◦ f = π ◦ ε
−1

. In particular, ε is bimeromorphic.

Proof. – By Proposition 2.3 the graph Γf ⊂ X × B of f is the graph of a meromorphic
family of cycles in X, which proves (i).

We next show (ii) and (iii). Let b ∈ Upure be a smooth point of B such that the fibre
Xb is smooth as well. By Proposition 2.4 the Barlet space is isomorphic to the reduction of
the Douady space near [Xb], and we can therefore estimate the dimension of B(X) at [Xb]
by a deformation-theoretic computation. In a saturated neighborhood of Xb the map f is
an equidimensional holomorphic map between complex manifolds. Since additionally Xb is
smooth, f is a smooth submersion near Xb. Consequently, the normal bundle of Xb in X is
trivial. It follows that the tangent space of the Douady space at the point [Xb] has dimension
h

0(Xb, N Xb/X) = dim B.
As a consequence of the previous paragraph we have dim[Xb]B ≤ dim B. On the other

hand, the image µ(B) of the meromorphic classifying morphism µ : B ��� B is an ana-
lytic subvariety of B, since B is compact (Theorem 2.5). Moreover, by Proposition 2.2 the
restriction of µ to Upure is holomorphic, and the image µ(Upure) is Zariski-open in µ(B).
Since the fibres of f are mutually disjoint, µ is injective on Upure. Therefore, we also have
dim B ≤ dim[Xb]B. Since B is irreducible, it follows that µ maps B onto a single
dim B-dimensional irreducible component of B. However, it then follows from the
dimension-computation of the Zariski tangent space of D(X) at [Xb] made above and from
Proposition 2.4 that the Barlet space is smooth, hence irreducible at [Xb]. Consequently,B
is irreducible and smooth at [Xb]. This shows (ii) and (iii).

In order to prove (iv), we look at the diagram

U
ε ��

π

��

X

B.
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We note for later reference that ε is proper, sinceB is compact (Theorem 2.5). We now restrict
our attention to the open subset Upure. By pulling back the graph of the universal family
over B to Upure via the holomorphic map µ|Upure , and denoting µ(Upure) by Ū , we obtain
the following diagram

(µ∗U|Ū )red
µ̂ ��

f

��

U|Ū

π

��

ε �� f−1(Upure)

Upure
µ �� Ū ,

where µ
∗U|Ū = U|Ū×Ū Upure. Comparing (µ∗U|Ū )red and Γf |Upure inside f

−1(Upure)×Upure

we see that these are reduced analytic subsets with the same underlying topological space;
hence, they coincide. Identifying Γf |Upure with (µ∗U|Ū )red we conclude that the composition
ε ◦ µ̂ coincides with the projection from the graph Γf |Upure to f

−1(Upure). It is therefore
an isomorphism. In particular, ε is a proper birational map with finite fibres onto a normal
space, hence an isomorphism.

The following result provides an extension of the previous discussion to the case of almost
holomorphic maps.

L���� 2.9. – Let f : X ��� B be a surjective almost holomorphic map with connected

fibres from a connected compact Kähler manifold X to a normal complex space B. Let b

be a smooth point of B, assume that F = Xb is a smooth strong fibre of f and that f is

equidimensional over a neighborhood of b. Then, there exists a unique irreducible component

B ofB(X) containing [F ]. Furthermore, the evaluation map ε : U→ X from the graph of the

universal family U over this component to X is bimeromorphic.

Proof. – By Hironaka there exists a modification p : ‹X → X of X such that ‹X is smooth,
p is a projective morphism, and �f := f ◦ p is holomorphic; in particular, ‹X is Kähler. Since
f is assumed to be almost holomorphic, there exists a Zariski-open smooth subset U in B

such that f |f−1(U) is holomorphic and proper. As a consequence, p : ‹X → X can be chosen
in such a way that the set where it is not biholomorphic is disjoint from f

−1(U). Moreover,
possibly after shrinking U , we may assume that the fibre ‹Xb is smooth for all b ∈ U . Next,
we apply Lemma 2.8 to �f and obtain a diagram

�U �ε ��

�π
��

‹X

‹B,

in which �ε is bimeromorphic.
The graph �U ⊂ ‹B × ‹X is a pure-dimensional ‹B-proper analytic subset of ‹B × ‹X.

Mapping it to ‹B × X using the map p, we obtain a pure-dimensional ‹B-proper analytic
subset Γ of ‹B × X. Proposition 2.3 implies that Γ is the graph of a meromorphic family
of cycles in X, parametrized by ‹B. We denote the corresponding meromorphic map from ‹B
toB(X) by q. Note that the restriction of q to µ�f (U) is an isomorphism onto its image. As in
the proof of Lemma 2.8, a dimension-computation of the Zariski tangent space at [F ] now
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shows that B(X) is actually smooth of dimension dim ‹B = dim B at [F ]. Thus, denoting
byB the unique irreducible component ofB(X) containing the point [F ], we see that q is a
bimeromorphic map from ‹B toB. Denoting the induced bimeromorphic map between the
graphs of the universal families by �p, we obtain the following diagram:

�U

�p ��

�ε ��

�π

��

‹X

p
��

�f

��
U

ε

��

π

��

X
f

�� B.

‹B q �� B

Consequently, ε
−1 = �p ◦ �ε−1 ◦ p

−1 is a meromorphic inverse to ε, as claimed.

3. The family of deformations of a Lagrangian subtorus

Let X be a hyperkähler manifold and assume that X contains a Lagrangian subtorus, that
is, a smooth Lagrangian subvariety L of X that is biholomorphic to a complex torus. We
want to test if L behaves as if it were the fibre of a fibration.

More precisely, consider an irreducible componentB of the Barlet-space containing [L],
which will be shown to be unique below, and let U be the graph of the universal family over
B as in (1). The natural evaluation map ε : U→ X, which restricts to an embedding on each
cycle, is induced by the projection to X. As the general cycle parametrized byB is smooth,
there is a proper analytic subset ∆ ⊆ B parametrizing singular cycles, which we call the
discriminant locus; the family of cycles over it will be denoted by (U ×B ∆)red =: U∆. We
will constantly refer back to this setup which we summarize in the following diagram

(2)

U∆
� � �

��

U
ε ��

π

��

X

∆ �
�

� B.

By Lemma 2.8 the torus L is the fibre of a fibration if and only if ε is an isomorphism (see
Lemma 3.2 below for a sharpening of this observation). Evidence that this has a chance to
be true can be obtained by studying deformations of L in X.

L���� 3.1. – Let X be a hyperkähler manifold of dimension 2n and let L be a Lagrangian

subtorus of X. Then, the following hold.

1. The Barlet spaceB(X) is smooth of dimension n near [L]. In particular, [L] is contained

in a unique irreducible component B of B(X) and U is smooth of dimension 2n near

π
−1([L]).

2. If [L�] ∈ B represents a smooth subvariety L
�
, then L

�
is a Lagrangian subtorus of X.

3. The morphism ε is finite étale along smooth fibres of π. In particular, a sufficiently small

deformation of L is disjoint from L and, there are no positive-dimensional families of

smooth fibres through a general point x ∈ X.
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Proof. – We first consider the Douady space D(X) near [L]. The proof of [14, Thm.
8.7 (ii)] works equally well in the Kähler setting (see also [40, Thm. 2.2] for the state-
ment, and [29, Thm. VI.6.1] for a detailed proof), so D(X) is smooth at [L] with tangent
space H

0
�
L, NL/X

�
. Since L is Lagrangian, the symplectic form induces an isomorphism

NL/X
∼= Ω1

L
. Since moreover L is a complex torus, we compute

dim[L] D(X) = h
0
�
L, NL/X

�
= h

0
�
L, Ω1

L

�
= h

0
�
L, O⊕n

L

�
= n.

The comparison between Douady and Barlet spaces (Proposition 2.4) then implies that also
B(X) is smooth of dimension n at [L]. This proves (i).

Item (ii) is [14, Thm. 8.7 (i)]; it also follows from the proof of [43, Lem. 1.5].
For (iii), let y ∈ π

−1([L]) with smooth L and ε(y) = x. As U and X are both smooth
at y and x, respectively, and since ε is proper (Theorem 2.5), it suffices to show that
TU(y) → TX(x) is an isomorphism. We have already noted that near the smooth point
[L] ∈ B(X) the Barlet-space is biholomorphic to the Douady space. In addition, the graph
U of the universal family over B is biholomorphic to the universal family over D(X) near
the fibre π

−1([L]). Consequently, the universal family over the Douady space can also be
interpreted as the incidence variety

{(z, [L]) : z ∈ L ⊆ X} ⊂ X ×D(X).

On the level of tangent spaces this interpretation leads to an exact sequence

(3) 0 → TU(y) → TX(x)⊕H
0
�
L, NL/X

�
→ NL/X(x)

and the composition of the first morphism with the projection to TX(x) is the differential
of ε. Now the Lagrange condition on L implies that the horizontal arrows in the following
diagram are isomorphisms

H
0
�
L, NL/X

� ∼= ��

ev

��

H
0
�
L, Ω1

L

�

ev

��
NL/X(x)

∼= �� Ω1
L
(x).

Since L is a torus, the cotangent bundle Ω1
L

is trivial, and therefore the evaluation map
ev : H

0
�
L, Ω1

L

�
→ Ω1

L
(x) is an isomorphism. It follows that the evaluation map

ev : H
0
�
L, NL/X

�
→ NL/X(x) is likewise an isomorphism. Using (3) we conclude that

the same is true for TU(y) → TX(x).

L���� 3.2. – Let X be a hyperkähler manifold containing a Lagrangian subtorus L. Then

X admits an almost holomorphic Lagrangian fibration with strong fibre L if and only if the

evaluation map ε in diagram (2) is bimeromorphic.

Proof. – If ε is bimeromorphic, then the Stein factorization of a holomorphic model
of π ◦ε

−1 yields a meromorphic map from X to a compact normal complex space. This map
is a holomorphic Lagrangian fibration near L because ε is étale near L by Lemma 3.1. The
other direction follows from Lemma 2.9.

In view of Lemma 3.1 one might wonder whether, given a k-cycle L on a compact Kähler
manifold X of dimension n + k such that
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– the Barlet space of X is smooth at [L],
– the irreducible component containing L is n-dimensional, and
– the evaluation map ε is generically étale,

the map ε automatically has degree one. In other words, are deformations of L fibres of a
(meromorphic) fibration on X? As the following example shows this is in general not the
case.

E����ʟ� 3.3. – Let X = {f3 = 0} ⊂ P4
be a smooth cubic threefold. Then, X is a

Fano manifold covered by lines. Let L ⊂ X be a general line in the covering family F of lines.

Then, the normal bundle of L is trivial, and the Barlet spaceB(X) of X is smooth of dimension

2 at the point [L]. Let B be the irreducible component containing [L]. Then, the evaluation

morphism from the graph U of the universal family over B to X is étale along smooth fibres

of π : U→ B; i.e., properties (i) and (ii) of Lemma 3.1 hold. However, an explicit computation

(see for example [22, Sect. 1.4.2]) shows that the variety of tangents to the family F at a general

point of X consists of 6 points. It follows that ε has degree 6 and is therefore not birational.

4. The non-projective case

In this section we answer Question B positively in the non-projective case.

Tʜ��ʀ�� 4.1. – Let X be a non-projective hyperkähler manifold of dimension 2n contain-

ing a Lagrangian subtorus L. Then the algebraic dimension of X is n, and there exists an alge-

braic reduction f : X → B of X that is a holomorphic Lagrangian fibration with fibre L.

As an immediate consequence we obtain:

C�ʀ�ʟʟ�ʀʏ 4.2. – Let X be a non-projective hyperkähler manifold and f : X ��� B an

almost-holomorphic Lagrangian fibration. Then, there exists a holomorphic model for f ; that

is, there exists a normal complex space B
�
, bimeromorphic to B, such that f extends to a

holomorphic Lagrangian fibration f : X → B
�
.

In Section 6 we will prove a corresponding statement in the projective setup using the
minimal model program.

Proof. – The general strong fibre of an almost-holomorphic Lagrangian fibration is a
Lagrangian torus, so X satisfies the assumptions of Theorem 4.1. Consequently, its algebraic
reduction can be chosen to be the desired holomorphic fibration.

The proof of Theorem 4.1 relies heavily on the results of [10] where the algebraic reduction
of a non-algebraic hyperkähler manifold is studied in detail; we are very grateful to K. Oguiso
for pointing us to this reference.
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4.1. Covering families of subvarieties

One of the guiding ideas of the article [10] is to study the existence of subvarieties in fibres
of algebraic reductions. The following definition collects basic notions related to this general
problem.

D��ɪɴɪ�ɪ�ɴ 4.3. – Let X be a compact Kähler manifold.

1. We call X simple if it is not covered by positive-dimensional irreducible compact proper
analytic subsets.

2. We call X isotypically semisimple if there exists a simple compact Kähler manifold S,
a natural number k ≥ 1, a complex space Y , and generically finite surjective holomor-
phic maps p : Y → X and q : Y → S

k.

R���ʀ� 4.4. – If X is simple of dimension dim(X) ≥ 2, then a(X) = 0; see [18,
Ch. VIII, Rem. 3.40].

The following result will exclude some manifolds from being isotypically semisimple. It
forms the technical core of our argument to prove Theorem 4.1.

Pʀ����ɪ�ɪ�ɴ 4.5. – Let X be a reduced complex space having a covering analytic family

Z ⊆ X × T of positive dimensional subspaces Zt � X parametrized by a compact complex

space T . If there is a dense open subset U ⊆ T such that Zt is an irreducible Moishezon space

for t ∈ U , then X is not isotypically semisimple with a(X) = 0.

Before we proceed to the proof we need a preliminary lemma, similar to [17, §3, Prop. 2].

L���� 4.6. – Let X, T be reduced compact complex spaces and W ⊆ X×T a reduced and

irreducible analytic subspace such that π : W → T is surjective. Then there exists a commutative

diagram

W
� � � �

��

X × T
�

id×h

��
W
� � � X × T

where W
�

is a reduced complex space, T
�

is a normal irreducible complex space, and finite

surjective morphisms h : T
� → T and h

� : W
� → W such that the generic fibre of W

� → T
�

is

irreducible.

Proof. – Take a resolution of singularities �W → W . As W is irreducible, so is �W . By
generic smoothness, there is a dense open V ⊆ T such that U := π

−1(V ) → V is smooth. So
if π|U has reducible fibres, it has to have disconnected fibres. Let �W → T

� → T be the Stein
factorization of �W → T . Note that T

� is irreducible, as �W is irreducible, and normal, as it
is a Stein factorization and �W is normal. Clearly, �π : �W → T

� is also generically smooth.
Moreover, �π has connected fibres, hence the smooth fibres are irreducible. We now obtain
W
� ⊆ X × T

� with the required properties as the image of �W → X × T
�.

R���ʀ� 4.7. – The proof of Lemma 4.6 shows that generically the fibres of W
� → T

�

are just the irreducible components of the fibres of W → T . More precisely, there is a dense
open set T

0 ⊆ T such that for each t ∈ T
0 we have Wt =

�
t�∈h−1(t) W

�
t� as subspaces in X.
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Proof of Proposition 4.5. – By definition T is irreducible, and by pulling back the family
to the normalization if necessary, we may also assume T to be normal. As X is irreducible,
there has to be an irreducible component of Z dominating X, so we may additionally assume
Z to be irreducible.

Contrary to our claim, suppose that X is isotypically semisimple of algebraic dimension 0.
Then, there is a simple compact Kähler manifold S, a compact complex space Y , and
generically finite surjective holomorphic maps

Y
p ��

q

��

X

S × · · ·× S .

We may replace Y by any Y
� that maps generically finite onto Y . Hence, by resolving

singularities we may assume Y to be smooth, and by [18, Ch. VII, Thm. 2.8] we may assume
p : Y → X to be projective. We now want to derive a contradiction by constructing from Z

a covering family of non-trivial cycles on the simple manifold S.

Consider an irreducible component Z
� ⊆ Y × T of (p × idT )−1(Z) dominating S

k and
map it to S

k × T via (q × idT ) to obtain the graph of a meromorphic family W ⊆ S
k × T

parametrized by T and dominating S
k, see Proposition 2.3. Since p is projective, for every

t ∈ U the fibre Z
�
t

is Moishezon. Because images of Moishezon spaces are Moishezon, see
for example [18, Ch. VIII, Cor. 2.24], Wt is likewise Moishezon.

By Lemma 4.6 and Remark 4.7, we may replace T by a normal space (which we again
denote by T ) such that, after possibly shrinking U , the fibre Wt is an irreducible Moishezon
space for all t ∈ U .

Let pi : S
k → S be a projection to one of the factors such that the general Wt is

not mapped to a point. Here, we use that Zt, hence Wt is positive dimensional. Then,
W = (pi × idT )(W ) yields a meromorphic covering family of S with generically irreducible
fibres. Moreover, WU = W ×T U ⊆ W is dense, dominates S, and WU → U has Moishezon
fibres.

By semicontinuity of the fibre dimension there is a dense open subset V ⊂ U such that
W t is of pure dimension d, which is the minimal dimension of a fibre of WU → U ; we have
chosen the projection pi : S

k → S such that d > 0.

If d = dim S, then S = W t for all t, because S is irreducible and W t is a closed subspace of
the same dimension. But then S is Moishezon, hence S

k is Moishezon, and so are Y and X,
as q is generically finite and p is surjective. This however contradicts a(X) = 0.

If 0 < d < dim S, consider the meromorphic classifying map µ : T ��� Bd(S), where
Bd(S) is the Barlet space of S classifying families of compact analytic d-cycles. It follows that
the image µ(T ) parametrizes an analytic family of positive-dimensional cycles covering S,
which contradicts the assumption that S is simple.

Since by construction d > 0 we reach the conclusion that X cannot be isotypically
semisimple with a(X) = 0, as claimed.
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4.2. Proof of Theorem 4.1

Using the preparatory results obtained above we are now in the position to prove the main
result of this section.

Suppose first that a(X) = 0. Then, X is isotypically semisimple by [10, Cor. 2.5 (2)].
However, the deformations of L cover X and smooth deformations of L in X are projective
(see Proposition 1.4). We may hence apply Proposition 4.5 to arrive at a contradiction.

As X is a non-projective Kähler manifold, it cannot be Moishezon [38], so 0 < a(X) < 2n.
Then by [10, Thm. 3.1 (2)] the manifold X is parabolic in the sense of Section 1.1. Conse-
quently, by Theorem 2.3 and Theorem 2.4 of [10], one can choose an algebraic reduction of
one of the following two forms:

1. f : X → B is a holomorphic Lagrangian fibration, in particular, a(X) = n.
2. f : X ��� B is not almost holomorphic, and the very general fibre Xb (b ∈ B) is

isotypically semisimple with a(Xb) = 0. Moreover, in this case a(X) < n [10, Thm. 3.6,
Thm. 3.7].

Let us first exclude the case (ii). Assuming that (ii) holds we will construct a family of
positive-dimensional, generically projective cycles covering Xb. Consider a very general fibre
Xb of the algebraic reduction that intersects a general deformation Lt of L, with t ∈ B. Then,
by the last statement in (ii) the family of intersections Xb ∩ Lt yields a covering analytic
family of positive-dimensional generically projective subvarieties in Xb, as follows: In the
notation of Diagram (2) consider an irreducible component V of ε

−1(Xb) → π(ε−1(Xb))
such that the evaluation morphism εV : V → Xb is still surjective and let C := π(V) ⊂ B.
Using Lemma 4.6 we may assume that the general fibre of πV : V → C is irreducible. By
Proposition 2.3, there exists a meromorphic map µV : C ��� B(Xb) with graphV. Then, the
universal family over the image µV(C) is the desired family. Its general fibre is isomorphic
to (a component of) Xb ∩ Lt ⊂ Lt for some general t and therefore projective. Thus the
assumptions of Proposition 4.5 are satisfied for Xb together with this family. This contradicts
the fact that Xb is isotypically semisimple with a(Xb) = 0.

So we are in case (i), that is, the algebraic reduction of X has a holomorphic model
f : X → B which is a Lagrangian fibration. We still need to show that L is one of the
fibres. By [10, Thm. 3.4] the map f is the morphism associated to a line bundle L satisfying
c1( L).C = 0 for all curves C ⊆ X. It follows that every curve in X is contracted by f . As a
consequence, if Y ⊆ X is a subvariety such that any two general points of Y can be joined
by a curve lying on Y , then f contracts Y to a single point in B. By Lemma 3.1 (iii) and
Proposition 1.4 this applies to L itself and to any smooth deformation L

� of L. As L
� has

dimension n, it is a component of a fibre of f . It follows that the image of the general fibre
of π under ε is a fibre of f . Thus, also L is a fibre of f by Lemma 2.8 (iv). This shows that
the algebraic reduction is a holomorphic Lagrangian fibration with fibre L.

5. Transporting fibrations along deformations

We would now like to extend the result obtained in the last section to projective hyperkäh-
ler manifolds X containing a Lagrangian torus L. The natural idea is to consider a deforma-
tion of (X,L) to a non-projective pair (X �

, L
�) and then try to transport the fibration along
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the family. While non-projective hyperkähler manifolds are dense in the universal deforma-
tion space of X, this might a priori no longer be true for deformations of the pair. We start
by introducing some terminology.

D��ɪɴɪ�ɪ�ɴ 5.1. – Consider a family of maps

(4)
L

j ��

p
��

X

h��
T

over a connected complex space T . We call this datum a family of pairs of a hyperkähler

manifold together with a Lagrangian subtorus if p is a smooth family of complex tori, h is
a smooth family of hyperkähler manifolds, and j is a closed embedding, such that jt(Lt) is
a Lagrangian submanifold of Xt for all t ∈ T .

If X is a hyperkähler manifold containing a Lagrangian subtorus L such that for some
point 0 ∈ T the map j0 : L0 → X0 is the inclusion of L into X, then we call such a family of
pairs, or by abuse of terminology any fibre of such a family, a deformation of the pair (X,L).

R���ʀ� 5.2. – If (X,L) is a hyperkähler manifold together with a Lagrangian sub-
torus, and if a family of maps as in diagram (4) is a smooth deformation of the pair
(X,L) = (X0,L0), then the fibres of h are automatically hyperkähler in an open neighbor-
hood of 0 ∈ T . Note however that a deformation in the large of X might even fail to be
Kähler, so the condition on h is necessary to remain in our framework.

Since everyXt is a hyperkähler manifold and L0 is a Lagrangian submanifold, for t near 0
the submanifold jt(Lt) is also Lagrangian, see [43, Lem 1.5] and the proof of Lemma 3.1.
Hence, the same is true for all t ∈ T , as p∗Ω2

L/T
is locally free and T is connected.

The main result of this section is

Tʜ��ʀ�� 5.3. – Let X be a projective hyperkähler manifold and L ⊂ X a Lagrangian

subtorus. Then the following are equivalent.

1. X admits an almost holomorphic Lagrangian fibration with strong fibre L.

2. The pair (X,L) admits a small deformation (X �
, L

�) with non-projective X
�
.

3. There exists an effective divisor D on X such that c1(OX(D)|L) = 0 ∈ H
1,1

�
L, R

�
.

The proof of Theorem 5.3 will be given at the end of this section. It relies on two technical
lemmas: Lemma 5.5 which characterizes deformability to non-projective X

� in terms of peri-
ods and Lemma 5.6 which allows to “transport” Lagrangian fibrations along deformations.

Next, we recall the explicit description of small deformations of a hyperkähler manifold X

via the local Torelli theorem.

R���ʀ� 5.4. – Let M be the universal deformation space of a hyperkähler manifold X.
By [21, Prop. 22.11] we can identify M near [X] with the period domain

QX =
�
[σ] ∈ P(H2(X, C)) | q(σ,σ) = 0, q(σ, σ̄) > 0

�
,

where q is the Beauville-Bogomolov form introduced in Section 1.1. Now assume in addition
that X is projective. By [20, 1.14] the subspace of M consisting of those deformations Xt
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of X for which the class [A] ∈ H
1,1

�
X, Z

�
of a given ample divisor A remains of type (1, 1)

(and hence A continues to be an ample divisor) is given by A
⊥ = {z ∈ QX | q(A, z) = 0}.

Consequently, there is a countable union of hypersurfaces in the period domain that
parametrize those deformations of X that are still projective.

Since X is simply-connected, Pic(X) injects into H
2
�
X, C

�
. In the following we will hence

not distinguish between divisors on X and their classes in H
2
�
X, C

�
.

L���� 5.5. – Let (X,L) be a projective hyperkähler manifold together with a Lagrangian

subtorus. We denote the inclusion of L into X by j : L �→ X and let

K = ker
�
j
∗ : H

2
�
X, R

�
→ H

2
�
L, R

��
.

Then the following are equivalent.

1. Every small deformation of (X,L) remains projective.

2. There is an ample divisor A on X such that A ∈ K
⊥
C or, equivalently, KC ⊂ A

⊥
.

Proof. – We now prove (i) =⇒ (ii) using the local description of the deformation space
in terms of the period domain. Deformations of X that are induced by a deformation of
the pair (X,L) are given locally at [X] by KC ∩ QX , see [43, Cor. 0.2]. Furthermore, this
intersection is smooth, hence irreducible near [X]. If all small deformations of (X,L) remain
projective, we can find an ample divisor A on X such that KC ∩ QX ⊂ A

⊥ ∩ QX , since an
irreducible variety that is contained in a countable union of hypersurfaces is contained in one
of them. We want to show KC ⊂ A

⊥.
If q|K was non-degenerate, KC ∩ QX would be irreducible. In this case any small neigh-

borhood of [X] ∈ KC ∩ QX ⊆ A
⊥ would contain a basis of KC implying KC ⊆ A

⊥.
As q and K are defined over R, it is sufficient to prove non-degeneracy of q|K over R. We
have H

2,0 ⊕ H
0,2 ⊆ KC by the Lagrange property, so if q|K was degenerate, it would be

on q|K∩H1,1(X). Suppose there was δ ∈ K ∩H
1,1

�
X, R

�
with q(δ) = 0. But then δ would be

contained in A
⊥ ∩H

1,1(X, R), where q is negative definite; a contradiction.
If (ii) holds, then we have KC ∩QX ⊂ A

⊥ ∩QX . Hence, A remains an ample divisor on
every small deformation of (X,L), cf. Remark 5.4. This implies (i).

We will now pursue our idea to deform a pair (X,L) to a non-projective pair, apply
Theorem 4.1 and then transport the fibration back along the deformation.

L���� 5.6. – Let

L �
�

��

��

X

h��
T

be a family of pairs of a hyperkähler manifold together with a Lagrangian subtorus (as in

Definition 5.1) over a one-dimensional complex disc T . Assume that there is a dense subset

T
� ⊂ T such that for all t ∈ T

�
the fibre Xt admits a holomorphic Lagrangian fibration with

fibre Lt. Then Xt admits an almost holomorphic Lagrangian fibration with strong fibre Lt for

all t ∈ T .
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Proof. – Recall that on a single pair (X,L) there exists an almost holomorphic Lagran-
gian fibration with strong fibre L if and only if the evaluation map in Diagram (2) is bimero-
morphic, cf. Lemma 3.2. We will now exploit this in the relative setting. LetB(X/T ) be the
relative Barlet space of X over T and denote by h∗ : B(X/T ) → T the holomorphic map
Z �→ h(supp(Z)), cf. [18, Ch. VIII, Thm 2.10].

Cʟ�ɪ� 5.7. – The relative Barlet spaceB(X/T ) is smooth near [Lt] for all t ∈ T .

Proof of Claim. – Since T is a disc and hence does not contain compact positive-di-
mensional subvarieties, we obtain B(X/T ) = B(X) near [Lt]. By Proposition 2.4 the
space B(X) is smooth at [Lt], if D(X)red is smooth. Again using that T is a disc, we have
D(X)red = D(X/T )red near [Lt]. However, as T is smooth, the relative Douady space
D(X/T ) (and therefore its reduction) is smooth at [Lt] by [37, Prop. 2.1], see also [43,
Prop 2.4] and [29, Cor. VI.6.3]. This shows the claim.

Note that the family L → T induces a section σ : T �→ B(X/T ) of h∗. As B(X/T )
is smooth along σ(T ) = {[Lt] | t ∈ T}, there exists a unique irreducible component
B(X/T )0 of B(X/T ) containing σ(T ). Since for any t ∈ T , the Barlet space B(Xt) of
the fibre is smooth at [Lt] by Lemma 3.1, the (reduction of the) fibre of h∗ over t contains
the unique irreducible component Bt of B(Xt) containing [Lt]. We set g := h∗|B(X/T )0 .
Possibly covering T by several smaller discs and treating these separately we may assume
g : B(X/T )0 → T to be proper by Proposition 2.6.

The evaluation map from the restriction of the graph of the universal family UT

toB(X/T )0 gives a commutative diagram

UT

ε̄

��

π̄

��
g
�

��

B(X/T )0

g

��

X

h��
T.

As g admits a section, it is surjective. Note that for all t ∈ T the fibre (B(X/T )0)t set-
theoretically coincides with the union of some components of the cycle space B(Xt); one
of these components is equal toBt. Additionally, the reduced fibre g

�−1(t)red coincides with
the graph of the universal family over these components, and the restriction of ε̄ to g

�−1(t)red
is the (absolute) evaluation map.

Since g is a surjective and proper map from an irreducible space onto a (smooth) 1-dimen-
sional disc, it is flat by [18, Ch. II, Thm. 2.9]. By [17, §3, Prop. 2] there is a finite covering
β : �T → T , a reduced and irreducible closed subspace ‹B of B(X/T )0 ×T

�T such that the
induced map α : ‹B→ B(X/T )0 is bimeromorphic, and a non-empty Zariski-open subset V

of �T such that �g : ‹B → �T has irreducible fibres over V . The proof of [17, §3, Prop. 2] shows
that we can choose α to be an isomorphism over the normal locus ofB(X/T )0. As the sec-
tion σ : T → B(X/T )0 maps to the smooth locus of B(X/T )0 by the claim proven above,
it lifts to a section �σ : T → ‹B of β ◦ �g. Composing with �g we obtain a section of β. As β is

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



394 D. GREB, C. LEHN AND S. ROLLENSKE

finite and �T is irreducible, it follows that β is an isomorphism. Summing up, we find a non-
empty Zariski-open subset V of T such that g has irreducible fibres over V . Consequently,
for t ∈ V the reduced fibre g

−1(t)red coincides with the irreducible componentBt ofB(Xt)
containing [Lt] and the reduced fibre g

�−1(t)red is the graph of the universal family over this
component.

As a consequence, the evaluation map εt : g
�−1(t)red → Xt is generically finite for all

t ∈ V . From this we infer that ε̄|UV is likewise generically finite. For t ∈ T
�∩V we know that

ε̄t : Ut → Xt is an isomorphism by Lemma 2.8. Hence, testing its degree at a general point in
a fibre over some general t ∈ T

� ∩ V we see that ε̄|UV is in fact bimeromorphic. Thus, also ε̄

is bimeromorphic. Since the property of ε̄t being an isomorphism is open in the base T , after
shrinking T if necessary we may assume that Xt admits a Lagrangian fibration with fibre Lt

for t �= 0. Thus, ε̄ : UT → X is birational and an isomorphism on g
�−1(T \ {0}).

If ε̄ is an isomorphism, the claim follows from Lemma 2.8; so assume that this is not the
case. We decompose the central fibre into irreducible components g

�−1(0)red = U0 ∪
�

i
Vi,

where U0 is the graph over B0, the component of the Barlet space of X0 containing [L0].
Restricting ε̄ to U0, we recover the absolute evaluation map for X0 as considered in Diagram
(2), which is generically finite by Lemma 3.1.

Since the global map ε̄ is proper birational, and X is smooth, we conclude that ε0 is a
proper generically finite map of degree 1 onto the normal space X0, thus bimeromorphic.
Using Lemma 3.2 we conclude that X0 admits an almost holomorphic Lagrangian fibration
with strong fibre L0. This completes the proof of Lemma 5.6.

Proof of Theorem 5.3. – To show (ii) =⇒ (i), let us assume that there is a small deforma-
tion (Xt,Lt)t∈T of the pair (X,L) = (X0,L0) over a disc T such that not allXt are projective.
We have seen in Remark 5.4 that there exists a dense subset T

� of T such that the fibre Xt is
non-projective for all t ∈ T

�.

For all t ∈ T
� the non-projective hyperkähler manifold Xt admits a holomorphic

Lagrangian fibration with fibre Lt by Theorem 4.1. Thus, the family satisfies the assump-
tions of Lemma 5.6, and we conclude that X admits an almost holomorphic Lagrangian
fibration with strong fibre L.

For (i) =⇒ (iii), assume that f : X ��� B is an almost holomorphic Lagrangian fibration
with strong fibre L on the projective hyperkähler manifold X. After a suitable modification,
we may assume that B is also projective. Then, the pullback D = f

∗(A) of a general ample
divisor A on B, defined as in Remark 1.8, is trivial on L.

Finally, assuming (iii) suppose that every small deformation of (X,L) remains projective.
Choose an ample divisor A as in Lemma 5.5 (ii). Since D restricts to zero on L, we have
D ∈ K ⊂ A

⊥. However, if A
� is any ample divisor and D

� is an arbitrary divisor on X, then
the Beauville-Bogomolov form q(A�, D�) computes the intersection number D

�
.(A�)n−1 up

to a non-trivial factor, cf. [21, Exerc. 23.2]. Consequently, we obtain q(A, D) �= 0, which
contradicts D ∈ A

⊥.
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6. Holomorphic models for almost holomorphic Lagrangian fibrations

The aim of this section is to prove that an almost holomorphic Lagrangian fibration can
be modified to give a holomorphic Lagrangian fibration on a possibly different hyperkähler
manifold. This proves a special case of the Hyperkähler SYZ-Conjecture.

6.1. Almost holomorphic fibrations and the SYZ-Conjecture

We have seen in Corollary 4.2 that the existence of an almost-holomorphic Lagrangian
fibration on a non-projective hyperkähler manifold implies the existence of a holomorphic
Lagrangian fibration. If X is projective, the question of passing from “almost-holomorphic”
to “holomorphic” is connected to a circle of well-known conjectures(3):

Hʏ��ʀ��ʜʟ�ʀ SYZ-C�ɴ�����ʀ� 6.1. – Let X be a hyperkähler manifold.

1. If L is a non-trivial line bundle on X such that q( L) = 0 and L is nef, then L is semi-ample

and a suitable power of it gives rise to a holomorphic Lagrangian fibration on X.

2. If L is a non-trivial line bundle on X such that q( L) = 0, then there is a hyperkähler

manifold X
�

and a bimeromorphic map ϕ : X
� ��� X such that ϕ

∗( L) is nef. The map ϕ

is expected to be a composition of Mukai flops.

This conjecture relates to the simpler version mentioned in the introduction in the follow-
ing way: using the description of the universal deformation space via the period map one can
deform any hyperkähler manifold of second Betti number at least 5 to a hyperkähler mani-
fold that admits a non-trivial nef line bundle with q( L) = 0 [41, Prop. 4.3]. Currently, there
are no examples of hyperkähler manifolds known with smaller second Betti number. The
claims of the Hyperkähler SYZ-Conjecture have been established under a variety of addi-
tional assumptions, see for example [35, 1, 42, 10].

The following result shows the relation to almost holomorphic Lagrangian fibrations.

Pʀ����ɪ�ɪ�ɴ 6.2. – Assume that f : X ��� B is an almost holomorphic Lagrangian

fibration with X and B projective. Let A be a general very ample divisor on B and D := f
∗(A),

defined as in Remark 1.8. Then, the following hold:

1. q(D) = 0,

2. if D is nef, then OX(D) is semi-ample and induces a holomorphic Lagrangian fibration

f
� : X → B

�
.

Proof of Proposition 6.2. – The fact that q(D) = 0 is proved in [1, Proposition 3.1]. The
idea is that q(D) ≥ 0, since D has no fixed component. Furthermore, if q(D) > 0 then it
would be big (see [21, proof of Prop. 26.13] and use for example [12, Prop. 6.6 (f)]). This is
impossible, since D induces a fibration onto a lower-dimensional space.

If in addition D is nef, it is straightforward to see that f coincides with the nef reduction
of the line bundle OX(D), defined in [4, Theorem 2.1 and Definition 2.7]. Thus, the nef
dimension of f

∗(A) is dim X/2 < dim X, and we conclude by [35, Theorem 1.5].

(3) See for example [42] and the references given therein.
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6.2. Good minimal models for almost holomorphic Lagrangian fibrations

Consider again an almost holomorphic Lagrangian fibration f : X ��� B on a hyperkäh-
ler manifold X. Assume that the pull-back D = f

∗(A) of a general very ample divisor on B

is not nef, so Proposition 6.2 does not apply. Since KX is trivial, D is an adjoint divisor. Con-
sequently, it is a natural idea to run a minimal model program (see [26] for an introduction
and the standard terminology) in order to make D nef. Proceeding in this way we will prove
the following result.

Tʜ��ʀ�� 6.3. – Let X be a projective hyperkähler manifold with an almost holomorphic

Lagrangian fibration f : X ��� B over a normal projective variety B. Let A be a general

very ample divisor on B and D = f
∗(A). Then, there exist a hyperkähler manifold X

�
and

a birational map ϕ : X ��� X
�

with the following properties

1. ϕ is the composition of a finite sequence of KX -flops; in particular, it is an isomorphism

in codimension one,

2. no center of ϕ intersects any general fibre of f ,

3. ϕ∗(D) is nef, and the linear system |ϕ∗(D)| defines a holomorphic Lagrangian fibration

f
� : X

� → B
�
, where B

�
is a normal projective variety birational to B.

Although it is our aim to construct a smooth model X
� for X, intermediate steps in the

construction might introduce singularities. We therefore recall the following terminology
from [6, Def 1.1].

D��ɪɴɪ�ɪ�ɴ 6.4 (Beauville). – A normal projective variety (or compact Kähler space) Z

is called a symplectic variety, if there is a symplectic form σ on Zreg that extends to a
holomorphic 2-form on some resolution of Z.

As noted in [6, (1.2)], the form σ extends to one resolution if and only if it extends to
every resolution. The proof of Theorem 6.3 is based on recent advances in the minimal model
program. We will start by proving that the final outcome is smooth by a slight generalization
of a result of Namikawa.

Pʀ����ɪ�ɪ�ɴ 6.5. – Let X be a hyperkähler manifold and X
�

a symplectic variety bira-

tional to X. If X
�

has Q-factorial terminal singularities, then X
�

is a smooth hyperkähler man-

ifold. Furthermore, X and X
�

are birational via a finite number of KX -flops.

Proof. – If σ
� is a symplectic form on X

�
reg then σ

� dim X/2 is a nowhere vanishing gener-
ator of the canonical bundle ωX�

reg
, so KX� is trivial and in particular nef. Therefore, both X

and X
� are minimal models of a common desingularization, and thus they are connected by

a finite number of flops by [24]. The claim then follows from [39, p. 98, Example].

Theorem 6.3 now follows immediately from Theorem 1.6 and the following lemma whose
proof will occupy the rest of this section.
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L���� 6.6 (Holomorphic Model Lemma). – Let X be a projective hyperkähler mani-

fold, and let f : X ��� B be a dominant almost holomorphic map with connected fibres to a

complex space B with dim B < dim X. Then there exists a holomorphic model for f on a

hyperkähler manifold X
�

birational to X; that is, there exists a diagram

X
ϕ ��

f

��

X
�

f
�

��
B �� B�

such that B
�

is a normal projective variety bimeromorphic to B, f
�

is holomorphic, and X
�

is

hyperkähler manifold. The map ϕ is an isomorphism near the general fibre of f .

Moreover, if D := f
∗(A) is the pull-back of a general very ample divisor on B, then ϕ∗(D)

is nef, and f
�

can be chosen to be the map associated to the linear system of ϕ∗(D).

R���ʀ� 6.7. – A slightly more general result has been known to be true in dimension
four due to work of Amerik and Campana [1, Thm. 3.6]. Compare also with [44].

6.3. Proof of the Holomorphic Model Lemma

Let X be a projective hyperkähler manifold, and let f : X ��� B be a dominant almost
holomorphic map with connected fibres to a complex space B with dim B < dim X. We may
assume that B is projective and denote by D = f

∗(A) the pullback of a general very ample
divisor A on B.

6.3.1. Setting the stage. – Choose a small, positive, rational number δ such that with
Λ = δD the pair (X,Λ) is klt. This is possible since X is smooth and D is effective. Note
that KX + Λ = Λ, since KX is trivial.

By [8, Cor. 1.1.2] or [11, Thm. 1.1] the adjoint ring

R := R(X,KX + Λ) =
�

m∈N
H

0(X, O(�mΛ�))

is finitely generated, and we can therefore choose a positive number d such that dΛ is integral
and such that the Veronese subring R

� = R
(d) =

�
m∈N Rmd is generated in degree 1.

Since mdΛ is the pullback of a general very ample divisor on B, the general member of
the linear system |mdΛ| is irreducible. It follows that the base locus of |mdΛ| is a subset of
at least codimension 2, not intersecting the general fibre of f . As R

� is generated in degree 1,
Bs(dΛ) = Bs(mdΛ) for all positive integers m.

We now choose a log-resolution p : ‹X → X of the linear series |dΛ| (see e.g., [28, p.144])
such that the exceptional divisor of p maps to the base locus of |dΛ|. By the above there are
divisors M and G on ‹X such that for all m ∈ N

(5) p
∗|mdΛ| = |p∗(mdΛ)| = |mM | + mG,

mM is base point free and mG is the fixed part of |p∗(mdΛ)|. By our choice of the resolution,
we have supp(G) = Exc(p).
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Let �f : ‹X → ‹B be the Stein factorization of the morphism associated to the linear system
|M |. The composition �f ◦p−1 is still almost holomorphic so we may replace B by ‹B resulting
in a diagram

‹X
p

��

�f
��

X
f �� B.

Let E :=
�

i
Ei be the reduced exceptional divisor of p, and let ai := discr(Ei, X,Λ) be

the discrepancies with respect to Λ. By definition and the klt-assumption the effective divisors

�Λ := p
−1
∗ Λ +

�

−1<ai<0

−aiEi and F :=
�

ai>0

aiEi

do not have common components and satisfy K�X + �Λ = p
∗(KX + Λ) + F . We have linear

equivalences

(6) d(K�X + �Λ) ∼ dp
∗Λ + dF ∼ M + G + dF,

where G+dF is effective, and supp(G+dF ) = E is the stable base locus of K�X + �Λ (cf. (5)).

6.3.2. Running an MMP. – Let U ⊂ B be the largest open subset such that the restriction
f |f(U)−1 : f

−1(U) → U is proper holomorphic and set ‹U := �f−1(U). Then, p induces
an isomorphism from ‹U to f

−1(U), which implies in particular that K�U is trivial. Since

furthermore the restriction of �Λ to ‹U coincides with the pull-back of A ∩ U via �f |�U , the

restriction of K�U + �Λ|�U to the fibre �f−1(b) is nef for all b ∈ U . Consequently, (‹U, �Λ|�U ) is
a good minimal model over U in the sense of [19, Sect. 2].

Since moreover the pair (‹X, �Λ) is klt by definition, it has a good minimal model over B

by a recent result of Hacon and Xu [19, Thm. 1.1]. Let H be an ample divisor on ‹X. Then it
follows from [27, Prop. 2.5] that any minimal model program over B with scaling by H (see
for example [8, Rem. 3.10.10]) terminates in a good minimal model (X̂, Λ̂) for (‹X, �Λ) over B.
We summarize the situation in the following diagram:

‹X
p

��
�f

��

ψ

��
X

f ��

X̂

f̂��
B .

6.3.3. Analyzing the outcome of the MMP

Cʟ�ɪ� 6.8. – The p-exceptional set E is contracted by ψ.

Proof. – We have seen (cf. (6)) that E is contained in the stable base locus of K�X + �Λ. On
the other hand, the stable base locus of K

X̂
+ Λ̂ is empty, since this divisor is semi-ample.

It hence suffices to show that any pluri-logcanonical form on (X̂, Λ̂) pulls back to a pluri-
logcanonical form on (X,Λ). Since flips are isomorphisms in codimension one, it suffices to
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prove this for a single divisorial (K�X + �Λ)-contraction. So, without loss of generality we

assume that ψ : (‹X, �Λ) → (X̂, Λ̂) is such a contraction with exceptional divisor Eψ.
Applying [26, Lem. 3.38] with Y = X̂ we obtain

b := discr(X̂, Eψ, Λ̂)− discr(‹X,Eψ, �Λ) ≥ 0.

Note that−discr(‹X,Eψ, �Λ) is in fact the coefficient of Eψ in �Λ because Eψ is a divisor on ‹X.
Denoting linear equivalence of Q-divisors by ”∼” and using Λ̂ = ψ∗(�Λ) we obtain

ψ
∗(K

X̂
+ Λ̂) ∼ K�X + ψ

−1
∗ (Λ̂)− discr(X̂, Eψ, Λ̂)Eψ

∼ K�X + �Λ− bEψ

≤ K�X + �Λ.

Multiplying the previous formula by sufficiently divisible natural numbers yields the desired
extension result and finishes the proof.

Set ϕ̂ := ψ ◦ p
−1 : X ��� X̂. Note that ϕ̂ is an isomorphism over U .

Cʟ�ɪ� 6.9. – X̂ is a Q-factorial symplectic variety; in particular, K
X̂

is trivial.

Proof. – Since X̂ is the outcome of a minimal model program that started on the Q-fac-
torial variety ‹X, it is likewise Q-factorial, e.g., see [26, Prop. 3.36(1) and Prop. 3.37(1)].

Since E, the exceptional locus of p, is contracted by ψ, the varieties X and X̂ are isomor-
phic in codimension one. As a consequence, the canonical sheaf ω

X̂
of X̂ is trivial. Further-

more, the symplectic form σ on X induces a symplectic form σ̂ on a smooth open subset
V ⊂ X̂ with complement of codimension two in X̂. Since the sheaf of holomorphic 2-forms
on X̂reg is locally free, σ̂ extends to a holomorphic 2-form σ̂

� on X̂reg. As K
X̂

is trivial, the
extended form σ̂

� remains everywhere non-degenerate. Taking a smooth resolution of the
indeterminacies of ψ, we obtain a common resolution of X and X̂ to which σ̂

� extends as
a holomorphic 2-form. Consequently, X̂ is a symplectic variety as claimed.

Cʟ�ɪ� 6.10. – X̂ has terminal singularities; hence, as a consequence of Proposition 6.5 it

is a smooth hyperkähler manifold.

Proof. – As noted already in the proof of the previous claim, the varieties X̂ and X are
isomorphic in codimension one. Hence, if Z is a common resolution of singularities

Z

π̂

��

π

��
X X̂

of X̂ and X, every π̂-exceptional divisor is π-exceptional and vice versa. Therefore, writing
out the discrepancy formula for both resolutions we obtain

KZ ≡ π
∗(KX)� �� �

=0

+
�

E π-exc.

a(E,X)� �� �
≥1

E = π̂
∗(K

X̂
)

� �� �
=0

+
�

E π̂-exc.

a(E,X)E.

Consequently, X̂ is terminal, as claimed.
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Cʟ�ɪ� 6.11. – The divisor ϕ̂∗(D) is linearly equivalent to f̂
∗(A); in particular, it is nef and

base point-free.

Proof. – We have seen above that ϕ̂ : X ��� X̂ is an isomorphism in codimension one. It
follows that

ϕ̂∗(D) = ϕ̂∗(f
∗(A)) = f̂

∗(A).

In particular, the divisor ϕ̂∗(D) is nef, and the map associated to |ϕ̂∗(D)| factors as

X̂
f̂−→ B �→ PN

.

This concludes the proof of Lemma 6.6.

6.4. Further applications of the Holomorphic Model Lemma

Lemma 6.6 allows to generalize some results on fibrations on hyperkähler manifolds to
the almost holomorphic case. As an example we give a generalization of Matsushita’s results
summarized in Theorem 1.6.

Tʜ��ʀ�� 6.12. – Let X be a projective hyperkähler manifold and f : X ��� B an

almost holomorphic map with connected fibres onto a normal projective variety B such that

0 < dim B < dim X. Then dim B = 1
2 dim X, and f is an almost holomorphic Lagrangian

fibration.

Proof. – By Lemma 6.6 there is a holomorphic model f
� : X

� → B
� on a possibly

different hyperkähler manifold birational to X, and isomorphic to X near the general fibre
of f

�. By Matsushita’s theorem (see Theorem 1.6) dim B = dim B
� = 1

2 dim X, and f
� is a

Lagrangian fibration. Thus, f is an almost holomorphic Lagrangian fibration.

R���ʀ� 6.13. – Note that Theorem 6.3 proves the second part of the Hyperkähler
SYZ-Conjecture (see Section 6.1) under the additional assumption that some multiple of L
defines an almost holomorphic fibration. Indeed, in this case Theorem 6.12 implies that
we get an almost holomorphic Lagrangian fibration on X and Theorem 6.3 implies that
we can find a holomorphic Lagrangian fibration on a birational hyperkähler manifold X

�.
This implies the statement of the conjecture, because birational hyperkähler manifolds are
deformation equivalent [20, Thm. 4.6].

R���ʀ� 6.14. – Note that the holomorphic model lemma, Lemma 6.6, yields a good
minimal model of the pair (X,D). Consequently, any minimal model program with scaling
for (X, D) will terminate in a good minimal model. Matsushita has announced an argument
[36], which deduces from termination of a minimal model program that any almost holomor-
phic Lagrangian fibration on a projective hyperkähler manifold becomes holomorphic after
a suitable modification of the base (as in Lemma 6.6). Together with the result of Hwang
and Weiss [23] mentioned in the introduction and Theorem 5.3 this would provide a com-
plete positive answer to Beauville’s question also in the projective case.
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