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ON THE STRUCTURAL THEORY OF II1 FACTORS
OF NEGATIVELY CURVED GROUPS

ʙʏ I�ɴ�� CHIFAN �ɴ� Tʜ���� SINCLAIR

Aʙ��ʀ���. – Ozawa showed in [21] that for any i.c.c. hyperbolic group, the associated group factor
LΓ is solid. Developing a new approach that combines some methods of Peterson [29], Ozawa and
Popa [27, 28], and Ozawa [25], we strengthen this result by showing that LΓ is strongly solid. Using
our methods in cooperation with a cocycle superrigidity result of Ioana [12], we show that profinite
actions of lattices in Sp(n, 1), n ≥ 2, are virtually W ∗-superrigid.

R�����. – Ozawa a montré dans [21] que, pour un groupe c.c.i. hyperbolique, le facteur de type
II1 associé est solide. En devéloppant une nouvelle approche, qui combine les méthodes de Peterson
[29], d’Ozawa et Popa [27, 28], et d’Ozawa [25], nous renforçons ce résultat en montrant que ce facteur
est fortement solide. En combinant nos méthodes avec un résultat d’Ioana de superrigidité des cocycles
[12], nous prouvons que les actions des réseaux de Sp(n, 1), n ≥ 2, sont virtuellement W∗-superrigides.

Introduction

In a conceptual leap Ozawa established a broad property for group factors of Gromov
hyperbolic groups—what he termed solidity—which essentially allowed him to reflect the
“small cancellation” property such a group enjoys in terms of its associated von Neumann
algebra.

O����’� S�ʟɪ�ɪ�ʏ Tʜ��ʀ�� ([21]). – If Γ is an i.c.c. Gromov hyperbolic group, then
LΓ is solid, i.e., A

� ∩ LΓ is amenable for every diffuse von Neumann subalgebra A ⊂ LΓ.

Notable for its generality, Ozawa’s argument relies on a surprising interplay between C∗-alge-
braic and von Neumann algebraic techniques [4].

Using his deformation/rigidity theory [32], Popa was able to offer an alternate, elementary
proof of solidity for free group factors: more generally, for factors admitting a “free malleable
deformation” [33]. Popa’s approach exemplifies the use of spectral gap rigidity arguments
that opened up many new directions in deformation/rigidity theory, cf. [32, 33, 34]. Of
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2 I. CHIFAN AND T. SINCLAIR

particular importance, these techniques brought the necessary perspective for a remarkable
new approach to the Cartan problem for free group factors in the work of Ozawa and Popa
[27, 28]—an approach which this work directly builds upon.

A new von Neumann-algebraic approach to solidity was developed by Peterson in his
important paper on L

2-rigidity [29]. Essentially, Peterson was able to exploit the “negative
curvature” of the free group on two generators F2, in terms of a proper 1-cocycle into the
left-regular representation, to rule out the existence of large relative commutants of diffuse
subalgebras of LF2.

P���ʀ��ɴ’� S�ʟɪ�ɪ�ʏ Tʜ��ʀ�� ([29]). – If Γ is an i.c.c. countable discrete group which
admits a proper 1-cocycle b : Γ → H π for some unitary representation π which is weakly-�2

(i.e., weakly contained in the left-regular representation), then LΓ is solid.

It was later realized by the second author [39] that many of the explicit unbounded deriva-
tions (i.e., the ones constructed from 1-cocycles) that Peterson works with have natural dila-
tions which are malleable deformations of their corresponding (group) von Neumann alge-
bras.

However, the non-vanishing of 1-cohomology of Γ with coefficients in the left-regular rep-
resentation does not reflect the full spectrum of negative curvature phenomena in geometric
group theory as evidenced by the existence of non-elementary hyperbolic groups with Kazh-
dan’s property (T), cf. [3]. In their fundamental works on the rigidity of group actions [17, 18],
Monod and Shalom proposed a more inclusive cohomological definition of negative curva-
ture in group theory which is given in terms of non-vanishing of the second-degree bounded
cohomology for Γ with coefficients in the left-regular representation. Relying on Monod’s
work in bounded cohomology [16], we will make use of a related condition, which is the
existence of a proper quasi-1-cocycle on Γ into the left-regular representation (more gener-
ally, into a representation weakly contained in the left-regular representation), cf. [16, 40]. By
a result of Mineyev, Monod, and Shalom [15], this condition is satisfied for any hyperbolic
group—the case of vanishing first �

2-Betti number is due to Mineyev [14].

Statement of results

We now state the main results of the paper, in order to place them within the context of
previous results in the structural theory of group von Neumann algebras. We begin with the
motivating result of the paper, which unifies the solidity theorems of Ozawa and Peterson.

Tʜ��ʀ�� A. – Let Γ be an i.c.c. countable discrete group which is exact and admits a proper
quasi-1-cocycle q : Γ → H π for some weakly-�2 unitary representation π (more generally, Γ is
exact and belongs to the class Q H reg of Definition 1.6). Then LΓ is solid.

In particular, all Gromov hyperbolic groups are exact, cf. [36], and admit a proper quasi-
1-cocycle for the left-regular representation [15]. For the class of exact groups, belonging to
the class Q H reg is equivalent to bi-exactness (see Section 1), so the above result is equivalent
to Ozawa’s Solidity Theorem.

Following Ozawa’s and Peterson’s work on solidity, there was some hope that similar
techniques could be used to approach to the Cartan subalgebra problem for group fac-
tors of hyperbolic groups, generalizing Voiculescu’s celebrated theorem on the absence of
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II1 FACTORS OF NEGATIVELY CURVED GROUPS 3

Cartan subalgebras for free group factors [43]. However, the Cartan problem for general
hyperbolic groups would remain intractable until the breakthrough approach of Ozawa and
Popa through Popa’s deformation/rigidity theory resolved it in the positive for the group
factor of any discrete group of isometries of the hyperbolic plane [28]. In fact, they were
able to show that any such II1 factor M is strongly solid, i.e., for every diffuse, amenable von
Neumann subalgebra A ⊂ M , N M (A)�� ⊂ M is an amenable von Neumann algebra, where
N M (A) = {u ∈ U(M) : uAu

∗ = A}.
Using the techniques developed by Ozawa and Popa [27, 28] and a recent result of Ozawa

[25], we obtain the following strengthening of Theorem A.

Tʜ��ʀ�� B. – Let Γ be an i.c.c. countable discrete group which is weakly amenable (there-
fore, exact). If Γ admits a proper quasi-1-cocycle into a weakly-�2 representation, then LΓ is
strongly solid.

Appealing to Ozawa’s proof of the weak amenability of hyperbolic groups [23], Theorem B
allows us to fully resolve in the positive the strong solidity problem—hence the Cartan
problem—for i.c.c. hyperbolic groups and for lattices in connected rank one simple Lie
groups. In particular, if Γ is an i.c.c. lattice in Sp(n, 1) or the exceptional group F4(−20), then
LΓ is strongly solid. The strong solidity problem for the other rank one simple Lie groups—
those locally isomorphic to SO(n, 1) or SU(n, 1))—was resolved for SO(2, 1), SO(3, 1), and
SU(1, 1) by the work of Ozawa and Popa [28] and, in the general case, by the work of the
second author [39]. The results follow directly from Theorem B in the co-compact (i.e.,
uniform) case: in the non-uniform case, we must appeal to a result of Shalom (Theorem 3.7
in [38]) on the integrability of lattices in connected simple rank one Lie groups to produce a
proper quasi-1-cocycle.

Building on Ioana’s work on cocycle superrigidity [12], we are also able to obtain new
examples of virtually W∗-superrigid actions.

C�ʀ�ʟʟ�ʀʏ B.1. – Let Γ be an i.c.c. countable discrete group which is weakly amenable
and which admits a proper quasi-1-cocycle into a weakly-�2 representation. If Γ � (X,µ) is a
profinite, free, ergodic measure-preserving action of Γ on a standard probability space (X,µ),
then L

∞(X,µ)�Γ has a unique Cartan subalgebra up to unitary conjugacy. If in addition Γ has
Kazhdan’s property (T) (e.g., Γ is a lattice in Sp(n, 1), n ≥ 2), then any such action Γ � (X,µ)

is virtually W∗-superrigid.

A natural question to ask is whether our techniques can be extended to demonstrate
strong solidity of the group factor of any i.c.c. countable discrete group which is relatively
hyperbolic [19] to a family of amenable subgroups.

The techniques used to prove Theorem B also allow us to deduce, by way of results of
Cowling and Zimmer [8] and Ozawa [23], the following improvement of results of Adams
(Corollary 6.2 in [1]) and of Monod and Shalom (Corollary 1.19 in [18]) on the structure of
groups which are orbit equivalent to hyperbolic groups.

C�ʀ�ʟʟ�ʀʏ B.2. – Let Γ be an i.c.c. countable discrete group which is weakly amenable
and which admits a proper quasi-1-cocycle into a weakly-�2 representation. Let Γ � (X,µ)

be a free, ergodic, measure-preserving action of Γ on a probability space and Λ � (Y, ν) be
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4 I. CHIFAN AND T. SINCLAIR

an arbitrary free, ergodic, measure-preserving action of some countable discrete group Λ on a
probability space. If Γ � (X,µ) is orbit equivalent to Λ � (Y, ν), then Λ is not isomorphic
to a non-trivial direct product of infinite groups and the normalizer of any infinite, amenable
subgroup Σ < Λ is amenable.

Beyond solidity results, we highlight that the techniques developed in this paper also
enable us to reprove strong decomposition results for products of groups in the spirit of
Popa’s deformation/rigidity theory. Specifically, we are able to recover the following prime
decomposition theorem of Ozawa and Popa.

Tʜ��ʀ�� C (Ozawa and Popa [26]). – Let Γ = Γ1 × · · · × Γn be a non-trivial product of
exact, i.c.c. countable discrete groups such that Γi ∈ Q H reg, 1 ≤ i ≤ n. If N = N1⊗ · · ·⊗Nm

is a product of II1 factors Nj , 1 ≤ j ≤ m, for some m ≥ n, and LΓ ∼= N , then m = n and there
exist t1, . . . , tn > 0 with t1 · · · tn = 1 so that, up to a permutation, (LΓi)

ti ∼= Ni, 1 ≤ i ≤ n.

An advantage to our approach is that our proof naturally generalizes to unique measure-
equivalence decomposition of products of bi-exact groups, first proven by Sako (Theorem 4
in [37]). This type of result was first achieved for products of groups of the class C reg by
Monod and Shalom (Theorem 1.16 in [18]).

C�ʀ�ʟʟ�ʀʏ C (Sako [37]). – Let Γ = Γ1 × · · · × Γn be a non-trivial product of exact,
i.c.c. countable discrete groups such that Γi ∈ Q H reg, 1 ≤ i ≤ n, and let Λ = Λ1 × · · · × Λm

be a product of arbitrary countably infinite discrete groups. Assume that Γ ∼ME Λ, i.e., there
exist Γ � (X,µ) and Λ � (Y, ν) free, ergodic, probability measure-preserving actions which
are weakly orbit equivalent (Definition 2.2 in [9]). If m ≥ n then m = n and, up to permuting
indices, we have that Γi ∼ME Λi, 1 ≤ i ≤ n.

On the method of proof

This paper began as an attempt to chart a “middle path” between the solidity theorems
of Ozawa, Popa, and Peterson by recasting Ozawa’s approach to solidity effectively as a
deformation/rigidity argument. We did so by finding a “cohomological” characterization
of Ozawa’s notion of bi-exactness [22]. Interestingly, our reformulation of bi-exactness has
many affinities with (strict) cohomological definitions of negative curvature proposed by
Monod and Shalom [18] and Thom [40].

Working from the cohomological perspective, we were able to construct “deformations”
of LΓ. Though these “deformations” no longer mapped LΓ into itself, we were still able to
control their convergence on a weakly dense C∗-subalgebra of LΓ namely, the reduced group
C∗-algebra C∗λ(Γ), then borrow Ozawa’s insight of using local reflexivity to pass from C∗λ(Γ)

to the entire von Neumann algebra.
After this initial undertaking had been completed, we turned our attention to applying

these techniques to the foundational methods which Ozawa and Popa developed in proving
strong solidity of free group factors. Our approach through deformation/rigidity-type argu-
ments allowed us to exploit the “compactness” of deformations coming from quasi-cocycles
to achieve a finer degree of control than is afforded by the use of bi-exactness. This extra con-
trol was crucial in our adaptation of Ozawa and Popa’s fundamental techniques in the proof
of Theorem B. This should be considered the main technical advance of the paper.
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1. Cohomological-type properties and negative curvature

Let Γ be a countable discrete group. Recall that a length function | · | : Γ → R≥0 is a map
satisfying: (1) |γ| = 0 if and only if γ = e is the identity; (2) |γ−1| = |γ|, for all γ ∈ Γ; and
(3) |γδ| ≤ |γ| + |δ|, for all γ, δ ∈ Γ.

1.1. Arrays

We introduce a general class of embeddings of a group Γ into Hilbert space that are
compatible with some action of Γ by orthogonal transformations, which we refer to as arrays.
These “arrays” distill the essential structural properties of proper affine isometric actions
while adding a substantial amount of “geometric” flexibility. In fact, the simplest example
of an array will be a length function, which can be thought of as taking values in the trivial
orthogonal representation.

D��ɪɴɪ�ɪ�ɴ 1.1. – Let π : Γ → O(H π) be an orthogonal representation of a countable
discrete group Γ and let G be a family of subgroups of Γ. A map q : Γ → H π is called an
array for every finite subset F ⊂ Γ if there exists K ≥ 0 such that

(1.1) �πγ(q(δ))− q(γδ)� ≤ K,

for all γ ∈ F , δ ∈ Γ (i.e., q is boundedly equivariant). It is an easy exercise to show that for
any array q there exists a length function on Γ which bounds �q(γ)� from above. An array
q : Γ → H π is said to be:

– proper with respect to G if the map γ �→ �q(γ)� is proper with respect to the family G,
i.e., for all C > 0 there exist finite subsets G, H ⊂ Γ, K ⊂ G such that

{γ ∈ Γ : �q(γ)� ≤ C} ⊆ GKH.

If G = {{e}}, then this is the usual notion of metric properness, in which case the
map q itself is referred to as proper;

– symmetric if πγ(q(γ−1)) = q(γ) for all γ ∈ Γ;
– anti-symmetric if πγ(q(γ−1)) = −q(γ) for all γ ∈ Γ; and
– uniform if there exist a proper length function | · | on Γ and an increasing function

ρ : R≥0 → R≥0 such that ρ(t) →∞ as t →∞ and such that

ρ(|γ−1
δ|) ≤ �q(γ)− q(δ)�,

for all γ, δ ∈ Γ.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



6 I. CHIFAN AND T. SINCLAIR

R���ʀ� 1.2. – In the preceding definition we could as well have relaxed the condition
of strict (anti-)symmetry to merely the condition that �πγ(q(γ−1)) ± q(γ)� is bounded.
However, it is easy to check that for any such function q, there exists an array q̃ which is
a bounded distance from q; namely, q̃(γ) =

1
2 (q(γ) ± πγ(q(γ−1))). This observation is

essentially due to Andreas Thom [40].

It is easy to see that a length function on a group is a uniform, symmetric array for
the trivial representation. Our primary examples of (uniform) anti-symmetric arrays will be
quasi-1-cocycles.

D��ɪɴɪ�ɪ�ɴ 1.3. – Let Γ be a countable discrete group and π : Γ → O(H π) be an
orthogonal representation of Γ on a real Hilbert space H π. A map q : Γ → H π is called
a quasi-1-cocycle for the representation π if one can find a constant K ≥ 0 such that for all
γ, λ ∈ Γ we have

(1.2) �q(γλ)− q(γ)− πγ(q(λ))� ≤ K.

We denote by D(q) the defect of the quasi-1-cocycle q, which is the infimum of all K

satisfying Equation (1.2). Notice that when the defect is zero the quasi-1-cocycle q is actually
a 1-cocycle for π [3]. In the sequel, we will drop the “1” and refer to (quasi-)1-cocycles as
(quasi-)cocycles. Again, without (much) loss of generality we will require a quasi-cocycle q

to be anti-symmetric, since every quasi-cocycle q is a bounded distance from some anti-
symmetric quasi-cocycle q̃, cf. [40], which will suffice for our purposes.

A distinct advantage to working with arrays is that, unlike cocycles (or even quasi-
cocycles), there is a well-defined notion of a tensor product.

Pʀ����ɪ�ɪ�ɴ 1.4. – Let Γ be a countable discrete group. Let πi : Γ → O(H i) be an
orthogonal representation for i = 1, 2, and let qi : Γ → H i be an array for πi. Set

κ(γ) = max
i=1,2

�qi(γ)�+ 1

for all γ ∈ Γ. Then the map q1 ∧ q2 : Γ → H 1 ⊗ H 2 defined by

(1.3) q1 ∧ q2(γ) = κ(γ)
−1

q1(γ)⊗ q2(γ)

is an array into the tensor representation π1 ⊗ π2. Moreover, if the arrays qi are assumed to be
symmetric, then q1∧ q2 is symmetric. If each of the arrays qi is assumed to be proper relative to
a given family Gi of subgroups of Γ then q1 ∧ q2 is proper with respect to the family G1 ∪ G2.

Proof. – For brevity, we will denote π1 ⊗ π2 as π and q1 ∧ q2 as q. First, we show that if
q1, q2 are arrays then one can find a function r : Γ → R+ such that for all γ, λ ∈ Γ, we have

(1.4) |κ(γλ)− κ(λ)| ≤ r(γ).

Indeed, by applying the triangle inequality, we see that

κ(γλ) = max{�q1(γλ)�, �q2(γλ)�} + 1

≤ max{�q1(λ)�, �q2(λ)�} + 1

+ max{�q1(γλ)− (π1)γ(q1(λ))�, �q2(γλ)− (π2)γ(q2(λ))�}
≤ κ(λ) + max{�q1(γλ)− (π1)γ(q1(λ))�, �q2(γλ)− (π2)γ(q2(λ))�}.

(1.5)
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II1 FACTORS OF NEGATIVELY CURVED GROUPS 7

Since q1 and q2 are arrays, there exists a function γ �→ r
�(γ) such that

max{�q1(γλ) − (π1)γ(q1(λ))�, �q2(γλ) − (π2)γ(q2(λ))�} ≤ r
�(γ) for all λ ∈ Γ. Using

this notation (1.5) can be rephrased as κ(γλ) ≤ r
�(γ) + κ(λ) for all γ, λ ∈ Γ. This implies

that κ(λ) = κ(γ−1
γλ) ≤ r

�(γ−1) + κ(γλ) for all γ, λ ∈ Γ. Therefore, when combining the
last two inequalities we conclude that

|κ(γλ)− κ(λ)| ≤ max{r�(γ), r
�
(γ
−1

)},

for all γ, λ ∈ Γ. Letting r(γ) = max{r�(γ), r�(γ−1)} we obtain (1.4).
Next, we will show that q is an array; that is, that q is boundedly equivariant. Applying

the triangle inequality, we have the following estimates:

�q(γλ)− πγ(q(λ))� = �κ(γλ)
−1

q1(γλ)⊗ q2(γλ)− κ(λ)
−1

(π1)γ(q1(λ))⊗ (π2)γ(q2(λ))�

≤ κ(γλ)
−1� (q1(γλ)− (π1)γ(q1(λ)))⊗ q2(γλ)�

+
��κ(γλ)

−1 − κ(λ)
−1

�� �πγ(q1(λ))⊗ q2(γλ)�

+ κ(λ)
−1�(π1)γ(q1(λ))⊗ (q2(γλ)− (π2)γ(q2(λ))) �

≤ �q1(γλ)− (π1)γ(q1(λ))�+ �q2(γλ)− (π2)γ(q2(λ))�+ |κ(γλ)− κ(λ)|
≤ �q1(γλ)− (π1)γ(q1(λ))�+ �q2(γλ)− (π2)γ(q2(λ))�+ |r(γ)|.

Since qi is boundedly equivariant, i = 1, 2, the previous inequality combined with (1.4)
shows that q is boundedly equivariant.

From the definitions, one can easily see that if each qi is symmetric, then q is again
symmetric.

Finally, we verify the properness condition. Let C > 0 be a fixed arbitrary constant and
set K = {γ ∈ Γ : �q(γ)� ≤ C}. A straightforward computation shows that if γ ∈ K then
either �q1(γ)� ≤ C or �q2(γ)� ≤ C. Since each qi is proper relative to Gi, so there exist finite
sets G1, G2, H1, H2 ⊂ Γ, K1 ⊂ G1, and K2 ⊂ G2 such that K ⊆ G1K1H1∪G2K2H2. Since
this holds for all C > 0, we have obtained that q is proper relative to G1 ∪ G2.

Pʀ����ɪ�ɪ�ɴ 1.5. – Let π : Γ → O(H π) be an orthogonal representation. Assume
that Γ admits a proper array q : Γ → H π for π which is boundedly bi-equivariant, i.e.,
�q(γδλ) − πγq(δ)� < C(γ, λ), for all γ, δ, λ ∈ Γ. Here, C(γ, λ) denotes a constant only
depending on γ and λ. Then there exists a symmetric proper array q̃ : Γ → H π ⊗ H π for
the diagonal representation π ⊗ π.

Proof. – We begin by observing that if q is proper and boundedly bi-equivariant, then
the map q

� : Γ → H π defined by q
�(γ) = πγ(q(γ−1)) is also boundedly equivariant and

obviously proper.
Indeed, to see this we note that by definition we have

�q�(γδ)− πγ(q
�
(δ))� = �q(δ−1

γ
−1

)− q(δ
−1

)� ≤ C(e, γ
−1

).

Notice that the above constant depends only on γ.
Now we consider q̃ : Γ → H π ⊗ H π to be the symmetric product of the boundedly

equivariant maps q̃(γ) =
1
2 (q ∧ q

�(γ) + q
� ∧ q(γ)), which is also boundedly equivariant from

the previous proposition. It is a straightforward exercise to check that q̃ is symmetric, i.e.,
(π ⊗ π)γ(q̃(γ−1)) = q̃(γ).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



8 I. CHIFAN AND T. SINCLAIR

Finally, since the square of the norm of the symmetric product of two vectors x and y is
�x�2�y�2 + |�x, y�|2, we have that q is proper implies that q̃ is also proper.

1.2. The classes Q H and Q H reg

We now proceed to describe some “cohomological” properties of countable discrete
groups which capture many aspects of negative curvature from the perspective of represen-
tation theory.

D��ɪɴɪ�ɪ�ɴ 1.6. – We say that a countable discrete group Γ is in the class Q H if it admits
a proper, symmetric array q : Γ → H π for some non-amenable unitary representation
π : Γ → U(H π). If the representation π can be chosen to be weakly-�2, then we say that
Γ belongs to the class Q H reg.

By Proposition 1.5 we see that the class Q H reg generalizes the class Dreg of Thom [40]
and that the class Q H contains all groups having Ozawa and Popa’s property (HH) [28].

Pʀ����ɪ�ɪ�ɴ 1.7. – The following statements are true.

1. If Γ1,Γ2 ∈ Q H , then so are Γ1 × Γ2 and Γ1 ∗ Γ2.
2. If Γ1,Γ2 ∈ Q H reg, then Γ1 ∗ Γ2 ∈ Q H reg.
3. If Γ1,Γ2 ∈ Q H reg are non-amenable, then Γ1 × Γ2 �∈ Q H reg.
4. If Γ is a lattice in a simple connected Lie group with real rank one, then Γ ∈ Q H reg.
5. If Γ ∈ Q H , then Γ is not inner amenable. If in addition Γ is weakly amenable, then Γ has

no infinite normal amenable subgroups.

Statement (5) is essentially Proposition 2.1 in [28] combined with Theorem A in [25].

Proof. – Statements (1) and (2) follow exactly as they do for groups which admit a proper
cocycle into some non-amenable (respectively, weakly �

2) unitary representation, cf. [40].
We prove statement (3) under the weaker assumption that Γ ∼= Λ × Σ, where Λ is non-

amenable and Σ is an arbitrary infinite group. By contradiction, assume Γ admits a proper,
symmetric, boundedly equivariant map q : Γ → �

2(Γ) (by inspection, the same argument
will hold for q : Γ → H π for any weakly-�2 unitary representation π). Since the action
of Λ on �

2(Γ) has spectral gap and admits no non-zero invariant vectors, there exist a finite,
symmetric subset S ⊂ Λ and K

�
> 0 such that

�ξ� ≤ K
�
�

s∈S

�λs(ξ)− ξ�,

for all ξ ∈ �
2(Γ). Let K

�� ≥ 0 be a constant so that inequality (1.1) is satisfied for S ⊂ Γ, and
set K = max{K �

, K
��}. We then have for any g ∈ Σ that

�q(g)� ≤ K

�

s∈S

�λs(q(g))− q(g)�(1.6)

≤ K

�

s∈S

�q(sg)− q(g)�+ K
2|S|

= K

�

s∈S

�q(gs)− q(g)�+ K
2|S|
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II1 FACTORS OF NEGATIVELY CURVED GROUPS 9

= K

�

s∈S

�λgs(q(s
−1

g
−1

))− λg(q(g
−1

))�+ K
2|S|

= K

�

s∈S

�λs−1(q(g
−1

))− q(s
−1

g
−1

)�+ K
2|S| ≤ 2K

2|S|.

Hence, �q(g)� is bounded on Σ, which contradicts that q is proper.

For statement (4), it is well known that any co-compact lattice in a simple Lie group with
real rank one is Gromov hyperbolic; hence, by [15] it admits a proper quasi-cocycle into the
left-regular representation. A result of Shalom, Theorem 3.7 in [38], shows that any lattice in
such a Lie group is integrable, and therefore �

1-measure equivalent to any other lattice in the
same Lie group. It is easy to check that having a proper quasi-cocycle into the left-regular
representation is invariant under �

1-measure equivalence, cf. Theorem 5.10 in [40].

In order to prove statement (5), we assume by contradiction that Γ is inner amenable, i.e.,
there exists a state ϕ on �

∞(Γ) such that ϕ ⊥ �
1(Γ) and ϕ ◦ Ad(γ) = ϕ for all γ ∈ Γ.

Let q : Γ → H π be an array into a non-amenable representation π. Define a u.c.p. map
T : B(H π) → �

∞(Γ) by T (x)(γ) =
1

�q(γ)�2 �xq(γ), q(γ)�. Similarly to the proof of statement
(3), by symmetry and bounded equivariance, for every γ ∈ Γ, there exists K ≥ 0 such that

(1.7) �q(γ−1
δγ)− πγ−1(q(δ))� ≤ K,

for all δ ∈ Γ. Since q is proper, this implies that the state Φ = ϕ ◦ T on B(H π) is
Ad(π)-invariant. However, this contradicts the fact that π is a non-amenable representation.
The remaining assertion follows by Theorem A in [25].

The class Q H reg is intimately related with Ozawa’s class of bi-exact groups (often denoted
as the class S in the literature, e.g., [22, 37]). A reader unfamiliar with the theory of exact
groups should consult Appendix A before proceeding further.

D��ɪɴɪ�ɪ�ɴ 1.8 (Ozawa [4, 22]). – A countable discrete group Γ is said to be bi-exact if
it admits a sequence ξn : β

�Γ → �
2(Γ) of continuous maps such that ξn ≥ 0, �ξn(x)�2 = 1,

for all x ∈ β
�Γ, n ∈ N, which satisfy

(1.8) sup
x∈β�Γ

�λγ(ξn(x))− ξn(γxδ)�2 → 0,

for all γ, δ ∈ Γ. Here β
�Γ = βΓ \ Γ denotes the Stone–Čech boundary.

It is easy to see that if Γ is bi-exact in the sense of Definition 15.1.2 of [4] if and only if Γ

is bi-exact in the sense of the above definition. By the same proof that “property A⇒ coarse
embeddability into Hilbert space” (cf. [4, 36]), we have the following

Pʀ����ɪ�ɪ�ɴ 1.9. – If Γ is bi-exact, then it admits a uniform array into �
2(Γ)⊕∞. In

particular, Γ is exact and belongs to the class Q H reg.

Indeed, from the maps ξn, one may construct a proper, boundedly bi-equivariant map
into �

2(Γ)⊕∞, which may in turn be used to construct a proper, symmetric array by Propo-
sition 1.5.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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R���ʀ� 1.10. – After a preliminary version of this manuscript was circulated, Naru-
taka Ozawa pointed out that the converse is also true. That is, if a countable discrete group
Γ is exact and belongs to the class Q H reg, then Γ is bi-exact. A proof for the special case of
the left-regular representation is contained in [6]: the general case may be found in [35].

The class Q H reg is strictly larger than the class Dreg of Thom [40]. This follows from
Ozawa’s proof that the group Z2 � SL(2, Z) is bi-exact [24], in conjunction with a theorem
of Burger and Monod [5] demonstrating that Z2 � SL(2, Z) admits no proper quasi-cocycle
for any representation. However, it is instructive to supply a direct proof without appealing
to bi-exactness.

Pʀ����ɪ�ɪ�ɴ 1.11. – The group Z2 � SL(2, Z) is in the class Q H reg.

The details of the construction are found in Appendix B.

2. Deformations of the uniform Roe algebra

2.1. Schur multipliers and the uniform Roe algebra

Using exponentiation, we now describe a canonical way to associate to an array
q : Γ → H π a family of multipliers mt on B(�2(Γ)). First notice that the kernel
(γ, δ) �→ �q(γ) − q(δ)�2 is conditionally negative definite (cf. Section 11.2 in [36] or
Appendix D in [4]) and therefore by Schoenberg’s theorem [36], for every t ∈ R, the kernel
κt(γ, δ) = exp(−t

2�q(γ) − q(δ)�2) is positive definite. Hence for every t there is a unique
unital, completely positive (u.c.p.) mapmt : B(�2(Γ)) → B(�2(Γ)) called a Schur multiplier,
such that

(2.1) mt([xγ,δ]) = [κt(γ, δ)xγ,δ],

for all x ∈ B(�2(Γ)).

If Γ is a group then the uniform Roe algebra C
∗
u(Γ) is defined as the C∗-subalgebra

of B(�2(Γ)) generated by C
∗
λ(Γ) and �

∞(Γ). Notice that if one considers the action
Γ �λ

�
∞(Γ) by left translation, then the uniform algebra C

∗
u(Γ) can be canonically identified

with the reduced crossed product C∗-algebra �
∞(Γ) �λ,r Γ. Let F0 denote the net of unital,

symmetric, finite subsets of Γ. Given a finite subset F ∈ F0, we define the operator space
of F -width operators X(F ) to be the space of bounded operators x ∈ B(�2(Γ)) such that
xγ,δ = 0 whenever γ

−1
δ ∈ Γ \ F . Since it is easy to check that X(F ) = �

∞(Γ)C[F ]�∞(Γ),

we have C∗u(Γ) = span{X(F ) : F ∈ F0}
� · �

. Our interest in the uniform Roe algebra stems
from the fact that it is, in practical terms, the smallest C∗-algebra which contains C∗λ(Γ) and
which is invariant under the class of Schur multipliers associated to Γ.

Pʀ����ɪ�ɪ�ɴ 2.1. – The algebra C
∗
u(Γ) is invariant under mt.

Proof. – Let x ∈ C∗u(Γ), then there exists a sequence (xn) of elements of
span{X(F ) : F ∈ F0} such that �xn − x�∞ → 0. It is easy to see that if xn is sup-
ported on the set Fn ∈ F0, then mt(xn) ∈ X(Fn). Since �mt(xn) − mt(x)�∞ → 0, we have
that mt(x) ∈ C∗u(Γ).
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We will also heavily use the following observation of Roe on the convergence of mt

on C∗u(Γ), cf. Lemma 4.27 in [36].

Pʀ����ɪ�ɪ�ɴ 2.2. – If q is an array, then for all x ∈ C∗u(Γ), we have that �mt(x)− x�∞ → 0 as
t → 0.

2.2. Construction of the extended Roe algebra C
∗
u(Γ �ρ

Z).

Let Γ �ρ (Z, η) be a measure preserving action on a probability space Z. By abuse of
notation, we still denote by ρ the Koopman representation of Γ on L

2(Z, η) induced by the
action ρ. Then consider the Hilbert space L

2(Z, η) ⊗ �
2(Γ) and for every γ ∈ Γ define a

unitary uγ ∈ B(L2(Z)⊗ �
2(Γ)) by the formula

uγ(ξ ⊗ δh) = ργ(ξ)⊗ δγh,

where ξ ∈ L
2(Z) and h ∈ Γ. Consider the algebra L

∞(Z × Γ, η × c) ⊂ B(L2(Z)⊗ �
2(Γ)),

where c is the counting measure on Γ. Then the extended Roe algebra C
∗
u(Γ �σ

Z) is defined
as the C

∗-algebra generated by L
∞(Z × Γ) and the unitaries uγ inside B(L2(Z) ⊗ �

2(Γ)).
Notice that when X consists of a point, our definition recovers the regular uniform Roe
algebra, i.e., C

∗
u(Γ �ρ

Z) = C
∗
u(Γ).

As in the case of the uniform Roe algebra, we will see that C
∗
u(Γ �ρ

Z) can be realized
as a reduced crossed product algebra. Specifically, we consider the action Γ � L

∞(Z × Γ)

given by λ
ρ
γ(f)(x, h) = f(γ−1

x, γ
−1

h), where f ∈ L
∞(Z × Γ), x ∈ Z and γ, h ∈ Γ. Then

we show that C
∗
u(Γ �ρ

Z) is naturally identified with the reduced crossed product algebra
corresponding to this action and the faithful representation L

∞(Z×Γ) ⊂ B(L2(Z)⊗�
2(Γ)).

Pʀ����ɪ�ɪ�ɴ 2.3. – C
∗
u(Γ �ρ

Z) ∼= L
∞(Z × Γ) �λρ,r Γ.

Proof. – Consider the operator U : L
2(Z) ⊗ �

2(Γ) ⊗ �
2(Γ) → L

2(Z) ⊗ �
2(Γ) ⊗ �

2(Γ)

defined by U(ξ⊗ δk⊗ δh) = σh(ξ)⊗ δk⊗ δhk, where ξ ∈ L
2(Z) and γ, h ∈ Γ. One can easily

check this is a unitary, and below we will show it implements a spatial isomorphism between
the two algebras. For this purpose we will be seeing C

∗
u(Γ � Z) as the C

∗-algebra generated
by L

∞(Z × Γ) and uγ insideB(L2(Z)⊗ �
2(Γ)⊗ �

2(Γ)), where

f(ξ ⊗ δk ⊗ δh) = (f( · , h)ξ)⊗ δk ⊗ δh

uγ(ξ ⊗ δk ⊗ δh) = ργ(ξ)⊗ δk ⊗ δγh,
(2.2)

for all f ∈ L
∞(Z × Γ), γ, h, k ∈ Γ, and ξ ∈ L

2(Z).
Using the formula for U in combination with Equations (2.2), we have

U(1⊗ λγ)(ξ ⊗ δk ⊗ δh) = U(ξ ⊗ δk ⊗ δγh)

= ργh(ξ)⊗ δk ⊗ δγhk

= uγ(ρh(ξ)⊗ δk ⊗ δhk)

= uγU(ξ ⊗ δk ⊗ δh);

hence, U(1⊗ λγ)U∗ = uγ for all γ ∈ Γ.
We also consider the representation of L

∞(Z × Γ) on B(L2(Z) ⊗ �
2(Γ) ⊗ �

2(Γ)) given
by π(f)(ξ ⊗ δk ⊗ δh) = λ

ρ
h−1(f)(ξ ⊗ δk)⊗ δh, for every f ∈ L

∞(Z × Γ).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Combining this with Equations (2.2) we see that

Uπ(f)(ξ ⊗ δk ⊗ δh) = U((λ
ρ
h−1(f)(ξ ⊗ δk)⊗ δh)

= U(ρh−1(f( · , hk))ξ ⊗ δk ⊗ δh)

= f( · , hk)ρh(ξ)⊗ δk ⊗ δhγ

= fU(ξ ⊗ δk ⊗ δh).

Therefore, for all f ∈ L
∞(Z × Γ) we have Uπ(f)U∗ = f , and from the discussion above we

conclude that U(L∞(Z × Γ) �λρ,r Γ)U∗ = C
∗
u(Γ � Z).

For further reference we keep in mind the following diagram of canonical inclusions:

L
∞(Z) �ρ,r Γ ⊂ L

∞(Z × Γ) �λρ,r Γ = C
∗
u(Γ �ρ

Z)

∪ ∪
C
∗
r (Γ) ⊂ �

∞(Γ) �λ,r Γ = C
∗
u(Γ).

(2.3)

Note there exists a conditional expectation E : L
∞(Z × Γ) → �

∞(Γ) defined by E(f)(γ) =�
Z f(x, γ)dµ(x). This map is clearly Γ-equivariant and thus it extends to a conditional

expectation Ẽ : C
∗
u(Γ � Z) → C

∗
u(Γ) by letting Ẽ(

�
γ xγuγ) =

�
γ E(xγ)uγ for any�

γ xγuγ ∈ C
∗
u(Γ � Z) with xγ ∈ L

∞(Z × Γ).

2.3. A path of automorphisms of the extended Roe algebra associated with the Gaussian action

Let Γ �σ (X,µ) be a measure preserving action of Γ on a probability space X. Following
[30], any orthogonal group representation π : Γ → O(H π) gives rise to a measure-
preserving action which we still denote by Γ �π (Y π

, ν
π), called the Gaussian action.

We consider the diagonal action Γ �σ⊗π (X × Y
π
, µ × ν

π), which will be denoted by
Γ �ρ (Z, ζ). As in the previous subsection, to this action we associate the extended Roe
algebra C

∗
u(Γ �ρ

Z). Below we indicate a procedure to construct a one-parameter family
(αt)t∈R of ∗-automorphisms of C

∗
u(Γ �ρ

Z). Specifically, αt is obtained by exponentiating
an array q : Γ → H π in a similar way to the construction of the malleable deformation
of LΓ from a cocycle b as carried out in §3 of [39]. Crucially, this family will be continuous
with respect to the uniform norm as t → 0 (Lemma 2.6).

Following the construction presented in §1.2 of [39], given an array q : Γ → H π,
there exists a one-parameter family of maps υt : Γ → U(L∞(Y π

, ν
π)) defined by

υt(γ)(x) = exp(itq(γ)(x)), where γ ∈ Γ, x ∈ Y
π. Using similar computations as in

[30, 39] one can verify that we have the following properties:

Pʀ����ɪ�ɪ�ɴ 2.4. – We have the following:

If π is weakly-�2 then the Koopman representation πσ |L2
0(Y

π,νπ) is also weakly-�2;(2.4)
�

υt(γ)(x)υt(δ)
∗
(x)dµ(x) = κt(γ, δ) for all γ, δ ∈ Γ.(2.5)

These maps give rise naturally to a path of operators Vt ∈ B(L2(Y π) ⊗ L
2(X) ⊗ �

2(Γ))

by letting Vt(ξ ⊗ η ⊗ δγ) = (υt(γ)ξ)⊗ η ⊗ δγ , for every ξ ∈ L
2(Y π), η ∈ L

2(X) and γ ∈ Γ.
For further reference we summarize below some basic properties of Vt.

Pʀ����ɪ�ɪ�ɴ 2.5. – For every t, s ∈ R we have the following properties:
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1. VtVs = Vt+s, VtV
∗
t = V

∗
t Vt = 1;

2. If the array is anti-symmetric we have JVtJ = Vt and if it is symmetric we have
JVtJ = V−t. Here we denoted by J : L

2(L∞(Z) � Γ) → L
2(L∞(Z) � Γ) Tomita’s

conjugation.

Proof. – The first part follows directly from the definitions, so we leave the details to the
reader. To get the second part it suffices to verify that the two operators coincide on vectors
of the form ξ⊗ η⊗ δγ ∈ L

2(Y π)⊗L
2(X)⊗ �

2(Γ). If we assume that q is an anti-symmetric
array then employing the formulas for J , Vt, υt we see that

JVtJ(ξ ⊗ η ⊗ δγ) = JVt((σγ−1(ξ
∗
))⊗ σγ−1(η

∗
)⊗ δγ−1)

= J(υt(γ
−1

)σγ−1(ξ
∗
)⊗ σγ−1(η

∗
)⊗ δγ−1)

= (σγ(υ−t(γ
−1

))ξ)⊗ η ⊗ δγ

= (exp(−itπγ(q(γ
−1

)))ξ)⊗ η ⊗ δγ

= (exp(itq(γ))ξ)⊗ η ⊗ δγ

= Vt(ξ ⊗ η ⊗ δγ),

which finishes the proof in this case.
When the array is symmetric we get the conclusion by a similar computation. In this case

the details are left to the reader.

Since Vt is a unitary on L
2(Z) ⊗ �

2(Γ), we may consider an inner automorphism αt

ofB(L2(Z)⊗�
2(Γ)) by letting αt(x) = VtxV

∗
t for all x ∈ B(L2(Z)⊗�

2(Γ)). Notice that this
formula gives a family of inner automorphisms of the extended Roe algebra. Moreover, when
restricting to the extended Roe algebra C

∗
u(Γ � X) one can recover from αt the multipliers

introduced above: E ◦ αt(x) = idX ⊗mt(x) for all x ∈ C
∗
u(Γ � X).

However, one can see right away that these automorphisms do not move the group-
measure space von Neumann algebra L

∞(X) � Γ into itself. Hence, applying the deforma-
tion/rigidity arguments at the level of von Neumann algebra L

∞(X)�Γ is rather inadequate.
As we will see in the next section, this difficulty is overcome by working with the reduced
crossed product C

∗-algebra L
∞(X) �σ,r Γ rather than L

∞(X) � Γ. The following result
underlines that the path αt is a deformation at the C

∗-algebraic level, i.e., with respect to
the operatorial norm.

L���� 2.6. – Let q be any symmetric or anti-symmetric array. Assuming the notations
above, for every x ∈ L

∞(X) �σ,r Γ we have

�(αt(x)− x) · e�∞ → 0 as t → 0;(2.6)

�(αt(JxJ)− JxJ) · e�∞ → 0 as t → 0,(2.7)

where � · �∞ denotes the operatorial norm inB(L2(Z)⊗ �
2(Γ)). Here e denotes the orthogonal

projection from L
2(Z)⊗ �

2(Γ) onto L
2(X)⊗ �

2(Γ).

Proof. – Since elements in L
∞(X) �σ,r Γ can be approximated in the uniform norm

by Γ-finitely supported elements, using the triangle inequality it suffices to show (2.6)
only for x =

�
g∈F xgug, a finite sum where xg ∈ L

∞(X). Fix an arbitrary vector
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ξ =
�

γ ξγ ⊗ δγ ∈ L
2(X) ⊗ �

2(Γ). Using the formula for αt in combination with the
Cauchy-Schwarz inequality, we have

�(αt(x)− x)ξ�2 = �
�

g∈F

�

γ∈Γ

xg(VtugV−t − ug)(ξγ ⊗ δγ)�2

≤
Å
|F |max

g∈F
�xg�2∞

ãÑ
�

g∈F

�
�

γ∈Γ

(VtugV−t − ug)(ξγ ⊗ δγ)�2
é

.

(2.8)

Applying the definitions and the formula for Vt we see that ug(ξγ ⊗ δγ) = σg(ξγ)⊗ δgγ and
VtugV−t(ξγ ⊗ δγ) = υt(gγ)σg(υ−t(γ)) ⊗ σg(ξγ) ⊗ δgγ . Therefore, continuing the estimate
(2.8) we obtain

=

Å
|F |max

g∈F
�xg�2∞

ã �

g∈F

�
�

γ∈Γ

(υt(gγ)σg(υ−t(γ))− 1)⊗ σg(ξγ)⊗ δgγ�2

=

Å
|F |max

g∈F
�xg�2∞

ã �

g∈F

�

γ∈Γ

�ξγ�2�υt(gγ)σg(υ−t(γ))− 1�2

= 2

Å
|F |max

g∈F
�xg�2∞

ã �

g∈F

�

γ∈Γ

�ξγ�2 (1− τ(υt(gγ)σg(υ−t(γ)))) .

(2.9)

On the other hand, the same computations as in the proof of (2.5) together with inequality
(1.1) imply that, there exist K ≥ 0 such that for every g ∈ F and γ ∈ Γ we have

τ(υt(gγ)σg(υ−t(γ))) =

�

X
exp (it(q(gγ)− πg(q(γ)))(x)) dµ(x)

= exp
�
−t

2�q(gγ)− πg(q(γ))�2
�

≥ exp
�
−t

2
K

�
.

(2.10)

Thus, combining (2.8), (2.9) and (2.10) we conclude that, for all ξ ∈ L
2(X)⊗ �

2(Γ), we have

�(αt(x)− x)ξ�2 ≤ 2

Å
max
g∈F

�xg�∞
ã
�ξ�2|F |2

�
1− exp

�
−t

2
K

��
,

which further implies

�(αt(x)− x) · e�∞ ≤ 2

Å
max
g∈F

�xg�∞
ã
|F |2

�
1− exp(−t

2
K)

�
.(2.11)

Since F is finite, then exp(−t
2
K) → 1 as t → 0, and (2.6) follows from (2.11).

It remains to show (2.7). Assume first that q is anti-symmetric. Since [e, J ] = 0, by
Proposition 2.5 we see that (αt(JxJ)−JxJ)·e = J((αt(x)−x)·e)J . Therefore, (2.7) follows
from (2.6) because J is an anti-linear isometry. Similarly, when the array is symmetric, by the
second part of Proposition 2.5, we have (αt(JxJ)−JxJ) · e = J((α−t(x)−x) · e)J and the
conclusion follows by the same reasoning.

R���ʀ� 2.7. – For future reference we make the following observation: in the proof of
the previous proposition we used the symmetry or anti-symmetry of the array to show that
the deformation converges pointwise in the operatorial norm to the identity on JC

∗
λ(Γ)J .

Except for establishing this fact, there is no other instance where symmetry or anti-symmetry
will be used in the sequel.
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Next we show that the path of unitaries Vt satisfies a “transversality” property very similar
to Lemma 2.1 in [34]. Our proof follows closely the proof of Lemma 3.1 in [42]: we include
it here only for the sake of completeness.

L���� 2.8. – If Vt is the unitary defined above, then for all ξ ∈ L
2(X) ⊗ �

2(Γ) and all
t ∈ R we have

(2.12) 2�Vt(ξ)− e · Vt(ξ)�2 ≥ �ξ − Vt(ξ)�2.

Proof. – Fix ξ ∈ L
2(X) ⊗ �

2(Γ) and assume that it can be written as ξ =
�

γ ξγ ⊗ δγ

with ξγ ∈ L
2(X). Straightforward computations show that Vt(ξ) =

�
γ υt(γ)⊗ ξγ ⊗ δγ and

e · Vt(ξ) =
�

γ τ(υt(γ))1⊗ ξγ ⊗ δγ ; thus, the left side of (2.12) is equal to

2�Vt(ξ)− e · Vt(ξ)�2 = 2
�
�Vt(ξ)�2 − �e · Vt(ξ)�2

�

= 2

�

γ

�ξγ�2�υt(γ)�2 − �ξγ�2|τ(υt(γ))|2

= 2

�

γ

�ξγ�2
�
1− |τ(υt(γ))|2

�
.

(2.13)

Applying the same formulas as above, we see that the right side of (2.12) is equal to

�ξ − Vt(ξ)�2 = �ξ�2 + �Vt(ξ)�2 − 2Re�Vt(ξ), ξ�

= 2
�
�ξ�2 −Re�Vt(ξ), ξ�

�

= 2

�

γ

�ξγ�2 (1− τ(υt(γ))) .

(2.14)

Since we have τ(υt(γ)) = exp(−t
2�q(γ)�2) ≥ exp(−2t

2�q(γ)�2) = |τ(υt(γ))|2, the
conclusion follows from (2.13) and (2.14).

The multipliers mt arising from a proper quasi-cocycle behave in some sense as compact
operators on LΓ, i.e., mt is continuous from the weak operator topology to the strong
operator topology. Results of this type will be used crucially in the proof of Theorem 4.1.

Pʀ����ɪ�ɪ�ɴ 2.9. – Let mt be the Schur multiplier associated to some proper quasi-
cocycle q on Γ. If vk ∈ M = LΓ is a bounded sequence of elements such that vk → 0 weakly,
as k →∞, then for every t > 0 and every finite set F ⊂ Γ we have that

lim
k→∞

Ç
sup
�ξ�≤1

�(mt(vk)⊗ 1)(PF ⊗ 1)ξ�
å

= 0,

where ξ ∈ L
2(M) ⊗ L

2(M). Here we denoted by PF the orthogonal projection from L
2(M)

onto the linear span of the set {δα |α ∈ F}.

Proof. – Let ξ =
�

s ξs ⊗ ηs where {ηs}s∈N is an orthonormal basis of L
2(M) and

ξs =
�

r ξ
s
rδr. Notice that �ξ� ≤ 1 amounts to

�
s

�
r |ξs

r |2 ≤ 1. Without loss of generality
we may assume that the set F consists of one element, i.e., F = {γ}. Let vk =

�
h v

k
huh be the

Fourier expansion, where v
k
h ∈ C. Then applying the formula formt and using

�
s |ξs

γ |2 ≤ 1

we have that
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16 I. CHIFAN AND T. SINCLAIR

�(mt(vk)⊗ 1)(PF ⊗ 1)ξ�2 =

�

s

�eVtvkV−t(ξ
s
γδγ)�2

=

�

s

�
�

h

eVtv
k
huhV−t(ξ

s
γδγ)�2

=

�

s

�
�

h

(τ(υt(hγ)σh(υ−t(γ)))1)(v
k
hξ

s
γ)δhγ�2

=

�

s

�

h

|vk
hξ

s
γ |2|τ(υt(hγ)σh(υ−t(γ)))|2

=

�

s

�

h

|vk
hξ

s
γ |2 exp

�
−t

2�q(hγ)− πh(q(γ))�2
�

≤
�

h

|vk
h|2 exp

�
−t

2�q(hγ)− πh(q(γ))�2
�
.

(2.15)

Furthermore, by the quasi-cocycle relation, the last term above is smaller than

(2.16) ≤
�

h

|vk
h|2 exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã
.

Fix ε > 0. Since q is proper there exists a finite subset Fε ⊂ Γ such that
2

t2
ln

Ç
2 exp

�
t
2
D(q)

�

ε

å
≤ �q(h)�2, for all h ∈ Γ \ Fε. This obviously implies that

(2.17) exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã
≤ ε

2 maxk �vk�2∞
,

for all h ∈ Γ \ Fε. Since the sequence vk converges weakly to 0 as k approaches∞ and Fε is
finite, one can find kε ∈ N such that, for all k ≥ kε and all h ∈ Fε, we have

(2.18) |vk
h| ≤

Ñ
ε

2|Fε|maxh∈Fε exp

Ä
− t2

2 �q(h)�2 + t2D(q)

ä
é 1

2

.

Using (2.15), (2.16), (2.17), and (2.18) we obtain that for all k ≥ kε we have

�(mt(vk)⊗ 1)(PF ⊗ 1)ξ�2

≤
�

h

|vk
h|2 exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã

=

�

h∈Fε

|vk
h|2 exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã
+

�

h∈Γ\Fε

|vk
h|2 exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã

≤
�

h∈Fε

ε

2|Fε|maxh∈Fε exp

Ä
− t2

2 �q(h)�2 + t2D(q)

ä exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã

+

�

h∈Γ\Fε

|vk
h|2

ε

2 maxk �vk�2∞

≤ ε

2
+

ε

2
= ε,

which gives the desired conclusion.
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II1 FACTORS OF NEGATIVELY CURVED GROUPS 17

3. The proof of Theorem A

We begin by proving a general result (Theorem 3.2 below) describing the “position” of all
commuting subalgebras in crossed products L

∞(X)�Γ arising from actions Γ � X of exact
groups Γ admitting proper arrays. The strategy of proof will essentially follow Theorem 4.3
in [29], formally replacing the family of almost derivations with the one-parameter group αt

constructed in §2.3. We note that unlike the proofs of solidity by Popa [33] and Vaes [42]—
which also make use of one-parameter automorphism groups—we cannot directly appeal
to spectral gap arguments and must, like Peterson, make fundamental use of Haagerup’s
criterion for amenability. We state Haagerup’s criterion here for the convenience of the
reader.

Pʀ����ɪ�ɪ�ɴ 3.1 (Haagerup, Lemma 2.2 in [10]). – Let M be a II1 factor. A von Neu-
mann subalgebra N ⊂ M is amenable if and only if for every non-zero projection p ∈ Z(N)

and every finite set of unitaries F ⊂ U(Np) we have

(3.1) �
�

u∈F

u⊗ ū�∞ = |F |.

Using this criterion, in cooperation with the technical results from the previous section,
we show the following.

Tʜ��ʀ�� 3.2. – Let Γ be an exact group together with a finite family of subgroups F . We
assume that Γ admits an array into a weakly-�2 representation that is proper with respect to F .
Also, let Γ � X be a free, ergodic, measure-preserving action of Γ on a probability space and
denote by M = L

∞(X) � Γ. Then for any diffuse von Neumann subalgebra A ⊂ M , either:

1. A
� ∩M is amenable; or,

2. A �M L
∞(X) � Σ, for some Σ ∈ F .

Proof. – Denote by N = A
� ∩ M . Assuming that A ��M L

∞(X) we will show that N

must be amenable. Let p ∈ Z(N) be a non-zero projection and F ⊂ U(Np) be a finite set of
unitaries.

For convenience we recall that in Section 2.3 we considered a path of unitaries
Vt ∈ B(L2(Y π) ⊗ L

2(X) ⊗ �
2(Γ)) defined as Vt(ξ ⊗ η ⊗ δγ) = υt(γ)ξ ⊗ η ⊗ δγ , for

every ξ ∈ L
2(Y π), η ∈ L

2(X), and γ ∈ Γ. We claim that, since A ��M L
∞(X) � Σ for all

Σ ∈ F , Vt cannot converge uniformly to the identity on (Ap)1. Indeed, if A ��M L
∞(X)�Σ

for all Σ ∈ F then, by Popa’s intertwining techniques, there exists a sequence of unitaries
vk ∈ U(Ap) such that for all s, t ∈ Γ we have that

(3.2) �EL∞(X)�Σ(utvkus)�2 → 0 as k →∞.

Then letting vk =
�

γ v
k
γuγ ∈ L

∞(X) � Γ it is easy to see that

�e · Vt(vk)�2 = �e · Vt(

�

γ

v
k
γδγ)�2

=

�

γ

�vk
γ�22 exp

�
−2t

2�q(γ)�2
�

=

�

γ

�EL∞(X)(vku
∗
γ)�22 exp

�
−2t

2�q(γ)�2
�
.

(3.3)
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18 I. CHIFAN AND T. SINCLAIR

Since q is proper relative to the family F , an easy computation shows that (3.2) together with
(3.3) imply that �e · Vt(vk)� converges to 0, as k →∞. Hence our claim follows because we
have �Vt(x)− x� ≥ �e · Vt(x)− x�, for all x ∈ Ap.

In conclusion, one can find a constant c > 0 such that for every t > 0 there exists
xt ∈ (Ap)1 such that �Vt(xt) − xt� ≥ c. Let us denote Vt(xt) by ζt and define ξt to be
ζt − e(ζt). By Lemma 2.8, we have that �ξt� ≥

c

2
.

Let E ⊂ L
∞(X) � Γ be the operator system spanned by {p} ∪ F ∪ F

∗. Since Γ is
exact and L

∞(X) is abelian (hence, nuclear as a C
∗-algebra), for every Γ-invariant, separable

C
∗-algebra A the reduced crossed product A�σ,rΓ is exact, which implies that L

∞(X)�σ,rΓ

is locally reflexive. Therefore, one can find a net (ϕi)i∈I of contractive completely positive
maps ϕi : E → L

∞(X)�σ,r Γ such that ϕi → idE pointwise-ultraweakly. In fact, by passing
to convex combinations of the ϕi’s, we may assume that ϕi(u) → u in the strong* topology
for all u ∈ F . Fixing i ∈ I, we have that for all u ∈ F

lim
t→0

�ϕi(u)ξtϕi(u
∗
)− ξt�2

= lim
t→0

�(1− e)(ϕi(u)ζtϕi(u
∗
)− ζt)�2

≤ lim
t→0

�ϕi(u)Jϕi(u)J(ζt)− ζt�2

≤ lim
t→0

�ϕi(u)Vt (α−t(Jϕi(u)J)− Jϕi(u)J) xt�2

+ lim
t→0

�Vt (α−t(ϕi(u))− ϕi(u)) Jϕi(u)Jxt�2 + lim
t→0

�Vt (ϕi(u)Jϕi(u)Jxt − xt)�2

≤ lim
t→0

�(α−t(Jϕi(u)J)− Jϕi(u)J) xt�2 + lim
t→0

�(α−t(ϕi(u))− ϕi(u)) Jϕi(u)Jxt�2

+ lim
t→0

�ϕi(u))Jϕi(u)Jxt − xt�2

≤ 2 lim
t→0

�(αt(ϕi(u))− ϕi(u)) · e�∞ + lim
t→0

�ϕi(u)xtϕi(u
∗
)− xt�2

= lim
t→0

�ϕi(u)xtϕi(u
∗
)− xt�2

≤ lim
t→0

�uxtu
∗ − xt�2 + 2 lim

t→0
�xt�∞�ϕi(u)− u�2

≤ 2�ϕi(u)− u�2.

(3.4)

Given ε > 0, let us choose i ∈ I such that
�

u∈F �ϕi(u)− u�2 ≤ cε
4 . Viewing

H = L
2
0(Y

π) ⊗ L
2(X) ⊗ �

2(Γ) in the natural way as a Hilbert M -bimodule, we have
that H is weakly contained in the coarse bimodule over M (cf. Lemma 5.1 in [28]). Hence,
the induced representation π

� : M ⊗alg M
o → B(H ) given by π

�(x⊗ y
o)ξ = xξy extends in

the minimal tensor norm. Thus, by the calculations above there exists t > 0 such that

�
�

u∈F

u⊗ ū�∞ ≥ �
�

u∈F

ϕi(u)⊗ ϕi(u)�∞

≥
�
�

u∈F ϕi(u)ξtϕi(u
∗)�2

�ξt�2
≥ |F | − ε.

Hence, by Haagerup’s criterion we have that N is amenable, a contradiction.

Proof of Theorem A. – Let Γ be an exact group belonging to the class Q H reg and let
A ⊂ LΓ be a diffuse subalgebra. Applying the previous theorem in the case when X consists
of a point, we have either A

� ∩ M is amenable or A �M C. However, the second case is
impossible since A is diffuse; hence, it follows that LΓ is solid.
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4. The proof of Theorem B and corollaries

The above techniques for proving solidity can be upgraded to more general situations.
Specifically, we obtain a result describing all weakly compact embeddings in the crossed
product von Neumann algebras arising from actions of hyperbolic groups (Theorem 4.1).
Though our approach follows the general outline of the proof of Theorem B in [28] there are
substantial technical issues which arise in working with deformations from quasi-cocycles.
For instance, one has to confront a lack of traciality in the spectral gap arguments. However,
we believe that, by dealing with these obstacles, the techniques developed bring new insight
in proving structural results for these factors.

To state the main theorem we need to recall the notion of weak compactness introduced by
Ozawa and Popa in [27]. Briefly, a given inclusion of finite von Neumann algebras B ⊆ Q is
said to be a weakly compact embedding if the natural action by conjugation of the normalizer
N Q(B) � B is weakly compact. This means that there exists a net of positive unit vectors
(ηn)n∈N in L

2(Q)⊗ L
2(Q̄) which simultaneously satisfies the following relations:

1. �ηn − (v ⊗ v̄)ηn� → 0, for all v ∈ U(B);
2. �[u⊗ ū, ηn]� → 0, for all u ∈ N Q(B); and
3. �(x⊗ 1)ηn, ηn� = τ(x) = �(1⊗ x̄)ηn, ηn�, for all x ∈ Q.

Tʜ��ʀ�� 4.1. – Let Γ be an exact group which admits a proper quasi-cocycle into a weakly-
�
2 representation. Let Γ � X be a measure-preserving action on a probability space and

set M = L
∞(X) � Γ. If P ⊂ M is a weakly compact embedding, then one of the following

possibilities must hold:

1. P �M L
∞(X);

2. N M (P )�� is amenable.

Proof. – We will denote by N = N M (P )�� and fix p ∈ Z(N � ∩ M) a projection. The
general strategy of the proof to show that the assumption P ��M L

∞(X) implies that Np

is amenable. By assumption P ⊂ M is weakly compact, so there exists a net of unit vectors
(ηn)n∈N in L

2(M)⊗ L
2(M̄) as above.

Let H = L
2
0(Y

π) ⊗ L
2(X) ⊗ �

2(Γ) which as we remarked in the proof of Theorem 3.2
is weakly contained as an M -bimodule in the coarse bimodule. Fixing t > 0 we consider
the unitary Vt associated with the quasi-cocycle q as defined in the previous section. Next
set η̃n,t = (Vt⊗1)(p⊗1)ηn, ζn,t = (e⊗1)η̃n,t = (e ·Vt⊗1)(p⊗1)ηn, and ξn,t = η̃n,t−ζn,t =

(e⊥ ⊗ 1)η̃n,t ∈ H ⊗ L
2(M). Using these notations we first prove the following result which

is a technical adaptation of Proposition 2.9.

L���� 4.2. – Letmt be the Schur multiplier associated to the proper quasi-cocycle q on Γ

and let m̃t = idX ⊗mt. Let vk ∈ M be a bounded sequence of elements such that for all x, y ∈ M

we have �EL∞(X)(xvky)�2 → 0 as k →∞. Then for every t > 0 and every finite set F ⊂ Γ we
have that

lim
k→∞

Å
sup

n
�(m̃t(vk)⊗ 1)(PF ⊗ 1)ζn,t�

ã
= 0.

Here we denoted by PF the orthogonal projection from L
2(M) onto the linear span of the set

{L2(X)⊗ δα |α ∈ F}.
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Proof. – Let (p ⊗ 1)ηn =
�

s a
n
s ⊗ bs where {bs}s∈N is an orthonormal basis of L

2(M)

and a
n
s =

�
r a

s,n
r ⊗ δr. Without loss of generality we may assume that the set F con-

sists of one element, i.e., F = {γ}. Let vk =
�

h v
k
huh be the Fourier expansion,

where v
k
h ∈ L

∞(X). Then applying the formula for mt together with (PF ⊗ 1)(ζn,t) =

(PF ⊗ 1)(e · Vt ⊗ 1)((p ⊗ 1)ηn) =
�

s

�
(exp(−t

2�q(γ)�2)as,n
γ

�
⊗ δγ) ⊗ bs and

exp(−2t
2�q(γ)�2) ≤ 1, we obtain the following formulas

�(m̃t(vk)⊗ 1)(PF ⊗ 1)ζn,t�2

=

�

s

�eVtvkV−t((exp(−t
2�q(γ)�2)as,n

γ )⊗ δγ)�2

= exp(−2t
2�q(γ)�2)

�

s

�
�

h

eVtv
k
huhV−t(a

s,n
γ ⊗ δγ)�2

≤
�

s

�
�

h

(τ(υt(hγ)σh(υ−t(γ)))1)⊗ (v
k
hσh(a

s,n
γ ))⊗ δhγ�2

=

�

s

�

h

�vk
hσh(a

s,n
γ )�2|τ(υt(hγ)σh(υ−t(γ)))|2

=

�

s

�

h

�vk
hσh(a

s,n
γ )�2 exp

�
−t

2�q(hγ)− πh(q(γ))�2
�
.

(4.1)

Furthermore, by the quasi-cocycle relation, the last term in the equation above is smaller
than

(4.2) ≤
�

s

�

h

�vk
hσh(a

s,n
γ )�2 exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã
.

Applying the identity �(x⊗ 1)(p⊗ 1)ηn� = �xp�2 for all elements of the form x = v
k
huh,

h ∈ Γ, a basic calculation shows that
�

s

�
r �vk

hσh(as,n
r )�2 = �vk

huhp�22 for all k ∈ N,
h ∈ Γ, and n. In particular, this implies that, for all k ∈ N, h ∈ Γ, and n, we have

�

s

�vk
hσh(a

s,n
γ )�2 ≤ �vk

h�22.

Using these estimates we see that the expression (4.2) is smaller than

(4.3) ≤
�

h

�vk
h�22 exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã
.

Fix ε > 0. Since the map q is proper, there exists a finite subset Fε ⊂ Γ such that
2

t2
ln

Ç
2 exp

�
t
2
D(q)

�

ε

å
≤ �q(h)�2 for all h ∈ Γ \ Fε. This obviously implies that

(4.4) exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã
≤ ε

2 maxk �vk�2∞
,

for all h ∈ Γ \ Fε. Since for all x, y ∈ M , the sequence �EL∞(X)(xvky)�2 converges to 0 as
k approaches ∞ and Fε is finite (depending only on ε and q), then making a suitable choice
for x and y one can find kε ∈ N such that, for all k ≥ kε and all h ∈ Fε, we have

(4.5) �vk
h�2 ≤

Ñ
ε

2|Fε|maxh∈Fε exp

Ä
− t2

2 �q(h)�2 + t2D(q)

ä
é 1

2

.
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Altogether, relations (4.1), (4.3), (4.4), and (4.5) show that, for all k ≥ kε, we have

sup
n
�(m̃t(vk)⊗ 1)(PF ⊗ 1)ζn,t�2

≤
�

h∈Fε

�vk
h�22 exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã
+

�

h∈Γ\Fε

�vk
h�22 exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã

≤
�

h∈Fε

ε

2|Fε|maxh∈Fε exp

Ä
− t2

2 �q(h)�2 + t2D(q)

ä exp

Å
− t

2

2
�q(h)�2 + t

2
D(q)

ã

+

�

h∈Γ\Fε

�vk
h�22

Å
ε

2 maxk �vk�∞

ã

≤ ε

2
+

ε

2
= ε,

which gives the desired conclusion.

Using the notations introduced at the beginning of the proof we show next the following
inequality:

L���� 4.3. – We have
Lim

n
�ξn,t� ≥

5

12
�p�2,

where “Lim” is a limit along a non-principal ultrafilter.

Proof. – Using the triangle inequality multiple times, we have that

�η̃n,t − (e ◦ αt(v)⊗ v̄)ζn,t� ≤ �η̃n,t − (e · αt(v)⊗ v̄)η̃n,t�+ �ξn,t�
≤ �ζn,t − (e · αt(v)⊗ v̄)η̃n,t�+ 2�ξn,t�
≤ �η̃n,t − (αt(v)⊗ v̄)η̃n,t�+ 2�ξn,t�
≤ �ηn − (v ⊗ v̄)ηn�+ 2�ξn,t�,

for all v ∈ U(P ) and all n ∈ N.
Consequently, since by (3) we have �η̃n,t� = �p�2, using the triangle inequality again we

get

(4.6) �(e ◦ αt(v)⊗ v̄)ζn,t� ≥ �p�2 − 2�ξn,t� − �ηn − (v ⊗ v̄)ηn�.

Next we consider the operator e·Vt⊗1 from L
2(M)⊗L

2(M) to L
2(M)⊗L

2(M). Since q is
proper one can check that there exists a finite subset F ⊂ Γ such that
�(PF ⊗ 1)(e · Vt ⊗ 1) − e · Vt ⊗ 1�∞ ≤ 1

6�p�2: here PF denotes the orthogonal pro-
jection on the linear span of L

∞(X)F . Hence using the formula e ◦ αt ◦ e = e ◦ m̃t together
with relation (4.6) and the triangle inequality, we obtain

(4.7) �(m̃t(v)⊗ 1)(PF ⊗ 1)ζn,t� ≥
5

6
�p�2 − 2�ξn,t� − �ηn − (v ⊗ v̄)ηn�,

for all v ∈ U(P ) and all n ∈ N.
This further implies that

(4.8) sup
s
�(m̃t(v)⊗ 1)(PF ⊗ 1)ζs,t� ≥

5

6
�p�2 − 2�ξn,t� − �ηn − (v ⊗ v̄)ηn�,

for all v ∈ U(P ) and all n ∈ N.
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Taking “Lim”, an arbitrary limit along a non-principal ultrafilter, above and applying
relation (1) we obtain

(4.9) sup
s
�(m̃t(v)⊗ 1)(PF ⊗ 1)ζs,t� ≥

5

6
�p�2 − 2 Lim

n
�ξn,t�,

for all v ∈ U(P ). This shows that the limit Limn �ξn,t� ≥ 5
12�p�2. Indeed, since P �� L

∞(X),
by Popa’s intertwining techniques there exists a sequence of unitaries vs ∈ U(P ) such that
for all x, y ∈ M we have �EL∞(X)(xvky)�2 → 0, as k → ∞. Applying inequality (4.9) for
each vk and taking the limit as k →∞ then Lemma 4.2 implies that the left side of (4.9) is 0

and we get the desired conclusion.

Following the same argument as in Theorem B of [28], we define a state ψt on
N = B(H ) ∩ ρ(Mop)�. Explicitly, ψt(x) = Limn

1
�ξn,t�2 �(x ⊗ 1)ξn,t, ξn,t� for every

x ∈ N . Next we prove the following technical result

L���� 4.4. – For every ε > 0 and every finite self-adjoint set K ⊂ L
∞(X) �σ,r Γ with

dist�·�2(y, (N)1) ≤ ε for all y ∈ K one can find tε > 0 and a finite set LK,ε ⊂ N M (P ) such
that

(4.10) |�((yx− xy)⊗ 1)ξn,t, ξn,t�| ≤ 10ε + 2

�

v∈LK,ε

�[v ⊗ v̄, ηn]�,

for all y ∈ K, �x�∞ ≤ 1, tε > t > 0, and n.

Proof. – Fix ε > 0 and y ∈ K. Since N = N M (P )�� by the Kaplansky density theorem
there exists a finite set Fy = {vi} ⊂ N M (P ) and scalars µi such that �

�
i µivi�∞ ≤ 1 and

(4.11) �y −
�

i

µivi�2 ≤ ε.

Also using Proposition 2.6 one can find a positive number tε > 0 such that, for all tε > t > 0,
we have

�(y − α−t(y)) · e�∞ ≤ ε;

�(JyJ − α−t(JyJ)) · e�∞ ≤ ε.
(4.12)

Next we will proceed in several steps to show inequality (4.10). First we fix tε > t > 0.
Then, using the triangle inequality in combination with �x�∞ ≤ 1, (4.12), and the M -bimod-
ularity of 1− e = e

⊥, we see that

|�(x⊗ 1)ξn,t, (y
∗ ⊗ 1)ξn,t� − �(xy ⊗ 1)ξn,t, ξn,t�|

≤ �(α−t(y
∗
)− y

∗
) · e�∞ + |�(x⊗ 1)ξn,tε , (e

⊥
Vty

∗
p⊗ 1)ηn� − �(xy ⊗ 1)ξn,t, ξn,t�|

≤ ε + |�(x⊗ 1)ξn,t, (e
⊥

Vty
∗
p⊗ 1)ηn� − �(xy ⊗ 1)ξn,t, ξn,t�|.
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Furthermore, the Cauchy-Schwarz inequality together with (3) and (4.11) enable us to see
that the last quantity above is smaller than

≤ ε + �((y∗p−
�

i

µ̄iv
∗
i )p⊗ 1)ηn�

+ |
�

i

µi�(x⊗ 1)ξn,t, (e
⊥

Vtv
∗
i p⊗ 1)ηn� − �(xy ⊗ 1)ξn,t, ξn,t�|

≤ 2ε + |
�

i

µi�(x⊗ v̄
∗
i )ξn,t, (e

⊥
Vtpv

∗
i ⊗ v̄

∗
i )ηn� − �(xy ⊗ 1)ξn,t, ξn,t�|.

To this end we notice that, since ηn is a positive vector and J is an isometry then for all
z ∈ M we have

(4.13) �ηn(z ⊗ 1)� = �J(z
∗ ⊗ 1)Jηn� = �(z∗ ⊗ 1)ηn� = �z∗�2 = �z�2.

Using this identity in combination with (4.11) and vi being a unitary, we see that the last
quantity above is smaller than

≤ 2ε +

�

i

�[v∗i ⊗ v̄
∗
i , ηn]�

+ |
�

i

µi�(x⊗ v̄
∗
i )ξn,t, (e

⊥
Vtp⊗ 1)(ηnv

∗
i ⊗ v̄

∗
i )� − �(xy ⊗ 1)ξn,t, ξn,t�|

≤ 2ε +

�

i

�[v∗i ⊗ v̄
∗
i , ηn]�

+ |�(x⊗ 1)ξn,t, (e
⊥

Vtp⊗ 1)(ηn(

�

i

µ̄iv
∗
i )⊗ 1)� − �(xy ⊗ 1)ξn,t, ξn,t�|

≤ 3ε +

�

i

�[v∗i ⊗ v̄
∗
i , ηn]�

+ |�(x⊗ 1)ξn,t, (e
⊥

Vtp⊗ 1)(ηn(y
∗ ⊗ 1))� − �(xy ⊗ 1)ξn,t, ξn,t�|.

(4.14)

Next we observe that using the second part of (4.12) and Vt being a unitary we have

�Vt ⊗ 1((p⊗ 1)ηn(y
∗ ⊗ 1))− (Vt ⊗ 1((p⊗ 1)ηn))(y

∗ ⊗ 1)�
= �(VtJyJ ⊗ 1)(p⊗ 1)ηn − (JyJVt ⊗ 1)(p⊗ 1)ηn�
≤ �(VtJyJ ⊗ 1)(p⊗ 1)ηn − (JyJVt ⊗ 1)(p⊗ 1)ηn�
≤ �((JyJ − α−t(JyJ))⊗ 1)(p⊗ 1)ηn�
≤ �(JyJ − α−t(JyJ)) · e�∞ ≤ ε.
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Therefore applying this estimate two times we see that the last expression in (4.14) is
smaller that

≤ 4ε +

�

i

�[v∗i ⊗ v̄
∗
i , ηn]�

+ |�(x⊗ 1)ξn,t, ((e
⊥

Vtp⊗ 1)ηn)(y
∗ ⊗ 1)� − �(xy ⊗ 1)ξn,t, ξn,t�|

= 4ε +

�

i

�[v∗i ⊗ v̄
∗
i , ηn]�

+ |�((x⊗ 1)ξn,t)(y ⊗ 1), (e
⊥

Vtp⊗ 1)ηn� − �(xy ⊗ 1)ξn,t, ξn,t�|

≤ 5ε +

�

i

�[vi ⊗ v̄i, ηn]�

+ |�(xe
⊥

Vtp⊗ 1)(ηn(y ⊗ 1)), (e
⊥

Vtp⊗ 1)ηn� − �(xy ⊗ 1)ξn,t, ξn,t�|.

Using (4.11), (4.13), vi being a unitary in combination with triangle inequality we see that
the last quantity above is smaller than

≤ 6ε +

�

i

�[vi ⊗ v̄i, ηn]�

+ |
�

i

µi�(xe
⊥

Vtp⊗ 1)(ηn(vi ⊗ v̄i)), (e
⊥

Vtp⊗ v̄i)ηn)� − �(xy ⊗ 1)ξn,t, ξn,t�|

≤ 6ε + 2

�

i

�[vi ⊗ v̄i, ηn]�

+ |
�

i

µi�(xe
⊥

Vtp⊗ 1)(vi ⊗ v̄i)ηn, (e
⊥

Vtp⊗ v̄i)ηn� − �(xy ⊗ 1)ξn,t, ξn,t�|

= 6ε + 2

�

i

�[vi ⊗ v̄i, ηn]�

+ �(xe
⊥

Vtp(

�

i

µivi)⊗ 1)ηn, (e
⊥

Vtp⊗ 1)ηn� − �(xy ⊗ 1)ξn,t, ξn,t�|.

Then (4.11) together with (3), the Cauchy-Schwarz inequality, and �x�∞ ≤ 1 show that
the last quantity above is smaller than

≤ 7ε + 2

�

i

�[vi ⊗ v̄i, ηn]�+ �(xe
⊥

Vtpy ⊗ 1)ηn, (e
⊥

Vtp⊗ 1)ηn� − �(xy ⊗ 1)ξn,t, ξn,t�

≤ 7ε + 2

�

i

�[vi ⊗ v̄i, ηn]�+ �((Vtpy − yVtp)⊗ 1)ηn�.

Finally, using (4.12) together with (3) and the initial assumption dist�·�2(y, (N)1) ≤ ε we
obtain that the last expression above is smaller than

≤ 7� + 2

�

i

�[vi ⊗ v̄i, ηn]�+ �((Vt(py − yp))⊗ 1)ηn�+ �((Vty − yVt)⊗ 1)(p⊗ 1)ηn)�

≤ 7ε + 2

�

i

�[vi ⊗ v̄i, ηn]�+ �((py − yp)⊗ 1)ηn�+ �(y − α−t(y)) · e�∞

≤ 8ε + 2

�

i

�[vi ⊗ v̄i, ηn]�+ �py − yp�2

≤ 10ε + 2

�

i

�[vi ⊗ v̄i, ηn]�.
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In conclusion, (4.10) follows from the previous inequalities by taking LK,ε = ∪y∈KFy.

L���� 4.5. – For every ε > 0 and any finite set F0 ⊂ U(N) there exist a finite set
F0 ⊂ F ⊂ M , a c.c.p. map ϕF,ε : span(F ) → L

∞(X) �σ,r Γ, and tε > 0 such that

(4.15) |ψtε(ϕF,ε(up)
∗
xϕF,ε(up))− ψtε(x)| ≤ 116ε,

for all u ∈ F0 and �x�∞ ≤ 1.

Proof. – Fix ε > 0. Set F = {up, u
∗
p} ∪ F0 ∪ F

∗
0 and E = span(F ). By local reflexivity,

we may choose a c.c.p. map ϕF,ε : E → L
∞(X) �σ,r Γ such that for all u ∈ F

(4.16) �ϕF,ε(up)− up�2 ≤ ε.

This shows in particular that dist�·�2(ϕF,ε(up), (N)1) ≤ ε for all u ∈ F . Therefore, applying
the previous lemma for K = {ϕF,ε(up) : u ∈ F} ⊂ L

∞(X) �σ,r Γ, there exist a tε > 0 and
a finite set K

� ⊂ N M (P ) such that, for all u ∈ F , all �x�∞ ≤ 1, and all n, we have
(4.17)
|�((ϕF,ε(up)

∗
xϕF,ε(up)−xϕF,ε(up)ϕF,ε(up)

∗
)⊗1)ξn,tε , ξn,tε�| ≤ 10ε+2

�

v∈K�

�[v⊗ v̄, ηn]�.

Also using Proposition 2.6, after shrinking tε if necessary, we can assume in addition that
for all u ∈ F we have

(4.18) �(ϕF,ε(up)− α−tε(ϕF,ε(up))) · e�∞ ≤ ε.

Hence, using triangle inequality together with (4.17) and the Cauchy-Schwarz inequality,
we have that

|�
�
ϕF,ε(up)

∗
xϕF,ε(up)⊗ 1

�
ξn,tε , ξn,tε� − �(x⊗ 1)ξn,tε , ξn,tε�|

≤ 10ε + 2

�

i

�[v ⊗ v̄, ηn]�+ |�(x(ϕF,ε(up)ϕF,ε(up)
∗ − 1)⊗ 1)ξn,tε , ξn,tε�

≤ 10ε + 2

�

v

�[v ⊗ v̄, ηn]�+ �x�∞�(ϕF,ε(up)ϕF,ε(up)
∗ − 1)⊗ 1)ξn,tε�

≤ 10ε + 2

�

v

�[v ⊗ v̄, ηn]�+ 2�(α−tε(ϕF,ε(up))− ϕF,ε(up)) · e�∞

+ �(Vtε(ϕF,ε(up)ϕF,ε(up)
∗ − 1)p⊗ 1)ηn�.

Furthermore, using (4.16) together with the Cauchy-Schwarz inequality, (3) and (4.18) we
see that the last quantity above is smaller than

≤ 12ε + 2

�

v

�[v ⊗ v̄, ηn]�+ �((ϕF,ε(up)ϕF,ε(up)
∗ − 1)p⊗ 1)ηn�

≤ 12ε + 2

�

v

�[v ⊗ v̄, ηn]�+ �ϕF,ε(up)ϕF,ε(up)
∗ − p�2

≤ 12ε + 2

�

v

�[v ⊗ v̄, ηn]�+ 2�ϕF,ε(up)− up�2

≤ 20ε + 2

�

v

�[v ⊗ v̄, ηn]�.
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Altogether, the above sequence of inequalities shows that

|�(ϕF,ε(up)
∗
xϕF,ε(up)⊗ 1)ξn,tε , ξn,tε� − �(x⊗ 1)ξn,tε , ξn,tε�| ≤ 20ε + 2

�

v∈K�

�[v ⊗ v̄, ηn]�,

and combining this with (2) and Lemma 4.3 we obtain

|ψtε(ϕF,ε(up)
∗
xϕF,ε(up))− ψtε(x)| ≤ Lim

n

Å
20ε + 2

�
v �[v ⊗ v̄, ηn]�

�ξn,tε�2

ã

≤ 20ε
�

5
12

�2 < 116ε,

which finishes the proof.

For the remaining part of the proof we mention that one can use Haagerup criterion to
show that Np is amenable. In fact the reasoning in Theorem B in [28] applies verbatim in our
case and we leave the details to the reader.

Proof of Theorem B. – Let Γ be an i.c.c. group which is weakly amenable and admits a
proper quasi-cocycle into the left-regular representation, and consider A ⊂ LΓ = M a
diffuse amenable subalgebra. By Theorem B in [25] it follows that A is weakly compact in LΓ.
Also, weak amenability implies that Γ is exact, cf. Theorem 12.4.4 in [4]. Hence, applying the
previous theorem for the case when X consists of a point, we obtain that either N M (A)�� is
amenable or A �M C. Since A is diffuse the second case is impossible and therefore LΓ is
strongly solid.

Proof of Corollary B.1. – In the case that Γ is hyperbolic, a result of Ozawa shows that Γ

is weakly amenable [23]. In the case that Γ is a lattice in Sp(n, 1), choose a co-compact lattice
Λ < Sp(n, 1). We have that Λ is Gromov hyperbolic; hence, by [15] Λ admits a proper quasi-
cocycle into the left-regular representation. A result of Shalom (Theorem 3.7 in [38]) shows
that Γ < Sp(n, 1) is integrable, thus �

1-measure equivalent to Λ. As explained in the proof of
Proposition 1.7, item (4), this implies that Γ also admits a proper quasi-cocycle into the left-
regular representation. The work of Cowling and Haagerup [7] shows that Sp(n, 1) is weakly
amenable, which implies, by an unpublished result of Haagerup, that any lattice in Sp(n, 1)

is also weakly amenable (cf. [25]). Therefore, the hypotheses of Theorem B are satisfied.

If Γ is an exact, weakly amenable group which admits a proper quasi-cocycle into a
weakly-�2 representation, then for any profinite, free, ergodic measure-preserving action
Γ � X on a standard probability space, M = L

∞(X)�Γ is a weakly amenable II1 factor. If
A ⊂ M is a Cartan subalgebra, then the normalizing algebra N M (A)�� is obviously non-
amenable and therefore, by Theorem 4.1, we must have that A �M L

∞(X). Hence, by
Appendix A of [31], there exists u ∈ U(M) such that uAu

∗ = L
∞(X). Next, if Λ � Y

is a free, ergodic measure-preserving action of a countable discrete group Λ on a standard
probability space Y such that θ : L

∞(Y ) � Λ → L
∞(X) � Γ is an isomorphism of von

Neumann algebras, then we may assume that θ(L∞(Y )) = L
∞(X). In particular, the actions

Γ � X and Λ � Y are orbit equivalent and by Theorem A of [12] it follows that Γ � X

and Λ � Y are virtually conjugate.
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Proof of Corollary B.2. – Let Γ � X and Λ � Y be two orbit equivalent actions.
Therefore one can find an isomorphism θ : M = L

∞(Y ) � Λ → L
∞(X) � Γ such that

θ(L∞(Y )) = L
∞(X). Let Σ < Λ be an infinite amenable subgroup and we assume by

contradiction that its normalizing group NΛ(Σ) is non-amenable. From the assumption it
follows that Λ is weakly amenable and therefore the action by conjugation of NΛ(Σ) on LΣ

is weakly compact and so is the action by conjugation of θ(NΛ(Σ)) on θ(LΣ) [25]. Since
NΛ(Σ) is non-amenable the previous theorem implies that θ(LΣ) �M L

∞(X) and since
θ(L∞(Y )) = L

∞(X) this is equivalent to LΣ � L
∞(Y ). This however is impossible. Indeed,

by intertwining techniques this implies that one can find finitely many elements xi, yi ∈ M

and C > 0 such that

(4.19)
�

i

�EL∞(Y )(xivyi)�22 ≥ C, for all v ∈ U(LΣ).

By shrinking c a little we can assume that for all i the elements xi and yi have finite
supports in Γ. Therefore the union F ⊂ Γ of all these supports is still a finite set and so is
F
−1

F
−1. Since Σ is infinite one can find γ ∈ Σ \ F

−1
F
−1. A simple computation shows

that all elements xiuγyi are supported on elements different than the identity and hence
EL∞(Y )(xivyi) = 0 which contradicts (4.19).

R���ʀ� 4.6. – Note that the same proof above shows that all i.c.c. groups in the orbit
equivalence class of an i.c.c. hyperbolic group give rise to strongly solid factors. This should
be compared with an observation of the second author and Peterson (Remark 6.4 in [30]) on
orbit-equivalence and strong solidity of group factors for weakly amenable groups with the
“L

2-Haagerup property”.

5. The proof of Theorem C and corollary

This last section in the main body of the paper contains the proof of Theorem C on
the uniqueness of decompositions of group von Neumann algebras of products of groups
in Q H reg into prime factors. Our proof is designed to circumvent a technical subtlety in the
proof of Theorem 6.1 in [29] on the norm estimates of fusion products of certain vectors
δ̃

i
α(xi

α)-specifically, whether these vectors are uniformly bounded from below, so that the
estimate “�ξα�2 ≥ c

m” is achieved. Essentially, we will be using Theorem 3.2 together with
the fact that there is a well-defined way to take a tensor product of arrays as explained in
Proposition 1.4.

Proof of Theorem C. – Notice that via a canonical isomorphism we can view
M = LΓ1⊗ · · ·⊗LΓn = LΓ where Γ = Γ1 × Γ2 × · · · × Γn. By assumption, for each
1 ≤ i ≤ n, there exists an array qi : Γi → H i into some weakly-�2 unitary representation
πi : Γi → U(H i). Consider the tensor product representation π : Γ → U(H ), where
H = H 1⊗ H 2⊗· · ·⊗ H n and π = π1⊗π2⊗· · ·⊗πn, and notice that since H i is weakly-�2

then H is weakly-�2 for Γ. Setting Γ̂i to be the kernel of the canonical projection from Γ

onto Γi, using Proposition 1.4 inductively, one can construct an array q : Γ → H which is
proper with respect to the family {Γ̂i : 1 ≤ i ≤ n}.
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Now, suppose that B ⊂ LΓ is a II1 subfactor whose relative commutant N = B
�∩LΓ is a

non-amenable factor. Therefore by Theorem 3.2 there exists 1 ≤ j ≤ n such that B �M LΓ̂j .
The result then follows by appealing to Proposition 12 of [26].

For the remaining corollary we fix the following notation. Given a subset F ⊂ {1, . . . , n},
we denote by Γ̂F the subgroup of Γ = Γ1×· · ·×Γn which consists of all elements with trivial
i-th coordinate, for all i ∈ F .

Proof of Corollary C . – Suppose that m ≤ n. Since Γ1 × · · · × Γn ∼ME Λ1 × · · · ×Λm,
there exists an isomorphism ψ : A � (Γ1 × · · · × Γn) → (B � (Λ1 × · · · × Λm))t such that
ψ(A) = B

t. For simplicity, we will assume that t = 1, and we denote Γ = Γ1 × · · · × Γn,
Λ = Λ1 × · · · × Λm, M = A � Γ, and N = B � Λ. Also, throughout the proof, for every
subset F ⊂ {1, . . . , n} and K ⊂ {1, . . . ,m}, we define M̂F = A � Γ̂F and N̂K = B � Λ̂K .

To begin, we prove that for every proper subset F ⊂ {1, . . . , n} there exists
K ⊂ {1, . . . ,m} such that |F | = |K| and

(5.1) φ(L(Γ̂F )) �N N̂K .

First, we notice that the same argument as in the proof of previous theorem shows that if
P ⊂ N is a diffuse subfactor such that there exists a non-amenable subfactor Q ⊂ P

� ∩N ,
then one can find 1 ≤ l ≤ m such that P �N N̂l. In particular, this shows our claim when
F consists of a single element. To get the general case we will proceed by induction on the
cardinality of F . To explain the inductive step, fix a proper subset F of {1, . . . , n} together
with an element k ∈ F . By assumption, there exists K

� ⊂ {1, . . . ,m} with |K �| = |F | − 1

such that

(5.2) φ(L(Γ̂F\{k})) �N N̂K� .

Therefore, since all Γi are i.c.c., one can find projections p1 ∈ φ(L(Γ̂F )), p2 ∈ φ(L(Γk)),
q ∈ N̂K� , and an injective homomorphism

θ : (p1 ⊗ p2)φ(L(Γ̂F\{k})) (p1 ⊗ p2) → qN̂K�q.

Next, we notice that θ(p1 ⊗ p2 φ(L(Γ̂F )) p1 ⊗ p2) and θ(p1 ⊗ p2 φ(L(Γk) p1 ⊗ p2) are non-
amenable, commuting subfactors of θ(p1 ⊗ p2) N̂K� θ(p1 ⊗ p2); thus, applying the same
argument as before, there exists an element j ∈ {1, . . . ,m} \ K

� such that

(5.3) θ(p1 ⊗ p2 φ(L(Γ̂F )) p1 ⊗ p2) �N̂K�
N̂K�∪{j}.

Finally, by Remark 3.8 in [41], relations (5.2) and (5.3) imply that φ(L(Γ̂F )) �N N̂K�∪{j},
which concludes the inductive step and the proof of (5.1).

Notice that (5.1) automatically implies that m = n. Indeed, if m ≥ n+1, then applying the
statement for any subset F ⊂ {1, . . . , n} with |F | = m−1, we get that φ(L(Γ̂F )) �N B �Λl

for some 1 ≤ l ≤ m which obviously contradicts Theorem 3.2. Also, (5.1) implies that for
every 1 ≤ i ≤ n there exists 1 ≤ π(i) ≤ n such that φ(L(Γi)) �N B � Λπ(i). Notice that
since φ(A) = B, for all 1 ≤ i ≤ n, we also have that

(5.4) φ(A � Γi) �N B � Λπ(i).
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Applying the same procedure for φ
−1, for every 1 ≤ i ≤ n, one can find 1 ≤ ρ(π(i)) ≤ n

such that φ
−1(B � Λπ(i)) �M A � Γρ(π(i)); equivalently,

(5.5) B � Λπ(i) �N φ(A � Γρ(π(i))),

for all 1 ≤ i ≤ n. Combining this with (5.4) and using that φ(A � Γi) is an irreducible
subfactor of N , we obtain φ(A � Γi) �N φ(A � Γρ(π(i))). In particular, this implies that
ρ(π(i)) = i, for all 1 ≤ i ≤ n; hence, π is permutation of {1, . . . , n}. Therefore, using (5.4)
and (5.5) together with Proposition 8.4 in [13], one can find unitaries ui ∈ U(N) such that

(5.6) uiφ(A � Γi)u
∗
i = B � Λπ(i).

This further gives that φui = Ad(ui)◦φ is an isomorphism from A�Γi onto B�Λπ(i) which
satisfies

φui(a)ui = uiφ(a),

for all a ∈ A.
Next, for N = B � (Λπ(i) × Λ̂π(i)), we consider the Fourier decomposition

u =
�

λ∈Λ̂π(i)
yλvλ with yλ ∈ B � Λπ(i) and, using the above equation, there exists a

nonzero element yλ ∈ B � Λπ(i) such that for all a ∈ A we have

(5.7) φui(a)yλ = yλδλ(φ(a)).

Note that since B = φ(A) is a maximal abelian subalgebra of N , (5.7) implies that y
∗
λyλ ∈ B.

Furthermore, taking the polar decomposition yλ = wλ|yλ| with wλ a partial isometry, we
conclude that

φui(a)wλ = wλδλ(φ(a)),

for all a ∈ A. This shows in particular φui(A) ≺B�Λπ(i)
φ(A), and since B = φ(A) and

φui(A) are Cartan subalgebras of B�Λπ(i), then by Theorem A2 in [31] there exists a unitary
u
�
i ∈ B � Λπ(i) such that

u
�
iψu(A)u

�
i
∗

= φ(A) = B.

Finally, letting xi = u
�
iui ∈ N N (B), by (5.6) the map Ad(xi)◦φ implements an isomorphism

between A � Γi and B � Λπ(i), identifying the Cartan subalgebras A and B; thus, Γi ∼ME

Λπ(i) for all 1 ≤ i ≤ n.

Appendix A

Amenable actions, exactness, and local reflexivity

D��ɪɴɪ�ɪ�ɴ A.1 (Anantharaman-Delaroche and Renault [2], cf. [11])
Let Γ be a countable discrete group and Γ � X be an action of Γ by homeomorphisms

on a compact topological space X. The action Γ � X is said to be amenable if there exists
a sequence (ξn) of continuous maps ξn : X → �

2(Γ) such that ξn ≥ 0, �ξn(x)�2 = 1, for all
x ∈ X, n ∈ N, and

(A.1) sup
x∈X

�λγ(ξn(x))− ξn(γx)�2 → 0,

for all γ ∈ Γ.

Pʀ����ɪ�ɪ�ɴ A.2 (Higson and Roe [11]). – A countable discrete group Γ has Guoliang
Yu’s property A [44] if and only if Γ acts amenably on its Stone Čech boundary β

�Γ = βΓ \ Γ.
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Property A is equivalent, cf. [36], to the nuclearity of C∗u(Γ) which is, in turn, equivalent to
the exactness of C∗λ(Γ) by a result of Ozawa [20].

D��ɪɴɪ�ɪ�ɴ A.3. – A C∗-algebra A is said to be locally reflexive if for every finite-
dimensional operator system E ⊂ A

∗∗, there exists a net (ϕi)i∈I of contractive completely
positive (c.c.p.) maps ϕi : E → A which converges to the identity in the pointwise-ultraweak
topology.

For the purposes of this paper, the crucial property implied by exactness is that C∗λ(Γ) is
a locally reflexive C∗-algebra, cf. [4], Chapter 9.

Appendix B

A proof of Proposition 1.11

The aim of this appendix is to provide an elementary proof that Γ = Z2�SL(2, Z) belongs
to the class Q H reg. Appealing to Theorem A then furnishes an alternate proof of the solidity
of LΓ, the main result of [24]. As in [24], our proof will make use of the amenability of the
natural action of SL(2, Z) on SL(2, R)/T ∼= RP

1, where T is the group of upper-triangular
2× 2 real matrices.

To begin, note that Γ0 = SL(2, Z) admits a proper cocycle b : Γ0 → �
2(Γ0) with

respect to the left-regular representation. By Proposition 1.5, we may replace b with a proper,
symmetric array b

� into the left-regular representation. Let π be the representation of Γ

on �
2(Γ0) obtained by pulling the left-regular representation of Γ0 back along the quotient

Γ � Γ/Z2 ∼= Γ0, so that π is weakly contained in the left-regular representation of Γ.
Let p : Z2 \ {(0, 0)} → RP

1 be the projection defined by p((x, y)) = x/y, and note that
p is equivariant with respect to the natural actions of SL(2, Z) on Z2 and RP

1.
Given a sequence of continuous maps ξn : RP

1 → �
2(Γ0) satisfying Definition A.1, define

the maps ξ
�
n : Z2 → �

2(Γ0) by
ξ
�
n(z) = ξn(p(z)),

for z = (z1, z2) ∈ Z2 \ {(0, 0)}, and ξ
�
n(z) = 0, otherwise. Note that for any a ∈ Z2 we have

(B.1) lim sup
z→∞

�ξ�n(z)− ξ
�
n(z + a)�2 = 0,

for all n ∈ N.
Now, consider finite, symmetric generating subsets S

� ⊂ Γ0 and S
�� ⊂ Z2. Define

S1 = S
� ∪ S

�� and Sk+1 = Sk ∪ (S1)
k+1 for all k ∈ N. By Equations A.1 and B.1, there

exist an increasing sequence of finite, symmetric subsets F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ · · · ⊂ Z2

such that
�∞

k=1 Fk = Z2 and a subsequence (nk) such that

(B.2) sup
s∈Sk

sup
g∈Z2\Fk

�πs(ξ
�
nk

(g))− ξ
�
nk

(s · g)�2 ≤
1

2k
,

where s · g is the natural Γ-action on Z2. Define a map ∂ : Z2 → �
2(N; �2(Γ0)) = H

by ∂(z)(k) = ξ
�
nk

(z), if z �∈ Fk, and 0, otherwise. It is then straightforward to check that
∂ is proper, symmetric, and boundedly Γ-equivariant. For (z, γ) ∈ Z2 � SL(2, Z) we define
the map q((z, γ)) = b

�(γ)⊕∂(z) ∈ �
2(Γ0)⊕ H . It is easy to see that q is a proper, symmetric
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array into the weakly-�2 representation π ⊕ π
⊕∞. Thus, Z2 � SL(2, Z) ∈ Q H reg and we are

done.

Q����ɪ�ɴ B.1. – Does Z2 � SL(2, Z) admit a proper, anti-symmetric array into a
weakly-�2 representation?
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