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TROESCH COMPLEXES AND EXTENSIONS
OF STRICT POLYNOMIAL FUNCTORS

ʙʏ Aɴ��ɪɴ� TOUZÉ

Aʙ��ʀ���. – We develop a new approach of extension calculus in the category of strict polynomial
functors, based on Troesch complexes. We obtain new short elementary proofs of numerous classical
Ext-computations as well as new results.

In particular, we get a cohomological version of the “fundamental theorems” from classical
invariant theory for GLn for n big enough (and we give a conjecture for smaller values of n).

We also study the “twisting spectral sequence” Es,t
(F, G, r) converging to the extension groups

Ext
∗
Pk(F

(r), G(r)
) between the twisted functors F (r) and G(r). Many classical Ext computations

simply amount to the collapsing of this spectral sequence at the second page (for lacunary reasons),
and it is also a convenient tool to study the effect of the Frobenius twist on Ext groups. We prove many
cases of collapsing, and we conjecture collapsing is a general fact.

R�����. – Nous développons une nouvelle approche des calculs d’Ext dans la catégorie des
foncteurs strictement polynomiaux, en nous basant sur les complexes de Troesch. Nous obtenons ainsi
des démonstrations élémentaires de nombreux calculs classiques et de nouveaux résultats.

En particulier, nous obtenons une version cohomologique des théorèmes fondamentaux de la théo-
rie classique des invariants de GLn pour n suffisamment grand (et nous donnons une conjecture pour
les plus petites valeurs de n).

Nous étudions également une suite spectrale de torsion de Frobenius Es,t
(F, G, r) qui converge vers

les groupes d’extensions Ext
∗
Pk(F

(r), G(r)
) entre foncteurs précomposés par le twist de Frobenius. De

nombreux calculs classiques équivalent à l’effondrement de cette suite spectrale à la seconde page (par
lacunarité), et elle constitue également un outil pratique pour étudier l’effet de la torsion de Frobenius
sur les groupes d’extensions. Nous démontrons de nombreux cas d’effondrement, et nous conjecturons
que l’effondrement a toujours lieu.

The author was partially supported by the ANR HGRT (Projet BLAN08-2 338236): “Nouveaux liens entre la
théorie de l’homotopie et la théorie des groupes et des représentations”.
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54 A. TOUZÉ

1. Introduction

Let k be a field of prime characteristic p. In [11], Friedlander and Suslin introduced the
category Pk of strict polynomial functors (of finite type) over k. Let V k be the category of
finite dimensional k-vector spaces. Roughly speaking, objects of Pk are functors F : V k → V k
with some additional polynomial structure, so that the following property holds. If G is an
algebraic group (or group scheme) over k acting rationally on V , then functoriality defines a
rational action of G on F (V ). Such functors occur very frequently in representation theory.
Typical examples are symmetric powers S

d, tensor powers⊗d, exterior powers Λ
d or divided

powers Γ
d.

The category Pk is particularly suited to study the representation theory of GLn. Indeed,
evaluation on the standard representation k

n of GLn induces a map:

Ext
∗
Pk(F,G) → Ext

∗
GLn

(F (k
n
), G(k

n
)) ,

which is an isomorphism as soon as n ≥ max{deg F,deg G} [11, Cor 3.13]. Thus, one can
use the powerful computational tools available in Pk to compute the “stable” (that is, when
n is big enough) extension groups between rational GLn-modules.

A successful application of strict polynomial functors is the computation of extension
groups between representations involving “Frobenius twists”. If V is a rational represen-
tation of GLn, we denote by V

(r) the rational representation of GLn obtained by twisting
along the r-th power of the Frobenius morphism. The functor I

(r)
: V �→ V

(r) is actually
a strict polynomial functor. It has a crucial role in many problems, for example in cohomo-
logical finite generation problems [11, 13, 17]. Twisted representations are also related [5] to
the cohomology of the finite groups GLn(Fq). For these reasons, extension groups between
twisted functors (that is, extension groups of the form Ext

∗
Pk(F ◦I

(r)
, G◦I(r)

)) have received
much attention, and many successful computations have been performed [3, 4, 8, 11]. In par-
ticular, Chałupnik has proved in [3, Thm 4.3] that Ext-groups of the form Ext

∗
Pk(Γ

µ ◦ I
(r),

F ◦ I
(r)

) (where Γ
µ denotes a tensor product of divided powers) can be easily computed via

an isomorphism:

Ext
∗
Pk(Γ

µ ◦ I
(r)

, F ◦ I
(r)

) � Hom Pk(Γ
µ ◦ (Er ⊗ I), F ) (∗)

where Er is the graded vector space Ext
∗
Pk(I

(r)
, I

(r)
), and Er⊗I denotes the graded functor

V �→ Er ⊗ V .

In this article, we give a new approach of Ext-computations between twisted functors.
This approach does not depend on the earlier computations of [3, 4, 8, 11]. As main tool,
we use the explicit injective coresolutions of twisted symmetric powers built by Troesch in
[18]. These coresolutions generalize to all prime characteristic what was previously known
in characteristic p = 2 only [9, 11]. At first sight these coresolutions are quite big and
complicated (especially in odd characteristic), and one could fear that they are useless for
concrete computations. But this is not the case: we show that only a very little part of the
information contained in these coresolutions is needed for computations. In particular, we
do not need the information borne by the differential (see Lemma 4.4)! We exploit the latter
fact to get the first main result of the article, namely:
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TROESCH COMPLEXES 55

– we get a new and simpler proof of Chałupnik’s isomorphism (∗), and we derive from
this isomorphism new short proofs of many Ext-computations.

Then we try to go further in the study of extension groups between twisted functors. With
the help of Troesch complexes, we obtain new results in two independent directions.

– First, we apply isomorphism (∗) to compute rational cohomology algebras of GLn. To
do this, we need to improve Friedlander and Suslin’s bound on n so that Ext

∗
Pk(Γ

µ ◦
I
(r)

, F ◦ I
(r)

) computes GLn extensions. As an application, we give explicit generators
and relations for the cohomology algebra H

∗
(GLn, A), where A is an algebra of

polynomials over a direct sum of copies of the twisted standard representation (k
n
)
(r)

and its dual (for n big enough) in the spirit of classical invariant theory. We give a
conjecture for smaller n.

– We introduce in Section 7 the “twisting spectral sequence” which generalizes isomor-
phism (∗). We show that this spectral sequence contains interesting information about
extensions between twisted functors. As main new result, we prove in Section 8 that in
many cases this spectral sequence collapses at the second page, and we conjecture that
this is a general fact. A positive answer to this conjecture would improve significantly
our understanding of the homological effects of Frobenius twists.

Let us review more specifically the content of the paper. Sections 2 and 3 are mainly expos-
itory. They collect well-know facts about Pk and describe the properties of Troesch coreso-
lutions which we need for our computations (in Propositions 3.4 and 3.7). For our compu-
tations, we do not need an explicit description of the differentials of Troesch coresolutions.
However, for the reader’s convenience, we have recalled their construction in an appendix.

In Section 4, we present our elementary proof of Chałupnik’s isomorphism (∗). As corol-
laries, we retrieve many computations from [3, 8, 11]. Beside brevity, our proofs have the
advantage to avoid the use of many technical tools (e.g. functors with several variables, gen-
eralized Koszul complexes, trigraded Hopf algebra structures on hypercohomology spectral
sequences, symmetrizations of functors) which seemed essential in [8, 11], and also in [3] since
this latter article elaborates on the results of [8].

In Section 5, we enrich the computation of Ext
∗
Pk(Γ

µ ◦ I
(r)

, F ◦ I
(r)

) by describing cup
products as well as the twisting map:

Fr1 : Ext
∗
Pk(Γ

µ ◦ I
(r)

, F ◦ I
(r)

) → Ext
∗
Pk(Γ

µ ◦ I
(r+1)

, F ◦ I
(r+1)

)

induced by precomposition by I
(1). Although the result might not surprise experts, it is nei-

ther stated, nor proved in the literature. We use it to generalize some Hopf algebra compu-
tations of [8].

In Section 6, we try to apply our Ext-computations in Pk to compute some rational coho-
mology algebras for GLn. When doing so, we encounter the problem that Friedlander and
Suslin’s bound on n such that Ext

∗
Pk(F ◦ I

(r)
, G ◦ I

(r)
) computes GLn extensions is not

sufficient. Fortunately, with the help of Troesch complexes, we prove that this bound can
be substantially improved for extensions of the form Ext

∗
Pk(Γ

µ ◦ I
(r)

, F ◦ I
(r)

). Combin-
ing this with the previous computations of Section 5 we prove a cohomological analogue
of the “Fundamental Theorems” from classical invariant theory. Namely, we describe the
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56 A. TOUZÉ

cohomology algebra H
∗
(GLn, S

∗
((k

n (r)
)
⊕k ⊕ (k

n (r)
)
∨⊕�

). Actually our result is valid for
n ≥ p

r
min{k, �}. For n smaller, we state a conjecture.

We introduce the “twisting spectral sequence” E
s,t

(F,G, r) in Section 7. The second page
of this spectral sequence is given by extension groups between F and G precomposed by
the functor V �→ Er ⊗ V , and it converges to the extension groups Ext

∗
Pk(F ◦ I

(r)
, G ◦ I

(r)
).

Although the construction of the twisting spectral sequence is a formal consequence of
Chałupnik’s isomorphism, it is an interesting tool to study extensions between twisted func-
tors. Indeed, the effect of cup products and the effect of the twisting map Fr1 may be easily
read on the second page, so the twisting spectral sequence is a convenient way to study them.
For example, we can read the “twist stability” phenomenon [8, Cor 4.10] on the second page,
and the injectivity of the twisting map Fr1 is implied by the collapsing at the second page.
Also, many classical computations amount to the collapsing (for lacunary reasons) of the
twisting spectral sequence at the second page.

In fact, we observe that the twisting spectral sequence collapses at the second page in
all the computations known so far, even when there is no lacunary reason for it, and we
conjecture this is a general fact. As a main result, we make a step towards this conjecture,
by proving in Section 8 that E(F,G, r) collapses at the second page for all r ≥ 0 and many
pairs (F,G), including all pairs (F,G) studied in [3, 4, 8, 11]. We also propose to the reader
a combinatorial problem whose positive solution would prove the collapsing for any F,G.

2. Background and notations

In the article, we assume from the reader only a basic knowledge of the category Pk, cor-
responding to Section 2 of the seminal article [11]. We do not assume that any Ext-compu-
tation is known (we redo all the computations from scratch). In this background section, we
introduce notations (most of them are standard), and we write down a few useful facts which
are either implicit in, or easy consequences of [11, Section 2].

2.1. Notations

Throughout the article, k is a field of prime characteristic p. If V is a k-vector space, we
let V

∨
:= Homk(V, k). Many notations are as in [11]. In particular F

�
(V ) := F (V

∨
)
∨

denotes the dual of a functor F (as in [11, Prop. 2.6]) and F
(r) denotes the composite

F ◦ I
(r). For the sake of simplicity, we drop the index “ Pk” on Hom and Ext-groups when

no confusion is possible (i.e., Ext
∗
(F,G) means Ext

∗
Pk(F,G)).

We denote tuples of nonnegative integers by Greek letters λ, µ, ν. Let µ = (µ1, . . . , µn)

be a tuple. The weight of µ is the integer
�

µi. If m is an integer, we denote by mµ the tuple
(mµ1, . . . ,mµn). We say that a positive integer d divides µ if for all 1 ≤ j ≤ n, d divides µj .
If X is one of the symbols S, Λ,Γ, we denote by X

µ the tensor product X
µ1 ⊗ · · · ⊗ X

µn

(since X
0

= k, this tensor product has a meaning even if some µi are zero).
We denote by I the identity functor (I = Λ

1
= Γ

1
= S

1), and if W is a finite dimensional
vector space we denote by F (W ⊗ I) the precomposition of F by the functor V �→ W ⊗ V .

Finally, we denote by xr the finite dimensional graded vector space which equals k in
degrees i for 0 ≤ i < p

r and which is zero in the other degrees (we use the Cyrillic letter
“sha” by analogy with a Dirac comb). We also denote by Er the even degree version of xr,

4 e SÉRIE – TOME 45 – 2012 – No 1



TROESCH COMPLEXES 57

that is, Er is the graded vector space which equals k in degrees 2i, for 0 ≤ i < p
r and

which is zero in the other degrees. We shall prove below in Corollary 4.8 that Er is isomorphic
to Ext

∗
(I

(r)
, I

(r)
), a result originally proved by Friedlander and Suslin and which inspires

our notation.

2.2. The exponential formula

Let X denote one of the symbols S,Λ,Γ. For all V,W , there is an isomorphism (natural
in V,W , and associative in the obvious sense)

X
∗
(V )⊗X

∗
(W ) � X

∗
(V ⊕W ) .

According to [8], we call this isomorphism the “exponential formula”. As a consequence of
the exponential formula, X

d
(
�n

i=1 Vi) is isomorphic to
�

µ

�n
i=1 X

µi(Vi) where the sum is
taken over the n-tuples µ = (µ1, . . . , µn) of nonnegative integers of weight d.

2.3. Maps between tensor products

Let d be a positive integer and let kSd be the group algebra of the symmetric group. We
define a k-linear map

kSd → Hom(⊗d
,⊗d

) (∗)
by sending a permutation τ ∈ Sn onto the natural transformation (still denoted τ ) which
maps v1 ⊗ · · ·⊗ vd to vτ−1(1) ⊗ · · ·⊗ vτ−1(d).

L���� 2.1. – The map (∗) is an isomorphism.

Proof. – Let (b1, . . . , bd) be a basis of k
d. For all τ ∈ Sd, the natural transformation

τ ∈ Hom(⊗d
,⊗d

) sends b1 ⊗ · · ·⊗ bd ∈ (k
d
)
⊗d onto bτ = bτ−1(1) ⊗ · · ·⊗ bτ−1(d) ∈ (k

d
)
⊗d.

Since the family (bτ )τ∈Sd is free, one gets that (∗) is injective. The subspace of weight
(1, . . . , 1) of the GLd-representation (k

d
)
⊗d has basis (bτ )τ∈Sd . By [11, Cor 2.12], this sub-

space is isomorphic to Hom(⊗d
,⊗d

). So for dimension reason, (∗) is an isomorphism.

2.4. Precomposition by Frobenius twists

Let F,G be two strict polynomial functors. Precomposing extensions by I
(r) yields a

graded k-linear map (natural in F ,G):

Frr : Ext
∗
(F,G) → Ext

∗
(F

(r)
, G

(r)
) .

The following lemma asserts that this twisting map is an isomorphism in degree zero (further
properties of this map are proved in Sections 5 and 7).

L���� 2.2. – Let r be a nonnegative integer. For all tuple µ of nonnegative integers and
all F ∈ Pk, precomposition by I

(r) and the inclusion S
µ (r)

�→ S
prµ induce isomorphisms:

Hom(F, S
µ
)
�−→ Hom(F

(r)
, S

µ (r)
) ,

Hom(F
(r)

, S
µ (r)

)
�−→ Hom(F

(r)
, S

prµ
) .

As a result, for all F , G, precomposition by I
(r) yields an isomorphism:

Hom(F,G)
�−→ Hom(F

(r)
, G

(r)
) .
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58 A. TOUZÉ

Proof. – The S
µ form a (injective) cogenerator in Pk, so the last isomorphism of

Lemma 2.2 follows from the first one by taking coresolutions.
It remains to prove the first two isomorphisms. We prove them simultaneously. First,

the map Hom(F, S
µ
) → Hom(F

(r)
, S

µ (r)
), f �→ f

(r) is injective. Indeed, if f
(r)

= 0

then using the isomorphism V � V
(r) (not natural in V , but which holds for dimension

reasons) one gets that f = 0. The second map is induced by the injection S
µ (r)

�→ S
prµ,

so it is also injective (by left exactness of Hom(F,−)). Now, to prove the isomorphisms,
it suffices to prove that Hom(F, S

µ
) and Hom(F

(r)
, S

prµ
) have the same dimension, or

equivalently that Hom(Γ
µ
, F

�
) and Hom(Γ

prµ
, F

� (r)
) have the same dimension. But we

know their dimensions are equal by [11, Cor 2.12].

As a consequence of Lemma 2.2, one gets an elementary vanishing lemma:

L���� 2.3. – Let r be a positive integer and let µ be a tuple of nonnegative integers. If p
r

does not divide µ, then Hom(F
(r)

, S
µ
) = 0.

Proof. – By duality [11, Prop. 2.6] and the Yoneda lemma [11, Th. 2.10], the two vector
spaces Hom(F, S

d
(k

n ⊗ I)) and Hom(F
(r)

, S
prd

(k
n ⊗ I)) have the same dimension (which

equals the dimension of F
�
(k

n
)). Decomposing these vector spaces by the exponential

formula and using the second isomorphism of Lemma 2.2, we get the cancellation for the
n-tuples µ of weight d which are not divisible by p

r.

2.5. Values of strict polynomial functors on graded vector spaces

Let V k (resp. V ∗k) denotes the category of (resp. graded) finite dimensional k-vector spaces
and k-linear maps (resp. which preserve the grading). Strict polynomial functors are functors
F : V k → V k with a “strict polynomial structure”. This strict polynomial structure can be
used to extend F into a functor F : V ∗k → V ∗k, as follows.

Let V
∗ ∈ V ∗k, and let V ∈ V k be the ungraded vector space obtained by forgetting the

grading. We define F (V
∗
) by:

(i) As a vector space, F (V
∗
) equals F (V ).

(ii) Let the multiplicative group Gm act on each V
i with weight i. The strict polynomial

structure of F endows F (V ) with a rational action of Gm. Thus F (V ) has a weight
space decomposition F (V ) =

�
i≥0 F (V )

i. The grading on F (V ) is defined by putting
F (V )

i in degree i.

The following lemma is a trivial verification.

L���� 2.4. – Let V
∗ ∈ V ∗k. Then evaluation on V

∗ yields an exact functor evV ∗ : Pk →
V ∗k which commutes with tensor products: evV ∗(F ⊗G) = evV ∗(F )⊗ evV ∗(G). Moreover, a
graded map V

∗ → W
∗ induces a natural transformation evV ∗ → evW∗ .

R���ʀ� 2.5. – Alternatively, the grading on F (V ) may be described in the following
way. Let (vi)1≤i≤n be a homogeneous basis of V

∗, and let T
n � G

×n
m be the correspond-

ing subtorus of GL(V ). The GL(V ) representation F (V ) decomposes as a direct sum
of T

n-weight spaces: F (V ) =
�

F (V )
(d1,...,dn). The grading on F (V ) is obtained by plac-

ing the summand F (V )
(d1,...,dn) in degree

�
di deg(vi) (to see it coincides with the former

definition of F (V
∗
), use the morphism Gm → G

×n
m , x �→ (x

deg(vi))1≤i≤n).
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TROESCH COMPLEXES 59

E����ʟ� 2.6. – For symmetric, exterior, divided or tensor powers, the notion of degree
is nothing but the usual one. For example, let V

∗
= ke1 ⊕ ke2, with ei in degree i, and

let F = Λ
2 ⊗ S

3. Then e1 ∧ e2 ⊗ e1e1e2 is an element of degree 1 + 2 + 1 + 1 + 2 = 7

of F (V
∗
).

E����ʟ� 2.7. – Let V
∗ be a graded vector space and let r be a nonnegative integer. Then

(V
∗
)
(r) is a graded vector space with (V

i
)
(r) in degree ip

r.

Let F ∈ Pk. If V
∗ is a graded vector space and W is a vector space (concentrated in

degree 0), then the degree defined above splits the strict polynomial functor F (V
∗ ⊗ I) :

W �→ F (V
∗⊗W ) into a direct sum where each summand takes values of homogeneous given

degree. Thus we may consider F (V
∗ ⊗ I) as an element of the category P∗k, whose objects

are strict polynomial functors equipped with a grading, and whose maps are natural trans-
formations which respect the grading. From this viewpoint, Lemma 2.4 may be reformulated
in the following way.

L���� 2.8. – Evaluation on V
∗ ⊗ I yields an exact functor:

evV ∗⊗I : Pk → P∗k

which commutes with tensor products. Moreover, a graded map V
∗ → W

∗ induces a natural
transformation evV ∗⊗I → evW∗⊗I .

The following example is one of the basic examples of graded functors that we shall use
in the paper.

E����ʟ� 2.9. – Let r, d be nonnegative integers. Recall that xr denotes the graded
k-vector space which is one dimensional in degrees i for 0 ≤ i < p

r and zero dimensional in
the other degrees. Then by the exponential formula we have S

d
(xr ⊗ I) �

�
S

µ where the
sum is taken over all the p

r-tuples µ = (µ0, . . . , µpr−1) of nonnegative integers of weight d.
With this latter description, the summand S

µ has degree
�

iµi.

Finally we give a graded version of the Yoneda lemma [11, Th. 2.10].

L���� 2.10 (The Yoneda lemma). – Let V
∗ be a graded finite dimensional vector space,

and let d be a nonnegative integer. Then for all F ∈ Pk,d one has graded isomorphisms (natural
in F, V

∗):

Hom(Γ
d
((V

∗
)
∨ ⊗ I), F ) � F (V

∗
) ,

Hom(F, S
d
(V

∗ ⊗ I)) � F
�
(V

∗
) .

Proof. – The second isomorphism is obtained from the first by duality, since
Hom(F, S

d
(V

∗ ⊗ I)) is naturally isomorphic to Hom(Γ
d
((V

∗
)
∨ ⊗ I), F

�
) by [11, Prop. 2.6].

The first isomorphism is given by [11, Th. 2.10]. We have to prove that it respects the
gradings. But this follows from [11, Cor 2.12] and Remark 2.5.
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60 A. TOUZÉ

3. Troesch coresolutions

The main results of this section are Propositions 3.4 and 3.7. These two propositions are
blackboxes which we use as a key ingredient for almost all the theorems of the article. They
give the properties of the Troesch coresolutions Bµ(r)

∗. These coresolutions are injective
coresolutions of twisted injectives of Pk and they are derived from Troesch’s main theorem in
[18]. Since Troesch coresolutions are in fact p-coresolutions, we first recall some elementary
facts about p-complexes.

3.1. Recollections of p-complexes

A p-complex in Pk is a graded functor C
∗

=
�

i≥0 C
i together with maps d : C

i → C
i+1

such that d
p

= 0. For all 1 ≤ s < p, we can “contract” a p-complex C
∗ into an ordinary

complex (C[s])
∗ by taking alternatively d

s and d
p−s as differentials:

(C[s])
∗

= C
0 ds

−→ C
s dp−s

−−−→ C
p ds

−→ C
p+s → . . . .

A p-complex C
∗ is said to be a “p-coresolution of F” if the following holds. For all

1 ≤ s < p, the map
d

s
: C

0 → C
s

has kernel F , and for all 1 ≤ s < p and all i > 0 the complex

C
i−p+s dp−s

−−−→ C
i ds

−→ C
i+s

is exact in C
i (in the complex above, take C

j
= 0 if j < 0). In particular, if C

∗ is a
p-coresolution of F , then for all 0 ≤ s < p the contraction (C[s])

∗ is a coresolution of F .
Finally, a p-complex is acyclic if it is a p-coresolution of 0.

3.2. Troesch’s result

Recall from Section 2 that xr is the graded vector space which equals k in degrees i,
for 0 ≤ i < p

r, and that V �→ S
d
(xr ⊗ V ) is considered as a graded strict polynomial

functor, as described in Example 2.9. The following theorem is due to Troesch. It generalizes
to all prime characteristic some coresolutions which were previously known in characteristic
p = 2 only [9, 11]. In the statement of the theorem, we do not give an explicit expression for
the differential δ. This expression is actually quite complicated but our arguments do not use
the explicit description of δ. For our proofs, we only need to know that δ exists(1).

Tʜ��ʀ�� 3.1 ([18, Thm 2, Thm 4.3.2]). – Let r be a positive integer and let n be a non-
negative integer. Let Bd(r)

∗ denote the graded functor S
d
(xr ⊗ I). Then Bd(r)

∗ is equipped
with a p-differential δ such that

(i) δ raises the cohomological degree by p
r−1.

(ii) If d = p
r
n then (Bd(r)

∗
, δ) is a p-coresolution of S

n (r). If p
r does not divide d, then

(Bd(r)
∗
, δ) is p-acyclic.

(1) The only exception to this is Lemma 5.2 (for which we mention two other proofs which do not rely on Troesch
complexes). Everywhere else in the paper, we only use the information on δ given by Theorem 3.1. For the interested
reader, we recall Troesch’s construction of Bd(r)

∗ in Appendix 9.
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TROESCH COMPLEXES 61

R���ʀ� 3.2. – Since the p-differential δ raises the cohomological degree by p
r−1,

Bd(r)
∗ is the direct sum of the p-complexes Bd,i(r)

∗ (0 ≤ i < p
r−1):

Bd,i(r)
∗

:= Bd(r)
i δ−→ Bd(r)

i+pr−1 δ−→ Bd(r)
i+2pr−1 δ−→ · · · .

The meaning of Bprn(r)
∗ being a p-coresolution of S

n (r) is that Bprn,0(r)
∗ is a p-coresolu-

tion of S
n (r), and the other Bprn,i(r)

∗ are acyclic.

3.3. Ready for use injective coresolutions

For our computations we need to elaborate a bit on Theorem 3.1. For all positive integer n

and all k-vector spaces (Vi)1≤i≤n, the exponential formula yields an isomorphism of graded
objects:

(∗) Bd(r)
∗
(V1 ⊕ · · ·⊕ Vn) �

�

µi≥0 ,
�

µi=d

Bµ1(r)
∗
(V1)⊗ · · ·⊗Bµn(r)

∗
(Vn)

By Theorem 3.1, the graded object Bd(r)
∗
(
�n

i=1 Vi) is equipped with a p-differential δ.
We want to transport δ on the right hand side of isomorphism (∗). For all n-tuple µ of
nonnegative integers of weight d, we may consider

�n
i=1 Bµi(r)

∗
(Vi) as a direct summand

of Bd(r)
∗
(
�n

i=1 Vi).

L���� 3.3. – The p-differential δ restricts to
�n

i=1 Bµi(r)
∗
(Vi).

Proof. – Consider
�n

i=1 Vi as a representation of the n-dimensional torus G
×n
m of

weight (1, . . . , 1). By functoriality, Bd(r)
∗
(
�n

i=1 Vi) is a representation of G
×n
m and�n

i=1 B
∗
µi

(r)(Vi) is the vector space associated to the weight (µ1, . . . , µn). Now δ is G
×n
m

equivariant, hence
�n

i=1 Bµi(r)
∗
(Vi) is δ-stable.

By Lemma 3.3, we can view the p-complex (Bd(r)
∗
(V

⊕n
), δ) as the direct sum of the

p-complexes (
�n

i=1 Bµi(r)
∗
(V ), δ). These latter p-complexes serve as a basis for the compu-

tations in this article. The remainder of the section is devoted to the study of their properties.

Pʀ����ɪ�ɪ�ɴ 3.4 (Blackbox 1). – Let r be a positive integer and let µ = (µ1, . . . , µn) be
a n-tuple of nonnegative integers of weight d. Denote by Bµ(r)

∗ the graded strict polynomial
functor

Bµ(r)
∗

:= Bµ1(r)
∗ ⊗ · · ·⊗Bµn(r)

∗
= S

µ
(xr ⊗ I) .

Then Bµ(r)
∗ is equipped with a p-differential δ such that:

(i) δ raises the cohomological degree by p
r−1.

(ii) If µ = p
r
ν, then (Bµ(r)

∗
, δ) is a p-coresolution of S

ν (r). If p
r does not divide µ, then

(Bµ(r)
∗
, δ) is p-acyclic.

Proof. – Take for δ the restriction of the p-differential δ of Lemma 3.3 to Bµ(r)
∗. Then

(i) is satisfied. Moreover Bµ(r)
∗ equals S

µ in degree 0, so if p
r divides µ we have an injective

map: S
µ/pr (r)

�→ Bµ(r)
0. Now for all finite dimensional k-vector space V , Troesch complex

Bd(r)
∗
(V

⊕n
) is isomorphic to the direct sum of complexes

�
µ Bµ(r)

∗
(V ). The inclusion

S
d/pr (r)

(V
⊕n

) �→ Bd(r)
0
(V

⊕n
) = S

d
(V

⊕n
) identifies through this isomorphism with the

direct sum of the maps S
µ/pr (r)

(V ) �→ Bµ(r)
0
(V ) = S

µ
(V ) (with the convention that

S
µ/pr (r)

(V ) = 0 if p
r does not divide µ). Thus (ii) results from Theorem 3.1.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



62 A. TOUZÉ

E����ʟ� 3.5. – To make things more concrete, we draw two small examples of Bµ(r)
∗.

First, if p = 2, r = 1, and µ = (3), then B(3)(1)
∗ is the 2-complex:

S
6 δ−→ S

5 ⊗ S
1 δ−→ S

4 ⊗ S
2 δ−→ S

3 ⊗ S
3 δ−→ S

2 ⊗ S
4 δ−→ S

1 ⊗ S
5 δ−→ S

6
.

Now if p = 3, r = 1 and µ = (1), then B(1)(1)
∗ is the 3-complex:

S
3 δ−→ S

2 ⊗ S
1 δ−→

S
2 ⊗ S

1

⊕
S

1 ⊗ S
2

δ−→
S

3

⊕
⊗3

δ−→
S

2 ⊗ S
1

⊕
S

1 ⊗ S
2

δ−→ S
1 ⊗ S

2 δ−→ S
3
.

In these examples, we do not give an explicit formula for the differential δ, but as we already
said at the beginning of the section, we do not need such a formula for our proofs.

R���ʀ� 3.6. – To define a p-differential on Bµ(r)
∗, we have chosen to transport the

differential δ of Bd(r)
∗
(V

⊕d
) onto the graded object Bµ(r)

∗
(V ) via isomorphism (∗). We

could have made another choice, namely we could have taken Bµ(r)
∗ as the tensor product

of the p-complexes Bµi(r)
∗. A priori, there is no reason why these two definitions should

coincide. And indeed, one can check from the explicit expression of δ given in [18, Section 4.2]
that for r ≥ 2, these two constructions are not equivalent, that is, these two constructions
induce distinct p-differentials on Bµ(r)

∗ (cf. Remark 5.7 for some problems linked with this
fact).

Let µ, ν be two tuples of weight d and let f ∈ Hom(S
µ
, S

ν
). By evaluating f on xr⊗I, one

obtains a graded natural transformation between the graded functors Bµ(r)
∗

= S
µ
(xr⊗ I)

and Bν(r)
∗

= S
ν
(xr ⊗ I). The following statement is specific to our definition of δ.

Pʀ����ɪ�ɪ�ɴ 3.7 (Blackbox 2). – Let r be a positive integer, let µ, ν be two tuples of
nonnegative integers of weight d and let g ∈ Hom(S

µ
, S

ν
). The morphism of graded functors

g(xr ⊗ I) : Bµ(r)
∗ → Bν(r)

∗

commutes with the p-differential δ of Proposition 3.4. In particular, if f ∈ Hom(S
µ
, S

ν
) fits

into a commutative diagram:

S
prµ

�f �� Sprν

S
µ (r)
��

��

f(r)

�� Sν (r)
��

��

then �f(xr ⊗ I) is a chain map between the p-coresolutions (Bprµ(r)
∗
, δ) and (Bprν(r)

∗
, δ)

which lifts f .

Proof. – S��� 1. We first treat the case S
µ

= S
ν

= ⊗d. By Lemma 2.1, the permutations
σ ∈ Sd form a basis of Hom(⊗d

,⊗d
). So we only have to prove the statement for such

maps. Let σ ∈ Sd, then σ acts on (xr ⊗ V )
⊗d by permuting the factors (without sign) and
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on V
⊕d by permuting the terms, and for all V we have a commutative diagram of graded

vector spaces:

Bd(r)
∗
(V

⊕d
)

Bd(r)∗(σ)

��

�� �� B(1,··· ,1)(r)
∗
(V ) = (xr ⊗ V )

⊗d

σ(xr⊗V )

��
Bd(r)

∗
(V

⊕d
) �� �� B(1,··· ,1)(r)

∗
(V ) = (xr ⊗ V )

⊗d
.

In this diagram, all the graded objects bear a p-differential δ. The horizontal maps are the
projections onto a summand of the p-complex Bd(r)

∗
(V

⊕d
), hence commute with δ. The

map Bd(r)
∗
(σ) also commutes with δ, by functoriality of Bd(r)

∗. Thus, σ(xr⊗V ) commutes
with δ.

S��� 2. Next, we treat the case where S
µ

= ⊗d, ν is an arbitrary n-tuple of weight d,
and where g : ⊗d � S

ν is a tensor product of multiplications. Observe that not all the
homomorphisms between⊗d and S

ν are of this form (the case of a general morphism g will
be treated in the last step of the proof). Let Σg : V

⊕d → V
⊕n be the sum map associated

to the partition ν, that is Σg sends (v1, . . . , vd) to (
�ν1

i=1 vi, . . . ,
�d

i=d−νn
vi). Then for all V

we have a commutative diagram of graded objects:

Bd(r)
∗
(V

⊕d
)

Bd(r)∗(Σg)

��

�� �� B(1,··· ,1)(r)
∗
(V ) = (xr ⊗ V )

⊗d

g(xr⊗V )

��
Bd(r)

∗
(V

⊕n
) �� �� Bν(r)

∗
(V ) = S

ν
(xr ⊗ V ).

As before all the graded objects involved bear a p-differential δ, and the horizontal maps and
the vertical map on the left commute with δ, whence the result for g(xr ⊗ V ).

S��� 3. Finally if µ, ν are two tuples of weight d, and g : S
µ → S

ν , then by projectivity
of ⊗d in Pk, g lifts to a map �g : ⊗d → ⊗d. So for all V we have a commutative diagram of
graded objects:

(xr ⊗ V )
⊗d

�g(xr⊗V )
��

�� �� Sµ
(xr ⊗ V )

g(xr⊗V )

��
(xr ⊗ V )

⊗d �� �� Sν
(xr ⊗ V ).

In this diagram, all the objects bear a p-differential. By step 1, �g(xr ⊗ V ) commutes with
the p-differentials, and so do the horizontal arrows by step 2. Since the horizontal arrows are
epimorphisms, we obtain that g(xr ⊗ V ) is a morphism of p-complexes.

4. Classical computations revisited

Let r be a positive integer, let µ be a tuple of nonnegative integers and let F ∈ Pk. In this
section, we focus on the computation of the extension groups of the form:

(1) Ext
∗
(F

(r)
, S

µ (r)
) (2) Ext

∗
(Γ

µ (r)
, F

(r)
) .
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The duality functor −�
: Pop

k → Pk of [11, Prop. 2.6] induces for all F,G an isomorphism,
natural in F,G, between Ext

∗
(F,G) and Ext

∗
(G

�
, F

�
). Therefore we may restrict our atten-

tion to (1).

These extension groups were computed by Chałupnik in [3, Thm 4.3], where the proof
relies heavily on the technical computations of [8]. In Section 4.1, we give a new simple direct
proof of [3, Thm 4.3], relying on Troesch coresolutions. Then we show in Section 4.2 how to
use this result to recover classical computations to be found in the literature.

4.1. Computation of Ext
∗
(F

(r)
, S

µ (r)
)

Our proof relies on an elementary observation: if T (S
µ
, r)

∗ denotes the injective coreso-
lution of S

µ (r) obtained by contracting Troesch p-complex Bprµ(r)
∗, then the cochain com-

plex Hom(F
(r)

, T (S
µ
, r)

∗
) is zero in odd degrees, so its homology is very easy to compute! To

prove the vanishing of Hom(F
(r)

, T (S
µ
, r)

∗
) in odd degree, and to compute its even degree

part, we first analyze the graded vector space Hom(F
(r)

, Bprµ(r)
∗
).

S��� 1: Aɴ�ʟʏ�ɪ� �� �ʜ� ɢʀ���� �����ʀ ����� Hom(F
(r)

, Bprµ(r)
∗
). Recall that

Bprµ(r)
∗ equals S

prµ
(xr ⊗ I) as a graded functor. By Lemma 2.2, evaluation on the

Frobenius twist I
(r) yields an isomorphism of graded vector spaces:

(A) Hom(F, S
µ
(x(r)

r ⊗ I))
�−→ Hom(F

(r)
, S

µ (r)
(xr ⊗ I))

Now by evaluating the injection S
µ (r)

�→ S
prµ on xr ⊗ I we get a graded injection

S
µ (r)

(xr ⊗ I) �→ S
prµ

(xr ⊗ I), whence a morphism of graded vector spaces:

(B) Hom(F
(r)

, S
µ (r)

(xr ⊗ I)) → Hom(F
(r)

, S
prµ

(xr ⊗ I))

which is also an isomorphism by Lemma 2.2. We denote by ξ(F, S
µ
, r) the isomorphism of

graded vector spaces obtained by composing (A) and (B):

ξ(F, S
µ
, r) : Hom(F, S

µ
(x(r)

r ⊗ I))
�−→ Hom(F

(r)
, Bprµ(r)

∗
) .

The following lemma gives some properties of ξ(F, S
µ
, r).

L���� 4.1. – Let r be a positive integer, let µ be a tuple of nonnegative integers and
let F ∈ Pk.

(i) The graded vector space Hom(F
(r)

, Bprµ(r)
∗
) is concentrated in degrees divisible by p

r.
(ii) Let f ∈ Hom(F1, F2). The following diagram of graded vector spaces is commutative:

Hom(F1, S
µ
(x(r)

r ⊗ I))
ξ(F1,Sµ,r)

�� Hom(F
(r)
1 , Bprµ(r)

∗
)

Hom(F2, S
µ
(x(r)

r ⊗ I))

f∗

��

ξ(F2,Sµ,r)
�� Hom(F

(r)
2 , Bprµ(r)

∗
)

f(r) ∗

��
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(iii) Let f ∈ Hom(S
µ
, S

ν
), and let �f : S

prµ → S
prν be a lifting of f

(r). The following
diagram of graded vector spaces is commutative:

Hom(F, S
µ
(x(r)

r ⊗ I))
ξ(F,Sµ,r)

��

f(x(r)
r ⊗I)∗

��

Hom(F
(r)

, Bprµ(r)
∗
)

�f(xr⊗I)∗
��

Hom(F, S
ν
(x(r)

r ⊗ I))
ξ(F,Sν ,r)

�� Hom(F
(r)

, Bprν(r)
∗
).

Proof. – The graded vector space x(r)
r , hence the functor S

µ
(x(r)

r ⊗I), is concentrated in
degrees divisible by p

r (recall that −(r) acts as a homothety of coefficient p
r on the degrees

of graded vector spaces). Since ξ(F, S
µ
, r) is a graded isomorphism, we obtain (i). (ii) and

(iii) follow directly from the description of ξ(F, S
µ
, r) as the composite of the isomorphisms

(A) and (B).

S��� 2: E��-��������ɪ�ɴ. We first define explicit injective coresolutions T (S
µ
, r)

∗ of the
S

µ (r)’s by contracting Troesch p-complexes.

D��ɪɴɪ�ɪ�ɴ 4.2. – Recall Troesch p-complex (Bprµ(r)
∗
, δ) given in Proposition 3.4. We

define T (S
µ
, r)

∗ as the cochain complex such that for all i ≥ 0:

T (S
µ
, r)

2i
= Bprµ(r)

pri
,

T (S
µ
, r)

2i+1
= Bprµ(r)

pri+pr−1

,

the differential T (S
µ
, r)

2i → T (S
µ
, r)

2i+1 equals δ and the differential T (S
µ
, r)

2i+1 →
T (S

µ
, r)

2i+2 equals δ
p−1. By Proposition 3.4, T (S

µ
, r)

∗ is an injective coresolution of S
µ (r).

E����ʟ� 4.3. – In characteristic p = 2, T (S
3
, 1)

∗ has the form:

S
6 δ−→ S

5 ⊗ S
1 δ−→ S

4 ⊗ S
2 δ−→ S

3 ⊗ S
3 δ−→ S

2 ⊗ S
4 δ−→ S

1 ⊗ S
5 δ−→ S

6
.

In characteristic p = 3, T (S
1
, 1)

∗ has the form:

S
3 δ−→ S

2 ⊗ S
1 δ2

−→ S
3 ⊕⊗3 δ−→ S

2 ⊗ S
1 ⊕ S

1 ⊗ S
2 δ2

−→ S
3

.

By definition, Ext
∗
(F

(r)
, S

µ (r)
) is computed as the homology of the cochain complex

Hom(F
(r)

, T (S
µ
, r)

∗
). But we have seen in Lemma 4.1(i) that the graded vector space

Hom(F
(r)

, Bprµ(r)
∗
) is concentrated in degrees divisible by p

r. So this means that the
complex Hom(F

(r)
, T (S

µ
, r)

∗
) is zero in odd degrees! We record this fact in the following

lemma.

L���� 4.4. – The complex Hom(F
(r)

, T (S
µ
, r)

∗
) is concentrated in even degrees. So for

all i ≥ 0 we have:

Ext
2i+1

(F
(r)

, S
µ (r)

) = 0 ,

Ext
2i

(F
(r)

, S
µ (r)

) = Hom(F
(r)

, T (S
µ
, r)

2i
) = Hom(F

(r)
, Bprµ(r)

pri
) .
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Now we can use the isomorphism ξ(F, S
µ
, r) defined in the first step, to identify explicitly

the even part of Ext
∗
(F

(r)
, S

µ (r)
). To be more specific, recall that Er denotes the graded

k-vector space concentrated in degrees 2i for 0 ≤ i < p
r, and one dimensional in these

degrees. So S
µ
(Er ⊗ I) and S

µ
(x(r)

r ⊗ I) coincide as ungraded functors, and the degree 2i

part of the graded functor S
µ
(Er ⊗ I) equals the degree p

r
i part of S

µ
(x(r)

r ⊗ I). Thus, we
may rescale ξ(F, S

µ
, r) (i.e., multiply all degrees by 2/p

r) to get an isomorphism of graded
vector spaces

Hom(F, S
µ
(Er ⊗ I)) � Hom(F

(r)
, T (S

µ
, r)

even
) = Ext

∗
(F

(r)
, S

µ (r)
) .

To finish our Ext-computation, we need to check that the isomorphism we have just con-
structed is natural with respect to F and S

µ.

L���� 4.5. – The isomorphism Hom(F, S
µ
(Er⊗I)) � Ext

∗
(F

(r)
, S

µ (r)
) is natural with

respect to F, S
µ.

Proof. – Let f : F → F
�. Rescaling Lemma 4.1(ii) we get a commutative diagram of

graded vector spaces (which are zero in odd degree):

Hom(F, S
µ
(Er ⊗ I))

� �� Hom(F
(r)

, T (S
µ
, r)

∗
)

= �� Ext
∗
(F

(r)
, S

µ (r)
)

Hom(F
�
, S

µ
(Er ⊗ I))

f∗

��

� �� Hom(F
�(r)

, T (S
µ
, r)

∗
)

f(r) ∗

��

= �� Ext
∗
(F

�(r)
, S

µ (r)
).

f(r) ∗

��

This proves the naturality with respect to F . The naturality with respect to S
µ is slightly

more delicate. Let f : S
µ → S

ν and let �f : S
prµ → S

prν be a lifting of f
(r) (such a

lifting exists since S
prν is injective). By Proposition 3.7, �f(xr ⊗ I) is a lifting of f to the

p-coresolutions Bµ(r)
∗ → Bν(r)

∗, so it induces a lifting T (f, r)
∗

:= �f(xr ⊗ I)[1] of f

to the injective coresolutions T (S
µ
, r)

∗ → T (S
ν
, r)

∗. Rescaling Lemma 4.1(iii) we get a
commutative diagram of graded vector spaces (which are zero in odd degree):

Hom(F, S
µ
(Er ⊗ I))

� ��

f(Er⊗I)∗

��

Hom(F
(r)

, T (S
µ
, r)

∗
)

(T (f,r)∗)∗
��

= �� Ext
∗
(F

(r)
, S

µ (r)
)

(f(r))∗
��

Hom(F, S
ν
(Er ⊗ I))

� �� Hom(F
(r)

, T (S
ν
, r)

∗
)

= �� Ext
∗
(F

(r)
, S

ν (r)
).

This proves the naturality with respect to S
µ.

To sum up, we have proved (compare [3, Thm 4.3]):

Tʜ��ʀ�� 4.6. – Let r be a positive integer, let µ be a tuple of nonnegative integers and
let F ∈ Pk. There is a graded isomorphism, natural in F and S

µ:

Ext
∗
(F

(r)
, S

µ (r)
) � Hom(F, S

µ
(Er ⊗ I)) .

Similarly, there is a graded isomorphism, natural in F and Γ
µ:

Ext
∗
(Γ

µ (r)
, F

(r)
) � Hom(Γ

µ
(Er ⊗ I), F ) .
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C�ʀ�ʟʟ�ʀʏ 4.7. – Let µ be a tuple of nonnegative integers and let i be a nonnegative
integer. The two following functors are exact:

F �→ Ext
i
(Γ

µ(r)
, F

(r)
) , and F �→ Ext

i
(F

(r)
, S

µ(r)
) .

Proof. – Use that Γ
µ
(Er ⊗ I) (resp. S

µ
(Er ⊗ I)) is projective (resp. injective).

4.2. Other classical Ext-computations

Now we show that Theorem 4.6 encompasses concrete Ext-computation which can be
found in the literature. First, as a special case we obtain the following corollary, originally
proved by Friedlander and Suslin [11] and which inspires the notation Er.

C�ʀ�ʟʟ�ʀʏ 4.8 ([11]). – There is an isomorphism of graded vector spaces:

Er � Ext
∗
(I

(r)
, I

(r)
) .

Recall that Γ
d,n denotes the functor V �→ Γ

d
(Homk(kn

, V )), and S
d,n its dual. More

generally, if U is a finite dimensional vector space, we denote by Γ
d,U the functor V �→

Γ
d
(Homk(U, V )) and by S

d,U the functor V �→ S
d
(U ⊗V ). The following result was proved

by Chałupnik [3, Cor 5.1].

C�ʀ�ʟʟ�ʀʏ 4.9. – Let F be a homogeneous functor of degree d. There are graded isomor-
phisms, natural in F,U :

Ext
∗
(Γ

d,U (r)
, F

(r)
) � F (U ⊗ Er) , and Ext

∗
(F

(r)
, S

d,U (r)
) � F

�
(U ⊗ Er) .

Proof. – By the exponential formula, Γ
d,U is a direct sum of functors of the form Γ

µ. So
the result follows from Theorem 4.6 and the graded Yoneda Lemma 2.10.

C�ʀ�ʟʟ�ʀʏ 4.10. – For any j, 0 ≤ j ≤ r we have the following computations
of Ext-groups:

(i) [11, Thm 4.5] The graded vector space Ext
∗
(I

(r)
, S

pr−j (j)
) is concentrated in degrees q

such that q = 0 mod 2p
r−j , q < 2p

r, and is one dimensional in these degrees.
(ii) [8, Thm 5.1] Set Ur,j = Ext

∗
(Γ

pr−j (j)
, I

(r)
). Then we have isomorphisms

Ext
∗
(Γ

dpr−j(j)
, S

d (r)
) � S

d
(Ur,j)

Ext
∗
(Γ

dpr−j(j)
,Λ

d (r)
) � Λ

d
(Ur,j).

Proof. – (i) is a straightforward application of either Theorem 4.6 or Corollary 4.9. For
(ii), use that E

(r−j)
j = Ext

∗
(Γ

pr−j (j)
, I

(r)
) by Theorem 4.6, and apply Corollary 4.9.

The symmetric group Sd acts on ⊗d by permuting the factors of the tensor product.
This action induces an action ofSd on the extension groups Ext

∗
(F

(r)
,⊗d (r)

). As another
application of Theorem 4.6, we compute the graded Sd-module Ext

∗
(F

(r)
,⊗d (r)

).

C�ʀ�ʟʟ�ʀʏ 4.11. – Let F be a strict polynomial functor, let r, d be positive integers.
Let Sd act on E

⊗d
r by permuting the factors of the tensor product, and let Sd act diagonally

on Hom(F,⊗d
)⊗ E

⊗d
r . There is a graded isomorphism of Sd-modules, natural in F :

Ext
∗
(F

(r)
,⊗d (r)

) � Hom(F,⊗d
)⊗ E

⊗d
r .
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Proof. – By Theorem 4.6, Ext
∗
(F

(r)
,⊗d (r)

) is isomorphic (as a Sd-module) to
Hom(F, (Er ⊗ I)

⊗d
). But (Er ⊗ I)

⊗d � I
⊗d ⊗ E

⊗d
r (here Sd acts on the left term by

permuting the factors of the tensor products, and Sd acts on the right term by permuting
simultaneously the factors of the tensor products I

⊗d and E
⊗d
r . Now Hom(F, I

⊗d ⊗ E
⊗d
r )

is isomorphic to Hom(F, I
⊗d

)⊗ E
⊗d
r , whence the result.

R���ʀ� 4.12. – Corollary 4.11 is a generalization of the computation of theS×2
d -mod-

ule Ext
∗
(I

(r)⊗d
, I

(r)⊗d
) stated in [3, p. 781] and also proved in [7, Thm 1.8]. See also Propo-

sition 5.4.

5. Additional structures

Extension groups between twisted functors are equipped with the following additional
structures.

1. Products. Let F1, F2, G1, G2 be strict polynomial functors. The extension groups are
equipped with a product:

Ext
k1(F1, G1)⊗ Ext

k2(F2, G2)
∪−→ Ext

k1+k2(F1 ⊗ F2, G1 ⊗G2) ,

defined on the cochain level by taking tensor products of cocycles, as in e.g. [1, Sec-
tion 3.2].

2. Twisting maps. Let F,G be two strict polynomial functors, and let r be a nonnegative
integer. Evaluation on I

(1) yields a twisting map (natural in F,G):

Fr1 : Ext
∗
(F

(r)
, G

(r)
) → Ext

∗
(F

(r+1)
, G

(r+1)
) .

The main result of this section is Theorem 5.6. It improves Theorem 4.6 by asserting
that one can choose the isomorphisms Ext

∗
(F

(r)
, S

µ (r)
) � Hom(F, S

µ
(Er ⊗ I)) (natural

in F, S
µ) so that they are compatible with products and twisting maps. To prove Theorem 5.6,

we first study the special case of Ext
∗
(⊗d (r)

,⊗d (r)
) in Section 5.1. With this computation

in hand, Theorem 5.6 is a formal consequence of the exactness result given in Corollary 4.7.
Finally, in Section 5.3, we apply Theorem 5.6 to Hopf algebra computations which generalize
some results of [8].

5.1. Computation of Ext
∗
(⊗d (r)

,⊗d (r)
)

Corollary 4.11 already yields a description of Ext
∗
(⊗d (r)

,⊗d (r)
) as a S×2

d -module, but
we need a more accurate description (with cup products and precomposition by Frobenius
twists). We first give three preparatory lemmas. The first one is an elementary consequence
of Lemma 2.1.

L���� 5.1. – The following map is an isomorphism:

Hom(I, Er ⊗ I)
⊗d ⊗ kSd → Hom(⊗d

, (Er ⊗ I)
⊗d

)

f1 ⊗ · · ·⊗ fd ⊗ α �→ α ◦ (f1 ⊗ · · ·⊗ fn) .
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We have already computed the graded vector space Ext
∗
(I

(r)
, I

(r)
) in Corollary 4.8. We

add the description of the twisting map Fr1 in the following lemma. This result is well known
(cf. [12, Part II, prop 10.14] or [11, Cor 4.9]), although the proofs available are not so easy.
We give here a new proof based on Troesch complexes.

L���� 5.2. – The twisting map Ext
∗
(I

(r)
, I

(r)
) → Ext

∗
(I

(r+1)
, I

(r+1)
) is injective.

Proof. – If J
∗ is an injective coresolution of I

(r) and K
∗ is an injective coresolution

of I
(r+1), the twisting map is described on the cochain level as the composite

Hom(I
(r)

, J
∗
)

Fr1−−→ Hom(I
(r+1)

, J
(1) ∗

)
(f)∗−−−→ Hom(I

(r+1)
, K

∗
) ,

where f : J
(1) ∗ → K

∗ is a chain map which induces the identity map I
(r+1)

= I
(r+1) after

taking homology (such a map exists and is unique up to homotopy).
In this proof, we take the injective coresolutions J

∗
= T (I, r)

∗ and K
∗

= T (I, r + 1)
∗

from Definition 4.2, that is T (I, r) is a contraction of Troesch p-complex Bpr (r)
∗. Now we

give an explicit formula for the chain map f : T (I, r)
(1) ∗ → T (I, r + 1)

∗. We consider the
composite

(∗) S
pr

(xr ⊗ I
(1)

) � S
pr (1)

(xr ⊗ I) �→ S
pr+1

(xr ⊗ I) �→ S
pr+1

(xr+1 ⊗ I).

To be more specific, the first map is induced by the isomorphism xr � x(1)
r which maps

the summand k of degree i of xr identically onto the summand k of degree pi of x(1)
r .

The second map is induced by the canonical inclusion S
pr (1)

�→ S
pr+1

, and the last map
is induced by the canonical inclusion of xr into xr+1. This composite is a morphism of
functors, which sends an element of degree i to an element of degree pi. Now the graded
functors S

pr
(xr ⊗ I

(1)
) = Bpr (r)

∗ (1) and S
pr+1

(xr+1 ⊗ I) = Bpr+1(r + 1)
∗ bear a

p-differential, and it follows from the construction of the differential of Bpr+1(r +1)
∗ in [18,

Section 4.2 and 4.3] that the composite (∗) commutes with the p-differentials(2). We define
f : T (I, r)

(1) ∗ → T (I, r + 1)
∗ as the contraction of the composite (∗).

Now, with our explicit injective coresolutions and our explicit f , we can compute the
twisting map. Recall that for all r ≥ 0, the complex T (I, r)

∗ contains exactly one copy
of S

pr
as a direct summand in each even degree strictly less than 2p

r, so we have an inclu-
sion of graded functors Er ⊗ S

pr
�→ T (I, r)

∗. But by definition of f , the restriction of
f : T (I, r)

(1) ∗ → T (I, r + 1)
∗ to Er ⊗ S

pr (1) equals the map φ defined as the composite:

Er ⊗ S
pr (1)

�→ Er ⊗ S
pr+1

�→ Er+1 ⊗ S
pr+1

.

Hence we get a commutative diagram of graded vector spaces:

Hom(I(r), T (I, r)∗)
Fr1 �� Hom(I(r+1), T (I, r)(1) ∗)

f∗ �� Hom(I(r+1), T (I, r + 1)
∗
)

Hom(I(r), Er ⊗ Spr
)

��

��

Fr1 �� Hom(I(r+1), Er ⊗ Spr (1)
)

��

��

φ∗ �� Hom(I(r+1), Er+1 ⊗ Spr+1
).

��

��

(2) This argument is actually the only argument in the paper where one needs more information on δ than what is
contained in Theorem 3.1. For the reader’s convenience, we have added a description of Troesch’s construction in
Appendix 9, with a proof that f is a chain map in Lemma 9.5.
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Observe that the top row of the diagram actually describes the twisting map on Ext-groups
(we do not need to take the map induced in homology since the complexes involved are zero
in odd degrees). Moreover, we know that Hom(I

(r)
, T (I, r)

∗
) � Er for all r ≥ 0, and

by Lemma 2.2 Hom(I
(r)

, Er ⊗ S
pr

) is also isomorphic to Er. Since the vertical arrows are
injective, this shows that they are actually isomorphisms. Thus we can read the injectivity of
the twisting map on the bottom row of the diagram. But Fr1 is an isomorphism by Lemma 2.2
and φ∗ is an injection since φ is injective. This concludes the proof.

The following lemma is an easy consequence of Lemma 5.2.

L���� 5.3. – One can choose a family of isomorphisms

θ(I, I, r) : Hom(I, I ⊗ Er) � Ext
∗
(I

(r)
, I

(r)
)

for r ≥ 0 such that for all r we have a commutative diagram (where the left vertical arrow is
induced by the canonical inclusion of Er into Er+1):

Hom(I, I ⊗ Er)
� ��

� �

��

Ext
∗
(I

(r)
, I

(r)
)

Fr1
��

Hom(I, I ⊗ Er+1)
� �� Ext

∗
(I

(r+1)
, I

(r+1)
).

Proof. – We know that Fr1 is injective. But since the dimensions of Ext
i
(I

(r)
, I

(r)
) and

Ext
i
(I

(r+1)
, I

(r+1)
) coincide in degrees i < 2p

r, this means that Fr1 : Ext
i
(I

(r)
, I

(r)
) →

Ext
i
(I

(r+1)
, I

(r+1)
) is an isomorphism in degrees i < 2p

r and is zero in higher degrees.

So we may define θ(I, I, r) by induction on r. For r = 0, we take θ(I, I, 0) = Id. For r ≥ 1,
let πr denote the projection of Er+1 onto its direct summand Er. It is an isomorphism in
degrees i < 2p

r. We define θ(I, I, r+1) in degrees i < 2p
r as the composite Fr1◦θ(I, I, r)◦πr.

In higher degrees, we can choose any isomorphism between (Er+1)
i and Ext

i
(I

(r+1)
, I

(r+1)
)

to define θ(I, I, r + 1).

Pʀ����ɪ�ɪ�ɴ 5.4 (Compare [3, p. 781], [7, Thm 1.8]). – Let d, r be positive integers. The
following map is an isomorphism:

Ext
∗
(I

(r)
, I

(r)
)
⊗d ⊗ kSd → Ext

∗
(I

(r)⊗d
, I

(r)⊗d
)

c1 ⊗ · · ·⊗ cd ⊗ α �→ α∗(c1 ∪ · · · ∪ cn) .

Moreover, let S×2
d act on the source by the formula:

(σ, τ) · (c1 ⊗ · · ·⊗ cd ⊗ α) = cσ−1(1) ⊗ · · ·⊗ cσ−1(d) ⊗ τασ
−1

,

and let S×2
d act on the target by the formula: (σ, τ) · c = τ∗(σ

−1
)
∗
c. Then the above map is

S×2
d -equivariant.

Proof. – The map is clearly equivariant, since it is given by cup products (no sign is
involved since Ext

∗
(I

(r)
, I

(r)
) is concentrated in even degree). We have to prove it is an

isomorphism.
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We use the injective coresolution T (I, r)
∗ of I

(r) given in Definition 4.2. Then T (I, r)
∗⊗d

is an injective coresolution of I
(r)⊗d and the map of Proposition 5.4 is given on the cochain

level by the chain map:

Hom(I
(r)

, T (I, r)
∗
)
⊗d ⊗ kSd → Hom(I

(r)⊗d
, T (I, r)

⊗d ∗
)

f1 ⊗ · · ·⊗ fd ⊗ σ �→ � σ ◦ (f1 ⊗ · · ·⊗ fd) ,

where � is a Koszul sign which equals one if all the fi are in even degree.
By Proposition 3.4, each T (S

1
, r)

k is a direct sum of functors S
µ of polynomial degree�

µi = p
r. Moreover, for 0 ≤ k < 2p

r, either k is odd and the S
µ are such that p

r � |µ, or k

is even and T (S
1
, r)

k contains exactly one S
pr

as a summand. Thus we have a commutative
diagram of graded objects:

Hom(I
(r)

, T (I, r)
∗
)
⊗d ⊗ kSd

�� Hom(I
(r)⊗d

, T (I, r)
⊗d ∗

)

Hom(I
(r)

, Er ⊗ S
pr

)
⊗d ⊗ kSd

��
��

��

Hom(I
(r)⊗d

, (Er ⊗ S
pr

)
⊗d

) .

��

��

By the vanishing Lemma 2.3, the vertical arrows are isomorphisms of graded objects. In
particular, the complexes at stake are zero in odd degrees, and the map of Proposition 5.4
identifies with the bottom map of the diagram. Now by Lemma 2.2, the bottom map of the
diagram identifies with the map of Lemma 5.1, hence is an isomorphism.

C�ʀ�ʟʟ�ʀʏ 5.5. – There exist a family of isomorphisms

θ(⊗d
,⊗d

, r) : Ext
∗
(⊗d (r)

,⊗d (r)
) � Hom(⊗d

, (Er ⊗ I)
⊗d

)

for d ≥ 1, r ≥ 1, which are natural in ⊗d
,⊗d, and compatible with products:

θ(⊗d
,⊗d

, r)(c)⊗ θ(⊗d�
,⊗d�

, r)(c
�
) = θ(⊗d+d�

,⊗d+d�
, r)(c ∪ c

�
).

Moreover, the twisting maps fit into commutative diagrams (where the vertical arrow on the
right is induced by the canonical inclusion Er �→ Er+1)

Ext
∗
(⊗d (r)

,⊗d (r)
)

Fr1
��

� �� Hom(⊗d
, (Er ⊗ I)

⊗d
)� �

��
Ext

∗
(⊗d (r+1)

,⊗d (r+1)
)

� �� Hom(⊗d
, (Er+1 ⊗ I)

⊗d
) .

Proof. – Lemma 5.2 yields an isomorphism between Hom(I, I ⊗ Er)
⊗d ⊗ kSd and

Ext
∗
(I

(r)
, I

(r)
)
⊗d ⊗ kSd. We define θ(⊗d

,⊗d
, r) by composing this isomorphism by the

inverse of the isomorphism of Proposition 5.4 and the isomorphism of Lemma 5.1.

5.2. The general case

We now state the main result of Section 5.

Tʜ��ʀ�� 5.6. – Let r be a positive integer, let µ be a tuple of nonnegative integers and
let F ∈ Pk. There is a graded isomorphism, natural in F and S

µ:

θ(F, S
µ
, r) : Ext

∗
(F

(r)
, S

µ (r)
) � Hom(F, S

µ
(Er ⊗ I)) .

Moreover, θ(F, S
µ
, r) satisfies the following properties.
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(1) θ(F, S
µ
, r) commutes with products:

θ(F1 ⊗ F2, S
µ1 ⊗ S

µ2 , r)(c1 ∪ c2) = θ(F1, S
µ1 , r)(c1)⊗ θ(F2, S

µ2 , r)(c2) .

(2) θ(F, S
µ
, r) is compatible with twisting maps, that is θ(F, S

µ
, r) and θ(F, S

µ
, r + 1) fit

into a commutative diagram:

Ext
∗
(F

(r)
, S

µ (r)
)

Fr1
��

θ(F,Sµ,r)

�
�� Hom(F, S

µ
(Er ⊗ I))� �

��
Ext

∗
(F

(r+1)
, S

µ (r+1)
)

θ(F,Sµ,r+1)

�
�� Hom(F, S

µ
(Er+1 ⊗ I)) ,

where the vertical arrow on the right is induced by the canonical inclusion Er �→ Er+1

(Er is the part of Er+1 of degree < 2p
r).

Similarly, there is a graded isomorphism, natural in F and Γ
µ:

Ext
∗
(Γ

µ (r)
, F

(r)
) � Hom(Γ

µ
(Er ⊗ I), F ) ,

which is compatible with products and twisting maps.

Proof. – The duality isomorphism Ext
∗
(F,G) � Ext

∗
(G

�
, F

�
) commutes with products

and with precomposition by Frobenius twists, so it is sufficient to prove the first part of the
theorem (the existence of suitable θ(F, S

µ
, r), satisfying (1) and (2)).

To be concise, we let E(F,G) := Ext
∗
(F

(r)
, G

(r)
) and H(F,G) := Hom(F,G(Er ⊗ I)) in

this proof. By Corollary 4.7, the functors F �→ E(F, S
µ
) and G �→ E(Γ

λ
, G) are exact. By

projectivity of Γ
λ
(Er ⊗ I) and by injectivity of S

µ
(Er ⊗ I), the functors F �→ H(F, S

µ
) and

G �→ H(Γ
λ
, G) are also exact. The proof is a formal consequence of this and Proposition 5.4.

Indeed, by Proposition 5.4 we already have maps θ(⊗d
,⊗d

, r). But S
µ admits a presen-

tation T
µ
1 → T

µ
0 � S

µ with T
µ
0 = ⊗d and T

µ
1 =

�
τ∈Sµ

⊗d and the map T
µ
1 → T

µ
0

equals
�

(Id−τ) (the sum is taken over the elements of the Young subgroupSµ). Moreover,
by projectivity of ⊗d, any map f : S

µ → S
µ� lifts to a map of presentations. By exactness

of G �→ E(⊗d
, G) and G �→ H(⊗d

, G), the presentation T
µ
1 → T

µ
0 � S

µ induces presenta-
tions of E(⊗d

, S
µ
) and H(⊗d

, S
µ
), which in turn define maps θ(⊗d

, S
µ
, r), natural in⊗d

, S
µ.

Dually, the Γ
λ have (injective) copresentations by tensor powers, and any functor F has a pre-

sentation P1 → P0 � F by direct sums of Γ
λ. So using these presentations and exactness

of F �→ E(F, S
µ
) and F �→ H(F, S

µ
) we define similarly maps θ(F, S

µ
, r), natural in F, S

µ.
The maps θ(Γ

λ
, S

µ
, r) and θ(F, S

µ
, r) are characterized as the unique maps fitting into the

commutative squares:

E(⊗d
,⊗d

)

����

θ(⊗d,⊗d,r)
�� H(⊗d

,⊗d
)

����
E(Γ

λ
, S

µ
)

θ(Γλ,Sµ,r)
�� H(Γ

λ
, S

µ
)

E(F, S
µ
)� �

��

θ(F,Sµ,r)
�� H(F, S

µ
)� �

��
E(P0, S

µ
)

θ(P0,Sµ,r)
�� H(P0, S

µ
) .

(One easily checks that θ(F, S
µ
, r) does not depend on the choice of P0.)

It remains to check compatibility with cup products and twisting maps. But using the nat-
urality of cup products (resp. twisting maps) and the two commutative squares above, one can
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reduce the compatibility for general θ(F, S
µ
, r) to the compatibility for θ(Γ

λ
, S

µ
, r), which

in turn reduces to the compatibility for θ(⊗d
,⊗d

, r). The latter holds by Proposition 5.4.

R���ʀ� 5.7. – We do not know if the isomorphisms of Theorems 4.6 and 5.6 are equal
in general. Looking at the proof of Theorem 5.6, one sees that they coincide if and only if
they coincide for the special case F = S

µ
= ⊗d.

In this special case, the isomorphism of Theorem 4.6 is built by using the injective
coresolution T (⊗d

, r)
∗, while the isomorphism of Theorem 5.6 uses (T (I, r)

∗
)
⊗d. These

two injective coresolutions are not equal in general (if p �= 2 of if d ≥ 2, they do not
coincide as graded objects). But in both cases, the coresolution contains the graded object
(Er⊗S

pr
)
⊗d. And the isomorphisms of Theorems 4.6 and 5.6 follow in both cases from the

fact that the complex obtained after applying Hom(⊗d (r)
,−) to the coresolution equals the

graded vector space Hom(⊗d (r)
, (Er ⊗ S

pr
)
⊗d

), with zero differential. So, to prove that the
isomorphisms of Theorems 4.6 and 5.6 are equal, we have to find a homotopy equivalence
h
∗

: T (⊗d
, r)

∗ → (T (I, r)
∗
)
⊗d whose restriction to (Er ⊗ S

pr
)
⊗d is the identity.

If r = 1, B(1,...,1)(1)
∗ � (B1(1)

∗
)
⊗d by [18, Prop. 3.2.1], so [16, Prop. 2.4] yields such a

homotopy equivalence. Hence the isomorphisms of Theorems 4.6 and 5.6 coincide for r = 1.
If r > 1, B(1,...,1)(r)

∗ and (B1(r)
∗
)
⊗d are equal as graded objects, but they do not bear the

same differential, so we cannot conclude the equality of the isomorphisms by the previous
method, and the question wether the isomorphisms of Theorems 4.6 and 5.6 coincide is open.

5.3. Applications to algebra and Hopf algebra structures

Let U be a finite dimensional k-vector space. Recall that Γ
d,U denotes the functor

V �→ Γ
d
(Homk(U, V )). Let Fi, i = 1, 2, be strict polynomial functors, and let d1, d2 be

nonnegative integers. We define a morphism:
�2

i=1 Ext
∗
(Γ

di,U (r)
, Fi)

∪−→ Ext
∗
((Γ

d1,U ⊗ Γ
d2,U

)
(r)

, (F1 ⊗ F2)
(r)

)

(∆U (r)
d1,d2

)∗

−−−−−−→ Ext
∗
(Γ

d1+d2,U (r)
, (F1 ⊗ F2)

(r)
) ,

where ∆
U
d1,d2

: Γ
d1+d2,U → Γ

d1,U ⊗ Γ
d2,U is the evaluation of the comultiplication

∆d1,d2 : Γ
d1+d2 → Γ

d1 ⊗ Γ
d2 of the divided power algebra on the functor Homk(U,−).

The following statement provides an extra compatibility property for Chałupnik’s formula
[3, Cor 5.1].

C�ʀ�ʟʟ�ʀʏ 5.8. – Let F be a homogeneous strict polynomial functor of degree d. There
are isomorphisms, natural in F,U :

Ext
∗
(Γ

d,U (r)
, F ) � F (U ⊗ Er) .

Moreover, if Fi, i = 1, 2 are homogeneous strict polynomial functors of respective degree di,
these isomorphisms fit into commutative diagrams:

�2
i=1 Ext

∗
(Γ

di,U (r)
, Fi)

� ��

c1⊗c2 �→(∆(r)
d1,d2

)∗(c1∪c2)

��

F1(U ⊗ Er)⊗ F2(U ⊗ Er)

=

��
Ext

∗
(Γ

d1+d2,U (r)
, (F1 ⊗ F2)

(r)
)

� �� (F1 ⊗ F2)(U ⊗ Er) .
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In particular, the vertical arrow on the left is an isomorphism.

Proof. – By Theorem 5.6, c1 ⊗ c2 �→ (∆
U (r)
d1,d2

)
∗
(c1 ∪ c2) identifies with the map

(∗)

2�

i=1

Hom(Γ
di,U (Er ⊗ I), Fi)

�−→ Hom(Γ
d1+d2,U

(Er ⊗ I), F1 ⊗ F2)

f1 ⊗ f2 �→ (f1 ⊗ f2) ◦∆
U
d1,d2

(Er ⊗ I) .

For all F , the graded Yoneda isomorphism Hom(Γ
d
((V

∗
)
∨⊗I), F ) � F (V

∗
) of Lemma 2.10

is nothing but evaluation on Id
⊗d
V ∗ ∈ (V

∗
)
∨ ⊗ V

∗. So the map (∗) identifies through Yoneda
isomorphisms with the identity map F1(U ⊗ Er)⊗ F2(U ⊗ Er) = (F1 ⊗ F2)(U ⊗ Er).

Let (A
j
)j∈N be a family of strict polynomial functors, and assume that A

∗ is endowed with
a graded algebra structure (i.e., we have maps of strict polynomial functors A

k⊗A
� → A

k+�

and k → A
0 which satisfy the axioms of an algebra). In such a situation, the following hold

1. Each A
j splits as a finite direct sum of homogeneous functors of degree d:

A
j

=
�

d≥0 A
j
d, so that the graded functor A

∗
=

�
d,j A

j
d is actually automat-

ically bigraded. Homogeneity in Pk [11, Prop. 2.6] implies that A
∗ is a bigraded

algebra.
2. The extension groups

�
i,d,j Ext

i
(Γ

d,U (r)
, A

j (r)
) are equipped with a trigraded alge-

bra structure with unit k = Ext
0
(k

(r)
, k

(r)
) → Ext

0
(k

(r)
, A

0 (r)
) and with multiplica-

tion defined as the composite (the first map is the map c1 ⊗ c2 �→ (∆
U (r)
d1,d2

)
∗
(c1 ∪ c2)

from Corollary 5.8, the second one is induced by the multiplication of A
∗)

�2
k=1 Ext

ik(Γ
dk,U (r)

, A
jk (r)

) → Ext
i1+i2(Γ

d1+d2,U (r)
, A

j1 (r) ⊗A
j2 (r)

)

→ Ext
i1+i2(Γ

d1+d2,U (r)
, A

j1+j2 (r)
).

The following result is straightforward from Corollary 5.8.

C�ʀ�ʟʟ�ʀʏ 5.9. – Let A
∗ be a family of strict polynomial functors endowed with a graded

algebra structure. Let U be a finite dimensional vector space. There is an isomorphism of
trigraded algebras:

�

i,d,j

Ext
i
(Γ

d,U (r)
, A

j (r)
) �

�

i,d,j

A
j
d(U ⊗ Er) .

Here, A
j
d denotes the homogeneous degree d part of A

j , and the degree i on the right hand side
corresponds to the degree which arises when we evaluate the functor A

j
d on the graded vector

space U ⊗ Er (U placed in degree 0).

Similarly, if C
∗ is a family of strict polynomial functors endowed with the structure

of a graded coalgebra, then
�

i,d,j Ext
i
(Γ

d,U (r)
, C

j (r)
) is endowed with the structure of
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a trigraded coalgebra, whose comultiplication equals the composite (the isomorphism is
inverse to the one given by Corollary 5.8):

Ext
i
(Γ

d,U (r)
, C

j (r)
) →

�
j1 + j2 = j

d1 + d2 = d

Ext
i
(Γ

d,U (r)
, C

j1 (r)
d1

⊗ C
j2 (r)
d2

)

�
�

i1 + i2 = i

j1 + j2 = j

d1 + d2 = d

�2
k=1 Ext

ik(Γ
dk,U (r)

, C
jk (r)
dk

) .

And we similarly obtain a trigraded coalgebra isomorphism:
�

i,d,j

Ext
i
(Γ

d,U (r)
, C

j (r)
) �

�

i,d,j

C
j
d(U ⊗ Er) .

Now we want to combine the two previous structures, that is, we consider a family H
∗ of

strict polynomial functors endowed with a graded Hopf algebra structure without antipode
(the case with antipode works similarly and we leave the slight modifications to the interested
reader).

There is a trap here:
�

i,d,j Ext
i
(Γ

d,U (r)
, H

j (r)
) is a trigraded algebra and a trigraded

coalgebra, but not a trigraded Hopf algebra in general. There is a sign problem with the
partial grading corresponding to the letter “d” when one wants to check the compatibility
axiom between the multiplication and the comultiplication. This problem can be fixed in
two ways. Either double the gradations, that is consider Γ

d,U (r) in degree 2d, or forget the
d-grading, that is consider the bigraded algebra structure. We choose this latter solution.

It is easy to check from our definitions that the coalgebra and the algebra structure
of

�
i,d,j Ext

i
(Γ

d,U (r)
, H

j (r)
) satisfy the axioms of a (i, j)-bigraded Hopf algebra (without

antipode) (this is also proved when H is a “Hopf exponential functor” in [8, Lemma 1.11] and
in general in [15, Thm 5.16]). Then, from our description of algebra and coalgebra structures
we get the following result (which generalizes [8, Thm 5.8 (1,2,5)]).

C�ʀ�ʟʟ�ʀʏ 5.10. – Let H
∗ be a family of strict polynomial functors endowed with the

structure of a graded Hopf algebra. There is an isomorphism of (i, j)-bigraded Hopf algebras:
�

i,d,j

Ext
i
(Γ

d,U (r)
, H

j (r)
) �

�

i,j

H
j
(U ⊗ Er) .

Here, the degree i on the right hand side corresponds to the degree which arises when we evaluate
the functor H

j on the graded vector space U ⊗ Er (with U placed in degree 0).

E����ʟ� 5.11. – Consider the graded Hopf algebra H
∗ defined for all j ≥ 0 by

H
2j+1

:= 0 and H
2j

:= S
j
(S

2
). Then, as a (i, j)-bigraded Hopf algebra,

�

i,d,j

Ext
i
(Γ

d (r)
, S

j
(S

2 (r)
))

is a symmetric Hopf algebra on generators αi, βj and γk,�, where 0 ≤ i < p
r, 0 ≤ j < p

r

and 0 ≤ k < � < p
r, placed in respective bidegrees (4i, 2), (4j, 2) and (2(k + �), 2).
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6. The semi-stable range

If F and G are strict polynomial functors of degree d, the evaluation map:

evn : Ext
∗
Pk(F,G) → Ext

∗
GLn

(F (k
n
), G(k

n
))

is an isomorphism if n ≥ d [11, Cor 3.13]. We call such values of n the “stable range” (relative
to F,G). In general, if n is not in the stable range (i.e., n < d), the evaluation map may very
well not be an isomorphism, as the following example shows it.

E����ʟ� 6.1. – Let p = 2, d = 2, and let F = I
(1) and G = Γ

2. Then

Ext
i
Pk(I

(1)
,Γ

2
) = k if i = 2, and 0 otherwise.

On the other hand, if we evaluate on k then k
(1)

= Γ
2
(k) is the one dimensional GL1 = Gm

representation of weight 2, so that we have:

Ext
∗
GL1

(k
(1)

,Γ
2
(k)) = HomGL1(k

(1)
,Γ

2
(k)) = k .

So the evaluation map evn is neither injective, nor surjective.

Proof. – To compute Ext
∗
Pk(I

(1)
,Γ

2
), we know that Ext

∗
Pk(I

(1)
, I

(1)
) = E1 (by Corol-

lary 4.8) and that Ext
∗
Pk(I

(1)
, S

2
) equals k, concentrated in degree 0 (by duality [11,

Prop. 2.6] and by the Yoneda lemma [11, Thm 2.10]). Then we use the short exact sequences
I
(1)

�→ S
2 � Λ

2 and Λ
2

�→ Γ
2 � I

(1).

Unfortunately, the stable range is not always sufficient for applications to the rational
cohomology of GLn. For example, we have computed in Corollary 5.9 the Ext-algebras
Ext

∗
Pk(Γ

∗,U
, A

∗
). One can wonder if the evaluation map

(�) Ext
∗
Pk(Γ

∗,U (r)
, A

∗ (r)
)

evn−−→ Ext
∗
GLn

(Γ
∗,U

(k
n (r)

), A
∗
(k

n (r)
))

is an isomorphism for some values of n. This is not the case in general. For example, take the
case of U = k and A

∗
= S

∗, then Friedlander and Suslin’s result [11, Cor 3.13] shows that
evn is an isomorphism in tridegrees (i, j, k) with j, k ≤ n/p

r. But for higher tridegrees, we
are out of the stable range, so we do not know that evn is an isomorphism in these degrees.

The purpose of this section is to improve Friedlander and Suslin’s range of values
of n for which the evaluation map evn is an isomorphism. We call the values of n such
that n < d (i.e., out of Friedlander and Suslin’s stable range) but for which
evn : Ext

∗
Pk(F,G) → Ext

∗
GLn

(F (k
n
), G(k

n
)) is still an isomorphism “the semi-stable

range” (relative to F,G).

The section is organized as follows. In Section 6.1, we review some material from [11, Sec-
tion 3]. In Section 6.2, we give conditions on F and G so that the semi-stable range relative
to F,G is not trivial. With the help of Troesch complexes, we prove that these conditions are
satisfied for F = Γ

n (r) (this is Proposition 6.11(i)). In particular, the evaluation map (�)

above is an isomorphism for n ≥ p
r
dim U . In Section 6.3 we use this fact to prove in The-

orem 6.15 a cohomological version of the First Fundamental Theorem (FFT) and Second
Fundamental Theorem (SFT) for GLn, for n big enough. In question 6.16, we give a conjec-
ture for small values of n (see also Remark 6.17).
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6.1. Review of Section 3 of [11]

We keep the notations of [11], so S(n, d) = Γ
d
(Homk(kn

, k
n
)) is the Schur algebra

and (Pol)n,d is the full subcategory of the category of rational GLn-modules consisting
of homogeneous polynomial modules of degree d, which are finite dimensional. Using the
adjunction isomorphism:

Homk(Γ
d
(Homk(k

n
, k

n
))⊗ V, V ) � Homk(V, S

d
(Homk(k

n
, k

n
)
∨
)⊗ V )

one sees that being a left S(n, d)-module is equivalent to being a S
d
(Homk(kn

, k
n
)
∨
)-comod-

ule, that is, a homogeneous polynomial GLn-module of degree d. Whence an equivalence (it
is even an isomorphism) of categories (for all n > 0 and all d ≥ 0):

(1) Mod{S(n, d)} � (Pol)n,d.

(By definition, the modules of Mod{S(n, d)} are finite dimensional.) By [11, Cor 3.12.1] one
knows that (again for all n > 0 and all d ≥ 0) the embedding of categories

(2) (Pol)n,d �→ rational GLn-modules

induces an isomorphism on Ext-groups. If F ∈ Pk,d is homogeneous of degree d, then
for all V,W ∈ V k we have a homogeneous polynomial map of degree d: Homk(V,W ) →
Homk(F (V ), F (W )), or equivalently a k-linear map Γ

d
(Homk(V,W )) → Homk(F (V ), F (W )).

If we take V = W = k
n, this k-linear map provides a S(n, d)-module structure on F (k

n
),

so we have an evaluation functor (for all n > 0 and all d ≥ 0):

(3) Pk,d → Mod{S(n, d)} , F �→ F (k
n
).

Finally, the evaluation functor Pk,d → rational GLn-modules, F �→ F (k
n
) equals the

composite of the functors (1), (2) and (3):

Pk,d → Mod{S(n, d)} � (Pol)n,d �→ rational GLn-modules .

We sum up the situation in the following proposition.

Pʀ����ɪ�ɪ�ɴ 6.2. – For all n > 0 and all d ≥ 0, the map evn induced by evaluation on
the standard representation of GLn:

evn : Ext
∗
Pk,d

(F,G) → Ext
∗
GLn

(F (k
n
), G(k

n
))

decomposes as:

Ext
∗
Pk,d

(F,G) −→ Ext
∗
S(n,d)(F (k

n
), G(k

n
)) � Ext

∗
GLn

(F (k
n
), G(k

n
)) .

Friedlander and Suslin prove [11, Thm 3.2] that if n ≥ d, the evaluation functor

Pk,d
(3)−−→ Mod{S(n, d)} is an equivalence of categories, but we are interested in the general

case, where this is no longer true. We shall prove below that the evaluation functor induces an
isomorphism on the level of Ext-groups when F (or G) admits special projective resolutions
(or injective coresolutions). We call such functors “n-resolved” and “n-coresolved”.
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6.2. n-resolved functors

The notion of n-resolved functors is a natural generalization of n-generated functors,
defined in [11]. So we first recall the definition of n-generated functors from [11].

D��ɪɴɪ�ɪ�ɴ 6.3 ([11, Thm 2.10]). – Let F ∈ Pk,d and let n be a positive integer. Recall
the map θF : Γ

d,n ⊗ F (k
n
) → F defined for all V ∈ V k by:

Γ
d
(Homk(k

n
, V ))⊗ F (k

n
) → F (V ) , f ⊗ x �→ F (f)(x) .

We call F n-generated if θF is an epimorphism.

E����ʟ� 6.4. – Γ
d,n itself is n-generated.

L���� 6.5 (Properties of n-generation). – (i) A functor F is n-generated if and only if
there is a n-generated projective P and an epimorphism P � F .

In particular, a direct summand or a quotient of a n-generated functor is again
n-generated.

(ii) If F is n-generated then F is (n + 1)-generated.
(iii) If F has degree d then F is d-generated.
(iv) If Fi , i = 1, 2 is ni-generated then F1 ⊗ F2 is (n1 + n2)-generated.
(v) If F is n-generated and � is a positive integer, then F (k

� ⊗ I) is n�-generated.
(vi) If F is n-generated then F

(r) is n-generated

Proof. – For (i), the “only if” part is the definition, for the “if” part, use the commutative
diagram:

Γ
d,n ⊗ P (k

n
)

θP �� ��

����

P

����
Γ

d,n ⊗ F (k
n
)

θF �� F .

For (ii) use that Γ
d,n is a quotient of the (n + 1)-generated functor Γ

d,n+1. (iii) is just [11,
Prop. 2.9]. For (iv), use that Γ

d1,n1 ⊗Γ
d2,n2 is a quotient of Γ

d1+d2,n1+n2 by the exponential
formula. For (v), use that Γ

d,n
(k

� ⊗ I) � Γ
d,n�. Finally, (vi) follows from the epimorphism

Γ
dpr,n � Γ

d,n (r).

The following lemma is the key result for our applications.

L���� 6.6. – Let P be a n-generated projective of Pk,d.

(i) P (k
n
) is projective in the category Mod{S(n, d)}.

(ii) For all G ∈ Pk,d the evaluation map induces an isomorphism

Hom Pk(P,G) � HomS(n,d)(P (k
n
), G(k

n
)) .
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Proof. – Since n-generated projectives are direct summands of finite direct sums of Γ
d,n,

it suffices to prove the lemma for P = Γ
d,n. Then (i) is trivial since Γ

d,n
(k

n
) = S(n, d), and

(ii) follows from the commutative diagram:

Hom Pk(Γ
d,n

, G) ��

�
��

HomS(n,d)(Γ
d,n

(k
n
), G(k

n
))

�
��

G(k
n
)

= �� G(k
n
)

where the vertical isomorphism on the left is the Yoneda lemma (which is nothing but
evaluation on Id

⊗d
kn ∈ Γ

d,n
(k

n
)), and the vertical isomorphism on the right is evaluation

on Id
⊗d
kn which is the unit of Γ

d,n
(k

n
) = S(n, d).

Now we briefly recall the dual notion of n-cogenerated functors. Let S
d,n

= (Γ
d,n

)
�

be the standard injective. By duality, the map θF � : Γ
d,n ⊗ F

�
(k

n
) → F

� yields a map
θ

�
F � : F → S

d,n ⊗ F ((k
n
)
∨
).

D��ɪɴɪ�ɪ�ɴ 6.7. – Let F ∈ Pk,d. We call F n-cogenerated if F
� is n-generated, or

equivalently if the map θ
�
F � : F → S

d,n ⊗ F ((k
n
)
∨
) is a monomorphism.

By duality, one sees that S
d,n is n-cogenerated. Also, Lemma 6.5 dualizes easily. Now we

have an analogue of Lemma 6.6:

L���� 6.8. – Let J ∈ Pk,d denote a n-cogenerated injective.

(i) J(k
n
) is injective in the category Mod{S(n, d)}.

(ii) For all F ∈ Pk,d the evaluation map induces an isomorphism

Hom Pk(F, J) � HomS(n,d)(F (k
n
), J(k

n
)) .

Proof. – First, it is easy to prove that Lemma 6.6 has an analogue in the category
{S(n, d)}Mod of finite dimensional right S(n, d)-modules. Now if M is a left S(n, d)-mod-
ule, its dual M

∨ is naturally a right S(n, d)-module, and we have a commutative diagram,
natural in F,G:

Hom Pk(F,G)

��

� �� Hom Pk(G
�
, F

�
)

��
HomMod{S(n,d)}(F (k

n
), G(k

n
))

� �� Hom{S(n,d)}Mod(G(k
n
)
∨
, F (k

n
)
∨
)

where the vertical arrow on the right is evaluation on the right S(n, d)-module k
n∨. So

Lemma 6.8 is simply a translation of the right-S(n, d)-module analogue of Lemma 6.6.

D��ɪɴɪ�ɪ�ɴ 6.9. – Let F ∈ Pk,d and let n be a positive integer. We say that F is
n-resolved if F admits a resolution by n-generated projectives. We say that F is n-coresolved
if F admits a coresolution by n-cogenerated injectives (or equivalently if F

� is n-resolved).

The interest of n-(co)resolved functors lies in the following theorem, which is an
immediate consequence of Lemmas 6.6 and 6.8.
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Tʜ��ʀ�� 6.10. – Let F,G ∈ Pk,d, and let n be an integer such that F is n-resolved, or G

is n-coresolved. Then the evaluation map is an isomorphism:

Ext
∗
Pk(F,G)

�−→ Ext
∗
GLn

(F (k
n
), G(k

n
)) .

Proof. – Since the evaluation map decomposes as

Ext
∗
Pk,d

(F,G) → Ext
∗
S(n,d)(F (k

n
), G(k

n
)) � Ext

∗
GLn

(F (k
n
), G(k

n
)) ,

it suffices to prove that the first map is an isomorphism. Assume that F is n-resolved.
Let P∗ be a resolution of F by n-generated projectives. By Lemma 6.6(i), the evaluation map
Ext

∗
Pk(F,G) → Ext

∗
S(n,d)(F (k

n
), G(k

n
)) is obtained by taking the homology of the chain

map: Hom Pk(P∗, G) → HomS(n,d)(P∗(k
n
), G(k

n
)). This latter map is an isomorphism by

Lemma 6.6(ii) and we are done. The proof for G n-coresolved is similar.

To make an effective use of Theorem 6.10, one needs ways of building n-resolved functors.
Here come Troesch complexes into play.

Pʀ����ɪ�ɪ�ɴ 6.11 (Examples of n-resolved functors)

(i) For all r ≥ 0 and all d ≥ 0, Γ
d (r) is p

r-resolved.
(ii) If F has degree d then F is d-resolved.

(iii) If Fi, i = 1, 2 is ni resolved then F1 ⊗ F2 is (n1 + n2)-resolved.
(iv) If F is n-resolved then F is (n + 1)-resolved.
(v) If F is n-resolved and if � is a positive integer, then F (k

� ⊗ I) is n�-resolved.

Proof. – For (i), Troesch complexes provide injective coresolutions of S
d (r) by injectives

which are direct summands of S
prd

(k
pr ⊗ I), hence p

r-cogenerated. Thus S
d (r) is p

r-core-
solved, or equivalently Γ

d (r) is p
r-resolved. The rest follows from Lemma 6.5 by taking pro-

jective resolutions.

R���ʀ� 6.12. – In Lemma 6.5 we proved that F
(r) is n-generated if F is n-generated.

This is not the case for n-resolution. For example the identity functor I = Γ
1 is 1-resolved,

but Example 6.1 and Theorem 6.10 show that I
(1) is not 1-resolved.

6.3. Towards a cohomological FFT and SFT for GLn

Observe that in Proposition 6.11(i) the integer n such that Γ
d (r) is n-resolved only depends

on r, and not on d. So from Theorem 6.10 and Section 5 we obtain new rational cohomology
computations. For example Corollary 5.9 yields:

C�ʀ�ʟʟ�ʀʏ 6.13. – Let A
∗ be a family of strict polynomial functors, endowed with an

algebra structure. For all j ≥ 0, denote by A
j
d the homogeneous degree d part of A

j . Let U be
a finite dimensional vector space with trivial GLn action, let k

n be the standard representation
of GLn, and assume n ≥ p

r
dim U . Then we have a trigraded algebra isomorphism

�

i,d,j

Ext
i
GLn

(Γ
d
(Homk(U, k

n (r)
)), A

j
(k

n (r)
)) �

�

i,d,j

A
j
d(U ⊗ Er) .

Similarly, if C
∗ is endowed with a coalgebra structure, we have a trigraded algebra isomorphism
�

i,d,j

Ext
i
GLn

(C
j
(k

n (r)
), S

d
(U ⊗ k

n (r)
)) �

�

i,d,j

C
j �
d (U ⊗ Er) .
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FFT and SFT for GLn. Now we turn to classical invariant theory. Let us recall from [6] the
First and Second Fundamental Theorems for GLn. Let k, � be positive integers, let r be a
nonnegative integer and let Vr := k

n (r) be the r-th twist of the standard representation
of GLn.

We define the contractions (i|j) ∈ S
2
(V

∨⊕k
r ⊕ V

⊕�
r ), for 1 ≤ i ≤ k, 1 ≤ j ≤ � in

the following way. Let c0 ∈ V
∨
r ⊗ Vr ⊂ S

2
(V

∨
r ⊕ Vr) denote the Trace (up to a scalar

multiplication, it is the unique GLn-invariant in V
∨
r ⊗ Vr and in S

2
(V

∨
r ⊕ Vr)). Let φi,j be

the GLn-equivariant map:

φi,j : V
∨
r ⊕ Vr → V

∨⊕k
r ⊕ V

⊕�
r

(f, x) �→ (0, . . . , 0, f, 0, . . . , 0)� �� �
f in i-th position

, (0, . . . , 0, x, 0, . . . , 0)� �� �
x in j-th position

.

Then the contraction (i|j) is defined by (i|j) := S
2
(φij)(c0).

R���ʀ� 6.14. – The name “contraction” comes from the fact that (i|j) may be equiv-
alently defined as the homogeneous degree two polynomial (beware the duality):

(i, j) : V
⊕k
r ⊕ V

∨⊕�
r → k

(x1, . . . , xk, f1, . . . , f�) �→ fj(xi) .

The (i|j) live in the invariant algebra H
0
(GLn, S

∗
(V

∨⊕k
r ⊕V

⊕�
r )). The First Fundamental

Theorem [6, Thm 3.1] asserts that the (i|j), 1 ≤ i ≤ k, 1 ≤ j ≤ �, actually generate this
invariant algebra for r = 0, hence for all r ≥ 0 since Frobenius twists do not modify the
invariants. The Second Fundamental Theorem [6, Thm 3.4] gives a minimal set of relations
between the (i|j) (these relations are given in terms of determinant formulas. In particular,
if n ≥ min{k, �}, there are no relations between the (i|j)).

Cohomological FFT and SFT. – Now we are interested not only in the invariant algebra but
more generally in the whole cohomology algebra H

∗
(GLn, S

∗
(V

∨⊕k
r ⊕ V

⊕�
r )).

To describe this algebra, we introduce “higher contractions” (h|i|j), 0 ≤ h < p
r, 1 ≤ i ≤ k,

1 ≤ j ≤ � in the following way. First, by the exponential formula, one decomposes the rep-
resentation S

2
(V

∨
r ⊕ Vr) as the direct sum:

S
2
(V

∨
r ⊕ Vr) = S

2
(V

∨
r )⊕ S

2
(Vr)⊕ V

∨
r ⊗ Vr .

For weight reasons, the first two summands do not contribute to the GLn-cohomology(3),
so the inclusion V

∨
r ⊗ Vr �→ S

2
(V

∨
r ⊕ Vr) induces an isomorphism in cohomology. By

[12, I Chap. 4, Lemma 4.4] there is an isomorphism H
∗
(GLn, V

∨
r ⊗ Vr) � Ext

∗
GLn

(Vr, Vr).
As a consequence, using the evaluation map Er � Ext

∗
Pk(I

(r)
, I

(r)
) → Ext

∗
GLn

(Vr, Vr),
one finally obtains a graded map (which is an isomorphism if n ≥ p

r):

Er → H
∗
(GLn, S

2
(V

∨
r ⊕ Vr)) .

(3) Since the homotheties of GLn are a normal group-subscheme of GLn, each rational GLn-module M splits as
the direct sum of the GLn-submodules Md of weight d, d ∈ Z (Md consists of the vectors m of M which are
acted on by the homotheties via the formula λId · m = λ

d
m). So the category of rational GLn-modules splits as a

direct sum of its full subcategories Ratd whose objects are the rational GLn-modules of weight d. Since the trivial
representation k has weight 0, the functor HomGLn (k,−) is zero on Ratd, for d �= 0. So its derived functors (i.e.,
H
∗
(GLn,−)) vanish on Ratd for d �= 0.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



82 A. TOUZÉ

Recall that Er is the graded vector space concentrated in degrees 2h for 0 ≤ h < p
r and

which equals k in these degrees. We denote by ch the image in H
2h

(GLn, S
2
(V

∨
r ⊕ Vr)) of

the canonical basis element of degree 2h of Er (in particular, c0 is the Trace used before).
For 0 ≤ h < p

r, 1 ≤ i ≤ k, 1 ≤ j ≤ �, we define the higher contraction (h|i|j) by the
formula:

(h|i|j) := (S
2
(φij))∗ch ∈ H

2h
(GLn, S

2
(V

∨⊕k
r ⊕ V

⊕�
r )) .

In particular the (0|i|j) are the usual contractions used in invariant theory.

Tʜ��ʀ�� 6.15 (Partial Cohomological FFT and SFT). – Let k, � be positive integers.
Let r ≥ 0 and let Vr := k

n (r) denote the r-th Frobenius twist of the standard representation
of GLn. Assume furthermore that n ≥ p

r
min{k, �}. Then:

1. The cohomology algebra H
∗
(GLn, S

∗
(V

∨⊕k
r ⊕ V

⊕�
r )) is generated by the contractions

(h|i|j), for 0 ≤ h < p
r, 1 ≤ i ≤ k, 1 ≤ j ≤ �.

2. There are no relations between the (h|i|j).

Proof. – We have to prove that H
∗
(GLn, S

∗
(V

∨⊕k
r ⊕ V

⊕�
r )) is a symmetric algebra on

the generators (h|i|j). The exponential formula yields an isomorphism of algebras (take the
total degree on the right hand side)

S
∗
(V

∨⊕k
r ⊕ V

⊕�
r ) � S

∗
(V

∨⊕k
r )⊗ S

∗
(V

⊕�
r ) .

For weight reasons, the summands of the form S
s
(V

∨⊕k
r ) ⊗ S

t
(V

⊕�
r ) for s �= t do not

contribute to the GLn-cohomology. So [12, I Chap. 4, Lemma 4.4] yields an isomorphism
of bigraded algebras:

H
∗
(GLn, S

∗
(V

∨⊕k
r ⊕ V

⊕�
r )) =

�
d H

∗
(GLn, S

d
(V

∨⊕k
r )⊗ S

d
(V

⊕�
r ))

�
�

d Ext
∗
GLn

(Γ
d
(V

∨⊕k
r ), S

d
(V

⊕�
r )) .

Thanks to Corollary 6.13, we know an isomorphism of bigraded algebras:
�

d Ext
∗
GLn

(Γ
d
(V

∨⊕k
r ), S

d
(V

⊕�
r )) �

�
d S

d
(k

k ⊗ k
� ⊗ Er) .

The elements of k
k ⊗ k

� ⊗ Er correspond bijectively through these isomorphisms with
H
∗
(GLn, S

2
(V

∨⊕k
r ⊕ V

⊕�
r )). Thus we have obtained that H

∗
(GLn, S

∗
(V

∨⊕k
r ⊕ V

⊕�
r )) is

a bigraded commutative algebra freely generated by its elements of bidegree (∗, 2).

Now, for weight reasons, the exponential formula shows that the map
�

i,j S
2
(φi,j) :

�
i,j S

2
(V

∨
r ⊕ V ) → S

2
(V

∨⊕k
r ⊕ V

⊕�
r )

induces an isomorphism in cohomology. So the (h|i|j) form a basis of the vector space
H
∗
(GLn, S

2
(V

∨⊕k
r ⊕ V

⊕�
r )), whence the result.

Q����ɪ�ɴ 6.16 (Conjectural Cohomological FFT for GLn). – We do not need any
hypothesis on n to build the (h|i|j). The FFT asserts that the (0|i|j) always generate the
invariant subalgebra H

0
(GLn, S

∗
(V

∨⊕k ⊕ V
⊕�

)). This leads us to the following question: do
the (h|i|j) generate the cohomology algebra H

∗
(GLn, S

∗
(V

∨⊕k ⊕ V
⊕�

)) for all n ≥ 1?
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R���ʀ� 6.17. – Finding the relations between the (h|i|j) seems more delicate. The SFT
gives us the relations between the (0|i|j). More generally, one could expect relations of the
same kind between the (h|i|j). There must also be some relations of the type (h|i|j) = 0 for
specific values of h when n is small, since some ch vanish when we are not in the semistable
range. We do not know if these two kinds of relations are sufficient to generate the relations
between the (h|i|j) in general.

7. The twisting spectral sequence

The following theorem generalizes the idea used by Chałupnik to compute exten-
sion groups in [3]. It yields a spectral sequence which computes the extension groups
Ext

∗
(F

(r)
, G

(r)
) between twisted functors from extension groups between untwisted func-

tors. So we call it the “twisting spectral sequence”. Its construction is a formal consequence
of Theorem 5.6. This spectral sequence is implicitly used in Chałupnik’s proofs of [3, Thm
4.3 and 4.4]. It also appears in [10, Prop. 4.2.2], but with a somewhat different identification
of the second page (and without the compatibilities with cup products and twisting maps,
which are very useful for applications).

Tʜ��ʀ�� 7.1 (The twisting spectral sequence). – Let r be a nonnegative integer and
let F,G be strict polynomial functors. We consider (cf. Section 2) G(Er ⊗ I) as a graded
functor and we denote its grading by the letter “t”. There is a first quadrant cohomological
spectral sequence, natural in F,G,

E
s,t
2 (F,G, r) = Ext

s
(F,G(Er ⊗ I)) =⇒ Ext

s+t
(F

(r)
, G

(r)
) .

Moreover, these spectral sequences enjoy the following additional structure:

(i) If F1, F2, G1, G2 are strict polynomial functors, there is a pairing of spectral sequences
(see e.g. [2, 3.9] for a definition):

E
∗,∗

(F1, G1, r)⊗ E
∗,∗

(F2, G2, r) → E
∗,∗

(F1 ⊗ F2, G1 ⊗G2, r) .

On the second page and on the abutment, this pairing coincides with the product of
extensions (defined in Section 5).

(ii) There are maps of spectral sequences (natural in F,G and compatible with the pairing
above):

E
∗,∗

(F,G, r) → E
∗,∗

(F,G, r + 1) .

These maps coincide with the split injections

Ext
∗
(F,G(Er ⊗ I)) �→ Ext

∗
(F,G(Er+1 ⊗ I))

on the second page, and with the twisting maps Ext
∗
(F

(r)
, G

(r)
) → Ext

∗
(F

(r+1)
, G

(r+1)
)

on the abutment.

R���ʀ� 7.2. – Assume that C
∗, resp A

∗, is a family of strict polynomial functors
endowed with a graded coalgebra (resp. algebra) structure. Then

�
s,i,j Ext

s
(C

i (r)
, A

j (r)
)

is a trigraded algebra (whose multiplication sends c1 ⊗ c2 to (m
(r)
A )∗(∆

(r)
C )

∗
(c1 ∪ c2),

where ∆C , resp. mA, denotes the comultiplication in C
∗, resp. multiplication in A

∗). Simi-
larly,

�
s,t,i,j Ext

s
(C

i
, A

j
(Er ⊗ I)) is a quadrigraded algebra (here t denotes the grading of
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the functors A
j
(Er ⊗ I)). Using the pairing of Theorem 7.1(i) and naturality, one obtains a

spectral sequence of quadrigraded algebras:
�

s,t,i,j

E
s,t
2 (C

i
, A

j
, r) =⇒

�

s+t,i,j

Ext
s+t

(C
i (r)

, A
j (r)

) .

Proof of Theorem 7.1. – The twisting spectral sequence is just an hypercohomology spec-
tral sequence, and we identify the second page by Theorem 5.6.

Let us give the details. Let F,G ∈ Pk. Let J
∗
G be an injective coresolution of G. So J

∗ (r)
G is

a coresolution of G
(r) and we denote by J

∗∗
G,r a Cartan-Eilenberg coresolution of J

∗ (r)
G . The

totalization of J
∗∗
G,r is an injective coresolution of G

(r), so that Ext
∗
(F

(r)
, G

(r)
) equals the

homology of the totalization of Hom(F
(r)

, J
∗∗
G,r). The spectral sequence E(F,G, r) associ-

ated to this bicomplex (which computes the homology along the columns first, then along the
rows, etc.) converges to Ext

∗
(F

(r)
, G

(r)
). Tensor products induce pairings of bicomplexes

Hom(F
(r)
1 , J

i,j
G1,r)⊗Hom(F

(r)
2 , J

k,�
G2,r) → Hom((F1 ⊗ F2)

(r)
, J

i+k,j+�
G1⊗G2,r)

whence pairings of spectral sequences E(F1, G1, r)⊗E(F2, G2, r) → E(F1⊗F2, G1⊗G2, r).
Finally, the map E(F,G, r) → E(F,G, r + 1) comes from the composite:

Hom(F
(r)

, J
∗∗
G,r) � Hom(F

(r+1)
, J
∗∗ (1)
G,r ) → Hom(F

(r+1)
, J
∗∗
G,r+1) .

Now we identify the second page. The first page of E(F,G, r) (together with the first
differential d1 : E

s,t
1 (F,G) → E

s+1,t
1 (F,G)) equals the t-graded complex Ext

t
(F

(r)
, J
∗ (r)
G ).

By Theorem 5.6, this complex is isomorphic (in a t-graded way, and compatibly with cup
products and Frobenius twist) to Hom(F, J

∗
G(Er ⊗ I)). But J

k
G(Er ⊗ I) is injective in each

degree, so J
∗
G(Er⊗I) is an injective t-graded coresolution of G(Er⊗I). Thus the second page

identifies with Ext
s
(F,G(Er ⊗ I)). Moreover the pairing of spectral sequences is given by

cup products on the first pages of the form Ext
t
(F

(r)
, J
∗ (r)
G ), so by tensor product after the

identification of the first page with Hom(F, J
∗
G(Er ⊗ I)), so by cup products on the second

page. Finally, the map induced by precomposition by the Frobenius twist is given at the first
page level by the split injection Hom(F, J

∗
G(Er ⊗ I)) �→ Hom(F, J

∗
G(Er+1 ⊗ I)), whence its

description at the second page level.

Of course, starting with a projective resolution of F in the proof, one obtains another first
quadrant cohomological spectral sequence:

E
�s,t
2 (F,G) = Ext

s
(F (Er ⊗ I), G) =⇒ Ext

s+t
(F

(r)
, G

(r)
) .

At first sight, the second page of E
�
(F,G, r) might seem quite different from the second

page of E(F,G, r). But the following proposition shows it is not. Thus, we do not have any
advantage in considering E

� (and that is why we do not use it later).

Pʀ����ɪ�ɪ�ɴ 7.3. – Let F,G be strict polynomial functors. For all finite dimensional
graded k-vector space V , there is a bigraded isomorphism, natural in F,G, and V (recall that
“ ∨” denotes k-linear duality)

Ext
∗
(F (V ⊗ I), G) � Ext

∗
(F,G(V

∨ ⊗ I)) .
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Proof. – It suffices to build an isomorphism natural in P, J and V

Hom(P (V ⊗ I), J) � Hom(P, J(V
∨ ⊗ I)) ,

when P = PU = Γ
d
(Homk(U,−)) and J = JW = S

d
(Homk(W,−)) (where U and W are

finite dimensional k-vector spaces). The general result then follows by taking resolutions.
Now, PU (V ⊗ I) = PU⊗V ∨ and JW (V

∨ ⊗ I) = JW⊗V , so the Yoneda lemma yields an
isomorphism, natural in PU , JW , V :

Hom(PU (V ⊗ I), JW ) � JW (U ⊗ V
∨
) =

(PU )
�
(V

∨ ⊗W
∨
) � Hom(PU , JW (V

∨ ⊗ I)) .

Whence the result.

R���ʀ� 7.4. – In fact, with more work, one can show that not only the second page
and the abutment of the two spectral sequences Ei(F,G, r) and E

�
i(F,G, r) are the same,

but more generally there is a spectral sequence E
��
i (F,G, r) and maps of spectral sequences

Ei(F,G, r) → E
��
i (F,G, r) and E

�
i(F,G, r) → E

��
i (F,G, r) which yield isomorphisms

between the second pages (and so also between the i-th pages for i ≥ 2).

The remainder of the section is devoted to applications of the twisting spectral sequence.

7.1. Effect of precomposition by Frobenius twists

The twisting spectral sequence is a convenient way to study the twisting map

Fr1 : Ext
∗
(F

(r)
, G

(r)
) → Ext

∗
(F

(r+1)
, G

(r+1)
) ,

induced by precomposition by I
(1). We already know that:

1. This map is injective, at least when k = Fp. This is the “twist injectivity”. It results
from a theorem of Andersen [12, Part II, prop 10.14] which proves that for G reductive,
the map induced by postcomposition by Frobenius twists H

∗
(G, V ) → H

∗
(G, V

(1)
) is

injective. Since k = Fp, we have [11, proof of Thm 4.10] I(1)◦F � F ◦I(1), so this result
for postcomposition by Frobenius twists is actually also valid for precomposition.

2. This map is an isomorphism in low degrees. This is the “strong twist stability” of [8,
Cor 4.10], and for k = Fp it also results from [5, Th. (6.6)].

As a first application of the twisting spectral sequence, we get a slight improvement of the
“strong twist stability”.

C�ʀ�ʟʟ�ʀʏ 7.5 (compare [8, Cor 4.10]). – Let F,G be strict polynomial functors, let j, r

be nonnegative integers. The twisting map

Ext
s
(F

(r)
, G

(j+r)
) → Ext

s
(F

(r+1)
, G

(j+r+1)
)

is an isomorphism for 0 ≤ s < 2p
r+j , and is injective in degree s = 2p

r+j .
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Proof. – The two graded vector spaces E
(j)
r and E

(j)
r+1 are equal in degrees t < 2p

r+j

(recall that −(j) acts as a homothety of coefficient p
j on the degrees). So the injective map

G
(j)

(Er ⊗ I) → G
(j)

(Er+1 ⊗ I) is an isomorphism in degrees t < 2p
r+j . In particular, the

map of spectral sequences E
s,t
2 (F,G

(j)
, r) → E

s,t
2 (F,G

(j)
, r + 1) is an isomorphism in total

degree (s + t) < 2p
r+j . Now the result follows by induction (on the page number of the

spectral sequence) from the following elementary result. Let f
∗

: C
∗ → D

∗ be a morphism
of cochain complexes, which is an isomorphism in degrees k < � and is injective in degree �.
Then H

k
(f) : H

k
(C) → H

k
(D) is an isomorphism in degrees k < � and is injective in

degree �.

We do not know any proof in Pk of the “twist injectivity” phenomenon. The following
statement may be a step towards such a proof (see Corollary 7.9 and Section 8 for many
results on collapsing).

C�ʀ�ʟʟ�ʀʏ 7.6. – Let F,G be strict polynomial functors and let r ≥ 0. Assume that the
spectral sequence E(F,G, r + 1) collapses at the second page. Then E(F,G, r) also collapses
at the second page and the twisting map is injective:

Ext
∗
(F

(r)
, G

(r)
) �→ Ext

∗
(F

(r+1)
, G

(r+1)
) .

Proof. – We have an injection E
s,t
2 (F,G, r) �→ E

s,t
2 (F,G, r + 1). Since E(F,G, r + 1) col-

lapses at the second page, so does E(F,G, r) (it is a sub-spectral sequence) and we get an
injection E

s,t
∞ (F,G, r) �→ E

s,t
∞ (F,G, r + 1). So precomposition by the Frobenius twist

induces an injective map Gr(Ext
∗
(F

(r)
, G

(r)
)) �→ Gr(Ext

∗
(F

(r+1)
, G

(r+1)
)) (“Gr” denotes

the graded object coming from the filtration on the abutment), hence an injective map
Ext

∗
(F

(r)
, G

(r)
) �→ Ext

∗
(F

(r+1)
, G

(r+1)
).

Finally, the twisting spectral sequence also gives information about numerical invariants
associated to Ext

∗
(F

(r)
, G

(r)
). For example, Corollary 7.7(ii) enables to control the growth

of the total dimension of Ext
∗
(F

(r)
, G

(r)
) viewed as a function of r (by [14] and [11, Th. 2.10],

we know that this total dimension is finite).

C�ʀ�ʟʟ�ʀʏ 7.7. – Let r be a positive integer and let F,G be strict polynomial functors.

(i) The graded vector spaces Ext
∗
(F

(r)
, G

(r)
), Ext

∗
(F,G(Er⊗I)) (with the total grading)

and Ext
∗
(F,G(k

pr ⊗ I)) have the same Euler characteristic.
(ii) The total dimension of Ext

∗
(F

(r)
, G

(r)
) is less than or equal to the total dimension

of Ext
∗
(F,G(k

pr ⊗ I)). Equality holds iff the twisting spectral sequence collapses at
the second page (i.e., E

∗∗
2 (F,G) = E

∗∗
∞ (F,G)).

Proof. – The graded functor G(Er ⊗ I) is concentrated in even degrees since Er is.
Moreover, Er = k

pr
as ungraded vector spaces, so Ext

∗
(F,G(Er ⊗ I)) and Ext

∗
(F,G(k

pr ⊗ I))

have the same Euler characteristic. Now if C is a complex, the Euler characteristic of C
∗

equals the Euler characteristic of H
∗
(C). Applying this to E

∗∗
r (F,G) we get (i). For (ii),

observe that the total dimension of E
∗∗
r+1(F,G) equals the total dimension of E

∗∗
r (F,G)

minus twice the total rank of d
∗∗
r .
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7.2. Detecting extensions between twisted functors

Consider the edge homomorphism θ(F,G, r) of the twisting spectral sequence:

Ext
∗
(F

(r)
, G

(r)
) � E

0,∗
∞ (F,G) ⊂ E

0,∗
2 (F,G) = Hom(F,G(Er ⊗ I)) .

Its target is easy to compute (this is invariant theory). So we want to use it as a way to detect
extensions in Ext

∗
(F

(r)
, G

(r)
) (or even to compute these extension groups). To this purpose,

we first state some elementary properties of the edge homomorphism.

L���� 7.8. – (i) If F is arbitrary and G = S
µ, the edge homomorphism is an isomor-

phism. Furthermore, it coincides with the isomorphism of Theorem 5.6 (whence the nota-
tion θ(F,G, r)).

(ii) The edge homomorphism is compatible with products:

θ(F1 ⊗ F2, G1 ⊗G2, r)(c1 ∪ c2) = θ(F1, G1, r)(c1)⊗ θ(F2, G2, r)(c2) .

(iii) The edge homomorphisms θ(F,G, r) and θ(F,G, r + 1) fit into a commutative diagram:

Ext
∗
(F

(r)
, G

(r)
)

��

θ(F,G,r)

�
�� Hom(F,G(Er ⊗ I))� �

��
Ext

∗
(F

(r+1)
, G

(r+1)
)

θ(F,G,r+1)

�
�� Hom(F,G(Er+1 ⊗ I)) .

Proof. – For (i), remember the construction of the twisting spectral sequence. Since S
µ

is injective, we can take an injective bicomplex J
∗∗ which is zero in bidegree (s, t) as soon as

t > 0. Thus, before identifying the second page, the edge isomorphism is simply the identity
map:

Ext
∗
(F

(r)
, S

µ (r)
) = H

∗
d0

(Hom(F
(r)

, J
∗0

)) = H
0
d1

(H
∗
d0

(Hom(F, J
∗∗

)) .

Since we use the isomorphism θ(F, S
µ
, r) to identify the second page, the edge homomor-

phism coincides with θ(F, S
µ
, r) after identification.

To prove (ii) and (iii), observe that these properties are already known when G = S
µ

(by (i)). Now G embeds in an injective J which is a finite direct sum of S
µ. And we have

a commutative diagram:

Ext
∗
(F

(r)
, G

(r)
)

��

θ(F,G,r)
�� Hom(F,G(Er ⊗ I))� �

��
Ext

∗
(F

(r)
, J

(r)
)

θ(F,J,r)

� �� Hom(F, J(Er ⊗ I)) .

Since the vertical arrow on the right is injective, one can read cup products as well as the
effect of the Frobenius twist in Hom(F, J(Er ⊗ I)) where we know (ii) and (iii) are valid.
This proves (ii) and (iii).

Now assume that the twisting spectral sequence collapses at the second page. Then the
edge homomorphism is surjective (so it detects many extensions).
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C�ʀ�ʟʟ�ʀʏ 7.9. – Let r be a positive integer and let F,G be strict polynomial functors.
Assume that Ext

s
(F,G(Er ⊗ I)) = 0 for s odd. Then the twisting spectral sequence collapses

at the second page. So one has an isomorphism (compatible with cup products and Frobenius
twisting).

Gr(Ext
s+t

(F
(r)

, G
(r)

)) � E
s+t
∞ (F,G) � Ext

s
(F,G(Er ⊗ I)) .

In particular the edge homomorphism is a surjection (compatible with cup products and Frobe-
nius twisting):

Ext
∗
(F

(r)
, G

(r)
) � Ext

0
(F,G(Er ⊗ I)) .

Its kernel is isomorphic (non naturally in F,G) to Ext
>0

(F,G(Er ⊗ I)).

Proof. – The graded functor G(Er ⊗ I) is concentrated in even degrees since Er is. Thus
E

s,t
2 (F,G, r) is zero unless s and t are even. So the second page is concentrated in even total

degree. The differentials of the spectral sequence raise the total degree by one, so they must
vanish.

R���ʀ� 7.10. – Corollary 7.9 is a generalization of the main theorem of [3]. Indeed,
assume that the stronger Ext-condition holds: Ext

s
(F,G(Er ⊗ I)) = 0 for s > 0. Then

E
s,t
2 (F,G, r) is concentrated in bidegrees (0, t) so the edge homomorphism is actually an

isomorphism (compatible with cup products and Frobenius twisting), compare [3, Th. 4.4]:

Ext
∗
(F

(r)
, G

(r)
) � Hom(F,G(Er ⊗ I)) .

As examples of pairs of functors satisfying this strong Ext-condition, one can take: (i) F

is a projective functor and G is arbitrary, (ii) F is arbitrary and G is injective, (iii) F
� and G

are Schur functors (this case gives [3, Th. 6.1]), or more generally (iv) F
� and G have a Schur

filtration (i.e., a filtration whose associated graded object is a direct sum of Schur functors).
Many Ext

∗-computations between twisted functors known in the literature amount to one
of these cases.

As a pair satisfying the vanishing in odd degrees but not the strong Ext-condition, one
can take for example F = Γ

d (1) and G = I
(1) ⊗ S

dp−p.

8. The collapsing conjecture

As observed in Remark 7.10, many explicit computations in the literature amount to the
collapsing of the twisting spectral sequence at the second page. In fact, when one looks
carefully at the results of [3, 4, 8, 11], it seems that the total dimension of Ext

∗
(F

(r)
, G

(r)
)

always equals the total dimension of Ext
∗
(F,G(k

pr⊗I)). Thus (cf. Corollary 7.7(ii)), it seems
that the twisting spectral sequence always collapses at the second page, even when there is no
obvious lacunary reason for it. This leads us to the following conjecture.

C�ɴ�����ʀ� 8.1. – For all r ≥ 0, and all F,G, the twisting spectral sequence E(F,G, r)

of Theorem 7.1 collapses at the second page.
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R���ʀ� 8.2. – One can reduce Conjecture 8.1 to slightly less general statement. For
example, by induction, one can reduce the conjecture to the case r = 1. We also know that
the collapsing of E(F,G, r + 1) implies the collapsing of E(F,G, r) by Corollary 7.6. So, to
prove the conjecture, it suffices to find for each pair F,G an integer r such that E(F,G, r)

collapses at the second page.

The purpose of this section is to make a step towards Conjecture 8.1. Namely, we prove
that the spectral sequence E(F,G, r) collapses at the second page for all r ≥ 1 for a big
family of pairs (F,G), which contains all the pairs studied in [3, 4, 8, 11], and many others.
This collapsing is stated in Theorem 8.11, which is the main result of the section.

Our general approach to Conjecture 8.1 and to Theorem 8.11 is based once again on
Troesch complexes, and may be described as follows. Recall the way we constructed the
twisting spectral sequence E(F,G, r). We first took an injective coresolution J

∗
G of G. So

J
∗ (r)
G is an exact coresolution of G

(r) by twisted symmetric powers. The twisting spectral
sequence E(F,G, r) is constructed as the spectral sequence associated to the bicomplex
Hom(F

(r)
, J
∗,∗
G,r), where J

∗,∗
G,r is a Cartan-Eilenberg injective coresolution of J

∗ (r)
G . The idea

to prove our collapsing result is to construct a bicomplex J
∗,∗
G,r, whose columns are Troesch

coresolutions (i.e., of the form T (S
µ
, r)

∗). Indeed, we have seen in Lemma 4.4 that the com-
plexes Hom(F

(r)
, T (S

µ
, r)) are zero in odd degrees. So, with such a bicomplex J

∗,∗
G,r in hand,

the odd degree rows of the bicomplex Hom(F
(r)

, J
∗,∗
G,r) are zero, so that the differentials di

of the associated spectral sequence are zero for i ≥ 2.
To construct such a bicomplex, we want to apply a functor “T (−, r)” to the coreso-

lution JG. We have already defined the values of T (−, r) on symmetric powers in Defi-
nition 4.2. But it is not clear how to define in a functorial way the values of T (−, r) on
morphisms between symmetric powers. To bypass this difficulty, we introduce in Section 8.1
“twist compatible categories” T r Pk which extend to the case of arbitrary r the twist com-
patible categories already used in [16] for r = 1. These categories are (not full) subcategories
of Pk containing symmetric powers. Since T r Pk has less morphisms than Pk, it is easier to
make T (−, r) into a functor on this category (cf. Proposition 8.6). In Section 8.2, we use the
functor T (−, r) to fulfill our plans. Namely, if G has a “twist compatible coresolution” (i.e.,
an injective coresolution of G whose differentials are morphisms of the twist compatible
category), our idea works by taking J

∗,∗
G,r = T (J

∗
G, r)

∗. This proves Theorem 8.11, and
we observe in Proposition 8.10 that many interesting functors admit such twist compat-
ible coresolutions. Finally, we study in Section 8.3 to what extent our approach could be
used to prove Conjecture 8.1 for all pairs (F,G). In particular, we propose an elementary
combinatorial problem whose solution would prove the conjecture.

8.1. Twist compatible categories

In this section, we choose a functorial construction of the direct sum in Pk (for example,
F ⊕ G equals the functor which sends a vector space V to the set of couples (f, g), with
f ∈ F (V ) and g ∈ G(V )).

D��ɪɴɪ�ɪ�ɴ 8.3 (compare [16, Def. 3.4]). – Let r be a positive integer, let (λ
i
) and (µ

j
)

be two finite families of tuples of nonnegative integers, and let f ∈ Hom(
�

i S
λi

,
�

j S
µj

).
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We say that f is r-twist compatible if there exists a map fr such that the following diagram
commutes:

�
i S

λi
(S

pr
)

����

f(Spr
)
���

j S
µj

(S
pr

)

�����
i S

prλi fr ���
j S

prµj

where the vertical epimorphisms are induced by multiplications S
n
(S

pr
) � S

npr
(it is the

unique map in Hom(S
n
(S

pr
), S

npr
) up to a scalar constant).

R���ʀ� 8.4. – In general, not all isomorphisms
�

i S
λi

(S
pr

) �
�

i S
λi

(S
pr

) are
r-twist compatible. That is why it is important to choose a strict definition of the direct sum:
with a definition “up to isomorphism”, Definition 8.3 would be inconsistent.

If fr exists, it is unique by surjectivity of the vertical arrows. Observe that r-twist compat-
ible maps form a subvector space of the k vector space Hom(

�
i S

λi
,
�

j S
µj

), and that the
composite of two r-twist compatible maps is r-twist compatible. Examples of r-twist com-
patible maps are the multiplications S

i⊗S
j → S

i+j or the permutations S
i⊗S

j � S
j⊗S

i.
So, the category T r Pk whose objects are the finite direct sums of S

µ and whose maps are
r-twist compatible is a k-linear subcategory of Pk, stable by direct sums.

For combinatorial reasons, we would like our category to be stable not only by direct sums
but also by tensor products. So we have to enlarge it a bit. To this purpose we introduce
“iterated symmetric tensors”. A 0-iterated symmetric tensor is just a functor of the form S

µ.
For n ≥ 1, an n-iterated symmetric tensor is a functor F of the form F :=

�k
i=1

��
j=1 Si,j

where Si,j is an (n − 1)-iterated symmetric tensor. If F is an n-iterated symmetric tensor,
distributivity of tensor products with respect to direct sums yields a canonical isomorphism
ξF : F � F0 where F0 is a direct sum of 0-iterated symmetric tensors.

D��ɪɴɪ�ɪ�ɴ 8.5. – The r-th twist compatible category T r Pk is the (not full) subcategory
of Pk whose objects are iterated symmetric tensors and whose morphisms are the f : F → G

such that f0 := ξG ◦ f ◦ ξ
−1
F are r-twist compatible.

One checks as in [16, Lm 3.10] that T r Pk is stable by direct sums and tensor products.
Moreover, we have a functor (actually an equivalence of categories), which enables us to
extend any functor with source T r Pk into a functor with source T r Pk:

T r Pk → T r Pk

F �→ F0

F
f−→ G �→ F0

f0−→ G0

The interest of T r Pk (or T r Pk) lies in the following observation. Let
f ∈ Hom(

�
i S

λi
,
�

j S
µj

) be an r-twist compatible map. Since f
(r) is just the restric-

tion of f(S
pr

) to the subfunctor
�

i S
λi (r), we have a commutative diagram (the vertical
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arrows are the canonical inclusions):

�
i S

λi (r)
� �

��

f(r)

���
j S

µj (r)
� �

���
i S

prλi fr ���
j S

prµj
.

Thus fr determines way to choose a lifting of f
(r) to

�
i S

prλi →
�

j S
prµj

, in a way which
respects composition (there are often many liftings of f

(r) available, so making a “good”
choice is not trivial).

Now let T (⊕iS
λi

, r)
∗ be the injective coresolution of ⊕iS

λi (r) obtained by contracting
the p-complex

�
j B

∗
prλi(r) (that is, the complex T (⊕iS

λi
, r)

∗
= ⊕iT (S

λi
, r)

∗ is the one
used in Section 4.1). If f is a r-twist compatible map define T (f, r)

∗
:= f(xr ⊗ I)[1]. By

Proposition 3.7, this defines a functor from T r Pk (or equivalently from T r Pk) to cochain
complexes. To sum up, we have proved the following result.

Pʀ����ɪ�ɪ�ɴ 8.6. – Let r be a nonnegative integer. The complexes T (S
µ
, r)

∗ of Sec-
tion 4.1 define an additive functor T (−, r)

∗ from the r-twist compatible category T r Pk to the
category of cochain complexes, which sends an object F to an injective coresolution of F

(r) and
a morphism f : F → G to a chain map T (f, r)

∗
: T (F, r)

∗ → T (G, r)
∗ which lifts f

(r).

R���ʀ� 8.7. – For r = 1, we have T (−, 1)
∗

= −[1] ◦ T where T is the functor of [16,
Prop. 3.13] (T has values in p-complexes). Contrarily to [16, Prop. 3.13], we do not assert
any compatibility of T (−, r) with tensor products in Proposition 8.6. Indeed for r ≥ 2, the
isomorphism B(r)

∗
d(V ⊕W ) �

�
i+j=d B(r)

∗
i (V )⊗B(r)

∗
j (W ) induced by the exponential

formula does not commute with the p-differentials, so it is not clear how to get a compatibility
result with tensor products (this problem already appears in Remark 5.7).

In Section 4.1, we computed the complexes Hom(F
(r)

, T (S
µ
, r)

∗
). Now we can consider

T (−, r) as a functor, and the analysis performed in Section 4.1 yields the following result.

Pʀ����ɪ�ɪ�ɴ 8.8. – Let F ∈ Pk and let r be a nonnegative integer. For all J ∈ T r Pk,
the cochain complex Hom(F

(r)
, T (J, r)

∗
) is zero in odd degrees (so its differential is trivial).

Moreover, there is a graded isomorphism, natural with respect to morphisms f : F
� → F in Pk

and g : J → J
� in T r Pk:

Hom(F
(r)

, T (J, r)
∗
) � Hom(F, J(Er ⊗ I)) .

Proof. – The cancellation property is given in Lemma 4.4. The naturality is a particular
case of Lemma 4.5.
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8.2. A partial answer to Conjecture 8.1

D��ɪɴɪ�ɪ�ɴ 8.9. – Let F ∈ Pk and let r be a positive integer. An r-twist compatible
coresolution of F is a cochain complex J

∗
F in T r Pk, which is a coresolution of F (4).

Pʀ����ɪ�ɪ�ɴ 8.10 (examples). – Let r be a positive integer.

(i) The symmetric powers S
n admit r-twist compatible coresolutions.

(ii) The kernels of the reduced bar complex B(S
∗
) (in particular the exterior powers Λ

n)
admit r-twist compatible coresolutions.

(iii) The kernels of the reduced bar complex B(Λ
∗
) (in particular the divided powers Γ

n) admit
r-twist compatible coresolutions.

(iv) If F and G admit r-twist compatible coresolutions, so does F ⊗G.

Proof. – For (i), take S
n as a resolution of S

n. For (ii), we know [16, Lm 3.19] that B(S
∗
)

has homology Λ
n. Moreover, the differential of B(S

∗
) is r-twist compatible, since it is built

by taking linear combinations of tensor products of permutations S
i ⊗ S

j � S
j ⊗ S

i and
multiplications S

i ⊗ S
j → S

i+j which are r-twist compatible. So, the homogeneous part of
polynomial degree n of B(S

∗
) yields a complex J

∗
Λn in T r Pk which looks like:

⊗n
����
J0
Λn

→
�

i+j=n−1(⊗i
)⊗ S

2 ⊗ (⊗j
)

� �� �
J1
Λn

→ · · ·→ S
n

����
Jn−1
Λn

.

The cohomology of J
∗
Λn equals Λ

n concentrated in degree 0, so Λ
n admits J

∗
Λn as an r-twist

compatible coresolution. If K is a degree n homogeneous strict polynomial functor which is a
kernel of a differential of B(S

∗
), then K admits a truncation of J

∗
Λn as an r-twist compatible

coresolution. The proof of (iii) is similar (one must work in the double reduced bar resolution
B(B(S

∗
)), as in [16, Prop. 3.21]). Finally, (iv) follows from the stability of T r Pk by tensor

products.

We are now ready to prove the main theorem of Section 8.

Tʜ��ʀ�� 8.11 (A partial answer to Conjecture 8.1). – Let F,G ∈ Pk and let r be a
positive integer. Assume that G admit an r-twist compatible coresolution. Then there is a graded
isomorphism, natural in F (take the total degree on the right hand side):

Ext
∗
(F

(r)
, G

(r)
) � Ext

∗
(F,G(Er ⊗ I)) .

Thus, the twisting spectral sequence E(F,G, r) collapses at the second page.
Similarly, if F

� has an r-twist compatible coresolution, Ext
∗
(F

(r)
, G

(r)
) is graded isomor-

phic (naturally in G) to Ext
∗
(F (Er ⊗ I), G), and the twisting spectral sequence E(F,G, r)

collapses at the second page.

R���ʀ� 8.12. – Theorem 8.11 generalizes [4, Cor 4.2] (One can prove that Chałupnik’s
result is equivalent to the case F

�
= Λ

d.) The latter result is the key result (together with [4,
Prop. 3.1]) to compute the extension groups Ext

∗
(Λ
∗ (j)

,Γ
∗ (r)

) and Ext
∗
(S
∗ (j)

,Γ
∗ (r)

).

(4) The objects of T r Pk are injectives of Pk. Thus, r-twist compatible coresolutions of F are actually injective
coresolutions of F .
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Proof of Theorem 8.11. – Assume that G admits a r-twist compatible coresolution J
∗.

Then the totalization of the bicomplex T (J
∗
, r)

∗ is an injective coresolution of G
(r). Hence

Ext
∗
(F

(r)
, G

(r)
) may be computed as the homology of the totalization of the bicomplex

B
∗,∗

(F, r) := Hom(F
(r)

, T (J
∗
, r)

∗
)

Now by Proposition 8.8, the odd rows B
∗,2k+1

(F, r) of B
∗,∗

(F, r) are zero (so the vertical
differential of this bicomplex is trivial) and the totalization of B

∗,∗
(F, r) is isomorphic

(naturally in F ) to Hom(F, J
∗
(Er ⊗ I)).

But the homology of the latter complex computes Ext
∗
(F,G(Er ⊗ I)), whence the first

isomorphism.

The collapsing of the twisting spectral sequence follows for dimension reasons by Corol-
lary 7.7(ii). Finally, the case when F

� has an r-twist injective coresolution follows by duality
[11, Prop. 2.6].

8.3. A combinatorial problem

Let (C
∗
, ∂) be a complex in Pk, whose objects are finite direct sums of functors of the form

S
µ. For each object C

k
:=

�n
i=1 S

µi
, we define an object ‹Ck

:=
�n

i=1 S
pµi

. The canonical
inclusions S

µ (1)
�→ S

pµ yield a graded injection: C
∗ (1)

�→ ‹C∗. Since the objects of ‹C∗ are
injective it is always possible to find maps �∂k

: ‹Ck → ‹Ck+1 whose restrictions to C
k (1) equal

∂
k (1). But if we construct the �∂k by an abstract injectivity argument, we do not have �∂◦�∂ = 0

in general.

Pʀ�ʙʟ�� 8.13. – For all F ∈ Pk, find a coresolution (J
∗
F , ∂) by direct sums of functors of

the form S
µ such that the following holds. There exists a family of liftings �∂k

: �Jk
F → �Jk+1

F ,
k ≥ 0, of the differentials ∂

k (1), such that �∂ ◦ �∂ = 0.

If F admits a 1-twist compatible coresolution (J
∗
F , ∂), then ∂ is a lifting of ∂

(1) to �J∗F such
that ∂ ◦ ∂ = 0, so in that case we can solve the problem.

An answer to the problem 8.13 would imply a positive answer to the collapsing Conjec-
ture 8.1. Indeed, assume that we can solve the problem for G. Then, by Propositions 3.4
and 3.7, the bigraded object J

∗
G(xr ⊗ I) is endowed with a vertical p-differential δ and a

horizontal differential ∂(xr ⊗ I) which commute. Moreover, if we contract the columns
(i.e., apply the functor −[1] column wise), we obtain a bicomplex �J∗,∗G whose totalization
is an injective coresolution of F . Then for all F ∈ Pk we can analyze Hom(F

(r)
, �J∗,∗G ) as

in the proof of Theorem 8.11 to conclude that E(F,G, 1) collapses. Now, as observed in
Remark 8.2, if E(F,G, 1) collapses for all F,G, then Conjecture 8.1 is valid.

9. Appendix: review of the construction of Troesch p-complexes

In this appendix, we review the construction of Troesch p-complexes from [18] (with our
notations and conventions from Section 2). As usual, we work over a ground field k of prime
characteristic p.
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9.1. A preparatory lemma

Let U be a finite dimensional graded vector space over k. We consider S
∗
(U) as a graded

object in the usual way (e.g. if x (resp. y) is a homogeneous element of degree i (resp. j),
then xy ∈ S

∗
(U) has degree i + j). Recall that if C is a coalgebra, A is an algebra, and

f, g ∈ Endk(C, A), the convolution f � g : C → A is the composite:

C
∆−→ C ⊗ C

f⊗g−−−→ A⊗A
m−→ A .

The following lemma gives a way to construct p-differentials on S
∗
(U) from p-differentials

on U . It encompasses the computations of [18, Prop. 4.1.4, 4.1.5 and 4.2.6].

L���� 9.1. – Let φ : U → U be a morphism of graded vector spaces, which raises the
degree by an integer α. The convolution Id �S

∗
(φ) splits as a sum of morphisms φd : S

∗
(U) →

S
∗
(U) such that, for all d ≥ 0, φd raises the degree by dα. The morphisms φd satisfy the

following properties:

(1) For all d, e ≥ 0, φd ◦ φe = φe ◦ φd.
(2) If φ is a p-differential, then for all d ≥ 1, φd is a p-differential.
(3) Let ψ : U → U be another morphism of graded vector spaces, which raises the degree

by β. If φ and ψ commute, then for all d, e ≥ 0, φd ◦ ψe = ψe ◦ φd.

Proof. – Observe that (3) implies (1). Let us prove (3). For all d ≥ 0, the restriction of φd

to the graded object S
n
(U) can be explicitly described as the composite

S
n
(U)

∆−→ S
n−d

(U)⊗ S
d
(U)

Id⊗Sd(φ)−−−−−−→ S
n−d

(U)⊗ S
d
(U)

m−→ S
n
(U) .

If (x1, . . . , xn) is a family of elements of U and if J ⊂ {1, . . . , n}, we denote by xJ the product
of the xj , for j ∈ J (so xJ ∈ S

card(J)
(U)). The comultiplication ∆ : S

n
(U) → S

n−d
(U)⊗ S

d
(U)

sends a product x1 · · ·xn ∈ S
n
(U) to the sum of the xJ ⊗ xK ∈ S

n−d
(U) ⊗ S

d
(U), where

the sum is taken over all partitions J � K of {1, . . . , n} into a subset J of n − d elements
and a subset K into d elements. So we have the equality:

φd(x1 · · ·xn) =

�

J�K={1,...,n} card(K)=d

xJ · φ(x)K .

A similar formula holds for ψe:

ψe(y1 · · · yn) =

�

L�M={1,...,n} card(M)=e

yL · φ(y)M .

Putting these two formulas together, we compute that the composite ψe ◦ φd is given by the
formula:

(ψe ◦ φd)(x1 · · ·xn) =

�
xJ∩L · φ(x)K∩L · ψ(x)J∩M · (ψ ◦ φ)(x)K∩M ,

where the sum is taken over all partitions J �K = {1, . . . , n} and L�M = {1, . . . , n} such
that K has cardinal d and M has cardinal e. Similarly,

(φd ◦ ψe)(x1 · · ·xn) =

�
xJ∩L · φ(x)K∩L · ψ(x)J∩M · (φ ◦ ψ)(x)K∩M .

Since φ ◦ ψ = ψ ◦ φ the two expressions are equal. This proves (3).
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Now we prove (2). Since the φd commute with each other by (1), Newton’s binomial
formula yields an equality:

(Id � S
∗
(φ))

p
=

∞�

d=0

(φd)
p

.

In this formula, the sum is finite on each summand S
n
(U), and the exponent refers to

composition of morphisms. So, to prove that the iterated compositions (φd)
p are zero for

d > 0, it suffices to prove that (Id � S
∗
(φ))

p equals the identity map. Let f, g : S
∗
(U) → S

∗
(U)

be two Hopf algebra morphisms. Then it follows from the axioms of commutative Hopf
algebras satisfied by S

∗
(U) that:

(Id � f) ◦ (Id � g) = Id � (f � g � (f ◦ g)) .

Using the axioms of Hopf algebras, and the commutativity and the cocommutativity
of S

∗
(U), we check that (f � g � (f ◦ g)) is a morphism of Hopf algebras. So we can iterate

the computation. In particular, if f is of the form S
∗
(φ), with φ an endomorphism of U , we

get the formula:
(Id � S

∗
(φ))

p
= Id � (S

∗
(φ)

p
) .

If φ is a p-differential, then S
∗
(φ)

p
= S

∗
(φ

p
) = S

∗
(0) = η◦� (where η, resp �, is the unit, resp.

counit, of S
∗
(U)). Since η◦� is the unit for the convolution, we obtain that (Id�S

∗
(φ))

p
= Id.

This concludes the proof of Lemma 9.1.

9.2. Construction of Troesch p-complexes

We now turn to describe the construction of the p-complexes Bd(r)
∗. Let V be a finite

dimensional vector space (the elements of V are considered as elements of degree 0). As a
graded object, we let:

Bd(r)
∗
(V ) := S

∗
(xr ⊗ V ) ,

where xr is the graded vector space which equals k in each degree i, for 0 ≤ i < p
r. To define

the p-differential on Bd(r)
∗
(V ), we proceed in several steps.

S��� 1. First, we observe that there is a canonical isomorphism of graded vector spaces:

x(0)
1 ⊗x(1)

1 ⊗ · · ·⊗x(r−1)
1 � xr .

Indeed each x(k)
1 is (according to the conventions of Section 2, which define the Frobenius

twist I
(k) on graded vector spaces(5) as an operator which multiplies the degrees by p

k) a
direct sum of copies of k, one in each degree p

k
i for 0 ≤ i < p.

S��� 2. On each x(k)
1 we define a “translation operator” ρ

(k)
: x(k)

1 → x(k)
1 , which maps

the summand k of degree p
k
i of x(k)

1 identically onto the summand k of degree p
k
(i + 1)

of x(k)
1 if i < p− 1, and which is zero in the other degrees. Thus, ρ

(k) raises the degree by p
k

and it is a p-differential: (ρ
(k)

)
p

= 0.
S��� 3. Now we use the translation operators ρk and Lemma 9.1 to define a bunch

of p-differentials on the graded functor Bd(r)
∗
(V ). Namely, for all integer s such that

0 ≤ s < r, and for all positive integer � we let

d
r−1−s
� :=

Ä
x(0)

1 ⊗ · · ·⊗x(s−1)
1 ⊗ ρ

(s) ⊗x(s+1)
1 ⊗ · · ·⊗x(r−1)

1 ⊗ V

ä
�
.

(5) Here, we use the convention x(0)
1 = x1.
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That is, d
r−1−s
� is the part of Id � S

∗
(x(0)

1 ⊗ · · ·⊗ ρ
(s) ⊗ · · ·⊗x(r−1)

1 ⊗ V ) which raises the
degree by �p

s. By Lemma 9.1, these morphisms d
s
� satisfy the following properties.

(i) For all � > 0 and all s ∈ {0, . . . , r − 1}, d
s
� raises the degree by �p

r−1−s.
(ii) For all � > 0 and all s ∈ {0, . . . , r − 1}, d

s
� is a p-differential.

(iii) For all k, � > 0 and all s, t ∈ {0, . . . , r − 1}, d
s
� ◦ d

t
k = d

t
k ◦ d

s
� .

S��� 4. Finally, we define the differential d on Bd(r)
∗, which raises the degree by p

r−1,
by the formula:

d := d
0
1 + d

1
p + · · · + d

r−1
pr−1 .

(It is a p-differential thanks to properties (ii) and (iii) given in step 3.)

R���ʀ� 9.2. – If r = 1, the p-complex Bd(1)
∗
(V ) equals S

d
(x1⊗V ) as a graded object.

Its differential d = d
0
1 equals the composite:

S
d
(x1 ⊗ V )

∆−→S
d−1

(x1 ⊗ V )⊗ (x1 ⊗ V )

Id⊗(ρ⊗V )−−−−−−→ S
d−1

(x1 ⊗ V )⊗ (x1 ⊗ V )
m−→ S

d
(x1 ⊗ V ) .

The exponential formula yields an isomorphism of graded functors S
d
(x1⊗V ) �

�
S

µ
(V ),

where the sum is taken over all p-tuples µ = (µ0, . . . , µp−1) of weight d, and each S
µ
(V ) is

placed in degree
�

iµi. If we denote by δ : S
i ⊗ S

j → S
i−1 ⊗ S

j+1 the composite

S
i ⊗ S

j ∆−→ S
i−1 ⊗ S

1 ⊗ S
j m−→ S

i−1 ⊗ S
j+1

,

then the differential d can be rewritten as the sum

d =

p−1�

i=0

Id⊗ · · ·⊗ Id� �� �
i factors

⊗δ ⊗ Id⊗ · · ·⊗ Id� �� �
p−2−i factors

.

This corresponds to the expression given in [18, Section 3.1, p. 1062].

R���ʀ� 9.3. – If r ≥ 2, we denote by xs,r
1 the graded vector space:

xs,r
1 := x(s)

1 ⊗x(0)
1 ⊗ · · ·⊗‘x(s)

1 ⊗ · · ·⊗x(r−1)
1 .

Permutation of the factors of tensor products yields isomorphisms χs : xs,r
1 � x0,s

1 for
all 0 ≤ s < r. The maps ιs(r) defined in [18, Def 4.2.1] can be identified, through the

exponential isomorphism, with the isomorphisms S
∗
(xs,r

1 ⊗V )
S∗(χs)−−−−→ S

∗
(x0,r

1 ⊗V ). Thus,
the differentials d

s
� defined by Troesch in [18, Def 4.2.2] coincide with ours.

9.3. The homology of Bd(1)
∗

The following result is proved in [18, Section 3].

Tʜ��ʀ�� 9.4 ([18, Thm 3.1.2]). – Let d ≥ 0. Let us identify S
d (1) with a subfunctor

of Bpd(1)
∗ of cohomological degree 0 via the inclusion

S
d (1)

(V ) �→ S
pd

(V ) �→ S
pd

(x1 ⊗ V ) .

Then the p-complex Bpd(1)
∗ is a p-coresolution of S

d (1) (in particular, the p-differential
of Bpd(1)

∗ vanishes on S
d (1)).

If d is not divisible by p, then Bd(1)
∗ is p-acyclic.
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9.4. Some maps between Troesch p-complexes

Let us define a morphism:

ι : Bd(r)
∗
(V

(1)
) = S

d
(xr ⊗ V

(1)
) → S

pd
(xr+1 ⊗ V ) = Bpd(r + 1)

∗
(V )

as the composite:

S
d
(xr ⊗ V

(1)
) � S

d (1)
(xr ⊗ V ) �→ S

pd
(xr ⊗ V ) �→ S

pd
(xr+1 ⊗ V ) .

Here, the first morphism is induced by the isomorphism xr � x(1)
r which maps the sum-

mand k of degree i of xr identically onto the summand k of degree pi of x(1)
r . The second

map is induced by the canonical inclusion S
d (1)

�→ S
pd, and the last map is induced by the

canonical inclusion of graded objects of xr into xr ⊗ x(r)
1 = xr+1. The following lemma

follows from the construction of the differentials of Bd(r)
∗. We use it in Lemma 5.2.

L���� 9.5 (Compare [18, Lemmas 4.3.4 and 4.3.5]). – The morphism ι sends an element
of degree i of Bd(r)

∗
(V

(1)
) to an element of degree pi of Bpd(r+1)

∗
(V ). Moreover, it commutes

with the p-differentials.

Proof. – The assertion on degrees is clear. Let us prove that ι commutes with the p-differ-
entials. In this proof, we denote by d the p-differential of Bd(r)

∗, and by D the p-differential
of Bpd(r + 1)

∗. We also denote by ι
� the inclusion of graded functors:

S
d (1)

(xr ⊗ V ) �→ S
pd

(xr ⊗ V ) �→ S
pd

(xr+1 ⊗ V ) .

S��� 1. We define a p-differential d
� on S

d
(x(1)

r ⊗ V
(1)

) = S
d (1)

(xr ⊗ V ), which raises
the degree by p

r, as the sum
d
�
:= d

�1
p + · · · + d

�r
pr ,

where d
�s
� denotes the part Id � S

d
(x(1)

1 ⊗ · · · ⊗ ρ
(s) ⊗ · · · ⊗ x(r)

1 ⊗ V
(1)

) which raises the
degree by �p

r−s.
By definition of d

�, the isomorphism S
d
(xr ⊗ I

(1)
) � S

d (1)
(xr ⊗ I) induces an

isomorphism of p-complexes (Bd(r)
∗
(V

(1)
), d

(1)
) � (S

d (1)
(xr ⊗ V ), d

�
), which sends an

element of degree i of the first p-complex to an element of degree pi of the second p-complex.
Thus, to conclude the proof of Lemma 9.5, it suffices to prove that ι

� induces a degree
preserving morphism of p-complexes:

(S
d (1)

(xr ⊗ V ), d
�
) �→ (Bpd(r + 1)

∗
(V ), D).

S��� 2. We write the p-differential D of Bpd(r +1)
∗
(V ) as the sum of two p-differentials:

D = D
�
+ D

�� with D
�
= D

0
1 + · · · + D

r−1
pr−1 and D

��
= D

r
pr ,

where D
s
� is the part of Id � S

pd
(x(0)

1 ⊗ · · ·⊗ ρ
(s) ⊗ · · ·⊗x(r)

1 ⊗ V ) which raises the degree
by �p

r−s. By definition of d
� and D

�, the inclusion ι
�
: S

d (1)
(xr⊗ I) �→ S

pd
(xr⊗x(r)

1 ⊗V )

induces an inclusion of p-complexes

(S
d (1)

(xr ⊗ V ), d
�
) �→ (Bpd(r + 1)

∗
(V ), D

�
) .

S��� 3. So, to finish the proof, it suffices to check that D
�� vanishes on the graded

subfunctor S
d (1)

(xr ⊗ V ) of Bpd(r + 1)
∗
(V ).
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We have a commutative diagram:

S
pd

(x1 ⊗xr ⊗ V )
�
(∗)
�� Spd

(xr ⊗x(r)
1 ⊗ V )

S
d (1)

(xr ⊗ V )

��

��

S
d (1)

(xr ⊗ V )

��

ι�

��

where the vertical arrow on the left is the inclusion from Theorem 9.4 evaluated on xr ⊗ V ,
the vertical arrow on the right is our map ι

� and the horizontal arrow (∗) is induced by the
isomorphism x1 � x(r)

1 which maps an element of degree i of x1 identically on the same
element with degree p

r
i of x(r)

1 .
Let us denote by d

�� the p-differential of Bd(1)
∗. By definition of d

�� and D
��, the isomor-

phism (∗) induces an isomorphism of p-complexes

(Bpd(1)
∗
(xr ⊗ V ), d

��
(xr ⊗ V )) � (Bpd(r + 1)

∗
(V ), D

��
) .

We know by Theorem 9.4 that the differential d��(xr⊗V ) vanishes on S
d (1)

(xr⊗V ). Since
the diagram commutes, this means that D

�� vanishes on S
d (1)

(xr ⊗ V ). This concludes the
proof.

REFERENCES

[1] D. J. B�ɴ��ɴ, Representations and cohomology. I, second ed., Cambridge Studies in
Advanced Math. 30, Cambridge Univ. Press, 1998.

[2] D. J. B�ɴ��ɴ, Representations and cohomology. II, second ed., Cambridge Studies in
Advanced Math. 31, Cambridge Univ. Press, 1998.

[3] M. Cʜ����ɴɪ�, Extensions of strict polynomial functors, Ann. Sci. École Norm. Sup.
38 (2005), 773–792.

[4] M. Cʜ����ɴɪ�, Koszul duality and extensions of exponential functors, Adv. Math.
218 (2008), 969–982.

[5] E. Cʟɪɴ�, B. P�ʀ�ʜ�ʟʟ, L. S����, W. ��ɴ ��ʀ K�ʟʟ�ɴ, Rational and generic
cohomology, Invent. Math. 39 (1977), 143–163.

[6] C. �� C�ɴ�ɪɴɪ, C. Pʀ����ɪ, A characteristic free approach to invariant theory, Adv.
Math. 21 (1976), 330–354.

[7] V. Fʀ�ɴ���, E. M. Fʀɪ��ʟ�ɴ��ʀ, Cohomology of bifunctors, Proc. Lond. Math. Soc.
97 (2008), 514–544.

[8] V. Fʀ�ɴ���, E. M. Fʀɪ��ʟ�ɴ��ʀ, A. S��ʀɪ�ʜ�ɴ��, A. S��ʟɪɴ, General linear and
functor cohomology over finite fields, Ann. of Math. 150 (1999), 663–728.

[9] V. Fʀ�ɴ���, J. L�ɴɴ��, L. S�ʜ��ʀ��, Autour de la cohomologie de Mac Lane des
corps finis, Invent. Math. 115 (1994), 513–538.

[10] V. Fʀ�ɴ���, T. Pɪʀ��ʜ�ɪʟɪ, Strict polynomial functors and coherent functors,
Manuscripta Math. 127 (2008), 23–53.

[11] E. M. Fʀɪ��ʟ�ɴ��ʀ, A. S��ʟɪɴ, Cohomology of finite group schemes over a field,
Invent. Math. 127 (1997), 209–270.

4 e SÉRIE – TOME 45 – 2012 – No 1

http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#1
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#2
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#3
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#4
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#5
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#6
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#7
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#8
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#9
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#10
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#11


TROESCH COMPLEXES 99

[12] J. C. J�ɴ���ɴ, Representations of algebraic groups, second ed., Mathematical Surveys
and Monographs 107, Amer. Math. Soc., 2003.

[13] W. ��ɴ ��ʀ K�ʟʟ�ɴ, Cohomology with Grosshans graded coefficients, in Invariant
theory in all characteristics, CRM Proc. Lecture Notes 35, Amer. Math. Soc., 2004,
127–138.

[14] B. T���ʀ�, Projective resolutions of representations of GL(n), J. reine angew. Math.
482 (1997), 1–13.

[15] A. T����, Cohomology of classical algebraic groups from the functorial viewpoint,
Adv. Math. 225 (2010), 33–68.

[16] A. T����, Universal classes for algebraic groups, Duke Math. J. 151 (2010), 219–249.
[17] A. T����, W. ��ɴ ��ʀ K�ʟʟ�ɴ, Bifunctor cohomology and cohomological finite

generation for reductive groups, Duke Math. J. 151 (2010), 251–278.
[18] A. Tʀ����ʜ, Une résolution injective des puissances symétriques tordues, Ann. Inst.

Fourier (Grenoble) 55 (2005), 1587–1634.

(Manuscrit reçu le 16 juin 2010 ;
accepté, après révision, le 2 février 2011.)

Antoine T����
Laboratoire Analyse Géométrie et Applications (LAGA)

UMR 7539, Institut Galilée
Université Paris 13

99 avenue J.-B. Clément
93430 Villetaneuse, France

E-mail: antoine.touze@math.univ-paris13.fr

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#12
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#13
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#14
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#15
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#16
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#17
http://smf.emath.fr/Publications/AnnalesENS/4_45/html/ens_ann-sc_45_1.html#18

	1. Introduction
	2. Background and notations
	3. Troesch coresolutions
	4. Classical computations revisited
	5. Additional structures
	6. The semi-stable range
	7. The twisting spectral sequence
	8. The collapsing conjecture
	9. Appendix: review of the construction of Troesch p-complexes
	References

