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THE CAUCHY PROBLEM FOR WAVE EQUATIONS
WITH NON LIPSCHITZ COEFFICIENTS;

APPLICATION TO CONTINUATION OF SOLUTIONS
OF SOME NONLINEAR WAVE EQUATIONS

BY FErruccio COLOMBINI anp Guy METIVIER

ABSTRACT. — In this paper we study the Cauchy problem for second order strictly hyperbolic

operators of the form
Lu:=3%"",_ 0y, (a]-,kayk u) + 3 5—01biOy,u + Oy, (cju)} + du = f,

when the coefficients of the principal part are not Lipschitz continuous, but only “Log-Lipschitz” with
respect to all the variables. This class of equation is invariant under changes of variables and therefore
suitable for a local analysis. In particular, we show local existence, local uniqueness and finite speed of
propagation for the noncharacteristic Cauchy problem. This provides an invariant version of a previ-
ous paper of the first author with N. Lerner [6]. We also give an application of the method to a con-
tinuation theorem for nonlinear wave equations where the coefficients above depend on u: the smooth
solution can be extended as long as it remains Log-Lipschitz.

RESUME. — On considére le probléme de Cauchy pour des équations d’onde strictement hyperbo-

liques :
Lu = 377 ko Oy (@60 ) + 35_o{bsy;u + By, (egu)} + du = f,

quand les coefficients de la partie principale sont seulement “Log-Lipschitz” en toutes les variables.
Cette classe d’équation est invariante par changement de variables et est donc une classe naturelle pour
une ¢tude locale intrinséque. En particulier, on montre I’existence locale, I'unicité locale et la vitesse
finie de propagation pour le probléeme de Cauchy non caractéristique, donnant une version invariante
d’un résultat antérieur du premier auteur avec N. Lerner [6]. Pour les équations non linéaires ou les
coefficients ci-dessus dépendent de u, la méthode d’estimations permet de montrer que les solutions
réguliéres se prolongent en solutions réguliéres aussi longtemps qu’elles restent Log-Lipschitz.

1. Introduction

In this paper we study the well-posedness of the Cauchy problem for second order strictly
hyperbolic equations whose coefficients are not Lipschitz continuous:

(L.1) Lu := Z 9y, (aj k0, u) + Z{bjayju + 0y, (cju)} +du = f.

7,k=0 7=0
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178 F. COLOMBINI AND G. METIVIER

In Section 6, we will present an application of the methods developed for the analysis of the
Cauchy problem to nonlinear wave equations, where the various coefficients above depend
on u. It is known that the smooth solution can be extended as long as they remain Lipschitz
continuous. We prove that this condition can be weakened, and that smooth solutions remain
smooth as long as they remain Log-Lipschitz. We refer to Section 6 for a precise result and
focus now on the analysis of the Cauchy problem.

The question of the well-posedness of the Cauchy problem for the wave equation with
nonsmooth coefficients has already been studied in the case that the second order part has
the special form, in coordinates y = (¢, z):

n
(1.2) 0 — Y 0n,(a;k0x,u)
k=1

and the Cauchy data are given on the space-like hyperplane {¢ = 0}. In this case, when the
coefficients depend only on the time variable ¢, F. Colombini, E. De Giorgi and S. Spagnolo
([5]) have proved that the Cauchy problem is in general ill-posed in C*° when the coefficients
are only Holder continuous of order o < 1, but is well-posed in appropriate Gevrey spaces.
This has been extended to the case where the coefficients are Holder in time and Gevrey in z
([14, 8]). Moreover, it is also proved in [5] that the Cauchy problem is well posed in C*° when
the coeflicients, which depend only on time, are “Log-Lipschitz” (in short LL) : recall that a
function a of variables y is said to be LL on a domain 2 if there is a constant C such that

(1.3) la(y) — a(y)| < Cly — /| (1+ [Logly — /1] )

for all y and 3’ in Q. In [5], it is proved that for LL coefficients depending only on ¢ and for
initial data in the Sobolev spaces H* x H*~!, the solution satisfies

(1.4) u(t,") € HM  du(t,-) € H717M

with A depending only on the L L norms of the coefficients and the constants of hyperbolicity.
In particular, there is a loss of smoothness as time evolves and this loss does occur in general
when the coefficients are not Lipschitz continuous, and is sharp, as shown in [3].

The analysis of the C* well-posedness has been extended by F. Colombini and N. Lerner
([6]) to the case of equations, still with principal part (1.2), whose coefficients also depend on
the space variables z. They show that the Cauchy problem is well-posed if the coefficients
are LL in time and C* in z. They also study the problem under the natural assumption of
isotropic LL smoothness in (¢, z). In this case one has to multiply LL functions with distri-
butions in H*. This is well defined only when |s| < 1. Therefore, one considers initial data
in H* x H*~! with 0 < s < 1, noticing that further smoothness would not help. Next, the
loss of smoothness (1.4) forces us to limit ¢ to an interval where 0 < s — At, yielding only
local in time existence theorems. We also refer to [6] for further discussions on the sharpness
of LL smoothness.

However, the local uniqueness of the Cauchy problem and the finite speed of propagation
for local solutions are not proved in [6]. The main goal of this paper is to address these ques-
tions. Classical methods, such as convexification, lead one to consider general equations (1.1)
with LL coefficients in all variables. However, the meaning of the Cauchy problem for such
equations is not completely obvious: as mentioned above, the maximal expected smoothness
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THE CAUCHY PROBLEM FOR WAVE EQUATIONS 179

of the solutions is H* with s < 1 and their traces on the initial manifold are not immediately
defined. More importantly, in the general theory of smooth operators, the traces are defined
using partial regularity results in the normal direction; in our case, the limited smoothness of
the coefficients is a source of difficulties. It turns out that when s < 3, one cannot in general
define the traces of all the first order derivatives of «, but only the Neumann trace relative to
the operator, using a weak formulation of the traces.

ASSUMPTION 1.1. — L is a second order operator of the form (1.1) on a neighborhood Q2 of
y, with coefficients a; i € LL(Q), b; and cj in C*(RQ), for some a €]3,1[and d € L*°(Q). ©
is a smooth hypersurface through y and L is strictly hyperbolic in the direction conormal to 3.

Shrinking € if necessary, we assume that ¥ is defined by the equation {¢ = 0} with ¢
smooth and dy # 0. We consider the one-sided Cauchy problem, say on the component
Q4 = Qn{p > 0}. We use the Sobolev spaces H*(2N {p > 0}) for s € R. As usual, we say
thatu € H (Q2N{yp > 0}), if for any relatively compact open subset 21 of €2, the restriction
of uto Q; N {¢ > 0} belongs to H*(Q2 N {¢ > 0}). Similarly, u € HE,,,,(2N {p > 0}) if
u € H*(QN{p > 0}) has compact support in Q@ N {¢ > 0}.

The adjoint operator

(1.5) L'v:= Y 8y, (@j0y,v) — Y _{€;0y,v + 0y, (b;v)} + dv

7,k=0 j=0
has the same form as L. For u and v smooth, v compactly supported in Q N {¢ > 0}, one
has the (formal) identity

(1.6) (Lu,v) (u, L*v) = (Nyu,v) (u, N}v)

L2(Qy) L2(2y) L2(s) ~ L2(x)

where

Nyu = Z vi(a;r0ju) s,
(1.7 & ,

N,v = Z vj (Ej)kakv)m — Z Vj ((bj + Ej)v) s

g5k J
and v = (vp,...,v4) # 0is conormal to ¥ and the d-integration form on ¥ is chosen
accordingly.
LEmMA 1.2. — 1) Forall se€]l — o,1 + afanduw € H; (2N {p > 0}), all the

terms entering in the definition of Lu and L*u are well defined as distributions in
H QN {p > 0}).

loc

ii) Foralls€]3 l1+alandu € H
in H, _ 2(ZHQ)

loc

(QN{p > 0}), the traces N,u and N]u are well defined

loc

Proof. — This is due to multiplicative properties (see [6] and Corollary 3.6):

- Ifoe]-1,1[,a € LL(Q) and v € H] (2N {p > 0}), thenaveroc(Qﬂ{<p>0})
- Ifoe]—a,af,a € C*(2)andv € H] (2N {p > 0}), thenav € HZ (AN {p > 0}).

O

loc
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180 F. COLOMBINI AND G. METIVIER

Next, we recall that the subspace of functions with compact support in 2 is dense in
H°(Q) when |o| < §; moreover, for 0 < ¢ < 3 and for u € H°(£2,.) the pairing (u, v) r2(q)
for v € L? extends as the duality (u, v) o « g—-. With this remark in mind, the identity (1.6)
holds for smooth functions:

LemMmA 1.3, — Fors€]3, 1+ al u € H, (2N {p > 0}) andv € HE,,, (2N {p > 0}),
there holds

(1.8) (Lu,v) oo — (W L0) 0 = (N,,’LI,,Dz;’U)L2(E) — (Dsu, NLU)Lz(z)

witho = s — 3 €10, 1[and Dsu = ujs.

1

Proof. — It is sufficient to remark that for o € [0, 5[, the Green’s formula

<8ju’v>H—"><H" = —<u, ajv>chH_a + (l/ngu,ng)Lz(Z)
is satisfied for v € H,, .7 (2N {p > 0}) and v € H 7 (2N {p > 0}). O

PROPOSITION 1.4. — Let D(L; H®) = {u € H;, . (QNn{p > 0}) : Lu € L (2 N

loc

{¢ > 0})}. The operator Ny, and Ds, have unique extensions to | Jy-1_q D(L; H®) such that
3
—3

i) Forall s€]l — a,al, Nx. (resp. D) is continuous from D(L; H®) into H,,,
(resp. H-? (SN Q).
ii) forall s' €1 — a, [ such that ' < s and all v € Hf(;j;)(Q N{p > 0}) there holds
(1.9)
(Lu7 v)L2 — <u, L*v)HS, CH-o = <N,,u, ng>

(ZNQ)

H - 3xg3— <DEU’NLIIU>

1 1 .
H° 2 xH3Z ®

This proposition is proved in Section 5. Note that by Lemma 1.2, forv € H2:5  L*v €

comp?

’ ro. 3_ g/ 3 _ 1_ g
HZ2 . andthatu € H} if s’ < s. Moreover, Dxv € Hgomsp C chomsp and NLv € Hgomi) C

comp
1

5—S8
comp -

With this proposition, the Cauchy problem with source term in L? and solution in H*,
s > 1 — o, makes sense.

THEOREM 1.5 (Local existence). — Consider s > 1 — a and a neigborhood w of y in %.
Then there are s' €)1 — o, o and a neighborhood Q' of y in R*™ such that for all Cauchy data
(ug,ur) in H¥(w) x H"Y(w) near y and all f € L*(Q' N{p > 0}) the Cauchy problem

(1.10) Lu=f, Dsu=uy, Nsu=u,
has a solutionw € H* (¥ N {yp > 0}).
THEOREM 1.6 (Local uniqueness). — If's > 1 — aandu € H*(Q2 N {p > 0}) satisfies
(1.11) Lu=0, Dsu=0, Ngu=0,
then u = 0 on a neighborhood of y in N {y > 0}.

REMARK 1.7. — If the coefficients of the first order term L; (see (2.3)) are also LL, the
statements above are true with o = 1 since the coefficients are then C* for all o < 1. If the b,
are C* and the ¢; are C%, the conditions are 1 — & < « and the limitationon sis 1 — & < s.
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THE CAUCHY PROBLEM FOR WAVE EQUATIONS 181

REMARK 1.8. — Theorem 1.6 implies that if u is in H*® and satisfies Lu = 0 near y and if
u vanishes on {¢ < 0}, then u vanishes on a neighborhood of y (see Section 5.2). Moreover,
this local propagation of zero across any space-like manifold implies finite speed of propa-
gation by classical arguments which we do not repeat here. In particular, if Q' N {¢ > 0} is
contained in the domain of dependence of w, there is existence and uniqueness for the Cauchy
problem (1.10) in Q' N {¢ > 0}.

The proof of these results is given in Section 5 below. Because all the hypotheses are invari-
ant under smooth changes of coordinates, we can assume that in the coordinates y = (¢, x),
the initial surface is {¢ = 0}, and in these coordinates, we prove the existence and uniqueness
theorems. We deduce them from similar results on strips |0, T[xR™ and there, the main part
of the work is to prove good energy estimates for (weak) solutions. In this framework, the
results of Theorem 1.5 are improved by using non isotropic spaces, and by making a detailed
account of the loss of spatial smoothness as time evolves, as in [5, 6]. The precise results are
stated in section 2 below and are proved in section 4 using the paradifferential calculus of
J.-M. Bony, whose LL-version is presented in section 3.

2. The global in space problem

In this section we denote by (¢, ) the space-time variables. On Q = [0, 7p] x R™ consider
a second order hyperbolic differential operator

2.1) Lu= Lou+ Liu+ du
with
(2.2) Ly = 04000, + Y _(00;0s, + 02,0;0,) — Y 0,510z, ,
Jj=1 j,k=1
(2.3) Ly = body + 8hco + 3 _(b;0n, + Oz, ;).
j=1

The coefficients satisfy on Q = [0, Ty] x R

(24) Qjk = Qkj, G0, Gj, Ajk € LOO(Q) N LL(Q),
(25) b(), Co, bj, cj € LOO(Q) ﬂCa(Q),
(2.6) d e I°(Q),

for some a €3, 1[. Recall that the space LL is defined by (1.3), the semi-norm ||a|| .., being
the best constant C in (1.3). In addition, for « €]0, 1], C* denotes the usual Holder space,
equipped with the norm

_ ’
2.7) lallce = llal[Le + sup M
y#y’ |y -y |

When o = 1, this defines the norm ||a|| ;p in the space of Lipschitz functions.
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182 F. COLOMBINI AND G. METIVIER

We assume that L is hyperbolic in the direction dt, which means that there are 65 > 0 and
d1 > O such that for all (¢,2,€) € [0,Tp] x R® x R™

(2.8) ao(t,x) > do, Z (%H

1<j,k<n

A

>§j§k > &y €)%

ao
We denote by Ap, Az, and B constants such that for all indices
(2.9) llao, aj, a; k| o) < Are, llao,aj,a;kllLro) < ALz,

(2.10) 160 cos by, cjllca(ay < B, d]| oo () < B.

2.1. Giving sense to the Cauchy problem

Consider the vector fields

(2.11) X =agdi+ Y a;0,, = aoY.
j=1
Formal computations immediately show that the second order part of L can be written
(2.12) Lou= ZXu — Lyu
with
(2.13) Zv=0w+Y 0y (@), Lou= Y 0y (ajx0s,u),
j=1 Jok=1

4jk = ajk + ajar/ap, and &; = a;/ag. Consequently, it follows that

(2.14) Lu = (Z +bo)(X 4 co)u — Loyu+ Liu + du
with
(2.15) Liu=> bjdpu+ Y 0y, (Eu)
j=1 j=1
and

b():b()/ao, bj :bj—boaj, EjICj—&jCO, d:d—COEo.
The next lemma shows that these identities are rigorous under minimal smoothness assump-
tion on wu.

LEmMMA 2.1. — Suppose that w € HP(]0,T[xR"™) for some pel]l — a,af Then cu,
Xu and Lyu belong to HP~(]0, T[xR™). Moreover Lau is well defined as a distribution in
HP=2(]0, T[xR™).

Proof. — Both u and its space-time derivatives (0;u,d,,u) belong to H?~'. Following
[6], their multiplication by a bounded LL function belong to the same space (see also Corol-
lary 3.6). This shows that all the individual terms present in the definition of X« belong to
Hr~1 and those occurring in Lou and Z Xwu are well defined in H?~2 in the sense of distri-
butions.

Next we recall that the multiplication (b,u) — bu is continuous from C* x H?® to H*®
when |s| < . This implies that the terms bdu and d(cu) that occur in Lyu and Lyu belong
to HP~1 since p€ 1 — o, .

The last term du is in L?, thus in HP~ !, since ¢ € L>® and u € L?.
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THE CAUCHY PROBLEM FOR WAVE EQUATIONS 183

The identity (2.12) is straightforward from (2.2) since all the algebraic computations make
sense by the preceding remarks. O

Next we need partial regularity results in time, showing that the traces of u and Xwu at
t = 0 are well defined, as distributions, for solutions of Lu = f. This is based on the remark
that this equation is equivalent to the system

{Zv+l;ov:f/2u—l~/1u—du+f,

(2.16)
Yu+ éou =v/ag

with &, = ¢o/ao. The important remark is that, for this system, the coefficients of d;, both
for u and v, are equal to 1, thus smooth. Using the notationY = 90; +Y, Z = 0; + Z, the
system reads

O =—Zv— I;ov — Lou— Liu—du+ 7,
(2.17)

Ou=—Yu+ v/ag.

LEMMA 2.2. — Suppose that pe|l — o, and w € HP(]0, T[xR"™) is such that Lu €
LY([0,T]; HP~Y(R™)). Then u € L2*([0,T); H?(R™)) and du € L*([0,T); H°~1(R™)).
Therefore, u € C°([0,T); H*~2 (R™)).

Moreover, Xu € L2([0,T); H*~Y(R™)) and Xu € C°([0,T]); H°~ % (R™)).

In particular, the traces uj;—o and Xuj—qy are well defined in HP~3(R") and HP~% (R™),
respectively.

Proof. — a) We use the spaces H 5" of Hormander ([7], chapter 2), which are defined
on R'*™ as the spaces of temperate distributions such that their Fourier transform 4 satisfies
(14+72+€]2)*/2(14|€]?)* /20 € L2. The spaces on [0, T] x R™ are defined by restriction. In
particular, H%* ([0, T] x R") = L2([0, T]; H* (R")). Recall that 8,, maps H** to H**' =1
and that

(218) u € Hs,s” Ou € Hs,s/—l = que Hs+1,s'—1.

b) Foru € H?, the first derivatives of u, du, as well as L;u, Xu and v belong to HP~! =
Hr=10_ as well as their multiplication by a LL or C* coefficient. Thus Lou and Zv belong
to HP~1H~1 and

(2.19) ow=f+g, f=1LuecL*(0,T;H"), g H~17L
Let
t
vo(t) :/ f)at e c°(HP™Y).
0

In particular, v € L?(]0,T[; H?~') = H% =1 ¢ HP=19 since p — 1 < 0. Thus,v — vy €
HP10%and 8,(v —vg) =g € HP~L71. By (2.18) v — vy € H”»~* € H%P~ 1 since p > 0.

Next, reasoning for fixed time and then taking L? norms we note that the multiplication
by a LL or C* function maps L?(]0,T[; H*~!) = H%*~! into itself. Thus, by the second
equation of (2.17), dyu = —Yu +v/ag € H%*~1. This finishes the proof of the first part of
the lemma.

¢) In particular, it implies that v = Xu + bou € H%?~1. Thus, Zv and Lou which in-
volve multiplication by C® or LL function, followed by a spatial derivative, belong to H°*~2.
Therefore, the equation implies that in (2.19) g € H%*~2, Thus applying (2.18) tov — vy €
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184 F. COLOMBINI AND G. METIVIER

H%~1 implies that v — vy € H“*~2 c C°([0,T]; H*~2(R™)). Since |p — 1| < a and
u € C°([0,T); H°~2 (R™)), the product byu belongs to C°([0, T]; H#~2 (R™)). Since v is
also in this space, we conclude that Xu € C°([0, T]; H*~ % (R™)). O

REMARK 2.3. — If p > 1, then the multiplication by LL functions maps H /=3 into itself
and we can conclude that 8,u € CO([0, T); H*~ 3 (R™)), as well as all the first derivatives of u,
so that their traces at ¢t = 0 are well defined. When p < %, the continuity of d;u is not clear.
However, the trace of Xu has an intrinsic meaning, as a consequence of Proposition 1.4 (see
Section 5).

Lemma 2.2 allows us to consider the Cauchy problem

(2.20) Lu=f, wup=0=uo, Xuj=o=u1,
when f € Ups_o L2([0,T); H(R™) and u € 1o H?(J0, T[xR").

2.2. The main results

We first state uniqueness for the Cauchy problem:

THEOREM 2.4. — Ifu € |J,51-o H? (0, T[xR") satisfies
(2.21) Lu=0, wuy—=0, Xuy—=0

thenu = 0.

Asin [5, 6], we prove existence of solutions in Sobolev spaces having orders decreasing in
time. The proper definition is given as follows. The operators

(2.22) ID| and A :=Log(2+ |D|)

are defined by Fourier transform, associated to the Fourier multipliers |¢| and Log(2 + |£|)
respectively.

DEFINITION 2.5. — i) H*(R™) or H® denotes the usual Sobolev space on R™. Hs+ 2108
and H*~%1°¢ denote the spaces A~ 3H* and A* H® respectively.
i) Given parameters o and X\, we denote by C, »(T') the space of functions u such that for all
to € [0,T], u € CO([0, o], HO~*o).
i) Hyi110,7(T) denotes the spaces of functions u on [0, T with values in the space of tem-
perate distributions in R™ such that

(2.23) (1+ |D))7 MA*zu(t,-) € L*([0,T); LA(R™)).

iv) Lo A(T) denotes the space of functions u on [0, T with values in the space of temperate
distributions in R™ such that

(2.24) (14 |D))?Mu(t,-) € L*([0,T]; L*(R™)).
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THE CAUCHY PROBLEM FOR WAVE EQUATIONS 185

Co 2 (T) is equipped with the norm

(2.25) sup ||u(®)||go-x¢-
teo,T]

The norms in H, 1 1105(T) and Loz (T) are given by (2.23) and (2.24). Equivalently,
Hyt 1102 (T') and Lo (T') are the completions of C3° ([0, T] x R™) for the norms

T 1
2
(2.26) Ity = (IO g t)”
and
T
2.27) lullz, ) = / O —r"
0

THEOREM 2.6. — Fix 0 < 61 in]1 — a, «f. Then there are A > 0 and K > 0, which depend
only on the constants Ay, App, B, 6o, 01, 0 and 0, given by (2.8), (2.9) and (2.10), such that

for

(2.28) T = min {TO, 91; 9}

up € H'-O(R"™), uy € H°(R") and f = fi+ fo with f1 € L_g \(T) and f2 € H_g_ 1 105 (T),
the Cauchy problem (2.20), has a unique solution u € C1_o \(T)NH;_g 4 11052 (T) with Oyu €
CooA(T) N H_gi 1102 (T). Moreover, it satisfies

sup [u(t)131-0-xe + sup [0ru(t)|3_o_re
0<t/ <t o<t/ <t

t
(O g+ 10RO, ) 0
(2.29)

< K{luoll3-o + llur 3o

t 2 t
(18O e at) + [ oy}

Note that fort € [0,T],1 -6 — Xt >1—6; > 1 —a,sothat f € L'([0,T]; H~%2) with
01 < 62 < «. Similarly, u € L2([0,T]; H~%) and 0;u € L?([0,T]; H~%) implying that
u € H'=%([0,T] x R™). Therefore, we are in a situation where we have given sense to the
Cauchy problem.

REMARK 2.7. — This is a local in time existence theorem since the life span (2.28) is lim-
ited by the choice of A\. Thus the dependence of )y on the coefficient is of crucial impor-
tance. In case of Lipschitz coefficients, there is no loss of derivatives; this would correspond
to A = 0. Using the notations in (2.9) (2.10) and (2.8), the analysis of the proof below shows
that there is a function K(-) such that one can choose

Arr (ALoo )
2.30 A= K
( ) min{ég, (51} 0 60 ’
revealing the importance of the LL-norms of the coefficients and the role of the hyperbolicity
constant d; /dg. In particular, it depends only on the second order part of operator L.
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REMARK 2.8. — A closer inspection of the proof also shows that if the coefficients of the
principal part of L are (ao, a;, ;) = (ag + ag, a; + aj, a’, + af ) with (ag, aj, @’ ;) Lip-
schitz continous and (ag, a}, a7 ;) Log Lipschitz, with LL norm bounded by A7 ;, one can
replace Ary, by A7, in the definition of A. In particular if instead of (1.3) the coefficients

satisfy
(2.31) la(y) — a(y")] < Cw(ly — ¥'[)
with a modulus of continuity w such that

w(e)

2.32 lim ——— =
(2.32) 0t e|Loge|

)

they can be approximated by Lipschitz functions with errors arbitrarily small in the LL
norm. This can be done by usual mollifications, which will preserve the L>° bounds Ay,
and keep uniform hyperbolicity constants dy and d;. As a consequence, A can be taken
arbitrarily small, yielding global in time existence with arbitrarily small loss of regularity
(see Theorem 2.1 in [3] when the coefficients depend only on time).

3. Paradifferential calculus with LL coefficients

In this section we review several known results on paradifferential calculus and give the
needed extensions to the case of Log-Lipschitz coefficients.

3.1. The Paley-Littlewood analysis
Introduce x € C§°(R), real valued, even and such that 0 < x < 1 and
3.1) X(©) =1 forfel <11, x(€) =0 fore| >19.

For k € Z, introduce xx(¢) := X(z—kg), Xk () its inverse Fourier transform with respect to
& and the operators

Sku = X *u = xx(Dz)u,
Ag=Sy, andfork>1 Ap=S5r— Sp_1.
We note that A and Sy, are self adjoint. Moreover, by evenness, Xy is real, so that A and

S preserve reality. For all temperate distributions u one has

(3.3) u=> Agu.

k>0

(3.2)

The next propositions immediately follow from the definitions.
PRrOPOSITION 3.1. — Consider s € R. A temperate distribution u belongs to H*(R™) (resp.
Hs*zlos) if and only if
i) forallk € N, Apu € L?(RY).
i) the sequence 8 = 27| Agul| L2 (ray (resp. 6 = (k + 1)32% || Agul| 12 (ray) belongs to
/2(N).
Moreover, the norm of the sequence 8y, in £? is equivalent to the norm of w in the given space.

PROPOSITION 3.2. — Consider s € R and R > 0. Suppose that {uy}1 e is a sequence of
functions in L?(R%)such that:
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i) the spectrum of ug is contained in {|€| < R} and for k > 1 the spectrum of uy, is contained
in {2 <|¢] < R2F}
ii) the sequence 8, = 2°||ug||p2(ray (resp. 6 = (k + 1)i%2ks||Aku||L2(Rd)) belongs to
/2(N).
Thenu = 3" uy belongs to H*(R%) (resp. H*21°8). Moreover, the norm of the sequence
Oy, in €2 is equivalent to the norm of u in the given space.
When s > 0, it is sufficient to assume that the spectrum of uy, is contained in {|§| < R2k}.

Next we collect several results about the dyadic analysis of LL spaces.

PROPOSITION 3.3. — There is a constant C such that for all a € LL(R™) and all integers
k>0

(34 |Akallze < Ck27*[|al| .-

Moreover, for all k > 0

(3.5) lla — SkallL= < C(k+1)llallzr

(3.6) ISkallzip < C(llallo + (k+ 1l zr )
Ifa€)0,1[anda € C*(R™), then

(3.7) |Akallze < C27%*la]|ca.

Proof. — S}, is a convolution operator with X which is uniformly bounded in L'. Thus
(3.8) [Skallze < Cllal|Le-.

Moreover, since the integral of 0;X}, vanishes

0,(81)@) = [ 1) ale — ) — (o).
Using the LL smoothness of a yields
(3.9 [VSkalle < C(k +1)llal|LL.
This implies (3.6). The proof of (3.4) is similar (cf [6]). The third estimate is classical. O

3.2. Paraproducts
Following J.-M. Bony ([2]), for N > 3 one defines the para-product of a and u as
(3.10) TNy = i Sy_na Agu.
k=N
The remainder RY u is defined as
(3.11) RNy = au — TNu.

The next proposition extends classical results (see [2, 13]) to the case of LL coefficients
and Log Sobolev spaces.

ProPosSITION 3.4, — i) Fora € L*® ands € R, TN continuously maps H* to H® and
HsEzlog o HsE318 Moreover, the operator norms are uniformly bounded for s in a
compact set.
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i) Ifa € L°NLLand N' > N > 3, TN — TN' maps H¥+3108 into Hs+1=318 for all
s € R
iti) Ifa € L°NLL, N >3 ands€]0,1], RY maps H—5+3198 jpto Hl=5—318 gnd

(312) ||R;’1VUHH1 sfflOg — CHG’”LLHU’” s+% log

with C uniformly bounded for s in a compact subset of )0, 1].

Proof. — The first statement is an immediate consequence of (3.8) and Propositions 3.1
and 3.2.
Next, TNu — TN u = 3, vg with v, = (Sk_na — Sk_nva) Agu. By Proposition 3.3
lvkllze < Clk +1)27 " Ay 2.
With Proposition 3.2, this implies ii).

To prove iii) we can assume that V = 3. Then

(3.13) Ruu=Y AaSe—su+y Y Ajadu

k>3 k k—j|<2

Ifu € H-5t21°¢ then

YE

1850l < s
with {e;} € £2. We note that the sequence
3.14 VEH LG
( ) Z \/]T €5

is also in £2 with
1€kl < Cligjllee
with C uniformly bounded when s in a compact subset of ]0, +o00]. Thus
2ks
k+1

|Sk—3ullz2 < o

with {e,} € 2. Therefore,
|Apa Sk_sul|zz < CVE + 1 26Dk

Proposition 3.2 implies that the first sum in (3.13) belongs to H1 =5z los,
Similarly,

> Ajadu| < CVE+1267 Dk
lk—3j|<2 L2
with {e}} € £2. Now the spectrum of A;aAxu is contained in the ball {|¢| < 2%+3}; because
1—s > 0, Proposition 3.2 implies that the second sum in (3.13) also belongs to Hl-s—3log,
and the norm is uniformly bounded when s remains in a compact subset of [0, 1]. O

REMARK 3.5. — By ii) we see that the choice of N > 3 is essentially irrelevant in our
analysis, as in [2]. To simplify notation, we make a definite choice of N, for instance N = 3,
and use the notation 7, and R, for TV and RY.
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COROLLARY 3.6. — The multiplication (a,u) — au is continuous from (L N LL) X
Hetolos 1o Hst0l8 for se]—1,1[and § € {—3,0,3}.

Proof. — (See[6].) Property iii) says that R, is smoothing by almost one derivative in neg-
ative spaces, and therefore, for all o €] — 1, 1] it maps H° to H° for all o’ > max {c, 0} such
that ¢’ < min {0 + 1,1}. Combining this observation with 1), the corollary follows. O

In particular, we note the following estimate
(3.15) laull or 310 < Cllalloelull oy o + lallzzllullze)-

PROPOSITION 3.7. — Consider g = /(1 + |£|?) and (&) a symbol of degree m on R™. De-
note by Q = /(1 — A) and U the associated operators. If a € L> N LL, then the commutator
[Q*U, T,] maps H=5+21°8 jnto H1=-m=z1%8 gpd
(3.16) Q™" ¥, Tulul < Cllallze [lull

HI-m—gles = Ht 5 les
with C uniformly bounded for s € [0,1] and v in a bounded set.
Proof. — We use Theorem 35 of [4], which states that if H is a Fourier multiplier with
symbol h of degree 0 and if a is Lipschitz, then
I[H, al0s,ull > < CVaall [lull2-
For k& > 0, writing Ay u as sum of derivatives, this implies that
(3.17) I[H, alAull 12 < C27¥|[Vaal| o | Al Lz,

with C independent of k& and H, provided that the symbol h remains in a bounded set of
symbols of degree 0.

We now proceed to the proof of the proposition. Since ¥ and Q commute with Ay, one
has

(3.18) (@70, TuJu =) [Q7*¥, Si_sa] Agu.

k>3

Moreover, since the spectrum of Sy_zaAu is contained in the annulus 28—1 < |¢] < 2k+2,
it follows that

(3.19) [Q™°W, Sk_sa]Ag = 2P [Hy, S_sa]Ay
where the symbol of Hy, is
hi(€) = 2K g7 (©)9p(&)p(277¢)

and ¢ supported in a suitable fixed annulus. Note that the family {hs} is bounded in the
space of symbols of degree 0, uniformly in k, s € [0, 1] and % in a bounded set of symbols
of degree m. By (3.17), it follows that

I[Hg, Sk—sa]Agul e < C2FM==D VS, _salp ||ArulLz.
Together with (3.9) and Proposition 3.1, this implies that foru € H —s+3 log,
IQ™°Y, Sk—zalAgull < C(k + 1)lallLL [|ArullL2.

Using Proposition 3.2, the estimate (3.16) follows. O
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ProrosITION 3.8. — Ifa € L™ N LL is real valued, then (Ta - (Ta)*)ax]. and O, (Ta —
(T,)*) map Ht2198 jnro HS= 3198 qnd satisfy
I(Te = (Ta)") O, ull - 106 < Clallor el sy rces

(3.20) )
10z, (Ta — (Ta)*)ul < Cllallzz (lul

He "3 loe g+ log”

Proof. — The Sia are real valued, since a is real, and the Ay, are self adjoint, thus

(To)w =Y Ar((Sk—3a)u).

k=3
Therefore, one has
(To = (To)*) = _[Sk—30, Akl = Y _[Sk_sa, Ax]¥j
where U, is a Fourier multiplier with symbol 1, = v(27%¢) and 1 is supported in a suitable
annulus. Using again [4] (see (3.17)) yields
[[Sk—sa, Ak]0z; Wul L2 < C(k + Dl|allLr[[¥rul L2,
and a similar estimate when the derivative is on the left of the commutator. Since the spec-

trum of [Sy_3a, Ax]¥u is contained in an annulus of size ~ 2¥, this implies (3.20). O

PROPOSITION 3.9. — If'a and b belong to L°° N LL, then (T, Ty, — Tap) 0, maps Hs+3log
into H*~31°8 aqnd

(2D LTy = Tur)Oe,ull oy < C(llallzelbllze + bllzllallze ) ol oo g o

Proof. — By Proposition 3.4, it is sufficient to prove the estimate for any paraproduct 7.
One has

TéVTbNawju = Z Z Sk_Na Ak (Sl_Nb Alﬁwju)
k>N I>N

In this sum, terms with [I—k| < 2 vanish, because of the spectral localization of S;_ b A0, .
The commutators [Ag, S;— yb] contribute to terms which are estimated as in (3.18):

I[Ak, Si-N0] A0 ull L2 < C(k + DIbllor | Avul L2

If N is large enough, the spectrum of the corresponding term is contained in an annulus of
size ~ 2* and hence the commutators contribute to an error term in (3.21). Therefore, it is
sufficient to estimate

(3.22) >3 (S naSiwb— Sk n(ab)) Ak Arde,u.

k>N I>N
Again, only terms with |l — k| < 2 contribute to the sum. Using (3.5), one has
la — Sk-nallz= < C(k+1)27"|lallzz,
Ib = Si-nbllz= < C(k+ 1)27F[1Bl| L,
llab — Sk—n(ab)||L= < C(k+1)27"||abd|| L.
Thus
ISk-naSi-nb = Sp—n(ab)|| e < Clk+1)27*(|lallzo]bll e + llallze 16l zz)-
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Since the terms in the sum (3.22) have their spectrum in annuli of size ~ 2, this implies that
this sum belongs to H°~21°8 when u € H%*2 98, with an estimate similar to (3.21). O

3.3. Positivity estimates

The paradifferential calculus sketched above is well adapted to the analysis of high fre-
quencies but does not take into account the low frequencies. For instance, the positivity of
the function a does not imply the positivity of the operator T, in L2, only the positivity up to
a smoothing operator. However, in the derivation of energy estimates, such positivity results
are absolutely necessary. To avoid a separate treatment of low frequencies, we introduce mod-
ified paraproducts for which positivity results hold (we could also introduce weighted para-
products asin [10, 11, 12]).

Consider a nonnegative integer v and define the modified paraproducts

o0 o0
(3.23) PYu=" Suax(uh-3}0 Apu = SyaS,s0u+ Y Spa Apysu.
k=0 k=v
Then
v+2 v
(3.24) Plu—Tu=Y» >  AjaAwu
k=0 j=max{0,k—2}
and
(3.25) au—Plu= Y AjaSjiou.

j=v+1
The difference (3.24) concerns only low frequencies, and therefore the results of Proposi-
tions 3.7, 3.8 and 3.9 are valid if one substitutes P” in place of Ty, at the cost of additional
error terms. In particular, (3.24) and (3.25) immediately imply the following estimates:
LEmMma 3.10. — i) There is a constant C such that for allv, a € L> and all w € L?,
(3.26) [(Py — Ta)0,ull L2 + (|02, (Py — Ta)ull2 < C2%|lal| Lo [|ul| L2
ii) There is a constant Cy such that for all v, for alla € LL and all uw € L?,

(3.27) law — P2ullzs < Cov2™ [lall o llul 2.
We will also use the following extension of Proposition 3.8:

PROPOSITION 3.11. — Ifa € L®NLL is real valued, then (PY — (P%)*)0,, and 8,, (P¥ —
(P)*) map HO+2'¢ into HO~2'°¢ and
1Py = (PF)") 0zl yo-310s < Cllallzz(lull 013105 + llullz2),

(3.28) e
102, (Pa = (Pe)*)ull yo-310e < Cllallz(llull yos 3 10s + vlullz2).
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Proof. — One has
(PY — (PY)*)0z,u = [Sya, Syi2]0zu+ Y [Skat, Aps3]0a, u.
k>v
The sum over k is treated exactly as in the proof of Proposition 3.8 and contibutes to the
same error term. Using again Theorem 35 of [4], the L? norm of the first term is estimated
by
ClVeSyallrelullr: < C(v +1)llallpllull 2

and contibutes to the second error term in (3.28). When the derivative is on the left, the proof
is similar. O

Moreover, a comparison of P”u with au immediately implies the following positivity es-
timate.

COROLLARY 3.12. — There is a constant cy, such that for any positive LL-function a such
that § = mina(x) > 0, all v such that v2~" < cod/||a| L, andu € L?*(R™),

(3.29) Re(PYu,u),, > éIIUIIi»

Here, (-,-)z2 denotes the scalar product in L2. This estimate extends to vector valued
functions v and matrices a, provided that a is symmetric and positive.

3.4. The time dependent case

In the sequel we will consider functions of (¢, z) € [0,T] x R™, considered as functions of
t with values in various spaces of functions of z. In particular we denote by T,, the operator
acting for each fixed ¢ as T}, (y) :

(3.30) (Taw)(t) = > Sk—3(Dz)al(t) Ap(Dx)u(t).
k=3

The Propositions 3.4, 3.7, 3.8 and 3.9 apply for each fixed t. There are similar definitions for
the modified paraproducts PY; further, Lemma 3.10 and Corollary 3.12 apply for fixed ¢.

When a is a Lipschitz function of ¢, the definition (3.30) immediately implies that
(331) [8t7Ta] = Tataa [8157le1/] = Pgta'

When a is only Log Lipschitz this formula does not make sense, since J;a is not defined as
a function. The idea, already used in [5, 6], is that it is sufficient to commute 9; with time
regularization of a. In our context, this simply means that in (3.30), we will replace the term
Sk_3a, which is a spatial regularization of a, by a space-time regularization, namely Si_say
where ay, is a suitable time mollification of a. We now give the details for P¥, as we will need
them in the next section.

Introduce the mollifiers
(3.32) 2k (t) = 2¥5(2"t)

where y € C§°(R) is non negative, with integral over R equal to 1.
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DEFINITION 3.13. — Givena € L*™ N LL([0,Ty] x R™), define
(3.33) on(t,) = g = [ e = 9)als, ) ds

where a is the LL extension of a given by
(3.34) a(t,z) = a(0,z), t<0, a(t,x) = a(Tp,z), t>Tp.
Next, for fixed t, the operator P ) is defined by

(3.35) PYyu=S,a,S,42u+ Y Skax Apysu.
k=v

We denote by ]’;’;’ the operator acting on functions of (t,x) by (E’u) (t) = E’(t)u(t).

PrOPOSITION 3.14. — Let a € L* N LL([0,To] x R™). Then for each t € [0,To], the

operators Ry(t) = (P;(t) a(t))am], Ry(t) = 0, (P;’(t) a(t)) Rs(t) = ((P;’(t))* -

B )0y Ralt) = 0, (P —PY), and B (t) = (D, P2)(¢) map HO*4 198 into HO~ s
and there is a constant C such that for allt € [0,To] and fork =1,...,5,

(3.36) IRkl o1 10s < CllallLr (ull jos g 10s + lullz2).-
Proof. — a) First, we recall several estimates from [6]. For a € LL([0,Ty] x R™) the
difference a — a;, satisfies
(3.37) la(t, z) — ax(t,z)| < C(k+1)27F||a|LL,
(3.38) |0rar(t,z)| < C(k+1)lallLL,
with C independent of ¢ and z. In particular, we note that
(3.39) 1Sk (a(t) = ar(®) = < C(k +1)27"|la] L.
b) Inaccordance with (3.35), for I = 1,2, 5, we split R; into two terms

(3.40) Ry(tyu=Bu+ Hu, Hu=)Y w
k>v

with Bju spectrally supported in the ball of radius 2¥* and with wy, spectrally supported in
an annulus |£| ~ 2*. For Ry,

Biu = S,(a(t) — a,(t)) Sy420:,u, wi = Sk(a(t) — ar(t)) Apy30:;u.
With (3.39), this implies that
[ Brullz < C(v + D)lallLllull L2

and
lwellz: < C(k+1)|lallLrl|Arssullz2,
implying that

VEvull o3 oe < Cllallzzliul o s
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For R, the analysis is similar. One has
Bou = 8, (Su(a(t) — au(t)) Suqau), wi =8y, (Sk(a(t) — ar(t)) Artsu).

Thanks to the spectral localization, the estimates for Bou and wy, are the same as in the case
of Ry, implying that
(3.41) [Bzullz> < C(v + DlallLollullz
(3.42) 1zl oy 00 < Cllallzzllul jor g s
c¢) For k =5 we write (3.40) with
Bsu = 5, (0ta,(t)) Ayyou, wg = Sg(0rax(t)) Agtsu.
Thus the estimates (3.38) imply
[Bsullz> < C(v+ DllallLollullz
I Hsul o3 10e < Cllallzzliull or s

d) One has
Ry(t) = Ra(t) + R3(t) + ((Pis))" — Pasy) Oa; -
The third term is estimated in Proposition 3.11. The operators R; and R; = B + HJ are
estimated in part b), implying that R3 satisfies (3.36) for £ = 3. The proof for Ry = R} =
R} + Ry + 0, ((P:z/(t))* — P:(t)) is similar.
This finishes the proof of the proposition. O

LEMMA 3.15. — There is a constant Cy such that for any a € LL([0, To] x R"™), u € L2(R™),
v > 0andallt € [0,Ty)], one has

(3.43) la(tyu — P pullz2 < Cov2™"|lallzz [lullze.

Proof. — We have

au — ﬁ;’u = (a— S,a,)S,412u+ Z(a — Skay) Agizu.
k=v

Combining (3.5) and (3.39), we see that
la(t) = Skar(®)| L= < Ck27"|lal L.
This implies (3.43). O
The lemma immediately implies the following positivity estimate.

COROLLARY 3.16. — There is a constant cy, such that for any positive LL-function a such
that § = mina(t,x) > 0, all v such that v2=" < coé/||al| L1, and u € L*(R™),

y )
(3.44) Re(Pa(t)U,u)Lz(Rn) 2 5”””%2(]1%")'
The same result holds for vector valued functions u and definite positive square matrices a.

Finally, we quote the following commutation result which will be needed in the next sec-
tion.
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PROPOSITION 3.17. — Suppose that a € LL([0,Ty] x R™). Then A2 [F:(t),A%] and
[E;’( £ Aﬂ A? are bounded in L? and satisfy

% By %], +]| [P A2] ARl < COP2 s + vilalle) -

Proof. — Thanks to the spectral localization, the low frequency part S, a, S, 42 in E;’ con-
tributes to terms whose L? norm is bounded by
Cvlul 2.

The commutator with the high frequency part reads

> [A%, Spar] Agisu.

k>v
We argue as in the proof of Proposition 3.7 and write
(3.43) (A%, Spar]Aps = (k+1)* [Hy, Scar]Arss

where the symbol of Hy, is hy (&) = (k + 1)~ 2 (Log(2 + |£]))2 o(27%€) and ¢ is supported
in a suitable fixed annulus. Note that the family {h} is bounded in the space of symbols of
degree 0. By (3.17), one has

|[H, Ska(t)]A? Agysull s < C(k+1)27F(| Vo Spar(t) | 1 | Agul 2.

Since V. Sipar, = (Vi Ska) * Ji, its L norm is bounded by Ck||a|| 1. Adding up, and using
the spectral localization, these terms contribute by a function whose L? norm is bounded by
Cv22|al|pull -

When A2 is on the left of the commutator, the analysis is similar. O

4. Proof of the main results

4.1. The main estimate

We consider the operator (2.1) with coefficients which satisfy (2.4), (2.5) and (2.6). We fix
0 < 6, in |1 — «a, «f, and with X to be chosen later, we introduce the notation

(4.1) s(t) = 0+t
Recall that
(4.2) T = min {TO, 2! ; 9} .

Note that for t € [0,T1], s(¢t) remains in [0, 61] C]1 — «, .
We will consider solutions of the Cauchy problem

4.3) Lu=f, wup—o=uo, Xup—o=1u

with

4.4 u € H1—9+%10g,A(T)7 Opu € H—0+%log,)\(T)7
4.5) ug € H'79(R"), u; € H(R"),

(4.6) f=hi+rf, freloonT), fa€H_ g 115(T),
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Note that if u and f satisfy (4.4) and (4.6), then

4.7) w e L2([0,T); H=%), 8w e L*([0,T); H™%),
(4.8) f e L*[0,7); H %)

for all 65 €161, , so that the meaning of the Cauchy condition is clear.

The main step in the proof of Theorem 2.6 is the following:

THEOREM 4.1. — There is a Ag > 0 of the form (2.30) such that for X > Ao there is a
constant K such that: for all f, ug and uq satisfying (4.5) (4.6), and all u satisfying (4.4) solu-
tion of the Cauchy problem (4.3), one has

(4.9) u € Ci_gA(T), du € C_g(T).

Moreover u satisfies the energy estimate (2.29).

This theorem contains two pieces of information : first an energy estimate for smooth wu,
see Propositions 4.3 and 4.4. By a classical argument, smoothing the coefficients and pass-
ing to the limit, this estimate allows for the construction of weak solutions, see Section 5.2.
The second piece of information contained in the theorem is a “weak=strong” type result
showing that for data as in the theorem, any (weak) solution u satisfying (4.4) is the limit of
smooth (approximate) solutions, in the norm given by the left hand side of the energy esti-
mate, implying that u satisfies the additional smoothness (4.9) and the energy estimate. This
implies uniqueness of weak solutions.

The idea is to get an energy estimate by integration by parts, from the analysis of
(4.10) 2Re (Lu,e™2"(1 - A,) "W Xu)

where (-, -) denotes the L? scalar product in R extended to the Hermitian symmetric duality
H?xH~° forallo € R, and A, denote the Laplace operator on R?. This extends the analysis
of [6] where X = 0;. The parameter y is chosen at the end to absorb classical error terms
(present for Lipschitz coefficients) while the parameter A which enters in the definition of s(¢),
is chosen to absorb extra error terms coming from the loss of smoothness of the coefficients.

To prove Theorem 4.1, the first idea would be to mollify the equation. However, the lack of
smoothness of the coeflicients does not allow us to use this method directly and we cannot
prove that the weak solutions are limits of exact smooth solutions. Instead, the idea is to
write the equation as a system (2.16) for (u,v) and mollify this system. This leads to the

consideration of the equations:
Zv 4 bov = Lou — Liu — du + ,
@.11) { oo d

Yu+ éou=v/ap+g.

In this form, the commutator of spatial mollifiers with 9, are trivial, and we can prove that
weak solutions of (4.11) are limits of smooth solutions, (u®,v) with g¢ # 0, which thus do
not correspond to exact solutions u® of (4.3).
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Notations. It is important for our purpose to keep track of the dependence of the various
constants on the Log-Lipschitz norms. In particular we will use the notations dg, 1 of (2.8)
and Apr, Ap~, B of (2.9) (2.10). To simplify the exposition, we will denote by C, Ky and K
constants which may vary from one line to another, C' denoting universal constants depend-
ing only on the paradifferential calculus; Ky depending also on Ay~ /dp; K, still independent
of the parameters (v, €), but dependent also on &y, &1, 6o, 81 and the various norms of the
coefficients.

4.2. Estimating v

First, we give estimates that link v and 0, u.

LeEmMA 4.2. — Suppose that u satisfies (4.4). Then v = Xu + cou belongs to the space
H_g4 11051 (T) € L2([0,T}; H=%) and for almost all t,

[0, s+ 10x < CAL (0] 110w + 10D, 100)

4.12)
+C(Arr + B) (lu®)| gr--o + [10cu(®)l| -+ )

C
90O -rcr+ 106 < KoluOll oo + 5 10Ol s s
+ K (Ju@®l1- + 0@l g-00)-

There are similar estimates in the spaces H® without the % log,.
If in addition Lu = f with f satisfying (4.6), then 8;v € L*([0,T]; H~1%).

(4.13)

Proof. — a) First, we note that the multiplication (a, u) — au is continuous from (LN
LL)([0,T] x R™) x H_p1 1105 A (T") to H_g 1105, (T). Indeed, the corresponding norm es-
timate of the product is clear for smooth w, from (3.15) integrated in time. The claim follows
by density. In particular, this shows that agd;u and the a;0;;u belong to H_g, 1151 (T)-
Similarly, the estimate

(4.14) 16wl oo+ 3108 < CllouE) | gr-cr < Cllbllce Jul@) ]| gr-cco

implies that cou € H_g; 1145 A(T). Therefore v € H_g, 1105 5(T) and the estimate (4.12)
holds. The proof of (4.13) is similar, noting that

d

1 a; Co

Ou = —v — 0y u— —u.

t agp z—:l an ’ ap

=
b) Asin the proof of Lemma 2.2, we see that the equation implies that
d
at’U = f — Z azj (&j’l}) — I;O’U + IN/Q'LL — [Nqu - CZ’LL
j=1

The conservative form of L, and the multiplicative properties above show that
895,' (&j’l)), IN’ZU € H—G—l-{-% log,)\(T) - Lz([oa T]; H71701 )

Similarly, L, u and byv belong to H_g4 110g,(T) and thus to L?([0,T); H~%). The last term
@isin L2. Therefore, dyv—f € L2([0,T]; H~1=%). Since f € L*([0,T]; H%2) for 6, €61, af,
the lemma follows. U
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Next, we give a-priori estimates in the space H_g 1155 1 (T') N C—g,A(T) for smooth solu-
tions of

(4.15) (Z +é)v =1, Y= =20
We define the operators
(4.16) (Qu)(8) = (1= Ax)*O2u(t),  (Q0)(t) = e " (Qu)(1).
PROPOSITION 4.3. — Suppose that v € L%([0,T]; H') and 8;v € L*([0, T]; L?). Then the
Sunctions vy (t) := Qv belong to C°([0,T), L?) and satisfy

t
lloy (BI1Z2 + 2/0 17+ AN) 20 (&) 22 dt!

t t

4.17) < 2/ <(Z+ao)v(t’),Qi(t’)v(t’))dt’+ ||’U7(0)||%2 +/ Fdt
0 0

with
A _ ’

4.18)  F(t ><Koﬂ|| TN 12, ey + Ko@) s -

Proof. — a) Sincev € L2([0,T); H') and 8;v € L'([0,T]; L?), we have
(4.19) 0:Qyv = Q400 — (v + AN)Q4v € L([0,T]; L?)

as immediately seen using the spatial Fourier transform. Moreover, v, = Q,v € C°([0,T7; L?)
and satisfies the following identity

t
o5 ()72 = lv4(0)[1 72 = 2Re/0 (0:Qv, Qyv) dt!
Thus,

t t
2Re/ (v, ng) dt' =2 Re/ (@0, Qv) dt’
(4.20) 0 0

t
= llo;(O)N1Z> = o5 (0122 + 2/0 10y +A8) 20, (1) 122 dt’

b) Next we consider the terms 8,,(@;jv). We note that they belong to L?([0,T]; H~7)
for all ¢ > 0. In particular, since s(t) > 6 > 0, we note that the pairing

(0, (@5v), Q3v)
is well defined. We give an estimate for
t
2Re/ (0a, (@;v), Q2v) dt’,
0

using the decomposition
dj’l) = Taj’U —|— Ra],’U.
By Proposition 3.4 it follows
[Ra, vl 1-sr-3 10 < Cllasllrllvl o100

since s(t) € [0, 61] C]0,1[. Moreover,

||in(t)||Hs(t)+ og < Ce_MHU(t)HH—s(tH%log-
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Thus
(02, Ra; v(t), Q5 ()] < 1 Ra; vl oo 3106 Q5.0 yocors 3 10
< Cllagllee™ T2 i g o
It remains to consider
Re(0,,Ta,v, in) = Re(Q+ 0, Ts,v, Qyv)
= Re(0:,T5,Q,v, Qyv) + Re(04,[Q, Ts, v, Qyv).

Note that these computations make sense because v(t) € H'! and all the pairings are well
defined. Proposition 3.7 implies that

10z, [Q+, Ta; Jv(t)llo- 3 10g < Ce™ " @zl LLllv)l aty+ 4 10
and therefore
(4.21) (02, [Q~, Ta, J0(t), Qu(D)] < Cllajllre™ (%~ 4 roe-
Next, for v, (t) € H2%, we have
2Re(0z, T, vy, vy) = Re((0s,Ta, — 15, 0,) vy, v4)
= Re((Ta; — T7,)02,; v+, y) + Re([0z;, T;10z; 0,5 v4)-

Using Propositions 3.8 and 3.7, one can bound both terms by the right hand side of (4.21).
Adding up, we have proved that

t t
2Re / (02, (@;0), Q%v) dt'| < Cllayl|r / le="" AY20(t)]|2,— . dt.
0 0

¢) The zero-th order term is clearly a remainder, and the multiplicative properties imply
that

[(Gov(t), Q3u(t)) < K[o(t)]|F-aco-

d) We note that

llaj/aollcr < llasllcllil/aollze + llajll=<|lI1/aollzL

ALL ALooALL AL°°ALL
< 2
ST T ST o

since §g < ag < Ap-. Using identity (4.20) and the estimates of parts b) and c), implies
(4.17) and so the proof of the lemma is complete. O

4.3. Estimating V u

We now get estimates of V,u from the analysis of

(4.22) — 2Re(Lou, Q2 Xu) = — Y 2Re(0s,(ajk0, 1), Q2 X u).
j,k=1
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PROPOSITION 4.4. — Suppose that u € L*([0,T); H?) with &yu € L?([0,T); H'). Then
uy = Qyu € C°([0,T), H') and

1 t
3000y (1 + [ Gobull -+ AT e (¢ 2
0

(4.23) + t
< -2 Re/ (Lou, Q2v) dt’ + C AL || Vauy (0)]|7 +/ E(t)dt,
0 0
where
1
-2 2 2
(424) |E(t)| < KOALLALooe 7t(||u(t)||H1—s(t)+%log + %||Xu(t)||H—s(t)+%log)

+ Ke " (|lu()ll31-eco + 1 Xu@®)lFr--0)-

To simplify the exposition, we note here that all the dualities (-, -) written below make
sense, thanks to the smoothness assumption on u. This will not be repeated at each step.
Moreover, in the proof below, we assume that w itself is smooth (in time).

Proof. — a) We first perform several reductions. Using iii) of Proposition 3.4, one shows
that

<a:1:]~ (dj,kazk u)7 Q»ZyXu> = <az] (T&jyk 8mk u)a Q'zyXu> + El
with
(4.25) |E1(t)] < Cllag sl Lellfuy w1 —cors s 108 Q3 XU fyacors 4 1os-
Since ||@; x|l < KoArr < KoAprAre /0y, Eq satisfies (4.24). Similarly,
(0, (T3, . 0z, 1), Qin = (02, Q4T3 .0, u, Qy Xu)
= (al‘jT&j,kaﬁkQ’)’u7 Q’YXU> + E2
where E5 also satisfies (4.25), and hence (4.24).
b) Next we write
Xu=Ty0u+ Y Todpu+tr
and
P 1o 3 10e < CALL(Iu] 14 3108 + 106 a1 3 106) + CBIu(®)l| oo
Therefore, r contributes to an error term E3 = (0,75, ;, 0z, Qu, Q7) such that
|E3(t)] < e™ " KoApee[[u®)l] 1ot 3108 17O 1-acor- 3 108
Using (4.13) in the estimate of r, we see that
|E5(t)] < e KoApe App[w(t)l] 1oyt 3 10s
(IO s 3 0w 2 IX U 0 o+ K N0 120 + K| X )] -0 )

and hence satisfies (4.24).
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¢) Consider now the term

(02, T, 02, Qrtt; QyToyOru) = —(Ts; ;0\, Qytt, Or; Qy Ty Oru)

—(Ts, 02, @y, Ty Or;, @ Osu) + Ey
= —((Ta,)*T: aj, » O, Q1 am] Q,0u) + Ey
(T4 Ta, ,, 00, Qytt, O, QOsu) + Ey + Es

= —( Taoa; Oz, @yt O, Q-0wu) + Es+ Es + Eg

where E,, E5 and Eg are estimated by Proposition 3.7, 3.8 and 3.9 respectively. They all
satisfy

|Exk(t)] < Ce‘27tA||u(t)||H1,s(t)+%log||8tu(t)||H,s(t)+%log.
with A = || || rllaollze +11@j,kl = laol| Lz < KoArL~Arr. Againusing (4.13) to replace
Osu by Xu, one shows that these errors satisfy (4.24).
Similarly
<aw, aj, kazk Qwua Q'yTalazlu> = _<Talﬁj,kaka’Yu7 8$L8$j Q"r“) + E7
where E7 satisfies

(4.26) |E7(t)] < Ce " KoAp~App||u(t)|?

Hl-s(t)+3 log
thus (4.24).
d) Introduce the notation
4.27) wj = Oz, Qu.
Because @; , = dx,;, we have
Re(Ty,a; , Wk, Oz, w;) + Re(Tya, ,wj, O, wk)
= Re(((Ta,a;,,) " 0z) — Oz, Tasa; , JWr, wj) = Eg
Using Propositions 3.8 and 3.7, one shows that Eg satisfies

|Es(t)] < Cllawa; klloollw; Ol yor 3 o 1wk 044 106

and therefore Fg also satisfies (4.26) thus (4.24).

e) It remains to consider the sum
(4.28) S:=Re Y (T, 00, Qyu,0r,Qy0u)
k=1

with b; , = aod;r = aoa; i + ajai. By the strict hyperbolicity assumption (2.8), it follows
forall¢ € R”

n

D bik(t,2)€iék > 001 €)%,
G k=1
Therefore, we can use Corollary 3.16. Since ||b; x|z < 2ALArr, there exists an integer v,
with
2v ALooALL

(4.29) e
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such that for all ¢ € [0, Tp] and (w1, ..., wy,) in L2(R™), the following estimate is satisfied

800
(4.30) Re > (B, ywe,wy) > ~5||w]7.

k=1
From now on we fix such a v and use the notation P, in place of P}.
Using Lemma 3.10 and Proposition 3.14, we see that

||a$ijj,kwk - 8$j ij,kwkHHO—% log S C”bjak”LL (”wk”HO#—% log + K||wk||L2)

Therefore
S=Re > (P, 0, Qyu,0s,Q00u) + By
j.k=1
where

|Eo(t)] < Ce™ [1byrllLrllul] a-acor g ros 10 Ly sors g 106
+ 6_27tyK||U(t) | 1o ||3tu(t)||H,S<t>+% log *
Using (4.13), implies that Eq satisfies (4.24).
Next, we use Proposition 3.14 to replace 0., P, , by %(%j (Py; ,, + (Py,,)*) at the cost of
an error Eq similar to Eg.
At this stage, we commute ), and J; as in (4.19). Using the notation (4.27), yields

25= Y Re((B,, + (P,,)"wr, Orw;)
7,k=1

4.31) +9 ) Rel(By,, + (P, ) )wi, wy)
Jk=1

+A ) Re((Py,, + (Pr, ) wi, Aw;) + 2Eg + 2Eo.
j,k=1

We denote by S', 2 and S2 the sums on the right hand side.

f) The symmetry b; ;, = by ; implies the identity

gl — jtjggl Re(ﬁbjykwk,wj) + E1,
where E = 2"3 Re([ﬁbj,k,at]wk,wﬁ
Jk=1
is estimated using Proposition 3.14:
[E1i(t)] < Clibsrllz (o) yos g0 + vllwlizz) 1wl o4 10
< Ce™ by kll L llw®l e g ros (2@ 1ot 3 r0s + VI 1200
and therefore satisfies (4.24). Moreover,
Re(ﬁ,j’kwk,Awﬁ = Re(EjykA%wk,A%wj) + Re(A% [A%,Ejyk,]wk, w;)
Re((Py, ) *wy, Aw;) = Re(AZwy, Py, , ASw;) + Re(wy, [Py, ,, AZ]AZw;).

J
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We use Proposition 3.17 to estimate the commutators and

§3 =2 3" Re(Py,  Afwy, ATw;) + Enp
jk=1

where |E1o(t)| < Kfw®)[7: < Klu®)[7:--
Summing up, we have shown that up to an error which satisfies (4.24), the quantity (4.22)

under consideration is equal to

n n
&S Re(B, wi )+ Y 2Re(By, w, )
(4.32) PR e
+A ) 2Re(Py,  AZwy, Arwy).

Jk=1
By (4.30), the last two sums are larger than or equal to dod [|w(t) (|32 and 061 ||w(t)||? 041 tog
respectively. Similarly, integrating the first term between 0 and ¢ and using (4.30) give control
of %Hw(t)ﬂp, finishing the proof of (4.23). O

4.4. A-priori estimates for the solutions of (4.11)

The proof of Theorem 4.1 is based on a-priori estimates for smooth solutions of the sys-
tem (4.11).

THEOREM 4.5. — There are Ay > 0 of the form (2.30) and ~o such that for X\ > Ao and
v > o the following is true: for alluw € L*([0,T); H%) and v € L?([0,T); H) with du €
L2([0,T); HY) and 8;v € L*([0, T); L?) and for all parameters \, y and all t < T, the following
holds:

oy (1
sup e~ (56061||u(t’)||i[1_5(t/) +||U(t,)||§1—s<t'>>
0<t/<t

t
#0081 € s + N )
t
(433) [ QI g + N )
t
< CALw [u(O) s + [0(0) -0 +2Re [ (7,Q20) at
0

t
+ K/ e 2 ”g(t/)Hl—s(t)—% Iog”U(t,)”l—s(t)—i-% log dt,a
0

with f = Zv + bov — Lou + Liu + du € Ll([O,T];HO‘/_l), g = Yu+ éu —v/ag €
L2([0,T); H) for all o/ < cv.

Proof. — We compute the integral over [0, t] of Re(f, Q2v). Proposition 4.3 takes care of
the first term 2 Re(Zv + bov, Q?Yv). We split the second term into three pieces

(Lou, Q2v) = (Lou, Q2 Xu) — (Lou, Q2(a0g)) + (Lau, Q2(cou))
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and use Proposition 4.4 for the first piece. The multiplicative properties imply that
[{Lau(t), Q3 (a0g) ()] < KN9(8)ll1—s(t)- 3 rogl L2l ]| Z1—s(t)+ 1 10
< K191 —at— 3 108101 — a0y 3 10gs
and
(Eu(t), Q2 (cow) ()] < Kut) l1—so) | E2u(t) | -1-s(0
< Kllu(®)l - -

Next, using the multiplicative properties stated in Corollary 3.6 for the products l;j Oz, u and
Oz, (€ju), and the embedding L2 c H~* for the term du, we see that

I(Zyu + du) (@)l - < Klul)] ga-oco-
Thus
(L1 + d)u(t), Q2u(t))| < Ku(®)[1—swllv(®)| —s)
< K ([lu@®l7- s + 0@l )

Proposition 4.4 gives an estimate of V u. We also need an estimate for . The identity (4.20)
applied to u yields

t
e‘Q'YtIIU(t)H?{-smﬂL/ e N, i g 1o + AN -oc0) At
0

2

I%,
t

= [|u (0)[|% o0 +2Re/0 (Opu, Q) dt'.

Next, we use the inequality
(0w, Q3u)| < C(llu®)I3-eco + 10u@®) 1 F-1-c0)-
In addition, we note that the second equation in (4.11) yields
[18su() | -1 < K (0@ 5o + Nu)F-o0) + 9O 1-c0-

We add the various estimates and use Propositions 4.3 and 4.4 to obtain a final estimate.
On the left hand side we have

o (1

@34 sup e (Saob ) + 0 -cr)

t
(4.35) +7 /0 e (G001 w1 ra-ecy + 0E) N7y A

t
(4-36) + )‘/0 e—Q’Yt (6061||u(tl)”i1175(t/)+% log + ||v(t/)||2—s(t')+%log) dtl‘

On the right hand side, we find the initial data

(4.37) CA [4(0) 210 + 1O 0,

the contribution of f

t
(4.38) 2Re/0 (f(t),Qyv(t))dt,
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an estimated contribution of g

t
(439) K/ 672’# ”g(t/)Hl—s(t/)—%log”u(tl)nl—s(t’)-&-%logdt/7
0

and two types of “remainders”:

a0 Kodrpdue [ (O o gl ) 8
and

(4.41) K /0 t €72 () 31—y + 10 o)) -

If

(4.42) A > 2K0AL6LO$ and A\ > 2K0ALL6‘§1Loo

the term in (4.40) can be absorbed by (4.36). Note that this choice of ) is precisely the choice
announced in (2.30), with a new function Ky of Ay~ /do. Finally, if «y is large enough, the
term (4.41) is absorbed by (4.35), finishing the proof of the main estimate (4.33). O

4.5. Proof of Theorem 4.1

From now on, we assume that A > Ao and v > ~q are fixed, so that the estimate (4.33)
holds. Consider u, f, ug and u; satisfying the equation (4.3) and the smoothness assumptions
(4.4), (4.5), (4.6). Consider v = Xu + cou, which by Lemma 4.2 satisfies

(4.43) v e H79+%10g, o € Ll([(LT];}:]'_1—91)7 Vjp=o = Vg € 1:1’—«97

with vg = agp—ou1 + Y a;jt=00z, %0 + Cojt=ouo. In particular, (u,v, f) and g = 0 satisfy
(4.10).

We mollify 4 and v and introduce, for ¢ > 0,
(4.44) ue = Jou, ve=Jow with J.=(1—-¢eA,)""
For all e > 0, (4.4) and (4.43) imply that

Ue € L2([0aT]aH2)v atue € L2([0aT]aH1)v
ve € L*([0,T], HY), 8w, € L'([0,T], L?),

(see (4.7)). Moreover, using the spatial Fourier transform, one immediately sees that u. con-
verges to u in Hi—g x(T") and v, converges to v in H_g x(T).

Define

fe = 2Zve + BOUs - ‘Z/QU‘E + -Z/lue + Juea

ge = Yue + éoue — ve/ag.

LEMMA 4.6. — Assumptions (4.4) and (4.6) imply that f. = f1.e + fa,e with fi. — fi1 in
L_g(T) and fa,e — fainH_g_ 1105 x(T). Moreover, gc — 0inHy_g_ 1155 \(T).
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Taking this lemma for granted, we finish the proof of Theorem 4.1. We use the estimate
(4.33) for (ue,v.), together with the estimates

[(F=(8), Q2u()] < Ce™ " (|| fre(®) | zr-=co llve (B) || zr-=co
+ ”f2,e(t)||Hfs(t)—% log ”Ua (t)||H—s(t)+% log)
and

t
<O( [ e (e lg-ron dt') sup e et -
0

0<t’'<

' / (o, @20) dt’

1 1
— 4 2 _ ’ 3
+C(e D o a3 10e dt’) (e 2o (2 s 10e) dt’) .
This implies that there is a K such that for all ¢ > 0, one has

sup [luc(t) |15y + sup [loe(#)[I5 .o
0<t/<t 0<t/<t

t
N2 2 /
e+ I )
(4.45) t
< K{ Ol + 0o OBy oo+ [ e,y
0

t 2 t
([ 10O cr )+ [N gt

In addition, there are similar estimates for the differences (ue — u,r, ve — ver). Since u(0) =
Jeug and v, (0) = J.v converge to ug and vy in H'~5) and H—*©) respectively, the es-
timate implies that u. is a Cauchy sequence in H;_g,(7) and in C°([0,¢]; H~*®) for all
t € [0,T]. Therefore, the limit w in Hq_g (1) also belongs to C1_g (T'). Similarly, v, is a
Cauchy sequence in H_g »(T) and in C°([0, t]; H=*®) forall t € [0,T] and v € C1_g A (T).
In addition, we can pass to the limit in (4.45) proving that

sup [lu(t)|%:-.ory + sup [o(t)1 5.0,
0<t/' <t o<t/ <t
t
[ (O g+ IO 1) 2
< K{HUO”ip—s(o) + [lvoll3--co0

t 2 t
(0RO at) + [ IR i}

Using the equation Yu+é&u = v/ag and the estimate (4.13) of Lemma 4.2 to bound the time
derivative 0,u, we see that O,u € C_p »(T') and that the energy estimate (2.29) is satisfied.

(4.46)

Therefore, it remains only to prove the lemma.

Proof of Lemma 4.6. — By assumption (4.6), f = fi+ feand J. f1 — fiin L_p »(T) and
Jef2 = f2in H_g_1105(T). Therefore, it is sufficient to prove that the commutators

[27 JE]U7 [-Z27J6]u7
[EOaJE]v’ [iflaJE]u» [J’ JE]’U,,
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converge to 0in H_g »(7") and that the commutators
Y, Je]u, [éo, Jelu, [1/ag, Je]v

converge to 0 in Hi_g (T"). We note that J. commutes with 9, in Z and Y. Thanks to (4.4)
(4.43) and to the conservative form of Z and Lxg, we see that there are four types of com-
mutators to consider :

(4.47) [a,JJw — 0 in Hy_gA(T), whena € L® NLL([0,T] x RY), w € H_gA(T),
(4.48) b, J.Jw— 0 inH_gA(T), whenb e C*([0,T] x RY), w € H_g(T),
(4.49) [c,JJw — 0 in Hy_pA(T), whenc € C*([0,T] x RY), w € Hi_gx(T),
(4.50) [d,J.Jw — 0 in H_gA(T), whend € L*®([0,T] x RY), w € Hy_o(T).

The first commutators [a, J.] = [T, Je] + Ra, Je — JeR, are uniformly bounded from
H_g x(T) to Hi_p,(T): this is true for the first term by Proposition 3.7, since the J. form
a bounded family of operators of degree 0; for the last two terms, this follows from Propo-
sition 3.4. Moreover, [a, J.Jw — 0in L%([0,T]; H?) for all ¢ < 1, and thus also in H;_g_,
when w is smooth and @ € L* N LL. By density, this implies (4.47).

For the commutators (4.48), we note that they are uniformly bounded from H_g »(T) to
H_g (T"). This is true for both terms bJ. and J.b since s(¢) remains in a compact subset of
[0, . Because [b, J.Jw converges to zero in L2([0,T); H) for all o < «, when w is smooth
and b € L*° N LL, the convergence in (4.48) follows. The proof for (4.49) is similar.

Finally, we note that [d,J.Jw — 0 in L2([0,7] x R%), hence in H_g \(T) when
d € L*>(]0,T] x R%) and w € L2([0,T] x RY), thus in particular when w € Hy_¢(T). O

4.6. Existence and uniqueness

Proof of Theorem 2.4. — Assume that u € H*(]0, T[xR") with s€]1l — a, [, T < T,
and satisfies

4.51) Lu=0, wuy==0, Xup==0.

We want to prove that u = 0.

Fix6 < 6;in]1 —a, o[ with1—6 < s. Let A and T” be the parameter and time associated
to them by Theorem 4.1. Note that they depend only on 6, 6,, the norms Ay~ and Ay, in
(2.9) and the constants of hyperbolicity §; and §; in (2.8).

From Lemma 2.2, we know that u € L%([0, T]; H*(R")) and d,u € L?([0,T); H*~(R"))
and therefore, on [0, T'] x R, u € Hy_gy1105,x and Ot € H_g 145 sinCE s > 1 -0 — AL
By Theorem 4.1, u satisfies the energy estimate (2.29) on [0, 7"], and since the right hand side
vanishes, u = 0 for ¢ < T”. By a finite number of iterations, u vanishes for ¢t < T. O

Proof of Theorem 2.6. — On [0, Ty] xR9, the coefficients of L, can be approximated in >
and C* for all o < 1 by C™ functions which are uniformly bounded in L* and in LL, in
such a way that the hyperbolicity condition (2.8) remains satisfied. Similarly, the coeffficients
of L, can be approximated in L and C* for all o < a by smooth functions which are
uniformly bounded in C*. Further, the coefficient c can be approximated in L? by functions

loc
uniformly bounded in L°°. This defines operators L* with C*° coefficients which satisfy (2.8),
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(2.9) and (2.10) uniformly in € and converge to the coefficients of L in the sense described
above.

We fix the parameter A > g, where )\ is given by Theorem 4.1. Recall that T" is then given
by (4.2). Consider Cauchy data ug € H'~% and v, € H~% and a source term f = f; + f» with
fi € Logx(T)and f> € H_p_110g,x- We can approximate these data in the corresponding
spaces by C* functions u§, u3, f; and f5, compactly supported in z. The strictly hyperbolic
problems with smooth coefficients and smooth data

(4.52) Lfu® = ff + f3, up—o =u5, X u =0 =uf

have a unique smooth solution u¢, compactly supported in z.

By Theorem 4.1, the energy estimate (2.29) is satisfied with a constant K independent of .
Therefore the family {u°} is bounded in H;_g 1 14, 5, thus in L*([0, 71, H'~%1) and the fam-
ilies {0;u} and {X*u} are bounded in H_4, 1104 », hence in L2([0,T), H%). Therefore,
extracting a subsequence if necessary, u¢ converges to a limit u, weakly in L2([0, T, H*~%)
and in H*([0,T], H=%). Moreover, u € Hi_ g4 11og,n and Q. € H_p 1164 5. Thereis no
difficulty in passing to the limit in the equation in the sense of distributions: all the products
are well defined and involve one strong and one weak convergence. Thus Lu = f.

The weak convergence in L2([0, 7], H'=%)n H([0, T], H %) implies the strong conver-
gence in C°([0, T]; H;,?*) and therefore the convergence of Ufy_ tO ujy—o in H, 1261, Therefore,
Ujt=0 = UO-

Using the equation as in Lemma 2.2, we prove that the family v* = X®u® + cju®, which
converges weakly to v = Xu + cou, is bounded in L2([0, T], H=%) n H'([0,T], H~1~%).
Thus ”ft:o converges to vj;—g in Hl;ffl . Hence vjy—¢ = u1 +cojy=ouo implying that Xuj;—g =
Uq.

By Theorem 4.1 the solution w also belongs to C1_g » with 0;u € C1_p,» and satisfies the
energy estimate (2.29). O

5. Local results

We consider the equation (1.1) together with an initial hypersurface ¥ satisfying Assump-
tion 1.1. This section contains the proofs of Proposition 1.4 and Theorems 1.5 and 1.6.

5.1. Change of coordinates. Traces

Consider a smooth change of variables y = x(¢) and for a function u let & denote u o x.
Then

ayju oX = Zw]kayku_zayk Jku (Zayk jk)u

with ¢}, = (8,,4x) 0 x) and ¢ = x~*. Thus
(5.1) Lu=Li

where L has the same form as L and satisfies Assumption 1.1.
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If v(y) is conormal to ¥, then #(§) = tx/(y)v(x(7)) is conormal to ¥ = x~(X). Using
the notations (1.7), for smooth functions, the Neumann traces associated to (L, v) and (L, D),
are linked by the relation

(5.2) (N,u) o x = Ny
The Green’s formula (1.9) can be transported by x, taking into account the Jacobian factors:
(53) (fag)Lz(Q+) = (fan)L2(5+)

with J = | det x'|. This relation extends to the duality H* x H~* for |s| < 1. In particular,
comparing the Green formula for L and L tested on smooth functions implies that :

(5.4) (L)*(Jo) = JL*v
(5.5) N} (J®) = JeNjv
where Jy is the Jacobian of X5

As a corollary, the statement of Proposition 1.4 is invariant by smooth changes of vari-
ables and therefore can be proved in any suitable system of coordinates.

—1 _3
Proof of Proposition 1.4. — a) Uniqueness. We prove thatifug € H,,_? andu, € H,,*
satisfy

(ua, ng>HS,s a_, — (u, N’Ev>H =0

1 1
2xH?2 ST2xH?2™?®

forall s’ €]1 — o, 5[ such that s’ < sand allv € Hfgnf;(Q N{p > 0}), then ug = u; = 0.

It is sufficient to prove that for vy and v; in C§°(Q N ), there is v € CyT*() such that
vz, = vg and N/ v = v;. This can be done in local coordinates y = (¢, ) where ¥ = {t = 0}
and this amounts to solve

V|t=0 = V0, O¢vjt=0 = gov1 + Z 9;0z,v0 + hvg

where go, . . ., gq belong to LL(€Q2) and h belongs to C%(Q).

b) Existence. According to the discussion above we may assume that we are working in
coordinates y = (t,x) such that y = (0,0) and ¥ = {t = 0}. The conormal direction is
v = A(z) dt and the Neumann trace for smooth functions is:

Nyu = X (Xu)ji—o
where X is the vector field (2.11).

Lets€]l — a,al. Foru € Hy (Q2N{t > 0}) such that Lu € L?(Q). Local versions of

Lemmas 2.1 and 2.2 imply that for T > 0 small and w relatively compact in Q N {t = 0}
(5.6) u € HY71(]0, T[xw)), Xu € HY*72(]0, T[xw)).

Indeed, the proofs are identical, using local multiplicative properties and local versions of the
spaces H 55" The trace operator w — wj;—o has a unique extension as a bounded operator
from H'7 (|0, T[xw) to H°2 (w). Therefore, the traces uj—o and Xup,—q are well defined

in H~2 and H*" % respectively. We show that, in these coordinates, Green’s formula (1.9)
holds with

(5.7 Dsu = uji—o, Nyu = M Xu)p—o-
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This follows immediately by integration by parts, the only difficulty is to check that at each
step we have enough smoothness to justify the computations. We sketch here the main points
of the discussion. First, recall that for w € H'° and v € H»~1~7 compactly supported in
[0, T[xw:

(58) <atw» v>L2(a) = _<w7 atv>L2(U+1) + <w\t=0) ’U|t=0>Ha+% XH—%—aa
and forw € H%*1 and v € H%~7 compactly supported in [0, T[xw:
(5.9 <amjw’v>L2(cr) = —(w, aﬂﬁjv>L2(g+1)

where (-, -)r2(s) denotes the duality L?([0,T], H°) x L?([0,T]; H~°) and the traces are
taken in the sense indicated above.

Consider v € H2;# ([0, T[xw), where s’ €]1 — a, s[with s’ < s. Using (5.6), (5.8), (5.9)

comp
and the multiplicative properties of functions in LL-functions and H?, one obtains that

<ZX'“v'U>L2(s—2) = (Xu, Z*U>L2(s—1) + (XUjt=0, Vt=0) o3, 3>

H° " 2xH2
_ — %
= <Yuaa'OZ U>L2(s—1) + <Xu|t=07v|t=0>Hs—%xH%—s)

(recall the definitions (2.11) and (2.13) of X, Y and Z). Let w = apZ*v € H*~*'. Because
1—s>0ands <s,we HO1=%' ¢ H%1=5 Therefore,

(0, u,) 0.0, (@ v)

L2(s—1) _< >L2(s)'

The term (0;u, w) is more delicate since O,w € H —s"and s’ > 0. However, as in Lemma 1.3,
one can use the duality H ({t > 0}) x H='({t > 0}) for 0 < ¢’ < 3 and foru € H1=1
and w € H!=5 (5.8) can be extended as

comp?
G100 (Bt w) gy = (00 g g+ (Wemor ) et e
noticing that the trace wj;—o belongs to H: s c H:—=.

Repeated use of (5.9) implies that for the tangential second order part L, defined in (2.13),
there holds

<z2ua U>L2(572) = <u7 (ZQ)*U>L2(S)'

First order terms are treated similarly, and summing up we get that

(LU’U)LZ({t>0} = (u, L) . ({¢>01) x H-' ({t>0})

5.11
( ) = <Xu\t:07v|t:0> - <U|t:07X/U|t:0>

3 3 1 1
H° 2 xH3 ® H* 2xH2"°

In the computations above, the underlying measure in {t = 0} is the Lebesque measure dz.
The surface measure associated to the conormal A dt as in (1.6) is A~'dxz. This proves that
the identity (1.6) is proved with Dy, and N,, given by (5.7), as claimed. O
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5.2. Local existence

Choose @, a smooth map from R*" to 2, with ®(y) = y on a smaller neighborhood
and ®(y) = 0 for y large enough. Changing the coefficients according to the rule af(y) =
a(®(y)) we obtain an operator L which coincides with L on Q, satisfies the regularity con-
ditions (2.4) to (2.6), and the hyperbolicity conditions (2.8) globally on R**™,

Fix s > 1—a. Without loss of generality for the statement of Theorem 1.5, we can assume
that s < . We are going to apply Theorem 2.6 to the operator Lf withd = 1 —s€]1 —a, af.
Choosing 6; €16, a], this theorem provides us with A and 7' = (6; — )/\. We fix Q' =
Q nA{|t| < T}.

Suppose that ug and u; are Cauchy data in H*(w) and H*~!(w) respectively, on a neigh-
borhood w of 0 in R™. There are restrictions to w of functions ug € H*(R™) and ug €
H*~1(R") respectively. Suppose that f € L2(Q' N {t > 0}). We extend it, for instance by 0,
to f* € L%([0,T] x R™). By Theorem 2.6, the Cauchy problem

(5.12) Liut = ft, uftzo =uh,  (X*uf)mo = ol

has a solution u* on [0, 7] x R™, which belongs in particular to L?([0, T]; H*) with s; =
1 — 6; and such that 8;u € L?([0,T); H**~!). In particular, u* € H*'(]0,T] x R") and by
restriction to Q' defines a solution of (1.10).

5.3. Local uniqueness

To prove Theorem 1.6, we first reduce the problem to proving a theorem of propagation
of zero across the surface {t = 0}.

LEmMMA 5.1. — Suppose that s > 1 — a andu € H*(Q N {t > 0}) satisfies
(5.13) Lu=0, wuy—0=0, Xuy—=0.
Then the extension ue of u by 0 for t < 0 satisfies
(5.14) ue € H® and Lu, =0
on a neighborhood Q4 of 0.

Proof. — If the coefficients were smooth, this would be immediate. We check that we have
enough smoothness to extend the result to our case.

We can assume that Q =] — T, T[xw. From Lemma 2.2 (localized in space) we know
thatu € L%([0,T]; Hy,.(w)), thus its extension u, € L*([-T,T); Hi .(w)). Moreover, d;u €
L2([0,T); H};' (w)) and by assumption uj;—o = 0. Therefore, d;u, is the extension of d,u by
0 and thus belongs to L?([—T, T; H ' (w)). In particular, u, € Hf, (] — T, T[xw).

Letv = Xu + cou € L*([0,T]; H ' (w)) and let v, € L2([-T,T]; Hi,'(w)) denote its
extension by 0. The first step implies that Xwu, is the extension of Xu and therefore v, =
Xue + coue. Write the equation as

(5.15) O = P(u,v),
where P involves only spatial derivatives (see (2.17)). Morever, we have seen in the proof

of Lemma 2.2 that P(u,v) € L?([0,T]; HS *(w)). Since by assumption the trace of v van-

loc

ishes, this implies that 9;v, is the extension by 0 of d;v, thus the extension of P(u,v), that
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is P(ue,ve). Since ve = Xue + coue, this means that u, satisfies the equation on Q =
-7, T[ x w. O

We now finish the proof of Theorem 1.6. We suppose that u € H*(Q N {t > 0}) satisfies
(5.13), with s > 1 — a and we denote by wu, its extension by 0 for ¢ < 0. We use the classical
convexification method, and consider the change of variables

(5.16) (t,x) > (5,3) i=t+ 2% &=u,

which maps the past {t < 0} to {f < |#|?}. Thus there is Ty > 0 such that the function @
deduced from u, is defined for £ < Ty and vanishes for £ < ||2. Moreover, decreasing Tp
if necessary, the operator L deduced from L is defined on a neighborhood Q of the origin
which contains the closed lens D = {|Z|> <t < Ty} and L = 0on QN {t < Tp}. Now
we extend the coefficients of L, as above, and obtain a new operator L, defined on R,
satisfying the assumptions of section 2, and equal to L on a neighborhood of D. Therefore,
on | — oo, To[xR™

(5.17) L'i=0, @€ H*, gz =0

Since @ vanishes in the past, the traces @;—_. and X ﬁaﬁ:_a vanish for all € > 0. Therefore,
Theorem 2.4 applied to the Cauchy problem for L* with initial time —e implies that & = 0
for all (, %) such that < Tp. Hence u = 0 on a neighborhood of the origin.

6. Application : a blow-up criterion for nonlinear equations

6.1. Statement of the result

In coordinates y = (¢, z), we consider a nonlinear wave equation:

O (ao(w)opu) + Z 9t (a;(u)dz,u) + Bz, (a;(u)dpu)

j=1
(6.1) . .
= Y 0n, (a0 ()0, u) + 84 (bo(u) + Y Ba, (bj(w)) = F(u).
Jik=1 Jj=1

ASSUMPTION 6.1. — The coefficients are smooth functions of u € R. Morever, for all
fixed u, the polynomial agt® + 23" a;7& — . a;1€;&k is strictly hyperbolic in the direc-
tion dt.

The Cauchy problem for (6.1) with initial data

(62) u‘t:O = Uy, 6tu\t:0 = U,

is well posed for ug € H*(R"™) and u; € H*~*(R™) when s > % + 1. The solution u belongs
to C°([0,T], H*)NC ([0, T]; H*~1). By uniqueness, there is a maximal time of existence T
andu € CO([0, T*[; H*)NC ([0, T*[; H*~'). Moreover, there is a classical blow-up criterion
for the creation of singularities:

4¢ SERIE — TOME 41 — 2008 — N° 2



THE CAUCHY PROBLEM FOR WAVE EQUATIONS 213

THEOREM 6.2. — Fors > § + 1 and data vy € H®, uy € H®™Y, if the maximal time of
existence is finite, then
(6.3) sup ||u(t)||Loo + ||3t,xu(t)“L(x, = +4o00.
0<t<T*
See e.g. [1]for an extensive discussion of blow-up for solutions of wave equations or [9] for
general first order quasilinear systems. Our goal is to show that one can replace the Lipschitz
norm in (6.3) by a LL -norm.

THEOREM 6.3. — For s > % + Land datawy € H*, uy € H*™', if T* < 400, then

(6.4) +o0.

OSS&pT* ”u||L°°([0,t]xR") + HUHLL([UJ]XR") -

The proof of Theorem 6.2 is based on the estimate :

THEOREM 6.4. — Fors > 5 +1, M € Rand Ty > 0 given, there is a constant C, such that
ifT <Toandu € C°([0,T[; H®) N CH([0,T[; H*1) is a solution of (6.1) such that

6.5 t Oy ou(t)||, . <M

5 s, 0] + 2000,

then

(6.6) sup ()] . + [|8ru(®)]] o < C([Juol o + [l gor)-
0<t<T

Similarly, the proof of Theorem 6.3 is based on the following estimate :

THEOREM 6.5. — For s > § + 1 and K € R, there are constants Ty > 0, Cy and X such
that if u € CO([0,T[; H®) N C*([0,T[; H*~1) is a solution of (6.1) such that

(6.7) 02,157’ ||uHL°°([O,t]><R") + H“HLL([O,t]xR") =K

then, for t < min{T, T},
(6.8) [u®)]] oo + [0eu®] gromsone < Ca(([Juoll . + [Jwall r)-

Proof of Theorem 6.3 assuming Theorem 6.5. — 1t is sufficient to prove that if u €
CO([0,T[; H*) N CL([0,T[; H*~1) satisfies (6.7) then,

(6.9) O;?ET u@®)|| 5. + ||Oeu(t)

| o1 < 00,

implying that the solution can be continued after 7.
Fix s; €]1 4 %, s[. Decreasing T1, we can assume that 77 < (s — s1)/A. Then (6.8) and
the Sobolev imbedding theorem imply that

sup [|u()]| o + [|06zu(®)]] o < CE) (o]l o + [l o)
0<t<Ty
where C'(K') depends only on K. Therefore, Theorem 6.4 implies that

oS0 Nl ge + 0@ s < O ol s e -2)-

The important point is that 77 depends only on K. One can repeat the analysis for the
Cauchy problem with initial time 77 arbitrarily close to T3, and after a finite number of
iterations, this implies (6.9). O
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6.2. Proof of the nonlinear estimate

We write the equation as a system

(6.10) O+ > 0y, (a;(wv) — Y O, (@405,u) = — Y 0x, (b;(w)) + F(u)
j=1 j,k=1 j=1
(6.11) 8tu+Z&j(u)8xju—|—Bg(u) =v/ag
j=1

with dj = aj/ag, ELjyk =ajk + djak, l~)0 = bo/ao, Ej = bj — ajEO.

Introduce a dyadic partition of unity in space, Y Ay (D,) = Id, as in (3.3). The first step
in the proof of Theorem 6.5 is an estimate of Axd;u and Agv:

PROPOSITION 6.6. — There is a constant C(T,K) such that if u € C°([0,T[; H®) N
CY([0, T[; H5~Y) is a solution of (6.1) which satisfies (6.7), then for all k > 0 andt € [0, T|:
(6.12) | Skdeu(t)|| oo + ||Skv ()] oo < C(T, K)(k+1).

This estimate is proved in the next subsection. Taking it for granted, we finish the proof
of (6.8).

We use the para-differential calculus introduced in Section 3. The para-linearization pro-
cedure is based upon the following result.

LEMMA 6.7. — Given s > s1 > 0, there is a constant C such that for ¢ € [s1,s], a €

He+21°8(R™) and v such that

(6.13) sup(k + 1)_1||Skv||Loo <K
k>0

there holds av — T,v € H~2'°8(R") and

(6.14) ||av—TavH < CK”a”

Hcr—%log H0+%10g'

Proof. — There holds av — Tov = > wg with wy = AgaSk42v. The spectrum of wy, is
contained in the ball {|¢| < 25+4} and
lwk|| . < CK(k+ 1)%2‘kssk||a||

H3+% log

with {ex } in the unit ball of £2. O
We also use the following nonlinear estimates :

LEMMA 6.8. — Suppose that u € Hot2'98(R") N L°(R™) and a is a C™ function on R
such that a(0) = 0. Then a(u) € HT2 °8(R") and

(6.15) [a@)]| yosg10s < C(llullzo) o]l yos o
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Proof of Theorem 6.5. — Consider a solution u € C°([0,T[; H*) N C*([0,T[; H*~!) of
(6.1) satisfying (6.5). Fix s; €] + 1, s[. We show that there are constants C and C;, which
depend only on K, such that for all A > 0 and ¢ < min {T, 55 }:

a1 + 06w fromsne
0 [ (oo 10 )
< (Ol + 905, )
o /Ot (Nt [y 3 106 + 9t [ Gyes-ner s ) '

Choosing A > C, this implies (6.8).

(6.16)

a) We use the para-differential calculus as in Section 4. In addition to the quantization
T, we use the modified operators P (3.23). Using Corollary 3.12, we can fix v and 6 > 0
depending only on K, such that for allt € [0,7] and w = (w1, ..., w,) € CFR"):

n

(6.17) Re Y (P, iy wesws) 12 > dl|wl7s
j k=1

with bj7k = ao(u)&j,k(u).
From now on we fix such a v and use the notation P, in place of P/. Lemma 3.10 can be
extended to all values of o and there is a constant C' such that for all¢t € [0, 7] and o € [s1, s]:

(6.18) I(Pa = Ta)w||go+r < C2%|al Lo [Jw]| -
Similarly
(6.19) (P = Ta)0x; || ot 3 10s < C27|al| Lo |w]] ot g 1o

Using Proposition 3.3 for the spatial derivatives 9, u and Proposition 6.6 for v, we deduce
from the lemmas above that

(6.20) v=Po,0u+Y Py 0y u+g
j=1

where a; stands for a;(u) and

©621) (9@l ere g s < CE (|0 s onie g s+ (O] o rer g )

In particular, this implies that

(6.22) 0@ -1 < CE) (100 s + 0| rase )

623)  [[o®)] yesone g s < COD ([0 s nvs g1 + 80| o s o)
Similarly,

(6.24) dpu + zn: P3;0p;u= P10+ g1
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where @; = G;(u) and

625 [an@l sy o < CO) (0O s on + [0O] i roe)-

With (6.23), this implies that g; also satisfies an estimate similar to (6.21).
Another consequence is that
Hsfkt> )

(6.26) 180 (®)]| -1 < CE) ([0 grosne + [[u®)]
627 [|0(®)] sy < CO (0] yemsores o + 100 | yesie g )

In the same vein,

(6.28) O+ 0, Pav— Y 0y Pi Opu=f
j=1 j,k=1

with

(6.29) ||f(t)||Hs 1-At— L log < C ||U t)||Hs+)\t+ log *

b) Multiply the equation (6.28) by (1 — A,)?5=1=*)y and integrate over R™. Using
proposition 3.8 to bound the terms (P;, 95, v, (1 — A;)2(=1=2)y) _implies that

(6.30)
d
Do+ 22001 res310x — 2Re( 5 00, Pay Oy, (1 - AgJ60)
J,k=1 L2
< CHf(t)Hqufxfé1og”v(t)’ F5—1-A 3 log + CHU ’ H1-At+ g log)
where C' depends only on K.

¢) Multiply the equation (6.11) and (1 — A;)2¢=A Y9, P;. 85, u. Using Proposi-
tions 3.8 and 3.9,

—Re( > 04, Ps, 00, (1 Ax)%**t)v)

§ k=1 L2
(6.31) N
= Re( Z Puya; Oz, u, (1 — Az)2(57>\t)3tamju> +E
§,k=1 L2
where

E(#) < CO) ([|0eu())[301- s e + O304 3100 )-

By Lemmas 6.10 and 6.11 below, the coefficients b; ;(u) = ao(u)d;,(u) satisfy estimates
similar to (6.12)

15k0bil| oo < (k + 1C(K).
Therefore Pa,s, , is of order Log(D) and

2Re( Z Poya; Oz, u, (1 — Ax)2(s_,\t)3tawj u)
gk=1 L2

7Re< Z PbJ kwk,w]> -}—2)\( Z PbJ ,c'wk,wj> + E;
L 2

J,k=1 L
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where E satisfies an estimate similar to E, w; = (1 — A,)®*™*9, wand @w; = (In(1 —

1
Ax)) 2 w]'.
Substituting these estimates in (6.30), integrating between 0 and ¢ and using (6.17) imply
(6.16) and the theorem follows. O

Notes on the proof of Theorem 6.4. — The proof of this theorem is quite similar, but much
simpler, using the para-differential calculus with no logarithmic loss when the coefficients are
Lipschitz continuous. ]

6.3. Proof of Proposition 6.6

For a C! function a bounded with bounded derivatives on [0, 7] x R™, introduce the norm:

63 ol = s0p(6+ 17 IS0l g1y

LEMMA 6.9. — There is a constant C such that if a = {a;, a; i, b;, c} is a set of C* W1
Sfunctions on [0, T] x R™ satisfying

d n
(6.33) 0fao =Y 0, (Oraj +b;) + Y 02,0505k + Oibo +c,
j=1 j,k=1
then
(6.34) 8.0l 2 < € (l1all . 0.2y + 12l Lo zyczny):

Proof. — a) Introducing a partition of unity, it is sufficient to prove the result when the
functions are defined and compactly supported in [0, +oo[ and | — oo, T']. The two cases are
similar, so we assume that the functions are defined for ¢ > 0.

Consider the extension operator

(6.35) Poalt, ) = {“(t"") £20,
aa(—t,z) + Ba(—2t,x) + va(—3t,z),t <0
with
at+pB+y=1, a+28+3y=-1, a+468+9y=1,
so that Pya, 8;Pya and 92 Pya are continuous at t = 0 when a is C? on {t > 0}. Moreover

8tP00, = Plata, 6,5P1b = P26tb,

where P; and P, are similar extension operators. Then, the equation (6.33) can be extended

to R'*™, with Pyag in place of ag, Pya; in place of a;, Pra; j in place of a; x, etc. Because

the extensions operators preserve continuity at ¢ = 0, there is a constant C' such that
HPlaHLoo(RHd) < CHaHLm({tZO})’ ||PlaHLL(]R1+d) < CHaHLL({tzO})'

Hence it is sufficient to prove the lemma when the functions are defined on R'*¢, which we
now assume.
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b) In addition to the partition of unity Id = >~ Ay (D,) consider a similar partition of

unity in time: 1d = Y~ A7 (D;). By Proposition 3.3,

HS;SPataOHLOO(RHd) <Clp+ l)HaHLL(]RHd)'
Similarly, for ¢ > p there holds

18655040z, 5| o < Cla+ 12 |Jas]] .

865500, 00, 0, || oo < C0+ 1)2°||ajr .-
Finally, using the equation (6.33) and similar estimates for the other functions, we see that
for g > p:

||A;Sp83a0HLm(Rl+d) < CKq2P.
For g > p, the spectral localization of A} implies that
| A%0:Spao| . < C279||AL07Spaol| .. < CKq2P~ 1.

Therefore, writing that S,0;a0 = S,S,0:a0 + 3,5, Ay SpOiao and adding the estimates
above, one obtains (6.34). O

To complete the proof of Proposition 6.6 we need the following estimates:

LEMMA 6.10. — Let F be s smooth function on R and let a € W1 ([0, T] x R™). Then
F(a) € W1>°([0,T] x R") and
(6.36) HF(a)”LL < C(llallz=) ||a||LL'

LEMMA 6.11. — Leta € WH*°([0,T] x R") and b € L*>([0,T] x R?). Then
(6.37) labll z < C(llall oo + llall ) 1ol -

Proof. — The proof of (6.360) is immediate from the definition of the LL semi-norm.
To prove (6.37) write

Sk(ab) = Sk(Sk420Skrab) + D D Si(ApalAgb).

p=2k+3 |g—p|<2

The first term satisfies
[85(Sk 120840 o < ClSksaal o [Sirabll, < COE+ D] o]
Next, note that for [p — ¢| < 2,
5x(Bp02 ), < CllApall | Aghl o < €0+ 1)227]Ja] 1]
Adding up for p > k + 3, this implies (6.37). O
Proof of Proposition 6.6. — Let Ay, A; and A, ;, be smooth functions on R, vanishing at

the origin, with derivative equal to ag, a; and a; x respectively. Then for C°([0,T]; H*) N
C([0,T); H*~1) solutions the equation (6.1) reads:

07 Ao(u) + Y 20,05, Aj(w) — > B, 0, Ao (u) 0y (bo(u))
Jj=1 j,k=1

(6.38) -
37 0,,(b5(w) = Flu).
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By Lemma 6.10, the Ag(u), A;(u) and A;x(u) are C* and their L> and LL norms are
bounded by C'(K). Therefore, by Lemma 6.9 there is a constant C (7', K) such that

18: Ao ()|, < C(T, K).
Since
1

ao(u) 0 Ao (u),

(3‘tu =

Lemma 6.11 implies that

|8sul|, < C(T, K).
Proposition 3.3 implies that

Haﬂva‘qu S CH“HLL'

Therefore, with Lemma 6.11 this implies that v also satisfies the estimate (6.12) and the proof
is now complete. ]
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