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RATIONAL INVARIANT TORI, PHASE SPACE
TUNNELING, AND SPECTRA FOR

NON-SELFADJOINT OPERATORS IN DIMENSION 2∗

ʙʏ Mɪ�ʜ��ʟ HITRIK �ɴ� J�ʜ�ɴɴ�� SJÖSTRAND

Aʙ��ʀ���. – We study spectral asymptotics and resolvent bounds for non-selfadjoint perturba-
tions of selfadjoint h-pseudodifferential operators in dimension 2, assuming that the classical flow of
the unperturbed part is completely integrable. Spectral contributions coming from rational invariant
Lagrangian tori are analyzed. Estimating the tunnel effect between strongly irrational (Diophantine)
and rational tori, we obtain an accurate description of the spectrum in a suitable complex window, pro-
vided that the strength of the non-selfadjoint perturbation� h (or sometimes� h2) is not too large.

R�����. – Nous étudions des asymptotiques spectrales et des estimations de la résolvante des per-
turbations non-autoadjointes d’opérateurs h-pseudodifférentiels autoadjoints en dimension 2, en sup-
posant que le flot classique de la partie non-perturbée soit complètement intégrable. Les contributions
spectrales parvenant des tores invariants lagrangiens rationnels sont analysées. En estimant l’effet tun-
nel entre des tores diophantiens et rationnels, nous obtenons une description précise du spectre dans
une région convenable du plan complexe spectral, sous l’hypothèse que la force de la perturbation non-
autoadjointe� h (ou parfois� h2) ne soit pas trop grande.

1. Introduction

In [24], A. Melin and the second author observed that for large and stable classes of non-
selfadjoint analytic (pseudo)differential operators in two dimensions, the individual eigen-
values can be determined up to arbitrarily high powers of the semiclassical parameter by a
complex Bohr-Sommerfeld quantization condition. This is quite analogous to known re-
sults in dimension one in the selfadjoint case [8], [3], [7], and remarkable in the sense that
corresponding results for selfadjoint operators in higher dimensions are known only in very
special situations. Applications to resonances were also given in [24].

∗Research of the first author supported in part by the NSF.
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514 M. HITRIK AND J. SJÖSTRAND

A natural continuation of [24] was to study non-selfadjoint perturbations of selfadjoint
operators in the semiclassical limit, of the form

(1.1) Pε(x, hDx) = P (x, hDx) + iεQ(x, hDx), 0 < h � 1,

with principal symbol (classical Hamiltonian)

(1.2) pε(x, ξ) = p(x, ξ) + iεq(x, ξ),

either on R2 or on a compact analytic manifold of dimension 2. Here P is selfadjoint so p

is real, and we may assume to fix the ideas that q is real. Both p and q are assumed to be
analytic, at least in the cases when ε � h.

In [14]–[16] we studied the case when the classical flow of p is periodic and showed that
the spectrum has a lattice structure as in [24], with an eigenvalue separation of the order of h

in the real (“horizontal”) direction and of the order of εh in the imaginary (“vertical”) direc-
tion. (In [16] we got richer phenomena near branching point levels.) The methods in [14]–[16]
were based on a reduction to a one-dimensional operator. Again it should be noticed that
the results obtained are more precise than what is currently known in the case of selfadjoint
perturbations. Applications to resonances and the damped wave equation were given. See
also [11].

As in classical works of A. Weinstein [35] and Y. Colin de Verdière [34], the trajectory
averages of q play an important role in the precise formulation of the results. Under much
more general assumptions they allow to estimate the width of the spectrum in the imaginary
directions (see also [19], [29]). It should also be recalled that the real parts of the eigenvalues
distribute according to the same Weyl law as for the unperturbed operator P (see Markus
and Matsaev [22], [21]).

The next step was taken by the authors together with S. Vũ Ngo. c in [17], where we studied
the case when p is classically completely integrable or close to being completely integrable.
In the integrable case, the energy surface p = E0 foliates into invariant Lagrangian tori and
possibly some more complicated sets. The classical flow on each invariant torus has a rota-
tion number which “most of the time” is Diophantine (i.e. poorly approximated by rational
numbers). On such a torus Λ (or more generally on an irrational one), the time averages

�q�T =
1

T

�
T/2

−T/2

q ◦ exp tHpdt

of q along the classical trajectories of p all converge to the space average �q�(Λ) of q over Λ,
when T → ∞. When Λ is a torus with a rational rotation number, or a more general “sin-
gular” invariant set in the foliation of the energy surface p

−1(E0), then we need to consider
the whole interval Q∞(Λ) of limits of flow averages as above, and in the rational torus case
we have �q�(Λ) ∈ Q∞(Λ).

In the completely integrable case, the main result of [17] says very roughly that if F0 ∈ R
is a value such that F0 = �q�(Λj) for finitely many Diophantine tori Λ1, ...,ΛN0 in p

−1(E0),
and F0 does not belong to Q∞(Λ) for any other invariant set Λ in the energy surface, then
the spectrum can be completely determined in a rectangle [E0−h

δ
/C, E0 +h

δ
/C]+ iε[F0−

h
δ
/C, F0 + h

δ
/C] modulo O(h∞), where δ is a positive exponent that can be chosen arbi-

trarily small, and ε may vary in any interval of the form h
K

< ε � 1. Again the eigenvalues
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〈q〉(Λ)

Λ

F0

Q∞(Λ)

Fɪɢ�ʀ� 1. The figure represents the graph of the function Λ �→ �q�(Λ) as Λ varies
over the set of flow invariant Lagrangian tori in the energy surface p−1(E0). The
vertical segments in the figure correspond to the intervals Q∞(Λ) of limits of flow
averages �q�T , as T →∞, when Λ is a rational invariant torus.

form a (superposition of finitely many) distorted lattice(s), with horizontal spacing ∼ h and
vertical spacing ∼ εh. The proofs were based on the use of suitable exponentially weighted
spaces and Birkhoff normal forms near the Diophantine tori.

Notice that the intervals Q∞(Λ) shrink very fast if Λ are rational tori converging to a
Diophantine torus Λ0. For that reason, there may be plenty of levels F0 satisfying the as-
sumptions of the result above, and we may cover a substantial fraction of the energy band
[E0 − 1/C, E0 + 1/C] + iε[lim inf�q�T , lim sup�q�T ] with such rectangles.

Nevertheless, the intervals Q∞(Λ) for the rational tori form sets of positive measure of for-
bidden values for the main result of [17]. In the present paper we shall study what happens
when F0 belongs to finitely many such intervals. Our first attempt was to use secular per-
turbation theory to analyze the individual eigenvalues produced by rational tori. However
this leads to possibly quite serious pseudospectral phenomena for certain one-dimensional
operators, and it is doubtful whether such a program can succeed completely. Instead we
estimated the number of eigenvalues that can be created by such tori and showed that it is
much smaller than the number of eigenvalues created by the Diophantine ones.

Very roughly, the main result of the present paper is as follows: assume that F0 is equal
to �q�(Λj,d) for finitely many Diophantine tori Λj,d (as in the main result of [17]), and that
F0 ∈ Q(Λk,r) \ �q�(Λk,r) for finitely many rational tori Λk,r. We further assume that F0

belongs to no other set Q∞(Λ), for Λ in the foliation of p
−1(E0), and we restrict ε to the

interval

(1.3) h � ε ≤ h
2
3+δ

,
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516 M. HITRIK AND J. SJÖSTRAND

where δ > 0 is any fixed parameter. Then the spectrum of Pε in the rectangle

(1.4) R(ε) = [E0 − ε/C, E0 + ε/C] + iε[F0 − ε
δ
, F0 + ε

δ]

is of the form Ed ∪ Er, where

• Ed is the union of finitely many distorted lattices as in the main result of [17] (see above)
• Er is a set of cardinality O(ε3/2

/h
2).

Here we notice that Ed is of cardinality ∼ ε
1+δ

/h
2, so choosing δ small enough we see that

most eigenvalues in the rectangle R(ε) belong to Ed and can be asymptotically determined.

Using secular theory arguments (“partial Birkhoff normal forms”) we simplify the oper-
ator near each rational torus and conclude roughly that the eigenvalues in R(ε) produced
near the rational tori must come from a set in phase space of volume O(ε3/2). In the ab-
sence of Diophantine tori, this leads to the bound O(ε3/2

h
−2) on the total number of eigen-

values in R(ε). When Diophantine tori are present this has to be combined with the analysis
of [17], via an auxiliary so called Grushin problem. Near the Diophantine tori we have a
nice control on the solution operator, while near the rational tori, we only have the bound
O(exp (Cε

3/2
/h

2)). Luckily, by means of phase space exponential weights we are able to es-
timate the tunnel effect between the tori by O(exp (−1/(Ch))), and thanks to the condition
(1.3) the Grushin problem can be solved globally, leading to the result above.

In a parallel work [13], the first author and San Vũ Ngo. c are currently investigating the
case of larger real perturbations. Here the strategy is quite different and uses KAM theory to
show that the rational tori split into Diophantine ones under the effect of the perturbation.

Acknowledgment. This project began when the first author was visiting École polytechnique
in September of 2005. It is a pleasure for him to thank its Centre de Mathématiques for a gen-
erous hospitality. We are grateful to San Vũ Ngo. c for many interesting discussions around
this work and for making a written contribution, which is planned to be used in a future work
of S. Vũ Ngo. c and the first author. Our thanks are also due to the referee for several sugges-
tions leading to the improvement of the presentation in the paper. The research of the first
author is supported in part by the National Science Foundation under grant DMS–0304970
and the Alfred P. Sloan Research Fellowship.

2. Statement of the main results

2.1. General assumptions

We shall start by describing the general assumptions on our operators, which will be the
same as in [17], as well as in the earlier papers mentioned above. Let M denote either the
space R2 or a real analytic compact manifold of dimension 2. We shall let �M stand for a
complexification of M , so that �M = C2 in the Euclidean case, and in the compact case, we
let �M be a Grauert tube of M — see [6] for the definition and further references.

When M = R2, let

(2.1) Pε = P
w(x, hDx, ε;h), 0 < h ≤ 1,
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be the h–Weyl quantization on R2 of a symbol P (x, ξ, ε;h) (i.e. the Weyl quantization of
P (x, hξ, ε;h)), depending smoothly on ε ∈ neigh(0, R) and taking values in the space of
holomorphic functions of (x, ξ) in a tubular neighborhood of R4 in C4, with

(2.2) |P (x, ξ, ε;h)| ≤ O(1)m(Re (x, ξ)),

there. Here m ≥ 1 is an order function on R4, in the sense that

(2.3) m(X) ≤ C0�X − Y �
N0m(Y ), X, Y ∈ R4

,

for some C0, N0 > 0. We shall assume, as we may, that m belongs to its own symbol class, so
that m ∈ C

∞(R4) and ∂
α
m = Oα(m) for each α ∈ N4. Then for h > 0 small enough and

when equipped with the domain H(m) := (mw(x, hD))−1
�
L

2(R2)
�
, Pε becomes a closed

densely defined operator on L
2(R2).

Assume furthermore that

(2.4) P (x, ξ, ε;h) ∼
∞�

j=0

h
j
pj,ε(x, ξ)

in the space of holomorphic functions satisfying (2.2) in a fixed tubular neighborhood of R4.
We assume that p0,ε is elliptic near infinity,

(2.5) |p0,ε(x, ξ)| ≥
1

C
m(Re (x, ξ)), |(x, ξ)| ≥ C,

for some C > 0.
When M is a compact manifold, for simplicity we shall take Pε to be a differential operator

on M , such that for every choice of local coordinates, centered at some point of M , it takes
the form

(2.6) Pε =
�

|α|≤m

aα,ε(x;h)(hDx)α
,

where aα(x;h) is a smooth function of ε ∈ neigh(0, R) with values in the space of bounded
holomorphic functions in a complex neighborhood of x = 0. We further assume that

(2.7) aα,ε(x;h) ∼
∞�

j=0

aα,ε,j(x)hj
, h → 0,

in the space of such functions. The semiclassical principal symbol p0,ε, defined on T
∗
M ,

takes the form

(2.8) p0,ε(x, ξ) =
�

aα,ε,0(x)ξα
,

if (x, ξ) are canonical coordinates on T
∗
M . We make the ellipticity assumption,

(2.9) |p0,ε(x, ξ)| ≥
1

C
�ξ�

m
, (x, ξ) ∈ T

∗
M, |ξ| ≥ C,

for some large C > 0. Here we assume that M has been equipped with some real analytic
Riemannian metric so that |ξ| and �ξ� = (1 + |ξ|

2)1/2 are well-defined.
Sometimes, we write pε for p0,ε and simply p for p0,0. We make the assumption that

Pε=0 is formally selfadjoint.

In the case when M is compact, we let the underlying Hilbert space be L
2(M, µ(dx)) where

µ(dx) is the Riemannian volume element.
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The assumptions above imply that the spectrum of Pε in a fixed neighborhood of 0 ∈ C
is discrete, when 0 < h ≤ h0, 0 ≤ ε ≤ ε0, with h0 > 0, ε0 > 0 sufficiently small. Moreover,
if z ∈ neigh(0, C) is an eigenvalue of Pε then Im z = O(ε).

We furthermore assume that the real energy surface p
−1(0)∩ T

∗
M is connected and that

dp �= 0 along p
−1(0) ∩ T

∗
M.

In what follows we shall write

(2.10) pε = p + iεq +O(ε2),

in a neighborhood of p
−1(0) ∩ T

∗
M , and for simplicity we shall assume throughout this

paper that q is real valued on the real domain. (In the general case, we should simply replace
q below by Re q.)

Let Hp = p
�

ξ
· ∂x − p

�
x
· ∂ξ be the Hamilton field of p. In [17], it was assumed that the

energy surface p
−1(0) ∩ T

∗
M contains finitely many Hp–invariant analytic Lagrangian tori

satisfying a Diophantine condition. Let us recall that according to a classical theorem of
Kolmogorov [1], the existence of such tori is assured when p is a small perturbation of a com-
pletely integrable symbol satisfying suitable non-degeneracy assumptions. Since our primary
purpose here is to examine the rôle of the rational tori, which are in general destroyed by
perturbing a completely integrable system, throughout this paper we shall work under the
assumption that the Hp–flow itself is completely integrable. We proceed therefore to discuss
the precise assumptions on the geometry of the energy surface p

−1(0) ∩ T
∗
M in this case.

2.2. Assumptions related to the complete integrability

As in [17], let us assume that there exists an analytic real valued function f on T
∗
M such

that Hpf = 0, with the differentials df and dp being linearly independent almost everywhere.
For each E ∈ neigh(0, R), the level sets Λa,E = f

−1(a)∩p
−1(E)∩T

∗
M are invariant under

the Hp–flow and form a singular foliation of the 3-dimensional hypersurface p
−1(E)∩T

∗
M .

At each regular point, the leaves of this foliation are 2-dimensional Lagrangian submani-
folds, and each regular leaf is a finite union of tori. In what follows we shall use the word
“leaf” and notation Λ for a connected component of some Λa,E . Let J be the set of all leaves
in p

−1(0) ∩ T
∗
M . Then we have a disjoint union decomposition

(2.11) p
−1(0) ∩ T

∗
M =

�

Λ∈J

Λ,

where Λ are compact connected Hp–invariant sets. The set J has a natural structure of a
graph whose edges correspond to families of regular leaves and the set S of vertices is com-
posed of singular leaves. The union of edges J\S possesses a natural real analytic structure
and the corresponding tori depend analytically on Λ ∈ J\S with respect to that structure.
See section 7 for an explicit description of the Lagrangian foliation in the case when M is an
analytic surface of revolution in R3.

As in [17], we shall require J to be a finite connected graph. We identify each edge of J

analytically with a real bounded interval and this determines a distance on J in the natural
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way. Assume the continuity property

(2.12) For every Λ0 ∈ J and every ε > 0, ∃ δ > 0, such that

if Λ ∈ J and distJ(Λ,Λ0) < δ, then Λ ⊂ {ρ ∈ p
−1(0); dist(ρ,Λ0) < ε}.

These assumptions are satisfied, for instance, when f is a Morse-Bott function restricted to
p
−1(0) ∩ T

∗
M , as in this case the structure of the singular leaves is known [25].

Each torus Λ ∈ J\S carries real analytic coordinates x1, x2 identifying Λ with T2 =
R2

/2πZ2, so that along Λ, we have

(2.13) Hp = a1∂x1 + a2∂x2 ,

where a1, a2 ∈ R. The rotation number is defined as the ratio

ω(Λ) = [a1 : a2] ∈ RP1
,

and it depends analytically on Λ ∈ J\S. We assume that

ω(Λ) is not identically constant on any open edge.

Recall that the leading perturbation q has been introduced in (2.10). For each torus Λ ∈ J\S,
we define the torus average �q�(Λ) obtained by integrating q|Λ with respect to the natural
smooth measure on Λ, and assume that the analytic function J\S � Λ �→ �q�(Λ) is not
identically constant on any open edge.

We introduce

(2.14) �q�T =
1

T

�
T/2

−T/2

q ◦ exp (tHp) dt, T > 0,

and consider the compact intervals Q∞(Λ) ⊂ R, Λ ∈ J , defined as in [17],

(2.15) Q∞(Λ) =

ï
lim

T→∞

inf
Λ

�q�T , lim
T→∞

sup
Λ

�q�T

ò
.

Notice that when Λ ∈ J\S and ω(Λ) /∈ Q then Q∞(Λ) = {�q�(Λ)}. In the rational case, we
write ω(Λ) = m

n
, where m ∈ Z and n ∈ N are relatively prime, and where we may assume

that m = O(n). When k(ω(Λ)) := |m|+ |n| is the height of ω(Λ), we recall from Proposition
7.1 in [17] that

(2.16) Q∞(Λ) ⊂ �q�(Λ) +O

Å
1

k(ω(Λ))∞

ã
[−1, 1].

Remark. As J\S � Λ → Λ0 ∈ S, the set of all accumulation points of �q�(Λ) is contained in
the interval Q∞(Λ0). Indeed, when Λ ∈ J\S and T > 0, there exists ρ = ρT,Λ ∈ Λ such that
�q�(Λ) = �q�T (ρ). Therefore, each accumulation point of �q�(Λ) as Λ → Λ0 ∈ S, belongs to
[infΛ0�q�T , sup

Λ0
�q�T ]. The conclusion follows if we let T →∞.

Let Λ0 ∈ J\S be a rational invariant Lagrangian torus, so that as above, ω0 := ω(Λ0) =
m

n
∈ Q, m = O(n). For future reference, we shall finish this subsection by considering the

behavior of the interval Q∞(Λ) when Λ �= Λ0 is a rational torus in a neighborhood of Λ0.
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Writing ω(Λ) = p

q
where p ∈ Z and q ∈ N are relatively prime, p = O(q), we get, using that

ω(Λ) �= ω0,

(2.17) |ω(Λ)− ω0| ≥
1

nq
≥

1

nk(ω(Λ))
,

and therefore, in view of (2.16),

(2.18) Q∞(Λ) ⊂ �q�(Λ) +O(dist(ω(Λ), ω0)
∞)[−1, 1].

This estimate is uniform in ω0 provided that we have a uniform upper bound on the height
of the rotation number ω0 ∈ Q.

2.3. Statement of the main results

From Theorem 7.6 in [17] we recall that
(2.19)

1

ε
Im (Spec(Pε) ∩ {z; |Re z| ≤ δ}) ⊂

�
inf

�

Λ∈J

Q∞(Λ)− o(1), sup
�

Λ∈J

Q∞(Λ) + o(1)

�
,

as ε, h, δ → 0. Let us also recall from [17] that a torus Λ ∈ J\S is said to be Diophantine if
representing Hp|Λ = a1∂x1 + a2∂x2 , as in (2.13), we have

(2.20) |a · k| ≥
1

C0 |k|
N0

, 0 �= k ∈ Z2
,

for some fixed C0, N0 > 0.
Let F0 ∈ ∪Λ∈JQ∞(Λ) be such that there exist finitely many Lagrangian tori

(2.21) Λ1,d, . . . , ΛL,d ∈ J\S

that are uniformly Diophantine as in (2.20), and such that

(2.22) �q�(Λj,d) = F0 for 1 ≤ j ≤ L,

with

(2.23) dΛ=Λj,d�q�(Λ) �= 0, 1 ≤ j ≤ L.

Moreover, assume also that there exist tori Λ1,r, . . . , ΛL�,r ∈ J\S with ω(Λj,r) ∈ Q,
1 ≤ j ≤ L

�, and such that the isoenergetic condition

(2.24) dΛ=Λj,rω(Λ) �= 0

is satisfied for each j, 1 ≤ j ≤ L
�. Assume next that the length |Q∞(Λj,r)| of each interval

Q∞(Λj,r) satisfies

(2.25) |Q∞(Λj,r)| > 0, j = 1, . . . , L
�
,

and that

(2.26) F0 ∈ Q∞(Λj,r), 1 ≤ j ≤ L
�
.

We shall assume that

(2.27) |�q�(Λj,r)− F0| ≥
1

O(1)
, 1 ≤ j ≤ L

�
.
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Let us finally make the following global assumption:

(2.28) F0 /∈

�

Λ∈J\{Λ1,d,...,ΛL,d,Λ1,r,...,ΛL�,r}

Q∞(Λ).

Here we notice that the earlier assumptions imply that F0 /∈ Q∞(Λ) for Λj,d �= Λ ∈

neigh(Λj,d, J), 1 ≤ j ≤ L, and Λj,r �= Λ ∈ neigh(Λj,r, J), 1 ≤ j ≤ L
�.

Tʜ��ʀ�� 2.1. – Let F0 ∈ ∪Λ∈JQ∞(Λ) be such that the assumptions (2.22), (2.23),
(2.24), (2.25), (2.26), (2.27), and (2.28) are satisfied. For 1 ≤ j ≤ L, we fix a basis for the
first homology group of each Diophantine torus Λj,d given by the cycles αk,j ⊂ Λj,d, k = 1, 2,
and let Sj ∈ R2 be the actions and kj ∈ Z2 be the Maslov indices of αk,j . Let

(2.29) κj : neigh(Λj,d, T
∗
M) → neigh(ξ = 0, T

∗T2)

be a canonical transformation given by the action-angle variables near Λj,d, 1 ≤ j ≤ L, and
such that κj(αk,j) = {x ∈ T2;x3−k = 0}, k = 1, 2. Let δ > 0 be small and assume that

h � ε ≤ h
2
3+δ

.

Let C > 0 be sufficiently large. Then there exists a bijection b between the spectrum of Pε in
the rectangle

(2.30) R(F0, C, ε, δ) :=
�
−

ε

C
,

ε

C

�
+ iε

ñ
F0 −

ε
δ

C
, F0 +

ε
δ

C

ô

and the union of two sets of points, Ed and Er, such that b(µ) − µ = O(hN0). Here N0 is
fixed but can be taken arbitrarily large. The elements of the set Ed, z(j, k), are described by
Bohr-Sommerfeld type conditions,

(2.31) z(j, k) = P
(∞)

j

Å
h

Å
k −

kj

4

ã
−

Sj

2π
, ε;h

ã
+O(h∞), k ∈ Z2

, 1 ≤ j ≤ L,

with precisely one element for each k ∈ Z2 such that the corresponding z(j, k) belongs to the
rectangle (2.30). Here P

(∞)

j
(ξ, ε;h) is smooth in ξ ∈ neigh(0, R2) and ε ∈ neigh(0, R), real-

valued for ε = 0. We have

(2.32) P
(∞)

j
(ξ, ε;h) ∼

∞�

�=0

h
�
p
(∞)

j,�
(ξ, ε), 1 ≤ j ≤ L,

and

(2.33) p
(∞)

j,0
(ξ, ε) = p(ξ) + iε�q�(ξ) +O(ε2).

Here p and q have been expressed in terms of the action-angle variables near Λj,d given by κj

in (2.29), and �q� is the torus average of q in these coordinates. The cardinality of the set Er is

(2.34) O

Ç
ε
3/2

h2

å
.

Remark. It follows from Theorem 2.1 that the total number of elements of the set Ed is
∼ ε

1+δ
/h

2. Therefore, from (2.34) we see that for 0 < δ < 1/2, the contribution Er to the
spectrum of Pε in R(F0, C, ε, δ), coming from the rational region, is much weaker than that
of the Diophantine tori Λj,d, 1 ≤ j ≤ L. As will be seen in the proof, for this result the
assumption (2.27) is important.
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Remark. Assume that the subprincipal symbol of Pε=0 in (2.1) and (2.6) vanishes. Then it
follows from the discussion in the body of the paper that Theorem 2.1 is valid in the larger
range

(2.35) h
2
� ε = O(h

2
3+δ), 0 < δ � 1.

Remark. In section 7, following [17], we shall introduce the notion of uniformly good values
F0 ∈ R, for which the conclusion of Theorem 2.1 will be valid uniformly, so that in partic-
ular, the (explicit or implicit) constants in Theorem 2.1 are independent of the choice of a
uniformly good value.

Theorem 2.1 can be viewed as a partial generalization of one of the main results of [17],
where energy levels corresponding only to Diophantine tori have been considered. In that
paper, instead of the upper bound ε ≤ h

2/3+δ, it was merely required that ε = O(hδ) for
some small fixed δ > 0. (Also the lower bounds there were considerably weaker than h � ε.)
As will be seen in the proof, here the strengthened upper bound on ε is required in order to
compensate for the exponential growth of the resolvent of Pε in the rational region, when
considering the tunnel effect between the Diophantine and the rational tori — see also the
discussion in the next section.

In the case when there are no Diophantine tori corresponding to the energy level
(0, εF0) ∈ C, the result of Theorem 2.1 can be improved in two ways: we can put δ = 0 in
(2.30), and also, the upper bound ε ≤ h

2/3+δ can be replaced by ε = O(h�δ), �δ > 0.

Tʜ��ʀ�� 2.2. – Let us keep all the assumptions of Theorem 2.1, and assume that L = 0

in (2.21). Assume furthermore that ε = O(h�δ), �δ > 0, satisfies ε � h. There exists a constant
C > 0 such that the number of eigenvalues of Pε in the rectangle

(2.36) |Re z| <
ε

C
,

����
Im z

ε
− F0

���� <
1

C

does not exceed

(2.37) O

Ç
ε
3/2

h2

å
.

Remark. As will be explained in the beginning of section 4, the isoenergetic assumption (2.24)
implies that associated with each rational torus Λj,r, 1 ≤ j ≤ L

�, there is an analytic family
of rational Lagrangian tori ΛE,j,r ⊂ p

−1(E)∩T
∗
M for E ∈ neigh(0, R), depending analyt-

ically on E, and with ΛE=0,j,r = Λj,r, 1 ≤ j ≤ L
�. Theorem 2.2 can therefore be interpreted

as saying that only an ε
1/2-neighborhood of the set

(2.38)
L
��

j=1

�

E=O(ε)

ΛE,j,r

contributes to the spectrum in the region (2.36).

For notational simplicity only, when proving Theorem 2.1 and Theorem 2.2, we shall assume
that L = 2, L

� = 1, and that Λ1,d, Λ2,d, and Λ1,r all belong to the same open edge of J , so
that, when identifying the edge with a real bounded interval, we have

(2.39) Λ1,d < Λ1,r < Λ2,d.
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See also Figure 1.

The structure of the paper is as follows. In section 3 we present a general outline of the
proof of Theorem 2.1. Section 4 is devoted to a formal microlocal Birkhoff normal form
construction for Pε near Λ1,r, and in section 5 the formal argument of the previous section
is justified by constructing a microlocal Hilbert space in a full neighborhood of Λ1,r, realiz-
ing the normal form reduction there. In the beginning of section 6 we construct the global
Hilbert space where we study our operator Pε, and introduce two reference operators, as-
sociated with the Diophantine and the rational regions, respectively. Section 6 is concluded
by constructing the resolvent for Pε globally, and we obtain Theorem 2.1 by comparing the
spectral projections of Pε and of the reference operators. In section 7, we apply Theorem 2.1
to a small complex perturbation of the semiclassical Laplacian on a convex analytic surface
of revolution, and give a partial generalization of the corresponding discussion in [17]. The
appendix contains a proof of a simple trace class estimate for the Toeplitz operator with a
compactly supported smooth symbol, acting on a weighted L

2–space of holomorphic func-
tions. This estimate, which seems to be of an independent interest, is used in section 6 in the
main text.

3. Outline of the proof

The purpose of this section is to provide a broad outline of the proof of Theorem 2.1.
Compared with the previous work [17], addressing only the case of Diophantine tori, here
the essential new difficulties will be concerned with the analysis in the rational region. We
shall begin by presenting an outline of the argument in this case.

Working microlocally in the rational region and introducing action-angle variables in a
neighborhood of Λ1,r � T2, we are led to consider an operator, defined microlocally near
ξ = 0 in T

∗T2

x,ξ
, with the leading symbol given by

(3.1) pε(x, ξ) = p(ξ) + iεq(x, ξ) +O(ε2), p(ξ) = ω · ξ +O(ξ2).

Here ω = (k, l) ∈ Z2 and to fix the ideas, let us restrict the attention to the model case
where ω = (0, 1) and the O(ξ2)–term in (3.1) reduces to ξ

2

1
— this choice of the nonlinearity

in p is in agreement with the isoenergetic condition (2.24). Following the general ideas of
a Birkhoff normal form construction, we would like to eliminate, as much as possible, the
x-dependence in the symbol in (3.1). Performing first successive averaging procedures along
the closed orbits of the Hp–flow comprising the rational tori ΛE,1,r, E ∈ neigh(0, R), we
achieve that the leading symbol in (3.1) becomes

(3.2) �pε(x, ξ) = ξ2 + ξ
2

1
+O(ε) +O((ε, ξ1)

∞),

where the O(ε)–term is independent of x2. In the terminology of classical mechanics, this
initial reduction is based on a secular perturbation theory — see [20]. Carrying out the reduc-
tion on the operator level, we obtain an operator of the form ‹Pε = ‹Pε(x1, hDx1 , hDx2 ;h),
which may also be viewed as a family of one-dimensional non-selfadjoint operators acting
in x1, with a leading symbol of the form

hk + ξ
2

1
+O(ε), k ∈ Z.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



524 M. HITRIK AND J. SJÖSTRAND

For this family, we cannot exclude the occurrence of a pseudospectral phenomenon [2], lead-
ing to the exponential growth of the resolvent norms in the spectral regions of interest. This
makes it difficult to exploit the secular perturbation theory and to simplify the operator fur-
ther.

Nevertheless, in section 4 we show that working in a region where

(3.3) |ξ1|� ε
1/2

,

and so away from an ε
1/2–neighborhood of the set

(3.4)
�

|E|<δ0

ΛE,1,r, 0 < δ � 1,

the x1-dependence in the symbol (3.2) can be eliminated completely, and in particular, here
the leading perturbation q in (3.1) becomes replaced by its torus average. When approaching
the region where ξ1 = O(ε1/2), the normal form construction breaks down and no additional
simplification of the operator Pε is obtained.

To implement the complete reduction in the region (3.3) requires an introduction of a mi-
crolocal Hilbert space of functions in a sufficiently small but fixed neighborhood of Λ1,r. Be-
cause of the degeneration of the normal form construction very close to the rational torus,
when defining the Hilbert space in a full neighborhood of Λ1,r, it becomes convenient and
indeed, natural, to perform a second microlocalization — in this case, it amounts to consider-
ing our operators in h̃ = h/

√
ε–quantization with respect to the x1–variable and performing

an h̃–Bargmann transformation in x1. In section 5 we show that, on the transform side, the
microlocal Hilbert space in question becomes a well-defined weighted space of holomorphic
functions in a region (Re x1,Re x2) ∈ T2, |Im x1|�

1
√

ε
, |Im x2|� 1, with the correspond-

ing strictly plurisubharmonic weight being uniformly well behaved and close to the standard
quadratic one — see Proposition 5.1 for the precise statement and also, the discussion in sub-
section 5.4.

The idea now is to use the assumption (2.27) to show that (1/ε) (Pε − z) becomes
elliptic (viewed as an h̃-pseudodifferential operator) near Λ1,r, when away from an O(ε1/2)–
neighborhood of the set in (2.38), while the invertibility away from the tori Λ1,r ∪Λ1,d∪Λ2,d

should follow from (2.28). Here the spectral parameter z varies in the domain (2.36).
To handle the remaining phase space region near Λ1,r, in section 6 we construct a trace

class perturbation K, whose trace class norm does not exceed

(3.5) O

Ç
ε
3/2

h2

å
,

such that if Pd := Pε+iεK then Pd−z becomes invertible, when away from the Diophantine
quasi-eigenvalues z(j, k) in (2.31). Moreover, we obtain a sufficiently good control on the
norm of the inverse of Pd, when the latter is considered in a global Hilbert space, obtained by
gluing together the microlocal Hilbert space near Λ1,r and the space away from Λ1,r, defined
using the Diophantine analysis of [17]. The trace class perturbation K is constructed as a
Toeplitz operator on the FBI–Bargmann transform side and when deriving the trace class
norm bound (3.5), we use a general estimate of Proposition A.1 in the appendix.
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It will be fruitful to think of the Diophantine and the rational tori in question as of mi-
crolocal wells to which the main difficulties of our problem are localized. From this point of
view we may think of the operator Pd as a reference operator associated to the Diophantine
region. Proceeding in the spirit of tunneling problems, in section 6 we next define and study
a reference operator associated to the rational region, Pr, obtained by modifying Pε away
from the rational region and such that Pr − z is invertible outside of a small neighborhood
of Λ1,r. Because of the pseudospectral difficulties in the normal form construction for Pε in
an O(ε1/2)–neighborhood of Λ1,r, when estimating the resolvent of Pr, we are only able to
show that it enjoys an exponential upper bound, with the exponent there being given, roughly
speaking, by the phase space volume of the region near the rational torus, not covered by the
normal form, multiplied by h

−2, or, equivalently, by the trace class norm of the perturbation
K in (3.5).

Using the operators Pd and Pr, together with an additional reference operator corre-
sponding to the elliptic region, we next construct and study an approximate, and then exact,
resolvent of Pε. To obtain the main result of Theorem 2.1 we would like to compare the
spectral projections of Pε with those of the reference operators. Due to the exponential
growth of the resolvent of Pε near Λ1,r, at this point it becomes very important to estimate
the tunnel effect between the Diophantine and the rational tori and to show that it is small
enough to overrule the pseudospectral growth of the resolvent in the rational region. This
tunneling analysis is carried out at the end of section 6 and it involves an additional mod-
ification of phase space exponential weights near the invariant tori. Imposing the upper
bound ε = O

�
h

2/3+δ
�
, 0 < δ � 1, assures that our perturbative argument goes through,

and we can conclude the proof by comparing the spectral projections, as indicated above.

Remark. The idea of using auxiliary trace class perturbations to create a gap in the spec-
trum of a non-selfadjoint operator has a long tradition in abstract non-selfadjoint spectral
theory and seems to go back to the work of Markus and Matsaev [22], see also [21]. It has
been used by the second author in the theory of resonances [28], [30], and when studying
spectral asymptotics for damped wave equations on compact domains [29] (see also [12]). In
the present paper, in the absence of the Diophantine tori, once the trace class perturbation
K, alluded to above, has been constructed, we can conclude the proof of Theorem 2.2, in
section 6, by relying upon some standard Fredholm determinant estimates [5].

4. The normal form construction near Λ1,r

For simplicity, we shall concentrate throughout the following discussion on the case when
M = R2, the compact real analytic case being analogous — see also the appendix in [14] for
the basic facts about FBI transforms on manifolds. We shall keep all the assumptions made
in the introduction, and consider an operator Pε in (2.1) with a principal symbol

(4.1) pε = p + iεq +O(ε2),

in a neighborhood of p
−1(0)∩R4. In order to simplify the presentation, we shall furthermore

assume that the order function m introduced in (2.2) belongs to L
∞(R4). It will be clear

that the analysis below extends to the case of a general order function m ≥ 1. From the
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introduction, let us also recall the simplifying assumption that L
� = 1 so that Λ1,r is the only

rational torus corresponding to the level (0, εF0).

In this section, we shall work microlocally near Λ1,r ⊂ p
−1(0) ∩ R4. Let

(4.2) κ0 : neigh(Λ1,r, R4) → neigh(ξ = 0, T
∗T2),

be a real and analytic canonical transformation, given by the action-angle variables, and such
that κ0(Λ1,r) is the zero section in T

∗T2. Then p◦κ
−1

0
is a function of ξ only, and to simplify

the notation we shall write p ◦ κ
−1

0
= p(ξ). We have p(0) = 0 and without loss of generality

we may assume that

(4.3) ∂ξ1p(0) = 0, ∂ξ2p(0) > 0.

The isoenergetic assumption (2.24) takes the following form,

(4.4) ∂
2

ξ1
p(0) �= 0.

In order to fix the ideas, we assume that ∂
2

ξ1
p(0) > 0.

By the implicit function theorem, the equation ∂ξ1p(ξ) = 0 has a unique analytic local
solution ξ1 = f(ξ2) with f(0) = 0. The function ξ2 �→ p(f(ξ2), ξ2) has a positive derivative
near 0, and therefore the equation p(f(ξ2), ξ2) = E has a unique solution ξ2(E) close to 0 for
E ∈ neigh(0, R). We obtain a family of rational Lagrangian tori ΛE,1,r ⊂ p

−1(E), defined
by

(4.5) ξ2 = ξ2(E), ξ1 = f(ξ2(E)).

By construction, ∂ξ1p = 0 on ΛE,1,r, and hence,

(4.6) ∂ξ1p(ξ1, ξ2) = O(ξ1 − f(ξ2)), ∂ξ2p(ξ1, ξ2) = ∂ξ2p(f(ξ2), ξ2) +O((ξ1 − f(ξ2))).

Implementing κ0 in (4.2) by means of a microlocally unitary Fourier integral operator
with a real phase as in Theorem 2.4 in [14], and conjugating Pε by this operator, we obtain
a new h-pseudodifferential operator, still denoted by Pε, defined microlocally near ξ = 0 in
T
∗T2. The full symbol of Pε is holomorphic in a fixed complex neighborhood of ξ = 0, and

the leading symbol is given by

(4.7) pε(x, ξ) = p(ξ) + iεq(x, ξ) +O(ε2),

with

(4.8) p(ξ1, ξ2) = p(f(ξ2), ξ2) + g(ξ1, ξ2)(ξ1 − f(ξ2))
2
.

Here g(0) > 0, since we have assumed that ∂
2

ξ1
p(0) > 0, and the function q in (4.7) is real on

the real domain. On the operator level, Pε acts in the space of microlocally defined Floquet
periodic functions on T2, L

2

θ
(T2) ⊂ L

2

loc
(R2), elements u of which satisfy

(4.9) u(x− ν) = e
iθ·ν

u(x), θ =
S

2πh
+

k0

4
, ν ∈ 2πZ2

.

Here S = (S1, S2) is given by the classical actions,

Sj =

�

αj

η dy, j = 1, 2,

with αj forming a system of fundamental cycles in Λ1,r, such that

κ0(αj) = βj , j = 1, 2, βj = {x ∈ T2; x3−j = 0}.
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The tuple k0 = (k0(α1), k0(α2)) ∈ Z2 stands for the Maslov indices of the cycles αj , j = 1, 2.
As a first step in the normal form construction for Pε, we shall apply the secular pertur-

bation theory to the principal symbol pε in (4.7) — see also [20].
Let

(4.10) �q�2(x1, ξ) =
1

2π

�
2π

0

q(x, ξ) dx2

denote the average of q with respect to x2. Using the assumption (4.3) and proceeding as in
section 4 of [14] (see also section 2 of [17]), it is straightforward to construct, by successive
averagings in x2, a symbol G1(x, ξ) = G

(N)

1
(x, ξ), analytic in (x, ξ), such that

(4.11) HpG1 = q −fi�q�2(x1, ξ) +O((ξ1 − f(ξ2))
N ),

where fi�q�2(x1, ξ) = �q�2(x1, ξ) + O(ξ1 − f(ξ2)) is independent of x2. Here N ∈ N can be
taken arbitrarily large but fixed. We get from (4.11), by a Taylor expansion,

pε (exp (iεHG1)(x, ξ)) = p(ξ) + iεfi�q�2(x1, ξ) +O

Ä
ε
2 + ε (ξ1 − f(ξ2))

N
ä

= p(ξ) + iεfi�q�2(x1, ξ) + iε
2�q +O

Ä
ε
3 + ε (ξ1 − f(ξ2))

N
ä

,

where �q = �q(x, ξ). We next construct G2, analytic in (x, ξ) and such that

HpG2 = �q −fi��q�
2
(x1, ξ) +O((ξ1 − f(ξ2))

N ).

Then

pε

�
exp (iεHG1)(exp (iε2

HG2)(x, ξ))
�

= p(ξ) + iεfi�q�2 + iε
2fi��q�

2
+O

Ä
ε
3 + ε (ξ1 − f(ξ2))

N
ä

.

It is clear that this procedure can be iterated, and after N steps, we define

(4.12) κε := exp (iεHG1) ◦ exp (iε2
HG2) ◦ · · · ◦ exp (iεN

HGN ).

It follows that

(4.13) pε (κε(x, ξ)) = p(ξ) + iεfi�q�2(x1, ξ) + ε
2
rε(x1, ξ)

+O

Ä
ε

N+1 + ε (ξ1 − f(ξ2))
N
ä

= p
�

ε
(x1, ξ) +O

Ä
ε

N+1 + ε (ξ1 − f(ξ2))
N
ä

.

Here the last equality defines p
�
ε
(x1, ξ).

Using the same averaging procedure as above also on the level of lower order symbols, as
in section 4 of [14] and section 3 of [17], we conclude that there exists an analytic elliptic
Fourier integral operator F = F

(N)

ε in the complex domain, quantizing the holomorphic
canonical transformation κε in (4.12), such that

(4.14) F
−1

PεF = P
�

ε
(x1, hDx;h) + Rε(x, hDx;h).

Here the full symbol of P
�
ε

is independent of x2 and

(4.15) Rε(x, ξ;h) = O

Ä
ε

N+1 + ε (ξ1 − f(ξ2))
N + h

N+1
ä

.

The leading symbol of P
�
ε
(x1, hDx;h) is p

�
ε
(x1, ξ) in (4.13). As in section 6 of [14] and sec-

tion 2 of [24], the operator F is defined by working on the FBI–Bargmann transform side.
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When discussing further reductions of P
�
ε
, it is natural to exploit the fact that this oper-

ator is independent of x2, and hence, at least formally, by taking a Fourier series expansion
in x2, we can reduce the study of P

�
ε

to the study of a family of one-dimensional operators
P
�
ε
(x1, hDx1 , ξ2;h), with

(4.16) ξ2 = h

Å
k −

k0(α2)

4

ã
−

S2

2π
∈ neigh(0, R), k ∈ Z.

The family P
�
ε
(x1, hDx1 , ξ2, h) acts on the microlocal space of Floquet periodic functions

L
2

θ1
(T1), T1 = R/2πZ, θ1 = S1/2πh+k0(α1)/4, defined similarly to (4.9). We would like to

eliminate the x1–dependence in the symbol of P
�
ε
(x1, hDx1 , ξ2;h) by means of an additional

conjugation by an elliptic Fourier integral operator. Using (4.8) and (4.13) we get

(4.17) P
�

ε
(x1, hDx1 , ξ2;h) = p(f(ξ2), ξ2) + g(hDx1 , ξ2) (hDx1 − f(ξ2))

2

+ iεfi�q�2(x1, hDx1 , ξ2) + ε
2
rε(x1, hDx1 , ξ2) +O(h) +O(h2).

Let us recall that g(0) > 0, and theO(h)–contribution in (4.17) is the subprincipal term in the
full symbol of P

�
ε
. After a conjugation by exp ( i

h
f(ξ2)x1), modifying the Floquet condition

on T1, we get

e
−

i
h f(ξ2)x1P

�

ε
(x1, hDx1 , ξ2;h) e

i
h f(ξ2)x1(4.18)

= p(f(ξ2), ξ2) + g (f(ξ2) + hDx1 , ξ2) (hDx1)
2

+
�
iεfi�q�2 + ε

2
rε +O(h) +O(h2)

�
(x1, f(ξ2) + hDx1 , ξ2).

In section 4 of [14], it is explained how to eliminate the x1–dependence in (4.18) by means
of a Fourier integral operator conjugation. Here we shall follow the procedure there after a
suitable change of Planck’s constant. Let us work microlocally in a region

(4.19) |ξ1| ∼ µ, (ε + h)1/2
� µ � 1.

We write
hDx1 = µh̃Dx1 , h̃ =

h

µ
� 1.

If ξ1, ‹ξ1 denote the cotangent variables corresponding to hDx1 and h̃Dx1 , respectively, we
have

ξ1 = µ‹ξ1.

Then (4.18) gives

µ
−2

e
−

i
h f(ξ2)x1P

�

ε
(x1, hDx1 , ξ2;h)e

i
h f(ξ2)x1(4.20)

=
1

µ2
p(f(ξ2), ξ2) + g(f(ξ2) + µh̃Dx1 , ξ2)

Ä
h̃Dx1

ä2

+

Å
ε

µ2
ifi�q�2 +

O(h)

µ2
+

ε
2

µ2
rε

ã
(x1, f(ξ2) + µh̃Dx1 , ξ2)

+O(h̃2)
Ä
x1, f(ξ2) + µh̃Dx1 , ξ2

ä
,

which can be viewed as an h̃–pseudodifferential operator. The symbol associated to the sec-
ond term in the right hand side of (4.20) is then

(4.21) g(f(ξ2) + µ‹ξ1, ξ2)‹ξ1

2

,
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and it follows from (4.19) that we work in a region where

(4.22)
���‹ξ1

��� ∼ 1.

Notice that in this region, the �ξ1–gradient of (4.21) is of the order of magnitude 1.

We set next

(4.23) r0

Å
x1,

‹ξ1,
ε

µ2
,

h

µ2
, ξ2

ã
= g(f(ξ2) + µ‹ξ1, ξ2)‹ξ1

2

+O

Å
ε + h

µ2

ã
,

where the O
Ä

ε+h

µ2

ä
–term stands for the third term in the right hand side of (4.20). Following

the argument of section 4 of [14], we shall now recall how the x1–dependence in r0 can be
eliminated by means of a suitable canonical transformation.

We look for ϕ0 = ϕ0

Ä
x1,

‹ξ1,
ε

µ2 ,
h

µ2 , ξ2

ä
, such that

(4.24) r0

Å
x1,

‹ξ1 + ∂x1ϕ0,
ε

µ2
,

h

µ2
, ξ2

ã
=

≠
r0

Å
·, ‹ξ1,

ε

µ2
,

h

µ2
, ξ2

ã∑

1

.

Here, for a smooth function f(x, ξ) defined near ξ = 0 in T
∗T2, the expression �f�1 stands

for the average with respect to x1,

�f�1(x2, ξ) =
1

2π

�
2π

0

f(x, ξ) dx1.

By the implicit function theorem, (4.24) has an analytic solution with ∂x1ϕ0 single-valued
and O((ε + h)/µ

2). Taking a Taylor expansion of (4.24) and using (4.23), we get
Ä
∂�ξ1

r0

äÅ
x1,

‹ξ1,
ε

µ2
,

h

µ2
, ξ2

ã
∂x1ϕ0 + (r0 − �r0�1) = O

ÇÅ
ε + h

µ2

ã2
å

,

and using also that the ‹ξ1–gradient of (4.21) is ∼ 1, we conclude that

ϕ0 = ϕµ + x1
‹ζ1,

where
‹ζ1 = ‹ζ1

Å
‹ξ1,

ε

µ2
,

h

µ2
, ξ2

ã
= O

ÇÅ
ε + h

µ2

ã2
å

,

and ϕµ = O((ε + h)/µ
2) is periodic in x1. We set ‹η1 = ‹ξ1 + ‹ζ1, and view ϕµ as a function

of ‹η1 rather than ‹ξ1.
Summarizing the discussion above, we see that there exists a holomorphic phase function

(4.25) ϕµ(x1, ‹η1) = ϕµ

Å
x1, ‹η1,

ε

µ2
,

h

µ2
, ξ2

ã
= O

Å
ε + h

µ2

ã

defined in a fixed complex neighborhood of x1 ∈ T1, |‹η1| ∼ 1, such that if

ψ(x1, ‹η1) = x1‹η1 + ϕµ(x1, ‹η1),

then the canonical transformation

(4.26) κµ,ε,h : (y1, ‹η1) = (ψ�‹η1
, ‹η1) �→ (x1, ψ

�

x1
) = (x1,

‹ξ1)

is O
Ä

ε+h

µ2

ä
–close to the identity, and

Å
g(f(ξ2) + µ‹ξ1, ξ2)‹ξ1

2

+

Å
ε

µ2
ifi�q�2 +

O(h)

µ2
+

ε
2

µ2
rε

ã
(x1, f(ξ2) + µ‹ξ1, ξ2)

ã
◦ κµ,ε,h
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is independent of y1 and is equal to

(4.27) g(f(ξ2) + µ‹η1)‹η1

2

+

Å
ε

µ2
i�fi�q�2�1 +

O(h)

µ2
+

ε
2

µ2
�rε�1

ã
(f(ξ2) + µ‹η1, ξ2) +O

ÇÅ
ε + h

µ2

ã2
å

.

In what follows, we shall fix the choice of ϕµ by requiring that (ϕµ)
x1=0

= 0.

Associated to κµ,ε,h, we can construct an elliptic h̃–Fourier integral operator of the form
(4.28)

Gu(x1) =
1

2πh̃

��
e

i
h̃
(ϕµ(x1,‹η1,

ε
µ2 ,

h
µ2 ,η2)+(x1−y1)‹η1)

a(x1, ‹η1,
ε

µ2
,

h

µ2
, η2; h̃)u(y1) dy1d‹η1,

such that the full symbol of the h̃-pseudodifferential operator

(4.29) G
−1

µ
−2

e
−

i
h f(ξ2)x1P

�

ε
(x1, µh̃Dx1 , ξ2;h)e

i
h f(ξ2)x1G

is independent of x1 (and of x2), with the principal symbol given by (4.27). For the amplitude
in (4.28), we shall require that (a)

x1=0
= 1.

Remark. Working microlocally in a region

|ξ1| ∼ µ,

where µ � 1 is such that

(4.30)
(ε + h)1/2

µ
≤ h

δ1 , δ1 > 0,

and following some further arguments of section 4 of [14], we see that the canonical transfor-
mation κµ,ε,h and the h̃–Fourier integral operator G in (4.28) can be constructed by a formal
Taylor series in the asymptotically small parameter (ε + h)/µ

2 = O(h2δ1).

Remark. Assume that the subprincipal symbol of Pε=0 in (2.1) vanishes. Then it follows from
some arguments in sections 2 and 4 in [14] that the x1–dependence in P

�
ε
(x1, hDx1 , ξ2;h) in

(4.17) can be eliminated microlocally in a region |ξ1| ∼ µ, where

(ε + h
2)1/2

� µ � 1.

By rescaling, we can express G in (4.28) as an h–Fourier integral operator. Indeed, using
that d‹η1

h̃
= dη1

h
, we get

Gu(x1) =
1

2πh

��
e

i
h

�
µϕµ(x1,

η1
µ ,

ε
µ2 ,

h
µ2 ,ξ2)+(x1−y1)η1

�
(4.31)

× a(x1,
η1

µ
,

ε

µ2
,

h

µ2
, ξ2;

h

µ
)u(y1) dy1 dη1.

Moreover, the introduction of the small parameter µ in (4.19) was artificial, and therefore we
can carry out the constructions in such a way that the phase function µϕµ(x1,

η1

µ
,

ε

µ2 ,
h

µ2 , ξ2)

and the amplitude a(x1,
η1

µ
,

ε

µ2 ,
h

µ2 , ξ2;
h

µ
) in (4.31) are independent of µ. We write then

Gu(x1) =
1

2πh

��
e

i
h (ϕnew(x1,η1,ε,h,ξ2)+(x1−y1)η1)(4.32)

× anew(x1, η1, ε, h, ξ2;h)u(y1) dy1 dη1,
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with ϕnew, anew defined for ε + h � |η1|
2
� 1 and satisfying

(4.33) ϕnew = O

Å
ε + h

|η1|

ã
,

and

(4.34) anew ∼

∞�

j=0

anew,jh
j
, anew,j = O(|η1|

−2j).

Here anew,j do not depend on h. Since we work in the complex domain, we can estimate the
derivatives of ϕnew and anew,j using the Cauchy inequalities. In particular, when (α1, β1) ∈
N2, we get using (4.33),

(4.35) ∂
α1
x1

∂
β1
η1

ϕnew = Oα1β1

Ç
(ε + h)

|η1|
1+|β1|

å
.

Since, as we have just observed,

µϕµ

Å
x1,

η1

µ
,

ε

µ2
,

h

µ2
, ξ2

ã
= ϕnew (x1, η1, ε, h, ξ2) ,

where ϕnew satisfies (4.33), it follows that the phase ϕµ in (4.25) extends to a region
1 � |‹η1|�

1

µ
and satisfies there

ϕµ

Å
x1, ‹η1,

ε

µ2
,

h

µ2
, ξ2

ã
= O

Å
(ε + h)

µ2 |‹η1|

ã
.

Similarly, the normal form (4.29) corresponds, after a multiplication by µ
2, to an operator

which is independent of µ,

P
��

ε
(hDx1 , ξ2;h) = G

−1
e
−

i
h f(ξ2)x1P

�

ε
(x1, hDx1 , ξ2;h)e

i
h f(ξ2)x1G(4.36)

= p(f(ξ2), ξ2) + g(f(ξ2) + hDx1)(hDx1)
2

+
�
iε�fi�q�2�1 +O(h) + ε

2
�rε�1

�
(f(ξ2) + hDx1 , ξ2)

+ Op
h

Å
O

Å
(ε + h)2

ξ
2

1

ãã
+ R(hDx1 , ξ2, ε;h),

where

R ∼

∞�

j=2

h
j
Rj(ξ), Rj(ξ) = O

Ç
1

|ξ1|
2j−2

å
.

For future reference we remark that we can also view the operator G in (4.28) as acting
on (Floquet periodic) functions on T2. If we maintain the scaling, we get
(4.37)

Gu(x) =
1

(2πh̃)(2πh)

�
e

i
h̃
(ϕµ(x,‹η1)+(x1−y1)‹η1)+

i
h (x2−y2)η2

a(x1, ‹η1, η2; h̃, h)u(y) dyd‹η1 dη2,

where η2 is the same variable as ξ2. Without the scaling, we have a similar formula by
adding a y2, η2–integration to (4.31) (after replacing ξ2 there by η2), and adding a phase
factor e

i
h (x2−y2)η2 .

Naturally, the argument so far is formal, with the various normal forms computed by for-
mal stationary phase expansions. Also, let us recall that the phase ϕnew in (4.32) is defined
only for (ε + h)1/2 � |η1|� 1.
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We summarize the discussion in this section in the following proposition.

Pʀ����ɪ�ɪ�ɴ 4.1. – Let Pε be an h-pseudodifferential operator defined microlocally near
ξ = 0 in T

∗T2, and assume that the principal symbol of Pε,

pε(x, ξ) = p(ξ) + iεq(x, ξ) +O(ε2),

is such that p(ξ) satisfies (4.3), (4.4). Then we write

(4.38) p(ξ1, ξ2) = p(f(ξ2), ξ2) + g(ξ1, ξ2)(ξ1 − f(ξ2))
2
, f(0) = 0,

where g(0, 0) > 0. For each N ∈ N there exists an elliptic Fourier integral operator in the
complex domain F = F

(N)

ε such that the symbol of M
−1

F
−1

PεFM is of the form

P
�

ε
(x1, ξ1 + f(ξ2), ξ2;h) +O

�
ε

N+1 + εξ
N

1
+ h

N+1
�
.(4.39)

Here M is the operator of multiplication by e
i
h f(ξ2)x1 , and P

�
ε
(x1, hDx1 , hDx2 ;h) is defined in

(4.17).

Furthermore, let (ε + h)1/2 � µ � 1, and let us view µ
−2

P
�
ε
(x1, hDx1 + f(ξ2), ξ2;h) as

an h̃–pseudodifferential operator in x1, with h̃ = h/µ. There exists an elliptic h̃–Fourier inte-
gral operator G in x1, defined in (4.28), microlocally in

����ξ
��� ∼ 1, such that the full symbol of

G
−1

µ
−2

P
�
ε
(x1, hDx1 + f(ξ2), ξ2;h)G is independent of x1. The operator G quantizes a holo-

morphic canonical transformation whose generating function is of the form x1‹η1 + ϕµ(x1, ‹η1),
where ϕµ is defined in 1 � |‹η1|�

1

µ
and satisfies there

(4.40) ϕµ(x1, ‹η1) = O

Å
ε + h

µ2 |‹η1|

ã
.

In this region we have, when (α1, β1) ∈ N2,

(4.41) ∂
α1
x1

∂
β1

‹η1

ϕµ = Oα1β1

Ç
ε + h

µ2 |‹η1|
1+|β1|

å
.

5. Microlocal Hilbert spaces near the rational torus

Let Pε be as in section 2. In section 4, we have constructed a microlocal normal form
for Pε near the rational Lagrangian torus Λ1,r ⊂ p

−1(0) ∩ R4, but away from an O((ε +
h)1/2)–neighborhood of this set — see (4.36). The purpose of this section is to follow up the
preceding formal constructions with suitable function spaces and to construct a microlocal
Hilbert space in a sufficiently small but fixed neighborhood of Λ1,r, implementing the reduc-
tion scheme of Proposition 4.1.

5.1. Microlocal Hilbert spaces outside of a tiny neighborhood of Λ1,r

Let us consider an operator Pε, microlocally defined near ξ = 0 in T
∗T2, with the leading

symbol given by (4.7), (4.8). We shall work as much as possible with functions on T2, and
with corresponding Fourier integral operators operating in 2 variables. Adopting this point
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of view, we see that the multiplication by e
i
h f(ξ2)x1 , introduced in (4.18), can be viewed as

the semiclassical Fourier integral operator

Mu(x) =
1

2πh

��
e

i
h (f(η2)x1+(x2−y2)η2)u(x1, y2) dy2 dη2(5.1)

=
1

(2πh)2

��
e

i
h (f(η2)x1+(x−y)·η)

u(y) dy dη,

associated to the canonical transformation

(5.2) κM : (x1, x2 + f
�(η2)x1; η1, η2) �→ (x1, x2; η1 + f(η2), η2).

Let us recall now the operators F and G, introduced in (4.14) and (4.37), respectively. In the
previous section we have obtained that formally,

(5.3) G
−1

M
−1

F
−1

PεFMG = P
��

ε
(hDx, h) + (MG)−1

RεMG,

with P
��
ε

and Rε given in (4.36) and (4.15), respectively. The fact that the phase ϕµ in (4.37)
(see also Proposition 4.1) is only defined for 1 � |‹η1| �

1

µ
, (ε + h)1/2 � µ � 1, is a

difficulty that we shall address later in this section. Ignoring that problem for a moment and
still arguing formally, we would like to consider P

��
ε

acting on the space L
2

θ
(T2), microlocally

defined near the zero section, but away from the exceptional region

|ξ1| = O((ε + h)1/2).

Consequently, the natural formal Hilbert space for considering Pε should be given by
FMG(L2

θ
(T2)). When realizing the latter, it is going to be convenient to work on the FBI

transform side.

We shall work with the standard FBI–Bargmann transform,

(5.4) Tu(x) = Th,hu(x) = Ch
−3/2

�
e
−

1
2h (x−y)

2

u(y) dy, C > 0,

acting on L
2

θ
(T2), and mapping this space to a weighted space of Floquet periodic holomor-

phic functions on C2. Associated to T , there is a canonical transformation

(5.5) κTh,h = κT : (y, η) �→ (x, ξ) = (y − iη, η),

mapping the real phase space T
∗T2 to the IR-manifold

(5.6) ΛΦ0 : ξ =
2

i

∂Φ0

∂x
= −Im x, Φ0(x) =

1

2
(Im x)2.

Let us also recall that the transformation

(5.7) T : L
2(T2) → HΦ0(C2

/2πZ2)

is unitary, for a suitable choice of C > 0 in (5.4), and it has been verified in section 3 of [24]
that it remains unitary when acting on the Floquet space L

2

θ
(T2). Here and in what follows,

when Ω ⊂ C2
/2πZ2 = T2+iR2 is open and Φ is a suitable strictly plurisubharmonic weight,

close to Φ0 in (5.6), we shall let HΦ(Ω) stand for the closed subspace of L
2(Ω; e−

2Φ
h L(dx)),

consisting of functions that are holomorphic in Ω — see also the appendix.
Neglecting the Floquet conditions for the time being, we should have,

(5.8) TFMG(L2(T2)) = HΦ,
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where the weight Φ is such that

(5.9) ΛΦ :=

ßÅ
x,

2

i

∂Φ

∂x

ã™
= κT ◦ κε ◦ κM ◦ κµ,ε,h(T ∗T2).

Here κε and κµ,ε,h are the canonical transformations corresponding to F and G, and intro-
duced in (4.12) and (4.26), respectively. The weight Φ in (5.8) should be a small perturbation
of Φ0 since κε, κµ,ε,h are small perturbations of the identity, and κM in (5.2) is a real canon-
ical transformation.

We shall assume from now on that

(5.10) ε � h,

and abusing the previous notation slightly, we shall take

(5.11) µ =
√

ε.

Because of the blow-up of the normal form construction in the region where η1 = O(ε1/2)
(see (4.33)), when realizing the formal space in (5.8), we shall have to make some modifica-
tions. First, the operator G should be written as in (4.37) with

h̃ =
h
√

ε
� 1,

and correspondingly, in order to define a microlocal space corresponding to the formal space
G(L2(T2)), we shall consider the mixed transform

(5.12) T
h̃,h

u(x) = Ch̃
−3/4

h
−3/4

��
e
−

1
2h̃

(x1−y1)
2
−

1
2h (x2−y2)

2

u(y1, y2) dy1 dy2.

Here C > 0 is the same constant as in (5.4). For future reference, we notice that when viewed
as an h–Fourier integral operator, the transform T

h̃,h
is associated with the canonical trans-

formation

(5.13) κTh̃,h
(y1, η1; y2, η2) =

Å
y1 − i

η1
√

ε
, η1; y2 − iη2, η2

ã
.

Here we have written (y1, η1; y2, η2) rather than (y, η).

We shall show that T
h̃,h

G(L2(T2)) becomes a well-defined exponentially weighted space
of holomorphic functions u(x1, x2) in a region 1 � |Im x1|�

1

µ
, |Im x2|� 1. Once this has

been done and the basic properties of the weight have been investigated, we shall extend the
definition of the weight to the entire domain |Im x1|�

1

µ
, |Im x2|� 1 — this will then lead

to a definition of a microlocal Hilbert space corresponding to a formal space G(L2(T2)), in
a full neighborhood of the rational torus, and we shall be able to proceed as indicated above.

Let us compute T
h̃,h

Gu, when u ∈ L
2. In doing so, it will be convenient to do the com-

putation first in the x1-variable alone, and as in (4.28), we introduce, with µ =
√

ε,

(5.14) Gu(x1, y2, η2)

=
1

2πh̃

��
e

i
h̃

�
ϕµ

�
x1,‹η1,

h
ε ,η2

�
+(x1−y1)‹η1

�
a(x1, ‹η1,

h

ε
, η2; h̃)u(y1, y2) dy1 d‹η1.

4 e SÉRIE – TOME 41 – 2008 – No 4



SPECTRA FOR NON-SELFADJOINT OPERATORS 535

Composing this expression with the one-variable transform T
h̃

, we get

T
h̃
Gu(z1, y2, η2)(5.15)

=
Ch̃

−
3
4

2πh̃

���
e

i
h̃

�
i
2 (z1−x1)

2
+ϕµ(x1,‹η1,

h
ε ,η2)+(x1−y1)‹η1

�
a(x1, ‹η1,

h

ε
, η2; h̃)u(y1, y2) dy1d‹η1dx1

= C1h̃
−

3
4

�
e

i
h̃
( i

2 (z1−y1)
2
+�ϕµ(z1,y1,

h
ε ,η2))

b(z1, y1,
h

ε
, η2; h̃)u(y1, y2) dy1, C1 > 0.

Here the last expression follows from the stationary phase method in the variables x1, ‹η1 [26],
whereby we notice that the critical point of the phase in (5.15), (xc

1
, ‹η1

c), satisfies

x
c

1
= y1 +O

Ç
1

|z1 − y1|
2

å
, ‹η1

c = i(z1 − y1) +O

Å
1

|z1 − y1|

ã
.

It follows that the phase �ϕµ in (5.15) is a well-defined holomorphic function of z1 in a region
1 � |z1 − y1| � 1/ε

1/2, |Im z1| � |Re z1 − y1|, and enjoys the same estimates as ϕµ in
(4.40), (4.41),

(5.16) �ϕµ = O

Å
1

|Im z1|

ã
, ∂

l

y1
∂

m

z1
�ϕµ = Olm

Ç
1

|Im z1|
1+m

å
.

Here, as before, the estimates on the derivatives of �ϕµ follow from the Cauchy inequalities.

It follows from (5.15) that

(5.17) T
h̃
Gu(z1, y2, η2) ∈ H

Φ1(·,η2),h̃
,

in the region 1 � |Im z1|�
1

ε1/2 , where

Φ1(z1, η2) = sup
y1∈R

Å
−

1

2
Re (z1 − y1)

2
− Im �ϕµ(z1, y1,

h

ε
, η2)

ã
(5.18)

=
1

2
(Im z1)

2 + Φ2(z1, η2),

and

(5.19) Φ2(z1, η2) = O

Å
1

|Im z1|

ã
.

The critical point y
c

1
corresponding to the supremum in (5.18) satisfies

(5.20) y
c

1
= Re z1 +O

Å
1

|Im z1|

ã
.

Using (5.16) together with a scaling argument very similar to the one described in detail in
the proof of Proposition 5.3 below, we see that the O–term in (5.20) satisfies

∂
k

Rez1
∂

l

Imz1
O

Å
1

|Im z1|

ã
= O

Ç
1

|Im z1|
1+l

å
.

It follows that for Φ2(z1, η2) in (5.18) we have

∂
k

Rez1
∂

l

Imz1
Φ2(z1, η2) = Okl

Ç
1

|Im z1|
1+l

å
.
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If we now let G denote the full 2-variable operator in (4.37), we get from (5.15),

T
h̃,h

Gu(5.21)

= C2h̃
−

3
4 h
−

3
4−1

����
e

i
h̃
( i

2 (z1−y1)
2
+�ϕµ(z1,y1,

h
ε ,η2))+ i

h ( i
2 (z2−x2)

2
+(x2−y2)η2)

× b(z1, y1,
h

ε
, η2; h̃)u(y1, y2) dy1 dy2 dη2 dx2

= C3h̃
−

3
4 h
−

3
4

��
e

i
h ( i

2

√
ε(z1−y1)

2
+

i
2 (z2−y2)

2
+
√

ε�ϕµ(z1,y1,z2−y2,
h
ε ))

× c(z1, y1, z2 − y2; h̃, h)u(y1, y2) dy1 dy2,

where the last equality follows from stationary phase in x2, η2, and �ϕµ satisfies the same es-
timates as �ϕµ,

(5.22) ∂
k

z2
∂

l

z1
�ϕµ = Okl

Ç
1

|Im z1|
1+l

å
.

It follows that

(5.23) T
h̃,h

Gu ∈ HΦ3,h , Φ3(z1, Im z2) =

√
ε

2
(Im z1)

2 +
1

2
(Im z2)

2 + Φ4(z1, Im z2),

and

(5.24) ∂
k

Rez1,Imz2
∂

l

Imz1
Φ4(z1, Im z2) = Okl

Ç √
ε

|Im z1|
1+l

å
.

Here Φ3, Φ4 are independent of Re z2.
The discussion above is summarized in the following, somewhat informal, proposition.

Pʀ����ɪ�ɪ�ɴ 5.1. – Let us assume that ε � h and set h̃ = h/
√

ε. Via the (h̃, h)–
Bargmann transform T

h̃,h
defined in (5.12), the formal space G(L2(T2)) corresponds to the

weighted space of holomorphic functions HΦ3,h in the region 1 � |Im z1|�
1
√

ε
, |Im z2|� 1.

The weight Φ3 = Φ3(z1, Im z2) is such that

(5.25) Φ3(z1, Im z2) =

√
ε

2
(Im z1)

2 +
1

2
(Im z2)

2 + Φ4(z1, Im z2),

where the perturbation Φ4 satisfies

(5.26) ∂
k

Rez1,Imz2
∂

l

Imz1
Φ4(z1, Im z2) = Okl

Ç √
ε

|Im z1|
1+l

å
.

The corresponding statement also holds when considering the formal space G(L2

θ
(T2)) of Flo-

quet periodic functions.

Remark. Let us remark that the cutoff and remainder errors not written out explic-
itly in the stationary phase expansions above are all of the size O(1)exp (−1/Ch̃) =

O(1)exp (−
√

ε

Ch
) [26], while the deviation of the weight, due to Φ4, corresponds to an expo-

nential factor

exp (O(1)

√
ε

h |Imz1|
) � exp (

√
ε

Ch
),

since we work in a region where |Im z1|� 1.
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Remark. Constructing and working with the h̃–Fourier integral operator G in the domain
where √

ε

hδ1
≤ |ξ1|� 1,

for some δ1 > 0 small (see also (4.30)), we find that the formal space G(L2(T2)) corresponds,
via the (h̃, h)–Bargmann transform, to the space HΦ3,h, as in Proposition 5.1, now viewed
in the region h

−δ1 ≤ |Im z1|�
1
√

ε
, |Im z2|� 1.

5.2. Fourier series expansions in HΦ–spaces

The purpose of this subsection is to obtain a relation between the 1-variable weight
Φ1(z1, η2) and the 2-variable weight Φ3(z1, Im z2), introduced in (5.18) and (5.23), respec-
tively. The starting point for us will be the following remark concerning Fourier series on the
FBI transform side. Let us rewrite (5.14) with slightly different notation, now for a function
u ∈ L

2 of one variable only:

(5.27) Gη2u(x1) =
1

2πh̃

��
e

i
h̃

�
ϕµ(x1,‹η1,

h
ε ,η2)+(x1−y1)‹η1

�
a(x1, ‹η1,

h

ε
, η2; h̃)u(y1) dy1 d‹η1.

If u = u(y1, y2) ∈ L
2(T2) depends on 2 variables and we introduce the Fourier series expan-

sion in y2,

(5.28) u(y1, y2) =
�

k∈Z
e

i
h y2kh�u(y1, kh),

then
Gu(x1, x2) =

�

k∈Z
e

i
h x2kh (Gkh�u(·, kh)) (x1),

and therefore, applying T
h̃,h

of (5.12), we get

(5.29) T
h̃,h

Gu(z1, z2) =
�

k∈Z
T

(2)

h
(e

i
h x2kh)(z2)T

(1)

h̃
Gkh�u(·, kh)(z1).

Here the superscripts (1), (2) in (5.29) indicate the variable in which the corresponding op-
erators are applied. A straightforward computation shows that

(5.30) T
(2)

h

Ä
e

i
h (·)ξ2

ä
(z2) = Ch

−
1
4 e
−

ξ2
2

2h e
i
h z2ξ2 =: eξ2(z2), C > 0,

and clearly, as can also be verified directly, this function is normalized in the space
HΦ0(C/2πZ), Φ0(z2) = 1

2
(Im z2)2. The functions ekh, k ∈ Z, form an orthonormal

basis in this space, and hence a general element of HΦ0(C/2πZ) has an expansion

(5.31) v =
�

k∈Z
�vkekh, �vk = (v|ekh)HΦ0

.

We shall now pause to review Fourier series expansions in HΦ(C/2πZ), where Φ =
Φ(Im z) is a general smooth weight such that t �→ Φ(t) is strictly convex:

(5.32) v(z) =
�

k∈Z
�vke

i
h zkh

.

Here the scalar product
�

C/2πZ
e

i
h zkh

e
i
h z�h

e
−

2Φ(Imz)
h L(dz), k, l ∈ Z
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vanishes for � �= k and for k = � it is equal to

(5.33) 2π

�
e
−

2
h (Φ(Imz)+khImz)

dIm z,

which can be evaluated by the method of stationary phase. The critical point t = Im z in
(5.33) is given by Φ�(t) + kh = 0 and �Φ(kh) := inf(kht + Φ(t)) = − sup((−kh)t− Φ(t)) =
−LΦ(−kh), whereL is the Legendre transformation. Notice also that the critical point t can
be characterized by

2

i

∂Φ

∂z
(x + it) = kh, x ∈ R,

when identifying Φ(z) = Φ(Im z). Thus, by stationary phase (the Laplace method), we get

|| e
i
h (·)kh

||
2

HΦ
= h

1/2
aΦ(kh;h)e

2
hLΦ(−kh)

,

where aΦ(t;h) ∼ a0(t) + ha1(t) + . . . is a positive elliptic symbol.
For the Fourier series expansion (5.32) we therefore have the Parseval relation,

(5.34) || v ||
2

HΦ
=

�

k∈Z
h

1
2 aΦ(kh;h)e

2
hLΦ(−kh)

|�vk|
2
,

telling us to which weighted l
2-space the Fourier coefficients �vk belong.

Applying (5.34) to (5.29), (5.30) viewed as a Fourier series in z2 with z1 as a parameter,
we get

(5.35) ||T
h̃,h

Gu(z1, ·) ||
2

HΦ3(z1,·),h

= |C|
2
�

k∈Z
aΦ3(z1,·)(kh;h)e

2
hLΦ3(z1,−kh)−

(kh)2

h

���T (1)

h̃
Gkh�u(·, kh)(z1)

���
2

.

Now recall that the weights Φ3 and Φ1 have been chosen so that

||T
h̃,h

Gu ||
2

HΦ3,h
∼ ||u ||

2

L2(T2)
=

�

k∈Z
|| �uk ||

2

L2(T1)
(5.36)

=
�

k∈Z
||T

h̃
Gkh�uk ||

2

HΦ1(·,kh),h̃
,

where as in (5.28), u(y1, y2) =
�

k∈Z e
iky2�uk(y1), and thus we want the last member of (5.36)

to coincide with that of (5.35) after an integration with respect to z1. This means that

2

h
(LΦ3)(z1,−kh)−

(kh)2

h
= −

2
√

ε

h
Φ1(z1, kh),

so that

(5.37) (LΦ3)(z1,−η2) =
1

2
η
2

2
−
√

εΦ1(z1, η2).

When verifying (5.37), we recall from (5.18) that

(5.38) Φ1(z1, η2) = sup
y1∈R

Å
−

1

2
Re (z1 − y1)

2
− Im �ϕµ(z1, y1,

h

ε
, η2)

ã
.

We need a similar formula for Φ3. To that end, let us notice that in (5.21) we can insert an
intermediate step, where we only integrate with respect to x2, and exploiting that

�
e

i
h (x2−y2)η2−

1
2h (x2−z2)

2

dx2 =
√

2πhe
i
h (z2−y2)η2−

1
2h η

2
2 ,
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we get

T
h̃,h

Gu(z) = C3h̃
−

3
4 h
−

3
4−

1
2

���
e
−

1
2h̃

(z1−y1)
2
+

i
h̃
�ϕµ(z1,y1,

h
ε ,η2)+

i
h (z2−y2)η2−

1
2h η

2
2(5.39)

× b(z1, y1,
h

ε
, η2; h̃)u(y1, y2) dy1 dy2 dη2.

The formula for Φ3 becomes

(5.40) Φ3(z1, Im z2)

= sup
y1∈R

sup
y2∈R

vcη2 −

√
ε

2
Re (z1 − y1)

2
−
√

εIm �ϕµ − Im (z2 − y2)η2 −
1

2
Re η

2

2
.

For y1 fixed, the sup
y2∈R vcη2 corresponds to taking the critical value with respect to y2,

η2 and the criticality with respect to y2 requires η2 to be real, making the right hand side
independent of y2. Thus “vcη2” in (5.40) can be replaced by “sup

η2∈R” and we get

Φ3(z1, Im z2)(5.41)

= sup
y1∈R

sup
η2∈R

−

√
ε

2
Re (z1 − y1)

2
−
√

εIm �ϕµ(z1, y1,
h

ε
, η2)−

1

2
η
2

2
− η2Im z2

= sup
η2∈R

√
εΦ1(z1, η2)−

1

2
η
2

2
− η2Im z2

= Lη2→Imz2

Å
1

2
η
2

2
−
√

εΦ1(z1, η2)

ã
(−Im z2).

With f(η2) = 1

2
η
2

2
−
√

εΦ1(z1, η2), Ju(t) = u(−t), and z1 treated as a parameter, (5.37)
reads

JLΦ3 = f,

while (5.41) tells us that JLf = Φ3. Since J
2 = L2 = 1 and JL = LJ , we then see that

(5.37) follows from (5.41).

Pʀ����ɪ�ɪ�ɴ 5.2. – Let the strictly plurisubharmonic weight functions Φ1(z1, η2) and
Φ3(z1, Im z2) be defined in (5.18) and (5.40), respectively. Then we have the relation

(5.42) (LImz2→η2Φ3) (z1,−η2) =
1

2
η
2

2
−
√

εΦ1(z1, η2).

Here Lf(ξ) = sup
x
(xξ− f(x)) is the Legendre transform of a strictly convex smooth function

f : R → R.

It follows that if we have an expansion of u ∈ HΦ3,h,

(5.43) u(z1, z2) =
�

k∈Z
�uk(z1)ekh(z2), ekh(z2) = Ch

−
1
4 e
−

(kh)2

2h e
i
h z2kh

, C > 0,

then

(5.44) ||u ||
2

HΦ3,h
∼

�

k∈Z
|| �uk ||

2

HΦ1(·,kh),h̃
.
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5.3. Comparison with the ordinary transform away from Λ1,r

This subsection is a preparation for defining the global Hilbert space by gluing together
the local constructions near Λ1,r to the weighted spaces that we used in [17]. This discussion
will be continued in section 6.

In subsection 5.1 we have analyzed the space T
h̃,h

G(L2(T2)), h̃ = h
√

ε
, and identified

it with a weighted space HΦ3,h of holomorphic functions defined in a region where 1 �

|Im z1|�
1
√

ε
, |Im z2|� 1. We shall now see that restricting the attention to a region where

|Im z1| � ε
−1/6, we can identify this space with a weighted space of holomorphic func-

tions on the Th,h–transform side. Specifically, when studying Th,hG(L2(T2)) as a weighted
space, we shall show that the region |Im z1|� ε

−
1
6 on the T

h̃,h
–side corresponds to a region

|Im z1|� ε
1
3 on the Th,h–side.

All the work will concern the variables of index 1, and therefore we shall restrict the
attention to the one-dimensional situation for a while and consider (as appears also in the
discussion of the second microlocalization in Chapter 16 of [26]),

ThT
−1

h̃
u(x) = Ch

−
3
4 h̃
−

1
4

��
e
−

1
2h (x−t)

2
+

1
2h̃

(t−y)
2

u(y) dy dt.

Eliminating the t–integration by exact stationary phase, we get

(5.45) ThT
−1

h̃
u(x) = C(1 +O(

√
ε))h−

1
4 h̃
−

1
4

�
e

1
2h

√
ε

1−
√

ε
(x−y)

2

u(y) dy.

Let us consider first the operator ThT
−1

h̃
as a map from H

Φ0,h̃
to HΦ0,h with Φ0(x) =

1

2
(Im x)2. Considering the reduced kernel of (5.45), we then want to look at the real part of

the phase,

−
1

2
(Im x)2 + Re

1

2

√
ε

1−
√

ε
(x− y)2 +

√
ε

2
(Im y)2

(5.46)

=
1

2

√
ε

1−
√

ε
(Re x− Re y)2 −

1

2

Å
(Im x)2 +

√
ε

1−
√

ε
(Im x− Im y)2 −

√
ε(Im y)2

ã

=
1

2

√
ε

1−
√

ε
(Re x− Re y)2 −

1

2(1−
√

ε)

�√
εIm y − Im x

�2

.

This means that we can choose the integration contour Re y = Re x in (5.45), and using
Schur’s lemma we see that

||ThT
−1

h̃
||HΦ0,h̃→HΦ0,h = O(1)h−

1
4 h̃
−

1
4

Å�
e
−

1
2h(1−

√
ε)

(
√

εImy−Imx)
2

dIm y

ã1/2

×

Å�
e
−

1
2h(1−

√
ε)

(
√

εImy−Imx)
2

dIm x

ã1/2

= O(1)h−
1
4 h̃
−

1
4

Å
h

ε

ã 1
4

h
1
4 = O(1)ε

1
8−

1
4 = O(1)ε−

1
8 .

Here H
Φ0,h̃

= H√
εΦ0,h. We notice that the factor ε

−1/8 here represents a loss, since we know
that ThT

−1

�h : H
Φ0,h̃

→ HΦ0,h is unitary, modulo exponentially small errors. The loss is due
to the fact that here we are using contour integrals as a preparation for the next case when
the weights are no longer the standard quadratic ones.
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Let us pass from
√

εΦ0(y) =
√

ε

2
(Im y)2 to

(5.47) Φ3(y) =

√
ε

2
(Im y)2 + Φ4(y)

in (5.23), (5.24), with

(5.48) ∂
k

Rey
∂

l

Imy
Φ4(y) = O

Ç √
ε

|Im y|
1+l

å
, 1 � |Im y|�

1
√

ε
.

(Here we continue to neglect the dependence on the variable of index 2.) When defining
ThT

−1

h̃
on HΦ3,h we need to choose the integration contour in (5.45) passing through the

critical point of

y �→ Re
1

2

√
ε

1−
√

ε
(x− y)2 + Φ3(y)(5.49)

=
1

2

√
ε

1−
√

ε
(Re x− Re y)2 −

ε

2(1−
√

ε)

Å
Im y −

Im x
√

ε

ã2

+
1

2
(Im x)2 + Φ4(y).

We shall now discuss the estimates on the critical point y(x) in (5.49). Using (5.48), we
see first that the criticality with respect to Im y means that

(5.50) Im y(x) +O

Å
1

√
ε(Im y(x))2

ã
=

Im x
√

ε
.

Working in a region where

(5.51)
1

√
ε |Im y|

2
� |Im y| so that |Im y|� ε

−
1
6 ,

we then see that

(5.52) Im y(x) =
Im x
√

ε
+O

Ç √
ε

|Im x|
2

å
.

Considering the Re y-gradient of the phase in (5.49), we get

(5.53) Re y(x) = Re x +O

Å
1

|Im y(x)|

ã
,

and in view of (5.52),

(5.54) Re y(x) = Re x +O

Å √
ε

|Im x|

ã
.

Pʀ����ɪ�ɪ�ɴ 5.3. – The critical point y(x) in (5.49) satisfies

Re y = Re x +O

Å √
ε

|Im x|

ã
, Im y =

Im x
√

ε
+O

Ç √
ε

|Im x|
2

å
,

where the remainders enjoy the following symbolic estimates: for each k, l ∈ N, we have
(5.55)

∂
k

Rex
∂

l

Imx
O

Å √
ε

|Im x|

ã
= O

Ç √
ε

|Im x|
1+l

å
, ∂

k

Rex
∂

l

Imx
O

Ç √
ε

|Im x|
2

å
= O

Ç √
ε

|Im x|
2+l

å
.
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Proof. – The proof is a rescaling argument. With Re x = t, Imx
√

ε
= s, |s| � ε

−1/6, the
equations (5.50) and (5.53) become, if we write Re y = u, Im y = v,

(5.56)

�
u = t + f(u, v)

v = s + g(u, v),

with

∂
k

u
∂

l

v
f(u, v) = O

Ç
1

|v|
1+l

å
, ∂

k

u
∂

l

v
g(u, v) = O

Ç
1

√
ε |v|

2+l

å
.

Assume that s � s0, |s0|� ε
−1/6, and write ṽ = v

s0
. Then (5.56) gives

(5.57)

�
u = t + f(u, s0ṽ)

ṽ = s̃ + 1

s0
g(u, s0ṽ).

Here we have written s̃ = s/s0. Now

∂
k

u
∂

l

ṽ
f(u, s0ṽ) = O

Å
1

|s0|

ã
� 1,

∂
k

u
∂

l

ṽ

1

s0

g(u, s0ṽ) = O

Ç
1

√
ε |s0|

3

å
� 1,

and we conclude that u = u(t, s̃) and ṽ = ṽ(t, s̃) with ∂
k

t
∂

l

s̃
u = O(1), ∂

k

t
∂

l

s̃
ṽ = O(1).

Reinjecting this information into (5.57), we get

u = t + a(t, s̃), ṽ = s̃ + b̃(t, s̃),

with

∂
k

t
∂

l

s̃
a = O

Å
1

|s0|

ã
, ∂

k

t
∂

l

s̃
b̃ = O

Ç
1

√
ε |s0|

3

å
.

Using that ∂s̃ = s0∂s, we get

u = t +O

Å
1

|s|

ã
, ∂

k

t
∂

l

s
O

Å
1

|s|

ã
= O

Ç
1

|s|
1+l

å
,

and

v = s +O

Ç
1

√
ε |s|

2

å
, ∂

k

t
∂

l

s
O

Ç
1

√
ε |s|

2

å
= O

Ç
1

√
ε |s|

2+l

å
.

The symbolic estimates (5.55) follow and this completes the proof.

Choosing the integration contour {y; Re y = Re y(x)} in (5.45) passing through the crit-
ical point y(x), and noticing that the y-Hessian of the phase occurring in (5.49) along the
contour is negative definite, we obtain that ThT

−1

h̃
becomes a well-defined operator of norm

O(ε−
1
8 ) from HΦ3,h to HΦ5,h, where Φ5(x) is given by

(5.58)

vcy

Ç
1

2
(Im x)2 +

1

2

√
ε

1−
√

ε
(Re x− Re y)2 −

ε

2(1−
√

ε)

Å
Im y −

Im x
√

ε

ã2

+ Φ4(y)

å
.

Using the estimates (5.52) and (5.53), we see that

(5.59) Φ5(x) =
1

2
(Im x)2 +O

Ç
ε

|Im x|
+

ε
3/2

|Im x|
2

+
ε
2

|Im x|
4

å
.
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In view of (5.51), the strictly subharmonic function Φ5(x) is naturally defined in a region
ε
1/3 � |Im x|� 1, and therefore we get

(5.60) Φ5(x) =
1

2
(Im x)2 +O

Å
ε

|Im x|

ã
.

Estimating the derivatives of Φ5 using Proposition 5.3 and adding the dependence on the
variable x2, we get the following result.

Pʀ����ɪ�ɪ�ɴ 5.4. – Let us consider the weight Φ3, defined in (5.40) and satisfying
(5.47), (5.48). Working in a region ε

−1/6 � |Im y1|� ε
−1/2, |Im y2|� 1, we have

(5.61) Th,hT
−1

h̃,h
= O(1)ε−

1
8 : HΦ3,h → HΦ5,h,

where the strictly plurisubharmonic function Φ5 is given in (5.58) and is defined for ε
1/3 �

|Im x1|� 1, |Im x2|� 1. We have

(5.62) Φ5(x) =
1

2
(Im x)2 + Φ6(x1, Im x2),

where

(5.63) ∂
k

Rex1,Imx2
∂

l

Imx1
Φ6(x1, Im x2) = Okl

Ç
ε

|Im x1|
l+1

å

Remark. Let us notice that we would also obtain the weighted space HΦ5,h more directly by
studying ThGu in the x1-variable, with G given in (4.32) and u ∈ L

2. Notice also that the
canonical transformation associated to Th,hT

−1

h̃,h
in (5.61) is κTh,h ◦ κ

−1

Th̃,h
, and since in view

of (5.13),

κ
−1

Th̃,h
(x1, ξ1;x2, ξ2) =

Å
x1 + i

ξ1
√

ε
, ξ1;x2 + iξ2, ξ2

ã
,

we get, using (5.5),

(5.64) κTh,h ◦ κ
−1

Th̃,h
(x1, ξ1;x2, ξ2) =

Å
x1 + iξ1

1−
√

ε
√

ε
, ξ1;x2, ξ2

ã
.

The weights Φ3 in (5.47) and Φ5 in (5.58) are related through the formula

(5.65) κTh,h ◦ κ
−1

Th̃,h
(ΛΦ3) = ΛΦ5 .

Here the manifolds ΛΦ3 and ΛΦ5 are defined as in (5.9).

5.4. Microlocal Hilbert space in a full neighborhood of Λ1,r

Let us return to the situation discussed in section 4, and recall from (4.14) that the action
of Pε on F (L2

θ
(T2)) is, microlocally near ξ = 0, equivalent to the action of

F
−1

PεF = P
�

ε
(x1, hDx;h) + Rε(x, hDx;h)

on L
2

θ
(T2). Recall also from (5.3) that

G
−1

M
−1

P
�

ε
MG = P

��

ε
(hDx;h),

the operator P
��
ε
(hDx;h) being defined in (4.36). With h̃ = h

√
ε
, in Proposition 5.1 we have

identified T
h̃,h

G(L2(T2)) with a space of holomorphic functions HΦ3,h in the region 1 �

|Im z1|�
1
√

ε
, |Im z2|� 1, with Φ3 as in (5.25), (5.26). Now let us extend Φ3(·, Im z2) from

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



544 M. HITRIK AND J. SJÖSTRAND

the region R < |Im z1|�
1
√

ε
for R � 1, to the entire domain |Im z1|�

1
√

ε
so that we still

have as in Proposition 5.1,

Φ3(z1, Im z2) =

√
ε

2
(Im z1)

2 +
1

2
(Im z2)

2 + Φ4(z1, Im z2)

with

(5.66) ∂
k

Rez1,Imz2
∂

l

Imz1
Φ4(z1, Im z2) = Okl

Å √
ε

(R + |Im z1|)1+l

ã
, R � 1,

and with Φ3, Φ4 still independent of Re z2. It follows that when

(x1,
‹ξ1, x2, ξ2) ∈ ΛΦ3 =

ßÅ
x,

2

i

∂Φ3

∂x

ã™
,

then Im ξ2 = −
∂Φ3

∂Re x2
= 0.

Recall that in subsection 5.1 we have defined a microlocal Hilbert space in a fixed neigh-
borhood of �

|E|<δ0

ΛE,1,r 0 < δ0 � 1,

but away from a
√

ε–neighborhood of that set as FMG(L2

θ
(T2)). Here the tori ΛE,1,r have

been introduced in (4.5). Having extended Φ3, we now fill the gap by replacing G(L2

θ
(T2)) by

T
−1

h̃,h
HΦ3,h, and introduce a microlocal Hilbert space defined in a full neighborhood of Λ1,r

and given by

(5.67) FMT
−1

h̃,h
HΦ3,h.

Here it will be understood that the elements of HΦ3,h are Floquet periodic as in (4.9). In what
follows, in order to simplify the presentation, we shall neglect the Floquet conditions and
work under the assumption that the elements of the weighted space HΦ3,h are 2πZ2–periodic
functions. It will be clear that the discussion below will extend to the Floquet periodic case.
Also, in (5.67) we are identifying a neighborhood of Λ1,r with a neighborhood of the zero
section in T

∗T2 by means of the canonical transformation κ0 in (4.2).

Microlocally near Λ1,r, the action of Pε on the space (5.67) can be identified with that of

(5.68) T
h̃,h

M
−1

P
�

ε
MT

−1

h̃,h
+ T

h̃,h
M
−1

RεMT
−1

h̃,h
=: ‹Pε + �Rε

on HΦ3,h, in view of (4.14). The operator 1

ε
M
−1

P
�
ε
M is given by (4.20) with ξ2 replaced by

hDx2 . The operator 1

ε
‹Pε therefore becomes, with µ =

√
ε,

1

ε

‹Pε =
1

ε
p(f(ξ2), ξ2) + g(f(ξ2) + µh̃Dx1 , ξ2)(h̃Dx1)

2(5.69)

+

Å
ifi�q�2 +

O(h)

ε
+ εr

ã
(x1 + ih̃Dx1 , f(ξ2) + µh̃Dx1 , ξ2)

+O(h̃2)(x1 + ih̃Dx1 , f(ξ2) + µh̃Dx1 , ξ2),

where we replace ξ2 by hDx2 , since the h̃–Fourier integral operator T
(1)

h̃
is a convolution op-

erator with the associated canonical transformation (y1, η1) �→ (y1 − iη1, η1), and similarly
for T

(2)

h
. From (4.15) we also find that

(5.70)
1

ε

�Rε(x1,
�ξ1, x2, ξ2;h) = O

�
ε

N + h
N + ε

N
2 ‹ξ1

N
�

.
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To study the operator in (5.68), we take a Fourier series expansion in x2 of a general ele-
ment u ∈ HΦ3,h,

(5.71) u(x1, x2) =
�

k∈Z
�uk(x1)ekh(x2).

Here the functions ekh(x2) have been introduced in (5.43). From Proposition 5.2 we recall
that

||u ||
2

HΦ3,h
∼

�

k∈Z
|| �uk ||

2

HΦ1(·,kh),h̃
,

and correspondingly,

(5.72)
1

ε

‹Pεu =
�

k∈Z

1

ε

‹Pε

Ä
x1, h̃Dx1 , kh;h

ä
�uk(x1)ekh(x2).

Therefore we have to study

(5.73)
1

ε

‹Pε(x1, h̃Dx1 , kh;h) : H
Φ1(·,kh),h̃

→ H
Φ1(·,kh),h̃

.

Here we recall from (5.18) and (5.19) that

(5.74) Φ1(x1, η2) =
1

2
(Im x1)

2 + Φ2(x1, η2), Φ2(x1, η2) = O

Å
1

|Im x1|

ã

is defined in the region R < |Im x1|�
1
√

ε
, and when extending the definition to the domain

|Im x1| ≤ R, we use Proposition 5.2. Using also (5.66), we see that the representation (5.74)
holds in the entire region |Im x1|�

1
√

ε
, with

(5.75) ∂
k

Rex1,η2
∂

l

Imx1
Φ2(x1, η2) = O

Å
1

(R + |Im x1|)l+1

ã
, R � 1.

In the region where |Im x1|� 1, we have, from Proposition 4.1,

‹Pε = T
h̃,h

GP
��

ε
G
−1

T
−1

h̃,h
,

and correspondingly for 1-variable pseudodifferential operators:

1

ε

‹Pε(x1, h̃Dx1 , kh;h) =
1

ε
T

h̃
GkhP

��

ε
(h̃Dx1 , kh;h)G−1

kh
T
−1

h̃
.

Here Gkh is defined in (5.27) and P
��
ε
(h̃Dx1 , kh;h) is given in (4.36):

1

ε
P
��

ε
(h̃Dx1 , ξ2;h) =

1

ε
p(f(ξ2), ξ2) + g(f(ξ2) +

√
εh̃Dx1)(h̃Dx1)

2(5.76)

+

Å
i�fi�q�2�1 +O

Å
h

ε

ã
+ ε�rε�1

ã
(f(ξ2) +

√
εh̃Dx1 , ξ2)

+Op
h̃

�
O

�
1

‹ξ1

2

��
+ �R(h̃Dx1 , ξ2, ε;h),

where

�R ∼

∞�

j=2

h̃
j
ε
−j/2 �Rj ,

�Rj = O

Ö
1

���‹ξ1

���
2j−2

è

.
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An application of Egorov’s theorem then shows that in the region where |Im x1| � 1, the
symbol of 1

ε
‹Pε(x1, h̃Dx1 , kh;h) restricted to

ΛΦ1(·,kh) =

ßÅ
x1,

∂Φ1(x1, kh)

∂x1

ã™
,

can be identified with the symbol of (5.76) restricted to T
∗T2, modulo an error O(h̃). Let us

notice also that if (x1,
‹ξ1) ∈ ΛΦ1(·,kh) then from (5.74), (5.75),

(5.77) Re �ξ1 = −
∂Φ1

∂Imx1

(x1, kh) = −Im x1 +O

Å
1

(R + |Imx1|)2

ã
,

and

(5.78) Im ‹ξ1 = −
∂Φ1

∂Rex1

(x1, kh) = O

Å
1

R + |Im x1|

ã
, R � 1,

so that the imaginary part of the term g(f(ξ2) +
√

ε‹ξ1, ξ2)‹ξ1

2

, occurring in the symbol in
(5.69), restricted to ΛΦ1(·,η2=kh), is small, when |Im x1| = O(1).

We shall finish this section by discussing the action of the remainder in (5.68),
1

ε
�Rε(x1, h̃Dx1 , x2, hDx2 ;h), on HΦ3,h. In doing so, we shall work, as we may, with the clas-

sical rather than the Weyl quantization. We shall study the scalar product ( 1

ε
�Rεuk|u�)HΦ3,h ,

where

uk(x1, x2) = �uk(x1)ekh(x2), u�(x1, x2) = �u�(x1)e�h(x2), k, � ∈ Z, k �= �.

Here we have, in view of (4.16),

(5.79) |kh| ≤
1
‹C

, |�h| ≤
1
‹C

,

for some ‹C � 1. Let us consider first

(5.80)
1

2π

�

C/2πZ

1

ε

�Rε(x1, h̃Dx1 , x2, kh;h)�uk(x1)e
i
h (kh)x2e

−
i
h (�h)x2e

−
2Φ3(x1,Imx2)

h L(dx2),

which is equal to

(5.81)
� ‘1

ε

�Rε(x1, h̃Dx1 , ·+iImx2, kh;h)�uk(x1)(�−k)e−
2
h (Φ3(x1,Imx2)+

(k+�)
2 hImx2) dImx2,

where ‘1
ε

�Rε(x1, h̃Dx1 , ·+ iIm x2, kh;h)�uk(x1)(�− k) is the Fourier coefficient of

R/2πZ � Re x2 �→
1

ε

�Rε(x1, h̃Dx1 ,Re x2 + iIm x2, kh;h)�uk(x1)

at the point �− k, and is therefore equal to the Fourier coefficient of

(5.82) R/2πZ � Re x2 �→
1

ε

�Rε(x1, h̃Dx1 ,Re x2, kh;h)�uk(x1)

at the same point times e
(k−�)Imx2 . It follows that (5.80) is equal to

(5.83)

Ç‘1
ε

�Rε(x1, h̃Dx1 , ·, kh;h)�uk(x1)

å
(�− k)

�
e
−

2
h (Φ3(x1,Imx2)+�hImx2) dImx2,
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and evaluating the integral in (5.83) by the method of stationary phase, as in subsection 5.2,
we get

(5.84)

Ç‘1
ε

�Rε(x1, h̃Dx1 , ·, kh;h)�uk(x1)

å
(�− k)h

1
2 aΦ3(x1,·)(�h;h)e

2
hLΦ3(x1,−�h)

.

Here the amplitude aΦ3(x1,·) is as in (5.35).
When estimating the first factor in (5.84), we recall that as in [26], modulo an error that is

O(e−1/Ch̃), C > 0, we may write

(5.85)
1

ε

�Rε(x1, h̃Dx1 , x2, kh;h)�uk(x1)

=
1

2πh̃

��
e

i
h̃
(x1−y1)�ξ1

1

ε

�Rε(x1,
�ξ1, x2, kh;h)χ(x1 − y1)�uk(y1) dy1 d�ξ1,

where χ is a suitable cutoff in a neighborhood of 0, and in (5.85) we choose a good contour
adapted to the weight Φ1(·, �h) and given by

�ξ1 =
2

i

∂Φ1(x1, �h)

∂x1

+ iC(x1 − y1), C � 1.

It follows, using also (5.70) and (5.74) that the absolute value of the kernel of

e
−Φ1(·,�h)/h̃

1

ε

�Rεe
Φ1(·,�h)/h̃

does not exceed
O(1)

h̃
e
−|x1−y1|

2
/h̃

Ä
ε

N + h
N + ε

N
2 |Im x1|

N
ä

,

and since Φ1(x1, η2) is defined for |Im x1| ≤
1

R
√

ε
, R � 1, it follows that the H

Φ1(·,�h),h̃
–

norm of (5.85) does not exceed, uniformly in x2, |Im x2|� 1,

O

Å
ε

N + h
N +

1

RN

ã
|| �uk ||HΦ1(·,�h),h̃

.

Shifting also the contour of integration in x2, we conclude that the H
Φ1(·,�h),h̃

–norm of

(5.86) x1 �→

Ç‘1
ε

�Rε(x1, h̃Dx1 , ·, kh;h)�uk(x1)

å
(�− k)

can be estimated by

(5.87) O

Å
ε

N + h
N +

1

RN

ã
e
−|k−�|/O(1)

|| �uk ||HΦ1(·,�h),h̃
.

Combining (5.84), (5.87), and Proposition 5.2 we see that the scalar product

(5.88) (
1

ε

�Rεuk|u�)HΦ3,h

can be estimated by

(5.89) O

Å
ε

N + h
N +

1

RN

ã
e
−|k−�|/O(1)

e
h
2 (�

2
−k

2
)
|| �uk ||HΦ1,(·,�h),h̃

|| �ul ||HΦ1,(·,�h),h̃
.

Here when considering �uk, we want to replace Φ1(·, �h) by Φ1(·, kh), and according to (5.75),
we can do it at the expense of the exponential factor exp (O(1)

√
ε|k−�|

R+|Imx1|
), which is permissible

due to the presence of the factor exp (− |k − �| /O(1)) in (5.89). Taking into account also
(5.79) and (5.44), we may summarize this discussion in the following result.
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Pʀ����ɪ�ɪ�ɴ 5.5. – Assume that k, � ∈ Z are such that (5.79) holds, and make the as-
sumption (5.70). Then the scalar product

Å
1

ε

�Rεuk|u�

ã

HΦ3,h

,

where

uk(x1, x2) = Ch
−

1
4 e
−

(kh)2

2h e
i
h (kh)x2�uk(x1), �uk(x1) ∈ H

Φ1(·,kh),h̃
, C > 0,

and u� is defined similarly, can be estimated by

(5.90) O

Å
ε

N + h
N +

1

RN

ã
e
−|k−�|/O(1)

||uk ||HΦ3,h ||u� ||HΦ3,h , R � 1.

6. Global Hilbert space and spectral asymptotics for Pε

6.1. Behavior of the Diophantine weight near Λ1,r

Let us recall from section 2 that our spectral parameter z varies in a rectangle of the form

|Re z| <
ε

O(1)
,

����
Im z

ε
− F0

���� <
1

O(1)
,

where F0 ∈ Q∞(Λ1,r) satisfies (2.22), (2.26), (2.27) and (2.28). Recall also that we assume
for simplicity that L = 2 in (2.21) and L

� = 1 in (2.25).
In the absence of rational tori corresponding to the energy level (0, εF0), the global weight

that we used in [17] when away from a small but fixed neighborhood of∪2

j=1
Λj,d, was coming

from an averaging procedure along the Hp–flow, and it is the weight that we should use in
the present case, also when away from a neighborhood of Λ1,r. Following [17], we shall now
recall the definition of the weight in question.

Let 0 ≤ K ∈ C
∞
0

(R) be even and such that
�

K(t) dt = 1. When T > 0, we introduce
the smoothed out flow average of q,

(6.1) �q�T,K =

�
KT (t)q ◦ exp (tHp) dt, KT (t) =

1

T
K

Å
t

T

ã
,

the standard flow average in (2.14) corresponding to taking K = 1[−1/2,1/2]. Let GT be an
analytic function defined near p

−1(0) ∩ R4, such that

(6.2) HpGT = q − �q�T,K .

As in [17], we solve (6.2) by setting

(6.3) GT =

�
TJT (−t)q ◦ exp (tHp) dt, JT (t) =

1

T
J

Å
t

T

ã
,

where the function J is compactly supported, smooth away from 0, and with

(6.4) J
�(t) = δ(t)−K(t).

The behavior of GT near the Diophantine tori Λj,d, j = 1, 2, as T → ∞, has been ana-
lyzed in [17]. We shall now consider the behavior of GT near Λ1,r. Passing to the torus side
by means of the canonical transformation in (4.2) and composing p = p(ξ) in (4.8) with κM

in (5.2), we may reduce ourselves to the case when

(6.5) p(ξ1, ξ2) = p(f(ξ2), ξ2) + g(ξ1 + f(ξ2), ξ2)ξ
2

1
, f(0) = 0,
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where g(0, 0) > 0. The expression (6.3) gives

GT (x, ξ) =

�
J

Å
−

t

T

ã
q(x + tp

�(ξ), ξ) dt,

and expanding q(·, ξ) in a Fourier series, we get

(6.6) GT (x, ξ) =
�

k=(k1,k2) �=0,k∈Z2

T �J(Tp
�(ξ) · k)�q(k, ξ)eix·k

,

since it follows from (6.4) and the fact that K is even that �J(0) = 0. Here �q(k, ξ) are the
Fourier coefficients of q(x, ξ) and �J(τ) =

�
e
−itτ

J(t) dt is the Fourier transform of J .
We write

(6.7) GT (x, ξ) =
�

k2 �=0

T �J(Tp
�(ξ) · k)�q(k, ξ)eix·k +

�

k2=0

T �J(Tp
�(ξ) · k)�q(k, ξ)eix·k = I + II,

with the natural definitions of I and II. When estimating I, we notice that when k2 �= 0,
|p�(ξ) · k| ≥

���p�
ξ2

k2

��� − C |ξ1| |k1| ≥ 1/2, C > 0, provided that 2C |ξ1| |k1| ≤ 1. (Here for

notational simplicity we assume that
���p�

ξ2

��� ≥ 1.) Let now 0 ≤ χ ∈ C
∞
0

((−1, 1)) be such that
χ = 1 on [−1/2, 1/2] and write, using also (6.4),

I =
�

k2 �=0

χ(2C |ξ1| |k1|)T �J(Tp
�(ξ) · k)�q(k, ξ)eix·k(6.8)

+
�

k2 �=0

(1− χ(2C |ξ1| |k1|))T �J(Tp
�(ξ) · k)�q(k, ξ)eix·k

=
�

k2 �=0

χ(2C |ξ1| |k1|)
1− “K(Tp

�(ξ) · k)

ip�(ξ) · k
�q(k, ξ)eix·k

+
�

k2 �=0

(1− χ(2C |ξ1| |k1|))T �J(Tp
�(ξ) · k)�q(k, ξ)eix·k

.

It is easy to see that

(6.9) I = O (1 + T |ξ1|
∞) , T ≥ 1.

When considering the contribution coming from II, we notice that

II =
�

k2=0,k1 �=0

T �J(Tp
�

ξ1
k1)e

ix1k1 �q(k, ξ)(6.10)

=
�

k2=0,k1 �=0

1− “K(Tp
�

ξ1
k1)

ip
�

ξ1
k1

e
ix1k1 �q(k, ξ),

and therefore, since
���p�

ξ1

��� ∼ |ξ1|, in view of (6.5), we get uniformly in T ≥ 1,

(6.11) II = O(1)
1

|ξ1|
.

Combining (6.11) with the bound II = O(T ), we get

(6.12) II = O(1)
T

T |ξ1|+ 1
.
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Pʀ����ɪ�ɪ�ɴ 6.1. – Let GT be defined as in (6.3), (6.4), so that it satisfies (6.2). Assume
that near ξ = 0 we have

p(ξ1, ξ2) = p(f(ξ2), ξ2) + g(ξ1 + f(ξ2), ξ2)ξ
2

1
, f(0) = 0, g(0, 0) > 0.

Then

(6.13) GT (x, ξ) = O

Å
1 + T |ξ1|

∞ +
T

T |ξ1|+ 1

ã
, T ≥ 1.

6.2. Global Hilbert space and the reference operators

In the first part of this subsection, we shall construct a global h-dependent Hilbert space
where we shall study resolvent bounds for Pε. The Hilbert space will be associated to a glob-
ally defined IR-manifold Λε ⊂ C4, which in a complex neighborhood of p

−1(0) ∩ R4, away
from a sufficiently small but fixed neighborhood of

(6.14)
�

|E|<δ0

ΛE,1,r 0 < δ0 � 1,

and away from a small neighborhood of
�

2

j=1
Λj,d, will be given by

(6.15) Λε = ΛεGT := {exp (iεHGT )(ρ); ρ ∈ R4
} ⊂ C4

.

Here the function GT has been defined in (6.3). In view of the assumption (2.28) and Lemma
2.4 of [17], the imaginary part of pε in (2.10) along Λε in this region avoids the value εF0,
provided that T is taken sufficiently large but fixed.

When defining the global IR-manifold Λε near the union of the Diophantine tori Λj,d,
j = 1, 2, we follow the procedure of [17], implementing a Birkhoff normal form construction
there. Therefore, it only remains to discuss the definition of Λε in a full neighborhood of Λ1,r,
and how to extend it further to ΛεGT in (6.15).

From the discussion in section 5, we know that near (6.14), on the torus side, H(Λε)
should agree with the microlocal Hilbert space

(6.16) FMT
−1

h̃,h
HΦ3,h,

introduced in (5.67). Now let us recall from Proposition 5.4 that in the region where

(6.17) ε
−1/6

� |Im x1|� ε
−1/2

, |Im x2|� 1,

on the T
h̃,h

–transform side, we have an identification T
−1

h̃,h
HΦ3,h � T

−1

h,h
HΦ5,h, with the

weight Φ5 having the properties described in (5.62), (5.63). Moreover, on the Th,h–transform
side, the region in (6.17) corresponds to a region where ε

1/3 � |Im x1| � 1, |Im x2| � 1.
In this region we may therefore identify the microlocal Hilbert space in (6.16) with

(6.18) FMT
−1

h,h
HΦ5,h = MT

−1

h,h
HΦ7,h,

where the smooth strictly plurisubharmonic function Φ7(x) is such that

κTh,h ◦ κ
−1

M
◦ κε ◦ κM ◦ κ

−1

Th,h
(ΛΦ5) = ΛΦ7 .

Here κTh,h : (y, η) �→ (y− iη, η) is the canonical transformation associated to the Bargmann
transform Th,h on T2, given in (5.4). The transform κε corresponding to the operator F has
been introduced in (4.12).
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The transformation κ
−1

M
◦κε◦κM isO(ε)–close to the identity in the C

∞–sense and hence
it follows from Proposition 5.4 that

(6.19) Φ7(x) = Φ0(x) + Φ8(x), Φ0(x) =
1

2
(Im x)2,

where the perturbation Φ8(x) satisfies

(6.20) ∂
k

Rex1,x2
∂

l

Imx1
Φ8(x) = Okl

Ç
ε

|Imx1|
1+l

å
.

In particular, the Hessian of Φ7 is uniformly bounded in a region where ε
1/3 � |Im x1|� 1,

|Im x2|� 1.

We conclude that near (6.14) but away from an O(ε1/3)-neighborhood of that set, we
should choose

(6.21) Λε = κ
−1

0
◦ κε ◦ κM ◦ κ

−1

Th,h
(ΛΦ5) = κ

−1

0
◦ κM ◦ κ

−1

Th,h
(ΛΦ7)

where κ0 is the action-angle transform defined in (4.2).

We shall now glue the manifolds ΛεGT in (6.15) and Λε in (6.21). To that end, from sub-
section 6.1 we recall that we have simplified the symbol p in (4.8) by composing it with the
transformation κM in (5.2). Hence

ΛεGT = κ
−1

0
◦ κM

Ä
Λ

εGT ◦κ
−1
0 ◦κM

ä
,

where GT := GT ◦ κ
−1

0
◦ κM is given in Proposition 6.1. Recall next for example from [4]

that if Φd is such that κTh,h(ΛεGT ) = ΛΦd , then

(6.22) Φd(x) = Φ0(x) + εGT (Re x,−Im x) +O(ε2
|∇GT |

2).

Let χ = χ(Im x1) ∈ C
∞
0

, 0 ≤ χ ≤ 1, be a standard cut-off function in a sufficiently small
but fixed neighborhood of 0, and consider

(6.23) �Φ(x) = χ(Im x1)Φ7(x) + (1− χ(Im x1))Φd(x).

The function �Φ is strictly plurisubharmonic in a region ε
1/3 � |Im x1| ≤

1

O(1)
, |Im x2| ≤

1

O(1)
. Moreover, it follows from (6.19), (6.20), (6.22), and Proposition 6.1 that

(6.24) �Φ(x) = Φ0(x) + Φ9(x),

where Φ9 and its derivatives satisfy the same estimates as Φ8(x) in (6.20). It follows that
in a fixed neighborhood of the set in (6.14) but away from its ε

1/3–neighborhood, the IR-
manifold Λε is defined as

(6.25) Λε = κ
−1

0
◦ κM ◦ κ

−1

Th,h

Ä
Λ�Φ

ä
,

and we need to fill the remaining gap. To that end, it will be convenient to go back to (6.16)
and to work on the T

h̃,h
-transform side. Let us recall the relation (5.65) between the weights

Φ3 and Φ5,

κTh,h ◦ κ
−1

Th̃,h
(ΛΦ3) = ΛΦ5 ,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



552 M. HITRIK AND J. SJÖSTRAND

with the transform κTh,h ◦ κ
−1

Th̃,h
defined in (5.64). Corresponding to the weight �Φ in (6.23),

on the Th,h–transform side, we introduce a weight �Φ(x) on the T
h̃,h

-transform side given by
the analogous relation

(6.26) κTh,h ◦ κ
−1

Th̃,h

Ä
Λ�Φ

ä
= Λ�Φ.

We have

(6.27) �Φ(x) =

√
ε

2
(Im x1)

2 +
1

2
(Im x2)

2 + Φ10(x),

where Φ10 and its derivatives satisfy the same estimates as Φ4 in Proposition 5.1. Moreover,
in a region where ε

−1/6 � |Im x1| � ε
−1/2, |Im x2| � 1, the weight �Φ is an O(

√
ε)-

perturbation of Φ3, and as such it extends to the entire region |Im x1|� ε
−1/2, |Im x2|� 1,

in the same way as in subsection 5.4.
The definition of Λε ⊂ C4 in a full neighborhood of Λ1,r, including the gluing region, is

then as follows,

(6.28) Λε = κ
−1

0
◦ κM ◦ κ

−1

Th̃,h

Ä
Λ�Φ

ä
.

where the transform κTh̃,h
has been defined in (5.13). Further away from Λ1,r, we have Λε =

ΛεGT in (6.15), and when approaching the Diophantine region Λ1,d ∪ Λ2,d, we define Λε as
in [17]. This gives a global definition of the IR–manifold Λε ⊂ C4, which agrees with R4

outside a bounded set.

Let T be the standard FBI–Bargmann transform, defined as in (5.4), acting on L
2(R2),

and with the associated canonical transformation κT : T
∗C2 → T

∗C2, defined as in (5.5).
From [17] we know that away from a neighborhood of the rational region, we have

(6.29) κT (Λε) = ΛΦε :=

ß
(x, ξ) ∈ C2

× C2; ξ =
2

i

∂Φε

∂x

™
,

where Φε is strictly plurisubharmonic with Φε − Φ0 = O(ε), ∇(Φε − Φ0) = O(ε), Φ0(x) =
1

2
(Im x)2. Associated to Λε, we then introduce a global h–dependent Hilbert space H(Λε),

which agrees with L
2(R2) as a set, and which is equipped with the norm

(6.30) ||u || := ||T (1− χ) u ||HΦε
+ ||T

h̃,h
M
−1

F
−1

U
−1

χu ||HΦ3,h .

Here χ ∈ C
∞
0

(Λε) is a cut-off to a small neighborhood of the rational region, which we quan-
tize as a Toeplitz operator on the FBI–Bargmann transform side — see also the following
discussion in this section. The elliptic Fourier integral operator U quantizes the action-angle
symplectomorphism κ

−1

0
in (4.2).

We shall now introduce a more precise description of the spectral window to which the
spectral parameter z is confined. In doing so, let us recall the assumption (2.27), and assume,
in order to fix the ideas, that F0 < �q�(Λ1,r). Introduce a rectangle

(6.31) R� =

ï
−

ε

C0

,
ε

C0

ò
+ iε

ï
F0 −

1

C1

, F0 +
1

C2

ò
,

where C0 > 0 is large enough. Moreover, we shall take C2 > 1 so large that

(6.32)
Im z

ε
< �q�(Λ1,r), z ∈ R�.
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We further take C1 > 0 so that

(6.33) F0 −
1

C1

< inf Q∞(Λ1,r).

Our goal now is to construct a trace class Toeplitz operator K : H(Λε) → H(Λε) such that
the operator

1

ε
(Pε + iεK − z)

becomes elliptic, in the h̃–pseudodifferential operator sense, in a full neighborhood of Λ1,r,
for z varying in (6.31). To this end, we shall restrict the attention to the rational region.

When constructing the operator K, we recall that microlocally near Λ1,r, the action of Pε

on H(Λε) can be identified with the action of the operator in (5.68) on the weighted space
HΦ3,h. In what follows, as in (5.72), (5.73), we shall consider the one-parameter family of
operators 1

ε
‹Pε(x1, h̃Dx1 , ξ2;h) acting on H

Φ1(·,ξ2),h̃
, where ξ2 is given in (4.16) and

|ξ2| =

����h
Å

k −
k0(α2)

4

ã
−

S2

2π

���� � 1.

We now claim that for z ∈ C in the domain (6.31) and in the region where |ξ2| � ε, the
elliptic bound

(6.34)
����
1

ε

‹Pε(x1,
�ξ1, ξ2;h)−

z

ε

���� ≥
1

O(1)

holds true. Here �ξ1 = 2

i

∂Φ1
∂x1

(x1, ξ2), so that (x1,
‹ξ1) ∈ ΛΦ1(·,ξ2)

. When verifying
(6.34), we recall from subsection 4.4 that in the region where |Im x1| � 1, the symbol
of 1

ε
‹Pε(x1, h̃Dx1 , ξ2;h), restricted to ΛΦ1(·,ξ2)

, is identified with the symbol of (5.76) re-
stricted to T

∗T2, modulo O(h̃), and (6.34) follows by considering the imaginary part of
1

ε

Ä‹Pε(x1,
�ξ1, ξ2;h)− z

ä
, and using (6.32).

It remains therefore to check (6.34) in the region where |Im x1| = O(1). Here it follows
by considering the real part of 1

ε
‹Pε(x1,

�ξ1, ξ2;h)− z

ε
in (5.69) and using that p(f(ξ2), ξ2) =

a(ξ2)ξ2, a(ξ2) > 0, and that g(0, 0) > 0, together with (5.77), (5.78).

In what follows, when considering the one-parameter family 1

ε
‹Pε

Ä
x1, h̃Dx1 , ξ2;h

ä
, we

shall therefore restrict the attention to the quantum numbers k ∈ Z given by the condition

(6.35) ξ2 = h

Å
k −

k0(α2)

4

ã
−

S2

2π
= O(ε).

When �ξ1 = 2

i

∂Φ1
∂x1

(x1, ξ2), using (5.69) together with (5.77), (5.78), we obtain that for
|Im x1| = O(1),
(6.36)

Im
1

ε

‹Pε(x1,
�ξ1, ξ2;h) = fi�q�2(Re x1,−µImx1 + f(ξ2), ξ2) +O

Å
h

ε
+ ε +

1

R + |Im x1|

ã
.

Here we recall that µ =
√

ε and R � 1. Furthermore, as already exploited above, in the
region where |Im x1| � 1, the closure of the range of the imaginary part of the symbol of
1

ε
‹Pε(x1, h̃Dx1 , ξ2;h), restricted to ΛΦ1(·,ξ2)

, avoids the value F0 ∈ Q∞(Λ1,r).
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For each k ∈ Z satisfying (6.35), let 0 ≤ rk = rk(Im x1) ∈ C
∞
0

(R) be such that rk

vanishes for |Im x1|� 1 and such that the value F0 is away from the closure of the range of

(6.37) Im
1

ε

‹Pε

Å
x1,

2

i

∂Φ1

∂x1

(x1, ξ2), ξ2;h

ã
+ rk(Im x1),

when |Im x1| ≤ R1, R1 large enough. We notice that we can take rk to be a suitably large
multiple of some standard cutoff function. Associated with rk we then have a Toeplitz oper-
ator

(6.38) Top(rk) : H
Φ1(·,ξ2),h̃

→ H
Φ1(·,ξ2),h̃

,

defined as in the appendix. Using the one-dimensional operators Top(rk), we introduce an
operator F−1

x2
Top(rk)Fx2 : HΦ3,h → HΦ3,h given by

(6.39) F
−1

x2
Top(rk)Fx2u(x1, x2) =

�

ξ2=O(ε)

(Top(rk)�uk) (x1)eξ2(x2), u ∈ HΦ3,h,

with ξ2 as in (6.35). Here, as in (5.71), we have written

u(x1, x2) =
�

k∈Z
�uk(x1)eξ2(x2).

Combining (6.34) together with Proposition 5.5, and the construction of Top(rk),
for k ∈ Z satisfying (6.35), we conclude that for z in the domain (6.31), we have an elliptic
estimate

(6.40)
����

����
Å

1

ε

‹Pε +
1

ε

�Rε + iF
−1

x2
Top(rk)Fx2 −

z

ε

ã
u

����

����
HΦ3,h

≥
1

O(1)
||u ||HΦ3,h .

Here we are also using the basic formula relating quantization and symbol multiplication
on the FBI–Bargmann transform side, established in Theorem 1.3 in [27] (see also section 3
of [10]).

Back on the globally defined manifold Λε, we let now 0 ≤ χ0 ∈ C
∞
0

(Λε) be such that χ0 = 1
near the rational torus and with supp χ0 contained in a small neighborhood of the torus. We
then take 0 ≤ χ1 ∈ C

∞
0

(Λε) supported near Λ1,r, such that χ1 = 1 in a neighborhood of
supp χ0, and consider
(6.41)

K := χ1UFMT
−1

h̃,h
F
−1

x2
Top(rk)Fx2Th̃,h

M
−1

F
−1

U
−1

χ0 = O(1) : H(Λε) → H(Λε).

Here, as in (6.30), U is a unitary Fourier integral operator quantizing the action-angle trans-
formation κ

−1

0
in (4.2). When defining the operators corresponding to the functions χ0 and

χ1 in (6.41), we identify H(Λε) with FMT
−1

h̃,h
HΦ3,h and use the Toeplitz quantization on the

FBI–Bargmann transform side.

Now it is clear that the operator in (6.39) is of trace class on HΦ3,h, with its trace class
norm not exceeding

(6.42) O

�
ε

h

�
sup

k

||Top(rk) ||tr ≤ O

Ç
ε
3/2

h2

å
,
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since an application of Proposition A.1 shows that the trace class norm of the Toeplitz op-
erator (6.38) is

(6.43) O

Å
1

h̃

ã
= O

Å√
ε

h

ã
.

It follows that K in (6.41) is of trace class on H(Λε), its trace class norm not exceeding

O

Ç
ε
3/2

h2

å
.

Pʀ����ɪ�ɪ�ɴ 6.2. – Let us keep all the general assumptions from the introduction, and
assume that F0 ∈ ∪Λ∈JQ∞(Λ) satisfies the assumption (2.22)–(2.28). Assume also that
h � ε = O(hδ), for some δ > 0. Then there exist a globally defined IR-manifold Λε ⊂ C4

and smooth Lagrangian tori �Λ1,d, �Λ2,d, �Λ1,r ⊂ Λε such that when ρ ∈ Λε is away from a small
neighborhood of �Λ1,d ∪

�Λ2,d ∪
�Λ1,r we have

(6.44) |Re Pε(ρ)| ≥
1

O(1)
or |Im Pε(ρ)− εF0| ≥

ε

O(1)
.

The estimates (6.44) remain valid for ρ ∈ Λε near �Λ1,r when away from an O(ε1/2)–
neighborhood of this set. The manifold Λε is close to R4 and agrees with it outside a bounded
set. We have

Pε = O(1) : H(Λε) → H(Λε).

For j = 1, 2 there exists an elliptic Fourier integral operator

Uj = O(1) : H(Λε) → L
2

θ
(T2)

such that microlocally near �Λj,d, j = 1, 2, we have

UjPε =
Ä
P

(N)

j
(hDx, ε;h) + RN+1,j(x, hDx, ε;h)

ä
Uj .

Here P
(N)

j
(hDx, ε;h) + RN+1,j(x, hDx, ε;h) is defined microlocally near ξ = 0 in T

∗T2, the

full symbol of P
(N)

j
(hDx, ε;h) is independent of x, and

RN+1,j(x, ξ, ε;h) = O
�
(ξ, ε, h)N+1

�
.

Here N is arbitrarily large but fixed. The leading symbol of P
(N)

j
(hDx, ε;h) is of the form

pj(ξ) + iε�qj�(ξ) +O(ε2),

with the differentials of pj and �qj� being linearly independent when ξ = 0, j = 1, 2.

Furthermore, there exists a trace class Toeplitz operator

K = O(1) : H(Λε) → H(Λε),

which has the following properties:

• K is concentrated to the torus �Λ1,r in the sense that if ψ ∈ C
∞
0

(Λε) is supported away
from �Λ1,r then

(6.45) ψK = Kψ = O(h∞) : H(Λε) → H(Λε).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



556 M. HITRIK AND J. SJÖSTRAND

• The trace class norm of K satisfies

||K ||tr = O

Ç
ε
3/2

h2

å
.

• For ρ ∈ Λε near �Λ1,r, we have

|Pε(ρ) + iεK(ρ)− z| ≥
ε

O(1)
,

provided that the spectral parameter z ∈ C belongs to the domain (6.31), assuming
(6.32), (6.33).

Remark. It follows from the discussion preceding Proposition 6.2 that the operator K en-
joys better localization properties than (6.45), and is in fact concentrated to an O(ε1/2)–
neighborhood of �Λ1,r ⊂ Λε.

We shall now derive resolvent bounds for the perturbed operator Pε + iεK in the space
H(Λε). To this end, let us recall the set Ed, defined in Theorem 2.1, which consists of
the quasi-eigenvalues z(j, k), 1 ≤ j ≤ 2, k ∈ Z2, introduced in (2.31). We introduce an
additional small parameter 0 < �ε = O(hδ) such that �ε � ε

1/2, �ε > h
1/2−δ. Then it follows

from Proposition 6.2 (see also Proposition 5.1 in [17]) that when ρ ∈ Λε is away from an
�ε–neighborhood of �Λ1,d ∪

�Λ2,d ∪
�Λ1,r, we have

(6.46) |Re Pε(ρ;h)| ≥
�ε

O(1)
or |Im Pε − εF0| ≥

ε�ε
O(1)

.

In what follows, we shall let z ∈ C vary in the rectangle

(6.47)
�
−

ε

C
,

ε

C

�
+ iε

ï
F0 −

�ε
C

, F0 +
�ε
C

ò
,

for some C > 0 sufficiently large but fixed. Let N0 ≥ 1 be arbitrarily large but fixed. When
z in the rectangle (6.47) avoids the union of εh

N0/O(1)-neighborhoods of the z(j, k)’s, we
would like to show that Pε + iεK − z is invertible and to estimate the inverse in H(Λε).
When doing so, to be able to exploit the Birkhoff normal form in the Diophantine region,
as in [17], we shall use a partition of unity involving cutoff functions to small h–dependent
neighborhoods of the Lagrangian tori.

In what follows we shall write that a function a = a(ρ;h) ∈ C
∞(Λε) is in the symbol class

S�ε(1) if uniformly on Λε, we have

∇
m

a = Om(�ε−m), m ≥ 0.

We take a smooth partition of unity on the manifold Λε,

(6.48) 1 =
2�

j=1

χj + ψ1,+ + ψ1,− + ψ2,+ + ψ2,− + ψ3.

Here 0 ≤ χj ∈ C
∞
0

(Λε)∩ S�ε(1) is a cut-off function to an �ε–neighborhood of �Λj,d, j = 1,2,
and as in [17] we arrange so that

(6.49) [Pε, χj ] = O(h(N+1)δ) : H(Λε) → H(Λε).
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The functions 0 ≤ ψ1,± ∈ S�ε(1) are such that ±Re Pε ≥ �ε/O(1) in the support of ψ1,±,
respectively. Next, the functions 0 ≤ ψ2,± ∈ C

∞
0

(Λε) ∩ S�ε(1) are supported in regions in-
variant under the Hp–flow, where± (Im Pε − εF0) ≥ ε�ε/O(1), respectively. We also arrange
so that ψ2,± Poisson commute with p on Λε. Here we have written p to denote the leading
symbol of Pε=0 acting on H(Λε). Finally, the function 0 ≤ ψ3 ∈ C

∞
0

(Λε)∩S�ε(1) is a cut-off

to an �ε–neighborhood of �Λ1,r such that Hpψ3 = 0. Moreover, we can arrange that

ψ3K = K +O(h∞) : H(Λε) → H(Λε).

At this point, we may follow the arguments of section 5 of [17] (see also [14]) to prove,
using (6.46) together with the sharp Gårding inequality, that when

(6.50) (Pε + iεK − z) u = v, u ∈ H(Λε),

with z ∈ C varying in (6.47), we have

(6.51) ||

�
1−

2�

j=1

χj − ψ3

�
u || ≤

O(1)

ε�ε || v ||+O(h∞)||u ||,

provided that

(6.52)
h

�ε5
≤ h

δ
.

Here || · || is the norm in H(Λε). Let us also remark that when establishing (6.51), follow-
ing [14], we use, in particular, that, on the operator level,

[Pε, ψ2,±] = [Pε=0, ψ2,±] +O

Å
εh

�ε2

ã
= O

Å
h

2

�ε4

ã
+O

Å
εh

�ε2

ã
= O

Å
εh

�ε4

ã
,

since h ≤ ε. Furthermore, since z belonging to (6.47) is such that dist(z, Ed) ≥ εh
N0/O(1),

directly from section 5 in [17] we see, using also (6.49), that for j = 1, 2,

(6.53) ||χju || ≤
O(1)

εhN0
|| v ||+O(h(N+1)δ−N0−1)||u ||, (N + 1)δ −N0 − 1 � 1.

Combining (6.51) and (6.53), we get

(6.54) || (1− ψ3)u || ≤
O(1)

εhN0
|| v ||+O(h(N+1)δ−N0−1)||u ||.

It remains to derive an estimate for ψ3u. When doing so, we write

(6.55) (Pε + iεK − z) ψ3u = ψ3v + [Pε + iεK,ψ3]u.

Here

[Pε + iεK,ψ3] = O

Å
εh

�ε4

ã
: H(Λε) → H(Λε),

and using (6.54) with a cut-off closer to �Λ1,r we see that the H(Λε)–norm of the commutator
term in the right hand side of (6.55) is controlled by
(6.56)

O

Å
εh

�ε4

ã
1

εhN0
|| v ||+O(h(N+1)δ−N0−1)||u || =

O(1)

�ε4hN0−1
|| v ||+O(h(N+1)δ−N0−1)||u ||.

Using (6.40) together with (6.55) and (6.56), we get

(6.57) ||ψ3u || ≤
O(1)

ε�ε4hN0−1
|| v ||+O(h(N+1)δ−N0−2)||u ||.
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Combining (6.54) and (6.57), and using also (6.52), we obtain the resolvent bounds, summa-
rized in the following proposition.

Pʀ����ɪ�ɪ�ɴ 6.3. – Assume that �ε = O(hδ), δ > 0, is such that �ε � ε
1/2 and that (6.52)

holds. Let

(6.58) z ∈

�
−

ε

C
,

ε

C

�
+ iε

ï
F0 −

�ε
C

, F0 +
�ε
C

ò
, C � 1,

be such that dist(z, Ed) ≥ εh
N0/O(1), for some N0 ≥ 1. Then, with the norm being the oper-

ator norm on H(Λε), we have

(6.59) || (Pε + iεK − z)−1
|| ≤

O(1)

εhN0
.

Remark. Continuing to argue as in [17] and solving a suitable Grushin problem as in that pa-
per, we see that the eigenvalues of Pε + iεK in the domain (6.58) are given by the elements of
the set Ed in (2.31), modulo O(h∞), their total number being∼ ε�ε/h

2. We may think there-
fore of Pε + iεK as a reference operator associated to the Diophantine region, and hereafter
we shall often write

(6.60) Pd = Pε + iεK.

Remark. Applying a simplified version of the argument above, we see that in the absence of
Diophantine tori corresponding to the level (0, εF0), the reference operator

Pε + iεK − z : H(Λε) → H(Λε)

is globally invertible, with

(6.61) (Pε + iεK − z)−1 = O

Å
1

ε

ã
: H(Λε) → H(Λε),

for z belonging to the rectangle (2.36). Indeed, when checking the injectivity, and hence the
invertibility, of Pε + iεK − z, together with (6.60), we may use a partition of unity of the
form (6.48), without the χj ’s, with all the terms there being symbols of class S�ε=1

(1). The
bound (6.61) is relevant for the proof of Theorem 2.2.

In the following discussion, we shall let z ∈ C vary in the rectangle (6.31), so that in par-
ticular (6.32) and (6.33) hold.

We shall now introduce a reference operator associated to the rational region. In doing so,
we let 0 ≤ �χd ∈ C

∞
0

(Λε) be such that �χd = 0 in a small but fixed neighborhood of �Λ1,r while
�χd = 1 away from a slightly larger neighborhood of this set, when restricting the attention
to the region where |Re Pε| ≤ 1/O(1). Also, �χd vanishes outside of a slightly larger set of
the form |Re Pε| ≤ 1/O(1). When C > 1 is large enough, let us consider the operator

(6.62) Pr = Pε + iεC�χd.

We may view Pr as a reference operator associated to the rational region. Notice that the
trace class norm of the perturbation Pr − Pε on H(Λε) is O(εh−2).

Our purpose is to study the spectrum of Pε in the domain (6.47) in terms of the spectral
information about the reference operators Pd and Pr in this region. In particular, Proposi-
tion 6.3 gives a polynomial in 1/h control on the resolvent of Pd, and we also know that the
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eigenvalues of Pd in (6.47) are given, modulo O(h∞), by the elements of the set Ed. While
the spectral information available for the rational reference operator Pr is not going to be as
precise, as a next step in our analysis, we shall derive resolvent bounds on Pr in H(Λε), when
z in (6.31) is not too close to the spectrum of this operator.

Using the same arguments as earlier and choosing C > 0 sufficiently large, it is easily seen
that the operator Pr + iεK − z = Pε + iεC�χd + iεK − z is globally invertible on H(Λε),
with

(6.63) (Pr + iεK − z)−1 = O

Å
1

ε

ã
: H(Λε) → H(Λε).

Here z varies in the rectangle (6.31). Write

(6.64) Pr − z = (Pr + iεK − z)
Ä
1− iε (Pr + iεK − z)−1

K

ä
.

Proposition 6.2 together with (6.63) implies that iε (Pr + iεK − z)−1
K is of trace class on

H(Λε), and the corresponding trace class norm satisfies

(6.65) || iε (Pr + iεK − z)−1
K ||tr = O

Ç
ε
3/2

h2

å
.

It follows from (6.65) together with a basic estimate of [5] that the holomorphic function

(6.66) D(z) = det
�
I − iε(Pr + iεK − z)−1

K
�
,

defined for z in the rectangle (6.31), satisfies

(6.67) |D(z)| ≤ exp

Ç
O

Ç
ε
3/2

h2

åå
.

The zeros of the perturbation determinant D(z) in the domain (6.31) are precisely the eigen-
values of Pr in this region. To estimate the number of the zeros in such a domain, with slightly
increased values of C0, C1, and C2 in (6.31), it suffices, in view of Jensen’s formula (see for
example [21]) to establish a lower bound on D(z) at a single point z = z0 in (6.31). To this
end we notice that the condition (6.33) allows us to find z0 in the domain (6.31) such that

(6.68)
Im z0

ε
< inf Q∞(Λ1,r).

As before, it follows that Pr − z0 is invertible with

(6.69) (Pr − z0)
−1 = O

Å
1

ε

ã
: H(Λε) → H(Λε).

We get, using (6.64),

(I − iε (Pr + iεK − z0) K)−1 = (Pr − z0)
−1 (Pr + iεK − z0)(6.70)

= I + iε (Pr − z0)
−1

K,

and it follows, using (6.69), that the absolute value of the determinant of the right hand side
of (6.70) is O(ε3/2

/h
2). Therefore,

(6.71) |D(z0)| ≥ exp

Ç
−O

Ç
ε
3/2

h2

åå
,
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and combining this bound together with (6.67) and Jensen’s formula, we conclude that the
number of eigenvalues of Pr in the rectangle (6.31), after an arbitrarily small decrease of the
constants C0, C1, and C2, is

O

Ç
ε
3/2

h2

å
.

The proof of Theorem 2.2 is now complete, in view of the second remark following Proposi-
tion 6.3.

Continuing with the proof of Theorem 2.1, we now come to derive resolvent estimates for
the reference operator Pr. Let z in the rectangle (6.31) be such that

(6.72) dist(z,Spec(Pr)) ≥ g(h) > 0, g(h) � ε.

An application of Theorem 5.1 from chapter 5 in [5] together with (6.65) shows that

(6.73) ||

Ä
1− iε (Pr + iεK − z)−1

K

ä−1

|| ≤
1

|D(z)|
exp

Ç
O

Ç
ε
3/2

h2

åå
,

and in view of (6.63) and (6.64), it suffices to estimate |D(z)| from below, away from its zeros.
At this point, rather than recalling the details of the now well established argument for that,
based on Cartan’s lemma (or, alternatively, on Lemma 4.3 in [30]) and the Harnack inequality
together with the maximum principle, we shall merely refer to [21] and [28], [30]. We obtain
that if z in the domain (6.31), with increased values of the constants there, satisfies (6.72),
then

(6.74) |D(z)| ≥ exp

Ç
−O

Ç
ε
3/2

h2
log

1

g(h)

åå
.

Combining (6.63), (6.64), (6.73), and (6.74), we get the following result.

Pʀ����ɪ�ɪ�ɴ 6.4. – Assume that z ∈ C is such that

(6.75) |Re z| <
ε

C
, |Im z − εF0| <

ε

C
, C � 1,

with dist(z,Spec(Pr)) ≥ g(h), 0 < g(h) � ε. Then

(6.76) || (Pr − z)−1
|| ≤

O(1)

ε
exp

Ç
O

Ç
ε
3/2

h2

å
log

1

g(h)

å
.

Here Pr = Pε + iεC�χd, where �χd ∈ C
∞
0

(Λε; [0, 1]) is such that �χd = 0 near the rational torus
�Λ1,r and �χd = 1 further away from this set, in the region where |Re Pε| ≤ 1/O(1).

Relying upon the resolvent estimates for the reference operators Pd and Pr, given in
Propositions 6.3 and 6.4, we shall address the invertibility properties of Pε − z. This is the
subject of the next subsection.
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6.3. Exponentially weighted estimates and bounds on spectral projections

Let us recall the reference operators

(6.77) Pd = Pε + iεK and Pr = Pε + iεC�χd, C � 1,

introduced in (6.60) and (6.62). In the present subsection, as in Proposition 6.3, we shall let
z ∈ C vary in the domain

(6.78) Rs :=
�
−

ε

C
,

ε

C

�
+ iε

ï
F0 −

�ε
C

, F0 +
�ε
C

ò
, C � 1,

where we recall that �ε here can be chosen so that �ε ∼ ε
δ for any small δ > 0. Let us assume

that

(6.79) dist(z,Spec(Pd) ∪ Spec(Pr)) ≥ g(h),

where, as in Proposition 6.3, we take

g(h) = εh
N0 ,

for some arbitrarily large but fixed N0 ≥ 2. We know from (6.59) that (Pd − z)−1 enjoys
polynomial upper bounds as a bounded operator on H(Λε), while Proposition 6.4 provides
an exponential estimate for the resolvent of Pr.

Next we shall introduce a reference operator associated with the elliptic region, where |Re Pε|

is bounded away from zero. To this end, let ψ ∈ C
∞
0

(Λε; [0, 1]) be such that ψ = 1 in a region
where |Re Pε| ≤ 1/O(1), and assume that ψ vanishes outside of a slightly larger region of
the same form. When C � 1 and z varies in the domain (6.78), we see that the operator

(6.80) Pε + iεCψ − z : H(Λε) → H(Λε)

is invertible, with

(6.81) (Pε + iεCψ − z)−1 = O

Å
1

ε

ã
: H(Λε) → H(Λε).

Let us consider a smooth partition of unity on the manifold Λε,

(6.82) 1 = χr + χd + χ0.

Here 0 ≤ χr ∈ C
∞
0

(Λε; [0, 1]) is = 1 near �Λ1,r and supp χr is contained in a small but
fixed neighborhood of this set. The function χd ∈ C

∞
0

(Λε; [0, 1]) is = 1 near supp �χd, while
χ0 ∈ C

∞

b
(Λε; [0, 1]) is such that supp χ0 is contained in a region where |Re Pε| ≥ 1/O(1)

and χ0 = 1 further away from the region where |Re Pε| is small. We furthermore arrange so
that the functions ψ and χ0 have disjoint supports.

Recall that z ∈ Rs in (6.78) satisfies (6.79). As an approximation to the inverse of Pε− z,
we consider

(6.83) R0(z) = (Pr − z)−1
χr + (Pd − z)−1

χd + (Pε + iεCψ − z)−1
χ0.

Using the definitions (6.60) and (6.62) of the operators Pd and Pr, we see that

(6.84) (Pε − z) R0(z) = 1 + L,

where

(6.85) L = −iεC�χd (Pr − z)−1
χr − iεK (Pd − z)−1

χd − iεCψ (Pε + iεCψ − z)−1
χ0.
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The key step will consist of establishing the following result.

Pʀ����ɪ�ɪ�ɴ 6.5. –

(6.86) L = O(e
−

1

�Ch ) : H(Λε) → H(Λε),

for some ‹C > 0.

When proving Proposition 6.5, we shall introduce additional modifications of the exponen-
tial weight corresponding to the IR-manifold Λε. The various modifications of the weight
will take place only in regions away from a small neighborhood of the rational torus Λ1,r.

We start by considering the term

(6.87) L1 = −iεC�χd (Pr − z)−1
χr : H(Λε) → H(Λε),

occurring in (6.85), and notice that the compact sets supp �χd and supp χr are disjoint. From
(6.29) let us recall that away from �Λ1,r ⊂ Λε, we have

(6.88) κT (Λε) =

ß
(x, ξ) ∈ T

∗C2; ξ =
2

i

∂Φε

∂x

™
,

with Φε − Φ0 = O(ε) and ∇ (Φε − Φ0) = O(ε), Φ0(x) = (1/2)(Im x)2. Here, as usual,

(6.89) κT (y, η) = (y − iη, η) = (x, ξ).

In the following discussion, we shall often identify an open set Ω ⊂ Λε whose closure is
away from �Λ1,r, with πx (κT (Ω)) ⊂ C2. Here πx : T

∗C2 → C2 is the natural projection
given by πx(x, ξ) = x. Correspondingly, a function F : Ω → C may be identified with
F ◦ (πx ◦ κT )−1 : C2 → C.

Let us recall from section 2 that we assume, for simplicity of the exposition only, that the
tori Λj,d, j = 1, 2 and Λ1,r belong to the same open edge of J in (2.11) so that (2.39) holds.
Let �Λj,d ⊂ Λε, j = 1, 2, be “intermediate” Diophantine tori belonging to the same open
edge of J as Λj,d and Λ1,r, away from supp �χd, with

Λ1,d < �Λ1,d < Λ1,r, Λ1,r < �Λ2,d < Λ2,d.

Here, in order to simplify the notation, we are identifying the real tori �Λj,d ⊂ p
−1(0) ∩ R4

with their images in Λε, by means of the canonical transformation exp (iεHGT ) : R4 → Λε

— see also (6.15). We shall introduce a new weight G ∈ C
∞
0

(C2) supported in a region where
|Re Pε| ≤ 1/O(1), such that G = 0 in a fixed neighborhood of supp χr, while G = −η < 0
in a fixed neighborhood of supp �χd. Here η > 0 is very small but fixed and we shall have
|∇G| � 1,

��∇2
G

�� � 1 everywhere. Moreover, G will be chosen so that, when restricting
the attention to the region where |Re Pε| ≤ 1/O(1), the support of ∇G is contained in a
sufficiently small but fixed neighborhood of �Λ1,d ∪

�Λ2,d.

We shall now define G near �Λj,d, say, when j = 1. When doing so, take a smooth canonical
diffeomorphism

(6.90) �κ : neigh(�Λ1,d,Λε) → neigh(ξ = 0, T
∗T2),

mapping �Λ1,d to the zero section in T
∗T2 and obtained by composing the action-angle

canonical transformation near the real torus with the holomorphic transformation
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exp (−iεHGT ). Composing pε in (4.1) with �κ−1, we obtain a new symbol, still denoted
by pε, defined near the zero section ξ = 0 in T

∗T2, which is of the form

(6.91) pε(x, ξ) = p(ξ) + iε�q�T (x, ξ) +OT (ε2).

Here, as already observed in the beginning of subsection 6.2, we take T > 0 sufficiently large
but fixed, so that �q�T (x, ξ) avoids the value F0 in this region. In view of the implicit function
theorem, we may assume that the energy surface p

−1(0) is given by an equation

(6.92) ξ2 = f(ξ1), |ξ1| ≤ a, 0 < a � 1,

where the analytic function f satisfies f(0) = 0, f
�(0) �= 0.

When defining the weight G near ξ = 0 we shall require that it should be constant on each
invariant torus ξ = Const. In doing so, we shall first define G on p

−1(0), and to that end we
introduce the tori Λµ ⊂ p

−1(0), |µ| ≤ a, given by ξ1 = µ, ξ2 = f(µ). In order to fix the
ideas, let us assume that when µ < 0, then the tori �κ−1 (Λµ) satisfy

�Λ1,d < �κ−1 (Λµ) < �Λ1,r,

and for µ > 0, we have
�Λ1,d < �κ−1 (Λµ) < �Λ1,d.

When δ > 0 is very small but fixed, we then let G0 = G0(ξ1) ∈ C
∞([−a, a]; [0, δ]) be increas-

ing and such that G0 = 0 near −a, G0 = δ near a, and with G
�
0

having a compact support
in a small neighborhood of ξ1 = 0. Taking δ > 0 small enough, we achieve that |G�

0
| � 1

and |G��
0
| � 1. Setting G(ξ1, f(ξ1)) = −G0(ξ1), we see that we have defined G on p

−1(0).
We then extend G suitably to a full neighborhood of ξ = 0 in R2 so that it still depends on ξ

only and |∇G|� 1 is different from zero only in a small neighborhood of ξ = 0.

Introduce next the IR-manifold

(6.93)
�
T
∗T2

�
G

=
�
(x + iG

�

ξ
(ξ), ξ); (x, ξ) ∈ T

∗T2
�

,

defined in a complex neighborhood of the zero section ξ = 0. Then the imaginary part of
the symbol of pε in (6.91), along

�
T
∗T2

�
G

, still avoids the value εF0.
Similarly, working in the action-angle variables, we define G = G(ξ) in a neighborhood

of the Diophantine torus �Λ2,d. It is then clear that we can define the new global IR–manifold
�Λε ⊂ C4 so that near �Λ1,d, it is given by �κ−1

��
T
∗T2

�
G

�
, and away from �Λ1,d ∪

�Λ2,d ∪
�Λ1,r,

we define �Λε so that the representation

κT

Ä
�Λε

ä
= Λ�Φε

holds true. Here �Φε − Φε ∈ C
∞
0

(C2) and its gradient is supported in a small neighborhood
of �Λ1,d∪

�Λ2,d, when restricting the attention to the region where |Re Pε| ≤ 1/O(1). We have
�Φε = Φε − η in a fixed neighborhood of supp �χd, while �Λε = Λε near �Λ1,r.

The discussion above is summarized in the following proposition.

L���� 6.6. – There exists an IR-manifold �Λε ⊂ T
∗C2 which coincides with Λε near �Λ1,r,

such that away from �Λ1,r, after applying the canonical transformation κT , defined in (6.89),
so that Λε becomes ΛΦε , with

Φε = Φ0 +O(ε), Φ0(x) =
(Im x)2

2
,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



564 M. HITRIK AND J. SJÖSTRAND

�Λε becomes Λ�Φε
, where �Φε −Φε is compactly supported and for some η > 0 small enough but

fixed we have �Φε = Φε − η near πx (κT (supp �χd)). Furthermore,

Pε = O(1) : H(�Λε) → H(�Λε),

and the resolvent bounds (6.59) and (6.76) hold true in the sense of bounded linear operators
on H(�Λε).

It is now easy to estimate the norm of the term (6.87) as a bounded operator on H(Λε). First
notice that

χr = O(1) : H(Λε) → H(�Λε),

where we use, as before, the Toeplitz quantization of χr on the FBI–Bargmann side. Com-
bining this with Proposition 6.4 and Lemma 6.6, we get

(6.94) (Pr − z)−1
χr =

O(1)

ε
exp

Ç
O

Ç
ε
3/2

h2

å
log

1

h

å
: H(Λε) → H(�Λε).

Now supp �χd is contained in a region where �Φε − Φε = −η < 0 and hence,

(6.95) �χd = O

Ä
e
−

η
h

ä
: H(�Λε) → H(Λε).

Here �χd is quantized as a Toeplitz operator in the weighted space HΦε , by working on the
transform side. Using (6.94) and (6.95) together with the upper bound ε = O(h2/3+δ), δ > 0,
we conclude that

(6.96) L1 = −iεC�χd (Pr − z)−1
χr = O

�
e
−1/�Ch

�
: H(Λε) → H(Λε), ‹C > 0.

When estimating the operator norm of the expression

(6.97) L2 = −iεK (Pd − z)−1
χd : H(Λε) → H(Λε),

we argue similarly and introduce a weak but h-independent weight, supported in a region
where |Re Pε| ≤ 1/O(1), which is equal to a very small strictly positive constant η > 0 in a
fixed neighborhood of supp χd. We then obtain a new microlocally weighted space H(�Λε)
associated to an IR–manifold �Λε defined similarly to �Λε, such that if κT (�Λε) = Λ�Φε

, then
�Φε = Φε + η, 0 < η � 1, in a fixed neighborhood of supp χd. Then

(6.98) χd = O

Ä
e
−

η
h

ä
: H(Λε) → H(�Λε),

and combining this estimate together with the fact that K = O(1) : H(�Λε) → H(Λε) and
with Lemma 6.6, we infer that

(6.99) L2 = −iεK (Pd − z)−1
χd = O

Ä
e
−

1
Ch

ä
: H(Λε) → H(Λε), C > 0.

To finish the proof of Proposition 6.5, we only need to estimate the norm of the operator

(6.100) L3 = iεCψ (Pε + iεCψ − z)−1
χ0 : H(Λε) → H(Λε),

and this requires an introduction of a new weight on the FBI–Bargmann transform side, that
we shall still denote by G. We take G ∈ C

∞

b
(C2) with |∇G| � 1,

��∇2
G

�� � 1, such that
G = 0 in a fixed neighborhood of supp ψ. We shall furthermore choose G so that it is equal
to a very small but strictly positive constant in a fixed neighborhood of supp χ0, and hence
in a neighborhood of infinity. Here we may recall that the support of χ0 does not intersect
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the compact set supp ψ. We also choose G so that the support of ∇G is contained in a thin
domain included in a region where |Re Pε| ≥ 1/O(1). It is then easy to see that

(6.101) L3 = O

Ä
e
−1/Ch

ä
: H(Λε) → H(Λε), C > 0,

and combining this estimate together with (6.96), (6.99), and (6.85), we complete the proof
of Proposition 6.5.

Combining Proposition 6.5 with (6.84) we see that for z satisfying (6.79), the operator
Pε − z : H(Λε) → H(Λε) is invertible, with

(6.102) (Pε − z)−1 = R0(z) (1 + L)−1
.

Writing (1 + L)−1 = 1− (1 + L)−1
L we get

(6.103) (Pε − z)−1 = R0(z)−R0(z) (1 + L)−1
L.

Let now γ be a simple positively oriented closed C
1–contour contained in the domain (6.78),

of length O(ε), such that (6.79) holds for each z along γ. Let

(6.104) Π = −
1

2πi

�

γ

(Pε − z)−1
dz

be the spectral projection of Pε associated to the spectrum of Pε inside γ. The finite-
dimensional space Π(H(Λε)) is spanned by the generalized eigenfunctions of Pε corre-
sponding to the eigenvalues of Pε in the interior of γ. Define also

(6.105) Π0 = −
1

2πi

�

γ

R0(z) dz,

and notice that the last term in the right hand side of (6.83) does not contribute to the integral
in (6.105), since (Pε+iεCψ−z)−1 is holomorphic in z ∈ Rs. Let us also introduce the finite-
dimensional space E ⊂ H(Λε) spanned by the generalized eigenfunctions of the operators
Pd and Pr, corresponding to their spectra inside γ. Notice that the range of Π0 in (6.105) is
contained in E.

Now (6.103) gives that

(6.106) Π = Π0 +
1

2πi

�

γ

R0(z) (1 + L)−1
L dz,

and combining Proposition 6.3, Proposition 6.4 and Proposition 6.5 together with the fact
that ε = O

�
h

2/3+δ
�
, δ > 0, we see that the operator norm of the contour integral in the

right hand side of (6.106), is O(exp (−1/“Ch)), for some “C > 0. In particular, if u ∈ H(Λε),
||u || = 1, belongs to the range of Π, then

Π0u = u +O(e−1/�Ch).

Using the basic properties of the non–symmetric distance between two closed subspaces of
a Hilbert space, introduced and studied in [9] (see also [3]), we conclude that

(6.107) dim Π(H(Λε)) ≤ dim E.

When proving the opposite inequality, we write, using (6.83),

Π0 = Πrχr + Πdχd,

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



566 M. HITRIK AND J. SJÖSTRAND

where

(6.108) Πd = −
1

2πi

�

γ

(Pd − z)−1
dz = O

Å
1

hN0

ã
: H(Λε) → H(Λε),

and

(6.109) Πr = −
1

2πi

�

γ

(Pr − z)−1
dz

satisfies

(6.110) Πr = exp

Ç
O

Ç
ε
3/2

h2

å
log

1

h

å
: H(Λε) → H(Λε).

Here we have also used Propositions 6.3 and 6.4.

Let u ∈ E be a normalized generalized eigenfunction of, say, Pd, corresponding to an
eigenvalue of this operator inside γ. Then using exponentially weighted estimates, in the
same way as in the proof of Proposition 6.5, together with (6.110) and the upper bound
ε = O(h2/3+δ), we see that

Πrχru = O(e−1/Ch), C > 0.

Similarly, we find that Πdχdu = u +O(e−1/Ch), and therefore,

(6.111) Π0u = u +O(e−1/Ch).

We get the same conclusion also when u ∈ E is a normalized generalized eigenfunction of Pr.

Let now u ∈ E be such that ||u || = 1. Using (6.106) and (6.111), we infer that

Πu = u +O(e−1/Ch),

and it follows that the dimension of E does not exceed that of Π(H(Λε)). This together with
(6.107) implies that the spaces Π(H(Λε)) and E have the same dimension, and from here it
is easy to see how to get the full statement of Theorem 2.1.

7. An application to surfaces of revolution

The purpose of this section is to illustrate how Theorem 2.1 applies to the case when M

is an analytic surface of revolution in R3, and

(7.1) Pε = −h
2∆ + iεq,

where ∆ is the Laplace-Beltrami operator and q is an analytic function on M . We shall con-
sider the same class of surfaces of revolution as in [17], and begin by recalling the assumptions
made on M in that paper.

Let us normalize M so that the x3-axis is its axis of revolution, and parametrize it by the
cylinder [0, L]× S

1, L > 0,

(7.2) [0, L]× S
1
� (s, θ) �→ (u(s) cos θ, u(s) sin θ, v(s)),

assuming, as we may, that the parameter s is the arclength along the meridians, so that
(u�(s))2 + (v�(s))2 = 1. In the coordinates (s, θ), the Euclidean metric on M takes the form

(7.3) g = ds
2 + u

2(s)dθ
2
.
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The functions u and v are assumed to be real analytic on [0, L], and we shall assume that for
each k ∈ N,

u
(2k)(0) = u

(2k)(L) = 0,

and that u
�(0) = 1, u

�(L) = −1. As we recalled in [17], these assumptions guarantee the
regularity of M at the poles.

Assume furthermore that M is a simple surface of revolution, in the sense that 0 ≤ u(s)
has precisely one critical point s0 ∈ (0, L), and that this critical point is a non-degenerate
maximum, u

��(s0) < 0. To fix the ideas, we shall assume that u(s0) = 1. Notice that s0

corresponds to the equatorial geodesic γE ⊂ M given by s = s0, θ ∈ S
1. This is an elliptic

orbit.

Writing
T
∗ (M\{(0, 0, v(0)), (0, 0, v(L))}) � T

∗
�
(0, L)× S

1
�
,

and using (7.3) we see that the leading symbol of P0 = −h
2∆ on M is given by

(7.4) p(s, θ, σ, θ
∗) = σ

2 +
(θ∗)2

u2(s)
.

Here σ and θ
∗ are the dual variables to s and θ, respectively. Since the function p in (7.4)

does not depend on θ, it follows that {p, θ
∗} = 0, and we recover the well-known fact that

the geodesic flow on M is completely integrable.

Let E > 0 and |F | < E
1/2, F �= 0. Then the set

ΛE,F : p = E, θ
∗ = F,

is an analytic Lagrangian torus contained inside the energy surface p
−1(E). Geometrically,

the torus ΛE,F consists of geodesics contained between and intersecting tangentially the par-
allels s±(E,F ) on M defined by the equation

u(s±(E,F )) =
|F |

E1/2
.

For F = 0, the parallels reduce to the two poles and we obtain a torus consisting of a family
of meridians. The case |F | = E

1/2 is degenerate and corresponds to the equator s = s0,
traversed with the two different orientations. Writing Λa := Λ1,a, we get a decomposition as
in (2.11),

p
−1(1) =

�

a∈J

Λa,

with J = [−1, 1], S = {±1}.

In [17], we have derived an explicit expression for the rotation number ω(Λa) of the torus
Λa, 0 �= a ∈ (−1, 1),

(7.5) ω(Λa) =
a

π

�
s+(a)

s−(a)

1

u2(s)

Å
1−

a
2

u2(s)

ã−1/2

ds, u(s±(a)) = |a| .

We are going to assume that the analytic function (−1, 1) � a �→ ω(Λa) is not identically
constant.
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Let α > 0, d > 0. In what follows we shall say that a torus Λa ⊂ p
−1(1), a ∈ (−1, 1), is

(α, d)–Diophantine if the rotation number ω(Λa) satisfies

(7.6)
����ω(Λa)−

p

q

���� ≥
α

q2+d
, p ∈ Z, q ∈ N.

From the introduction let us also recall that if a torus Λa ⊂ p
−1(1) is rational, so that

ω(Λa) = m

n
, with m ∈ Z and n ∈ N relatively prime and m = O(n), then we define the

height of ω(Λa) as k(ω(Λa)) = |m|+ |n|.

Let q = q(s, θ) be a real-valued analytic function on M which we shall view as a function on
T
∗
M . Associated to each a ∈ J , we introduce the compact interval Q∞(Λa) ⊂ R defined as

in (2.15). We also define an analytic function

(−1, 1) � a �→ �q�(Λa),

obtained by averaging q over the invariant tori Λa. Assume that a �→ �q�(Λa) is not iden-
tically constant. From the introduction, let us recall that as a → a0 ∈ S, the set of the
accumulation points of �q�(Λa) is contained in Q∞(Λa0).

Following [17], we now come to introduce uniformly good values in R, for which the con-
clusion of Theorem 2.1 will be valid uniformly. In doing so, let us notice that the following
discussion is not restricted to the case of surfaces of revolution.

Let d > 0 be fixed. Given α, β, γ > 0 we say that F0 ∈ R is (α,β, γ)–good if the following
conditions hold:

• F0 is not in the union of all Q∞(Λa) with dist(Λa, S) ≤ α.
• If F0 ∈ Q∞(Λa) and ω(Λa) /∈ Q then Λa is (α, d)–Diophantine and |da�q�(Λa)| ≥ α.
• If F0 ∈ Q∞(Λa) and ω(Λa) ∈ Q then k(ω(Λa)) = O( 1

α
), |daω(Λa)| ≥ α, and

|F0 − �q�(Λa)| ≥ α.
• Let �q�−1(F0) = {Λa1,d, . . . ΛaL,d}, ω(Λaj ,d) /∈ Q, 1 ≤ j ≤ L, and F0 ∈ Q∞(Λaj ,r),

ω(Λaj ,r) ∈ Q, j = 1, . . . L
�. Then the distance in R from F0 to the union

�

Λa∈J; distJ(Λa,(∪L
j=1Λaj,d)∪(∪L�

k=1
Λak,r))>β

Q∞(Λa)

is > γ.

Remark. This definition of an (α,β, γ)–good value is less restrictive than in our previous
work [17], since we now allow such a value F0 to belong to an interval Q∞(Λa) corresponding
to a rational torus satisfying the isoenergetic condition, provided that F0 is not too close to
the torus average �q�(Λa).

In the following proposition we shall make use of the fact, observed in the introduction,
that in the case when the subprincipal symbol of Pε=0 in (2.6) vanishes, the validity of The-
orem 2.1 extends to the range h

2 � ε = O(h2/3+δ).
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Pʀ����ɪ�ɪ�ɴ 7.1. – Assume that M is a simple analytic surface of revolution with a
parametrization (7.2), for which the rotation number ω(Λa) defined in (7.5) is not identically
constant. Consider an operator of the form Pε = −h

2∆+ iεq, where q is a real valued analytic
function on M , such that the torus averages function a �→ �q�(Λa) is not identically constant.
Let α, β, γ > 0, and fix 0 < δ � 1. There exists C > 0 such that if F0 is (α,β, γ)–good,
0 < h ≤

1

C
, and h

2
/C ≤ ε ≤ h

2/3+δ, then Theorem 2.1 applies uniformly to describe the
spectrum of Pε in the rectangle

�
−

ε

C
,

ε

C

�
+ iε

ñ
F0 −

ε
δ

C
, F0 +

ε
δ

C

ô
.

Remark. If ε = h, then the operator Pε in Proposition 7.1 is a semiclassical version of the
stationary damped wave operator [19], [29], [11].

Remark. In the corresponding discussion in subsection 7.2 of [17], it has been assumed that
the complex perturbation q in Proposition 7.1 is close to a rotationally symmetric one. This
additional assumption has now been removed, thanks to Theorem 2.1, at the expense of
weakening the final result and restricting the bounds on the strength ε of the non-selfadjoint
perturbation.

Appendix

Trace class estimates for Toeplitz operators

The purpose of this appendix is to derive a simple estimate on the trace class norm of a
Toeplitz operator with a compactly supported smooth symbol acting in a weighted L

2–space
of holomorphic functions on Cn. Indeed, the result will be seen to be a straightforward con-
sequence of the analysis of [23].

Let Φ0(x) be a real quadratic form on Cn and assume that Φ0 is strictly plurisubharmonic.
(In what follows we may think of the special case when Φ0(x) = 1

2
(Im x)2.) Let

(A.1) HΦ0 := Hol(Cn) ∩ L
2(Cn; e−

2Φ0
h L(dx)),

where L(dx) is the Lebesgue measure on Cn = R2n and Hol(Cn) is the space of en-
tire holomorphic functions on Cn. Then HΦ0 is a closed subspace of the space L

2

Φ0
:=

L
2(Cn; e−

2Φ0
h L(dx)), and from [23] we recall the following expression for the orthogonal

projection ΠΦ0 : L
2

Φ0
→ HΦ0 ,

(A.2) ΠΦ0u(x) =
C

hn

�
e

2
h ψ0(x,y)

u(y)e−
2
h Φ0(y)

L(dy),

where the constant C is real and ψ0(x, y) is the unique quadratic form on Cn

x
×Cn

y
which is

holomorphic in x, anti-holomorphic in y, and satisfies

(A.3) ψ0(x, x) = Φ0(x).

In the case when Φ0(x) = 1

2
(Im x)2, we have ψ0(x, y) = −

1

8
(x− y)2.
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Now let Φ ∈ C
∞(Cn; R) be such that Φ − Φ0 is bounded and sup

���∂Φ

∂x
−

∂Φ0
∂x

��� small

enough. Assume also that ∇kΦ is bounded for each k ≥ 2 and that Φ is uniformly strictly
plurisubharmonic, so that the set

(A.4) ΛΦ =

ßÅ
x,

2

i

∂Φ

∂x
(x)

ã
;x ∈ Cn

™

is an IR-manifold. Associated with the weight Φ we have the orthogonal projection

(A.5) ΠΦ : L
2

Φ
→ HΦ,

where L
2

Φ
= L

2(Cn; e−
2Φ
h L(dx)) and HΦ = Hol(Cn) ∩ L

2

Φ
. If now p ∈ C

∞
0

(Cn), we intro-
duce the corresponding Toeplitz operator

(A.6) Top(p) = ΠΦpΠΦ = O(1) : HΦ → HΦ.

Our goal is to show that Top(p) is of trace class as an operator on HΦ and to estimate its
trace class norm. In doing so, it is convenient to recall from [23] the asymptotic description
of the Bergman projection ΠΦ, as h → 0.

Let ψ(x, y) ∈ C
∞(Cn

x
× Cn

y
) be almost holomorphic in x and almost anti-holomorphic

in y at the diagonal diag(Cn

x
× Cn

y
), such that ∇k

ψ is bounded on C2n for each k ≥ 2 and
with

(A.7) ψ(x, x) = Φ(x).

Then we know that

(A.8) Φ(x) + Φ(y)− 2Re ψ(x, y) ∼ |x− y|
2
,

uniformly for |x− y| ≤ 1/C, for C > 0 large enough.
It follows from [23] that there exists f(x, y;h) ∼

�∞

j=0
fj(x, y)hj in C

∞

b
(C2n), with

suppf ⊂ {(x, y); |x− y| ≤ 1/C}, C � 1, with f(x, x;h) real, 1/C ≤ f0(x, x) ≤ C, and
with

(A.9) ∂x,yf = O (|x− y|
∞ + h

∞) ,

such that if

(A.10) �ΠΦu(x) =
1

(πh)n

�
e

2
h (ψ(x,y)−Φ(y))

f(x, y;h)u(y) L(dy),

then

(A.11) ΠΦ = �ΠΦ + R.

Here

(A.12) R = e
Φ
h �Re

−
Φ
h ,

where �R is a negligible integral operator in the sense of section 3 of [23]. In particular, it
follows from [23] that R = O(h∞) : L

2

Φ
→ L

2

Φ
. It follows furthermore from the results of

Section 3 of [23] that the operators Rp and pR are of trace class as operators HΦ → L
2

Φ
, with

the trace class norm O(h∞).
When estimating the trace class norm of Top(p) on HΦ, we may therefore replace ΠΦ by

�ΠΦ, and consider the corresponding operator fiTop(p) = �ΠΦp�ΠΦ. The factorization

(A.13) fiTop(p) =
Ä
�ΠΦp1

ä Ä
p2

�ΠΦ

ä
,
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where p = p1p2 and p2 = |p|
1/2, shows that it suffices to prove that the operators �ΠΦp1 :

L
2

Φ
→ HΦ and p2ΠΦ : HΦ → L

2

Φ
are of Hilbert-Schmidt class. Now the reduced kernel of

�ΠΦp1, in view of (A.10), is equal to

(A.14)
1

(πh)n
f(x, y;h)p1(y)e−

Φ(x)
h e

2
h (ψ(x,y)−Φ(y))

e
Φ(y)

h ,

and using also (A.8) we immediately see that the square of its L
2–norm over C2n is bounded

by

(A.15)
O(1)

h2n

��
|p(y)| e−c|x−y|

2
/h

L(dy)L(dx) =
O(1)

hn
|| p ||L1 , c > 0.

It follows that �ΠΦp1 : L
2

Φ
→ HΦ is of Hilbert-Schmidt class with

(A.16) || �ΠΦp1 ||HS =
O(1)

hn/2
|| p ||

1/2

L1 .

Since a similar argument applies to p2
�ΠΦ, we get the following result.

Pʀ����ɪ�ɪ�ɴ A.1. – When Φ ∈ C
∞(Cn; R) is a strictly plurisubharmonic function sa-

tisfying the general assumptions of the beginning of this section, let ΠΦ : L
2

Φ
→ HΦ be the or-

thogonal projection. If p ∈ C
∞
0

(Cn), then the Toeplitz operator Top(p) = ΠΦpΠΦ : HΦ → HΦ

is of trace class and we have

(A.17) ||Top(p) ||tr ≤
O(1)

hn
|| p ||L1 +O(h∞),

where the implicit constant in O(h∞) is a continuous seminorm of p on the Schwartz space
S(Cn).

Remark. Rather than working on all of Cn, we could also consider an open domain Ω ⊂ Cn,
with p ∈ C

∞
0

(Ω). Then Proposition A.1 remains valid if we replace Cn by Ω in (A.1), with
ΠΦ still being the orthogonal projection on all of Cn. In the main text, we work on HΦ(Ω),
where Ω ⊂ Cn

/2πZn is open, and Proposition A.1 then still holds.
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