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REGULARITY ANALYSIS FOR SYSTEMS
OF REACTION-DIFFUSION EQUATIONS

 T GOUDON  A VASSEUR

A. – This paper is devoted to the study of the regularity of solutions to some systems
of reaction–diffusion equations. In particular, we show the global boundedness and regularity of the
solutions in one and two dimensions. In addition, we discuss the Hausdorff dimension of the set
of singularities in higher dimensions. Our approach is inspired by De Giorgi’s method for elliptic
regularity with rough coefficients. The proof uses the specific structure of the system to be considered
and is not a mere adaptation of scalar techniques; in particular the natural entropy of the system plays
a crucial role in the analysis.

R. – Ce travail est consacré à l’étude de la régularité des solutions de certains systèmes
d’équations de réaction-diffusion. En particulier, nous montrons que les solutions peuvent être bornées
et régulières en dimensions un et deux alors qu’en dimensions supérieures nous discutons la dimension
de Hausdorff de l’ensemble des points singuliers. L’approche proposée ici s’inspire de la méthode de De
Giorgi pour étudier la régularité de problèmes elliptiques avec des coefficients discontinus. La preuve
exploite la stucture spécifique des systèmes considérés et n’est pas une simple adaptation de techniques
scalaires. L’entropie associée naturellement au système joue un rôle crucial dans cette analyse.

1. Introduction

This paper is devoted to the analysis of the following system of reaction-diffusion equa-
tions

(1.1)


∂tai −∇ · (Di∇ai) = Qi(a), i ∈ {1, . . . , p},

Qi(a) = (µi − νi)
(
kf

p∏
j=1

a
νj
j − kb

p∏
j=1

a
µj
j

)
,

ai |t=0 = a0
i .
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118 T. GOUDON AND A. VASSEUR

The equation holds for t ≥ 0 and the space variable x lies in Ω where

– either Ω = RN ,
– or Ω ⊂ RN is a bounded domain with smooth boundary and the system is completed

by imposing the Neumann boundary condition

Di∇ai · ν(x)|∂Ω = 0,

where ν(x) stands for the outer normal vector at x ∈ ∂Ω.

Throughout the paper, the symbol ∇ denotes the gradient operator with respect to the
space variable x only. The matrices Di(x) are required to satisfy

(1.2)
Di ∈

(
L∞(Ω)

)N×N
,

Di(x)ξ · ξ ≥ α|ξ|2, α > 0 for any ξ ∈ RN , x ∈ Ω.

Let us comment this assumption:

– the analysis below is interesting when there are different diffusion matrices: assuming
Di = D, a common value, makes the problem easier;

– there is no regularity assumption on the coefficients;
– the standard uniform coercivity condition is assumed. The case of degenerate coeffi-

cients leads to specific difficulties which are beyond the scope of this paper.

Such a system is intended to describe e.g. the evolution of a chemical solution: the
unknown ai stands for the density of the species labelled by i ∈ {1, . . . , p} within the
solution. The right hand side of (1.1) follows from the mass action principle applied to the
reversible reaction

p∑
i=1

νiAi ↔
p∑
i=1

µiAi,

where the µi and νi’s—the so-called stoichiometric coefficients—are integers. The (positive)
coefficients kf and kb are the rates corresponding to the forward and backward reactions,
respectively. According to the physical interpretation, the unknowns are implicitly non-
negative quantities: ai ≥ 0. In fact, this property holds thanks to the structure of the system.
Indeed, (1.1) can be written

(1.3) ∂tai −∇ · (Di∇ai) + Li(a)ai = Gi(a)

where the nonlinear functions Gi and Li have the property: if the components ak of a are
non-negative then Gi(a) ≥ 0 and Li(a) ≥ 0. Hence preservation of non-negativity, when
starting from a non-negative initial data, can be considered among the a priori estimates of
the problem (see appendix for more details). The main ingredients of our analysis rely on the
following properties:

– The mass is conserved. The stoichiometric coefficients satisfy

(1.4) There exists (m1, . . . ,mp) ∈ Np, mi 6= 0, such that
p∑
i=1

miµi =

p∑
i=1

miνi.

It implies the mass conservation

d

dt

p∑
i=1

∫
Ω

mi ai dx = 0.
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REGULARITY OF REACTION-DIFFUSION EQUATIONS 119

– The entropy is dissipated. We set K = kb/kf , then

(1.5)
p∑
i=1

Qi(a) ln(ai/K
1/(p(µi−νi))) = −kf

( p∏
i=1

aµii −K
p∏
i=1

aνii

)
ln

Å ∏p
i=1 a

µi
i

K
∏p
i=1 a

νi
i

ã
≤ 0.

In order to simplify the notations, and without loss of generality, we restrict ourselves to
the case

mi = 1, kf = 1 = kb.

A crucial role will be played by the quantity

µ =

p∑
i=1

µi =

p∑
i=1

νi,

where the coefficients µi and νi are still integers.
In our study of such systems restrictions on the space dimension N and the parameter

µ appear. One of the most interesting situations we are able to deal with is the following
example corresponding to 4 species subject to the reactions

A1 +A3 ↔ A2 +A4.

It leads to

(1.6) Qi(a) = (−1)i+1(a2a4 − a1a3).

We refer for a thorough introduction to the modeling issues and mathematical properties of
such reaction diffusion systems to [11, 13, 14, 19, 20, 21, 23, 28, 31]. Information can also be
found in the survey [6] with connection to coagulation-fragmentation models and in [24] for
applications in biology. Let us also mention that (1.1) can be derived through hydrodynamic
scaling from kinetic models, see [2].

In this contribution we are interested in the derivation of new L∞ estimates and we
investigate the regularity of the solutions of (1.1). Quite surprisingly, the question of global
boundedness becomes trivial when the diffusion coefficients vanish. Indeed, consider
Di = 0, and a bounded initial value. The property (1.4) implies that for each x fixed, the
total mass

∑p
i=1miai(t, x) is time independent. Then, the non-negativity of the ai’s implies

that each ai is uniformly bounded. Conversely, certain reaction diffusion systems might
exhibit blow-up phenomena, see e.g. [22, 26], as it is also well known when considering non-
linear heat equations [15, 35]. Therefore global well-posedness and discussion of smoothing
effects—that is gain of regularity of the solution compared to the initial data—is an issue.

Standard techniques can indeed be applied to show the existence of a smooth solution of
(1.1) locally in time, with, say, initial data in L1 ∩ L∞(Ω). We sketch in the appendix the
basic argument that proves the local existence of a smooth non negative solution. The chal-
lenging question consists in extending the result on arbitrarily large time intervals. Roughly
speaking, this is due to a lack of estimates since the only natural bounds are provided by
the mass conservation (1.4) and the entropy dissipation (1.5). In particular, the mass con-
servation only provides an estimate of the solution in L1 which is not enough for the right
hand side Qi(a) to make sense as a distribution! However, by using the sophisticated tech-
niques introduced in [25, 26], it has been shown recently in [10] that the solutions of (1.1) in
the quadratic case (1.6) are a priori bounded in L2((0, T ) × Ω) so that the nonlinear reac-
tion term makes sense at least in L1. This non-trivial estimate can be obtained by exploiting
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120 T. GOUDON AND A. VASSEUR

the entropy dissipation and the non-degeneracy of the diffusion coefficients. In [10], using
also the arguments introduced in [25], it allows us to establish the global existence of weak
solutions of (1.1), (1.6). Dealing with higher order nonlinearities or degenerate coefficients
the difficulty might lead us to introduce a suitable notion of renormalized solutions, see [10]
again. We also mention the recent work [27] where the quadratic system is analyzed with dif-
fusion acting only in one direction. The dissipation property (1.5) is also the basis for study-
ing the asymptotic trend to equilibrium [8, 9] in the spirit of the entropy/entropy dissipation
techniques which are presented e.g. in [34] (we refer also to [1] for further investigation of the
large time behavior of nonlinear evolution systems using the entropy dissipation).

Our approach is inspired by De Giorgi’s methods for studying the regularity of solution
of diffusion equations without requiring the regularity of the coefficients, see [7]. The crucial
step consists in establishing aL∞ estimate on the solution. Regularity of the solution follows
in a classical way (see appendix). This approach has been used in [33] to obtain an alternative
proof to the regularity results for the Navier-Stokes equation [4, 17] and it also shares some
features with the strategy introduced in [29, 30]. It has also been applied to study convection-
diffusion equations [18] and regularity for the quasi-geostrophic equation [5]. Here, it is
worth pointing out that the proof utilizes strongly the structure of the whole system and the
argument is not a mere refinement of a scalar approach. As we shall see however, restrictions
appear between the space dimension N and the degree of nonlinearity of the reaction term
measured by means of µ. For this reason, the L∞ estimates can be proved in two dimension
for the quadratic operator (1.6) or in one dimension considering cubic terms.

T 1.1. – We consider the quadratic operator (1.6) (or assume µ = 2). Let N = 2

and suppose that the diffusion coefficients fulfill (1.2). Let a0
i ≥ 0 satisfy

(1.7)
4∑
i=1

∫
Ω

a0
i

(
1 + |x|+ | ln(a0

i )|
)

dx = M0 <∞.

Then, (1.1) admits a global solution such that for any 0 < T ≤ T ? < ∞, ai belongs to
L∞((T, T ?)× Ω).

T 1.2. – Let N = 1 with µ ≤ 3 and suppose that the diffusion coefficients fulfill
(1.2). Let a0

i ≥ 0 satisfy (1.7). Then, (1.1) admits a global solution such that for any
0 < T ≤ T ? <∞, ai belongs to L∞((T, T ?)× Ω).

We point out that these statements do not require any regularity property on the diffusion
coefficients Di which are only supposed to be bounded. As a byproduct, by using the
new bound, a direct bootstrap argument shows the global regularity of the solution (see
appendix).

C 1.1. – Let the assumptions of Theorem 1.1 or 1.2 be fulfilled. Suppose
moreover that the Di’s belong to Ck(Ω) with bounded derivatives up to order k. Then, for any
0 < T ≤ T ? <∞, the solution belongs toL∞(T, T ?;Ck(Ω)). Accordingly forC∞ coefficients
with bounded derivatives, the solution is C∞ on (T, T ?)× Ω.
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REGULARITY OF REACTION-DIFFUSION EQUATIONS 121

Such statements could be helpful for investigating the large time behavior: they can be the
starting point to apply the strategy developed in [8, 9] and then this would lead to the proof
of the convergence to the equilibrium state for large time, with an exponential rate. We do
not discuss further this issue which requires a sharp estimate of the bound with respect to the
final time T ?. Instead, we consider the case of higher dimensions: the same method provides
information on the Hausdorff dimension (definitions are recalled in Section 4) of the set of
the singular points of the solutions.

T 1.3. – Let N ≥ 3 and µ = 2. We suppose that the coefficients Di are constant
with respect to x ∈ Ω. Let a0

i ≥ 0 satisfy (1.7). We consider a solution of (1.1) on (0, T )×Ω.
We call a singular point, any point (t, x) having a neighborhood on which one of the function
ai is not C∞. Then, the Hausdorff dimension of the set of singular points of the solution a
does not exceed (N2 − 4)/N .

In the next section, we briefly recall the fundamental estimate that follows from (1.5). This
bound is used in Section 3 where we adapt De Giorgi’s approach to the system (1.1). Section 4
is devoted to the estimate of the Hausdorff dimension of the set of singularities in higher
space dimensions.

2. Entropy dissipation

In the following sections, we adopt the viewpoint of discussing a priori estimates formally
satisfied by the solutions of (1.1). As usual the derivation of such estimates relies on various
manipulations such as integrations by parts, permutations of integrals and so on. Of course,
such formulae apply to the smooth solutions of the problem that can be shown to exist on a
small enough time interval by using classical reasoning for nonlinear parabolic equations (see
the appendix). Moreover, these estimates also apply to solutions of suitable approximations
of the problem (1.1). Such approximations should be defined so that the essential features of
the system are preserved. Hence, let us reproduce the reasoning in [10]: by truncation and
regularization we deal with an initial data

a0,η
i ∈ C∞c (Ω), a0,η

i ≥ 0

which converges in L1(Ω) to a0
i as η > 0 tends to 0 and such that

sup
η>0

p∑
i=1

∫
Ω

a0,η
i

(
1+|x|+| ln(a0,η

i )|
)

dx ≤ C0

p∑
i=1

∫
Ω

a0
i

(
1+|x|+| ln(a0

i )|
)

dx = C0 M0 <∞.

Next, let us consider a cut-off function ζ ∈ C∞c (R) such that 0 ≤ ζ(s) ≤ 1, supp(ζ) ⊂ B(0, 2)

and ζ(s) = 1 for |s| ≤ 1. Then, in (1.1) we replace Qi(a) by

Qηi (a) = Qi(a)ζ(η|a|),

with |a| =
»
a2

1 + ...+ a2
p. Accordingly, for any η > 0 fixed, and ai ∈ L1(Ω), Qηi (a)

belongs toL∞(Ω). We can show that the corresponding regularized problem admits a unique
(non-negative) smooth solution, globally defined, see [16, 28]. Therefore, in what follows
we discuss a priori estimates on solutions of (1.1): for the sake of simplicity we detail the
arguments working directly on (1.1), but we keep in mind that the arguments apply to the
regularized problem as well. In turn, we obtain bounds on the sequence aηi , which are
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122 T. GOUDON AND A. VASSEUR

uniform with respect to η > 0. Finally, existence of a global solution satisfying the estimates
follows by performing the passage to the limit η → 0; a detail that we skip here, referring for
instance to [10].

We start by discussing the a priori estimates that can be naturally deduced from (1.4) and
(1.5). The results here apply in full generality, without assumptions on p,N, µ.

P 2.1. – Assume (1.2), (1.4) and (1.5). Let a0
i ≥ 0 satisfy

(2.1)
p∑
i=1

∫
Ω

a0
i

(
1 + |x|+ | ln(a0

i )|
)

dx = M0 <∞.

We set

D(t, x) =
( p∏
i=1

aµii −
p∏
i=1

aνii

)
ln

Å∏p
i=1 a

µi
i∏p

i=1 a
νi
i

ã
(t, x) ≥ 0.

Then, for any 0 < T <∞, there exists 0 < C(T ) <∞ such that

sup
0≤t≤T

{ p∑
i=1

∫
Ω

ai
(
1 + |x|+ | ln(ai)|

)
(t, x) dx

+

p∑
i=1

∫ t

0

∫
Ω

∣∣∇√ai∣∣2(s, x) dx ds+

∫ t

0

∫
Ω

D(s, x) dx ds
}
≤ C(T ).

If Ω is a bounded domain, this estimate holds for T = +∞.

Proof. – As a consequence of (1.4) and (1.5), we get

d

dt

p∑
i=1

∫
Ω

ai
(
1 + ln(ai)

)
dx+

p∑
i=1

∫
Ω

Di∇ai ·
∇ai
ai

dx+

∫
Ω

Ddx = 0.

Then, the coercivity condition (1.2) means that we can establish the following lower bound

p∑
i=1

∫
Ω

Di∇ai ·
∇ai
ai

dx ≥ α
p∑
i=1

∫
Ω

|∇ai|2

ai
dx = 4α

p∑
i=1

∫
Ω

∣∣∇√ai∣∣2 dx.

In the case when Ω is a bounded domain then the conclusion of the theorem follows as

p∑
i=1

∫
Ω

ai| ln(ai)|dx =

p∑
i=1

∫
Ω

ai ln(ai) dx− 2

p∑
i=1

∫
Ω

ai ln(ai)110≤ai≤1 dx

≤
p∑
i=1

∫
Ω

ai ln(ai) dx+ p
2

e
|Ω|,

where here and below, 11 M denotes the characteristic function of the set M. In the case when
Ω = RN , then the argument proceeds as follows. By using (1.4) and denoting by M the
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supremum norm of the diffusion coefficients, we get

d

dt

p∑
i=1

∫
Ω

ai|x|dx = −
p∑
i=1

∫
Ω

Di∇ai ·
x

|x|
dx

≤M
p∑
i=1

∫
Ω

|∇ai|dx = M

p∑
i=1

∫
Ω

|∇ai|√
ai

√
ai dx

≤ α

2

p∑
i=1

∫
Ω

|∇ai|2

ai
dx+

M2

2α

p∑
i=1

∫
Ω

ai dx,

by using the standard inequality |rs| ≤ r2/2 + s2/2. Hence, we arrive at

p∑
i=1

∫
Ω

ai
(
1 + |x|+ ln(ai)

)
dx+

α

2

p∑
i=1

∫ t

0

∫
Ω

|∇ai|2

ai
dx ds+

∫ t

0

∫
Ω

Ddxds

≤M0 +
M2

2α

p∑
i=1

∫ t

0

∫
Ω

ai dxds

≤
(
1 + tM2/(2α)

)
M0.

It remains to control the negative part of the ai ln(ai)’s. To this end, we use the following
classical argument:∫

Ω

ai| ln(ai)|dx =

∫
Ω

ai ln(ai) dx− 2

∫
Ω

ai ln(ai)
(
110≤ai≤e−|x|/2 + 11e−|x|/2≤ai≤1

)
dx

≤
∫

Ω

ai ln(ai) dx+
4

e

∫
Ω

e−|x|/4 dx+

∫
Ω

|x|ai dx

since −s ln(s) ≤ 2
e

√
s for any 0 ≤ s ≤ 1. We conclude by combining together all the

pieces.

3. L∞ bounds

In the spirit of the Stampacchia cut-off method, L∞ bounds of solutions of certain PDEs
can be deduced from the behavior of suitable nonlinear functionals. Here, such a functional
is constructed in a way that uses the dissipation property (1.5). Let us consider the non-
negative, C1 and convex function

Φ(z) =

{
(1 + z) ln(1 + z)− z if z ≥ 0,

0 if z ≤ 0.

Then, for k ≥ 0, we are interested in the evolution of

p∑
i=1

∫
Ω

Φ(ai − k) dx.
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124 T. GOUDON AND A. VASSEUR

L 3.1. – There exists a universal constant C, such that for every a = (a1, . . . , ap)

solution of (1.1), for any k ≥ 0, and for any 0 ≤ s ≤ t <∞, we have
p∑
i=1

∫
Ω

Φ(ai − k)(t, x) dx+ 4α

p∑
i=1

∫ t

s

∫
Ω

∣∣∇»1 + [ai − k]+
∣∣2(τ, x) dxdτ

≤
p∑
i=1

∫
Ω

Φ(ai − k)(s, x) dx

+ C

p∑
i=1

∫ t

s

∫
Ω

(
1 + kµ + (1 + k)[ai − k]µ−1

+

)
ln(1 + [ai − k]+)(τ, x) dxdτ

where [z]+ = max(0, z) denotes the non-negative part of z.

R 3.1. – Notice that the universal constant does not depend on the actual solution
a nor on k. It is also worth noticing that, in order to make sense of this inequality we need only
aµ−1
i ln(1 + ai) to be integrable, although it is required to have aµi to be integrable to make

sense of the equation (1.1). This point will be very important in the next section. Crucial to
the analysis is the similarity of the function Φ and the natural entropy of the system (1.1).

Proof. – Multiplying (1.1) by Φ′(ai − k) and summing yield
(3.1)

d

dt

p∑
i=1

∫
Ω

Φ(ai − k) dx+

p∑
i=1

∫
Ω

Di∇ai · ∇ai Φ′′(ai − k) dx =

p∑
i=1

∫
Ω

Qi(a)Φ′(ai − k) dx.

Then, we observe that (1.2) leads to
p∑
i=1

∫
Ω

Di∇ai · ∇ai Φ′′(ai − k) dx =

p∑
i=1

∫
Ω

Di∇ai · ∇ai
11ai≥k

1 + [ai − k]+
dx

=

p∑
i=1

∫
Ω

Di∇(1 + [ai − k]+) · ∇(1 + [ai − k]+)
dx

1 + [ai − k]+

≥ α
p∑
i=1

∫
Ω

∣∣∇(1 + [ai − k]+)
∣∣2

1 + [ai − k]+
dx

≥ 4α

p∑
i=1

∫
Ω

∣∣∇»1 + [ai − k]+
∣∣2 dx.

Next, we rewrite the right hand side of (3.1) as
p∑
i=1

∫
Ω

Qi(a) ln(1 + [ai − k]+) dx

=

p∑
i=1

∫
Ω

(
Qi(a)−Qi(1 + [a− k]+)

)
ln(1 + [ai − k]+) dx

+

p∑
i=1

∫
Ω

Qi(1 + [a− k]+) ln(1 + [ai − k]+) dx,

where (1.5) implies that the last term is non-positive. We are thus left with the task of
estimating

(
Qi(a)−Qi(1 + [a− k]+)

)
ln(1 + [ai − k]+).
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To this end, let us consider the polynomial function P : Rp → R defined by P (u) =

p∏
i=1

uνii .

Clearly, given u, v ∈ Rp, we have

|P (u)−P (v)| =
∣∣∣ ∫ 1

0

∇P (u+s(v−u)) · (u−v) ds
∣∣∣ ≤ C‖u−v‖ ∫ 1

0

‖∇P (u+s(v−u))‖ ds

where ‖ · ‖ represents any norm on Rp. As a matter of fact, since the µi’s and νi’s are non-

zero integers, we have ∂jP (u) = νj
∏p
i=1 u

ν′i,j
i where ν′i,j = νi if i 6= j and ν′j,j = νj − 1. In

particular, note that
∑p
i=1 ν

′
i,j = µ− 1. Therefore, working with the `1 norm, we get

‖∇P (u)‖ ≤
p∑
j=1

(
νj

p∏
i=1

|ui|ν
′
i,j

)
which yields, by using the convexity of the functions z 7→ zν

′
i,j ,

|P (u)− P (v)| ≤
p∑
`=1

|u` − v`| ×
p∑
j=1

νj

( p∏
i=1

|ui|ν
′
i,j +

p∏
i=1

|vi|ν
′
i,j

)
.

Clearly, we have
∏p
i=1 |ui|

ν′i,j ≤ C
∑p
i=1(1 + |ui|µ−1) and finally we obtain

|P (u)− P (v)| ≤ C
p∑
`=1

|u` − v`| ×
p∑

i,j=1

νj(1 + |ui|µ−1 + |vi|µ−1).

We apply this inequality with ui = ai and vi = 1+[ai−k]+ and we make use of the following
simple remarks

0 ≤ (1 + [ai − k]+)µ−1 ≤ C (1 + [ai − k]µ−1
+ ),

0 ≤ ai ≤ [ai − k]+ + k so that 0 ≤ aµ−1
i ≤ C([ai − k]µ−1

+ + kµ−1),∣∣ai − (1 + [ai − k]+)
∣∣ ≤ 1 +

∣∣ai − [ai − k]+
∣∣ ≤ 1 + k.

Applying the same reasoning with µi replacing νi, we arrive at

∣∣Qi(a)−Qi(1 + [a− k]+)
∣∣ ≤ C (1 + k)

p∑
j=1

(
1 + kµ−1 + [aj − k]µ−1

+

)
,

where the constant C depends on µ and p <∞. Then, we end the proof by using the simple
inequality: for any u, v ≥ 0,

uµ−1 ln(1 + v) + vµ−1 ln(1 + u) ≤ 2
(
uµ−1 ln(1 + u) + vµ−1 ln(1 + v)

)
.

(As usual we have adopted the convention to keep the same notation C for a constant that
does not depend on the solution, even when the value of the constant might change from one
line to the other.)

R 3.2. – We point out that the arguments above do not extend straightforwardly to
situations where the unknown a is an infinite sequence, like e.g. for coagulation-fragmentation
models (the constant C involves a sum over the reactants).
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Let 0 < T < T ? <∞ and 0 < K <∞ be fixed. Set

0 < tn = T (1− 1/2n) < T < T ?, 0 < kn = K(1− 1/2n) < K.

Let us denote

Un = sup
tn≤t≤T?

p∑
i=1

∫
Ω

Φ(ai−kn)(t, x) dx+4α

p∑
i=1

∫ T?

tn

∫
Ω

∣∣∇»1 + [ai − kn]+
∣∣2(τ, x) dxdτ.

The aim is to show that, for a suitable choice of K > 0, Un tends to 0 as n→∞ which will
yield the L∞ bound.

We start by making use of Lemma 3.1 with 0 ≤ tn−1 ≤ s ≤ tn ≤ t ≤ T ? and we average
with respect to s ∈ (tn−1, tn). Since tn − tn−1 = T/2n, we obtain

T

2n

p∑
i=1

∫
Ω

Φ(ai − kn)(t, x) dx+ 4α

p∑
i=1

∫ tn

tn−1

∫ t

s

∫
Ω

∣∣∇»1 + [ai − kn]+
∣∣2(τ, x) dxdτ ds

≤
p∑
i=1

∫ tn

tn−1

∫
Ω

Φ(ai − kn)(s, x) dxds+ C

p∑
i=1

∫ tn

tn−1

∫ t

s

∫
Ω

Γ(kn, ai − kn)(τ, x) dx dτ ds

with the short hand notation Γ(k, u) = (1 + kµ + (1 + k)[u]µ−1
+ )) ln(1 + [u]+). Since in the

integration domain s ≥ tn−1 and t ≤ T ?, the last integral can be dominated by
p∑
i=1

∫ tn

tn−1

∫ T?

tn−1

∫
Ω

Γ(kn, ai−kn)(τ, x) dxdτ ds ≤ T

2n

p∑
i=1

∫ T?

tn−1

∫
Ω

Γ(kn, ai−kn)(τ, x) dxdτ.

Similarly s ≤ tn leads to the following bound from below

4α

p∑
i=1

∫ tn

tn−1

∫ t

s

∫
Ω

∣∣∇»1 + [ai − kn]+
∣∣2(τ, x) dxdτ ds

≥ 4α

p∑
i=1

∫ tn

tn−1

∫ t

tn

∫
Ω

∣∣∇»1 + [ai − kn]+
∣∣2(τ, x) dxdτ ds

≥ 4α
T

2n

p∑
i=1

∫ t

tn

∫
Ω

∣∣∇»1 + [ai − kn]+
∣∣2(τ, x) dxdτ.

Hence, for any tn ≤ t ≤ T ?, we have
p∑
i=1

∫
Ω

Φ(ai − kn)(t, x) dx+ 4α

p∑
i=1

∫ t

tn

∫
Ω

∣∣∇»1 + [ai − kn]+
∣∣2(τ, x) dxdτ

≤ 2n

T

p∑
i=1

∫ tn

tn−1

∫
Ω

Φ(ai − kn)(s, x) dx ds+ C

p∑
i=1

∫ T?

tn−1

∫
Ω

Γ(kn, ai − kn)(τ, x) dxdτ.

Taking the supremum over tn ≤ t ≤ T ?, we obtain
(3.2)

Un ≤
2n

T

p∑
i=1

∫ tn

tn−1

∫
Ω

Φ(ai − kn)(s, x) dxds

+ C

p∑
i=1

∫ T?

tn−1

∫
Ω

(
1 + kµn + (1 + kn)[ai − kn]µ−1

+

)
ln(1 + [ai − kn]+)(τ, x) dxdτ.
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The crucial step consists now in establishing the following nonlinear estimate, where restric-
tions on both the space dimension N and µ appear.

P 3.1. – Suppose N = 1 or N = 2. There exists a constant C > 0 (which
does not depend on the solution, nor on T , T ?, K) such that

Un ≤ C (1 + T ?) K (n,K, T ) U(N+2)/N
n−1

where

K (n,K, T ) =
QK
T

2n(2N+4)/N + (1 +Kµ)SK 2n(N+4)/N + (1 +K)RK 2n((2N+4)/N−µ)

and SK = 2 max(1/K(N+4)/N , 1/K(N+2)/N ), RK = 2 max(1/K(2N+4)/N−µ, 1/K2(N+1)/N−µ),
QK = SK + 2 max(1/K4/N , 1/K2/N ).

Let us explain how the restrictions on N and µ work. First of all, it will be crucial to
remark that K (n,K, T ) is bounded with respect to K > 1 provided µ ≤ 2(N + 1)/N − 1 =

(N + 2)/N which means µ = 2 in dimension N = 2 and µ = 2 or 3 in dimension N = 1.
Second of all, we go back to Lemma 3.1 and we shall exploit the dissipation term that comes
from the diffusion. Indeed, we expect an estimate of Φ(ai−k) in L∞(0, T ?;L1(Ω)) together
with an estimate of (1+[ai−k]+)−1/2∇(1+[ai−k]+) in L2((0, T ?)×Ω). Combining these
information would lead to∇Z([ai − k]+) ∈ L2(0, T ?;L1(Ω)) where

Z(u) =

∫ u

0

 
Φ(z)

1 + z
dz =

∫ u

0

…
ln(1 + z) +

1

1 + z
− 1 dz.

Let us consider a non-negative function u defined on [T, T ?] × Ω such that Z(u) belongs
to L∞(T, T ?;L1(Ω)) and ∇Z(u) belongs to L2(T, T ?;L1(Ω)) According to the Gagliardo-
Nirenberg-Sobolev inequality (see [3], Th. IX.9, p. 162) the latter implies that

Z(u) ∈ L2(T, T ?;LN/(N−1)(Ω)).

We seek a homogeneous Lebesgue space with respect to the variables t, x. ForN ≤ 2 we can
obtain:

Z(u) ∈ L(N+2)/N ((T, T ?)× Ω).

Indeed, if N = 2 we have (N + 2)/N = N/(N − 1) = 2, and if N = 1:∫ T?

T

∫
Ω

|v|3 dxdt ≤
∫ T?

T

‖v(t)‖L1(Ω)‖v(t)‖2L∞(Ω) dt ≤ ‖v‖L∞(T,T?;L1(Ω))‖v‖2L2(T,T?;L∞(Ω)).

Eventually, we aim at comparing Z(u)(N+2)/N to ψ(u) ln(1 + u) where ψ : R+ →
R+ has a polynomial behavior. Specifying the behavior of ψ will induce restrictions on µ
that depend on the space dimension. Of course, it suffices to discuss the comparison as
u → 0 and u → ∞. Since ln(1 + z) + 1/(1 + z) − 1 ∼z→0 z2/2 we first obtain that
Z(u)(N+2)/N ≥ u(2N+4)/N/8 foru ∈ [0, δ], δ > 0 small enough. It follows thatψ(u) ln(1+u)

can indeed be dominated by Z(u) for bounded u’s provided ψ(u) ∼u→0 u(N+4)/N . Next,
there exists A > 0 such that for z ≥ A large enough, we have ln(1 + z) + 1/(1 + z) − 1 ≥
1
2 ln(1 + z). Thus, for u ≥ 2A we get

Z(u) ≥ 1√
2

∫ u

u/2

»
ln(1 + z) dz ≥ 1

2
√

2
u
»

ln(1 + u/2) ≥ C1u
»

ln(1 + u).
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Hence Z(u)(N+2)/N dominates ψ(u) ln(1 + u) provided N ≤ 2 and ψ(u) ∼u→∞ u(N+2)/N .
Reasoning the same way, we also prove that there exists C > 0 such that Z(u) ≤ C Φ(u)

holds for any u ≥ 0. Let us summarize the properties that we need to justify Proposition 3.1.

L 3.2. – Let us set

ψ(u) = u(N+4)/N110≤u≤1 + u(N+2)/N11u≥1.

There exists a constant C > 0 such that

ψ(u) ln(1 + u) ≤ C Z(u)(N+2)/N , and Z(u) ≤ C Φ(u)

holds for any u ≥ 0. Furthermore, for every non-negative function u defined on [T, T ?]×Ω we
have:∫ T?

T

∣∣∣∣∫
Ω

|∇Z(u)|dx
∣∣∣∣2 dτ ≤ sup

T≤τ≤T?

Å∫
Ω

Φ(u)(τ, x) dx

ã ∫ T?

T

∫
Ω

∣∣∇√1 + u
∣∣2(τ, x) dxdτ.

Proof of Proposition 3.1. – The proof splits into two steps: firstly we modify (3.2) so that,
secondly, we can make the dissipation terms appear by appealing to the Gagliardo-Nirenberg
inequality.

Step 1. – The first step consists in showing the following inequality:

(3.3) Un ≤ C K (n,K, T )

p∑
i=1

∫ T?

tn−1

∫
Ω

ψ(ai − kn−1) ln(1 + [ai − kn−1]+) dxdτ,

where the auxiliary function ψ has been introduced in Lemma 3.2. We start by noting that if
ai ≥ kn ≥ kn−1, then (ai−kn−1)/(kn−kn−1) ≥ 1. Therefore we can write for any α, β ≥ 0,

11ai≥kn ≤
(

[ai−kn−1]+
kn−kn−1

)α
11{kn≤ai≤1+kn−1} +

(
[ai−kn−1]+
kn−kn−1

)β
11ai≥1+kn−1

≤ 2nα

Kα [ai − kn−1]α+110≤ai−kn−1≤1 + 2nβ

Kβ [ai − kn−1]β+11ai−kn−1≥1.

By using these simple estimates with α = (N + 4)/N , β = (N + 2)/N and
α = (N + 4)/N − µ + 1, β = (N + 2)/N − µ + 1 respectively (note that in both
case α ≥ β), we are led to

(1 + kµn) ln(1 + [ai − kn]+) ≤ (1 +Kµ) 2n(N+4)/N SK ψ(ai − kn−1) ln(1 + [ai − kn−1]+),

and

(1 + kn)[ai − kn]µ−1
+ ln(1 + [ai − kn]+)

≤ (1 +K) 2n((2N+4)/N−µ) RK ψ(ai − kn−1) ln(1 + [ai − kn−1]+).

Coming back to (3.2) yields

Un ≤
2n

T

p∑
i=1

∫ tn

tn−1

∫
Ω

Φ(ai − kn) dxds

+ C
(
(1 +Kµ)SK2n(N+4)/N + (1 +K)RK2n((2N+4)/N−µ)

)
×

p∑
i=1

∫ T?

tn−1

∫
Ω

ψ(ai − kn−1) ln(1 + [ai − kn−1]+) dx dτ.
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The first integral in the right hand side can be dominated in a similar way (using α = 4/N ,
β = 2/N ); precisely, we have

2n

T

p∑
i=1

∫ tn

tn−1

∫
Ω

Φ(ai − kn) dxds

≤ 2n

T

p∑
i=1

∫ tn

tn−1

∫
Ω

(1 + [ai − kn]+) ln(1 + [ai − kn]+) dxds

≤ 1

T
2n(2N+4)/N QK

p∑
i=1

∫ T?

tn−1

∫
Ω

ψ(ai − kn−1) ln(1 + [ai − kn−1]+) dxds.

Therefore, we have proved from (3.2) that (3.3) holds.

Step 2. – Now, we go back to Lemma 3.2 so that (3.3) becomes

(3.4) Un ≤ C K (n,K, T )

p∑
i=1

∫ T?

tn−1

∫
Ω

∣∣Z([ai − kn−1]+)
∣∣(N+2)/N

dxdτ.

Let us distinguish depending on the dimension N = 1 or N = 2 how we conclude by using
the Gagliardo-Nirenberg-Sobolev inequality.

ForN = 2, using the Gagliardo-Nirenberg-Sobolev inequality and Lemma 3.2, we obtain

Un ≤ C K (n,K, T )

p∑
i=1

ï ∫ T?

tn−1

Å∫
Ω

∣∣∇Z([ai − kn−1]+)
∣∣ dxã2

dτ

+

∫ T?

tn−1

Å∫
Ω

Φ([ai − kn−1]+) dx

ã2

ds

ô
.

Then, we use the second statement in Lemma 3.2 to obtain

Un ≤ C K (n,K, T )

×
p∑
i=1

ñÇ
sup

tn−1≤τ≤T?

∫
Ω

Φ(ai − kn−1)(τ) dx

∫ T?

tn−1

∫
Ω

∣∣∇»1 + [ai − kn−1]+
∣∣2 dx dτ

å
+

∫ T?

tn−1

Å∫
Ω

Φ([ai − kn−1]+) dx

ã2

ds

ô
≤ C(1 + T ?) K (n,K, T ) U2

n−1.
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For N = 1, we proceed as follows

Un ≤ C K (n,K, T )

p∑
i=1

∫ T?

tn−1

Å
‖Z(ai − kn−1)(t, ·)‖2L∞(Ω)

∫
Ω

Z(ai − kn−1)(t, x) dx

ã
dt

≤ C K (n,K, T )

p∑
i=1

ñ
sup

tn−1≤t≤T?

∫
Ω

Z(ai − kn−1) dx

×
∫ T?

tn−1

Å∫
Ω

(
|Z(ai − kn−1)|+ |∇Z(ai − kn−1)|

)
dx

ã2

dt

ô
≤ C K (n,K, T )

p∑
i=1

ñ
2T ?

(
sup

tn−1≤t≤T?

∫
Ω

Φ(ai − kn−1) dx
)3

+

Ç
sup

tn−1≤t≤T?

∫
Ω

Φ(ai − kn−1) dx

å2 ∫ T?

tn−1

∫
Ω

∣∣∇»1 + [ai − kn−1]+
∣∣2 dx dt

]
≤ C (1 + T ?) K (n,K, T ) U3

n−1.

This ends the proof of Proposition 3.1.

Finishing the proof of the L∞ bound needs the following elementary claim.

L 3.3. – Let
(
V n
)
n∈N be a sequence verifying

V n ≤Mn V qn−1

for some M > 0, q > 1. Then for any n0 ∈ N, there exists ε, such that if V n0 < ε, then
limn→∞ V n = 0.

Proof. – Without loss of generality we suppose n0 = 0. Let us set W n = ln( V n). We
have

W n ≤ n ln(M) + qW n−1

which yields

W n ≤ ln(M)
n∑
j=0

qn−jj + qnW 0 ≤ qn ln(M1/(q(1−1/q)2) V 0).

So, if V 0 < M−1/(q(1−1/q)2), W n converges to −∞, and V n converges to 0.

Hence, it remains to check that the first term of the iteration can be made small choosing K
large enough. Indeed, let us go back to Proposition 3.1. Picking K > 1, we can summarize
the obtained estimate as

Un ≤ C(1 + T ?)(1 + 1/T ) 2n(2N+4)/N U(N+2)/N
n−1 .

The keypoint is to remark that QK , KRK and KµSK remain bounded for large K’s
so that the constant C above does not depend on K. Hence, we apply Lemma 3.3 to
V n =

(
C(1 + T ?)(1 + 1/T )

)2/N Un, q = 1 + 2/N and M = 2(2N+4)/N .
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Now, let us specialize (3.4) to the case n = 2; we get (with C which still does not depend
on K)
(3.5)

U2 ≤ C(1 + 1/T )

[
p∑
i=1

∫ T?

0

Å∫
Ω

|∇Z(ai −K/2)|dx
ã2

dt+

p∑
i=1

∫ T?

0

Å∫
Ω

Φ(ai −K/2) dx

ã2

dt

]
in dimension N = 2 and in dimension N = 1 the same expression is multiplied by
the quantity sup0≤t≤T?

∑p
i=1

∫
Ω

Φ(ai − K/2) dx. This allows to establish the following
statement.

L 3.4. – Let ε > 0. Then, there exists Kε ≥ 1 such that for any K ≥ Kε we have
U2 ≤ ε.

Proof. – The proof reduces to prove that the two integrals in the right hand side of (3.5)
tend to 0 as K → +∞. As a matter of fact, there exists C > 0 such that for any z ≥ 0 we
have (1 + z) ln(1 + z) ≤ C z(1 + | ln(z)|). Furthermore, there exists C > 0 such that for any
k > 1 and z ≥ 0, we have

[z − k]+(1 + | ln([z − k]+)|) ≤ C z(1 + | ln z|).

Accordingly, we deduce that Φ(ai − K/2) converges to 0 for a.e (t, x) ∈ (0, T ?) × Ω as K
goes to infinity and it is dominated by ai(1 + | ln(ai)|), which satisfies

p∑
i=1

∫ T?

0

Å∫
Ω

ai(1 + | ln(ai)|) dx|
ã2

dt <∞

owing to Proposition 2.1. Applying the Lebesgue dominated convergence theorem then
shows that

lim
K→∞

{
p∑
i=1

∫ T?

0

Å∫
Ω

Φ(ai −K/2) dx

ã2

dt

}
= 0.

Next, we simply write

∇Z(ai −K/2) = 11ai≥K/2

 
ln(1 + [ai −K/2]+) +

1

1 + [ai −K/2]+
− 1 ∇ai.

Then, we remark that z 7→ ln(1 + z) + 1/(1 + z) − 1 is non-decreasing which allows to
establish

|∇Z(ai −K/2)| ≤ 11ai≥K/2

 
ln(1 + ai) +

1

1 + ai
− 1 |∇ai| = 11ai≥K/2 |∇Z(ai)| ≤ |∇Z(ai)|.

Observe that 11ai≥K/2 |∇Z(u)| decreases to 0 as K → ∞ for a.e (t, x) ∈ (0, T ?) × Ω.
Furthermore, Lemma 3.2 yields
p∑
i=1

∫ T?

0

Å∫
Ω

|∇Z(ai)|dx
ã2

dt ≤
p∑
i=1

sup
0≤t≤T?

∫
Ω

Φ(ai) dx

∫ T?

0

∫
Ω

|∇
√

1 + ai|2 dxdt <∞

by using the basic estimates in Proposition 2.1 again. We conclude by classical integration
theory arguments.
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We can now finish the proof of Theorem 1.1. Let us emphasize the dependence with
respect toK by denoting U(K)

n . We first fixK which makes U(K)
2 small enough (remark that

K is more constrained as T is chosen small) so that we obtain by applying Lemma 3.3

lim
n→∞

U(K)
n = 0.

However, we clearly have

U(K)
n ≥ 1

T ? − tn

∫ T?

tn

∫
Ω

Φ(ai − kn) dx dt ≥ 0.

Letting n go to infinity and applying the Fatou lemma, we deduce that

1

T ? − T

∫ T?

T

∫
Ω

Φ(ai −K) dx dt = 0,

which implies that 0 ≤ ai(t, x) ≤ K for a.e (t, x) ∈ (T, T ?)× Ω.

R 3.3. – Since the initial data is required to satisfy (1.7) only and is not supposed
to be bounded, it is clearly hopeless to extend Theorem 1.1 with T = 0. It appears clearly
through the factor 1/T which appears in the estimates above.

4. Hausdorff dimension of the set of singular points

In this section we study the Hausdorff dimension of the blow-up points of the solutions of
(1.1). The derivation of the necessary estimates remains close to the strategy described in the
previous section; again a restriction on the degree of nonlinearity appears. It turns out that
relevant results can be obtained by this method in dimensionN ≥ 3 with µ = 2, while we are
not able to reach improvements in direction of higher nonlinearities for lower dimensions.
For the sake of simplicity, in what follows we assume that the diffusion coefficients Di

are constant with respect to the space variable (but they still depend on i, otherwise the
problem becomes trivial by remarking that ρ(t, x) =

∑p
i=1 ai(t, x) satisfies the heat equation

∂tρ − D∆xρ = 0, with D the common value of the diffusion coefficients). Then, we shall
prove Theorem 1.3.

To begin with, let us recall a few definitions about Hausdorff dimension. For a given
nonempty set A ⊂ Rd, s ≥ 0, δ > 0, we set

H s
δ(A) = inf

{ Γ(1/2)s

2s Γ(s/2 + 1)

∑
i

(
diam(Ai)

)s
, A ⊂

⋃
i

Ai, diam(Ai) ≤ δ
}
,

and then H s(A) = limδ→0 H s
δ(A). The Hausdorff dimension of A is defined by

dim H (A) = inf{s > 0, H s(A) = 0} = sup{s > 0, H s(A) = +∞}.

We refer to [12] (p. 171) for more details.

The starting point of the proof is two-fold. Firstly, we use mass conservation and entropy
dissipation to control the solution in a certainLp space, identifying the highest exponent p for
which such an estimate is possible. Secondly, we remark that the problem admits an invariant
scaling. This is the purpose of the following claims.
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L 4.1. – Let N > 2 and Ω ⊂ RN . There exists C > 0 such that for any T > 0 and
for any non-negative function u ∈ L∞(0, T ;L1(Ω)) verifying∇

√
u ∈ L2((0, T )×Ω), we have

(4.1)
∫ T

0

∫
Ω

|u|
(N+2)
N dxdt

≤ C ‖u‖2/NL∞(0,T ;L1(Ω))

(
T‖u‖L∞(0,T ;L1(Ω)) + ‖∇

√
u‖2L2((0,T )×Ω)

)
.

Next, we introduce the function

Ψ(X) = X110≤X≤1 +
√
X11X≥1.

There exists C > 0 such that for any T > 0 and for any non-negative function u verifying
∇
√
u ∈ L2((0, T )× Ω), and Φ(u) ∈ L∞(0, T ;L1(Ω)) we have

(4.2)
∫ T

0

∫
Ω

|Ψ(u)|
2(N+2)
N dxdt

≤ C ‖Φ(u)‖2/NL∞(0,T ;L1(Ω))

(
T‖Φ(u)‖L∞(0,T ;L1(Ω)) + ‖∇

√
1 + u‖2L2((0,T )×Ω)

)
.

We are concerned with weak solutions of (1.1), that is functions ai that verify (1.1) in
the sense of distributions, together with the estimates in Proposition 2.1, deduced from
the fundamental properties (1.4) and (1.5) of the system. We shall use the fact that the
norm L(N+2)/N of such a solution is finite, as a consequence of (4.1). Another important
ingredient relies on the invariant scaling of the equation.

L 4.2. – Let a be a solution of (1.1). Let t0 > 0 and x0 ∈ Ω. Then, for any
0 < ε� 1

aε(t, x) = ε2/(µ−1) a(t0 + ε2t, x0 + εx)

satisfies (1.1).

Lemma 4.2 is straightforward. Let us sketch the proof of Lemma 4.1.

Proof of Lemma 4.1. – There exists a constant C > 0 such that for any X ≥ 0

Ψ(X) ≤ C
»

Φ(X), Ψ(X) ≤ C(
√

1 +X − 1).

Moreover, Ψ is a Lipschitzian function verifying

0 ≤ Ψ′(X) ≤ 2
√

2
d

dX
(
√

1 +X − 1).

Hence, we get

‖Ψ(u)‖2L∞(0,T ;L2(Ω)) ≤ C‖Φ(u)‖L∞(0,T ;L1(Ω)),

‖∇Ψ(u)‖L2(0,T ;L2(Ω)) ≤ C‖∇
√

1 + u‖L2(0,T ;L2(Ω)).

Since 2 < 2(N + 2)/N < 2N/(N − 2), the Hölder inequality yields∫ T

0

∫
Ω

|Ψ(u)|
2(N+2)
N dxdt ≤

∫ T

0

Å∫
Ω

|Ψ(u)|2 dx

ã2/N Å∫
Ω

|Ψ(u)|2N/(N−2) dx

ã(N−2)/N

dt.
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Therefore the Sobolev embedding H1(Ω) ⊂ L2N/(N−2)(Ω) leads to (4.2) since∫ T

0

∫
Ω

|Ψ(u)|
2(N+2)
N dxdt

≤ C
Ç

sup
0≤t≤T

∫
Ω

|Ψ(u)|2 dx

å2/N ∫ T

0

∫
Ω

(
|Ψ(u)|2 + |∇Ψ(u)|2

)
dxdt.

≤ C‖Φ(u)‖2/NL∞(0,T ;L1(Ω))

Ç
T‖Φ(u)‖L∞(0,T ;L1(Ω)) +

∫ T

0

∫
Ω

|∇
√

1 + u|2 dx dt

å
.

We obtain (4.1) with a similar combination of the Hölder inequality and the Sobolev
embedding.

R 4.1. – We shall use the inequality (4.2) with a sequence of balls
B(0, 1) ⊂ Bn ⊂ B(0, 2) as space domain. Since the proof of (4.2) involves the Sobolev
embedding, the constant C thus depends on the parameter n. However, we can estimate it
uniformly. Indeed, the Sobolev embedding on Ω = B(0, 1) readsÇ∫

B(0,1)

|u(x)|2N/(N−2) dx

å(N−2)/N

≤ C1

Ç∫
B(0,1)

|u(x)|2 dx+

∫
B(0,1)

|∇u(x)|2 dx

å
,

with C1 the Sobolev constant on B(0, 1). We apply it with u(x) = λ(N−2)/2u(λx), λ > 0. By
using the change of variable y = λx, it follows thatÇ∫

B(0,λ)

|u(y)|2N/(N−2) dy

å(N−2)/N

≤ C1

Ç
λ−2

∫
B(0,λ)

|u(y)|2 dy +

∫
B(0,λ)

|∇u(y)|2 dy

å
.

Hence, the Sobolev constant on B(0, λ) for any λ > 1 is dominated by 2C1.

Keeping in mind Lemma 4.2 now we consider solutions of (1.1) that are defined for
negative times. Let us set

kn = 1− 1/2n, tn = 1 + 1/2n Bn = B(0, tn), Qn = (−tn, 0)× Bn.

Note that Bn ⊂ Bn−1 and Qn ⊂ Qn−1. We introduce a cut-off function
ζn : RN → R, 0 ≤ ζn(x) ≤ 1,

ζn(x) = 1 for x ∈ Bn, ζn(x) = 0 for x ∈ {Bn−1,

supi,j∈{1,...,N}, x∈RN |∂2
ijζn(x)| ≤ C 22n.

We define

Un = sup
−tn≤t≤0

p∑
i=1

∫
Bn

Φ(ai − kn) dx+

p∑
i=1

∫ ∫
Qn

∣∣∇»1 + [ai − kn]+
∣∣2 dxds.

Multiplying (1.1) by ζn(x)Φ′(ai − kn) we obtain the following localized version of (3.1)

(4.3)

d

dt

p∑
i=1

∫
Ω

Φ(ai − kn) ζn dx+

p∑
i=1

∫
Ω

Di∇ai · ∇ai Φ′′(ai − kn) ζn dx

=

p∑
i=1

∫
Ω

Qi(a)Φ′(ai − kn)ζn dx+

p∑
i=1

∫
Ω

Di : D2ζn Φ(ai − kn) dx,
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where D2ζn stands for the hessian matrix of ζn and A : B =
∑N
k,l=1AklBkl. Remark that

0 ≤ 11 Bn(x) ≤ ζn(x) ≤ ζn−1(x) ≤ 1 and |∂2
klζn(x)| ≤ 22n11 Bn−1

(x). Then, reproducing the
proof of Lemma 3.1 and (3.2) we obtain
(4.4)

Un ≤ C22n

p∑
i=1

∫ ∫
Qn−1

Φ(ai − kn)(s, x) dx ds

+ C

p∑
i=1

∫ ∫
Qn−1

(
1 + kµn + (1 + kn)[ai − kn]µ−1

+

)
ln(1 + [ai − kn]+)(τ, x) dxdτ.

From this relation we are able to establish the following statements.

P 4.1. – Let N > 2 and µ = 2. The following relation holds

Un ≤ C 24n(N+1)/N U1+2/N
n−1

for any n ≥ 1. Accordingly, if U1 is small enough then limn→∞ Un = 0.

C 4.1. – There exists a universal constant η? > 0 such that any solution of
(1.1) satisfying

p∑
i=1

∫ 0

−2

∫
B(0,2)

|ai|(N+2)/N dx dτ ≤ η?

is such that for any i ∈ {1, . . . , p} we have

0 ≤ ai(t, x) ≤ 1 a. e. in (−1, 0)×B(0, 1).

Proof of Proposition 4.1. – There exists CN > 0 such that

Φ(ai − kn) ≤ (1 + [ai − kn]+) ln
(
1 + [ai − kn]+

)
≤ CN

Å
11ai≥kn +

∣∣Ψ(ai − kn)
∣∣ 2(N+2)

N

ã
.

Similarly, assuming 0 ≤ µ− 1 < 1 + 2/N , we can find CN,µ > 0 such that

[ai − kn]µ−1 ln
(
1 + [ai − kn]+

)
≤ CN,µ

Å
11ai≥kn +

∣∣Ψ(ai − kn)]
∣∣ 2(N+2)

N

ã
.

For N ≥ 2, this restricts to the case µ = 2. Together with (4.4), this gives

Un ≤ C22n

p∑
i=1

∫ ∫
Qn−1

Å
11ai≥kn +

∣∣Ψ(ai − kn)
∣∣ 2(N+2)

N

ã
dx ds.

We note that 0 ≤ kn ≤ 1, and kn ≥ kn−1. Consequently we have

0 ≤ Ψ(ai − kn) ≤ Ψ(ai − kn−1).

Moreover, we remark that

11ai≥kn = 111≥ai−kn−1≥kn−kn−1 + 11ai−kn−1≥1,
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with

111≥ai−kn−1≥kn−kn−1 ≤
Å
ai − kn−1

kn − kn−1

ã 2(N+2)
N

110≤ai−kn−1≤1

≤ 2
2n(N+2)

N (ai − kn−1)
2(N+2)
N 110≤ai−kn−1≤1,

111≤ai−kn−1 ≤ (ai − kn−1)
N+2
N 11ai−kn−1≥1

≤ 2
2n(N+2)

N (ai − kn−1)
N+2
N 11ai−kn−1≥1.

Hence, we have

11ai≥kn ≤ 2
2n(N+2)

N

∣∣Ψ(ai − kn−1)
∣∣ 2(N+2)

N .

We are thus led to

(4.5) Un ≤ C2
4n(N+1)

N

p∑
i=1

∫ ∫
Qn−1

∣∣Ψ(ai − kn−1)
∣∣ 2(N+2)

N dxds.

Finally, applying Lemma 4.1 (see also Remark 4.1) we obtain

Un ≤ C2
4n(N+1)

N U1+2/N
n−1 .

Coming back to Lemma 3.3 finishes the proof of Proposition 4.1.

Proof of Corollary 4.1. – We are thus now left with the task of discussing the smallness
of U1. Note that Ψ(X) ≤

√
X for all X > 0. Hence, from (4.5) with n = 1, we find

U1 ≤ C2
4(N+1)
N

p∑
i=1

∫ ∫
Q0

|ai|
N+2
N dx ds = CN

p∑
i=1

‖ai‖
N+2
N

L(N+2)/N ((−2,0)×B(0,2))
.

Hence, for
∑p
i=1 ‖ai‖

(N+2)/N

L(N+2)/N ((−2,0)×B(0,2))
small enough, we have U1 small so that

limn→∞ Un = 0, by Proposition 4.1. We conclude by reproducing the arguments at
the end of the proof of Theorem 1.1. We have

0 ≤
∫ 0

−tn

∫
Bn

Φ(ai − kn) dxdt ≤ Un.

Hence letting n go to∞ yields, by using the Fatou lemma,

lim
n→∞

∫ 0

−tn

∫
Bn

Φ(ai − kn) dxdt = 0 =

∫ 0

−1

∫
B(0,1)

Φ(ai − 1) dxdt.

It implies that 0 ≤ ai(t, x) ≤ 1 holds a. e. on (−1, 0)×B(0, 1).

Now, these statements allow us to deduce some property of the solution of the original
Cauchy problem. To this end, we go back to the scaling argument in Lemma 4.2. Indeed, we
notice that∫ 0

−2

∫
B(0,2)

|aε(τ, x)|(N+2)/N dx dτ

=
1

2
ε2(N+2)/N−(N+2)

∫ t0+2ε2

t0−2ε2

∫
|y−x0|≤2ε

|a(s, y)|(N+2)/N dy ds
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holds (recall that we are dealing with the case µ = 2 only). We deduce the following
statement.

L 4.3. – Let N ≥ 3 and µ = 2. Then there exists a universal constant η? > 0 such
that for any a solution of (1.1), any t0 > 0, x0 ∈ Ω and 0 < ε � 1, we have the following
property. If:

p∑
i=1

1

εN+2

∫ t0+2ε2

t0−2ε2

∫
|y−x0|≤2ε

|a(s, y)|(N+2)/N dy ds ≤ η? ε−2(N+2)/N

then ai satisfies 0 ≤ ai(t, x) ≤ 1/ε2 on |t− t0| ≤ ε2, |x− x0| ≤ ε and ai is C∞ on this set.

Notice that it is enough to show the boundedness of the ai’s on the neighborhood of
(t0, x0). Then the full regularity on the (possibly smaller) neighborhood is obtained by
induction, using classical theory of parabolic equations (see appendix).

We start by localizing: namely, we consider (0, T )×B(0, R), 0 < T,R <∞. We set

S = {(t, x) ∈ (0, T )×B(0, R), a is not C∞ on a neighborhood of (t, x)}.

We cover S by rectangles with step size ε2 in the time direction and ε in the space directions,
centered at points (t, x) ∈ S. By the Vitali covering lemma (see [32], p. 9) there exists a
countable family denoted by {Cj , j ∈ N}, with Cj centered at (tj , xj) ∈ S, made of such
rectangles and such that

Cj ∩ C` = ∅ for j 6= `, and S ⊂
⋃
j∈N

C̃j

where C̃j stands for the rectangle centered at (tj , xj) with step size 2ε2 in the time direction
and 2ε in the space directions. Since (tj , xj) does not satisfy the conclusion of Lemma 4.3,
we have

p∑
i=1

1

εN+2

∫ ∫‹Cj |ai(s, y)|(N+2)/N dy ds ≥ η? ε−2(N+2)/N .

We introduce the function

F S(t, x) =
∑
j∈N

11
C̃j

(t, x)

p∑
i=1

1

εN+2

∫ ∫‹Cj |ai(s, y)|(N+2)/N dy ds.

Hence, denoting by L the Lebesgue measure, we have the following estimate

L
( ⋃
j∈N

Cj

)
≤ L

({
(t, x) ∈ (0, T )×B(0, R), F S(t, x) ≥ η?/ε2(N+2)/N

})
≤ ε2(N+2)/N

η?

∫ T

0

∫
Ω

F S(t, x) dxdt

as a consequence of the Tchebyschev inequality. It yields by direct evaluation

L
( ⋃
j∈N

Cj

)
≤ ε2(N+2)/N

η?

p∑
i=1

∑
j∈N

Ñ∫ ∫‹Cj |ai|(N+2)/N dy ds× 2N+2

∫ T
0

∫
Ω

11‹Cj (t, x) dx dt

L(C̃j)

é
= 2N+2 ε

2(N+2)/N

η?

p∑
i=1

‖ai‖(N+2)/N

L(N+2)/N ((0,T )×Ω)
.
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Since the Lebesgue measure of the Cj ’s is proportional to εN+2, we deduce that the cardi-
nality of the covering is of order O(ε2(N+2)/N−(N+2) = ε−(N2−4)/N ). Furthermore, the ‹Cj ’s
realize a covering of S with sets of diameter ε; we conclude that the Hausdorff dimension of
S is dominated by (N2 − 4)/N .

R 4.2. – It is not obvious that we can improve this estimate, which is in the spirit
of [29, 30] for the Navier-Stokes equations, up to a sharp result as in [4, 17]. A difficulty is
related to the fact that we are dealing with diffusion coefficients that depend on the component
of the system, which prevents from using regularizations by a common heat kernel.

Appendix

In this appendix, we sketch the proofs of classical results on regularity and small time
existence for quasi-linear parabolic systems. The first statements are concerned with the
higher regularity of bounded solutions.

P A.1. – Let T, r > 0 and x0 ∈ RN . Let u be a bounded solution on
[0, T ]×B(x0, r) of

∂tu−∇ · (D∇u) = f(t, x, u,∇u),

with a diffusion matrix D verifying for some α > 0

D(t, x)ξ · ξ ≥ α|ξ|2,

for any (t, x) ∈ [0, T ]×B(x0, r) and ξ ∈ RN . The function f lies inC∞([0, T ]× RN × R× RN )

and verifies for any t ∈ [0, T ], x ∈ B(x0, r), |u| ≤M <∞ and p ∈ RN ,
|f(t, x, u, p)| ≤ CM,r(1 + |p|2). Assume in addition that D ∈ Ck([0, T ] × B(x0, r))

for an integer k ≥ 1. Then for every 0 < t < T , we have

u ∈ L∞(t, T ;Ck(B(x0, r/2)).

In particular, if D ∈ C∞([0, T ]×B(x0, r)), then for every t > 0 we have also
u ∈ C∞([t, T ]×B(x0, r/2)).

This proposition proves Corollary 1.1 from Theorem 1.1 and Theorem 1.2. It is an
easy application of the following result (see [16] Theorem 1.1 pp. 419–420 & Theorem 3.1,
pp. 437–438, and, considering systems, Lemma 6.2 p. 592).

T A.1. – Let T > 0 and Ω be a bounded domain in RN . Let D ∈ C1([0, T ]× Ω)

verify the coercivity condition: there exists α > 0 such that for any (t, x) ∈ [0, T ] × Ω and
ξ ∈ RN , we have

D(t, x)ξ · ξ ≥ α|ξ|2.
Let M > 0. Let f ∈ C∞([0, T ]× Ω× [−M,M ]× RN ) be such that |f(t, x, u, p)| ≤ CM (1 + |p|2).
Consider a bounded weak solution u ∈ L∞([0, T ] × B), |u(t, x)| ≤ M , to the quasi-linear
equation

∂tu−∇ · (D∇u) = f(t, x, u,∇u).

Then, for any 0 < t < T and any ball B strictly included in Ω, u and ∇u are continuous on
[t, T ]×B with |∇u| bounded on [t, T ]×B. The bound depends only on t, the distance of B to
Ω, M , the constant CM , the coercivity constant α, and the Lipschitz norm of D.
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The result of [16] is actually slightly more general (it includes Hölderian regularity of u
and∇u), but this statement is enough for our purpose.

Proof of Proposition A.1. – Consider

tj = t(1− 2−j), rj =
r

2
(1 + 2−j).

We show by induction for 1 ≤ j ≤ k that u ∈ L∞(tj , T ;Cj(B(x0, rj))). Theorem A.1
implies that u ∈ L∞(t1, T ;C1(B(x0, r1)). Assume that the result holds for j ∈ {1, ..., k−1}.
Let α be a multi–index in NN with length j + 1. Then, v = ∂αu is solution to

∂tv −∇ · (D∇v) = f̃(t, x, v,∇v)

where the function f̃ verifies the assumption of Theorem A.1, the associated constant CM
depending on tj , rj , ‖u‖L∞([tj ,T ;Cj(B(x0,rj))),α, and ‖D‖Cj+1 . Applying Theorem A.1 again
gives the estimate with j + 1.

When D ∈ C∞([0, T ] × B(x0, r)), once it has been proved that ∂αu is continuous and
belongs to L∞((t, T ) × B(x0, r/2)) for any α ∈ NN , we establish iteratively the regularity
with respect to the time variable.

Next, for the sake of completeness, we give a proof of the existence of smooth and
bounded solutions of (1.1) on a small enough time interval.

P A.2. – Let a0 ∈ [L∞(Ω)]p be such that a0
i ≥ 0 for all i ∈ {1, ..., p}. Then

there exist T0 > 0 and a ∈ [L∞([0, T0] × Ω)]p solution to (1.1). Moreover this solution
is unique, regular on [t, T0] × Ω for any 0 < t < T0 (as long as D is smooth) and verifies
ai(t, x) ≥ 0.

Proof. – Consider y(t) solution to the ODE

ẏ = yµ, y(0) = ‖a0‖L∞ .

Let 0 < Tb <∞ be such that

y(t) ≤ 2‖a0‖L∞ , 0 ≤ t ≤ Tb.

Set a(0)
i (t, x) = 0. We construct, by induction for j ≥ 1, the solutions a(j) on [0, Tb]× Ω to

the following linear parabolic system

∂ta
(j)
i −∇ · (Di∇a(j)

i ) + Li(a
(j−1))a

(j)
i = Gi(a

(j−1)), i ∈ {1, ..., p},

a
(j)
i (0, x) = a0

i (x),

where Li and Gi are defined as in (1.3). We show also that a(j) is smooth and verifies

(A.1) 0 ≤ a(j)
i (t, x) ≤ y(t), (t, x) ∈ [0, Tb]× Ω,

and for any 0 ≤ t < Tb, j ≥ 2

(A.2) ‖a(j)(t)− a(j−1)(t)‖L∞(Ω) ≤ 2pµ(2‖a0‖L∞)µ−1t‖a(j−1) − a(j−2)‖L∞([0,Tb]×Ω).

Clearly, (A.1) holds for j = 1 and j = 2 and (A.2) holds for j = 2. Assume that we have
constructed a(k) for k ∈ {1, ..., j} and that (A.1), (A.2) hold for those functions. Note that,
for j fixed, the system is decoupled (the definition of a(j)

i does not depend on a(j)
m for i 6= m).

The existence of a smooth solution a(j+1) follows from the classical theory of linear parabolic
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equations. For i fixed, 0 is a subsolution to the equation satisfied by aj+1
i and y is a super-

solution. The maximum principle gives the bounds (A.1) for a(j+1). We remark that, for any
i ∈ {1, ..., p}

|Gi(a(j))−Gi(a(j−1))| ≤ 2µ[sup(a(j), a(j−1))]µ−1|a(j) − a(j−1)|,
|Li(a(j))− Li(a(j−1))| ≤ 2(µ− 1)[sup(a(j), a(j−1))]µ−2|a(j) − a(j−1)|.

Moreover, we have

∂t(a
(j+1)
i − a(j)

i )−∇ · (Di∇(a
(j+1)
i − a(j)

i ))

= Gi(a
(j))−Gi(a(j−1))− (Li(a

(j))a(j+1) − Li(a(j−1))a(j)),

(a(j+1) − a(j))(0, x) = 0, x ∈ Ω.

By a comparison principle, we get (A.2) at the rank j + 1. Hence the induction hypotheses
(A.1), (A.2) are satisfied for any j ≥ 2. Consider T0 = inf(Tb, [4pµ(2‖a0‖L∞)µ−1]−1). Let
S be the operator defined from

[
L∞([0, T0]×Ω)

]p
to itself by S(a(j)) = a(j+1). Then (A.2)

ensures that S is a strict contraction. So, by the Banach fixed point theorem, a(j) converges in
L∞([0, T0]×Ω) to a function a. Passing to the limit in the equation, we get that a is solution
to (1.1). Uniform bounds on a

(j)
i give that ai is non-negative and uniformly bounded by

2‖a0‖L∞ on [0, T0]× Ω. Finally, Proposition A.1 proves the regularity of a.
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