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GAUSSIAN MEASURES ASSOCIATED
TO THE HIGHER ORDER CONSERVATION LAWS

OF THE BENJAMIN-ONO EQUATION

ʙʏ Nɪ��ʟ�ʏ TZVETKOV �ɴ� Nɪ��ʟ� VISCIGLIA

Aʙ��ʀ���. – Inspired by the work of Zhidkov on the KdV equation, we perform a construction
of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-
Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We
also prove a property on the support of these measures leading to the conjecture that they are indeed
invariant by the flow of the Benjamin-Ono equation.

R�����. – Inspirés par le travail de Zhidkov sur l’équation KdV, nous construisons des mesures
gaussiennes à poids associées à une loi de conservation arbitraire de l’équation de Benjamin-Ono.
Les supports de ces mesures sont constitués de fonctions de régularité de Sobolev croissantes. On
démontre aussi une propriété-clé des mesures qui nous conduit à conjecturer leur invariance par le flot
de l’équation.

1. Introduction and statement of the results

1.1. Measures construction

The main goal of this article is to construct weighted Gaussian measures associated with
an arbitrary conservation law of the Benjamin-Ono equation (BO), and thus to extend the
result of the first author [14] which deals only with the first conservation law. The analysis
contains several significant elaborations with respect to [14]; it requires an understanding of
the interplay between the structure of the conservation laws of the Benjamin-Ono equation
and the probabilistic arguments involved in the renormalization procedure defining the mea-
sures.

Let us recall that just like the KdV equation, the Benjamin-Ono equation is a basic dis-
persive PDE describing the propagation of one directional, long, small amplitude waves. The
difference between the KdV and BO equations is that the KdV equation describes surface
waves while the Benjamin-Ono equation models the propagation of internal waves. These
models have rich mathematical structure from both the algebraic and analytical viewpoints.
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250 N. TZVETKOV AND N. VISCIGLIA

In particular they have an infinite sequence of conservation laws. These aspects will be heavily
exploited in the present work.

Consider now the Benjamin-Ono equation

(1.1) ∂tu + H∂2
x
u + u∂xu = 0,

with periodic boundary conditions (for simplicity throughout the paper we fix the period to
be equal to 2π). In (1.1), H denotes the Hilbert transform acting on periodic distributions.
Thanks to the work of Molinet [11] (1.1) is globally well-posed in Hs, s ≥ 0 (see [13, 7, 5] for
related results in the case when (1.1) is posed on the real line).

It is well-known that (smooth) solutions to (1.1) satisfy an infinite number of conservation
laws (see e.g., [10, 1]). More precisely for k ≥ 0 an integer, there is a conservation law of (1.1)
of the form

(1.2) Ek/2(u) = �u�2
Ḣk/2 + Rk/2(u)

where Ḣs denotes the homogeneous Sobolev norm on periodic functions, and all the terms
that appear in Rk/2 are homogeneous of the order larger than or equal to three in u. In
Section 2, we will describe in more details the structure of Rk/2 for large k. Next we explicitly
write the conservation laws Ek/2 for k = 0, 1, 2, 3, 4:

E0(u) = �u�2
L2 ;

E1/2(u) = �u�2
Ḣ1/2 +

1

3

�
u3dx;

E1(u) = �u�2
Ḣ1 +

3

4

�
u2H(ux)dx +

1

8

�
u4dx;

E3/2(u) = �u�2
Ḣ3/2 −

�
[
3

2
u(ux)2 +

1

2
uH(ux)2]dx

−
�

[
1

3
u3H(ux) +

1

4
u2H(uux)]dx− 1

20

�
u5dx;

E2(u) = �u�2
Ḣ2 −

5

4

�
[(ux)2Hux + 2uuxxHux]dx

+
5

16

�
[5u2(ux)2 + u2H(ux)2 + 2uH(∂xu)H(uux)]dx

+

�
[
5

32
u4H(ux) +

5

24
u3H(uux)]dx +

1

48

�
u6dx

where
�

is understood as the integral on the period (0, 2π).

Following the work by Zhidkov [15] (see also [2, 8]), one may try to define an invari-
ant measure for (1.1) by re-normalizing the formal measure exp(−Ek/2(u))du. This
re-normalization is a delicate procedure. One possibility would be first to re-normalize
exp(−�u�2

Ḣk/2)du as a Gaussian measure on an infinite dimensional space and then to show
that the factor exp(−Rk/2(u)) is integrable with respect to this measure.

Since exp(−�u�2
Ḣk/2) factorizes as an infinite product when we express u as a Fourier

series, we can define the re-normalization of exp(−�u�2
Ḣk/2)du as the Gaussian measure
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INVARIANT MEASURES FOR BO 251

induced by the random Fourier series

(1.3) ϕk/2(x,ω) =
�

n �=0

ϕn(ω)

|n|k/2
einx

(one may ignore the zero Fourier mode since the mean of u is conserved by the flow of (1.1)).
In (1.3), (ϕn(ω))n �=0 is a sequence of standard complex Gaussian variables defined on a prob-
ability space (Ω, A, p) such that ϕn = ϕ−n (since the solutions of (1.1) should be real valued)
and (ϕn(ω))n>0 are independent. Let us denote by µk/2 the measure induced by (1.3). One
may easily check that µk/2(H

s) = 1 for every s < (k − 1)/2 while µk/2(H
(k−1)/2) = 0.

In view of the previous discussion, one may consider exp(−Rk/2(u))dµk/2 as a candidate
of invariant measure for (1.1). There are two obstructions to do that, the first one already
appears in previous works on the NLS equation (see [2, 8]) and the KdV equation (see [15]),
while the second one is specific to the Benjamin-Ono equation. The first obstruction is that
exp(−Rk/2(u)) is not integrable with respect to dµk/2(u). This problem may be resolved by
restricting to invariant sets, which means to replace exp(−Rk/2(u)) by

(1.4)
k−1�

j=0

χR(Ej/2(u))e−Rk/2(u) ,

where χR is a cut-off function defined as χR(x) = χ(x/R) with χ : R → R a continuous,
compactly supported function such that χ(x) = 1 for every |x| < 1. In the context of KdV or
NLS, the function defined in (1.4) is integrable with respect to the corresponding Gaussian
measure. Moreover if one takes the reunion over R > 0 of the supports of the functions
(1.4), then one obtains a set containing the support of µk/2. However, in the context of the
Benjamin-Ono equation, the restriction to invariant sets does not work as in (1.4) because
for every R the following occurs: χR(E(k−1)/2(u)) = 0 almost surely on the support of µk/2.
One of the main points of this paper is to resolve this difficulty. This will be possible since one
controls the way that E(k−1)/2(u) diverges on the support of µk/2. More precisely, for N ≥ 1
and k ≥ 2, we introduce the function

(1.5) Fk/2,N,R(u) =
� k−2�

j=0

χR(Ej/2(πNu))
�
χR(E(k−1)/2(πNu)− αN )e−Rk/2(πN u)

where αN =
�

N

n=1
1
n

and πN is the Dirichlet projector on Fourier modes n such that
|n| ≤ N . Here is our first result.

Tʜ��ʀ�� 1.1. – For every k ∈ N with k ≥ 2, there exists a µk/2 measurable function
Fk/2,R(u) such that Fk/2,N,R(u) converges to Fk/2,R(u) in Lq(dµk/2) for every 1 ≤ q < ∞. In
particular Fk/2,R(u) ∈ Lq(dµk/2). Moreover, if we set dρk/2,R ≡ Fk/2,R(u)dµk/2, we have

�

R>0

supp(ρk/2,R) = supp(µk/2).

The above result for k = 1 was obtained by the first author in [14]. Many of the proba-
bilistic techniques involved in the proof of Theorem 1.1 are inspired by [3]. We also refer to
[4] where in the context of the 2d NLS the authors use the Wick ordered L2-cutoff, i.e., a
truncation of the L2-norm that depends on the parameter N .
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252 N. TZVETKOV AND N. VISCIGLIA

We conjecture that the measures ρk/2,R, k = 2, 3, · · · constructed in Theorem 1.1 are
invariant by the flow of the Benjamin-Ono equation established by Molinet [11], at least for
even values of k. In the sequel, for shortness, we denote ρk/2,R by ρk/2.

1.2. A property on the support of the measures

Let us now give our argument in support of the above-stated conjecture. For N ≥ 1, we
introduce the truncated Benjamin-Ono equation:

(1.6) ∂tu + H∂2
x
u + πN

�
(πNu)∂x(πNu)

�
= 0.

As in [6], one can define a global solution of (1.6) for every initial data u(0) ∈ L2(S1).
Indeed, one obtains that (1−πN )u(t) is given by the free Benjamin-Ono evolution with data
(1 − πN )u(0), while πNu(t) evolves under an N -dimensional ODE. This ODE has a well-
defined global dynamics since the L2 norm is preserved.

The main problem that appears when one tries to prove the invariance of ρk/2 is that even
if Ek/2 are invariants for the Benjamin-Ono equation they are not invariant under (1.6).
The invariance, however, holds in a suitable asymptotic sense as we explain below. Let us
introduce the real-valued function Gk/2,N , measuring the lack of conservation of Ek/2 under
the truncated flow (1.6), via the following relation

(1.7)
d

dt
Ek/2(πNu(t)) = Gk/2,N (πNu(t)),

where u(t) solves (1.6).
Denote by ΦN the flow of (1.6) and set dρN (u) ≡ Fk/2,N,R(u)dµk/2(u) so that by

Theorem 1.1, ρN converges in a strong sense to ρk/2 (the densities converge in any Lp(dµk/2),
p < ∞). By using the Liouville theorem, one shows that for every µk/2 measurable set A,

ρN (ΦN (t)(A)) =

�

A

e
−

� t

0
Gk/2,N (πNΦN (τ)(u(0))dτ

dρN (u(0)) + o(1) .

Hence, a main step towards a proof of the invariance of ρk/2 is to show that

(1.8)
�

t

0
Gk/2,N (πNu(τ))dτ

converges to zero, where u(τ) is a solution of (1.6), with u(0) on the support of µk/2. Such
a property is relatively easy to be established if u(0) has slightly more regularity than the
typical Sobolev regularity on the support of µk/2. At the present moment, we are not able to
prove such a property on the support of µk/2. We shall, however, prove it if we make a first
approximation which consists of replacing u(τ) by u(0) in (1.8). Here is the precise statement.

Tʜ��ʀ�� 1.2. – For every k ≥ 6 an even integer, we have

lim
N→∞

�Gk/2,N (πNu)�Lq(dµk/2) = 0, ∀q ∈ [1,∞),

where Gk/2,N is defined by (1.7).

Let us remark that the lack of invariance of conservation laws for the corresponding
truncated flows is a problem that appears also in other contexts. We refer in particular to
the papers [12] and [15], where this difficulty is resolved in the cases of the DNLS and KdV
equations respectively.
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1.3. Comparison with the KdV equation

Next we explain why the measures construction in the context of the Benjamin-Ono
equation is much more involved compared with the case of the KdV equation. The main
difference is that in the KdV equation the dispersion (of the linear part) is of lower order
compared with the Benjamin-Ono equation. This fact makes the perturbative treatment of
the nonlinearity more complicated. Let us recall that a similar observation applies to the
Cauchy problem analysis (see [5, 7, 11, 13]).

Now, we recall the approach of Zhidkov (see [15]) to prove the existence of invariant
measures associated with the periodic KdV equation

(1.9) ∂tu + ∂3
x
u + u∂xu = 0.

This equation has a rich structure from both the algebraic and analytic viewpoint. In partic-
ular the solutions to (1.9) have an infinite sequence of conversation laws. More precisely, for
every m ≥ 0 there exists a polynomial

pm(v, ∂xv, . . . , ∂m

x
v)

such that d

dt

�
pm(u(t, x), ∂xu(t, x), . . . , ∂m

x
u(t, x))dx = 0, provided that u is a solution of

(1.9), where
�
· · · dx denotes the integral on the period. More precisely, the conservation laws

have the following structure

�u�2
Ḣm +

�
qm(u, .., ∂m−1

x
u)dx.

By using the Sobolev embedding H1 ⊂ L∞, it is easy to check that the function
� m−1�

j=0

χR(Ej(u))
�
e−

�
qm(u,..,∂

m−1
x u)dx,

where χR is defined as in (1.4), is not trivial and belongs to the space L∞(dµm) (where µm is
the Gaussian measure induced by (1.3) for k = 2m), provided that m is large enough. In
particular the measure

(1.10)
� m−1�

j=0

χR(Ej(u))
�
e−

�
qm(x,u,..,∂

m−1
x v)dxdµm

is a meaningful non-trivial candidate for an invariant measure.
In order to prove the invariance of the above measure we introduce, following [15], a family

of truncated problems

(1.11) ∂tu + ∂3
x
u + πN

�
(πNu)∂x(πNu)

�
= 0,

where πN is the Dirichlet projector on the n Fourier modes such that |n| ≤ N . Once again,
the main difficulty is because of the fact that the quantity

�
pm(u(t, x), ∂xu(t, x), . . . , ∂m

x
u(t, x))dx

is no longer invariant along the flow of the truncated problem (1.11). However if u0 ∈ Hm−1

then

(1.12) lim
N→∞

d

dt

�
pm(πNu(t, x), ∂xπNu(t, x), . . . , ∂m

x
πNu(t, x))dx = 0,
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254 N. TZVETKOV AND N. VISCIGLIA

where u(t, x) are solutions to (1.11) with initial data u0. Roughly speaking (1.12) means that
the quantities �

pm(πNu(t, x), ∂xπNu(t, x), . . . , ∂m

x
πNu(t, x))dx

are asymptotically in N almost conservation laws for solutions to the truncated flow. In
particular for large N , the classical finite dimensional Liouville invariance theorem turns out
to be almost true for the flow associated with (1.11), and it allows us to conclude the proof
of the invariance of (1.10) along the flow associated with (1.9) via a limit argument.

Hence the main point is to prove (1.12). Following Zhidkov (see Lemma IV.3.5, page 127
in [15]) there is an explicit formula to compute the expression on the l.h.s. in (1.12). More
precisely if u solves (1.11) then

(1.13)
d

dt

�
pm(πNu(t, x), ∂xπNu(t, x), . . . , ∂m

x
πNu(t, x))dx

=
m�

j=0

� �∂pm

∂j
xu

�

|∂j
xu=∂

j
xπ>N ((πN u)∂x(πN u)),∂k

xu=∂k
xπN u for k �=j

dx,

where π>N is the projector on the n Fourier modes such that |n| > N (for an explanation
of Formula (1.13) see Section 8). It is easy to see that the most delicate term that appears
in the r.h.s. above is the one coming from the cubic part of the conservation laws, i.e.,�

u(∂m−1
x

u)2dx. More precisely we have to estimate the following term

(1.14)
�

(πNu)∂m−1
x

(πNu)∂m−1
x

π>N ((πNu)∂x(πNu))dx,

as N → ∞. Notice that after developing the (m − 1)-derivative of the product, we get an
integral that involves the product of ∂m−1

x
(πNu) and ∂m

x
(πNu), and hence after a fractional

integration by parts we get a derivative of order m−1/2. This is the main source of difficulty
since the Gaussian measure dµm is supported on the Sobolev spaces Hm−1/2−� for any
� > 0. This problem is solved by Zhidkov by using a clever integration by parts. Indeed,
if we develop the (m− 1)-derivative of the product in (1.14), using the Leibnitz rule, we get
the following (bad) term

�
(πNu)∂m−1

x
(πNu)π>N ((πNu)∂m

x
(πNu))dx

=

�
π>N ((πNu)∂m−1

x
(πNu))∂x(π>N ((πNu)∂m−1

x
(πNu)))dx

−
�

π>N ((πNu)∂m−1
x

(πNu))π>N ((πN∂xu)∂m−1
x

(πNu))dx.

The worst term in the r.h.s. seems to be the first one, since it involves the product of a
derivative of order m and a derivative of order m− 1. However this term is zero since it can
be written as follows:

1

2

�
∂x(π>N (πNu)∂m−1

x
(πNu))2dx = 0.

By looking at the structure of the conservation laws of the Benjamin-Ono equation, it is
easy to check that the situation is a priori much worse. In fact if Em is the conservation law
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(for the Benjamin-Ono equation) with leading term �u�2
Hm , and if we repeat the same con-

struction as in (1.13) (where pm is replaced by the density of Em), then the cubic part pro-
duces a contribution that involves a derivative of order m which is very delicate since the
Gaussian measure dµm is supported on Hm−1/2−�. Moreover, in Em the terms homoge-
neous of order four involve a derivative of order m − 1/2 (this difficulty can be compared
with the one we met above to treat the contribution coming from the cubic part of the con-
servation laws of KdV). The second main result of this paper (Theorem 1.2) is essentially
saying that we are able to find a key cancellation which eliminates the terms containing (at
first glance) too many derivatives. We believe that this result is of independent interest and
that it will play a role in the future analysis on the issues considered here.

Next we fix some notations.

N����ɪ�ɴ 1.3. – We shall denote by Hs (and in some cases Hs

x
) the Sobolev spaces

of 2π-periodic functions;
Lp (and in some cases Lp

x
) is the 2π-periodic Lebesgue space;

Lq

ω
is the Lebesgue space with respect to the probability measure (Ω, A, p), which in turn is

the domain of definition of the random variables ϕn(ω) in (1.3);
if f(x) is a 2π-periodic function then

�
f(x)dx =

� 2π

0 f(x)dx;
the operator H is the usual Hilbert transform acting on 2π-periodic functions;
for every N ∈ N the constant αN is equal to

�
N

n=1
1
n

;
for every k ∈ N the quantities Ek/2 and Rk/2 are related as in (1.2), where Ek/2 is a

conservation law for the Benjamin-Ono equation.
Some other notations will be fixed in Section 2.

The remaining part of the paper is devoted to the proof of Theorems 1.1, 1.2.

2. On the structure of the conservation laws of the Benjamin-Ono equation

In this section, we describe the form of the Benjamin-Ono equation conservation laws
which is suitable for the proof of our results announced in the introduction. Our reference in
this discussion is the book by Matsuno [10].

We now fix some notations. Given any function u(x) ∈ C∞(S1), we set

P1(u) = {∂α1
x

u,H∂α1
x

u|α1 ∈ N},
P2(u) = {∂α1

x
u∂α2

x
u, (H∂α1

x
u)∂α2

x
u, (H∂α1

x
u)(H∂α2

x
u)|α1, α2 ∈ N}

and in general by induction

Pn(u) =
� k�

l=1

Hilpjl(u)|i1, . . . , ik ∈ {0, 1},

k�

l=1

jl = n, k ∈ {2, . . . , n} and pjl(u) ∈ Pjl(u)
�

,

where H is again the Hilbert transform.
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E����ʟ� 2.1. – The elements belonging to P3(u) are the following ones:

∂α1
x

u∂α2
x

u∂α3
x

u, ∂α1
x

u∂α2
x

u(H∂α3
x

u), ∂α1
x

uH(∂α2
x

u∂α3
x

u),

∂α1
x

u(H∂α2
x

u)(H∂α3
x

u), ∂α1
x

uH(∂α2
x

u(H∂α3
x

u)), H∂α1
x

uH(∂α2
x

u∂α3
x

u),

(H∂α1
x

u)(H∂α2
x

u)(H∂α3
x

u), (H∂α1
x

u)H(∂α2
x

u(H∂α3
x

u)), ∂α1
x

uH((H∂α2
x

u)(H∂α3
x

u))

where α1, α2, α3 ∈ N.

R���ʀ� 2.2. – Roughly speaking an element in Pn(u) involves the product of n deriva-
tives ∂α1

x
u, .., ∂αn

x
u in combination with the Hilbert transform H (that can appear essentially

in an arbitrary way in front of the factors and eventually in front of a group of factors).

Notice that for every n the simplest element belonging to Pn(u) has the following struc-
ture:

(2.1)
n�

i=1

∂αi
x

u,αi ∈ N.

In particular we can define the map

Pn(u) � pn(u) → p̃n(u) ∈ Pn(u)

that associates to every pn(u) ∈ Pn(u) the unique element p̃n(u) ∈ Pn(u) having the struc-
ture given in (2.1) where ∂α1

x
u, ∂α2

x
u, . . . , ∂αn

x
u are the derivatives involved in the expression

of pn(u) (equivalently p̃n(u) is obtained from pn(u) by erasing all the Hilbert transforms H
that appear in pn(u)).

Next, we associate to every pn(u) ∈ Pn(u) two integers as follows:

if p̃n(u) =
n�

i=1

∂αi
x

u then

|pn(u)| := sup
i=1,..,n

αi(2.2)

and

�pn(u)� :=
n�

i=1

αi.(2.3)

We are ready to describe the structure of the conservation laws satisfied by the Benjamin-Ono
equation. Given any even k ∈ N, i.e., k = 2n, the energy Ek/2 has the following structure:

Ek/2(u) = �u�2
Ḣk/2 +

�

p(u)∈ P3(u)s.t.

p̃(u)=u∂
n−1
x u∂

n
x u

ck(p)

�
p(u)dx(2.4)

+
�

p(u)∈ Pj(u)s.t.j=3,...,2n+2
�p(u)�=2n−j+2

|p(u)|≤n−1

ck(p)

�
p(u)dx

where ck(p) ∈ R are suitable real numbers.
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Similarly in the case of odd k ∈ N, i.e., k = 2n + 1, the energy Ek/2 has the following
structure:

Ek/2(u) = �u�2
Ḣk/2 +

�

p(u)∈ P3(u)s.t.

p̃(u)=u∂
n
x u∂

n
x u

ck(p)

�
p(u)dx(2.5)

+
�

p(u)∈ P3(u)s.t.

p̃(u)=∂xu∂
n−1
x u∂

n
x u

ck(p)

�
p(u)dx

+
�

p(u)∈ P4(u)s.t.

p̃(u)=u
2
∂

n−1
x u∂

n
x u

ck(p)

�
p(u)dx

+
�

p(u)∈ Pj(u)s.t.j=3,...,2n+3
�p(u)�=2n−j+3

|p(u)|≤n−1

ck(p)

�
p(u)dx

where ck(p) ∈ R are suitable real numbers.

R���ʀ� 2.3. – The expressions above should be compared with the explicit structure
of Ek/2 for k = 0, 1, 2, 3, 4 (see the introduction).

3. Preliminary estimates

Along this section we shall use the notations Pj(u), pj(u), p̃j(u) introduced in Section 2.
We also recall that Ek/2 denotes the conservation law whose structure is described in (2.4)
and (2.5) (respectively depending on the evenness or oddness of k). The main result of this
section is the following proposition that will be very useful to prove Theorem 1.1 for k an
even number.

Pʀ����ɪ�ɪ�ɴ 3.1. – Let k > 0 be a given integer. Then for every R1, R2 > 0 there is
C = C(R1, R2) > 0 such that

(3.1)
2k�

j=0

{u ∈ Hk||Ej/2(u)| < R1} ∩ {u ∈ Hk||Ek+1/2(πNu)− αN | < R2}

⊂ {u ∈ Hk|�u�Hk < C} ∩ {u ∈ Hk|�πNu�2
Ḣk+1/2 − αN | < C}, ∀N ∈ N.

R���ʀ� 3.2. – The proposition above (where we choose k = m) implies that the
support of the functions Fm+1,N,R defined in (1.5) is contained in a ball of Hm intersected
with the region {u ∈ Hm|�πNu�2

Ḣm+1/2 − αN | < C} (at least in the case m > 0).

L���� 3.3. – For every integer m ≥ 0 there exists C = C(m) > 0 such that

(3.2)
���
�

u ∂m

x
v ∂m+1

x
w dx

��� ≤ C(�u�L∞�v�Hm+1/2�w�Hm+1/2

+ �v�L∞�u�Hm+1/2�w�Hm+1/2 + �w�L∞�u�Hm+1/2�v�Hm+1/2) .
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Proof. – We consider a Littlewood-Paley partition of unity 1 =
�

N
∆N , where N takes

the dyadic values, i.e., N = 2j , j = 0, 1, 2, · · · . We denote by SN the operator
�

N1≤N
∆N1 .

In order to prove (3.2), one needs to evaluate the expression

(3.3)
�

N1,N2,N3

�
∆N1u ∂m

x
∆N2v ∂m+1

x
∆N3w dx .

We consider three cases by distinguishing which is the smallest of N1, N2 and N3. In the
sequel we shall denote by c, C > 0 constants that can change at each step.

Denote by J1, the contribution of N1 ≤ min(N2, N3) to (3.3). Then N2 ∼ N3 and

J1 ≤ C
�

N2∼N3

���
�

Sc min(N2,N3)u ∂m

x
∆N2v ∂m+1

x
∆N3w dx

���

≤ C
�

N2∼N3

�u�L∞Nm

2 �∆N2v�L2Nm+1
3 �∆N3w�L2

≤ C�u�L∞�v�Hm+1/2�w�Hm+1/2 ,

where in the last line we used the Cauchy-Schwarz inequality. Next denote by J2 the contri-
bution of N2 ≤ min(N1, N3) to (3.3). Then

J2 ≤ C
�

N1∼N3

���
�

∆N1u ∂m

x
Sc min(N1,N3)v ∂m+1

x
∆N3w dx

���

≤ C
�

N1∼N3

�∆N1u�L2(min(N1, N3))
m�v�L∞Nm+1

3 �∆N3w�L2

≤ C�v�L∞�u�Hm+1/2�w�Hm+1/2 .

Finally, we denote by J3, the contribution of N3 ≤ min(N1, N2) to (3.3). Then

J3 ≤ C
�

N1∼N2

���
�

∆N1u ∂m

x
∆N2v ∂m+1

x
Sc min(N1,N2)w dx

���

≤ C
�

N1∼N2

�∆N1u�L2Nm

2 �∆N2v�L2(min(N1, N2))
m+1�w�L∞

≤ C�w�L∞�u�Hm+1/2�v�Hm+1/2 .

This completes the proof of Lemma 3.3.

As a consequence of Lemma 3.3 we get the following useful result.

L���� 3.4. – Let m ≥ 0 be an integer and p3(u) ∈ P3(u) be such that

(3.4) p̃3(u) = u∂m

x
u∂m+1

x
u.

Then for every � > 0, 1 < p < ∞ such that �p > 1, there exists C = C(�, p) > 0 such that:

(3.5)
���
�

p3(u)dx
��� ≤ C�u�2

Hm+1/2�u�W �,p .

Proof. – Looking at the structure of the elements in P3(u) and since we are assuming
(3.4) we can deduce by Lemma 3.3 the following estimate:

���
�

p3(u)dx
��� ≤ C

�
max{�u�Hm+1/2 , �Hu�Hm+1/2}

�2
max{�u�L∞ , �Hu�L∞}
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and hence by the Sobolev embedding W �,p ⊂ L∞ we can continue the estimate as follows
(provided that we change the constant C)

· · · ≤ C�u�2
Hm+1/2 max{�u�W �,p , �Hu�W �,p}.

The proof can be completed since the Hilbert transform H is continuous in the spaces Lp

for 1 < p < ∞.

L���� 3.5. – Let k ≥ 2 be an integer. For every p3(u) ∈ P3(u) such that

p̃3(u) =
3�

i=1

∂αi
x

u with 0 ≤
3�

i=1

αi = 2k + 1 and 1 ≤ min
i=1,2,3

αi ≤ max
i=1,2,3

αi ≤ k

we have:
���
�

p3(u)dx
��� ≤ C�u�3

Hk .

Proof. – We can assume α1 ≥ α2 ≥ α3 and also p3(u) =
�3

i=1 ∂αi
x

u (the general case
follows in a similar way).

First case: α1 = α2 = k.

In this case necessarily α3 = 1 and hence by the Hölder inequality we get
���
�

p3(u)dx
��� ≤ �u�2

Hk�∂xu�L∞ ≤ C�u�3
Hk

where we have used the Sobolev embedding H1 ⊂ L∞.

Second case: α2 ≤ k − 1.

By the Hölder inequality we get
���
�

p3(u)dx
��� ≤ �u�Hk�u�Hk−1�∂α3

x
�L∞

and hence by the embedding H1 ⊂ L∞

· · · ≤ C�u�2
Hk�u�Hα3+1 .

The proof follows since α3 + 1 ≤ α2 + 1 ≤ k.

L���� 3.6. – Let k ≥ 1 and j ≥ 3 be integers. For every pj(u) ∈ Pj(u) such that

p̃j(u) =
j�

i=1

∂αi
x

u with 0 ≤
j�

i=1

αi ≤ 2k

we have:

(3.6)
���
�

pj(u)dx
��� ≤ C�u�j

Hk .
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Proof. – We treat explicitly the case pj(u) = p̃j(u) (we specify shortly below how to treat
the general case).

It is not restrictive to assume that

(3.7) α1 ≥ α2 ≥ · · · ≥ αj .

By eventually performing integrations by parts we can assume α1 ≤ k and by (3.7) also
α2 ≤ k. Moreover by the assumption we get

(3.8) αi < k, ∀i = 3, . . . , j.

Hence by the Hölder inequality we get:

(3.9)
���
�

pj(u)dx
��� ≤ �∂α1

x
u�L2�∂α2

x
u�L2

j�

i=3

�∂αi
x

u�L∞

which due to the embedding H1 ⊂ L∞ and (3.8) implies (3.6) (if the Hilbert transform H
is involved in the expression of pj(u) then we are allowed to remove H at the last step since
�Hu�Hs = �u�Hs ).

L���� 3.7. – Let n ≥ 0 be an integer and R > 0, then

(3.10) ∃C = C(n, R) > 0 s.t.
2n�

j=0

{u ∈ Hn||Ej/2(u)| < R} ⊂ {u ∈ Hn|�u�Hn < C}.

Proof. – We use induction on n.

First step: n = 0.
This is trivial since E0(u) = �u�2

L2 .

Second step: n = 1.
By combining the explicit structure of E1/2 (see the introduction) with the following

inequality
�u�L3 ≤ �u�1/2

L2 �u�1/2
L6 ≤ C�u�1/2

L2 �u�1/2
H1/2

we get

(3.11) |R1/2(u)| ≤ C�u�3/2
L2 �u�3/2

H1/2

(see the notation in (1.2)). Hence in the region

{u ∈ H1||E1/2(u)| < R, |E0(u)| < R}

we get
�u�2

Ḣ1/2 = |E1/2(u)−R1/2(u)| ≤ R + R3/4�u�3/2
H1/2

which in turn implies the existence of C > 0 such that

(3.12) �u�H1/2 < C, ∀u ∈ {u ∈ H1||E1/2(u)| < R, |E0(u)| < R}.

Next, by looking at the explicit structure of E1 (see the introduction) we get

|R1(u)| ≤ C�u�H1�u�2
H1/2 + C�u�4

H1/2

(see the notation (1.2)) where we have used the Sobolev embedding H1/2 ⊂ L4. Hence by
(3.12) we get a suitable constant C > 0 such that

�u�2
Ḣ1 = |E1(u)−R1(u)| ≤ R + C + C�u�H1
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∀u ∈ {u ∈ H1||E1(u)| < R, |E1/2(u)| < R, |E0(u)| < R}.
In turn, this implies the existence of C > 0 such that

�u�H1 < C, ∀u ∈ {u ∈ H1||E1(u)| < R, |E1/2(u)| < R, |E0(u)| < R}.

Third step: n = 2.
Following the argument of the previous step we get

(3.13) �u�H1 < C, ∀u ∈ {u ∈ H2||E1(u)| < R, |E1/2(u)| < R, |E0(u)| < R}

for a suitable C > 0. By combining the structure of E3/2 (see the introduction) with (3.13)
and the Sobolev embedding H1 ⊂ L∞ we get

|R3/2(u)| < C, ∀u ∈ {u ∈ H2||E1(u)| < R, |E1/2(u)| < R, |E0(u)| < R}.

As a consequence we deduce

(3.14) �u�2
Ḣ3/2 = |E3/2(u)−R3/2(u)| ≤ R + C

∀u ∈ {u ∈ H2||E3/2(u)| < R, |E1(u)| < R, |E1/2(u)| < R, |E0(u)| < R}.
By combining (3.14) with Lemma 3.4 and Lemma 3.6 we get

���R2(u) +
5

4

�
(ux)2Hux dx

��� < C

∀u ∈ {u ∈ H2||E3/2(u)| < R, |E1(u)| < R, |E1/2(u)| < R, |E0(u)| < R}

and hence

�u�2
H2 = E2(u) +

�
R2(u) +

5

4

�
(ux)2Hux dx

�
− 5

4

�
(ux)2Hux dx

≤ R + C + �u�2
H1�u�H2 ≤ R + C + C�u�H2

for all u in
�4

j=0{u ∈ H2||Ej/2(u)| < R}, where we have used the Hölder inequality and
the Sobolev embedding H1 ⊂ L∞ to estimate the integral

�
(ux)2Hux dx. The proof can be

easily concluded.

Fourth step: n ⇒ n + 1 for n ≥ 2.
Assume the conclusion is proved for n ≥ 1, then there exists C > 0 such that

2(n+1)�

j=0

{u ∈ Hn+1||Ej/2(u)| < R} ⊂
2n�

j=0

{u ∈ Hn+1||Ej/2(u)| < R}(3.15)

⊂ {u ∈ Hn+1|�u�Hn < C}.

Next we shall use (following (1.2)) the notation

(3.16) En+1/2(u) = �u�2
Ḣn+1/2 + Rn+1/2(u)

and

(3.17) En+1(u) = �u�2
Ḣn+1 + Rn+1(u)

(the structure of Rk/2, described in (2.4) and (2.5), depending on the evenness or the oddness
of k, will be freely exploited in the sequel).
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By combining Lemma 3.6 (where we choose k = n), with (3.15) we deduce

(3.18) |Rn+1/2(u)| < C, ∀u ∈
2(n+1)�

j=0

{u ∈ Hn+1||Ej/2(u)| < R}

for a suitable C > 0, where we have used the fact that Rn+1/2(u) involves terms of the
type

�
pj(u)dx with j ≥ 3 and �pj(u)� ≤ 2n (for a definition of �pj(u)� see (2.3)). As a

consequence of (3.16) and (3.18) we get

(3.19)
2(n+1)�

j=0

{u ∈ Hn+1||Ej/2(u)| < R} ⊂ {u ∈ Hn+1|�u�Hn+1/2 < C}.

By combining Lemma 3.4 (where we choose m = n, � = 1, p = 2), Lemma 3.5, Lemma 3.6
(with k = n) and (3.19) we deduce

|Rn+1(u)| < C + C�u�Hn+1 , ∀u ∈
2(n+1)�

j=0

{u ∈ Hn+1||Ej/2(u)| < R}

(where we have used the structure of Rn+1 given in (2.4)). By combining this estimate with
(3.17) we get

�u�2
Ḣn+1 ≤ |En+1(u)| + C + C�u�Hn+1 ≤ R + C + C�u�Hn+1

∀u ∈
2(n+1)�

j=0

{u ∈ Hn+1||Ej/2(u)| < R}

which in turn implies (3.10) for n + 1.

Proof of Proposition 3.1. – By (3.10) (where we choose n = k) there exists C > 0 such
that

(3.20) �u�Hk < C, ∀u ∈
2k�

j=0

{u ∈ Hk||Ej/2(u)| < R1}.

We also recall the notation (see (1.2))

(3.21) Ek+1/2(u) = �u�2
Ḣk+1/2 + Rk+1/2(u).

By combining (2.5) with (3.20) and Lemma 3.6 (recall that we are assuming k > 0) we get
that for every R there exists C = C(R) such that

|Rk+1/2(u)| < C, ∀u ∈ {u ∈ Hk|�u�Hk < R}

which is equivalent to

|Ek+1/2(u)− �u�2
Ḣk+1/2 | < C, ∀u ∈ {u ∈ Hk|�u�Hk < R}

and hence
|Ek+1/2(πNu)− �πNu�2

Ḣk+1/2 | < C

∀u ∈ {u ∈ Hk|�u�Hk < R}, N ∈ N.

By (3.20) we get
|Ek+1/2(πNu)− �πNu�2

Ḣk+1/2 | < C
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∀u ∈
2k�

j=0

{u ∈ Hk||Ej/2(u)| < R1}, N ∈ N

that in turn implies (3.1).

4. A linear Gaussian bound

We start with the following general measure theory result which shall be frequently used
in the sequel.

Pʀ����ɪ�ɪ�ɴ 4.1. – Let F : (Ω, A, p) → C be measurable and C, α > 0 be such that

(4.1) �F�Lq ≤ Cqα, ∀q ∈ [1,∞).

Then
p{ω ∈ Ω||F (ω)| > λ} ≤ e−

α
e ( λ

C )
1
α

, ∀λ > 0.

Proof. – By combining the Tchebychev inequality with (4.1) we get:

p{ω ∈ Ω||F (ω)| > λ} ≤
�F�q

q

λq
≤ Cq

�qα

λ

�q

.

We conclude by choosing q =
�

λ

C

� 1
α

e−1.

Next we present, as an application of the previous result, a linear Gaussian bound which
will be used in the next sections.

Pʀ����ɪ�ɪ�ɴ 4.2. – For every integer m ≥ 0, 0 < � < 1
2 and 1 ≤ p < ∞ there exists

C = C(m, �, p) > 0 such that

p{ω ∈ Ω|�ϕm+1(ω)�W
�,p
x

> λ} ≤ Ce−
λ2

C , ∀λ > 0

where ϕm+1(ω) is the random vector in (1.3) for k = 2(m + 1).

Proof. – It is sufficient to prove that

p
�

ω ∈ Ω|
���

�

k>0

ϕk(ω)

km+1−�
eikx

���
L

p
x

> λ
�
≤ Ce−

λ2

C .

For every fixed x ∈ (0, 2π) the random variable
�

k>0

ϕk(ω)

km+1−�
eikx

is Gaussian and its distribution function is 1
πK

e−
|z|2
K dz where K =

�
k>0

1
k2(m+1−�) .

As a consequence we get the following estimate:
���

�

k>0

ϕk(ω)

km+1−�
eikx

���
q

L
q
ω

=
1

πK

�

C
|z|qe−

|z|2
K dz

= 2K
q
2

� ∞

0
e−s

2

sq+1ds ≤ CK
q
2

�q

2

� q
2

, ∀x ∈ (0, 2π)
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for a suitable C > 0 (the last inequality can be proved by integration by parts). In particular
we get:

���
�

k>0

ϕk(ω)

km+1−�
eikx

���
L

q
ω

≤ C
√

q, ∀x ∈ (0, 2π)

and hence ���
�

k>0

ϕk(ω)

km+1−�
eikx

���
L

p
xL

q
ω

≤ C
√

q.

Due to the inequality �.�L
q
ωL

p
x
≤ �.�L

p
xL

q
ω

for every q ≥ p we get:
���

�

k>0

ϕk(ω)

km+1−�
eikx

���
L

q
ωL

p
x

≤ C
√

q, ∀q ≥ p

(since p(Ω) = 1 it is easy to deduce that the estimate above is true for every q ≥ 1 eventually
with a new constant C). Hence we can conclude by using Proposition 4.1.

5. Multilinear Gaussian bounds

For any p(u) ∈ ∪∞
j=1 Pj(u) (see Section 2) and for any N ∈ N we introduce the functions

fp(v) =

�
p(v)dx and fp

N
(v) =

�
p(πNv)dx.

We also recall that the Sobolev spaces Hm+1/2−� are a support for the Gaussian measure
dµm+1 for every � > 0. This fact will be used without any further comment in the sequel.
The main results of this section are the following propositions.

Pʀ����ɪ�ɪ�ɴ 5.1. – Let m ≥ 0 and p3(u) ∈ P3(u) be such that p̃3(u) = u∂m

x
u∂m+1

x
u.

Then there exists C > 0 such that

(5.1) �fp3

N
(u)− fp3

M
(u)�Lp(dµm+1) ≤ C

p3/2

�
min{M, N}

, ∀M,N ∈ N, p ≥ 2.

In particular

(5.2) ∃C > 0 s.t. µm+1(A
p3,λ

M,N
) ≤ e−

1
C (λ
√

min{N,M})2/3

, ∀M, N ∈ N, λ > 0

where

(5.3) Ap3,λ

M,N
= {u ∈ Hm+1/2−�||fp3

N
(u)− fp3

M
(u)| > λ}.

Pʀ����ɪ�ɪ�ɴ 5.2. – Let m ≥ 0 be fixed. There exists C > 0 such that

(5.4) �hN (u)− hM (u)�Lp(dµm+1) ≤ C
p�

min{M, N}
, ∀M, N ∈ N, p ≥ 2

where hK(u) = �πKu�2
Ḣm+1/2 − αK for any K ∈ N. In particular

(5.5) ∃C > 0 s.t. µm+1(B
λ

M,N
) ≤ e−

1
C (λ
√

min{N,M}), ∀M,N ∈ N, λ > 0

where

(5.6) Bλ

M,N
= {u ∈ Hm+1/2−�||hN (u)− hM (u)| > λ}.
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We need some preliminary lemmas. The first one concerns the orthogonality of the func-
tions {ϕi(ω)ϕj(ω)ϕk(ω)}i,j,k∈Z (where ϕn(ω) are the Gaussian functions that appear in
(1.3)) provided that (i, j, k) ∈ A, where

(5.7) A = {(i, j, k) ∈ Z \ {0}|i + j + k = 0}.

L���� 5.3. – Let (k1, k2, k3), (j1, j2, j3) ∈ A be such that

(5.8) {k1, k2, k3} �= {j1, j2, j3}.

Then �

Ω
ϕk1ϕk2ϕk3ϕj1ϕj2ϕj3dω = 0.

Proof. – We split the proof in two cases (which in turn are splited in several subcases).

First case: ∃i ∈ {1, 2, 3} s.t. ki /∈ {j1, j2, j3}.
We can assume

(5.9) k1 /∈ {j1, j2, j3}.

Next we consider four subcases:

First subcase:

(5.10) k1 /∈ {k2, k3} and − k1 /∈ {j1, j2, j3}.

Notice that by definition of A necessarily

(5.11) − k1 /∈ {k2, k3}.

Hence by combining (5.9), (5.10), (5.11) and the independence assumption on {ϕn(ω)}n>0

we get:

0 =

�
ϕk1

�
ϕk2ϕk3ϕj1ϕj2ϕj3dω =

�
ϕk1ϕk2ϕk3ϕj1ϕj2ϕj3dω.

Second subcase:

(5.12) k1 ∈ {k2, k3} and − k1 /∈ {j1, j2, j3}.

It is not restrictive to assume

(5.13) k1 = k2

and hence by the definition of A

(5.14) k3 �= ±k1.

Hence by combining (5.9), (5.12), (5.13), (5.14) with the independence assumption on {ϕn(ω)}n>0

we get

0 =

�
ϕ2

k1
dω

�
ϕk3ϕj1ϕj2ϕj3dω =

�
ϕk1ϕk2ϕk3ϕj1ϕj2ϕj3dω.

Third subcase:

(5.15) k1 /∈ {k2, k3} and − k1 ∈ {j1, j2, j3}.

By definition of A we also deduce

(5.16) − k1 /∈ {k2, k3}.
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By (5.15) we can assume for simplicity either

(5.17) − k1 = j1 /∈ {j2, j3}

or

(5.18) − k1 = j1 = j2.

In the case when (5.17) occurs, we can also assume by the definition of A that

(5.19) k1 = −j1 /∈ {j2, j3}.

By combining (5.9), (5.15), (5.16), (5.17), (5.19) with the independence assumption on
{ϕn(ω)}n>0 we get

0 =

�
ϕ2

k1
dω

�
ϕk2ϕk3ϕj2ϕj3dω =

�
ϕk1ϕk2ϕk3ϕj1ϕj2ϕj3dω

(where we have also used (5.9)); in the case when (5.18) occurs, by using the definition of A
we get

(5.20) ± k1 �= j3.

Hence by combining (5.15), (5.16), (5.18), (5.20) we deduce

0 =

�
ϕ3

k1
dω

�
ϕk2ϕk3ϕj3dω =

�
ϕk1ϕk2ϕk3ϕj1ϕj2ϕj3dω.

Fourth subcase:

(5.21) k1 ∈ {k2, k3} and − k1 ∈ {j1, j2, j3}.

We can assume

(5.22) k1 = k2

and by the definition of A also

(5.23) k3 �= ±k1.

Moreover, we can assume that either

(5.24) − k1 = j1 /∈ {j2, j3}

or

(5.25) − k1 = j1 = j2.

In the case when (5.24) occurs we can also assume by the definition of A that

(5.26) k1 = −j1 /∈ {j2, j3}.

Hence by combining (5.22), (5.23), (5.24), (5.26) we get

0 =

�
ϕ3

k1
dω

�
ϕk3ϕj2ϕj3dω =

�
ϕk1ϕk2ϕk3ϕj1ϕj2ϕj3dω;

in the case when (5.25) occurs we can deduce by the definition of A that

(5.27) ± k1 �= j3.

4 e SÉRIE – TOME 46 – 2013 – No 2



INVARIANT MEASURES FOR BO 267

Hence by (5.22), (5.23), (5.25), (5.27) we get

0 =

�
ϕ4

k1
dω

�
ϕk3ϕj3dω =

�
ϕk1ϕk2ϕk3ϕj1ϕj2ϕj3dω.

Second case:

(5.28) ki ∈ {j1, j2, j3} ∀i = 1, 2, 3.

Next we consider two subcases:

First subcase:

(5.29) k1 �= k2, k1 �= k3, k2 �= k3.

By combining (5.28) and (5.29) it is easy to deduce that

{j1, j2, j3} = {k1, k2, k3}

which is in contradiction with (5.8).

Second subcase:

(5.30) ∃n, m ∈ {1, 2, 3} s.t. n �= m, kn = km.

We can assume

(5.31) k1 = k2,

then by the definition of A we deduce that

(5.32) k3 = −2k1.

On the other hand by (5.28) k1,−2k1 ∈ {j1, j2, j3}. Since by the definition of A we have�3
i=1 ji = 0 we conclude that necessarily

(5.33) {j1, j2, j3} = {k1, k1,−2k1}.

On the other hand by (5.31), (5.32) we get

{k1, k2, k3} = {k1, k1,−2k1}

which in conjunction with (5.33) gives {k1, k2, k3} = {j1, j2, j3}. Hence we get a contradic-
tion with the Hypothesis (5.8).

L���� 5.4. – Let m ≥ 0 be an integer and p3(u) ∈ P3(u) such that p̃3(u) =
u∂m

x
u∂m+1

x
u. Then there exists C > 0 such that

�fp3

N
(u)− fp3

M
(u)�L2(dµm+1) ≤

C�
min{N,M}

, ∀N,M ∈ N.

Proof. – We assume for simplicity p3(u) = u∂m

x
u∂m+1

x
u (the general case can be treated

in a similar way). Next we assume N > M and we shall use the parametrization (1.3) with
k = 2(m + 1) to describe our probability space. Hence we get the following representation

fp3

N
(ϕ(ω))− fp3

M
(ϕ(ω)) =

�

(i,j,k)∈ AN
M

1

|i|m+1

1

|j|ϕi(ω)ϕj(ω)ϕk(ω)

where

(5.34) AN

M
= {(i, j, k) ∈ A||i|, |j|, |k| ≤ N and max{|i|, |j|, |k|} > M}
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and A is defined as in (5.7). By Lemma 5.3 we get:

�fp3

N
(ϕ(ω))− fp3

M
(ϕ(ω))�2

L2
ω

≤
�

(i,j,k)∈ ÃN
M

� 1

|i|m+1

� 1

|j| +
1

|k|

�
+

1

|j|m+1

� 1

|i| +
1

|k|

�
+

1

|k|m+1

� 1

|i| +
1

|j|

��2

where
Ã

N

M
= {(i, j, k) ∈ AN

M
|i ≤ j ≤ k}.

Next notice that the following elementary property holds

Ã
N

M
⊂ {(i, j, k) ∈ A|Card{|i|, |j|, |k|} ∈ [M/2, N ]} ≥ 2}

and hence we easily get:
�

(i,j,k)∈ ÃN
M

� 1

|i|m+1

� 1

|j| +
1

|k|

�
+

1

|j|m+1

� 1

|i| +
1

|k|

�
+

1

|k|m+1

� 1

|i| +
1

|j|

��2

≤ C
�

(l,n)∈N×Nn≥M
2

1

l2(m+1)n2
≤ C

M
.

In the next lemma the functions hK(u) are the ones defined in Proposition 5.2.

L���� 5.5. – Let m ≥ 0 be an integer. Then there exists C > 0 such that

�hN (u)− hM (u)�L2(dµm+1) ≤
C�

min{N,M}
, ∀N,M ∈ N.

Proof. – Notice that �ϕ(ω)�2
Ḣm+1/2 =

�
n∈Z\{0}

1
|n| |ϕn(ω)|2 where ϕ(ω) is defined as in

(1.3) for m = 2(k + 1). Hence the proof follows as in [14] (see Lemma 4.7).

Proof of Proposition 5.1. – In Lemma 5.4 we have proved (5.1) for p = 2. The case p > 2
follows by combining the estimate for p = 2 with the Wiener Chaos in the same spirit as
the paper [14] (see the proof of Lemma 4.3 in [14]). The estimate (5.2) follows by (5.1) in
conjunction with Proposition 4.1.

We refer to [9] for a background on the estimates for the Wiener Chaos.

Proof of Proposition 5.2. – By combining Lemma 5.5 with the Wiener Chaos in the spirit
of [14] we get (5.4) for any p ≥ 2 (see the proof of Lemma 4.8 in [14]). Finally (5.5) follows
by combining (5.4) with Proposition 4.1.

Arguing as in the proof of Proposition 5.1 and 5.2 we can prove the following result (that
will be useful in the sequel to prove Theorem 1.1 in the special case k = 2).

Pʀ����ɪ�ɪ�ɴ 5.6. – There exists C > 0 such that

(5.35) µ1{u ∈ H1/2−�||E1/2(πNu)− αN − E1/2(πMu) + αM | > λ}

≤ e−
1
C (λ
√

min{M,N})2/3

and

(5.36) µ1{u ∈ H1/2−�|�πNu− πMu�2
L2 > λ} ≤ e−

1
C (λ
√

min{M,N})
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∀M,N ∈ N, λ > 0.

Proof. – The proof of (5.36) follows the same argument as the proof of (5.2) and (5.5)
(i.e., it follows by combining Lemma 5.3, with the Wiener Chaos and Proposition 4.1). By a
similar argument we can prove

µ1{u ∈ H1/2−�||R1/2(πNu)−R1/2(πMu)| > λ} ≤ e−
1
C (λ
√

min{M,N})2/3

.

By combining this estimate with (5.5) (for m = 0) we get (5.35).

6. Proof of Theorem 1.1 for k = 2(m + 1), m ≥ 0

Along this section, when it is not better specified, we shall assume that m ≥ 0 is a given
integer. We recall the following notations to describe the energies preserved by the Benjamin-
Ono flow:

Em+1(u) = �u�2
Ḣm+1 + Rm+1(u);

Em+1/2(u) = �u�2
Ḣm+1/2 + Rm+1/2(u).

We also introduce the following functions

fN : Hm+1/2−� � u → Rm+1(πNu);

gN : Hm+1/2−� � u → Em+1/2(πNu)− αN

(recall that Hm+1/2−� is of full measure for µm+1). Notice that we can write the identity

gN (u)− hN (u) = Rm+1/2(πNu)

where hN (u) is defined as in Proposition 5.2. For every pj(u) ∈ Pj(u) we introduce

(6.1) f
pj

N
: Hm+1/2−� � u →

�
pj(πNu)dx ∈ R.

Next we split the proof of Theorem 1.1 (in the case k = 2(m + 1)) in several propositions.

Pʀ����ɪ�ɪ�ɴ 6.1. – Let m ≥ 0 be an integer and ψ ∈ Cc(R) be given. Then there exist
two functions h̄(u), f̄(u) measurable with respect to µm+1 such that:

(6.2) |h̄(u)|, |f̄(u)| < ∞, a.e. (w.r.t. µm+1) u ∈ Hm+1/2−�;

(6.3)
2m�

j=0

ψ(Ej/2(πNu))ψ(Em+1/2(πNu)− αN )e−Rm+1(πN u)

converges in measure to
2m�

j=0

ψ(Ej/2(u))ψ(h̄(u) + Rm+1/2(u))e−f̄(u).

Moreover

(6.4) |Ej/2(u)|, |Rm+1/2(u)| < ∞, a.e. (w.r.t. µm+1) u ∈ Hm+1/2−�.

The proof of (6.4) follows by (6.12) and (6.13) in Lemma 6.3. Hence Proposition 6.1
follows by Lemmas 6.3, 6.4 in conjunction with the following proposition.
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Pʀ����ɪ�ɪ�ɴ 6.2. – Let m ≥ 0 be an integer and ψ ∈ Cc(R) be given. There exist
f̄(u), h̄(u) measurable functions with respect to µm+1 such that:

(6.5) |h̄(u)|, |f̄(u)| < ∞, a.e. (w.r.t. µm+1) u ∈ Hm+1/2−�;

(6.6) Rm+1(πNu) converges in measure w.r.t. µm+1 to f̄(u);

(6.7) lim
N→∞

�ψ(gN (u))− ψ(h̄(u) + Rm+1/2(u))�Lq(dµm+1) = 0, ∀q ∈ [1,∞).

Moreover we have

(6.8) lim
N→∞

�ψ(Ej/2(πNu))− ψ(Ej/2(u))�Lq(dµm+1) = 0, ∀q ∈ [1,∞), j = 0, . . . , 2m.

First we prove the following lemma.

L���� 6.3. – Let m ≥ 1 be an integer; then the following limits exist:

(6.9) lim
N→∞

f
pj

N
(u) =

�
pj(u)dx ∈ R, a.e. (w.r.t. µm+1) u ∈ Hm+1/2−�

provided that

(6.10) j ≥ 3, p̃j(u) =
j�

i=1

∂αi
x

u with 0 ≤
j�

i=1

αi ≤ 2m

or

(6.11) j = 3, p̃3(u) =
3�

i=1

∂αi
x

u with 0 ≤
3�

i=1

αi = 2m + 1 and min
i=1,2,3

αi ≥ 1.

In particular

(6.12) lim
N→∞

Rm+1/2(πNu) = Rm+1/2(u) ∈ R a.e. (w.r.t. µm+1) u ∈ Hm+1/2−�.

Moreover we have

(6.13) |Ej/2(u)| < ∞, ∀u ∈ Hm+1/2−�, j = 0, . . . , 2m.

Proof. – We assume for simplicity pj(u) = p̃j(u) (the general case can be treated by a
similar argument).

The proof of (6.9) (under the Hypothesis (6.10)) follows by Lemma 3.6.
Concerning the proof of (6.9), under the assumption (6.11), we notice that by integration

by parts we can assume
1 ≤ α1 ≤ α2 ≤ α3 ≤ m.

Hence we get
���
�

p3(u)dx
��� ≤ C�u�2

Hm�∂α1
x

u�L∞ ≤ C�u�2
Hm�u�W m+�,p

where we have used the Sobolev embedding W �,p ⊂ L∞ provided that �p > 1. On the other
hand by a suitable version of Proposition 4.2 (where we replace �.�W �,pby �.�W m+�,p) we get
u ∈ Wm+�,p, a.e. ( w.r.t. µm+1) u ∈ Hm+1/2−� and hence (6.9) follows.

The proof of (6.12) follows by combining the structure of Em+1/2 (see (2.5)) with (6.9)
(under the assumption (6.10)). The proof of (6.13) follows by a similar argument.

The next result is a suitable version of the previous lemma in the case m = 0.
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L���� 6.4. – The following limits exist:

lim
N→∞

R1/2(πNu) = R1/2(u) ∈ R, ∀u ∈ H1/2−�;(6.14)

lim
N→∞

�
(πNu)4dx =

�
u4dx, ∀u ∈ H1/2−�.(6.15)

Proof. – By looking at the explicit structure on E1/2 (see the introduction) we get
R1/2(u) = 1

3

�
u3dx. On the other hand by the Sobolev embedding H1/2−� ⊂ L3 we get

u ∈ L3, and hence (6.14) follows. By a similar argument we deduce (6.15).

Proof of Proposition 6.2. – By Proposition 5.1 and 5.2 there exist two functions
f̃ , h̄ ∈ ∩∞

q=1L
q(dµm+1) such that:

lim
N→∞

�fp3

N
(u)− f̃(u)�Lq(dµm+1) = 0 (provided that p̃3(u) = u∂m

x
u∂m+1

x
u);(6.16)

lim
N→∞

�hN (u)− h̄(u)�Lq(dµm+1) = 0.(6.17)

Proof of (6.6). – If m = 0 then it follows by (6.15), (6.16) and by looking at the explicit
structure of E1 (see the introduction).

If m ≥ 1 then it follows by combining (6.9) (under both assumptions (6.10) and (6.11)),
(6.16) and the algebraic structure of Rm+1(u) (see (2.4)).

Proof of (6.7). – It is sufficient to prove that for every sequence Nk there is a subsequence
Nkh such that

(6.18) lim
h→∞

�ψ(gNkh
(u))− ψ(h̄(u) + Rm+1/2(u))�Lq(dµm+1) = 0.

Notice that by combining (6.12) (when m ≥ 1) and (6.14) (when m = 0) with (6.17) we get
a subsequence Nk such that

lim
k→∞

�
hNk(u) + Rm+1/2(πNku)

�
= h̄(u) + Rm+1/2(u) a.e. (w.r.t. µm+1) u ∈ Hm+1/2−�.

Since sup
u∈Hm+1/2−� |ψ(gNk(u))| ≤ supψ and dµm+1(Hm+1/2−�) = 1 we can apply the

dominated convergence theorem to get (6.18).

Proof of (6.8). – If m ≥ 1 then we combine (6.9) (under the assumption (6.10)) with
(2.4) and (2.5) in order to get Ej/2(πNu) → Ej/2(u), a.e. (w.r.t. µm+1) u ∈ Hm+1/2−�

for j = 0, .., 2m. Hence the proof for m ≥ 1 can be concluded as in (6.7).
The case m = 0 is simpler since we have µ1(L2) = 1 and hence

�πNu�L2 → �u�L2 , a.e. (w.r.t. µ1) u ∈ L2.

The proof follows as above.

The next proposition allows us to deduce that the limit functions constructed in (6.3)
belong to Lq(dµm+1).

Pʀ����ɪ�ɪ�ɴ 6.5. – Let m ≥ 0 and ψ ∈ Cc(R) be given. For every q ∈ [1,∞) we have

(6.19) sup
N

���
2m�

j=0

ψ(Ej/2(πNu))ψ(Em+1/2(πNu)− αN )e−Rm+1(πN u)
���

Lq(dµm+1)
< ∞.
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L���� 6.6. – Let m ≥ 0 be an integer and p3(u) ∈ P3(u) such that
p̃3(u) = u∂m

x
u∂m+1

x
u. For every R > 0 there exists C = C(R) > 0 such that

(6.20) µm+1{u ∈ Hm+1/2−�||fp3

N
(u)| > λ, |hN (u)| < R} ≤ Ce

− λ2

Cα2
N ∀N ∈ N, λ > 0.

Proof. – We fix 0 < � < 1
2 and 1 < p < ∞ such that �p > 1. Then by Lemma 3.4 we get

|fp3

N
(u)| ≤ C�πNu�2

Hm+1/2�πNu�W �,p

and hence

|fp3

N
(u)| ≤ C(αN + R)�πNu�W �,p ∀u ∈ {u ∈ Hm+1/2−�||hN (u)| < R}.

The proof follows by Proposition 4.2 (in fact notice that the same proof of Proposition 4.2
works in the case when the vector ϕ(ω) is replaced by πNϕ(ω) with uniform bounds that do
not depend on N ).

Next we present a modified version of Lemma 6.6 that will be useful to prove Theorem 1.1
for k = 2 (i.e., m = 0 following the notation introduced in this section).

R���ʀ� 6.7. – Indeed the main difference between the case m = 0 and m > 0 is that
Proposition 3.1 is not available for m = 0.

L���� 6.8. – Let p3(u) ∈ P3(u) be such that p̃3(u) = u2∂xu. For every R > 0 there
exists C = C(R) > 0 such that

µ1{u ∈ H1/2−�||fp3

N
(u)| > λ, �πNu�L2 < R, |E1/2(πNu)− αN | < R}(6.21)

≤ Ce
− λ2

Cα2
N , ∀N ∈ N, λ > 0.

Proof. – First notice that due to (3.11) we have the following estimate:

�πNu�2
Ḣ1/2 ≤ |R1/2(πNu)| + |E1/2(πNu)|

≤ CR3/2�πNu�3/2

H
1
2

+ αN + R

∀u ∈ {u ∈ H1/2−�|�πNu�L2 < R, |E1/2(πNu)− αN | < R}.

The estimate above implies

(6.22) �πNu�2
H

1
2
≤ C(αN + 1)

∀u ∈ {u ∈ H1/2−�|�πNu�L2 < R, |E1/2(πNu)− αN | < R}
where C > 0 is a suitable constant. By combining Lemma 3.4 with (6.22) we get

���
�

p3(πN (u))dx
��� ≤ C�πNu�2

H1/2�πNu�W �,p

≤ C(αN + 1)�πNu�W �,p .

The proof can be concluded as in Lemma 6.3.

In the sequel the sets Ap,λ

M,N
and Bλ

M,N
are the ones introduced in (5.3) and (5.6).
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L���� 6.9. – Let m ≥ 0 be an integer and p3(u) ∈ P3(u) such that
p̃3(u) = u∂m

x
u∂m+1

x
u. Then

(6.23) µm+1{u ∈ Hm+1/2−�||fp3

N
(u)| > λ, |hN (u)| < R} ≤ dµm+1(B

S

M,N
)

+ µm+1{u ∈ Hm+1/2−�||fp3

M
(u)| >

λ

2
, |hM (u)| < R + S} + dµm+1(A

p3,
λ
2

M,N
),

∀ M,N,λ, R, S.

Proof. – We have the following elementary estimates:

µm+1{u ∈ Hm+1/2−�||fp3

N
(u)| > λ, |hN (u)| < R}

≤ µm+1{u ∈ Hm+1/2−�||fp3

M
(u)| >

λ

2
, |hN (u)| < R} + µm+1(A

p3,
λ
2

M,N
)

≤ µm+1{u ∈ Hm+1/2−� \ BS

M,N
||fp3

M
(u)| >

λ

2
, |hN (u)| < R} + µm+1(B

S

M,N
)

+ µm+1(A
p3,

λ
2

M,N
).

On the other hand

{u ∈ Hm+1/2−� \ BS

M,N
||hN (u)| < R} ⊂ {u ∈ Hm+1/2−�||hM (u)| < R + S}

and hence we get (6.23).

Next we propose a modified version of Lemma 6.9 that will be useful to prove Theorem 1.1
for k = 2 (i.e., m = 0 following the notation introduced in this section). See Remark 6.7 to
understand the difference between the case m = 0 and m > 0.

L���� 6.10. – Let p3(u) ∈ P3(u) such that p̃3(u) = u2∂xu. Then

µ1{u ∈ H1/2−�||fp3

N
(u)| > λ, �πNu�L2 < R, |E1/2(πNu)− αN | < R}

≤ µ1{u ∈ H1/2−�||E1/2(πNu)− αN − E1/2(πMu) + αM | > S}

+ µ1{u ∈ H
1
2−�||fp3

M
(u)| >

λ

2
, �πMu�L2 < R + S, |E1/2(πMu)− αM | < R + S}

+ µ1(A
p3,

λ
2

M,N
) + µ1{u ∈ H1/2−�|�πMu− πNu�L2 > S}, ∀M,N,λ, R, S.

Proof. – It is similar to the proof of Lemma 6.9.

Proof of Proposition 6.5. – We have to prove (6.19).

Cʟ�ɪ�. – It is sufficient to prove (6.19) with fN replaced by fp3

N
where

(6.24) p̃3(u) = u∂m

x
u∂m+1

x
u.

To prove the claim first notice that due to the factor
�2m

j=0 ψ(Ej/2(πNu)) in (6.19) and due
to (3.10), we deduce that the Lq(dµm+1) norm in (6.19) can be computed on a sub-region
ΩN ⊂ Hm+1/2−� such that

(6.25) ΩN = {u ∈ Hm+1/2−�|�πNu�Hm} < C}

with C that does not depend on N . Next we prove the claim.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



274 N. TZVETKOV AND N. VISCIGLIA

First case: m ≥ 2.
By combining Lemma 3.5 and Lemma 3.6, and by looking at the structure of Em+1 in

(2.4) we deduce that

sup
N

���Rm+1(πNu)−
�

p3(u)∈ P3(u)s.t.

p̃3(u)=u∂
m
x u∂

m+1
x u

c2(m+1)(p)

�
p3(πNu)dx

���
L∞(ΩN )

< ∞.

This implies the claim for m ≥ 2.

Second case: m = 0.
In the case m = 0 we have

fN (u) =
3

4

�
(πNu)2H(πN∂xu)dx +

1

8

�
(πNu)4dx

and hence we get the claim due to the positivity of the last term.

Third case: m = 1.
By looking at the structure of E2 and by using Lemma 3.6 we deduce that the claim follows

provided that we prove

(6.26) sup
N

�eq|fp(πN u)|�L1(ΩN ,dµ2) < ∞

where ΩN is defined in (6.25) and p(u) ∈ P3(u) is such that p̃(u) = (∂xu)3. For simplicity
we treat the case p(u) = (∂xu)3 (the general case can be treated in a similar way). We have
the following estimate

|fp(πNu)| ≤ C�πNu�2
H1�∂xπNu�L∞ ≤ C�πNu�W 1+�,p

provided that u ∈ ΩN and �p > 1. Hence we get

{u ∈ ΩN ||fp(πNu)| > λ} ⊂ {u ∈ ΩN |�πN (u)�W 1+�,p > λC−1}

which in turn implies

µ2{u ∈ ΩN ||fp(πNu)| > λ} ≤ Ce−
λ2

C

where we have used an adapted version of Proposition 4.2 (i.e., we choose ϕ(ω) as in (1.3)
with k = 4 and the norm W �,p is replaced by W 1+�,p). As a consequence we get

�

ΩN

eq|fp(πN u)|dµ2 ≤
� ∞

0
eqλdµ2{u ∈ ΩN ||fp(πNu)| > λ}dλ < ∞.

Next we shall prove (6.19) where fN is replaced by fp3

N
with p3(u) that satisfy (6.24), and

it will complete the proof.
We split the proof in two subcases.

First case: m > 0.
Since ψ is compactly supported there exists R > 0 such that

0 ≤ ψ(Ej/2(πNu)) ≤ χ{u∈Hm+1/2−�||Ej/2(πN u)|<R} a.e. (w.r.t. µm+1) u, ∀j = 0, . . . , 2m

and also
0 ≤ ψ(gN (u)) ≤ χ{u∈Hm+1/2−�||gN (u)|<R}, a.e. (w.r.t. µm+1) u
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where χA denotes in general the characteristic function of A. In particular

0 ≤
2m�

j=0

ψ(Ej/2(u))ψ(gN (u)) ≤ χ�2m

j=0
{u∈Hm+1/2−�||Ej/2(πN u)|<R}∩{u∈Hm+1/2−�||gN (u)|<R}

which due to Proposition 3.1 implies

0 ≤
2m�

j=0

ψ(Ej/2(πNu))ψ(gN (u)) ≤ χ{u∈Hm+1/2−�||hN (u)|<R}

for a suitable R > 0 that can be different from the previous one. Hence it is sufficient to prove

sup
N

�

{u∈Hm+1/2−�||hN (u)|<R}
eq|fp3

N (u)|dµm+1 < ∞, ∀N ∈ N

where p̃3(u) satisfies (6.24). The estimate above is equivalent to:

sup
N

� ∞

0
µm+1{u ∈ Hm+1/2−�||fp3

N
(u)| > λ, |hN (u)| < R}eqλdλ < ∞.

In turn it follows by the following ones:

(6.27) sup
N

� ∞

√
N

µm+1{u ∈ Hm+1/2−�||fp3

N
(u)| > λ, |hN (u)| < R}eqλdλ < ∞

and

(6.28) sup
N

� √
N

0
µm+1{u ∈ Hm+1/2−�||fp3

N
(u)| > λ, |hN (u)| < R}eqλdλ < ∞.

By (6.20) we get:

sup
N

� ∞

√
N

µm+1{u ∈ Hm+1/2−�||fp3

N
(u)| > λ, |hN (u)| < R}eqλdλ

≤ sup
N

� ∞

√
N

Ce
− λ2

Cα2
N eqλdλ = C sup

N

e
Cq2α2

N
4

� ∞

√
N

e
−( λ√

CαN
− q

2

√
CαN )2

dλ

= C sup
N

e
Cq2α2

N
4

� ∞

√
N√

CαN
− q

2

√
CαN

e−λ
2√

CαNdλ

which due to the bound e−r
2

< e−r for every r > 1 can be estimated by

· · · ≤ C
3
2 sup

N

(αNe
Cq2α2

N
4 e

−
√

N√
CαN

+ q
2

√
CαN

)

which implies (6.27).

In order to prove (6.28) we use (6.23) where we fix M = [λ]2 (here [λ] is the integer part
of λ) and S > 0 will be chosen later in a suitable way. By recalling also (5.2), (5.5) and (6.20)
we get:

� √
N

0
µm+1{u ∈ Hm+1/2−�||fp3

N
(u)| > λ, |hN (u)| < R}eqλdλ

≤
� √

N

0
Ce

− λ2

Cα2
[λ]2

+qλ

+ C(e−
[λ]S

C +qλ + e−
1
C ( λ

2 [λ])
2
3 +qλ)dλ
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where C > 0 are uniform constant that can change at each step. Notice that if we choose S
large enough compared with q then

sup
N

� √
N

0
Ce

− λ2

Cα2
[λ]2

+qλ

+ C(e−
[λ]S

C +qλ + e−
1
C ( λ

2 [λ])
2
3 +qλ)dλ

≤
� ∞

0
Ce

− λ2

Cα2
[λ]2

+qλ

+ C(e−
[λ]S

C +qλ + e−
1
C ( λ

2 [λ])
2
3 +qλ)dλ < ∞

which implies (6.28).

Second case: m = 0.

The main difference with the case m > 0 is that we cannot apply Proposition 3.1. Due to
the cut–off function ψ it is sufficient to prove

sup
N

�

{u∈H1/2−�|�πN u�L2<R,|E1/2(πN u)−αN |<R}
eq|fp3

N (u)|dµ1 < ∞, ∀N ∈ N

where p̃3(u) satisfies p̃3(u) = u2∂xu and R > 0 is a suitable constant. The estimate above is
equivalent to:

sup
N

� ∞

0
µ1( Cλ,N )eqλdλ < ∞

where

Cλ,N = {u ∈ H1/2−�||fp3

N
(u)| > λ, �πNu�L2 < R, |E1/2(πNu)− αN | < R}

and in turn it follows by the following ones:

(6.29) sup
N

� ∞

Nβ

µ1( Cλ,N )eqλdλ < ∞

and

(6.30) sup
N

�
N

β

0
µ1( Cλ,N )eqλdλ < ∞

where β > 0 will be fixed later. By Lemma 6.8 we get:

sup
N

� ∞

Nβ

µ1( Cλ,N )eqλdλ ≤ sup
N

� ∞

Nβ

Ce
− λ2

Cα2
N eqλdλ = C sup

N

e
Cq2α2

N
4

� ∞

Nβ

e
−( λ√

CαN
− q

2

√
CαN )2

dλ

= C sup
N

e
Cq2α2

N
4

� ∞

Nβ
√

CαN
− q

2

√
CαN

e−λ
2√

CαNdλ

which due to the bound e−r
2

< e−r for every r > 1 can be estimated by

· · · ≤ C
3
2 sup

N

(αNe
Cq2α2

N
4 e

− Nβ
√

CαN
+ q

2

√
CαN

)

which implies (6.29) for every β > 0.
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In order to prove (6.30) we use Lemma 6.10 where we fix M = [λ]1/β (here [λ] is the integer
part of λ) and S = 1. By recalling also (5.2), (5.35), (5.36) and (6.21) we get

sup
N

�
N

β

0
µ1( Cλ,N )eqλdλ ≤ sup

N

�
N

β

0

�
Ce

− λ2

C�α2

[λ]1/β

+qλ

+ C(e−
1
C ( λ

2 [λ]1/(2β))2/3+qλ + e−
1
C (λ[λ]1/(2β))+qλ)

�
dλ

where C > 0 denotes uniform constants which can change at each step. Notice that if we
choose β < 1 then we can continue the estimate as follows:

· · · ≤ sup
N

� ∞

0
e−Cλ

1+�0+qλdλ < ∞

for suitable C, �0 > 0. Hence we get (6.30).

Pʀ����ɪ�ɪ�ɴ 6.11. – Let f̄(u), h̄(u) be as in Proposition 6.1 and χR as in Theorem 1.1.
Then

�

R>0

supp(
2m�

j=0

χR(Ej/2(u))χR(h̄(u)) + Rm+1/2(u))e−f̄(u)) = supp(µm+1).

Proof. – Due to (6.2) and (6.4) we get
(6.31)

µm+1{u ∈ Hm+1/2−�||h̄(u)| = ∞} = µm+1{u ∈ Hm+1/2−�||Rm+1/2(u)| = ∞} = 0

and

(6.32) µm+1{u ∈ Hm+1/2−�|e−f̄(u) = 0} = 0.

Moreover by (6.4) we also get

(6.33) µm+1{u ∈ Hm+1/2−�||Ej/2(u)| = ∞} = 0, ∀j = 0, . . . , 2m.

As a consequence of (6.31) and (6.33), and by noticing that χR(t) → 1 as R →∞, we deduce:

lim
R→∞

2m�

j=0

χR(Ej/2(u))χR(h̄(u) + Rm+1/2(u)) = 1 a.e. (w.r.t. µm+1) u ∈ Hm+ 1
2−�

and hence by the Egoroff Theorem we get

∀δ > 0 ∃Ωδ ⊂ Hm+1/2−�, R̃ > 0 s.t.

µm+1(Ωδ) > 1− δ and
2m�

j=0

χR(Ej/2(u))χR(h̄(u) + Rm+1/2(u)) > 1− δ

a.e. (w.r.t. µm+1) u ∈ Ωδ and ∀R > R̃.

By combining this fact with (6.32) we deduce

µm+1

� �

R>0

supp(
2m�

j=0

χR(Ej/2(u))χR(h̄(u) + Rm+1/2(u))e−f̄(u))
�

= 1.

Proof of Theorem 1.1 for k = 2(m + 1). – It follows by combining Propositions 6.1, 6.5,
6.11.
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7. Proof of Theorem 1.1 for k = 2m + 1, m > 0

In this section we briefly describe how to adapt the proof of Theorem 1.1 given for
k = 2(m + 1) to the case k = 2m + 1. We do not give the details of the proofs, however
we underline the points where they have to be modified compared to the case k = 2(m + 1).
The following is an adapted version of Proposition 3.1.

Pʀ����ɪ�ɪ�ɴ 7.1. – Let k ≥ 2 be a fixed integer. Then for every R1, R2 > 0 there is
C = C(R1, R2) > 0 such that

(7.1)
2k−1�

j=0

{u ∈ Hk−1/2||Ej/2(u)| < R1} ∩ {u ∈ Hk−1/2||Ek(πNu)− αN | < R2}

⊂ {u ∈ Hk− 1
2 |�u�Hk−1/2 < C} ∩ {u ∈ Hk−1/2|�πNu�2

Ḣk − αN | < C}, ∀N ∈ N.

Proof. – It is similar to the proof of Proposition 3.1, hence we skip it.

By looking at (2.5), in analogy with our argument used to treat the conservation laws
Em+1, the most delicate terms to be treated in Em+1/2 are of the type

�
p3(u)dx where

(7.2) p3(u) ∈ P3(u) and p̃3(u) = u∂m

x
u∂m

x
u.

Next we present an adapted version of Propositions 5.1 and 5.2 in the case when p3(u)
satisfies (7.2). We recall that the Sobolev spaces Hm−� are a support for the measure µm+1/2

for every � > 0. This fact will be used in the sequel without any further comment.

Pʀ����ɪ�ɪ�ɴ 7.2. – Let m ≥ 1 be a given integer and p3(u) ∈ P3(u) be such that

p̃3(u) = u∂m

x
u∂m

x
u.

Then for every α ∈ (0, 1
2 ) there exists C = C(α) > 0 such that

(7.3) �fp3(πNu)− fp3(πMu)�Lp(dµm+1/2) ≤ C
p3/2

(min{M,N})α
, ∀M, N ∈ N, p ≥ 2

where fp3(v) =
�

p3(v)dx. In particular

(7.4) ∃C > 0 s.t. µm+1/2(A
p3,λ

M,N
) ≤ e−

1
C (λ min{N,M}α)2/3

, ∀M,N ∈ N, λ > 0

where

(7.5) Ap3,λ

M,N
= {u ∈ Hm−�||fp3(πNu)− fp3(πMu)| > λ}.

Pʀ����ɪ�ɪ�ɴ 7.3. – Let m ≥ 1 be a given integer. There exists C > 0 such that

(7.6) �hN (πNu)− hM (πMu)�Lp(dµm+1/2) ≤ C
p�

min{M,N}
, ∀M, N ∈ N, p ≥ 2

where hK(v) = �v�2
Ḣm − αK for any K ∈ N. In particular

(7.7) ∃C > 0 s.t. µm+1/2(B
λ

M,N
) ≤ e−

1
C (λ
√

min{N,M}), ∀M,N ∈ N, λ > 0

where

(7.8) Bλ

M,N
= {u ∈ Hm−�||hN (πNu)− hM (πNu)| > λ}.
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Sketch of the proof. – The proof of Proposition 7.3 is identical to the proof of Proposi-
tion 5.2. Concerning the proof of Proposition 7.2 notice that (following the proof of Propo-
sition 5.1) it is sufficient to prove (7.3) for p = 2. By using the parametrization (1.3) (for
k = 2m + 1) we have to estimate

���
�

(i,j,k)∈ AN
M

1�
|i||j|m+ 1

2

�
|k|

ϕi(ω)ϕj(ω)ϕk(ω)
���

2

L2
ω

where AN

M
is the set defined in (5.34). By using Lemma 5.3 and arguing as in Lemma 5.4 we

can estimate the quantity above by
�

(i,j)∈Z\{0},i+j �=0,|i|> M
2

1

|i||i + j|2m+1|j| ≤
C

Mα

for every α ∈ (0, 1). The last estimate can be deduced by looking at the argument in [14] (see
end of page 500).

Next we present a lemma allowing us to treat all the terms that appear in the expression
of Em+1/2 except the ones with the structure (7.2) (see (2.5)).

L���� 7.4. – Let m ≥ 1 be an integer and p3(u) ∈ P3(u) such that

(7.9) p̃3(u) =
3�

i=1

∂αi
x

with
3�

i=1

αi = 2m and 1 ≤ min
i=1,2,3

αi ≤ max
i=1,2,3

αi ≤ m.

Then for every � > 0, p ∈ [1,∞) such that �p > 1 there exists C = C(�, p) > 0 such that:
���
�

p3(u)dx
��� ≤ C�u�2

Hm−1/2�u�W m−1+�,p .

Sketch of the proof. – We treat for simplicity the case p3(u) = p̃3(u) (the general case can
be treated by a similar argument). Next we also assume α1 ≥ α2 ≥ α3. Notice that by an
integration by parts argument we can always reduce to the following two cases.

First case: α1 = m, α2 = m− 1, α3 = 1.
In this case combine Lemma 3.3 with the Sobolev embedding W �,p ⊂ L∞.

Second case: α1 ≤ m− 1.
In this case we combine the Cauchy-Schwartz inequality with the Sobolev embedding

W �,p ⊂ L∞ and we get
���
�

p3(u)dx
��� ≤ �u�2

Hm−1�∂m−1
x

u�W �,p .

L���� 7.5. – Let m ≥ 1 be an integer and p4(u) ∈ P4(u) such that

(7.10) p̃4(u) = u2∂m

x
u∂m−1

x
u.

Then for every � > 0, p ∈ [1,∞) such that �p > 1 there exists C = C(�, p) > 0 such that:
���
�

p4(u)dx
��� ≤ C�u�Hm−1/2(�u�2H1�u�W m−1+�,p + �u�Hm−1/2�u�2H1).
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Proof. – We treat for simplicity the case p4(u) = u2∂m

x
u∂m−1

x
u. Indeed in this specific

case we could get the estimate as a direct application Lemma 3.3. However we propose a
different and more robust proof that can be generalized for any p4(u) as in the assumptions.
We start by the following inequality:

(7.11)
���
�

(∂xv1)v2dx
��� ≤ �v1�H1/2�v2�H1/2 .

By using the above estimate, where we choose v1 = ∂m−1
x

u and v2 = u2∂m−1
x

u, in
conjunction with the following one:

(7.12) �w1w2�H1/2 ≤ C(�w1�H1/2�w2�L∞ + �w1�L∞�w2�H1/2)

we get
���
�

p4(u)dx
��� ≤ C�∂m−1

x
u�H1/2�u2∂m−1

x
u�H1/2

≤ C�u�Hm−1/2(�u∂m−1
x

�H1/2�u�L∞ + �u∂m−1
x

u�L∞�u�H1/2).

By using again (7.12) in conjunction with the Sobolev embedding W �,p ⊂ L∞ we get the
result.

L���� 7.6. – Let m ≥ 3 be an integer and pj(u) ∈ Pj(u) such that

(7.13) p̃j(u) =
j�

i=1

∂αi
x

u with
j�

i=1

αi ≤ 2m− 1 and max
i=1,...,j

αi ≤ m− 1.

Then there exists C > 0 such that:
���
�

pj(u)dx
��� ≤ C�u�j

Hm−1 .

Sketch of the proof. – We suppose pj(u) =
�j

i=1 ∂αi
x

u with α1 ≥ · · · ≥ αj (the general
case works with a similar argument). By integration by parts we can reduce to two cases.

First case: α1 = m− 1, α2 = m− 1.
In this case by assumption we get αi ≤ 1 for every i = 3, . . . , j. Hence by using the

Cauchy-Schwartz inequality and the Sobolev embedding H1 ⊂ L∞ we get

���
�

pj(u)dx
��� ≤ �∂m−1

x
u�2

L2

j�

i=3

�u�H2 .

Second case: αi ≤ m− 2 ∀i = 1, . . . , j.
By using the Sobolev embedding H1 ⊂ L∞ we get

���
�

pj(u)dx
��� ≤

j�

i=1

�∂αi
x

u�H1

and hence we conclude.

Next we give an adapted version of Lemma 6.6. Recall that the functions hN (u) and
fp3(u) are the ones introduced in Propositions 7.2 and 7.3.
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L���� 7.7. – Let m ≥ 1 be an integer and p3(u) ∈ P3(u) be such that

p̃3(u) = u∂m

x
u∂m

x
u.

For every R > 0 there exists C = C(R) > 0 such that

(7.14) µm+1/2{u ∈ Hm−�||fp3(πNu)| > λ, |hN (πNu)| < R} ≤ Ce
− λ2

Cα2
N ∀N ∈ N, λ > 0.

Sketch of the proof. – We have the following inequality
���
�

p3(πNu)dx
��� ≤ C�πNu�W �,p�πNu�2

Hm ≤ C(αN + R)�πNu�W �,p

provided that u belongs to the region on l.h.s. of (7.14). The proof can be concluded by using
the following estimate

µm+1/2{u ∈ Hm−�|�u�W �,p > λ} ≤ Ce−
λ2

C , ∀λ > 0

whose proof is similar to the proof of Proposition 4.2 (the unique difference is to use along the
proof the random vector ϕ(ω) =

�
n �=0

ϕn(ω)
|n|m+1/2 einx instead of ϕ(ω) =

�
n �=0

ϕn(ω)
|n|m+1 einx).

The following version of Proposition 6.1 can be easily proved. Hence we skip its proof.

Pʀ����ɪ�ɪ�ɴ 7.8. – Let m ≥ 1 and ψ ∈ Cc(R) be given. Then there exist two functions
h̄(u), f̄(u) measurable with respect to µm+1/2 such that:

|h̄(u)|, |f̄(u)| < ∞, a.e. u ∈ Hm−�;

2m−1�

j=0

ψ(Ej/2(πNu))ψ(Em(πNu)− αN )e−Rm+1/2(πN u)

converges in measure to
2m−1�

j=0

ψ(Ej/2(u))ψ(h̄(u) + Rm(u))e−f̄(u).

Moreover

|Ej/2(u)|, |Rm(u)| < ∞, a.e. (w.r.t. µm+1/2) u ∈ Hm−� ∀j = 0, . . . , 2m− 1.

The proof of Proposition 6.11 can be easily adapted to give the following result.

Pʀ����ɪ�ɪ�ɴ 7.9. – Let f̄(u), h̄(u) be as in Proposition 7.8 and χR as in Theorem 1.1.
Then

�

R>0

supp(
2m−1�

j=0

χR(Ej/2(u))χR(h̄(u)) + Rm(u))e−f̄(u)) = supp(µm+1/2).

The last step we need in order to prove Theorem 1.1 in the case k = 2m+1 is the following
version of Proposition 6.5.

Pʀ����ɪ�ɪ�ɴ 7.10. – Let m ≥ 1 and ψ ∈ Cc(R) be given. For every q ∈ [1,∞) we have

(7.15) sup
N

���
2m−1�

j=0

ψ(Ej/2(πNu))ψ(Em(πNu)− αN )e−Rm+1/2(πN u)
���

Lq(dµm+1/2)
< ∞.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



282 N. TZVETKOV AND N. VISCIGLIA

Sketch of the proof. – First case: m ≥ 2.
Arguing as in the proof of Proposition 6.5 (as in the case m > 0) and by using Lemma 7.7,

Proposition 7.2 and 7.3 we can prove (7.15) provided that Rm+1/2 is replaced by fp3 with
p3(u) that satisfy (7.2).

Second case: m = 1.
Arguing as in the proof of Proposition 6.5 (as in the case m = 0) and by using an adapted

version of Lemma 7.7 (in the same spirit as Lemma 6.10) we can prove (7.15) provided that
R1+1/2 is replaced by fp3 with p3(u) that satisfy (7.2) with m = 1.

Hence the proof of (7.15) follows provided that we prove the following claim (see the
analogous claim stated along the proof of Proposition 6.5).

Cʟ�ɪ�. – It is sufficient to prove (7.15) with Rm+1/2(πNu) replaced by fp3(πNu) where

(7.16) p̃3(u) = u∂m

x
u∂m

x
u.

Due to Proposition 7.1 and due to the cut-off function ψ we deduce that the Lq norms
(that appear in (7.15)) are actually computed in the region ΩN given by the condition

(7.17) ΩN = {u ∈ Hm−�|�πNu�Hm−1/2 < C}

where C > 0 is independent on N .
Next we prove the claim.

First case: m ≥ 3.
By looking at (2.5) it is sufficient to prove that

(7.18) sup
N

�eq|fpj (πN u)|�L1(ΩN ,dµm+1/2) < ∞

where pj(u) satisfy (7.9), (7.10) and (7.13). Notice that if pj(u) satisfies (7.13) then in
the region ΩN (see (7.17)) we get sup

N
�fpj (πNu)�L∞(ΩN ) < ∞ (where we have used

Lemma 7.6) and hence we deduce (7.18). Next we treat the case when p3(u) satisfies (7.9).
In this case by Lemma 7.4 we get |fp3(πNu)| ≤ C�πNu�W m−1+�,p , provided that u ∈ ΩN .
In particular

{u ∈ ΩN ||fp3(πNu)| > λ} ⊂ {u ∈ ΩN |�πNu�W m−1+�,p > λC−1}

and hence (by using a suitable version of Proposition 4.2)

µm+1/2{u ∈ ΩN ||fp3(πNu)| > λ}) ≤ Ce−
λ2

C

for a suitable C > 0. As a consequence we get

sup
N

�

ΩN

eq|fp3 (πN u)|dµm+1/2

= sup
N

� ∞

0
eqλdµm+1/2{u ∈ ΩN ||fp3(πNu)| > λ}dλ < ∞.

With a similar argument we can prove sup
N
�eq|fp(πN u)|�L1(ΩN ,dµm+1/2) < ∞ with p(u) as

in (7.10).

Second case: m = 1.
Looking at the structure of E3/2 (see the introduction) we have to show that

sup
N
�eq|fp(πN u)|�L1(ΩN ,dµ3/2) < ∞where p(u) = u3H∂xu, p(u) = u2H(u∂xu), p(u) = u5.
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Notice that by the Sobolev embedding H1/2 ⊂ L5 we get
���
�

(πNu)5dx
��� ≤ C�πNu�5

H1/2 < C, ∀u ∈ ΩN

(see (7.17) for m = 1) and hence we get the desired bound when p(u) = u5.
Next we treat the term p(u) = u3H∂xu (the term p(u) = u2H(u∂xu) can be treated in a

similar way). By using (7.11) (used along the proof of Lemma 7.5) in conjunction with the
estimate

�v1v2�H1/2 ≤ C(�v1�H1/2�v2�L∞ + �v2�H1/2�v1�L∞)

we get
���
�

(πNu)3(H∂xπNu)dx
��� ≤ C�πNu�2

H1/2�πNu�2
L∞ ≤ C�πNu�2

L∞ , ∀u ∈ ΩN

and hence by Sobolev embedding H
2
3 ⊂ L∞ we get

· · · ≤ C�πNu�2
H2/3 ≤ C�πNu�H1/2�πNu�H5/6 , ∀u ∈ ΩN .

Then we deduce

{u ∈ ΩN ||fp(πNu)| > λ} ⊂ {u ∈ ΩN |�πNu�H5/6 > λC−1}

and hence (by using a suitable version of Proposition 4.2)

µ3/2{u ∈ ΩN ||fp(πNu)| > λ} ≤ Ce−
λ2

C .

In particular

sup
N

�eq|fp(πN u)|�L1(ΩN ,dµ3/2) ≤ sup
N

� ∞

0
eqλe−

λ2

C dλ < ∞.

Third case: m = 2.
The bound sup

N
�eq|fp(πN u)|�L1(ΩN ,dµ5/2) < ∞ follows by Lemma 7.4 in conjunction

with a suitable version of Proposition 4.2 (used in the same spirit as above), in the case
p(u) ∈ P3(u) (but p(u) does not satisfy (7.16)). If p(u) ∈ P4(u) satisfies (7.10) then we
can conclude by using Lemma 7.5 in conjunction with a suitable version of Proposition 4.2.

Next we treat the case

p4(u) ∈ P4(u) such that p̃4(u) = u(∂xu)3.

By combining the Hölder inequality with the Sobolev embedding W �,p ⊂ L∞ (provided that
�p > 1) we get ���

�
p4(πNu)dx

��� ≤ C�πNu�2
H1�∂xπNu�L∞�πNu�L∞

≤ C�πNu�3
H1�∂xπNu�W �,p ≤ C�πNu�W 1+�,p , ∀u ∈ ΩN .

Hence we can conclude as in the previous cases by using a suitable version of Proposition 4.2.
Finally notice that by using the Sobolev embedding H1 ⊂ L∞ for any p ∈ [1,∞) we get

sup
N

eq|fp(πN (u)| < ∞ in the cases p(u) ∈ P5(u) and p̃(u) = (∂xu)2u3, p(u) ∈ P6(u) and
p̃(u) = u5∂xu, p(u) = u7.

The proof of the claim is concluded.
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8. Computation of
d

dt
Em+1(πNu(t, x))

In this section we shall use the notations introduced in Section 2. Our aim is to construct
for every N ∈ N and for every fixed m ∈ N a function

Gm+1,N : T N → R

where

(8.1) T N =
� �

|j|∈(0,N ]

cje
ijx|c̄j = c−j

�

and such that
d

dt
Em+1(πNu(t, x)) = Gm+1,N (πNu(t, x))

where u(t, x) are solutions to the truncated Benjamin-Ono Equation (1.6).

First we introduce some preliminary notations.

To p(u) ∈ ∪∞
n=2 Pn(u) we associate a new object dependent on N ∈ N that will be denoted

by p∗
N

(u).

Let p(u) be such that

p̃(u) =
n�

i=1

∂αi
x

u

for suitable 0 ≤ α1 ≤ · · · ≤ αn and αi ∈ N. First we define p∗
i,N

(u) as the function obtained
by p(u) replacing ∂αi

x
(u) by ∂αi

x
(π>N (u∂xu)), i.e.,

(8.2) p∗
i,N

(u) = p(u)|∂αi
x u=∂

αi
x (π>N (u∂xu)), ∀i = 1, .., n

where
π>N (

�
cje

ijx) =
�

|j|>N

cje
ijx.

We now define p∗
N

(u) as follows:

p∗
N

(u) =
n�

i=1

p∗
i,N

(u).

E����ʟ� 8.1. – In order to clarify the definition of p∗
N

(u) we give an example.
Assume

p(u) = ∂α

x
uH(∂β

x
u(H∂γ

x
u))

then

p∗
N

(u) = ∂α

x
(π>N (u∂xu))H(∂β

x
u(H∂γ

x
u))

+ ∂α

x
uH(∂β

x
(π>N (u∂xu))(H∂γ

x
u)) + ∂α

x
uH(∂β

x
u(H∂γ

x
(π>N (u∂xu)))).

R���ʀ� 8.2. – Notice that if p(u) ∈ Pn(u) (i.e., p(u) is homogeneous of order n w.r.t. u)
then p∗

N
(u) is a function homogeneous of order n + 1 for every N ∈ N.

We are now able to describe the function Gm+1,N (see (1.7)).
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Pʀ����ɪ�ɪ�ɴ 8.3. – For every fixed integer m ≥ 0 and for every N ∈ N we have:
d

dt
Em+1(πNu(t)) =

�

p(u)∈ P3(u)s.t.

p̃(u)=u∂
m
x u∂

m+1
x u

c2(m+1)(p)

�
p∗

N
(πNu(t))dx(8.3)

+
�

p(u)∈ Pj(u)s.t.j=3,...,2m+4
�p(u)�=2m−j+4

|p(u)|≤m

c2(m+1)(p)

�
p∗

N
(πNu(t))dx

where u(t, x) solves (1.6) and c2(m+1)(p) are the same constants that appear in (2.4)
for k = 2(m + 1).

Sketch of the proof. – We follow [15] (Lemma IV.3.5 page 127).
Let p(u) ∈ Ph(u)) be such that p̃(u) =

�
h

i=1 ∂αi
x

u. Then by elementary calculus

d

dt

�
p(u(t, x))dx =

h�

i=1

�
p(u)|∂αi

x u=∂
αi
x ∂tu

dx

where u(t, x) is any regular time-dependent function. Motivated by the identity above we
introduce

pt(u) =
h�

i=1

p(u)|∂αi
x u=∂

αi
x ∂tu

.

By looking at the structure of Em+1 (see (2.4)) we get

d

dt
Em+1u(t, x) = 2

�
∂m+1

x
u∂m+1

x
∂tudx +

�

p(u)∈ P3(u)s.t.

p̃(u)=u∂
m−1
x u∂

m
x u

c2(m+1)(p)

�
pt(u)dx(8.4)

+
�

p(u)∈ Pj(u)s.t.j=3,...,2m+4
�p(u)�=2m−j+4

|p(u)|≤m

c2(m+1)(p)

�
pt(u)dx

where u(t, x) is any given time dependent function.
Next notice that if u(t, x) solves (1.6) then (due to the properties π2

N
= πN and

πN + π>N = Id)

(8.5) ∂tπNu + H∂2
x
πNu +

�
(πNu)∂x(πNu)

�
= π>N

�
(πNu)∂x(πNu)

�

and hence if we choose in (8.4) u(t, x) = πNu(t, x) then we can replace the derivative
∂tπNu(t, x), that appears on the r.h.s. of (8.4), by the expression

−H∂2
x
πNu−

�
(πNu)(∂xπNu)

�
+ π>N

�
(πNu)(∂xπNu)

�
.

Notice that if we replace ∂t(πNu) by the term −H∂2
x
πNu −

�
(πNu)(∂xπNu)

�
then we get

zero on the r.h.s. of (8.4) (in fact in this way we are dealing with πNu(t, x) as with an exact
solution of the Benjamin-Ono equation). However the contribution that we get when we
replace ∂t(πNu) by the term π>N

�
(πNu)∂x(πNu)

�
is not trivial (in fact looking at (8.5)

this term reflects how far is πNu(t, x) from being a precise solution of the Benjamin-Ono
equation).
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Hence we deduce (8.3) once we notice that in the construction above there is no contri-
bution coming from the quadratic part of Em+1. In fact this contribution is given by the
following quantity

�
∂m+1

x
(πNu)∂m+1

x
π>N

�
(πNu)∂x(πNu)

�
dx

which is zero by orthogonality (πNu is localized on the n modes with |n| ≤ N and
π>N

�
(πNu)∂x(πNu)

�
is localized in the complementary modes).

9. Some algebraic identities

The results of this section will be useful along the proof of Theorem 1.2. We recall the
notation π>N = Id− πN . Moreover given a function u(x) we define

u+ = π+u and u− = π−u

where π+ (resp. π−) is the projector on the positive (resp. the negative) frequencies. We recall
also that

H
� �

j∈Z\{0}
cje

ijx

�
= −i

�

j>0

cje
ijx + i

�

j<0

cje
ijx

and T N is defined by (8.1).

L���� 9.1. – Let u ∈ T N be such that
�

udx = 0. Then the following identities occur:

�
u(H∂m

x
π>N (u∂xu))∂m+1

x
udx =

m�

j=1

aj [

�
π>N (∂j

x
u+∂m−j+1

x
u+)π>N (u−∂m+1

x
u−)

(9.1)

− π>N (∂j

x
u−∂m−j+1

x
u−)π>N (u+∂m+1

x
u+)]

for suitable coefficient aj ∈ C;

�
u(H∂m

x
u)∂m+1

x
π>N (u∂xu)dx =

m�

j=1

bj [

�
π>N (∂j

x
u+∂m−j+1

x
u+)π>N (u−∂m+1

x
u−)

(9.2)

− π>N (∂j

x
u−∂m−j+1

x
u−)π>N (u+∂m+1

x
u+)]

for suitable coefficient bj ∈ C.

R���ʀ� 9.2. – Notice that the l.h.s. of (9.1) and (9.2) involve at first insight (after devel-
oping the m-derivative of the product) a term that contains the product of two derivatives of
order m + 1, which is quite dangerous (see the end of Section 1.3). The main point of the
lemma above is that on the r.h.s. of (9.1) and (9.2) this bad term is disappeared.

Proof. – We prove (9.1). Due to the following identity

(9.3)
�

(π>Nf)gdx =

�
(π>Nf)(π>Ng)dx

we get:
�

u(H∂m

x
π>N (u∂xu))∂m+1

x
udx =

�
(H∂m

x
π>N (u∂xu))π>N (u∂m+1

x
u)dx.
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On the other hand if v(x), w(x) are trigonometric polynomials of degree N we have

π>N (v+w−) = 0

and in particular

(9.4) π>N (vw) = π>N (v+w+) + π>N (v−w−).

As a consequence we continue the identity above as follows

· · · = −i

�
∂m

x
π>N (u+∂xu+)π>N (u−∂m+1

x
u−)dx(9.5)

+ i

�
∂m

x
π>N (u−∂xu−)π>N (u+∂m+1

x
u+)dx

where we have used the definition of the Hilbert transform H ,

· · · = − i

�
π>N (u+∂m+1

x
u+)π>N (u−∂m+1

x
u−) + i

�
π>N (u−∂m+1

x
u−)π>N (u+∂m+1

x
u+)dx

− i

�
π>N (∂m

x
(u+∂xu+)− u+∂m+1

x
u+)π>N (u−∂m+1

x
u−)dx

+ i

�
π>N (∂m

x
(u−∂xu−)− u−∂m+1

x
u−)π>N (u+∂m+1

x
u+)dx.

We can conclude by the Leibniz rule since the first two terms above cancel. Concerning (9.2)
notice that by using (9.3) and (9.4) we get:

�
u(H∂m

x
u)∂m+1

x
π>N (u∂xu)dx = i

�
∂m+1

x
π>N (u+∂xu+)π>N (u−∂m

x
u−)dx

− i

�
∂m+1

x
π>N (u−∂xu−)π>N (u+∂m

x
u+)dx

and by integration by parts

· · · = −i

�
∂m

x
π>N (u+∂xu+)π>N∂x(u−∂m

x
u−) + i

�
∂m

x
π>N (u−∂xu−)π>N∂x(u+∂m

x
u+)dx

which in turn gives

· · · = − i

�
∂m

x
π>N (u+∂xu+)π>N (∂xu−∂m

x
u−) + i

�
∂m

x
π>N (u−∂xu−)π>N (∂xu+∂m

x
u+)dx

− i

�
∂m

x
π>N (u+∂xu+)π>N (u−∂m+1

x
u−) + i

�
∂m

x
π>N (u−∂xu−)π>N (u+∂m+1

x
u+)dx.

Notice that the last two integrals above

−i

�
∂m

x
π>N (u+∂xu+)π>N (u−∂m+1

x
u−) + i

�
∂m

x
π>N (u−∂xu−)π>N (u+∂m+1

x
u+)dx

can be treated as in (9.5). Hence we have to deal with the remaining terms in the identity
above:

−i

�
∂m

x
π>N (u+∂xu+)π>N (∂xu−∂m

x
u−) + i

�
∂m

x
π>N (u−∂xu−)π>N (∂xu+∂m

x
u+)dx.

Those integrals can be easily handled by using the Leibniz rule.
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In the same spirit as in Lemma 9.1 one can prove that if u ∈ T N is such that
�

udx = 0,
then the following identities occur:

�
u(∂m

x
π>N (u∂xu))∂m+1

x
(Hu)dx =

m�

j=1

cj [

�
π>N (∂j

x
u+∂m−j+1

x
u+)π>N (u−∂m+1

x
u−)

(9.6)

− π>N (∂j

x
u−∂m−j+1

x
u−)π>N (u+∂m+1

x
u+)]

for suitable cj ∈ C;

�
u∂m

x
u(∂m+1

x
Hπ>N (u∂xu))dx =

m�

j=1

dj [

�
π>N (∂j

x
u+∂m−j+1

x
u+)π>N (u−∂m+1

x
u−)

(9.7)

− π>N (∂j

x
u−∂m−j+1

x
u−)π>N (u+∂m+1

x
u+)]

for suitable dj ∈ C;

�
Hu(∂m

x
π>NH(u∂xu))(∂m+1

x
Hu)dx =

m�

j=1

ej [

�
π>N (∂j

x
u+∂m−j+1

x
u+)π>N (u−∂m+1

x
u−)

(9.8)

− π>N (∂j

x
u−∂m−j+1

x
u−)π>N (u+∂m+1

x
u+)]

for suitable ej ∈ C;

�
Hu(∂m

x
Hu)(∂m+1

x
π>NH(u∂xu))dx =

m�

j=1

fj [

�
π>N (∂j

x
u+∂m−j+1

x
u+)π>N (u−∂m+1

x
u−)

(9.9)

− π>N (∂j

x
u−∂m−j+1

x
u−)π>N (u+∂m+1

x
u+)]

for suitable fj ∈ C;

�
Hu(∂m

x
π>N (u∂xu))(∂m+1

x
u)dx =

m�

j=1

gj [

�
π>N (∂j

x
u+∂m−j+1

x
u+)π>N (u−∂m+1

x
u−)

(9.10)

− π>N (∂j

x
u−∂m−j+1

x
u−)π>N (u+∂m+1

x
u+)]

for suitable gj ∈ C;

�
Hu(∂m

x
u)(∂m+1

x
π>N (u∂xu))dx =

m�

j=1

hj [

�
π>N (∂j

x
u+∂m−j+1

x
u+)π>N (u−∂m+1

x
u−)

(9.11)

− π>N (∂j

x
u−∂m−j+1

x
u−)π>N (u+∂m+1

x
u+)]

for suitable hj ∈ C.
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L���� 9.3. – Let u ∈ T N be such that
�

udx = 0. Then the following identities occur:

(9.12)
�

u(H∂m

x
π>N (u∂xu))(∂m+1

x
Hu)dx +

�
u(H∂m

x
u)(∂m+1

x
π>NH(u∂xu))dx

= −
�

∂m

x
(π>N (u+∂xu+))π>N (∂xu−∂m

x
u−)dx−

�
∂m

x
(π>N (u−∂xu−))π>N (∂xu+∂m

x
u+)dx.

R���ʀ� 9.4. – To understand the interest of Lemma 9.3, see Remark 9.2.

Proof. – By combining (9.3) with (9.4) we get:

�
u(H∂m

x
π>N (u∂xu))(∂m+1

x
Hu)dx +

�
u(H∂m

x
u)(∂m+1

x
H(π>N (u∂xu)))dx

(9.13)

=

�
(π>N∂m

x
(u+∂xu+))π>N (u−∂m+1

x
u−)dx +

�
(π>N∂m

x
(u−∂xu−))π>N (u+∂m+1

x
u+)dx

+

�
∂m+1

x
(π>N (u+∂xu+))π>N (u−∂m

x
u−)dx +

�
(π>N∂m+1

x
(u−∂xu−))π>N (u+∂m

x
u+)dx.

On the other hand by integration by parts in the second term we get:
�

(π>N∂m

x
(u+∂xu+))π>N (u−∂m+1

x
u−) +

�
∂m+1

x
(π>N (u+∂xu+))π>N (u−∂m

x
u−)

=

�
(π>N∂m

x
(u+∂xu+))π>N (u−∂m+1

x
u−)−

�
∂m

x
(π>N (u+∂xu+))π>N∂x(u−∂m

x
u−).

By developing the derivative ∂x(u−∂m

x
u−) = ∂xu−∂m

x
u− + u−∂m+1

x
u− and by replacing it

in the last integral, we get

(9.14) · · · = −
�

∂m

x
(π>N (u+∂xu+))π>N (∂xu−∂m

x
u−).

By using integration by parts in the second integral we get

�
(π>N∂m

x
(u−∂xu−))π>N (u+∂m+1

x
u+) +

�
π>N (∂m+1

x
(u−∂xu−))π>N (u+∂m

x
u+)

(9.15)

= −
�

π>N (∂m

x
(u−∂xu−))π>N (∂xu+∂m

x
u+).

The proof follows by combining (9.13), (9.14), (9.15).

By a similar argument it is possible to prove that if u(x) is as in Lemma 9.3 then the
following identities occur:
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�
Hu(∂m

x
π>N (u∂xu))∂m+1

x
Hudx +

�
Hu(∂m

x
u)∂m+1

x
(π>NH(u∂xu))dx(9.16)

= −
�

∂m

x
(π>N (u+∂xu+))π>N (∂xu−∂m

x
u−)dx

−
�

∂m

x
(π>N (u−∂xu−))π>N (∂xu+∂m

x
u+)dx.

�
Hu(∂m

x
π>NH(u∂xu))∂m+1

x
udx +

�
Hu(∂m

x
Hu)∂m+1

x
(π>N (u∂xu))dx(9.17)

= −
�

∂m

x
(π>N (u+∂xu+))π>N (∂xu−∂m

x
u−)dx

−
�

∂m

x
(π>N (u−∂xu−))π>N (∂xu+∂m

x
u+)dx.

�
u(∂m

x
π>N (u∂xu))∂m+1

x
udx +

�
u(∂m

x
u)∂m+1

x
π>N (u∂xu)dx(9.18)

= −
�

∂m

x
(π>N (u+∂xu+))π>N (∂xu−∂m

x
u−)

−
�

∂m

x
(π>N (u−∂xu−))π>N (∂xu+∂m

x
u+).

10. Some calculus inequalities

Next we present some useful results related to the convergence of suitable numerical series.

L���� 10.1. – The following estimate occurs :

(10.1)
�

|n+m|>N

0<|n|,|m|≤N

1

n2

1

|m| = O
� lnN

N

�
as N →∞.

Proof. – We have the identity
�

|n+m|>N

0<|n|,|m|≤N

1

n2

1

|m| = 2
�

n+m>N

0<n,m≤N

1

n2

1

m

where we have used

{(n, m) ∈ Z× Z|0 < |n|, |m| ≤ N, |n + m| > N}
= {(n, m) ∈ Z× Z|0 < n,m ≤ N, |n + m| > N}

∪ {(n, m) ∈ Z× Z|−N ≤ n, m < 0, |n + m| > N}.

Next we continue the identity above

· · · = 2
�

0<n≤N

1

n2

� �

N−n<m≤N

1

m

�
≤ 2

�

0<n≤N

1

n2

n

N − n
=

2

N

�

0<n≤N

� 1

n
+

1

N − n

�
.

The proof follows since
�

0<n≤N

1
n

= O(lnN).
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L���� 10.2. – The following estimate occurs :

(10.2)
�

|n+m+l|>N

0<|n|,|m|,|l|≤N

1

n2m2|l| = O
� lnN

N

�
as N →∞.

Proof. – We split the sum as follows:

�

|n+m+l|>N

0<|n|,|m|,|l|≤N

1

n2m2|l| ≤
�

|n+l|> N
2

0<|n|,|m|,|l|≤N

1

n2m2|l| +
�

|m|> N
2

0<|n|,|m|,|l|≤N

1

n2m2|l| = IN + IIN .

By using Lemma 10.1 we get

IN = O
� lnN

N

�
.

Concerning IIN we have

IIN ≤
� �

N
2 <|m|≤N

1

m2

�� �

0<|l|≤N

1

|l|

�� �

0<|n|≤N

1

|n|2
�
≤ C

lnN

N
.

11. Proof of Theorem 1.2

Along this section we shall write ϕN (ω) = πN (ϕ(ω)), ϕ±
N

(ω) = π±(πNϕ(ω)) (where π±
are the projectors on the positive and negative frequencies) and

ϕ(ω) =
�

n∈Z\{0}

ϕn(ω)

|n|m+1
einx.

Moreover for any given p(u) ∈ ∪∞
n=1 Pn(u) and N ∈ N, p∗

N
(u) is defined in Section 8.

Notice that due to the Hölder inequality the standard Gaussian variables {ϕk(ω)}k sat-
isfy:

∀q ∈ [1,∞), k ∈ N ∃C = C(k, q) > 0 s.t. sup
j1,...,jk∈Z\{0}

�ϕj1 · · ·ϕjk�L
q
ω
≤ C.

This fact will be freely used in the sequel.

L���� 11.1. – Let m ≥ 2 be an integer and p(u) ∈ P3(u) such that p̃(u) = u∂m

x
u∂m+1

x
u.

Then for every q ∈ [1,∞) we have the following

lim
N→∞

���
�

p∗
N

(πNu)dx
���

Lq(dµm+1)
= 0.

Proof. – By using elementary properties of the Hilbert transform (i.e., H2 = −Id,�
(Hv)wdx =

�
v(Hw)dx) it is easy to check that if p(u) is like in the assumptions then
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the quantities
�

p(u)dx can be always reduced to the following ones:

±
�

u∂m

x
u∂m+1

x
udx,±

�
(Hu)(∂m

x
Hu)(∂m+1

x
Hu)dx,

±
�

u(∂m

x
Hu)(∂m+1

x
Hu)dx,±

�
(Hu)∂m

x
u∂m+1

x
udx,

±
�

u∂m

x
u(∂m+1

x
Hu)dx,±

�
(Hu)(∂m

x
Hu)∂m+1

x
udx,

±
�

u(∂m

x
Hu)(∂m+1

x
u)dx,±

�
(Hu)(∂m

x
u)(∂m+1

x
Hu)dx.

First case: p(u) = u∂m

x
u∂m+1

x
u.

In this case we can write explicitly

p∗
N

(u) = π>N (u∂xu)∂m

x
u∂m+1

x
u + u∂m

x
(π>N (u∂xu))∂m+1

x
u + u∂m

x
u∂m+1

x
(π>N (u∂xu))).

Hence we get �
p∗

N
(πN (ϕ(ω)))dx = IN (ω) + IIN (ω)

where

(11.1) IN (ω) =

�
π>N (ϕN (ω)∂x(ϕN (ω)))∂m

x
ϕN (ω)∂m+1

x
ϕN (ω)dx

and

(11.2) IIN (ω) =

�
ϕN (ω)(∂m

x
π>N (ϕN (ω)(∂xϕN (ω)))∂m+1

x
ϕN (ω))

+ ϕN (ω)(∂m

x
ϕN (ω))∂m+1

x
(π>N (ϕN (ω)∂x(ϕN (ω)))dx.

In order to estimate IN notice that

IN (ω) =

�
(π>NϕN (ω)∂xϕN (ω))∂m

x
ϕN (ω)∂m+1

x
ϕN (ω)dx

=
�

0<|j1|,|j2|,|j3|,|j4|≤N

|j1+j2|>N

j1+j2+j3+j4=0

ϕj1(ω)

|j1|m+1

ϕj2(ω)

|j2|m
ϕj3(ω)

|j3|
ϕj4(ω)

and hence by the Minkowski inequality

�IN (ω)�L
q
ω
≤ C

�

0<|j1|,|j2|,|j3|,|j4|≤N

|j1+j2|>N

j1+j2+j3+j4=0

1

|j1|m+1|j2|m|j3|

≤ C
� �

0<|j3|≤N

1

|j3|

�� �

0<|j1|,|j2|≤N

|j1+j2|>N

1

|j1|m+1|j2|m
�

= O
� ln2 N

N

�

where we have used Lemma 10.1.
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Next we estimate IIN (ω) (see (11.2)). Due to the identity (9.18) we are reduced to estimate
the following quantities:

II �
N

(ω) = −
�

∂m

x
(π>N (ϕ+

N
(ω)∂xϕ+

N
(ω)))π>N (∂xϕ−

N
(ω)∂m

x
ϕ−

N
(ω))dx

II ��
N

(ω) = −
�

∂m

x
(π>N (ϕ−

N
(ω)∂xϕ−

N
(ω)))π>N (∂xϕ+

N
(ω)∂m

x
ϕ+

N
(ω))dx.

Next we estimate II �
N

(ω) (a similar argument works for II ��
N

(ω)). By the Leibnitz formula it
is sufficient to prove that:

(11.3)
����
�

π>N (∂j

x
ϕ+

N
(ω)∂m−j+1

x
ϕ+

N
(ω))π>N (∂xϕ−

N
(ω)∂m

x
ϕ−

N
(ω))dx

����
L

q
ω

= o(1)

as N →∞ ∀j = 0, 1, ..,m.

Indeed the most delicate cases are j = 0, m. All the other cases can be treated in the same
way. In the case j = 0 we are reduced to prove

lim
N→∞

����
�

π>N (ϕ+
N

(ω)∂m+1
x

ϕ+
N

(ω))π>N (∂xϕ−
N

(ω)∂m

x
ϕ−

N
(ω))dx

����
L

q
ω

= 0.

For that purpose, we write

lim sup
N→∞

���
�

0<|j1|,|j2|,|j3|,|j4|≤N

j1,j2>0,j3,j4<0
|j1+j2|>N

j1+j2+j3+j4=0

ϕj1(ω)

|j1|m+1
ϕj2(ω)

ϕj3(ω)

|j3|m
ϕj4(ω)

|j4|

���
L

q
ω

≤ lim sup
N→∞

C
�

0<|j1|,|j3|,|j4|≤N

|j3+j4|>N

1

|j1|m+1|j3|m|j4|

≤ C lim sup
N→∞

� �

0<|j1|≤N

1

|j1|m+1

� �

0<|j3|,|j4|≤N

|j3+j4|>N

1

|j3|m|j4|
= O

� lnN

N

�

where we have used Lemma 10.1 at the last step.
To prove (11.3) for j = m we have to show

lim
N→∞

����
�

(π>N (∂m

x
ϕ+

N
(ω)∂xϕ+

N
(ω)))π>N (∂xϕ−

N
(ω)∂m

x
ϕ−

N
(ω))

����
L

q
ω

= 0.

Indeed arguing as above (i.e., we replace the random vector ϕ(ω) by its random Fourier series
and we apply the Minkowski inequality) we are reduced to prove that

lim
N→∞

�

0<|j1|,|j2|,|j3|,|j4|≤N

j1,j2>0,j3,j4<0
|j1+j2|>N

j1+j2+j3+j4=0

1

|j1||j2|m|j3|m|j4|
= 0.

This estimate follows by combining the inequality
�

0<|j1|,|j2|,|j3|,|j4|≤N

j1,j2>0,j3,j4<0
|j1+j2|>N

j1+j2+j3+j4=0

1

|j1||j2|m|j3|m|j4|
≤

� �

0<|j3|≤N

1

|j3|m
�� �

0<|j1|,|j2|≤N

|j1+j2|>N

1

|j1||j2|m
�
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with Lemma 10.1.

Second case: p(u) = u∂m

x
Hu∂m+1

x
Hu, Hu∂m

x
u∂m+1

x
Hu, Hu∂m

x
Hu∂m+1

x
u.

All those cases can be treated as the previous one provided that we use (9.12), (9.16), (9.17)
instead of (9.18) in the argument above.

Third case: p(u) = u∂m

x
u(∂m+1

x
Hu).

By definition we get:
�

p∗
N

(πN (ϕ(ω)))dx = IN (ω) + IIN (ω) + IIIN (ω)

where

IN (ω) =

�
(π>N (ϕN (ω)∂xϕN (ω)))(∂m

x
ϕN (ω))(∂m+1

x
HϕN (ω))dx,

IIN (ω) =

�
ϕN (ω)∂m

x
(π>N (ϕN (ω)∂xϕN (ω)))∂m+1

x
HϕN (ω)dx

IIIN (ω) =

�
ϕN (ω)∂m

x
ϕN (ω)∂m+1

x
H(π>N (ϕN (ω)∂xϕN (ω)))dx.

The term IN (ω) can be estimated in the same way as (11.1) in the first case.

Concerning IIN (ω) we use (9.6) and we get

IIN (ω) =
m�

j=1

cj [

�
π>N (∂j

x
ϕ+

N
(ω)∂m−j+1

x
ϕ+

N
(ω))π>N (ϕ−

N
(ω)∂m+1

x
ϕ−

N
(ω))

− π>N (∂j

x
ϕ−

N
(ω)∂m−j+1

x
ϕ−

N
(ω))π>N (ϕ+

N
(ω)∂m+1

x
ϕ+

N
(ω))].

Hence it is sufficient to show that

(11.4) lim sup
N→∞

���
�

π>N (∂j

x
ϕ+

N
(ω)∂m−j+1

x
ϕ+

N
(ω))π>N (ϕ−

N
(ω)∂m+1

x
ϕ−

N
(ω))

���
L

q
ω

= 0

∀j = 1, . . . ,m.

Indeed the most delicate cases are j = 1, m (that in turn can be treated in a similar way).
First we focus on (11.4) for j = m. More precisely we have to prove

lim sup
N→∞

���
�

π>N (∂m

x
ϕ+

N
(ω)∂xϕ+

N
(ω))π>N (ϕ−

N
(ω)∂m+1

x
ϕ−

N
(ω))dx

���
L

q
ω

= 0.

By replacing the random vector ϕ(ω) by its Fourier randomized series we get:
�

π>N (∂m

x
ϕ+

N
(ω)∂xϕ+

N
(ω))π>N (ϕ−

N
(ω)∂m+1

x
ϕ−

N
(ω))dx

=
�

0<|j1|,|j2|,|j3|,|j4|≤N

j1,j2>0,j3,j4<0
|j1+j2|>N

j1+j2+j3+j4=0

ϕj1(ω)

|j1|
ϕj2(ω)

|j2|m
ϕj3(ω)

|j3|m+1
ϕj4(ω).
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Hence by the Minkowski inequality we get:

lim sup
N→∞

���
�

π>N (∂m

x
ϕ+

N
(ω)∂xϕ+

N
(ω))π>N (ϕ−

N
(ω)∂m+1

x
ϕ−

N
(ω))dx

���
L

q
ω

≤ C lim sup
N→∞

� �

0<|j3|≤N

1

|j3|m+1

�� �

0<|j1|,|j2|,|j3|≤N

|j1+j2|>N

1

|j1||j2|m
�

= O
� lnN

N

�

where we have used Lemma 10.1.
Concerning the estimate (11.4) for j = 1 we can argue as above and we are reduced to

prove that

lim
N→∞

�

0<|j1|,|j2|,|j3|,|j4|≤N

j1,j2>0,j3,j4<0
|j1+j2|>N

1

|j1|m|j2||j3|m+1
= 0

that follows by Lemma 10.1. The estimate for IIIN (ω) is similar to the one of IIN (ω)
provided that (9.7) is used instead of (9.6).

Fourth case: p(u) = u(∂m

x
Hu)(∂m+1

x
u), Hu∂m

x
Hu∂m+1

x
Hudx, Hu∂m

x
u∂m+1

x
u

They can be treated as in the third case provided that (9.1), (9.2) (resp. (9.8), (9.9) and
(9.10),(9.11)) are used instead of (9.6) and (9.7).

L���� 11.2. – Let m ≥ 2 be an integer and p(u) ∈ P3(u) such that p̃(u) = ∂α

x
u∂β

x
u∂γ

x
u

with
α + β + γ = 2m + 1, 0 ≤ α ≤ β ≤ γ and max{α,β, γ} ≤ m.

Then we have
lim

N→∞

���
�

p∗
N

(πNu)dx
���

Lq(dµm+1)
= 0, ∀q ∈ [1,∞).

Proof. – We treat for simplicity the case p = ∂α

x
u∂β

x
u∂γ

x
u (the general case can be studied

with a similar argument). Hence we get

p∗
N

(ϕN (ω)) = IN (ω) + IIN (ω) + IIIN (ω)

where

IN (ω) =

�
∂α

x
(π>N (ϕN (ω)∂xϕN (ω)))∂β

x
ϕN (ω)∂γ

x
ϕN (ω)dx;

IIN (ω) =

�
∂α

x
ϕN (ω)∂β

x
(π>N (ϕN (ω)∂xϕN (ω)))∂γ

x
ϕN (ω)dx;

IIIN (ω) =

�
∂α

x
ϕN (ω)∂β

x
ϕN (ω)∂γ

x
(π>N (ϕN (ω)∂xϕN (ω)))dx.

We shall prove that
lim

N→∞
�IN (ω)�L

q
ω

= 0

(and in a similar way we can treat IIN (ω) and IIIN (ω)). By the Leibnitz formula it is
sufficient to prove

lim
N→∞

���
�

π>N (∂j

x
ϕN (ω)∂α−j+1

x
ϕN (ω))∂β

x
ϕN (ω)∂γ

x
ϕN (ω)dx

���
L

q
ω

= 0

∀j = 0, . . . ,α.
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We shall treat the case j = 0 and all the other cases can be treated in a similar way. More
precisely we shall prove that

lim
N→∞

���
�

π>N (ϕN (ω)∂α+1
x

ϕN (ω))∂β

x
ϕN (ω)∂γ

x
ϕN (ω)dx

���
L

q
ω

= 0.

Notice that we have
�

π>N (ϕN (ω)∂α+1
x

ϕN (ω))∂β

x
ϕN (ω)∂γ

x
ϕN (ω)dx

=
�

|j1|,|j2|,|j3|,|j4|∈(0,N ],
|j1+j2|>N

j1+j2+j3+j4=0

ϕj1(ω)

|j1|m+1

ϕj2(ω)

|j2|m−α

ϕj3(ω)

|j3|m+1−β

ϕj4(ω)

|j4|m+1−γ

and hence by using the triangular inequality we get
���

�
π>N (ϕN (ω)∂α+1

x
ϕN (ω))∂β

x
ϕN (ω)∂γ

x
ϕN (ω)dx

���
L

q
ω

≤ C
�

|j1|,|j2|,|j3|,|j4|∈(0,N ],
|j1+j2|>N

j1+j2+j3+j4=0

1

|j1|m+1|j2|m−α|j3|m+1−β |j4|m+1−γ

Next we consider three possible cases:

First subcase: α = 1, β = γ = m.
In this case we get

���
�

(π>NϕN (ω)∂α+1
x

ϕN (ω))∂β

x
ϕN (ω)∂γ

x
ϕN (ω)dx

���
L

q
ω

≤ C
�

|j1|,|j2|,|j4|∈(0,N ],
|j1+j2|>N

1

|j1|m+1|j2|m−1|j4|

≤
� �

0<|j4|≤N

1

|j4|

�� �

0<|j1|,|j2|≤N,

|j1+j2|>N

1

|j1|m+1|j2|m−1

�
= O

� ln2 N

N

�

where we have used Lemma 10.1.

Second subcase: α ≤ β = γ < m.
In this case we get

���
�

(π>NϕN (ω)∂α+1
x

ϕN (ω))∂β

x
ϕN (ω)∂γ

x
ϕN (ω)dx

���
L

q
ω

≤ C
�

|j1|,|j2|,|j3|,|j4|∈(0,N ],
|j1+j2|>N

1

|j1|m+1|j2||j3|2

≤ C
� �

0<|j4|≤N

1

|j3|2
�� �

0<|j1|,|j2|≤N,

|j1+j2|>N

1

|j1|m+1|j2|

�
= O

� lnN

N

�

where we have used Lemma 10.1.
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Third subcase: α ≤ β < γ ≤ m.

In this case we get

���
�

(π>NϕN (ω)∂α+1
x

ϕN (ω))∂β

x
ϕN (ω)∂γ

x
ϕN (ω)dx

���
L

q
ω

≤ C
�

|j1|,|j2|,|j3|,|j4|∈(0,N ],
|j1+j2|>N

1

|j1|m+1|j2||j3|2

and we can conclude as in the previous case.

L���� 11.3. – Let p(u) ∈ P4(u) be such that p̃(u) = ∂α1
x

u∂α2
x

u∂α3
x

u∂α4
x

u with

α1 ≤ α2 ≤ α3 ≤ α4 ≤ m and α1 + α2 + α3 + α4 = 2m.

Then we have

lim
N→∞

���
�

p∗
N

(πNu)dx
���

Lq(dµm+1)
= 0, ∀q ∈ [1,∞).

Proof. – We shall treat the case p = ∂α1
x

u∂α2
x

u∂α3
x

u∂α4
x

u. The general case follows in
a similar way (indeed our argument will be essentially based on the Minkowski inequality
and it is not affected in the case when H appears in the expression of p(u))). Arguing as in
Lemma 11.2 it is sufficient to prove that

lim
N→∞

�IN�L
q
ω

= 0, lim
N→∞

�IIN�L
q
ω

= 0, lim
N→∞

�IIIN�L
q
ω

= 0, lim
N→∞

�IVN�L
q
ω

= 0

where

IN =

�
∂α1

x
π>N (ϕN (ω)∂xϕN (ω))∂α2

x
ϕN (ω)∂α3

x
ϕN (ω)∂α4

x
ϕN (ω)dx

IIN =

�
∂α1

x
ϕN (ω)∂α2

x
π>N (ϕN (ω)∂xϕN (ω))∂α3

x
ϕN (ω)∂α4

x
ϕN (ω)dx

IIIN =

�
∂α1

x
ϕN (ω)∂α2

x
ϕN (ω)∂α3

x
π>N (ϕN (ω)∂xϕN (ω))∂α4

x
ϕN (ω)dx

IVN =

�
∂α1

x
ϕN (ω)∂α2

x
ϕN (ω)∂α3

x
ϕN (ω)∂α4

x
π>N (ϕN (ω)∂xϕN (ω))dx.

We shall treat for simplicity only the term IVN (the other terms can be treated in a similar
way). Hence we shall prove that limN→∞ �IVN�L

q
ω

= 0. By the Leibniz rule it follows by the
following estimates:

lim
N→∞

���
�

∂α1
x

ϕN (ω)∂α2
x

ϕN (ω)∂α3
x

ϕN (ω)π>N (∂j

x
ϕN (ω)∂α4−j+1

x
ϕN (ω))dx

���
L

q
ω

= 0

∀j = 0, . . . ,α4.

We shall prove the estimate above for j = 0 (all the other cases can be treated in a simpler
way). Hence we have to show

lim
N→∞

���
�

∂α1
x

ϕN (ω)∂α2
x

ϕN (ω)∂α3
x

ϕN (ω)π>N (ϕN (ω)∂α4+1
x

ϕN (ω))dx
���

L
q
ω

= 0.
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Notice that
�

∂α1
x

ϕN (ω)∂α2
x

ϕN (ω)∂α3
x

ϕN (ω)π>N (ϕN (ω)∂α4+1
x

ϕN (ω))dx

=
�

|j1|,|j2|,|j3|,|j4|,|j5|∈(0,N ],
|j4+j5|>N

j1+j2+j3+j4+j5=0

ϕj1(ω)

|j1|m+1−α1

ϕj2(ω)

|j2|m+1−α2

ϕj3(ω)

|j3|m+1−α3

ϕj4(ω)

|j4|m+1

ϕj5(ω)

|j5|m−α4

and hence by the Minkowski inequality and Lemma 10.2 we get
���

�
∂α1

x
ϕN∂α2

x
ϕN∂α3

x
ϕNπ>N (ϕN∂α4+1

x
ϕN )dx

���
L

q
ω

≤ C
�

|j1|,|j2|,|j3|,|j4|,|j5|∈(0,N ],
|j1+j2+j3|>N

1

|j1|2|j2|2|j3||j4|
= O

Ç
ln2 N

N

å

where we have used the fact that by assumption necessarily α1, α2 < m.

L���� 11.4. – Let pj(u) ∈ Pj(u) with j ≥ 5 be such that p̃j(u) =
�j

k=1 ∂αk
x

u where

α1 ≤ · · · ≤ αj ≤ m and
j�

k=1

αk ≤ 2m− 1.

Then

lim
N→∞

���
�

p∗
N

(πNu)dx
���

Lq(dµm+1)
= 0, ∀q ∈ [1,∞).

Proof. – It follows as Lemma 11.3.

Proof of Theorem 1.2. – It follows by combining Lemma 11.1, 11.2, 11.3, 11.4 with
Proposition 8.3.
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