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EIGENVALUES AND SIMPLICITY OF INTERVAL
EXCHANGE TRANSFORMATIONS

 S FERENCZI  L Q. ZAMBONI

A. – For a class of d-interval exchange transformations, which we call the symmetric class,
we define a new self-dual induction process in which the system is successively induced on a union of
sub-intervals. This algorithm gives rise to an underlying graph structure which reflects the dynamical
behavior of the system, through the Rokhlin towers of the induced maps. We apply it to build a wide as-
sortment of explicit examples on four intervals having different dynamical properties: these include the
first nontrivial examples with eigenvalues (rational or irrational), the first ever example of an exchange
on more than three intervals satisfying Veech’s simplicity (though this weakening of the notion of min-
imal self-joinings was designed in 1982 to be satisfied by interval exchange transformations), and an
unexpected example which is non uniquely ergodic, weakly mixing for one invariant ergodic measure
but has rational eigenvalues for the other invariant ergodic measure.

R. – Pour une classe d’échanges de d intervalles, que nous appelons la classe symétrique,
nous définissons un nouveau processus d’induction autoduale, où le système est induit successivement
sur des unions de sous-intervalles. Cet algorithme crée une structure de graphes qui reflète le comporte-
ment dynamique du système grâce aux tours de Rokhlin des applications induites. Nous l’utilisons pour
construire un large choix d’exemples explicites sur quatre intervalles, avec différentes propriétés dyna-
miques : on y trouve entre autres les premiers exemples non triviaux possédant des valeurs propres (ra-
tionnelles ou irrationnelles), le premier exemple d’un échange de plus de trois intervalles qui soit simple
au sens de Veech (alors que cette notion, affaiblissant celle d’autocouplages minimaux, a été introduite
en 1982 avec les échanges d’intervalles en vue), et un exemple inattendu qui est non uniquement ergo-
dique, faiblement mélangeant pour une des mesures ergodiques invariantes, mais a des valeurs propres
rationnelles pour l’autre mesure ergodique invariante.

1. Preliminaries

Interval exchange transformations have been introduced by Oseledec [32], following an
idea of Arnold [1]; an exchange of d intervals is defined by a probability vector of d lengths
and a permutation on d letters; the unit interval is then partitioned according to the vector of
lengths, and T exchanges the intervals according to the permutation, see Sections 1.1 and 1.2
below for all definitions. Katok and Stepin [24] used these transformations to exhibit a class
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of systems with simple continuous spectrum. Then Keane [25] defined a condition called
i.d.o.c. ensuring minimality, and was the first to use the idea of induction, which was later
formalized by Rauzy [34], as a generalization of the continued fraction algorithm. These
tools formed the basis for future studies of various ergodic and spectral properties for these
dynamical systems. For general properties of interval exchange transformations, the reader
can consult the courses of Viana [41] and Yoccoz [42] [43].

In this paper we study d-interval exchange transformations T , defined by a vector
(α1, . . . αd) of lengths and the symmetric permutation πi = d + 1 − i, 1 ≤ i ≤ d; we call
I the set of (λ1, . . . , λd) in R+d for which T , defined by the vector ( λ1

λ1+...λd
, . . . , λd

λ1+...λd
),

satisfies the i.d.o.c. condition; henceforth we shall consider only transformations satisfying
this condition: let U, resp. M′, M, N , S, be the subset of I for which T is uniquely ergodic,
resp. topologically weakly mixing, resp. weakly mixing for at least one invariant measure,
resp. not weakly mixing for at least one invariant measure, resp. simple for at least one
invariant measure. A great part of the history of this area is made by the difficult results
about these sets. After Keane proved m(Rd+ \ I ) = 0 for the Lebesgue measure m on Rd

and the surprising result that (for d = 4) Uc (for X ∈ {U, M′, M, N , S} we call Xc its
complement in I ) is not empty [26], he conjectured that m( Uc) = 0. This conjecture was
proved by Masur [29] and Veech [39], see also Boshernitzan [6] for a combinatorial proof
closer to the spirit of the present paper. Then Veech [40] proved that m( Mc) = 0 for some
permutations, not including the symmetric one for d = 4; it took quite a long time to have,
for all permutations outside the rotation class, first m( M′c) = 0 (Nogueira-Rudolph [30]),
then at last m( Mc) = m( N ) = 0 (Avila-Forni [4]); whether m( Sc) = 0 is still an open
question asked by Veech [38]; note that the result on weak mixing in [4] is valid both for one
invariant measure and all invariant measures because m( Uc) = 0.

While all these extremely powerful articles establish generic results for general interval
exchange transformations, here we aim to provide a detailed analysis of the dynamical
behaviour of specific families of interval exchanges; more precisely, we want to address
problems concerning relations between the sets defined above, nothing of which was known
until recently for d > 3, except obvious relations as M′ ⊂ M, U ∩ N ∩ M = ∅ and
( U ∩ N ) ∪ ( U ∩ M) = U. It was not known whether N is nonempty or even that S, which
is likely to have full measure (indeed, the whole notion of simplicity has been devised for
that, and Veech’s question has been much investigated), is nonempty; we can also ask about
the non-emptiness of some intersections such as Uc ∩ M or (more difficult as these are two
small sets) Uc∩ N . Another problem is to find explicit examples (in the sense that maybe the
vector of lengths is not given, but it can be computed by an explicit algorithm), and not only
existence theorems; very few of them were known: for d = 4, explicit elements of Uc are given
by Keane [26] while explicit elements of U can be deduced from the same paper, or built from
substitutions, or pseudo-Anosov maps, by a classical construction; but none were known in
other sets, even in the bigger ones, until, during the preparation of the present paper, Sinai
and Ulcigrai [35] found explicit elements of M, while Yoccoz [42] built explicit elements of Uc

for every d; other related results [20][8] were derived after preliminary versions of the present
paper were circulated, see the discussion in Section 6 below.

Similar questions have been addressed for the (by unanimous consent much easier) case
d = 3, by Veech [36], del Junco [21], and the present authors plus Holton [13][14][15][16]; the
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methods of these papers have had to be considerably upgraded to tackle the next case, d = 4.
Thus we have introduced a new notion of induction, beside the classical ones due to Rauzy
[34], Zorich [44], and more recently Yoccoz ([28] where a good survey of all these notions
can also be found). This self-dual induction, studied in more details in [19], is a variant of
the less well-known induction of da Rocha [27] [11], and for d = 3 its measure-theoretic
properties and self-duality are studied in [18]. We present it in Section 2 below, and use it
in Sections 3 and 4 to build families of explicit examples of four-interval exchanges; each
example is described by four families of Rokhlin towers, depending on partial quotients of
our induction algorithm. After a good choice of these partial quotients, our transformation
will have the required properties through a measure-theoretic isomorphism with a rank one
system. Whether and why this new induction was necessary to answer the questions we
addressed will be discussed at the end of Section 6 below.

What we obtain in the end is some groups of examples for d = 4: two in U ∩ M′ ∩ Mc,
one having rational eigenvalues and the other being measure-theoretically isomorphic to an
irrational rotation, one in U∩M′∩M∩ S, and one in Uc∩M′∩M∩ N . We find also elements
of U∩M which are measure-theoretically isomorphic to some of the so-called Arnoux-Rauzy
systems. All the examples we produce come from expansions having (very) unbounded
partial quotients in our induction algorithm. That makes our elements of M a priori different
from Sinai-Ulcigrai’s ones, these being obtained from periodic examples relative to a different
induction algorithm; in particular, our examples are all rigid, and completely new; their
existence was not unexpected, but the existence of an example with irrational eigenvalues
for the simpler case d = 3 was the object of a question of Veech (1984) which was solved
only in [15] (2004); our examples prove also that Avila-Forni’s result is strictly stronger than
Nogueira-Rudolph’s. The first example of an exchange on more than three intervals which
is simple is not surprising, but this resisted the efforts of specialists during 25 years, and
constitutes a first step towards Veech’s open question. As for our last example, which is
weakly mixing for one of the two invariant ergodic measures but has rational eigenvalues
for the other, it came as a surprise even for the authors.

For generalizations (to other permutations and values of d), see Section 6 below.
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1.1. The main definitions

D 1.1. – A symmetric d-interval exchange transformation is a d-interval
exchange transformationT with probability vector (α1, . . . , αd), and permutationπi = d+1−i,
1 ≤ i ≤ d, defined by

Tx = x+
∑

π−1j<π−1i

αj −
∑
j<i

αj .
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when x is in the interval

∆i =

∑
j<i

αj ,
∑
j≤i

αj

 .
We denote by βi, 1 ≤ i ≤ d − 1, the i-th discontinuity of T−1, namely βi =

∑d
j=d+1−i αj ,

while γi is the i-th discontinuity of T , namely γi =
∑i
j=1 αj = 1− βd−j . Then ∆1 = [0, γ1[,

∆i = [γi−1, γi[, 2 ≤ i ≤ d− 1 and ∆d = [γd−1, 1[.

D 1.2. – T satisfies the infinite distinct orbit condition (or i.d.o.c. for short) of
Keane [25] if the d−1 negative trajectories {T−n(γi)}n≥0, 1 ≤ i ≤ d−1, of the discontinuities
of T are infinite disjoint sets.

The i.d.o.c. condition for T is (strictly) weaker than the total irrationality condition on
the lengths, where the only rational relation between αi, 1 ≤ i ≤ d, is

∑d
i=1 αi = 1. As here

π is primitive, the i.d.o.c. condition implies that T is minimal (every orbit is dense) [25].

1.2. A few notions from ergodic theory

A general reference for this section is [10].

D 1.3. – A system (X,T ) is uniquely ergodic if it admits only one invariant
probability measure.

D 1.4. – Let (X,T, µ) be a finite measure-preserving dynamical system.

A real number 0 ≤ γ < 1 is an eigenvalue of T (denoted additively) if there exists a non-
constant f in L2(X,R/Z) such that f ◦T = f + γ in L2(X,R/Z); f is then an eigenfunction
for the eigenvalue γ. As, following [10], we consider only non-constant eigenfunctions, γ = 0 is
not an eigenvalue if T is ergodic. T is weakly mixing if it has no eigenvalue.

D 1.5. – (X,T ) is topologically weakly mixing if it has no continuous (non-
constant) eigenfunction.

In the particular case of interval-exchange transformations, the topology we use here is
the standard one (induced by the Lebesgue measure) on the interval [0, 1[ (though T itself is
not continuous), but the proofs in the present paper work in the same way if we view T as
the shift on the symbolic trajectories, equipped with the product topology on {1, . . . , d}N; the
two topologies are not equivalent, and it does not seem to be known whether a continuous
eigenfunction for one has to be continuous for the other.

D 1.6. – (X,T, µ) is rigid if there exists a sequence sn →∞ such that, for any
measurable set A, µ(T snA∆A)→ 0.

D 1.7. – In (X,T ), a (Rokhlin) tower of base F is a collection of disjoint
measurable sets called levels F , TF , . . . , Th−1F . If X is equipped with a partition P

such that each level T rF is contained in one atom Pw(r), the name of the tower is the word
w(0) . . . w(h− 1).
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We shall use also the notion of rank one, for various definitions see [9, 12, 31]. Here we
need only the definition of a particular class of rank one systems; they come equipped with a
partition and an invariant measure; we use the same notation for a tower and its name, and
s (for “spacers”) is the name of one atom of the partition, corresponding to levels added after
the initial stage:

D 1.8. – Let xk and yk be two sequences of positive integers, and let the
concatenation of two strings of letters v and w be denoted multiplicatively by vw, while vk is a
concatenation of k times the string v.

The rank one system defined by the word H0 and the towers Hk+1 = syk+1H
xk+1

k szk+1 ,
where, if h0 is the length ofH0 and hk+1 = xk+1hk +yk+1 + zk+1 the length ofHk+1, we have∑+∞
k=1

yk+1+zk+1

xk+1hk
< +∞, is the system (X,T, µ) built by cutting and stacking in the following

way: we start from a set E of measure ξ, which is cut into H0 equal parts to make the first
tower. To get the j + 1-tower, we cut the j-tower into xj+1 columns, stack these columns by
putting the xj+1-th above the xj+1 − 1-th . . . above the first, and add zj+1 spacer levels (that
is, pieces of Ec with equal measure) one above the other above the top, and yj+1 spacer levels
one above the other under the bottom. T is the transformation that sends each point in a tower,
except those in the top level, to the point just above.

The number ξ and the common measure ρj of the spacer levels in the j-tower are defined
uniquely so that µ is a probability preserved by T , and X is partitioned so that H0 is the name
of the 0-tower, while Ec is the atom named s.

A standard argument proves that

P 1.1. – The rank one systems defined above are rigid.

The following necessary condition for any θ to be an eigenvalue of a rank one transforma-
tion was originally deduced (in [15]) from a condition of Choksi and Nadkarni [9]; we give
it here with a new direct proof adapted from [7]:

P 1.2. – If θ is an eigenvalue for the rank one system defined above by the
word H0 and the towers Hk+1 = syk+1H

xk+1

k szk+1 , then xk+1||hkθ|| → 0 when k → +∞,
where || || denotes the distance to the nearest integer.

Proof. – Let f be an eigenfunction for the eigenvalue θ; the σ-algebra generated by the
levels of the k-tower converges to the full σ-algebra when k tends to infinity, thus for each
ε > 0 there exists N(ε) such that for all k > N(ε) there exists fk, which satisfies∫
||f − fk||dµ < ε and is constant on each level of the k-tower.
Let j be any integer with 0 ≤ j ≤

[
xk+1

2

]
. Let τk be the union of the levels of the

k-tower between the yk + 1-th and yk + [xk

2 ]hk−1-th levels; by construction, for any point ω
in τk, T jhk−1ω is in the same level of the k − 1-tower as ω. Thus for µ-almost every ω in τk,
fk(T jhk−1ω) = fk(ω) while f(T jhk−1ω) = θjhk−1 + f(ω); we have∫

τk

||fk ◦ T jhk−1 − jθhk−1 − fk||dµ =

∫
τk

||jθhk−1||dµ = ||jθhk−1||µ(τk)

and∫
τk

||fk◦T jhk−1−jθhk−1−fk||dµ ≤
∫
τk

||fk◦T jhk−1−f ◦T jhk−1 ||dµ+

∫
τk

||fk−f ||dµ < 2ε.
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As µ(τk) ≥ 1
3 for k large enough, the above estimates imply ||jθhk−1|| < 6ε, for any

integer 0 ≤ j ≤
[
xk+1

2

]
. Thus ||jθhk−1|| < 12ε for any integer 0 ≤ j ≤ xk.

Let ε < 1
40 , and suppose ||xkθhk−1|| 6= xk||θhk−1||: let i be the smallest 0 ≤ j ≤ xk

such that ||jθhk−1|| 6= j||θhk−1||, then i ≥ 2 and ||(i − 1)θhk−1|| = (i − 1)||θhk−1||, thus
i||θhk−1|| = (i − 1)||θhk−1|| + ||θhk−1|| = ||(i − 1)θhk−1|| + ||θhk−1|| < 18ε < 1

2 thus
||iθhk−1|| = ||(i||θhk−1||)|| = i||θhk−1||, contradiction. Thus we get xk||θhk−1|| < 12ε.

D 1.9. – A self-joining (of order two) of a system (X,T, µ) is any measure ν
on X ×X, invariant under T × T , for which both marginals are µ.

An ergodic system (X,T, µ) is simple (of order two) if any ergodic self-joining of order two
ν is either the product measure µ× µ or a measure defined by ν(A×B) = µ(A ∩ U−1B) for
some measurable transformation U commuting with T .

2. The self-dual induction

In the remainder of this paper (except for one example in Section 2.2), we call
transformation T a symmetric d-interval exchange transformation satisfying the i.d.o.c.
condition and the condition of alternate discontinuities:

β1 < γ1 < β2 < γ2 < · · · < βd−1 < γd−1.

The condition of alternate discontinuities avoids introducing a lot of particular cases in
the first steps of our induction; the way it can be dispensed with is discussed in Section 6
below.

2.1. Castles and induction: definitions

Our transformation T is now fixed, on the interval [0, 1[. We consider its induced maps:
an induced map of T on a set Y is the map y → T r(y)y where, for y ∈ Y , r(y) is the smallest
r ≥ 1 such that T ry is in Y (when such an r exists, which will be true in all cases considered
in this paper).

In classical inductions, Y is generally an interval; here we consider disjoint unions of d−1

intervals; and as for any induction, there is a canonical way to build towers; following [11], we
say that a union of towers is a castle (the Ornstein school used the words stacks and gadgets
instead of towers and castles).

D 2.1. – Given d − 1 disjoint intervals Ei, 1 ≤ i ≤ d − 1, let S be the induced
map of T on E1 ∪ · · · ∪Ed−1. The induction castle of the Ei is the unique partition of X into
levels T rIi,t, 1 ≤ i ≤ d− 1, 1 ≤ t ≤ ki, 0 ≤ r ≤ hi,t − 1, where

– each interval Ei is partitioned into ki subintervals Ii,t, 1 ≤ t ≤ ki,
– SIi,t is a subinterval of Eji,t

, and on Ii,t S = Thi,t .
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A castle is indeed a union of Rokhlin towers, each tower being made with the levels T rIi,t,
0 ≤ r ≤ hi,t − 1. Note that the ki are finite by compactness, but that in general each of
the d − 1 intervals could be partitioned in many subintervals; only for interval exchange
transformations and the type of induction chosen shall we be able to bound these numbers.

We define now a new induction operation, as a way to associate d− 1 new intervals E′i to
d − 1 intervals Ei, 1 ≤ i ≤ d − 1. It was primarily motivated by considerations from word
combinatorics, the d−1 families of subintervals corresponding to the bispecial factors of the
associated language, which implies that their endpoints are the points where the orbit of any
discontinuity of T comes close to any discontinuity of T−1; this in turn implies an interesting
geometric property of the natural extension of our induction, studied in [18] for d = 3, which
prompted us to call our induction self-dual.

The process is discussed and described in full generality in [19]; we give here a self-
contained and slightly different description, adapted to our present (mainly ergodic) aims:
indeed, the result we use in the present paper is the explicit description of the induction
castles, which appears only as a by-product in [19]. Our intervals will be built so that the
induction castles have always a nice structure: namely, the intervals at the initial stage are
the ∆i, 1 ≤ i ≤ d − 1, and, as we shall see in Lemma 2.2 below, their induction castle is
binary:

D 2.2. – A castle is binary if, for each 1 ≤ i ≤ d − 1, ki = 2 and there are
exactly two jl,t, 1 ≤ l ≤ d− 1, t = 1, 2 which are equal to i.

When a castle is binary, we denote by Ei,m and Ei,p the left and right subintervals among
the two Ii,t, by Ei,− and Ei,+ the left and right subintervals among the two SIl,t which are
in Ei. Also, we denote by p(i), resp. m(i), the j such that Ej contains SEi,p, resp. SEi,m.
Finally, we denote by li, resp. ri, the length of Ei,−, resp. Ei,+, for 1 ≤ i ≤ d− 1.

It seems likely that for all binary castles we have SEi,m = Em(i),+ and SEi,p = Ep(i),−,
but we have not been able to find a direct proof using the i.d.o.c. condition. Indeed, we do
not know any example of a binary castle other than those built by our induction, or small
variants of it (see also Section 2.2 below), and for them the above properties are true by
construction, implying that p and m are bijections.

One of our aims is to keep all induction castles binary throughout the process; to achieve
that, we use an auxiliary property, which at the initial stage is satisfied with s being the
identity:

D 2.3. – A binary castle is symmetric if it is endowed with a bijection s on
{1, . . . , d− 1} such that

s−1 = psp = msm = s

and that for all i, we have the relations

– ls(i) + rs(i) = li + ri
– li = lps(i),
– ri = rms(i).

The relations above are studied in depth in [19] where (in contrast with the present paper)
they are used as the basic tool to define the induction.
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D 2.4. – A relation is called trivial if it is ls(i) + rs(i) = li + ri with s(i) = i, or
li = lps(i) with ps(i) = i, or ri = rms(i) with ms(i) = i, non-trivial otherwise.

We may have s = Id, the identity; in that case all the relations ls(i) + rs(i) = li + ri
are trivial, and the only non-trivial relations are li = lp(i) for p(i) 6= i and ri = rm(i) for
m(i) 6= i; this is what happens (for d = 4 intervals) in the first stage of the example in
Section 2.2 just below, where it turns out that there are only two different non-trivial relations.
It can also happen that s has a cycle of length two, as in the second stage of the example in
Section 2.2; then when s(i) 6= i, the non-trivial relation ls(i)+rs(i) = li+ri expresses that the
intervalsEi andEs(i) have the same length, but there are also non-trivial relations li = lps(i)
or ri = rms(i). Indeed in [19] it is proved that in all binary symmetric castles used in the
induction, there are exactly d − 2 different non-trivial relations, and we shall check this for
d = 4 in Lemma 3.1 below. Note that in a symmetric binary castle p and m are bijections.

Binary symmetric castles are conveniently described by the following object:

D 2.5. – The castle graph of a binary symmetric castle is the oriented graph G
whose vertices are the two-letters words is(i), 1 ≤ i ≤ d− 1, and for each i there is a positive
edge from is(i) to p(i)sp(i) and a negative edge from is(i) to m(i)sm(i).

The induction associates to d− 1 intervals Ei containing βi, 1 ≤ i ≤ d− 1, a new family
of intervals E′i. For a given 1 ≤ i ≤ d − 1, either E′i = Ei, or E′i = Ei,m, or E′i = Ei,p,
with the notations of Definition 2.2. When Ei is cut, it is cut by the point separating Ei,m
and Ei,p, which is indeed the first point T−sγj , s > 0, 1 ≤ j ≤ d−1, to fall in the interior of
Ei, see [19] for details; the choice of Ei,m or Ei,p is then made to ensure that βi is in E′i. The
choices of cutting or not cutting Ei are made so that the induction castle of the E′i remains
binary symmetric, this will be the difficult part and this last property is the crucial one for
the sequel.

D 2.6. – We call self-dual induction the following process: suppose
Ei = [βi − li, βi + ri[, 1 ≤ i ≤ d − 1 are d − 1 disjoint subintervals such that their
induction castle is binary symmetric and has a castle graph G with bijections p,m, s, and that
for every i, li − rs(i) = ls(i) − ri 6= 0; we define the instruction ι by the sign (+ or −) of this
last quantity,

ιi = ιs(i) = sgn(li − rs(i)) = sgn(ls(i) − ri);

let C be the maximal union of same-sign circuits of G using only the edges starting from is(i)

and of sign ιi, 1 ≤ i ≤ d− 1; then we define d− 1 new disjoint intervals by

– if is(i) ∈ C and ιi = +, E′i = Ei,p,
– if is(i) ∈ C and ιi = −, E′i = Ei,m,
– if is(i) 6∈ C, E′i = Ei.
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2.2. Castles and induction: examples

It is time now to look at castles and castle graphs in concrete situations. We look first at
what happens for d = 4 intervals, at the first stage of the induction, see Lemma 2.2 below.
To draw the pictures, we assume, together with the condition of alternate discontinuities, that
β1, resp. β2, β3, is to the left of T−1γ3, resp. T−1γ2, T−1γ1. Figure 1 shows the induction
castle of the intervals E1 = ∆1 = [0, γ1[, E2 = ∆2 = [γ1, γ2[, E3 = ∆3 = [γ2, γ3[; it is
made of three towers, which we draw separately because we choose to forget thatE1, E2 and
E3 are adjacent, as it happens at this stage only; to save space, we denote by γ(j)

i the point
T−jγi.

4

1

0 β1 γ
(1)
3

γ1

γ3 1

2
γ1 β2 γ

(1)
2

γ2

3
γ2 β3 γ

(1)
1

γ3

F 1. First stage of towers 1, 2 & 3.

The picture shows that the castle is binary, with E1,− = [0, β1[, E1,+ = [β1, γ1[,
E1,m = [0, T−1γ3[, E1,p = [T−1γ3, γ1[, [γ3, 1[= TE1,p, E2,− = [γ1, β2[, and so on. The
labels give the names of the towers: on the first tower they indicate that E1 is a subinterval
of ∆1 and TE1,p is a subinterval of ∆4, thus when we read them from bottom to top, we get
the M1 and P1 of Lemma 2.4 below. We see also that S = T 2 on E1,p, S = T everywhere
else.

Some more information we have not yet written is that SE1,m ⊂ E3 thus m(1) = 3;
indeed we have SE1,m = E3,+, and similarly SE1,p = E1,−, SE2,m = E2,+, SE2,p = E3,−,
SE3,m = E1,+, SE3,p = E2,−, thus p(1) = 1, m(2) = 2, p(2) = 3, m(3) = 1, p(3) = 2.
Moreover we check that the castle is indeed symmetric for s = Id: this means checking
p2 = m2 = Id and the nine relations on lengths in Definition 2.3: five of them are trivial
(li+ ri = li+ ri for i = 1, 2, 3, l1 = l1, r2 = r2), the non-trivial ones are r1 = r3 and l2 = l3,
each of them appearing for two values of i.

Thus the information which was not in the picture of the castle is conveniently summa-
rized by the castle graph on the left of Figure 2, which is vertex I of the graph of graphs Γ4,
see Lemma 3.1 below.

11 33 22

–

– +

+

–+

I

13

22

31

–

–

–

+ +

+

IV

F 2. The castle graphs at first and second stage.
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We look now at what happens at the next stage, assuming the condition of alternate
discontinuities, and the respective positions of βi and T−1γj from the first stage.

Applying Definition 2.6, we see that at the first stage the instruction is ι1 = ι2 = ι3 = −.
In the castle graph there is a − circuit with the vertices 11 and 33, and a − loop around the
vertex 22, thus C = {11, 22, 33}, and for i = 1, 2, 3 the Ei at second stage is the Ei,m of first
stage.

Thus we can draw the induction castle of the new E1, E2, E3; to position the points, we
make the extra assumption that β1, resp. β2, β3, is to the left of T−2γ1, resp. T−2γ2, T−2γ3.

3

1

0 β1 γ
(1)
3γ

(2)
1

γ
(1)
1

γ3

2

2
γ1 β2 γ

(1)
2γ

(2)
2

γ
(1)
2

γ2

1

3

4

γ2 β3 γ
(1)
1γ

(2)
3

γ
(1)
3

γ1

γ3 1

F 3. Second stage of towers 1, 2 & 3.

The reader can now decipher this picture as in the previous stage. The extra information
is that now m(1) = 3, p(1) = 2, m(2) = 2, p(2) = 3, m(3) = 1, p(3) = 1, and the new
castle is symmetric with the involution s(1) = 3, s(2) = 2, s(3) = 1; this involves checking
psp = msm = s and the non-trivial relations r1 + l1 = r3 + l3 (the intervals E1 and E3 have
the same length), l2 = l3. Thus the new castle graph is shown on the right of Figure 2; it is
vertex IV of the graph of graphs Γ4, see Lemma 3.1 below.

A non-symmetric binary castle can be found in Section 5.1 of [19], for a 4-interval exchange
with permutation π1 = 4, π2 = 3, π3 = 1, π4 = 2. In the initial stage, the castle of E1, E2,
E3 is binary with p(1) = 3, m(1) = 2, p(2) = 1, m(2) = 3, p(3) = 2, m(2) = 1, and the
relations between the parameters are li,n+ri,n = lp(i),n+rm(i),n, i = 1, 2, 3 (these hold also
for the symmetric castles considered in the present paper, see the proof of Proposition 2.1
below) but they do not yield the relations of Definition 2.3, and indeed in [19] we choose the
parameters so that no relation li = lj , ri = rj or li + ri = lj + rj holds for i 6= j. Thus for
no choice of s can the relations in Definition 2.3 be satisfied.

With the symmetric permutation π1 = 4, π2 = 3, π3 = 2, π4 = 1, we get non-symmetric
castles when we induce against the rules of Definition 2.6, for example if at the first stage
above we choose the new E1 to be the full old E1 instead of the old E1,m, but such castles
are not binary either.

As one of the referees pointed out, for a binary castle where m and p are bijections,
the reciprocal map is also a binary castle, whose combinatorics is given by m−1 and p−1,
and, for a symmetric binary castle, the reciprocal castle has the same combinatorics up to a
permutation of names by an involution. This last condition, however, is in general weaker
than the symmetry we define, as it is satisfied by the non-symmetric castle defined above for
a non-symmetric permutation π, with the involution s(1) = 1, s(2) = 3, s(3) = 2; what are
missing there are the non-trivial relations between the lengths, for example l2 + r2 = l3 + r3.
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Still, it is quite possible that when the permutation π is the symmetric one every binary castle
is symmetric, see the remark after Definition 2.2. We do not know whether a castle can have
the same combinatorics as its reciprocal castle up to a permutation of names which is not an
involution.

2.3. Castles and induction: results

The following proposition describes how the induction works, and gives conditions ensur-
ing that it can be iterated.

P 2.1. – If Ei, 1 ≤ i ≤ d− 1, is a set of disjoint intervals such that

1. Ei = [βi − li, βi + ri[, li > 0, ri > 0,
2. all their endpoints are of the form T aγb for a ≤ 1 and b = 1, 2, 3,
3. their induction castle is binary symmetric, with bijections p, m, s,
4. SEi,p = Ep(i),− = [βp(i) − lp(i), βp(i)[,
5. SEi,m = Em(i),+ = [βm(i), βm(i) + rm(i)[.

Then we can apply the self-dual induction to the Ei, and the new E′i satisfy (1) to (5), with
new parameters l′i, r

′
i, and bijections p′, m′, s′ given by the following rules

– if is(i) ∈ C and ιi = +, l′i = li − rs(i) = ls(i) − ri, r′i = ri, s
′(i) = sp(i), p′(i) = p(i),

m′(i) = mp(i),

– if is(i) ∈ C and ιi = −, l′i = li, r
′
i = ri− ls(i) = rs(i)− li, s′(i) = sm(i), p′(i) = pm(i),

m′(i) = m(i),

– if is(i) 6∈ C, l′i = li, r
′
i = ri, s

′(i) = s(i), p′(i) = p(i), m′(i) = m(i).

Proof. – We know that Ei,− = [βi − li, βi[ and Ei,+ = [βi, βi + ri[; the symmetry of the
castle implies the relations of Definition 2.3. We know also that Ei,p is the right subinterval
of Ei with the same length as Ep(i),−, namely

Ei,p = [βi − lp(i) + ri, βi + ri[.

Similarly
Ei,m = [βi − li, βi − li + rm(i)[.

This implies the train-track equalities (see [33] for example) li + ri = lp(i) + rm(i), which
is another way of stating the above relations (the equivalence of the set of the train-track
equalities and the set of relations in Definition 2.3 is shown in [19], it is not used in the present
paper).

This implies also that li−rs(i) = ls(i)−ri 6= 0, as otherwise βi would be the left endpoint
ofEi,p, hence its image by S would be the left endpoint ofEp(i), which is impossible because
of (2) and the i.d.o.c. condition.

Thus we can apply the self-dual induction, with C as in the definition. Let S′ be the
induced map of T on E′1 ∪ · · · ∪ E′d−1.

If is(i) ∈ C, with ιi = +: we say that Ei has been cut on the left; because of the relation
lp(i) = ls(i), we have lp(i) − ri > 0, and thus βi ∈ Ei,p = E′i. If is(i) ∈ C with ιi = −,
whereEi is cut on the right, we use the relation rm(i) = rs(i) to prove that βi ∈ Ei,m = E′i. If
is(i) 6∈ C,Ei is not cut and βi ∈ Ei = E′i. Thus in each case we can define l′i and r′i, they are
given by the claimed expression. Moreover the endpoints of the E′i have the required form.
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βk

βj

βi

Mj

Pi

Ek,+

Ej,−

Ei,− Ei,+

Ej,m

Ei,m Ei,p

T−aγ

T−bγ′

F 4. Evolution of Rokhlin towers.

We look at the action of S′ on E′i. Suppose is(i) ∈ C, with ιi = +. Then the situation is
completely described in Figure 4, where j = p(i) and k = m(j), while the Pi and Mi are the
names of the towers, to be discussed in Section 2.5 below.

As p(i)sp(i) is also in C, Ep(i),− intersects both Ep(i),p and Ep(i),m. The new E′p(i) is
Ep(i),p = [βp(i) − lpp(i) + rp(i), βp(i) + rp(i)[. The image of E′i by S is the interval Ep(i),−,
which is not included in the new E′p(i): it is made of Xi = Ep(i),m, the left subinterval of
Ep(i) which is not in E′p(i), and Yi = Ep(i),− ∩ Ep(i),p.

This creates a partition ofE′i: the right subinterval ofE′i with the same length as Yi, which
we denote byE′i,p, is sent byS on Yi ⊂ E′p(i), and on this intervalS′ = S. The left subinterval
ofE′i with the same length asXi, which we denote byE′i,m, is sent byS onXi ⊂ Ep(i)−E′p(i);
then Xi = Ep(i),m is sent by S on Emp(i),+ ⊂ Emp(i). As p(i)sp(i) is on the same positive
circuit in C as is(i), it cannot be on a negative circuit in C, hence neither can mp(i)smp(i);
hence mp(i)smp(i) is either on a positive circuit in C, or not in C, hence either Emp(i) has
been cut on the left or not cut; thus Emp(i),+ ⊂ E′mp(i). Hence on E′i,m we have S′ = S2,
and S′ sends E′i,m onto a subinterval of Emp(i).

Thus, in the new castle, E′i is indeed partitioned into two subintervals, and we can define
p′(i) = p(i) andm′(i) = mp(i). S′E′i,p is the interval Yi, which is the left subinterval ofE′p′(i)
of length l′p′(i), hence we can call it E′p′(i),− = [βp′(i) − l′p′(i), βp′(i)[. And, whether Emp(i)
has been cut on the left or not cut, S′E′i,m is the interval E′m′(i),+ = [βm′(i), βm′(i) + r′m′(i)[.

A similar reasoning takes care of the case is(i) ∈ C with ιi = −, where we can define
p′(i), m′(i), E′p′(i),− and E′m′(i),+ by the claimed formulas.
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If is(i) 6∈ C, Ei is not cut and S sends E′i,p = Ei,p on Ep(i),−, which is still in E′p(i) as
p(i)sp(i) cannot be on a positive circuit of C and hence Ep(i) has not been cut on the left;
similarly S sendsE′i,m onEm(i),+ ⊂ E′m(i), thus we define p′(i),m′(i),E′p′(i),− andE′m′(i),+
by the claimed formulas.

As p′ and m′ are bijections, the new induction castle is indeed binary, and our p′ and
m′ are its defining bijections. We define now s′ by s′ = sp on C ∩ {ι = +}, s′ = sm

on C ∩ {ι = −}, s′ = s on Cc. It is then straightforward to check that the castle is
symmetric: for example if is(i) ∈ C and ιi = +, s(i)i is also in C (as ιs(i) = ιi), hence
ms(i)sms(i) cannot be on a negative circuit in C and hence r′ms(i) = rms(i), while r′i = ri
and m′s′(i) = mpsp(i) = ms(i); hence the relation r′i = r′m′s′(i) is satisfied, and similarly
for the other cases and relations.

Thus we have proved (1) to (5) for the E′i.

L 2.2. – If we put Ei = ∆i, 1 ≤ i ≤ d− 1, they satisfy (1) to (5), and their castle
graph G0 is defined by the bijections s(i) = i, 1 ≤ i ≤ d − 1, m(i) = d − i, 1 ≤ i ≤ d − 1,
p(i) = d+ 1− i, 2 ≤ i ≤ d− 1, p(1) = 1.

Proof. – The proof consists of a simple verification, using the relative positions of the βi
and γi which are assumed in the condition of alternate discontinuities.

2.4. The graph of graphs

As for the classical inductions, the self-dual induction is represented by paths in a graph;
each vertex of this graph is not a permutation as in the case of the Rauzy induction, but a
castle graph:

D 2.7. – Given a castle graph G with bijections p, m, s, an instruction on G is
a map from the set of vertices of G to {−,+}d−1 such that ι ◦ s = ι; the castle graph JιG is
the castle graph defined by the bijections p′, m′, s′ described in Proposition 2.1.

Let G0 be as in Lemma 2.2, let G(G0) be the smallest set of castle graphs which contains
G0 and is stable by the map Jι for all possible instructions ι. The graph of graphs Γd is the
oriented graph whose vertices are the elements of G(G0), with an edge labeled by ι from G to
Jι(G).

If Ei are intervals satisfying (1) to (5), and their castle graph is a vertex a of the graph of
graphs; if we apply the self-dual induction, the castle graph of the intervals E′i is the vertex b
such that from a to b there is an edge labeled by the instruction ι of Proposition 2.1.

D 2.8. – Let Γ be an infinite path in the graph of graphs; let Gn, n ∈ N, be its
vertices; for each n, let ιn be the instruction labeling the edge from Gn to Gn+1, let sn, pn,
mn be the bijections defining the castle graph Gn, let Cn be the maximal union of same-sign
circuits of Gn using only the edges starting from isn(i) and of sign ιni, 1 ≤ i ≤ 3.

Γ is admissible if

– G0 is as in Lemma 2.2,
– if i 6∈ Cn, ιn+1i = ιni,
– for each i, ιni = + for infinitely many n,
– for each i, ιni = − for infinitely many n.
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The following theorem is proved in [19]; the proof uses elaborate combinatorial tools; in
the next section we give a simpler proof for d = 4, to make the present paper self-contained.

T 2.3. – Every transformation T defines an admissible infinite path in the graph
of graphs. Every admissible infinite path in the graph of graphs is the path of at least one
transformation T .

2.5. Names

The self-dual induction gives a way to generate any transformation T by 2d−2 families of
Rokhlin towers; when we know the path of T in the graph of graphs, we know how to build
these towers recursively, or, equivalently, how to build their names for the partition of [0, 1[

into ∆i, 1 ≤ i ≤ d.
In the initial castle, and hence in all the castles we consider, each level T rEi,p is contained

in one interval ∆w(r,i,p), w(r, i, p) ∈ {1, . . . , d−1}, and the same holds if we replace p bym.
Thus we can define the names of our towers as in Definition 1.7; there are 2d− 2 names, we
denote by Pi and Mi the names of the towers of bases Ei,p and Ei,m.

L 2.4. – In the initial castle, P1 = 1d,Mi = i, 1 ≤ i ≤ d−1, Pi = i, 2 ≤ i ≤ d−1.
If we apply the self-dual induction to a castle with names Pi and Mi, the new names P ′i and

M ′i are given by

– if is(i) ∈ C and ιi = +, P ′i = Pi, M
′
i = PiMp(i);

– if is(i) ∈ C and ιi = −, P ′i = MiPm(i), M
′
i = Mi;

– if is(i) 6∈ C, P ′i = Pi, M
′
i = Mi.

Proof. – The proof can be obtained by following the steps of the proof of Proposition 2.1,
adding the names Mi and Pi of the towers as in Figure 4.

In classical inductions, we generate T by only d families of Rokhlin towers; this is possible
also for the self-dual induction, by inducing T further on one of our d − 1 subintervals;
but, as will be seen in Lemma 4.2, this requires the knowledge of the path in the graph of
graphs some way beyond the stage we are considering, thus we shall do it only for some
particular families of examples; more generally, the reasoning of Lemma 4.2 and the result
in its corollary can be repeated for any given infinite path in the graph of graphs.

3. Structure of symmetric 4-interval exchange transformations

Throughout the remainder of this paper, we restrict ourselves to d = 4.

L 3.1. – The graph of graphs Γ4 is the graph whose vertices are

I s = (123), p = (132), m = (321), with nontrivial relations r1 = r3, l2 = l3,
II s = (123), p = (321), m = (213), with r1 = r2, l1 = l3,

III s = (123), p = (213), m = (132), with r2 = r3, l2 = l1,
IV s = (321), p = (231), m = (321), with l1 + r1 = l3 + r3, l2 = l3,
V s = (213), p = (231), m = (213), with l1 + r1 = l2 + r2, l1 = l3,

VI s = (132), p = (231), m = (132), with l2 + r2 = l3 + r3, l2 = l1,
VII s = (132), p = (132), m = (312), with l2 + r2 = l3 + r3, r1 = r2,
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VIII s = (321), p = (321), m = (312), with l1 + r1 = l3 + r3, r1 = r3,
IX s = (213), p = (213), m = (312), with l1 + r1 = l2 + r2, r2 = r3,

and whose edges, labeled by instructions (ι1, ι2, ι3), are the following

from I (−,+,−) and (−,−,−) to IV , (−,+,+) and (+,+,+) to V II, (−,−,+),
(+,−,−), (+,−,+), (+,+,−) to I,

from II (−,−,+) and (−,−,−) to V , (+,−,+) and (+,+,+) to V III, (−,+,−),
(−,+,+), (+,−,−), (+,+,−) to II,

from III (+,−,−) and (−,−,−) to V I, (+,+,−) and (+,+,+) to IX, (−,−,+),
(−,+,−), (−,+,+), (+,−,+) to III,

from IV (+,+,+) to V , (−,+,−) and (−,−,−) to I, (+,−,+) to IV ,
from V (+,+,+) to V I, (−,−,+) and (−,−,−) to II, (+,+,−) to V ,

from V I (+,+,+) to IV , (+,−,−) and (−,−,−) to III, (−,+,+) to V I,
from V II (−,−,−) to IX, (−,+,+) and (+,+,+) to I, (+,−,−) to V II,

from V III (−,−,−) to V II, (+,−,+) and (+,+,+) to II, (−,+,−) to V III,
from IX (−,−,−) to V III, (+,+,−) and (+,+,+) to III, (−,−,+) to IX.

Proof. – The proof follows from straightforward computations, applying Definition 2.6.
In each case, the knowledge of m, p and s allows us to write the set of non-trivial relations
of Definition 2.4.

A simplified graph of graphs is shown in Figure 5: we have omitted the edges going from
one vertex to itself, an edge +.+ denotes two edges, (+,−,+) and (+,+,+), and similarly
for other edges labeled with points.
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F 5. The graph of graphs.
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We prove now Theorem 2.3 for d = 4. Only Proposition 3.4 and Lemma 3.3, restricted to
some of the particular cases studied in the proof of the lemma, are necessary for the sequel,
but we wish to give the reader the complete recipe to make his own examples.

P 3.2. – Every transformation T defines an admissible infinite path in the
graph of graphs.

Proof. – Given T , we start from Ei = ∆i and apply the self-dual induction recursively;
we get an infinite path in the graph of graphs (though only admissibility will prove that it does
not become stationary). The first condition of admissibility (Definition 2.8 above) is satisfied
because of Lemma 2.2 and the second one because of Definition 2.6 and Proposition 2.1.

LetEi,n be the intervalEi at stage n; let us prove first that wheneverEi,n is cut for infinitely
many n, then it is cut on the right for infinitely many n and cut on the left for infinitely many n.
Indeed, by construction, the left and right endpoints of Ei,n are respectively T a(n)γb(n) and
T a
′(n)γb′(n), for integers a(n) ≤ 1 and a′(n) ≤ 1, and there is no point T xγb(n) or T x

′
γb′(n)

inside Ei,n for a(n) ≤ x ≤ 1 and a′(n) ≤ x′ ≤ 1. If Ei,n is cut infinitely often, a(n)→ −∞
or a′(n)→ −∞, and thus there exist j and c(n)→ −∞ such that Ei,n does not contain any
T xγj for c(n) ≤ x ≤ 1. But this contradicts minimality if Ei,n is ultimately not cut to the
right (resp. left).

We prove now that each Ei,n is indeed cut for infinitely many n; this is done by looking
precisely at the possible paths in the graph of graphs. There are 27 cases to consider, we look
at two of the most significant.

Suppose for some N GN is vertex I, and let us show that E1,n will be cut at least once for
n ≥ N . If ιN1 = +, 1sN (1) = 11 is in CN , because there is a + loop around 11 in the castle
graph I, and we are done for n = N .

We suppose now that ιN1 = −. If ιN3 = −, we are done as 11 is in CN , because of the
− circuit {11, 33}. For all n ≥ N if E1,n is never cut we have ιn1 = − and we can go only
from I to V II, I to I, V II to I, or V II to V II; hence ιn3 = + for all n ≥ N , as otherwise
1sn(1) is inCn, either because we are in I with a− circuit {11, 33}, or because we are in V II
with a − circuit {11, 23, 32} and ιn2 = ιn3 because sn(2) = 3. Then, if there exists N ′ such
that for all n ≥ N ′ E3,n is not cut, we have ιn2 = − for n ≥ N ′, otherwise 3sn(3) is in Cn,
as both in I and V II there is a + circuit {2s(2), 3s(3)}. Then for all n ≥ N ′ Gn is vertex I
(if it was vertex V II we would have ιn2 = ιn3), and 2sn(2) = 22 is in Cn because there is a
− loop around 22, thus E2,n is cut infinitely often but ultimately only on the right, which as
we just proved is impossible. So E3,n has to be cut infinitely often, hence infinitely often on
the right, and, for some n > N , ιn3 = −, contradiction.

Suppose for some N GN is vertex IV , and let us show that E2,n will be cut at least once
for n ≥ N . As there is a − loop around 22 in the castle graph IV , this implies that ιn2 = +

for all n ≥ N . As there is a + circuit (13, 22, 31) in the castle graph IV , this implies in turn
that ιn1 = ιn3 = − for all n ≥ N such that we are in IV . As E2,n is never cut, we can only
go from IV to I, from I to IV , and from I to I (but not from IV to IV ); this implies that
we are in I for infinitely many n, and that ιn3 = − also for all n ≥ N such that we are in I,
because of the + circuit (22, 33) in I. Let N ′ be an n for which we are in I; if E3,n was never
cut for n ≥ N ′, this would mean ιn1 = + for all n ≥ N ′, we would stay always in I, andE1,n

would be cut infinitely often (thanks to the loop around 11 in I) but only on the left, and this
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is impossible. Thus E3,n is cut for some n ≥ N ′, thus for infinitely many n, thus E3,n is cut
on the left for infinitely many n, and this contradicts the assumption on ιn3.

The same reasoning applies, mutatis mutandis, for any Ei,N when GN is any vertex, and
we have proved the last two conditions of admissibility.

D 3.1. – We say that i takes +, resp −, at stage n, if ιni = +, resp −, and
isn(i) ∈ Cn.

We say that ij takes +, resp −, at stage n if i takes +, resp −, at stage n and sn(i) = j.

L 3.3. – Let G0, . . . Gn, . . . be a given admissible path in the graph of graphs. For
any 1 ≤ i ≤ 3, 1 ≤ j ≤ 3 and any pair of signs e ∈ {−,+}, e′ ∈ {−,+}, there exist a positive
integer t and a finite sequence 1 ≤ js ≤ 3, 0 ≤ s ≤ t, such that

– j0 = i, e0 = e, jt = j, (−1)te = e′,
– for all 1 ≤ s ≤ t, js−1js takes (−1)se at infinitely many stages.

Proof. – The result is clearly true for paths where each ij takes + and− at infinitely many
stages; admissibility implies each i takes + and− at infinitely many stages, but it is not always
true for each ij, and we must prove the lemma individually for paths where each of the 18

possibilities does not occur.

Note that if an admissible path visits all vertices ultimately, to allow the transitions each
ij has to take + and− infinitely often, and the lemma is proved. Now we look at admissible
paths that do not visit all vertices. An admissible path cannot visit only one vertex ultimately,
as, when we go from I to I, 3 cannot take + nor −, and similarly for the other vertices. An
admissible path cannot visit ultimately only two adjacent vertices: if they are I and IV , 2

and 3 cannot take + ultimately, and all the other possibilities are similar.

We look now at a path which ultimately visits only the vertices I, IV and V II: to allow
the transitions 22, 33, 23, 32 take + infinitely often, 11, 33, 13, 31 take− infinitely often and,
to ensure admissibility, 11 takes + infinitely often and 22 takes − infinitely often, and this is
enough to satisfy the lemma: for example, take i = 1, e = −; then by putting j1 = 1, j2 = 3

we get the result for (j, e′) = (1,+) and (j, e′) = (3,−); by putting j3 = j4 = 2, we get the
result for (j, e′) = (2,+) and (j, e′) = (2,−), while by putting j3 = 3 we get the result for
(j, e′) = (3,+); and a similar computation works for other (i, e).

For a path which ultimately visits only the vertices IV , V and V I: then, to allow the tran-
sitions, 13, 22, 31, 11, 23, 32, 12, 21, 33 take + infinitely often, and, to ensure admissibility,
11, 22 and 33 take− infinitely often, and we check this is again enough to satisfy the lemma.
Let us now take a path which ultimately visits only the vertices I, IV , V , II, V III, V II, I,
and always in that circular order; then, to allow the transitions, 13, 31, 22, 11, 33, 23, 32 take
+ infinitely often, 11, 33, 12, 21, 13, 31, 22 take − infinitely often, and again this is enough
to satisfy the lemma.

Other cases are similar to one of these or contain more possibilities.

P 3.4. – Every admissible infinite path in the graph of graphs is the path of at
least one transformation T .
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Proof. – The proof (in contrast with the general proof in [19] which uses word combina-
torics) follows the strategy of [26]: we find the coordinates l1,0, r1,0, l2,0, r2,0, l3,0, r3,0 defin-
ing our transformation by showing that some intersection of open cones is nonempty, though
here we have to take its further intersection with a subspace of dimension 4 because of the
nontrivial relations defined in Definition 2.4 and expressed in Lemma 3.1.

LetG0, . . .Gn, . . .be a given admissible path. Let ιn and Cn be the associated instructions
and unions of same-sign circuits.

We need to find a sequence of strictly positive vectors

vn = (l1,n, r1,n, l2,n, r2,n, l3,n, r3,n)

such that for each n,

– the coordinates of vn satisfy the two non-trivial relations corresponding toGn as stated
in Lemma 3.1,

– vn+1 = Unvn,

where the linear operator Un from R6 to R6 is defined by Un(l1, r1, l2, r2, l3, r3) =

(l′1, r
′
1, l
′
2, r
′
2, l
′
3, r
′
3) with

– if isn(i) ∈ Cn and ιni = +, l′i = li − rsn(i), r
′
i = ri,

– if isn(i) ∈ Cn and ιn = −, l′i = li, r
′
i = ri − lsn(i),

– if isn(i) 6∈ Cn, l′i = li, r
′
i = ri.

A direct consequence of the formulas is that Un is invertible and the matrix of U−1
n has

nonnegative entries. What we shall show now is that for any k, any n large enough,
Wk,n = U−1

k . . . U−1
n has a matrix whose all entries are strictly positive.

We look at how vn is deduced from vn+1; if ism(i) ∈ Cm and ιmi = +, we have
ri,m = ri,m+1 and

li,m = li,m+1 + rsm(i),m = li,m+1 + rsm(i),m+1

as sm(i)i is in the same positive circuit in Cm as ism(i). Similarly, if ism(i) ∈ Cm and
ιmi = −, we have li,m = li,m+1 and ri,m = ri,m+1 + lsm(i),m+1, and if ism(i) 6∈ Cm we
have li,m = li,m+1 and ri,m = ri,m+1. Hence li,m+1 appears always in the expression of li,m,
and hence in every li,p for p ≤ m; it appears also in the expression of rj,m when ij takes −
at stage m, and if there exists q ≤ m such that ij has taken − at stage q, it appears in every
ri,p for p ≤ q.

Let k > 0 be fixed. We take i and j and two signs e and e′, and choose j1, . . . , jt as in
Lemma 3.3. As js−1js takes (−1)se at infinitely many stages, we can find k < k1 < · · · < kt
such that js−1js takes (−1)se at stage ks for all 1 ≤ s ≤ t. And if n > kt, this implies that
lj,n if e′ = −, resp. rj,n if e′ = +, appears in the coordinate li,k of vk if e = +, resp. ri,k if
e = −. By doing the same for every choice of 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, e ∈ {−,+}, e′ ∈ {−,+}
and taking n larger than all the corresponding kt, we get our assertion on Wk,n.

We write now the reasoning of [26], in a little more explicit way; let Ω = {li > 0, ri > 0,

i = 1, 2, 3} be the open positive cone in R6, Ω = {li ≥ 0, ri ≥ 0, i = 1, 2, 3} its closure,
Kn = W1,nΩ, Kn = W1,nΩ, K ′n = Kn \ {0}; we have Kn ⊂ K ′n ⊂ Kn. The condition on
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the matrices ensures that for all k and n > k, if v is in Ω with at least one strictly positive
coordinate, then Wk,nv is in Ω, thus

∩n≥1Kn = ∩n≥1Kn \ {0} = ∩n≥1K
′
n.

The last part of Keane’s reasoning (which will not be used here but imitated) says that
each K ′n is invariant by v → λv for any scalar λ, thus the K ′n are decreasing compact sets in
a projective space, thus their infinite intersection is non-empty; thus ∩n≥1Kn is non-empty.

We introduce now the relations: let Ξn be the subset of R6 made of vectors
(l1, r1, l2, r2, l3, r3) whose coordinates satisfy the two non-trivial relations correspond-
ing to Gn in Lemma 3.1; in particular Ξ0 = {r1 = r3, l2 = l3} as G0 is vertex I. It follows
from Proposition 2.1, and can also be re-checked by direct computation, that

Ξn+1 = UnΞn.

Now, the above considerations imply that Ξ0 ∩ ∩n≥1Kn = Ξ0 ∩ ∩n≥1K
′
n. We look at the

intersections of the K ′n with the space Ξ0 = {r1 = r3, l2 = l3}: they are nonempty as,
because of the expression of the relations in Lemma 3.1, each (Ω∩Ξn+1) is non-empty, thus
also its image by W1,n, and we have W1,nΩ∩Ξ0 = W1,n(Ω∩Ξn+1) = Ξ0 ∩Kn ⊂ Ξ0 ∩K ′n.
Each Ξ0 ∩ K ′n is invariant by v → λv for any scalar λ, thus the Ξ0 ∩ K ′n are decreasing
compact sets in a projective space, thus their infinite intersection is non-empty. Thus the
infinite intersection ∩+∞

n=1(Ξ0 ∩W1,nΩ) = ∩+∞
n=1W1,n(Ω ∩ Ξn+1) is non-empty.

A vector v0 in this latter set is such that vn has strictly positive coordinates for all n,
and satisfies the required relations for all n. After normalization by l1,0 + r1,0 + l2,0+

r2,0 + l3,0 + r3,0 + l1,0 = 1, we define a symmetric 4-interval exchange transformation by
α1 = l1,0 + r1,0, α2 = l2,0 + r2,0, α3 = l3,0 + r3,0, α4 = l1,0, and the required inequalities
on the βi and γj are satisfied.

By construction the self-dual induction is iterated infinitely, defining the pathG0, . . . ,Gn,
. . .and by admissibility each Ei is cut infinitely often on the left and on the right; thus the
height of each tower tends to +∞; as the negative orbits of the discontinuities of T appear
as the endpoints of levels in the castles, while the negative orbits of the discontinuities of T−1

appear in the interiors of these levels, the i.d.o.c. condition is satisfied.

4. Uniquely ergodic examples

In this section, we define a family of examples depending on three sequences of integers
mk, nk, pk, which we call the partial quotients for the self-dual induction: mk (resp nk, pk)
is the number of consecutive times when 22 (resp. 33, 11) takes −, the − edge from 22 (resp.
33, 11) being a loop in the castle graph.

D 4.1. – Given m = {mk, k ∈ N}, n = {nk, k ∈ N?}, p = {pk, k ∈ N?}, let
Γ(m,n, p) be the admissible path defined as follows, which starts from I, then makes infinitely
many circuits through vertices IV , V , V I: laps are numbered from k = 0; before lap 0, we go
from I to IV by (−,−,−); for all k ≥ 0, at the beginning of lap k we are in IV ; we apply
instruction (+,−,+) mk times if k > 0, resp. m0 − 1 times if k = 0, staying in IV , then go
to V by (+,+,+), then apply instruction (+,+,−) nk+1 times, staying in V , then go to V I
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by (+,+,+), then apply instruction (−,+,+) pk+1 times, staying in V I, then go to IV by
(+,+,+).

All transformations T in this section are such that their path in the graph of graphs is a
Γ(m,n, p).

Note that in Definition 4.1, and hence in Lemma 4.1 below, when we look at what happens
between vertex IV in lap k and vertex IV in lap k + 1, we have chosen to use mk, nk+1 and
pk+1. This is intentional, because the fundamental Corollary 4.3 below, which depends on
what happens between just after vertex IV in lap k and just after vertex IV in lap k + 1,
will thus depend on nk+1, pk+1 and mk+1, and that corollary will be used extensively in the
sequel. The case k = 0 is special, as 22 takes − when we go from the initial state to vertex
IV in lap 0, thus 22 has to take − only m0 − 1 times in the latter situation.

L 4.1. – The names of towers Pi(k) and Mi(k) when we are in vertex IV at the
beginning of lap k are given by the following rules:

– P1(k + 1) = (P1(k)M2(k)mkP2(k)M3(k))pk+1P1(k)

– P2(k + 1) = M2(k)mkP2(k)

– P3(k + 1) = (P3(k)M1(k))nk+1P3(k),
– M1(k + 1) = (P1(k)M2(k)mkP2(k)M3(k))pk+1P1(k)M2(k)mkP2(k)P3(k)M1(k),
– M2(k + 1) = M2(k)mkP2(k)(P3(k)M1(k))nk+1P3(k)P1(k)M2(k),
– M3(k + 1) = (P3(k)M1(k))nk+1P3(k)P1(k)M2(k)mkP2(k)M3(k);

with mk replaced by m0− 1 if k = 0, and initial values P1(0) = 13, P2(0) = 22, P3(0) = 314,
M1(0) = 1, M2(0) = 2, M3(0) = 3.

Proof. – The proof comes from applying Lemma 2.4 at each stage.

As was announced in Section 2.5, we replace the six towers by four:

L 4.2. – Let E1(k) be the interval E1 when we are in vertex IV at the beginning of
lap k; its induction castle is made of four towers, whose names are

– Ak = M1(k)P3(k),
– Bk = P1(k)M2(k)mkP2(k)M3(k),
– Ck = P1(k)M2(k)mkP2(k)P3(k),
– Dk = P1(k)M2(k)mk+1P2(k)P3(k),

with all mk replaced by m0 − 1 if k = 0.

Proof. – The induced map of T on E1(k) is an induced map of the induced map of T on
E1(k) ∪ E2(k) ∪ E3(k), whose castle is vertex IV . To find the castle we want, we look at
concatenations of towers starting from E1(k) and coming back to it, and this corresponds
to paths in the castle graph IV : starting from 13, we can go to 31 by M1 and come back
to 13 by M3 or P3, or else go to 22 by P1, make an unknown number of times the loop M2

around 22, then go to 31 by P2 and come back to 13 byM3 or P3; thus the possible names of
our concatenations of towers areM1(k)P3(k),M1(k)M3(k), P1(k)M2(k)sP2(k)M3(k), and
P1(k)M2(k)tP2(k)P3(k) for (a priori) any positive integers s and t. But the same formulas
hold with k replaced by k + 1, while concatenations of towers starting from E1(k + 1)

and coming back to it are also concatenations of the above concatenations starting from
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E1(k) and coming back to it. Taking into account the formulas of Lemma 4.1, we see that
M1(k)M3(k) does not occur, and that there are only two possible values for t, t = mk and
t = mk+1, and one possible value for s, s = mk (with the usual modification for k = 0).

C 4.3. – The above names are given by the formulas

– Ak+1 = B
pk+1

k CkA
nk+1+1
k ,

– Bk+1 = B
pk+1

k Ck(A
nk+1

k Dk)mk+1A
nk+1

k Bk,
– Ck+1 = B

pk+1

k Ck(A
nk+1

k Dk)mk+1A
nk+1

k

– Dk+1 = B
pk+1

k Ck(A
nk+1

k Dk)mk+1+1A
nk+1

k .

with initial values A0 = 1314, B0 = 132m0−1223, C0 = 132m0−122314, D0 = 132m022314.

In all the sequel we denote by ak, bk, ck, dk the lengths of the namesAk,Bk,Ck,Dk; these
are also the heights of the corresponding towers, which we denote by tower Ak, tower Bk,
tower Ck, tower Dk, each of these being a k-tower.

By minimality, for each ε, if k is large enough, the lengths of the intervals are all less than ε;
hence any integrable function f can be approximated (in L1 for example) by functions fk
which are constant on each level of each k-tower. Thus the above formulas give a complete
description of T as a system of rank at most four by intervals (the original reference on finite
rank is [31], but finite rank by intervals was not defined in print before [12]). From these
formulas, T is determined up to measure-theoretic and topological isomorphisms.

Now, the secret for building interesting examples is to play on our partial quotients; we
shall first ensure that our system is of rank one, the tower Ak being the only one which is
not of very small measure (for any invariant measure µ, but this fact by itself ensures that
µ is unique). Moreover, this is a rank one system as in Definition 1.8, and all its properties
come from the values of ak. In Theorem 4.6 we ensure that the ak are the denominators
of the convergents (for the Euclid algorithm) of an irrational θ, and thus T has θ as an
eigenvalue, and even is measure-theoretically isomorphic to the irrational rotation of angle θ.
In Theorem 4.7, each ak will be a multiple of an integer N , and T has 1

N as an eigenvalue.
In both cases, as the tower Bk is not negligible from the topological point of view, a relation
between ak and bk will ensure topological weak mixing.

P 4.4. – If for infinitely many k, there exist positive integers a′k, b′k such
that a′kak − b′kbk = 1, and we have nk+1 > a′k, pk+1 > b′k; then the transformation T is
topologically weakly mixing.

Proof. – Recall that the union of the bases of the towers Ak, Bk, Ck, Dk is the interval
E1(k), and, by minimality, for each ε, if k is large enough, the lengths of the intervals are all
less than ε. Let θ be an eigenvalue with a continuous eigenfunction f ; then, for given ε, if k
is large enough, |f(z)− f(y)| < ε (in R/Z) if z and y are in E1(k). Because in the formulas
of Corollary 4.3 Ank+1

k occurs in (for example) Ak+1, there exists x in the basis of the tower
Ak such that T a

′
kakx is again in E1(k) hence

||θa′kak|| = |f(T a
′
kakx)− f(x)| ≤ ε;

similarly there exists y in the basis of the tower Bk such that T b
′
kbky is again in E1(k), and

we get
||θ(a′kak − b′kbk)|| < ε,
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hence θ = 0, which is not possible as T is minimal and the existence of a continuous non-
constant eigenfunction for θ = 0 would imply the existence of a non-trivial closed invariant
subset.

P 4.5. – If
+∞∑
k=1

(pk+1 + 1)bk + ck + dk
nk+1ak

< +∞,

then T is uniquely ergodic and (X,T, µ) is measure-theoretically isomorphic to the rank one
system (X ′, T ′, µ′) defined (as in Definition 1.8) by the word A0 and the towers

A′k+1 = sak+1−(nk+1+1)ak(A′k)nk+1+1.

Proof. – Note that the above condition uses dk and notmk+1dk as it is enough since both
A
nk+1

k and Dk have their lengths multiplied by mk+1 in the formulas of Corollary 4.3.

Let µ be any invariant probability for T : each level in a given tower has the same measure,
hence the above condition ensures that the towers Bk, Ck, Dk, have measure at most εk, the
k-th term in the above series, in each tower Ak+1, Bk+1, Ck+1, Dk+1, hence in the whole
space, where

∑+∞
k=0 εk < +∞. The system (X,T, µ) is then of rank one by intervals as the

sequence of towersAk generates the whole space, see for example [12] for precise definitions.
We build a measure-theoretic isomorphism between (X,T, µ) and (X ′, T ′, µ′), by sending
the j-th level of the tower Ak to the j-th level of the tower A′k for T ′: it is consistent by
construction, as the length of A′k is ak, and is defined almost everywhere because of the
condition on εk. The unique ergodicity is a consequence of the rank one by intervals: as
is mentioned in Definition 1.8, the definition of µ′ ensures that it is the unique invariant
probability measure on (X ′, T ′), and any invariant measure ν 6= µ on (X,T ) would define
an invariant measure ν′ 6= µ′ on (X ′, T ′) through the above isomorphism.

T 4.6. – One can construct recursively sequences m, n, p such that the
corresponding transformation T is uniquely ergodic, topologically weakly mixing, and measure-
theoretically isomorphic to an irrational rotation on T1.

Proof. – We build the partial quotients for the self-dual induction recursively as follows:
we choose m0 such that a0 and b0 are coprime, and we have b0 > a0.

At stage k, we assume ak and bk are coprime, and bk > ak; by Bezout’s identity we can
find positive integers a′k and b′k such that a′kak − b′kbk = 1. We choose first pk+1, such that

pk+1 > b′k and

pk+1bk + ck ≡ ak−1 mod ak;

this is possible as bk is invertible modulo ak; then we choose nk+1 large enough for

nk+1ak > 2k((pk+1 + 1)bk + ck + dk),

nk+1 > a′k,

and such that

(nk+1 + 1)ak + pk+1bk + ck is coprime with bk − ak;

4 e SÉRIE – TOME 44 – 2011 – No 3



EIGENVALUES OF IETS 383

this is possible as ak is invertible modulo bk − ak; finally we choose

mk+1 = tk+1ak+1 for some tk+1 ∈ N?.

As by Corollary 4.3 bk+1 − ak+1 = bk − ak +mk+1(nk+1ak + dk), we have bk+1 − ak+1 ≡
bk − ak modulo ak+1 by choice of mk+1 as in the previous equation; as bk − ak is invertible
modulo ak+1, so is bk+1−ak+1, and thus ak+1 and bk+1 are again coprime, and bk+1 > ak+1.

Our transformation T satisfies the hypothesis of Proposition 4.5, thus is uniquely ergodic
and measure-theoretically isomorphic to the rank one system T ′. T is topologically weakly
mixing by Proposition 4.4.

Because of the second equation in the choice of pk+1 above, ak+1 = yk+1ak + ak−1

for positive integers yk+1. We choose the irrational θ whose partial quotients (for the
Euclid algorithm) are y0, y1, . . . so that the ak are the denominators of its convergents.
For the rotation of angle θ, the standard Sturmian trajectories (see [17] for example) are
concatenations of words A′′k and C ′′k with C ′′k+1 = A′′k and A′′k+1 = C ′′k (A′′k)yk+1 . As∑+∞
k=1

ak−1

yk+1ak
< +∞ because the hypothesis of Proposition 4.5 is satisfied, this rotation is

measure-theoretically isomorphic to the rank one system defined by the word A′′0 and the
towers A′′k+1 = sak−1(A′′k)yk+1 , by the same proof as in Proposition 4.5.

And T ′ and T ′′ are measure-theoretically isomorphic as in the proof of Proposition 4.5, as
build an isomorphism between T ′′ and T ′ by sending someA′′k to strings of spacers of length
ak, on a part of the space of measure εk with

∑+∞
k=1 εk < +∞.

T 4.7. – For any integer N ≥ 2, one can construct recursively sequences m, n, p
such that the corresponding transformation T is uniquely ergodic, topologically weakly mixing,
and has 1

N as an eigenvalue.

Proof. – We build the partial quotients for the self-dual induction as follows: at stage
k ≥ 1, we assume ak and bk are coprime, bk > ak and ak is a multiple of N ; by Bezout’s
identity we can find positive integers a′k and b′k such that a′kak − b′kbk = 1. We choose first
pk+1, such that pk+1 > b′k and

pk+1bk + ck ≡ 0 mod N ;

this is possible as bk is invertible modulo ak hence modulo N ; then we choose nk+1

large enough for nk+1ak > 2k((pk+1 + 1)bk + ck + dk), nk+1 > a′k, and such that
(nk+1 +1)ak+pk+1bk+ck is coprime with bk−ak; this is possible as ak is invertible modulo
bk − ak; finally we choose mk+1 = tk+1ak+1 for some tk+1 ∈ N?, hence ak+1 and bk+1 are
again coprime, and bk+1 > ak+1, while ak+1 is a multiple of N .

At the initial stage, if N = 2 or N = 4 we can choose m0 such that b0 is coprime
with a0, and our assumptions are satisfied at stage 0, so we begin the above process at
k = 0. Otherwise, our assumptions will be satisfied at stage 1, in the following way: we
choose m0 such that m0 and m0 + 4 are both coprime with 4N (let 4N =

∏s
i=0 π

αi
i be

the decomposition of 4N into prime factors, with π0 = 2 < π1 < · · · ; for 0 ≤ i ≤ s,
let Ψi be the set of 0 < m < 4N such that m and m + 4 are coprime with π0, . . . , πi: we
have #Ψ0 = 2N , and, by the Chinese remainder theorem, #Ψi+1 = #Ψi(1 − 1

2πi+1
), thus

#Ψs =
∏s
i=0 π

αi−1
i

∏s
i=1(πi−2) > 0, and anym0 in Ψs is convenient). Thusm0 is coprime

with N and with 4 and m0 + 4 is coprime with m0N , and for any n1 and any element x of
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Z/m0NZ we can find p1 such that a1 = (m0 + 4)p1 + 4n1 +m0 + 10 ≡ xmodNm0. Hence
we choose any n1, and then p1 such that a1 is a multiple ofN and coprime withm0 = b0−a0,
then, with m1 = t1a1 for some t1 ∈ N?, we get that a1 and b1 are coprime.

Our transformation T satisfies the hypothesis of Proposition 4.5, thus is uniquely ergodic
and measure-theoretically isomorphic to the rank one system T ′ in Proposition 4.5. T is
topologically weakly mixing by Proposition 4.4.

On (X ′, T ′), for k ≥ 1 we put φk(x) = j
N if x lies in the pN + j-th level of the tower A′k,

for integers 0 ≤ p ≤ ak

N − 1, 0 ≤ j ≤ N − 1. Because ak is a multiple of N , this is consistent
and the φk converge in L2(X,R/Z) to a function φ, which satisfies T ′φ = 1

N + φ. Thus T ′

and T have the required eigenvalue.

We can also build such a transformation T with both rational and irrational eigenvalues,
by building a θ such that the ak are the denominators of its convergents, multiplied by N .

We turn now to weakly mixing examples; the first one imitates the famous rank one system
of del Junco-Rudolph [22] by ensuring a recurrence relation ak+1 = yk+1ak + 1.

T 4.8. – One can construct recursively sequences m, n, p such that the
corresponding transformation T is uniquely ergodic, weakly mixing, and simple (of order
two).

Proof. – We build the partial quotients for the self-dual induction recursively as follows:
we choose m0 such that a0 and b0 are coprime, and we have b0 > a0.

At stage k, we assume ak and bk are coprime, and bk > ak; we choose pk+1 such that

pk+1bk + ck ≡ 1 mod ak;

this is possible as bk is invertible modulo ak; then we choose nk+1 large enough for
nk+1ak > 2k((pk+1 + 1)bk + ck + dk), and such that (nk+1 + 1)ak + pk+1bk + ck is
coprime with bk − ak, and mk+1 = tk+1ak+1 for some tk+1 ∈ N?. Thus ak+1 and bk+1 are
again coprime, and bk+1 > ak+1.

Our transformation T satisfies the hypothesis of Proposition 4.5, thus is uniquely ergodic
and measure-theoretically isomorphic to the rank one system T ′.

By construction ak+1 = yk+1ak+1 for positive integers yk+1 > 2k+1. Thus T ′ is measure-
theoretically isomorphic to the rank one system T ′′ defined by the word A0 and the towers
A′′k+1 = s(A′′k)yk+1 , as we build an isomorphism between T ′′ and T ′ by sending some A′′k to
strings of spacers of length ak, on a part of the space of measure εk with

∑+∞
k=1 εk < +∞.

This last system is weakly mixing and simple exactly in the same way as del Junco–
Rudolph’s map [22], which is the rank one system defined by some H0 and the towers
Hk+1 = H2k

k sH2k

k (this defines a transformation by an appropriate modification of Defi-
nition 1.8); the main (and quite involved) argument in Theorem 1 of [22] uses only the fact
that there are isolated spacers between long concatenations of the same tower.

Note that we deduce from [22] that this system is also prime (it has no nontrivial invariant
sub-σ-algebra) and rigid.

Of course, as most transformations T are weakly mixing, we may expect to find many
more examples with this property. Indeed, we can build a lot of them by adapting to the
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family of transformations T in the present section the method described in the proof of
Theorem 5.5 below.

Another unexpected way is to use the so-called Arnoux-Rauzy systems [3]. These are
symbolic systems defined by three names Xk, Yk, Zk, built recursively by using a sequence
of combinatorial rules; by rule 1, Xk+1 = Xk, Yk+1 = YkXk, Zk+1 = ZkXk; by rule 2,
Xk+1 = XkYk, Yk+1 = Yk, Zk+1 = ZkYk; by rule 3, Xk+1 = XkZk, Yk+1 = YkZk,
Zk+1 = Zk. At the beginning, X0 = 1, Y0 = 12, Z0 = 13. Here we restrict ourselves
to a particular class of Arnoux-Rauzy systems, built by applying successively rule 1 q3l+1

times, rule 2 q3l+2 times, rule 3 q3l+3 times, then rule 1 q3l+4 times and so on, starting from
l = 0; this gives a uniquely ergodic (by Boshernitzan’s result using complexity [5]) system
(Y, S), and, when the qk grow to infinity fast enough, as a straightforward consequence of
the definition, this system is measure-theoretically isomorphic to a rank one system defined
by the wordH0 and the towersHk+1 = stk(Hk)qk+1 , where, for k = 3l+ 1 (resp. k = 3l+ 2,
k = 3l+ 3)Hk has name Yq1+...qk

(resp. Z,X), and tk is the length of Zq1+...qk
(resp. X, Y ).

These systems are proved to be weakly mixing in [7].

P 4.9. – One can construct recursively sequences m, n, p such that the
corresponding transformation T is uniquely ergodic, weakly mixing, and measure-theoretically
isomorphic to an Arnoux-Rauzy system.

Proof. – We build simultaneouslymk, nk, pk defining our transformation T and qk defin-
ing our Arnoux-Rauzy system.

At each stage, ak and bk are coprime, bk > ak, and ak = hk, hk being the length ofHk. At
the beginning, we choose the first parameters so that the assumptions are satisfied at stage 1.
At stage k choose first pk+1, such that, if tk is defined above from q1, . . . , qk and the rules
defining an Arnoux-Rauzy system, as the length of Zq1+···+qk

, resp. X, Y according to the
class of k modulo 3,

pk+1bk + ck ≡ tk mod ak;

then we choose nk+1 large enough for satisfying the hypothesis of Proposition 4.5 and such
that (nk+1 + 1)ak + pk+1bk + ck is coprime with bk − ak, then mk+1 = uk+1ak+1, for a
positive integer uk+1, so that ak+1 and bk+1 are again coprime, and bk+1 > ak+1. Then we
choose qk+1 so that hk+1 = ak+1. We conclude as in the proof of Theorem 4.6.

Note that all the examples in this section are rigid by Proposition 1.1.

5. Non uniquely ergodic examples

D 5.1. – Given m = {mk, k ∈ N}, n = {nk, k ∈ N?}, with nk+1 > mk > nk,
let Γ(m,n) be the admissible path defined as follows, which starts from I and then follows
infinitely many times a path IV − I − V II − I − IV :

let f0 = n1, ek = mk − fk−1 and fk = nk+1 − ek for k ≥ 1, thus ek > 0 and fk > 0. At
the beginning of step k we are in IV ; we go to I by (−,−,−), then apply instruction (+,−,+)

ek − 1 times, staying in I, then go to V II by (+,+,+), then go to I by (+,+,+), apply
instruction (+,−,−) fk − 1 times, staying in I, then go back to IV by (−,−,−). Before
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step 1, starting from I we apply instruction (+,−,−) f0 − 1 times, staying in I, then go to IV
by (−,−,−).

All transformations T in this section are such that their path in the graph of graphs is a
Γ(m,n).

Indeed, in this definition mk is the number of consecutive times when 22 takes −, the −
edge from 22 being a loop in the castle graph; 22 does take− when we are in I or IV but not
when we are in V II, so mk counts also the number of times we are consecutively in I, IV ,
and I again, between two passages in V II. Similarly nk is the number of consecutive times
when 11 takes +, the + edge from 11 being a loop in the castle graph, and that happens when
we are in I or V II.

The ek and fk can be seen as auxiliary quantities withmk = ek+fk−1 and nk+1 = ek+fk;
the indexing has been chosen so that Lemma 5.1 depends on ek, fk, and Corollary 5.3 will
thus depend on nk+1 and mk+1, and only that corollary will be used in the sequel.

In the same way as in the previous section we prove

L 5.1. – The names of towers Pi(k) and Mi(k) when we are in vertex IV at the
beginning of step k are given by the following rules:

– P1(k + 1) = (M1(k)P3(k))ek+fkM1(k)M3(k)P1(k),

– P2(k + 1) = (M2(k)ekP2(k)M3(k)P1(k)M2(k))fkM2(k)ekP2(k),

– P3(k + 1) = M3(k)P1(k)M2(k)ekP2(k)M3(k)M1(k)P3(k),
– M1(k + 1) = (M1(k)P3(k))ek+fkM1,
– M2(k + 1) = M2(k)ekP2(k)M3(k)P1(k)M2(k),

– M3(k + 1) = M3(k)P1(k)M2(k)ekP2(k)M3(k);

with initial values P1(0) = (14)f0−113, P2(0) = 2f0+1, P3(0) = 314, M1(0) = (14)f0−11,
M2(0) = 2, M3(0) = 3.

Note thatP2(k+1) does indeed containM2(k+1), and evenM2(k+1)fk , as a strict prefix,
as the last instruction is (−−−) from I, and the instruction for 2 has been − fk times.

L 5.2. – Let E1(k) be the interval E1 when we are in vertex IV at the beginning of
step k; its induction castle is made of four towers, whose names are

– Ak = M1(k)P3(k),
– Bk = M1(k)M3(k),
– Ck = P1(k)M2(k)ekP2(k)M3(k),
– Dk = P1(k)M2(k)ek+1P2(k)M3(k).

C 5.3. – The above names are given by the formulas

– Ak+1 = A
nk+1

k BkCkAk,
– Bk+1 = A

nk+1

k BkCk,
– Ck+1 = A

nk+1

k BkCkD
mk+1

k Ck,
– Dk+1 = A

nk+1

k BkCkD
mk+1+1
k Ck.

with initial values A1 = (14)n11314, B1 = (14)n1−113, C1 = (14)n1−1132m1+13,
D1 = (14)n1−1132m1+23.
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Towers and lengths are denoted as in the previous section. Now we shall fix our partial
quotients so that the towers Ak and the towers Dk behave like independent systems, so that
the transformation T has two ergodic invariant measures, one mainly concentrated on the
towers Ak and giving a rank one system with this family of towers, and the other doing the
same with the towers Dk. By ensuring the ak are even, we get an eigenvalue 1

2 for the first
system, while the lengths dk will ensure the second one is weakly mixing by contradicting the
criterion in Proposition 1.2.

P 5.4. – If
+∞∑
k=1

bk + ck
nk+1ak

<
1

4
,

+∞∑
k=1

nk+1ak + bk + 2ck
mk+1dk

<
1

4
,

then T has exactly two ergodic invariant probability measures µ1 and µ2; (X,T, µ1) is
measure-theoretically isomorphic to the rank one system defined by the wordA1 and the towers

A′k+1 = (A′k)nk+1sak+1−nk+1ak ;

(X,T, µ2) is measure-theoretically isomorphic to the rank one system defined by the word D1

and the towers
D′k+1 = sdk+1−(mk+1+1)dk−ck(D′)

mk+1+1
k sck .

Proof. – Let εk and ηk be respectively the k-th term of the first and second series above.
Let µ be any invariant probability for T : each level in a given tower has the same measure,
hence the above conditions and the formulas in Corollary 5.3 ensure that the tower Ak has
measure at least 1 − εk in the tower Ak+1 and the tower Dk has measure at least 1 − ηk in
the tower Dk+1, while the towers Bk, Ck have measure at most εk + ηk in each tower Ak+1,
Bk+1, Ck+1, Dk+1, hence in the whole space.

Thus we can build a measure-theoretic isomorphism between the rank one system
(X ′, T ′, µ′) with towers A′k and (X,T ) equipped with some invariant probability measure
µ1 which we retrieve from µ′, and µ1 is ergodic as µ′ is. We do the same for the rank one
system with towersD′k, defining an ergodic µ2. Then the towerA1 has measure greater than
1
2 for µ1 and smaller than 1

2 for µ2, thus they are different, and it is known [23] [37] that T
has at most two invariant ergodic probabilities.

Note that the two convergent series conditions are exactly the one needed in the definition
of rank one systems.

T 5.5. – One can construct recursively sequencesm, n such that the corresponding
transformation T is not uniquely ergodic, topologically weakly mixing, weakly mixing for one
of its invariant ergodic measures, while for the other one it has 1

2 as an eigenvalue.

Proof. – We fix M > 5 such that for all y ≥ M there exist a prime number between
6y/10 and 9y/10 and a prime number between 11y/10 and 14y/10. This is possible as a
consequence of the prime numbers theorem.
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At the beginning, note that a1, b1 are even; we choose n1 andm1 such that c1 is even, d1 is
odd, a1 and d1 are coprime.

Given ak, bk, ck, dk, some pk to be specified later, and the assumptions that ak and dk are
coprime, ak, bk, ck are even and dk is odd, we choose the next partial quotients as follows.
Let zk be the greatest common divisor of pk and dk, with dk = d′kzk, pk = p′kzk. Note that
d′k > 2 as dk is odd. Let p′′k be an inverse of p′k mod dk. We choose first a unit u′k of Z/d′kZ
such that

u′k 6≡ p′k(ak − ck) + t′ mod d′k for any − d′k/2M < t′ < d′k/2M.

This is possible: if d′k ≥ M , we take the class modulo d′k of one of the two prime numbers
defined above for y = d′k (the first one if the class of p′k(ak − ck) is between 0 and d′k/2, the
second one otherwise), while if 2 < d′k < M this forbids at most one unit. We choose now a
unit uk of Z/dkZ such that

uk ≡ p′′ku′k mod d′k

(this is possible as, to be a unit, uk has just to be coprime with the prime factors of dk
which are not factors of d′k). Now we choose nk+1 large enough for the first condition of
Proposition 5.4 and such that

nk+1ak ≡ uk − ak − bk − ck mod dk,

thus ak+1 is coprime with dk; and we choose then mk+1 large enough for the second condi-
tion of Proposition 5.4 and such that

(mk+1 + 1)dk + ck − ak is invertible modulo ak+1.

Thus our assumptions are satisfied for k + 1 (note that mk+1 has to be even).
We explain now how to choose the pk. Whenmk+1 and nk+1 are fixed, for any 0 < p < dk

there is at most one integer 0 < l < dk+1 such that∣∣∣∣ pdk − l

dk+1

∣∣∣∣ < 1

2Mdk+1
.

We call this integer l = φk+1(p), when it exists. Now, our choice of partial quotients ensures
that pkdk+1 ≡ pkuk + pk(ck − ak) mod dk, and pkuk 6≡ pk(ak − ck) + t mod dk for any
−dk/2M < t < dk/2M (by multiplying by zk the relation satisfied by u′k, and p′kuk, mod d′k),
thus pkdk+1 6≡ t mod dk for any −dk/2M < t < dk/2M ; this means exactly that φk+1(pk)

does not exist. Starting from k1 = 1, we define inductively a sequence of integers kj ; at stage j
we put pkj

= 1; then pkj+1 = φkj+1(2) if it exists, otherwise pkj+1 = φkj+1(3) if it exists, and
so on... If no φkj+1(p) exists anymore, we put kj+1 = kj + 1, otherwise pkj+1 will be some
φkj+1(p), and for pkj+2 we try first φkj+2φkj+1(p+1) if it exists, then φkj+2φkj+1(p+2) and
so on... If no φkj+2φkj+1(q) exists anymore, we put kj+1 = kj + 1, otherwise pkj+2 is some
φkj+2φkj+1(q), and for pkj+3 we try first φkj+3φkj+2φkj+1(q + 1) if it exists, and so on...
After at most dkj

−1 steps, we have defined kj+1 and ensured that for any 0 < p < dkj
, there

exists t ≤ kj+1 such that φt . . . φkj+1(p) does not exist; then we start again from pkj+1
= 1.

We apply Proposition 5.4 to get µ1 and µ2. As ak is always even, (X,T, µ1) has an
eigenvalue 1

2 as in Theorem 4.7. Now, let θ be an eigenvalue for (X,T, µ2): by Proposition 1.2
we must have mk+1||dkθ|| < 1

4M for k large enough, which implies |θ − tk
dk
| < 1

3Mdk+1
for k

large enough and some 0 < tk < dk; this implies that for all k large enough φk+1(tk) exists
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and is tk+1, and this is impossible by the choice of pk. Thus (X,T, µ2) is weakly mixing,
which implies the topological weak mixing of T (which we could also have ensured directly
as in Proposition 4.4).

As in [26] we can choose the vector of lengths (among a segment of possible solutions),
so that µ1 is the Lebesgue measure, or so that µ2 is the Lebesgue measure, or so that
neither µ1 nor µ2 is the Lebesgue measure. Note that (X,T, µ1) and (X,T, µ2) are rigid by
Proposition 1.1.

6. Questions and comments

Among examples we would have liked to build are transformations T with two (or more)
rationally independent irrational eigenvalues; a similar result has been claimed by Parreau
and Guenais (still unpublished) for d = 3 intervals, by very different methods which do not
generalize to d > 3; the methods of the present paper being based on rank one, what we
would need is an explicit rank one construction for rotations of T2, and this in itself is an
interesting open problem.

Very interesting also would be a transformation T with a continuous eigenfunction; this
does not exist for d = 3 intervals [30]; for every d ≥ 4 nontrivial examples have been derived
by Hmili [20] (in answer to a question asked in a preliminary version of the present paper):
these examples are semi-conjugate, in a rather straightforward way, to rotations of T1. Older
examples have been built by Arnoux and Yoccoz [2] for some permutation on d = 7 intervals:
they are semi-conjugate, in a non-straightforward way, to rotations of T2. No example we
know of has total irrationality.

The condition of alternate discontinuities simplifies the situation but can be dispensed
with, see [19]. The generalization of our methods to build examples on d intervals should
not introduce any fundamental difficulty but the computations become horrendous; as for
other permutations than the symmetric one, while our self-dual induction is not defined
in the general case, it can be made to work on classes of examples as in [19]; but the case
d = 4 for one non-trivial permutation is representative of the whole problem, as happens
for Keane’s [26] non-uniquely ergodic examples which were not extended beyond that until
a recent course of Yoccoz [42].

We recall that Veech’s question on simplicity is far from solved; another question is to
define a set M′′ as in the introduction by requiring T to be topologically strongly mixing,
that is, for every Borelian A and B, TnA∩B is nonempty for n large enough. Boshernitzan
(unpublished) has proved that M′′ is empty for d = 3 intervals, but, after many computer
simulations, conjectures that M′′ is of full measure for d ≥ 4 intervals. Again during the
process of refereeing the present paper, this question has been mostly solved for d = 4 by
Chaika [8] (he gets a residual set, though not necessarily of full measure).

As for the specificity of the self-dual induction: it is possible that these or similar exam-
ples could have been obtained via other well-known induction methods, by first building
a parametrized family of examples, and then manipulating the parameters. Indeed this
approach was used by Chaika to answer a related question [8], starting from the family of
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examples in [26] which was built by using a variant of the Rauzy induction (actually anterior
to Rauzy).

However, the authors found the self-dual induction developed herein to be well suited for
this task. In particular, one can stress the role of the quantities we call partial quotients,
which appear naturally as the number of consecutive times a given loop is followed in a castle
graph, and which share some of the arithmetic properties of the usual partial quotients in
the Euclid algorithm; indeed, in the simpler case of d = 3 intervals, they are used to define a
multiplicative self-dual induction [18], though this is less obvious for d = 4.
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