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THE CAUCHY PROBLEM FOR WAVE EQUATIONS
WITH NON LIPSCHITZ COEFFICIENTS;

APPLICATION TO CONTINUATION OF SOLUTIONS
OF SOME NONLINEAR WAVE EQUATIONS

 F COLOMBINI  G MÉTIVIER

A. – In this paper we study the Cauchy problem for second order strictly hyperbolic
operators of the form

Lu :=
∑n

j,k=0 ∂yj

(
aj,k∂yku

)
+
∑n

j=0{bj∂yju + ∂yj (cju)} + du = f,

when the coefficients of the principal part are not Lipschitz continuous, but only “Log-Lipschitz” with
respect to all the variables. This class of equation is invariant under changes of variables and therefore
suitable for a local analysis. In particular, we show local existence, local uniqueness and finite speed of
propagation for the noncharacteristic Cauchy problem. This provides an invariant version of a previ-
ous paper of the first author with N. Lerner [6]. We also give an application of the method to a con-
tinuation theorem for nonlinear wave equations where the coefficients above depend on u: the smooth
solution can be extended as long as it remains Log-Lipschitz.

R. – On considère le problème de Cauchy pour des équations d’onde strictement hyperbo-
liques :

Lu :=
∑n

j,k=0 ∂yj

(
aj,k∂yku

)
+
∑n

j=0{bj∂yju + ∂yj (cju)} + du = f,

quand les coefficients de la partie principale sont seulement “Log-Lipschitz” en toutes les variables.
Cette classe d’équation est invariante par changement de variables et est donc une classe naturelle pour
une étude locale intrinsèque. En particulier, on montre l’existence locale, l’unicité locale et la vitesse
finie de propagation pour le problème de Cauchy non caractéristique, donnant une version invariante
d’un résultat antérieur du premier auteur avec N. Lerner [6]. Pour les équations non linéaires où les
coefficients ci-dessus dépendent de u, la méthode d’estimations permet de montrer que les solutions
régulières se prolongent en solutions régulières aussi longtemps qu’elles restent Log-Lipschitz.

1. Introduction

In this paper we study the well-posedness of the Cauchy problem for second order strictly
hyperbolic equations whose coefficients are not Lipschitz continuous:

(1.1) Lu :=
n∑

j,k=0

∂yj
(
aj,k∂yku

)
+

n∑
j=0

{bj∂yju+ ∂yj (cju)}+ du = f.
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178 F. COLOMBINI AND G. MÉTIVIER

In Section 6, we will present an application of the methods developed for the analysis of the
Cauchy problem to nonlinear wave equations, where the various coefficients above depend
on u. It is known that the smooth solution can be extended as long as they remain Lipschitz
continuous. We prove that this condition can be weakened, and that smooth solutions remain
smooth as long as they remain Log-Lipschitz. We refer to Section 6 for a precise result and
focus now on the analysis of the Cauchy problem.

The question of the well-posedness of the Cauchy problem for the wave equation with
nonsmooth coefficients has already been studied in the case that the second order part has
the special form, in coordinates y = (t, x):

(1.2) ∂2
t −

n∑
j,k=1

∂xj
(
aj,k∂xku

)
and the Cauchy data are given on the space-like hyperplane {t = 0}. In this case, when the
coefficients depend only on the time variable t, F. Colombini, E. De Giorgi and S. Spagnolo
([5]) have proved that the Cauchy problem is in general ill-posed in C∞ when the coefficients
are only Hölder continuous of order α < 1, but is well-posed in appropriate Gevrey spaces.
This has been extended to the case where the coefficients are Hölder in time and Gevrey in x
([14, 8]). Moreover, it is also proved in [5] that the Cauchy problem is well posed inC∞ when
the coefficients, which depend only on time, are “Log-Lipschitz” (in short LL) : recall that a
function a of variables y is said to be LL on a domain Ω if there is a constant C such that

(1.3) |a(y)− a(y′)| ≤ C|y − y′|
(

1 +
∣∣Log|y − y′|

∣∣)
for all y and y′ in Ω. In [5], it is proved that for LL coefficients depending only on t and for
initial data in the Sobolev spaces Hs ×Hs−1, the solution satisfies

(1.4) u(t, ·) ∈ Hs−λt, ∂tu(t, ·) ∈ Hs−1−λt

with λ depending only on theLL norms of the coefficients and the constants of hyperbolicity.
In particular, there is a loss of smoothness as time evolves and this loss does occur in general
when the coefficients are not Lipschitz continuous, and is sharp, as shown in [3].

The analysis of the C∞ well-posedness has been extended by F. Colombini and N. Lerner
([6]) to the case of equations, still with principal part (1.2), whose coefficients also depend on
the space variables x. They show that the Cauchy problem is well-posed if the coefficients
are LL in time and C∞ in x. They also study the problem under the natural assumption of
isotropic LL smoothness in (t, x). In this case one has to multiply LL functions with distri-
butions in Hs. This is well defined only when |s| < 1. Therefore, one considers initial data
in Hs ×Hs−1 with 0 < s < 1, noticing that further smoothness would not help. Next, the
loss of smoothness (1.4) forces us to limit t to an interval where 0 < s − λt, yielding only
local in time existence theorems. We also refer to [6] for further discussions on the sharpness
of LL smoothness.

However, the local uniqueness of the Cauchy problem and the finite speed of propagation
for local solutions are not proved in [6]. The main goal of this paper is to address these ques-
tions. Classical methods, such as convexification, lead one to consider general equations (1.1)
with LL coefficients in all variables. However, the meaning of the Cauchy problem for such
equations is not completely obvious: as mentioned above, the maximal expected smoothness
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THE CAUCHY PROBLEM FOR WAVE EQUATIONS 179

of the solutions isHs with s < 1 and their traces on the initial manifold are not immediately
defined. More importantly, in the general theory of smooth operators, the traces are defined
using partial regularity results in the normal direction; in our case, the limited smoothness of
the coefficients is a source of difficulties. It turns out that when s ≤ 1

2 , one cannot in general
define the traces of all the first order derivatives of u, but only the Neumann trace relative to
the operator, using a weak formulation of the traces.

A 1.1. – L is a second order operator of the form (1.1) on a neighborhood Ω of
y, with coefficients aj,k ∈ LL(Ω), bj and cj in Cα(Ω), for some α∈ ] 1

2 , 1[ and d ∈ L∞(Ω). Σ

is a smooth hypersurface through y and L is strictly hyperbolic in the direction conormal to Σ.

Shrinking Ω if necessary, we assume that Σ is defined by the equation {ϕ = 0} with ϕ
smooth and dϕ 6= 0. We consider the one-sided Cauchy problem, say on the component
Ω+ = Ω∩{ϕ > 0}. We use the Sobolev spacesHs(Ω∩{ϕ > 0}) for s ∈ R. As usual, we say
that u ∈ Hs

loc(Ω∩{ϕ ≥ 0}), if for any relatively compact open subset Ω1 of Ω, the restriction
of u to Ω1 ∩ {ϕ > 0} belongs to Hs(Ω ∩ {ϕ > 0}). Similarly, u ∈ Hs

comp(Ω ∩ {ϕ ≥ 0}) if
u ∈ Hs(Ω ∩ {ϕ > 0}) has compact support in Ω ∩ {ϕ ≥ 0}.

The adjoint operator

(1.5) L∗v :=
n∑

j,k=0

∂yk
(
aj,k∂yjv

)
−

n∑
j=0

{cj∂yjv + ∂yj (bjv)}+ dv

has the same form as L. For u and v smooth, v compactly supported in Ω ∩ {ϕ ≥ 0}, one
has the (formal) identity

(1.6)
(
Lu, v

)
L2(Ω+)

−
(
u, L∗v

)
L2(Ω+)

=
(
Nνu, v

)
L2(Σ)

−
(
u,N ′νv

)
L2(Σ)

where

(1.7)

Nνu =
∑
j,k

νk(aj,k∂ju)|Σ,

N ′νv =
∑
j,k

νj(aj,k∂kv)|Σ −
∑
j

νj
(
(bj + cj)v

)
|Σ

and ν = (ν0, . . . , νd) 6= 0 is conormal to Σ and the d-integration form on Σ is chosen
accordingly.

L 1.2. – i) For all s∈ ]1 − α, 1 + α[ and u ∈ Hs
loc(Ω ∩ {ϕ ≥ 0}), all the

terms entering in the definition of Lu and L∗u are well defined as distributions in
Hs−2
loc (Ω ∩ {ϕ ≥ 0}).

ii) For all s∈ ] 3
2 , 1+α[ and u ∈Hs

loc(Ω∩{ϕ ≥ 0}), the tracesNνu andN ′νu are well defined

in H
s− 3

2

loc (Σ ∩ Ω).

Proof. – This is due to multiplicative properties (see [6] and Corollary 3.6):

– If σ ∈ ]− 1, 1[, a ∈ LL(Ω) and v ∈ Hσ
loc(Ω∩{ϕ ≥ 0}), then av ∈ Hσ

loc(Ω∩{ϕ ≥ 0}).
– If σ ∈ ]−α, α[, a ∈ Cα(Ω) and v ∈ Hσ

loc(Ω∩{ϕ ≥ 0}), then av ∈ Hσ
loc(Ω∩{ϕ ≥ 0}).
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180 F. COLOMBINI AND G. MÉTIVIER

Next, we recall that the subspace of functions with compact support in Ω+ is dense in
Hσ(Ω+) when |σ| < 1

2 ; moreover, for 0 ≤ σ < 1
2 and for u ∈ Hσ(Ω+) the pairing (u, v)L2(Ω)

for v ∈ L2 extends as the duality 〈u, v〉Hσ×H−σ . With this remark in mind, the identity (1.6)
holds for smooth functions:

L 1.3. – For s∈ ] 3
2 , 1 + α[, u ∈ Hs

loc(Ω ∩ {ϕ ≥ 0}) and v ∈ Hs
comp(Ω ∩ {ϕ ≥ 0}),

there holds

(1.8)
〈
Lu, v

〉
H−σ×Hσ −

〈
u, L∗v

〉
Hσ×H−σ =

(
Nνu,DΣv

)
L2(Σ)

−
(
DΣu,N

′
νv
)
L2(Σ)

with σ = s− 3
2 ∈ ]0, 1

2 [ and DΣu = u|Σ.

Proof. – It is sufficient to remark that for σ ∈ [0, 1
2 [, the Green’s formula〈

∂ju, v
〉
H−σ×Hσ = −

〈
u, ∂jv

〉
Hσ×H−σ +

(
νjDΣu,DΣv

)
L2(Σ)

is satisfied for u ∈ H1−σ
loc (Ω ∩ {ϕ ≥ 0}) and v ∈ H1−σ

comp(Ω ∩ {ϕ ≥ 0}).

P 1.4. – Let D(L;Hs) = {u ∈ Hs
loc(Ω ∩ {ϕ ≥ 0}) : Lu ∈ L2

loc(Ω ∩
{ϕ ≥ 0})}. The operator NΣ and DΣ have unique extensions to

⋃
s>1−αD(L;Hs) such that

i) For all s∈ ]1 − α, α[, NΣ (resp. DΣ) is continuous from D(L;Hs) into H
s− 3

2

loc (Σ ∩ Ω)

(resp. H
s− 1

2

loc (Σ ∩ Ω)).
ii) for all s′ ∈ ]1− α, 1

2 [ such that s′ ≤ s and all v ∈ H2−s′
comp(Ω ∩ {ϕ ≥ 0}) there holds

(1.9)(
Lu, v

)
L2 −

〈
u, L∗v

〉
Hs′×H−s′ =

〈
Nνu,DΣv

〉
Hs−

3
2×H

3
2
−s −

〈
DΣu,N

′
νv
〉
Hs−

1
2×H

1
2
−s .

This proposition is proved in Section 5. Note that by Lemma 1.2, for v ∈ H2−s′
comp, L∗v ∈

H−s
′

comp and that u ∈ Hs′

loc if s′ ≤ s. Moreover,DΣv ∈ H
3
2−s

′

comp ⊂ H
3
2−s
comp andN ′Σv ∈ H

1
2−s

′

comp ⊂
H

1
2−s
comp.
With this proposition, the Cauchy problem with source term in L2 and solution in Hs,

s > 1− α, makes sense.

T 1.5 (Local existence). – Consider s > 1 − α and a neigborhood ω of y in Σ.
Then there are s′ ∈ ]1−α, α[ and a neighborhood Ω′ of y in R1+n such that for all Cauchy data
(u0, u1) in Hs(ω)×Hs−1(ω) near y and all f ∈ L2(Ω′ ∩ {ϕ > 0}) the Cauchy problem

(1.10) Lu = f, DΣu = u0, NΣu = u1,

has a solution u ∈ Hs′(Ω′ ∩ {ϕ > 0}).

T 1.6 (Local uniqueness). – If s > 1− α and u ∈ Hs(Ω ∩ {ϕ > 0}) satisfies

(1.11) Lu = 0, DΣu = 0, NΣu = 0,

then u = 0 on a neighborhood of y in Ω ∩ {ϕ ≥ 0}.

R 1.7. – If the coefficients of the first order term L1 (see (2.3)) are also LL, the
statements above are true with α = 1 since the coefficients are thenCα for all α < 1. If the bj
are Cα and the cj are Cα̃, the conditions are 1− α̃ < α and the limitation on s is 1− α̃ < s.
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THE CAUCHY PROBLEM FOR WAVE EQUATIONS 181

R 1.8. – Theorem 1.6 implies that if u is in Hs and satisfies Lu = 0 near y and if
u vanishes on {ϕ < 0}, then u vanishes on a neighborhood of y (see Section 5.2). Moreover,
this local propagation of zero across any space-like manifold implies finite speed of propa-
gation by classical arguments which we do not repeat here. In particular, if Ω′ ∩ {ϕ ≥ 0} is
contained in the domain of dependence ofω, there is existence and uniqueness for the Cauchy
problem (1.10) in Ω′ ∩ {ϕ ≥ 0}.

The proof of these results is given in Section 5 below. Because all the hypotheses are invari-
ant under smooth changes of coordinates, we can assume that in the coordinates y = (t, x),
the initial surface is {t = 0}, and in these coordinates, we prove the existence and uniqueness
theorems. We deduce them from similar results on strips ]0, T [×Rn and there, the main part
of the work is to prove good energy estimates for (weak) solutions. In this framework, the
results of Theorem 1.5 are improved by using non isotropic spaces, and by making a detailed
account of the loss of spatial smoothness as time evolves, as in [5, 6]. The precise results are
stated in section 2 below and are proved in section 4 using the paradifferential calculus of
J.-M. Bony, whose LL-version is presented in section 3.

2. The global in space problem

In this section we denote by (t, x) the space-time variables. On Ω = [0, T0]×Rn consider
a second order hyperbolic differential operator

(2.1) Lu = L2u+ L1u+ du

with

L2 = ∂ta0∂t +
n∑
j=1

(∂taj∂xj + ∂xjaj∂t)−
n∑

j,k=1

∂xjaj,k∂xk ,(2.2)

L1 = b0∂t + ∂tc0 +
n∑
j=1

(bj∂xj + ∂xjcj).(2.3)

The coefficients satisfy on Ω = [0, T0]× Rn

aj,k = ak,j , a0, aj , aj,k ∈ L∞(Ω) ∩ LL(Ω),(2.4)

b0, c0, bj , cj ∈ L∞(Ω) ∩ Cα(Ω),(2.5)

d ∈ L∞(Ω),(2.6)

for some α∈ ] 1
2 , 1[. Recall that the space LL is defined by (1.3), the semi-norm ‖a‖LL being

the best constant C in (1.3). In addition, for α∈ ]0, 1[, Cα denotes the usual Hölder space,
equipped with the norm

(2.7) ‖a‖Cα = ‖a‖L∞ + sup
y 6=y′

|a(y)− a(y′)|
|y − y′|α

.

When α = 1, this defines the norm ‖a‖Lip in the space of Lipschitz functions.
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182 F. COLOMBINI AND G. MÉTIVIER

We assume that L is hyperbolic in the direction dt, which means that there are δ0 > 0 and
δ1 > 0 such that for all (t, x, ξ) ∈ [0, T0]× Rn × Rn

(2.8) a0(t, x) ≥ δ0,
∑

1≤j,k≤n

Å
aj,k +

ajak
a0

ã
ξjξk ≥ δ1 |ξ|2.

We denote by AL∞ , ALL and B constants such that for all indices

‖a0, aj , aj,k‖L∞(Ω) ≤ AL∞ , ‖a0, aj , aj,k‖LL(Ω) ≤ ALL,(2.9)

‖b0, c0, bj , cj‖Cα(Ω) ≤ B, ‖d‖L∞(Ω) ≤ B.(2.10)

2.1. Giving sense to the Cauchy problem

Consider the vector fields

(2.11) X = a0∂t +
n∑
j=1

aj∂xj = a0Y.

Formal computations immediately show that the second order part of L can be written

(2.12) L2u = ZXu− L̃2u

with

(2.13) Zv = ∂tv +
n∑
j=1

∂xj (ãjv), L̃2u =
n∑

j,k=1

∂xj
(
ãj,k∂xku

)
,

ãj,k = aj,k + ajak/a0, and ãj = aj/a0. Consequently, it follows that

(2.14) Lu = (Z + b̃0)(X + c0)u− L̃2u+ L̃1u+ d̃u

with

(2.15) L̃1u =
n∑
j=1

b̃j∂xju+
n∑
j=1

∂xj (c̃ju)

and
b̃0 = b0/a0, b̃j = bj − b̃0aj , c̃j = cj − ãjc0, d̃ = d− c0c̃0.

The next lemma shows that these identities are rigorous under minimal smoothness assump-
tion on u.

L 2.1. – Suppose that u ∈ Hρ(]0, T [×Rn) for some ρ∈ ]1 − α, α[. Then cu,
Xu and L1u belong to Hρ−1(]0, T [×Rn). Moreover L2u is well defined as a distribution in
Hρ−2(]0, T [×Rn).

Proof. – Both u and its space-time derivatives (∂tu, ∂xju) belong to Hρ−1. Following
[6], their multiplication by a bounded LL function belong to the same space (see also Corol-
lary 3.6). This shows that all the individual terms present in the definition of Xu belong to
Hρ−1 and those occurring in L2u and ZXu are well defined in Hρ−2 in the sense of distri-
butions.

Next we recall that the multiplication (b, u) 7→ bu is continuous from Cα × Hs to Hs

when |s| < α. This implies that the terms b∂u and ∂(cu) that occur in L1u and L̃1u belong
to Hρ−1 since ρ∈ ]1− α, α[.

The last term du is in L2, thus in Hρ−1, since c ∈ L∞ and u ∈ L2.
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THE CAUCHY PROBLEM FOR WAVE EQUATIONS 183

The identity (2.12) is straightforward from (2.2) since all the algebraic computations make
sense by the preceding remarks.

Next we need partial regularity results in time, showing that the traces of u and Xu at
t = 0 are well defined, as distributions, for solutions of Lu = f . This is based on the remark
that this equation is equivalent to the system

(2.16)

{
Zv + b̃0v = L̃2u− L̃1u− d̃u+ f,

Y u+ c̃0u = v/a0

with c̃0 = c0/a0. The important remark is that, for this system, the coefficients of ∂t, both
for u and v, are equal to 1, thus smooth. Using the notation Y = ∂t + ‹Y , Z = ∂t + Z̃, the
system reads

(2.17)

{
∂tv = −Z̃v − b̃0v − L̃2u− L̃1u− d̃u+ f,

∂tu = −Ỹ u+ v/a0.

L 2.2. – Suppose that ρ∈ ]1 − α, α[ and u ∈ Hρ(]0, T [×Rn) is such that Lu ∈
L1([0, T ];Hρ−1(Rn)). Then u ∈ L2([0, T ];Hρ(Rn)) and ∂tu ∈ L2([0, T ];Hρ−1(Rn)).
Therefore, u ∈ C0([0, T ];Hρ− 1

2 (Rn)).
Moreover, Xu ∈ L2([0, T ];Hρ−1(Rn)) and Xu ∈ C0([0, T ];Hρ− 3

2 (Rn)).
In particular, the traces u|t=0 and Xu|t=0 are well defined in Hρ− 1

2 (Rn) and Hρ− 3
2 (Rn),

respectively.

Proof. – a) We use the spaces Hs,s′ of Hörmander ([7], chapter 2), which are defined
on R1+n as the spaces of temperate distributions such that their Fourier transform û satisfies
(1+τ2 + |ξ|2)s/2(1+ |ξ|2)s

′/2û ∈ L2. The spaces on [0, T ]×Rn are defined by restriction. In
particular, H0,s′([0, T ]× Rn) = L2([0, T ];Hs′(Rn)). Recall that ∂xj maps Hs,s′ to Hs,s′−1

and that

(2.18) u ∈ Hs,s′ , ∂tu ∈ Hs,s′−1 ⇒ u ∈ Hs+1,s′−1.

b) For u ∈ Hρ, the first derivatives of u, d̃u, as well as L̃1u,Xu and v belong toHρ−1 =

Hρ−1,0, as well as their multiplication by a LL or Cα coefficient. Thus L̃2u and Z̃v belong
to Hρ−1,−1 and

(2.19) ∂tv = f + g, f = Lu ∈ L1(]0, T [;Hρ−1), g ∈ Hρ−1,−1.

Let

v0(t) =

∫ t

0

f(t′) dt′ ∈ C0(Hρ−1).

In particular, v ∈ L2(]0, T [;Hρ−1) = H0,ρ−1 ⊂ Hρ−1,0, since ρ − 1 ≤ 0. Thus, v − v0 ∈
Hρ−1,0 and ∂t(v − v0) = g ∈ Hρ−1,−1. By (2.18) v − v0 ∈ Hρ,−1 ⊂ H0,ρ−1 since ρ ≥ 0.

Next, reasoning for fixed time and then taking L2 norms we note that the multiplication
by a LL or Cα function maps L2(]0, T [;Hρ−1) = H0,ρ−1 into itself. Thus, by the second
equation of (2.17), ∂tu = −Ỹ u+ v/a0 ∈ H0,ρ−1. This finishes the proof of the first part of
the lemma.

c) In particular, it implies that v = Xu + b0u ∈ H0,ρ−1. Thus, Z̃v and L̃2u which in-
volve multiplication byCα or LL function, followed by a spatial derivative, belong toH0,ρ−2.
Therefore, the equation implies that in (2.19) g ∈ H0,ρ−2. Thus applying (2.18) to v − v0 ∈
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184 F. COLOMBINI AND G. MÉTIVIER

H0,ρ−1 implies that v − v0 ∈ H1,ρ−2 ⊂ C0([0, T ];Hρ− 3
2 (Rn)). Since |ρ − 1

2 | < α and
u ∈ C0([0, T ];Hρ− 1

2 (Rn)), the product b̃0u belongs to C0([0, T ];Hρ− 1
2 (Rn)). Since v0 is

also in this space, we conclude that Xu ∈ C0([0, T ];Hρ− 3
2 (Rn)).

R 2.3. – If ρ > 1
2 , then the multiplication by LL functions mapsHρ− 3

2 into itself
and we can conclude that ∂tu ∈ C0([0, T ];Hρ− 3

2 (Rn)), as well as all the first derivatives of u,
so that their traces at t = 0 are well defined. When ρ ≤ 1

2 , the continuity of ∂tu is not clear.
However, the trace ofXu has an intrinsic meaning, as a consequence of Proposition 1.4 (see
Section 5).

Lemma 2.2 allows us to consider the Cauchy problem

(2.20) Lu = f, u|t=0 = u0, Xu|t=0 = u1,

when f ∈
⋃
ρ>−α L

1([0, T ];Hρ(Rn)) and u ∈
⋃
ρ>1−αH

ρ(]0, T [×Rn).

2.2. The main results

We first state uniqueness for the Cauchy problem:

T 2.4. – If u ∈
⋃
ρ>1−αH

ρ(]0, T [×Rn) satisfies

(2.21) Lu = 0, u|t=0 = 0, Xu|t=0 = 0

then u = 0.

As in [5, 6], we prove existence of solutions in Sobolev spaces having orders decreasing in
time. The proper definition is given as follows. The operators

(2.22) |D| and Λ := Log(2 + |D|)

are defined by Fourier transform, associated to the Fourier multipliers |ξ| and Log(2 + |ξ|)
respectively.

D 2.5. – i) Hs(Rn) orHs denotes the usual Sobolev space on Rn. Hs+ 1
2 log

and Hs− 1
2 log denote the spaces Λ−

1
2Hs and Λ

1
2Hs respectively.

ii) Given parameters σ and λ, we denote by Cσ,λ(T ) the space of functions u such that for all
t0 ∈ [0, T ], u ∈ C0([0, t0], Hσ−λt0).

iii) Hσ± 1
2 log,λ(T ) denotes the spaces of functions u on [0, T ] with values in the space of tem-

perate distributions in Rn such that

(2.23) (1 + |D|)σ−λtΛ± 1
2u(t, ·) ∈ L2([0, T ];L2(Rn)).

iv) Lσ,λ(T ) denotes the space of functions u on [0, T ] with values in the space of temperate
distributions in Rn such that

(2.24) (1 + |D|)σ−λtu(t, ·) ∈ L1([0, T ];L2(Rn)).
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Cσ,λ(T ) is equipped with the norm

(2.25) sup
t∈ [0,T ]

‖u(t)‖Hσ−λt .

The norms in Hσ± 1
2 log,λ(T ) and Lσ,λ(T ) are given by (2.23) and (2.24). Equivalently,

Hσ± 1
2 log,λ(T ) and Lσ,λ(T ) are the completions of C∞0 ([0, T ]× Rn) for the norms

(2.26) ‖u‖H
σ± 1

2
log,λ

(T ) =
(∫ T

0

‖u(t)‖2
Hσ−λt±

1
2

log
dt
) 1

2

.

and

(2.27) ‖u‖Lσ,λ(T ) =

∫ T

0

‖u(t)‖Hσ−λt dt.

T 2.6. – Fix θ < θ1 in ]1− α, α[. Then there are λ > 0 and K > 0, which depend
only on the constants AL∞ , ALL, B, δ0, δ1, θ and θ1, given by (2.8), (2.9) and (2.10), such that
for

(2.28) T = min

ß
T0,

θ1 − θ
λ

™
u0 ∈H1−θ(Rn), u1 ∈H−θ(Rn) and f = f1+f2 with f1 ∈L−θ,λ(T ) and f2 ∈H−θ− 1

2 log,λ(T ),
the Cauchy problem (2.20), has a unique solution u ∈ C1−θ,λ(T )∩H1−θ+ 1

2 log,λ(T ) with ∂tu ∈
C−θ,λ(T ) ∩H−θ+ 1

2 log,λ(T ). Moreover, it satisfies

(2.29)

sup
0≤t′≤t

‖u(t′)‖2
H1−θ−λt′ + sup

0≤t′≤t
‖∂tu(t′)‖2

H−θ−λt′

+

∫ t

0

(
‖u(t′)‖2

H1−θ−λt′+ 1
2

log
+ ‖∂tu(t′)‖2

H−θ−λt
′+ 1

2
log

)
dt′

≤ K
{
‖u0‖2H1−θ + ‖u1‖2H−θ

+
(∫ t

0

‖f1(t′)‖H−θ−λt′ dt
′
)2

+

∫ t

0

‖f2(t′)‖2
H−θ−λt

′− 1
2

log
dt′
}
.

Note that for t ∈ [0, T ], 1− θ − λt ≥ 1− θ1 > 1− α, so that f ∈ L1([0, T ];H−θ2) with
θ1 < θ2 < α. Similarly, u ∈ L2([0, T ];H1−θ1) and ∂tu ∈ L2([0, T ];H−θ1) implying that
u ∈ H1−θ1([0, T ] × Rn). Therefore, we are in a situation where we have given sense to the
Cauchy problem.

R 2.7. – This is a local in time existence theorem since the life span (2.28) is lim-
ited by the choice of λ. Thus the dependence of λ0 on the coefficient is of crucial impor-
tance. In case of Lipschitz coefficients, there is no loss of derivatives; this would correspond
to λ = 0. Using the notations in (2.9) (2.10) and (2.8), the analysis of the proof below shows
that there is a function K0(·) such that one can choose

(2.30) λ =
ALL

min{δ0, δ1}
K0

Å
AL∞

δ0

ã
,

revealing the importance of the LL-norms of the coefficients and the role of the hyperbolicity
constant δ1/δ0. In particular, it depends only on the second order part of operator L.
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R 2.8. – A closer inspection of the proof also shows that if the coefficients of the
principal part of L are (a0, aj , aj,k) = (a′0 + a′′0 , a

′
j + a′′j , a

′
j,k + a′′j,k) with (a′0, a

′
j , a
′
j,k) Lip-

schitz continous and (a′′0 , a
′′
j , a
′′
j,k) Log Lipschitz, with LL norm bounded by A′′LL, one can

replace ALL by A′′LL in the definition of λ. In particular if instead of (1.3) the coefficients
satisfy

(2.31) |a(y)− a(y′)| ≤ Cω(|y − y′|)

with a modulus of continuity ω such that

(2.32) lim
ε→0+

ω(ε)

ε|Logε|
= 0,

they can be approximated by Lipschitz functions with errors arbitrarily small in the LL
norm. This can be done by usual mollifications, which will preserve the L∞ bounds AL∞
and keep uniform hyperbolicity constants δ0 and δ1. As a consequence, λ can be taken
arbitrarily small, yielding global in time existence with arbitrarily small loss of regularity
(see Theorem 2.1 in [3] when the coefficients depend only on time).

3. Paradifferential calculus with LL coefficients

In this section we review several known results on paradifferential calculus and give the
needed extensions to the case of Log-Lipschitz coefficients.

3.1. The Paley-Littlewood analysis

Introduce χ ∈ C∞0 (R), real valued, even and such that 0 ≤ χ ≤ 1 and

(3.1) χ(ξ) = 1 for |ξ| ≤ 1.1 , χ(ξ) = 0 for |ξ| ≥ 1.9 .

For k ∈ Z, introduce χk(ξ) := χ
(
2−kξ

)
, χ̃k(x) its inverse Fourier transform with respect to

ξ and the operators

(3.2)
Sku := χ̃k ∗ u = χk(Dx)u ,

∆0 = S0, and for k ≥ 1 ∆k = Sk − Sk−1.

We note that ∆k and Sk are self adjoint. Moreover, by evenness, χ̃k is real, so that ∆k and
Sk preserve reality. For all temperate distributions u one has

(3.3) u =
∑
k≥0

∆ku .

The next propositions immediately follow from the definitions.

P 3.1. – Consider s ∈ R. A temperate distribution u belongs toHs(Rn) (resp.
Hs± 1

2 log) if and only if

i) for all k ∈ N, ∆ku ∈ L2(Rd).
ii) the sequence δk = 2ks‖∆ku‖L2(Rd) (resp. δk = (k + 1)±

1
2 2ks‖∆ku‖L2(Rd)) belongs to

`2(N).

Moreover, the norm of the sequence δk in `2 is equivalent to the norm of u in the given space.

P 3.2. – Consider s ∈ R and R > 0. Suppose that {uk}k∈N is a sequence of
functions in L2(Rd)such that:
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i) the spectrum of u0 is contained in {|ξ| ≤ R} and for k ≥ 1 the spectrum of uk is contained
in
{

1
R 2k ≤ |ξ| ≤ R 2k

}
.

ii) the sequence δk = 2ks‖uk‖L2(Rd) (resp. δk = (k + 1)±
1
2 2ks‖∆ku‖L2(Rd)) belongs to

`2(N).

Then u =
∑
uk belongs to Hs(Rd) (resp. Hs± 1

2 log). Moreover, the norm of the sequence
δk in `2 is equivalent to the norm of u in the given space.

When s > 0, it is sufficient to assume that the spectrum of uk is contained in
{
|ξ| ≤ R 2k

}
.

Next we collect several results about the dyadic analysis of LL spaces.

P 3.3. – There is a constant C such that for all a ∈ LL(Rn) and all integers
k > 0

(3.4) ‖∆ka‖L∞ ≤ Ck2−k‖a‖LL.

Moreover, for all k ≥ 0

‖a− Ska‖L∞ ≤ C(k + 1)‖a‖LL(3.5)

‖Ska‖Lip ≤ C
(
‖a‖L∞ + (k + 1)‖a‖LL

)
.(3.6)

If α∈ ]0, 1[ and a ∈ Cα(Rn), then

(3.7) ‖∆ka‖L∞ ≤ C2−αk‖a‖Cα .

Proof. – Sk is a convolution operator with χ̃k which is uniformly bounded in L1. Thus

(3.8) ‖Ska‖L∞ ≤ C‖a‖L∞ .

Moreover, since the integral of ∂jχ̃k vanishes

∂j(Ska)(x) =

∫
∂jχ̃k(y)

(
a(x− y)− a(x)

)
dy.

Using the LL smoothness of a yields

(3.9) ‖∇Ska‖L∞ ≤ C(k + 1)‖a‖LL.

This implies (3.6). The proof of (3.4) is similar (cf [6]). The third estimate is classical.

3.2. Paraproducts

Following J.-M. Bony ([2]), for N ≥ 3 one defines the para-product of a and u as

(3.10) TNa u =
∞∑
k=N

Sk−Na ∆ku.

The remainder RNa u is defined as

(3.11) RNa u = au− TNa u.

The next proposition extends classical results (see [2, 13]) to the case of LL coefficients
and Log Sobolev spaces.

P 3.4. – i) For a ∈ L∞ and s ∈ R, TNa continuously maps Hs to Hs and
Hs± 1

2 log to Hs± 1
2 log. Moreover, the operator norms are uniformly bounded for s in a

compact set.
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ii) If a ∈ L∞ ∩ LL and N ′ ≥ N ≥ 3, TNa − TN
′

a maps Hs+ 1
2 log into Hs+1− 1

2 log, for all
s ∈ R.

iii) If a ∈ L∞ ∩ LL, N ≥ 3 and s∈ ]0, 1[, RNa maps H−s+
1
2 log into H1−s− 1

2 log, and

(3.12) ‖RNa u‖H1−s− 1
2

log ≤ C‖a‖LL‖u‖H−s+ 1
2

log

with C uniformly bounded for s in a compact subset of ]0, 1[.

Proof. – The first statement is an immediate consequence of (3.8) and Propositions 3.1
and 3.2.

Next, TNa u− TN
′

a u =
∑
k vk with vk = (Sk−Na− Sk−N ′a) ∆ku. By Proposition 3.3

‖vk‖L2 ≤ C(k + 1)2−k‖∆ku‖L2 .

With Proposition 3.2, this implies ii).
To prove iii) we can assume that N = 3. Then

(3.13) Rau =
∑
k≥3

∆ka Sk−3u+
∑
k

∑
|k−j|≤2

∆ja∆ku.

If u ∈ H−s+ 1
2 log, then

‖∆ju‖L2 ≤ 2js√
j + 1

εj

with {εj} ∈ `2. We note that the sequence

(3.14) ε̃k =
∑
j≤k

√
k + 1√
j + 1

2(j−k)sεj

is also in `2 with
‖ε̃k‖`2 ≤ C‖εj‖`2

with C uniformly bounded when s in a compact subset of ]0,+∞]. Thus

‖Sk−3u‖L2 ≤ 2ks√
k + 1

ε′k

with {ε′k} ∈ `2. Therefore,

‖∆ka Sk−3u‖L2 ≤ C
√
k + 1 2(s−1)kε′k.

Proposition 3.2 implies that the first sum in (3.13) belongs to H1−s− 1
2 log.

Similarly, ∥∥∥∥∥∥ ∑
|k−j|≤2

∆ja∆ku

∥∥∥∥∥∥
L2

≤ C
√
k + 1 2(s−1)kε′′k ,

with {ε′′k} ∈ `2. Now the spectrum of ∆ja∆ku is contained in the ball {|ξ| ≤ 2k+3}; because
1− s > 0, Proposition 3.2 implies that the second sum in (3.13) also belongs to H1−s− 1

2 log,
and the norm is uniformly bounded when s remains in a compact subset of [0, 1[.

R 3.5. – By ii) we see that the choice of N ≥ 3 is essentially irrelevant in our
analysis, as in [2]. To simplify notation, we make a definite choice of N , for instance N = 3,
and use the notation Ta and Ra for TNa and RNa .
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C 3.6. – The multiplication (a, u) 7→ au is continuous from (L∞ ∩ LL) ×
Hs+δ log to Hs+δ log for s∈ ]− 1, 1[ and δ ∈ {− 1

2 , 0,
1
2}.

Proof. – (See [6].) Property iii) says thatRa is smoothing by almost one derivative in neg-
ative spaces, and therefore, for all σ ∈ ]−1, 1[ it mapsHσ toHσ′ for all σ′ > max {σ, 0} such
that σ′ < min {σ + 1, 1}. Combining this observation with i), the corollary follows.

In particular, we note the following estimate

(3.15) ‖au‖
Hs+

1
2

log ≤ C
(
‖a‖L∞‖u‖

Hs+
1
2

log + ‖a‖LL‖u‖Hs
)
.

P 3.7. – Consider q =
√

(1 + |ξ|2) andψ(ξ) a symbol of degreem on Rn. De-
note byQ =

√
(1−∆) and Ψ the associated operators. If a ∈ L∞∩LL, then the commutator

[Q−sΨ, Ta] maps H−s+
1
2 log into H1−m− 1

2 log and

(3.16) ‖[Q−sΨ, Ta]u‖
H1−m− 1

2
log ≤ C‖a‖LL ‖u‖H−s+ 1

2
log

with C uniformly bounded for s ∈ [0, 1] and ψ in a bounded set.

Proof. – We use Theorem 35 of [4], which states that if H is a Fourier multiplier with
symbol h of degree 0 and if a is Lipschitz, then

‖[H, a]∂xju‖L2 ≤ C‖∇xa‖L∞ ‖u‖L2 .

For k > 0, writing ∆ku as sum of derivatives, this implies that

(3.17) ‖[H, a]∆ku‖L2 ≤ C2−k‖∇xa‖L∞ ‖∆ku‖L2 ,

with C independent of k and H, provided that the symbol h remains in a bounded set of
symbols of degree 0.

We now proceed to the proof of the proposition. Since Ψ and Q commute with ∆k, one
has

(3.18) [Q−sΨ, Ta]u =
∑
k≥3

[Q−sΨ, Sk−3a]∆ku.

Moreover, since the spectrum of Sk−3a∆ku is contained in the annulus 2k−1 ≤ |ξ| ≤ 2k+2,
it follows that

(3.19) [Q−sΨ, Sk−3a]∆k = 2k(m−s)[Hk, Sk−3a]∆k

where the symbol of Hk is

hk(ξ) = 2k(s−m)q−s(ξ)ψ(ξ)ϕ(2−kξ)

and ϕ supported in a suitable fixed annulus. Note that the family {hk} is bounded in the
space of symbols of degree 0, uniformly in k, s ∈ [0, 1] and ψ in a bounded set of symbols
of degree m. By (3.17), it follows that

‖[Hk, Sk−3a]∆ku‖L2 ≤ C2k(m−s−1)‖∇Sk−3a‖L∞ ‖∆ku‖L2 .

Together with (3.9) and Proposition 3.1, this implies that for u ∈ H−s+ 1
2 log,

‖[Q−sΨ, Sk−3a]∆ku‖ ≤ C(k + 1)‖a‖LL ‖∆ku‖L2 .

Using Proposition 3.2, the estimate (3.16) follows.
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P 3.8. – If a ∈ L∞ ∩ LL is real valued, then
(
Ta − (Ta)∗

)
∂xj and ∂xj

(
Ta −

(Ta)∗
)

map Hs+ 1
2 log into Hs− 1

2 log and satisfy

(3.20)
‖
(
Ta − (Ta)∗

)
∂xju‖Hs− 1

2
log ≤ C‖a‖LL ‖u‖Hs+ 1

2
log ,

‖∂xj
(
Ta − (Ta)∗

)
u‖

Hs−
1
2

log ≤ C‖a‖LL ‖u‖Hs+ 1
2

log .

Proof. – The Ska are real valued, since a is real, and the ∆k are self adjoint, thus

(Ta)∗u =
∞∑
k=3

∆k

(
(Sk−3a)u

)
.

Therefore, one has (
Ta − (Ta)∗

)
=
∑

[Sk−3a,∆k] =
∑

[Sk−3a,∆k]Ψk

where Ψk is a Fourier multiplier with symbol ψk = ψ(2−kξ) and ψ is supported in a suitable
annulus. Using again [4] (see (3.17)) yields

‖[Sk−3a,∆k]∂xjΨku‖L2 ≤ C(k + 1)‖a‖LL‖Ψku‖L2 ,

and a similar estimate when the derivative is on the left of the commutator. Since the spec-
trum of [Sk−3a,∆k]Ψku is contained in an annulus of size ≈ 2k, this implies (3.20).

P 3.9. – If a and b belong to L∞ ∩LL, then
(
TaTb − Tab

)
∂xj maps Hs+ 1

2 log

into Hs− 1
2 log and

(3.21) ‖
(
TaTb − Tab

)
∂xju‖Hs− 1

2
log ≤ C

(
‖a‖LL‖b‖L∞ + ‖b‖LL‖a‖L∞

)
‖u‖

Hs+
1
2

log .

Proof. – By Proposition 3.4, it is sufficient to prove the estimate for any paraproduct TN .
One has

TNa T
N
b ∂xju =

∑
k≥N

∑
l≥N

Sk−Na ∆k

(
Sl−Nb ∆l∂xju

)
.

In this sum, terms with |l−k| ≤ 2 vanish, because of the spectral localization ofSl−Nb∆l∂xj .
The commutators [∆k, Sl−Nb] contribute to terms which are estimated as in (3.18):

‖[∆k, Sl−Nb]∆l∂xju‖L2 ≤ C(k + 1)‖b‖LL ‖∆lu‖L2 .

If N is large enough, the spectrum of the corresponding term is contained in an annulus of
size ≈ 2k and hence the commutators contribute to an error term in (3.21). Therefore, it is
sufficient to estimate

(3.22)
∑
k≥N

∑
l≥N

(
Sk−NaSl−Nb− Sk−N (ab)

)
∆k ∆l∂xju.

Again, only terms with |l − k| ≤ 2 contribute to the sum. Using (3.5), one has

‖a− Sk−Na‖L∞ ≤ C(k + 1)2−k‖a‖LL,

‖b− Sl−Nb‖L∞ ≤ C(k + 1)2−k‖b‖LL,

‖ab− Sk−N (ab)‖L∞ ≤ C(k + 1)2−k‖ab‖LL.

Thus

‖Sk−NaSl−Nb− Sk−N (ab)‖L∞ ≤ C(k + 1)2−k
(
‖a‖LL‖b‖L∞ + ‖a‖L∞‖b‖LL

)
.
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Since the terms in the sum (3.22) have their spectrum in annuli of size≈ 2k, this implies that
this sum belongs to H0− 1

2 log when u ∈ H0+ 1
2 log, with an estimate similar to (3.21).

3.3. Positivity estimates

The paradifferential calculus sketched above is well adapted to the analysis of high fre-
quencies but does not take into account the low frequencies. For instance, the positivity of
the function a does not imply the positivity of the operator Ta inL2, only the positivity up to
a smoothing operator. However, in the derivation of energy estimates, such positivity results
are absolutely necessary. To avoid a separate treatment of low frequencies, we introduce mod-
ified paraproducts for which positivity results hold (we could also introduce weighted para-
products as in [10, 11, 12]).

Consider a nonnegative integer ν and define the modified paraproducts

(3.23) P νa u =
∞∑
k=0

Smax{ν,k−3}a ∆ku = SνaSν+2u+
∞∑
k=ν

Ska ∆k+3u.

Then

(3.24) P νa u− Tau =
ν+2∑
k=0

ν∑
j=max{0,k−2}

∆ja ∆ku

and

(3.25) au− P νa u =
∞∑

j=ν+1

∆ja Sj+2u.

The difference (3.24) concerns only low frequencies, and therefore the results of Proposi-
tions 3.7, 3.8 and 3.9 are valid if one substitutes P νa in place of Ta, at the cost of additional
error terms. In particular, (3.24) and (3.25) immediately imply the following estimates:

L 3.10. – i) There is a constant C such that for all ν, a ∈ L∞ and all u ∈ L2,

(3.26) ‖(P νa − Ta)∂xju‖L2 + ‖∂xj (P νa − Ta)u‖L2 ≤ C2ν‖a‖L∞ ‖u‖L2 .

ii) There is a constant C0 such that for all ν, for all a ∈ LL and all u ∈ L2,

(3.27) ‖au− P νa u‖L2 ≤ C0ν2−ν‖a‖LL ‖u‖L2 .

We will also use the following extension of Proposition 3.8:

P 3.11. – If a ∈ L∞∩LL is real valued, then
(
P νa −(P νa )∗

)
∂xj and ∂xj

(
P νa −

(P νa )∗
)

map H0+ 1
2 log into H0− 1

2 log and

(3.28)
‖
(
P νa − (P νa )∗

)
∂xju‖H0− 1

2
log ≤ C‖a‖LL

(
‖u‖

H0+ 1
2

log + ν‖u‖L2

)
,

‖∂xj
(
P νa − (P νa )∗

)
u‖

H0− 1
2

log ≤ C‖a‖LL
(
‖u‖

H0+ 1
2

log + ν‖u‖L2

)
.
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Proof. – One has(
P νa − (P νa )∗

)
∂xju = [Sνa, Sν+2]∂xju+

∑
k≥ν

[Ska,∆k+3]∂xju.

The sum over k is treated exactly as in the proof of Proposition 3.8 and contibutes to the
same error term. Using again Theorem 35 of [4], the L2 norm of the first term is estimated
by

C‖∇xSνa‖L∞‖u‖L2 ≤ C(ν + 1)‖a‖LL‖u‖L2

and contibutes to the second error term in (3.28). When the derivative is on the left, the proof
is similar.

Moreover, a comparison of P νa u with au immediately implies the following positivity es-
timate.

C 3.12. – There is a constant c0, such that for any positive LL-function a such
that δ = min a(x) > 0, all ν such that ν2−ν ≤ c0δ/‖a‖LL, and u ∈ L2(Rn),

(3.29) Re
(
P νa u, u

)
L2 ≥

δ

2
‖u‖2L2 .

Here, (·, ·)L2 denotes the scalar product in L2. This estimate extends to vector valued
functions u and matrices a, provided that a is symmetric and positive.

3.4. The time dependent case

In the sequel we will consider functions of (t, x) ∈ [0, T ]×Rn, considered as functions of
t with values in various spaces of functions of x. In particular we denote by Ta the operator
acting for each fixed t as Ta(t) :

(3.30) (Tau)(t) =
∞∑
k=3

Sk−3(Dx)a(t) ∆k(Dx)u(t).

The Propositions 3.4, 3.7, 3.8 and 3.9 apply for each fixed t. There are similar definitions for
the modified paraproducts P νa ; further, Lemma 3.10 and Corollary 3.12 apply for fixed t.

When a is a Lipschitz function of t, the definition (3.30) immediately implies that

(3.31) [∂t, Ta] = T∂ta, [∂t, P
ν
a ] = P ν∂ta.

When a is only Log Lipschitz this formula does not make sense, since ∂ta is not defined as
a function. The idea, already used in [5, 6], is that it is sufficient to commute ∂t with time
regularization of a. In our context, this simply means that in (3.30), we will replace the term
Sk−3a, which is a spatial regularization of a, by a space-time regularization, namely Sk−3ak
where ak is a suitable time mollification of a. We now give the details for P ν , as we will need
them in the next section.

Introduce the mollifiers

(3.32) k(t) = 2k(2kt)

where  ∈ C∞0 (R) is non negative, with integral over R equal to 1.
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D 3.13. – Given a ∈ L∞ ∩ LL([0, T0]× Rn), define

(3.33) ak(t, x) = k ∗t ã =

∫
k(t− s)ã(s, x) ds

where ã is the LL extension of a given by

(3.34) ã(t, x) = a(0, x), t ≤ 0, ã(t, x) = a(T0, x), t ≥ T0.

Next, for fixed t, the operator ‹P νa(t) is defined by

(3.35) ‹P νa(t)u = SνaνSν+2u+
∞∑
k=ν

Skak ∆k+3u.

We denote by ‹P νa the operator acting on functions of (t, x) by (‹P νa u)(t) = ‹P νa(t)u(t).

P 3.14. – Let a ∈ L∞ ∩ LL([0, T0] × Rn). Then for each t ∈ [0, T0], the
operators R1(t) = (P νa(t) − ‹P νa(t))∂xj , R2(t) = ∂xj (P

ν
a(t) − ‹P νa(t)), R3(t) =

(
(‹P νa(t))

∗ −‹P νa(t)

)
∂xj ,R4(t) = ∂xj

(
(‹P νa(t))

∗−‹P νa(t)), andR5(t) = [Dt, ‹P νa ](t) mapH0+ 1
2 log intoH0− 1

2 log

and there is a constant C such that for all t ∈ [0, T0] and for k = 1, . . . , 5,

(3.36) ‖Rku‖
H0− 1

2
log ≤ C‖a‖LL

(
‖u‖

H0+ 1
2

log + ν‖u‖L2

)
.

Proof. – a) First, we recall several estimates from [6]. For a ∈ LL([0, T0] × Rn) the
difference a− ak satisfies

|a(t, x)− ak(t, x)| ≤ C(k + 1)2−k‖a‖LL,(3.37)

|∂tak(t, x)| ≤ C(k + 1)‖a‖LL,(3.38)

with C independent of t and x. In particular, we note that

(3.39) ‖Sk(a(t)− ak(t))‖L∞ ≤ C(k + 1)2−k‖a‖LL.

b) In accordance with (3.35), for l = 1, 2, 5, we split Rl into two terms

(3.40) Rl(t)u = Blu+Hlu, Hlu =
∑
k≥ν

wk

with Blu spectrally supported in the ball of radius 2ν+4 and with wk spectrally supported in
an annulus |ξ| ≈ 2k. For R1,

B1u = Sν(a(t)− aν(t)) Sν+2∂xju, wk = Sk(a(t)− ak(t)) ∆k+3∂xju.

With (3.39), this implies that

‖B1u‖L2 ≤ C(ν + 1)‖a‖LL‖u‖L2

and

‖wk‖L2 ≤ C(k + 1)‖a‖LL‖∆k+3u‖L2 ,

implying that

‖H1u‖
H0− 1

2
log ≤ C‖a‖LL‖u‖H0+ 1

2
log .
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For R2, the analysis is similar. One has

B2u = ∂xj
(
Sν(a(t)− aν(t)) Sν+2u

)
, wk = ∂xj

(
Sk(a(t)− ak(t)) ∆k+3u

)
.

Thanks to the spectral localization, the estimates for B2u and wk are the same as in the case
of R1, implying that

‖B2u‖L2 ≤ C(ν + 1)‖a‖LL‖u‖L2(3.41)

‖H2u‖
H0− 1

2
log ≤ C‖a‖LL‖u‖H0+ 1

2
log .(3.42)

c) For k = 5 we write (3.40) with

B5u = Sν(∂taν(t)) ∆ν+2u, wk = Sk(∂tak(t)) ∆k+3u.

Thus the estimates (3.38) imply

‖B5u‖L2 ≤ C(ν + 1)‖a‖LL‖u‖L2

‖H5u‖
H0− 1

2
log ≤ C‖a‖LL‖u‖H0+ 1

2
log .

d) One has
R3(t) = R1(t) +R∗2(t) +

(
(P νa(t))

∗ − P νa(t)

)
∂xj .

The third term is estimated in Proposition 3.11. The operators R1 and R∗2 = B∗2 + H∗2 are
estimated in part b), implying that R3 satisfies (3.36) for k = 3. The proof for R4 = R∗3 =

R∗1 +R2 + ∂xj
(
(P νa(t))

∗ − P νa(t)

)
is similar.

This finishes the proof of the proposition.

L 3.15. – There is a constantC0 such that for any a ∈ LL([0, T0]×Rn), u ∈ L2(Rn),
ν ≥ 0 and all t ∈ [0, T0], one has

(3.43) ‖a(t)u− ‹P νa(t)u‖L2 ≤ C0ν2−ν‖a‖LL ‖u‖L2 .

Proof. – We have

au− ‹P νa u = (a− Sνaν)Sν+2u+
∞∑
k=ν

(a− Skak) ∆k+3u.

Combining (3.5) and (3.39), we see that

‖a(t)− Skak(t)‖L∞ ≤ Ck2−k‖a‖LL.

This implies (3.43).

The lemma immediately implies the following positivity estimate.

C 3.16. – There is a constant c0, such that for any positive LL-function a such
that δ = min a(t, x) > 0, all ν such that ν2−ν ≤ c0δ/‖a‖LL, and u ∈ L2(Rn),

(3.44) Re
(
P νa(t)u, u

)
L2(Rn)

≥ δ

2
‖u‖2L2(Rn).

The same result holds for vector valued functions u and definite positive square matrices a.

Finally, we quote the following commutation result which will be needed in the next sec-
tion.
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P 3.17. – Suppose that a ∈ LL([0, T0] × Rn). Then Λ
1
2

î‹P νa(t),Λ
1
2

ó
andî‹P νa(t),Λ

1
2

ó
Λ

1
2 are bounded in L2 and satisfy∥∥∥Λ

1
2

î‹P νa(t),Λ
1
2

ó
u
∥∥∥
L2

+
∥∥∥î‹P νa(t),Λ

1
2

ó
Λ

1
2u
∥∥∥
L2
≤ C

(
ν22−ν‖a‖LL + ν‖a‖L∞

)
‖u‖L2 .

Proof. – Thanks to the spectral localization, the low frequency partSνaνSν+2 in ‹P νa con-
tributes to terms whose L2 norm is bounded by

Cν‖u‖L2 .

The commutator with the high frequency part reads∑
k≥ν

[Λ
1
2 , Skak]∆k+3u.

We argue as in the proof of Proposition 3.7 and write

(3.45) [Λ
1
2 , Skak]∆k+3 = (k + 1)

1
2 [Hk, Skak]∆k+3

where the symbol of Hk is hk(ξ) = (k + 1)−
1
2 (Log(2 + |ξ|)) 1

2ϕ(2−kξ) and ϕ is supported
in a suitable fixed annulus. Note that the family {hk} is bounded in the space of symbols of
degree 0. By (3.17), one has

‖[Hk, Ska(t)]Λ
1
2 ∆k+3u‖L2 ≤ C(k + 1)2−k‖∇xSkak(t)‖L∞‖∆ku‖L2 .

Since∇xSkak = (∇xSka)∗ k, its L∞ norm is bounded by Ck‖a‖LL. Adding up, and using
the spectral localization, these terms contribute by a function whose L2 norm is bounded by
Cν22−ν‖a‖LL‖u‖L2 .

When Λ
1
2 is on the left of the commutator, the analysis is similar.

4. Proof of the main results

4.1. The main estimate

We consider the operator (2.1) with coefficients which satisfy (2.4), (2.5) and (2.6). We fix
θ < θ1 in ]1− α, α[, and with λ to be chosen later, we introduce the notation

(4.1) s(t) = θ + tλ.

Recall that

(4.2) T = min

ß
T0,

θ1 − θ
λ

™
.

Note that for t ∈ [0, T ], s(t) remains in [θ, θ1] ⊂]1− α, α[.
We will consider solutions of the Cauchy problem

(4.3) Lu = f, u|t=0 = u0, Xu|t=0 = u1

with

(4.4) u ∈ H1−θ+ 1
2 log,λ(T ), ∂tu ∈ H−θ+ 1

2 log,λ(T ),

(4.5) u0 ∈ H1−θ(Rn), u1 ∈ H−θ(Rn),

(4.6) f = f1 + f2, f1 ∈ L−θ,λ(T ), f2 ∈ H−θ− 1
2 log,λ(T ),
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Note that if u and f satisfy (4.4) and (4.6), then

u ∈ L2([0, T ];H1−θ1), ∂tu ∈ L2([0, T ];H−θ1),(4.7)

f ∈ L1([0, T ];H−θ2)(4.8)

for all θ2 ∈ ]θ1, α[, so that the meaning of the Cauchy condition is clear.

The main step in the proof of Theorem 2.6 is the following:

T 4.1. – There is a λ0 ≥ 0 of the form (2.30) such that for λ ≥ λ0 there is a
constant K such that: for all f , u0 and u1 satisfying (4.5) (4.6), and all u satisfying (4.4) solu-
tion of the Cauchy problem (4.3), one has

(4.9) u ∈ C1−θ,λ(T ), ∂tu ∈ C−θ,λ(T ).

Moreover u satisfies the energy estimate (2.29).

This theorem contains two pieces of information : first an energy estimate for smooth u,
see Propositions 4.3 and 4.4. By a classical argument, smoothing the coefficients and pass-
ing to the limit, this estimate allows for the construction of weak solutions, see Section 5.2.
The second piece of information contained in the theorem is a “weak=strong” type result
showing that for data as in the theorem, any (weak) solution u satisfying (4.4) is the limit of
smooth (approximate) solutions, in the norm given by the left hand side of the energy esti-
mate, implying that u satisfies the additional smoothness (4.9) and the energy estimate. This
implies uniqueness of weak solutions.

The idea is to get an energy estimate by integration by parts, from the analysis of

(4.10) 2 Re
¨
Lu, e−2γt(1−∆x)−s(t)Xu

∂
where 〈·, ·〉 denotes theL2 scalar product in Rn extended to the Hermitian symmetric duality
Hσ×H−σ for all σ ∈R, and ∆x denote the Laplace operator on Rd. This extends the analysis
of [6] where X = ∂t. The parameter γ is chosen at the end to absorb classical error terms
(present for Lipschitz coefficients) while the parameterλwhich enters in the definition of s(t),
is chosen to absorb extra error terms coming from the loss of smoothness of the coefficients.

To prove Theorem 4.1, the first idea would be to mollify the equation. However, the lack of
smoothness of the coefficients does not allow us to use this method directly and we cannot
prove that the weak solutions are limits of exact smooth solutions. Instead, the idea is to
write the equation as a system (2.16) for (u, v) and mollify this system. This leads to the
consideration of the equations:

(4.11)

{
Zv + b̃0v = L̃2u− L̃1u− d̃u+ f,

Y u+ c̃0u = v/a0 + g.

In this form, the commutator of spatial mollifiers with ∂t are trivial, and we can prove that
weak solutions of (4.11) are limits of smooth solutions, (uε, vε) with gε 6= 0, which thus do
not correspond to exact solutions uε of (4.3).
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Notations. It is important for our purpose to keep track of the dependence of the various
constants on the Log-Lipschitz norms. In particular we will use the notations δ0, δ1 of (2.8)
andALL, AL∞ , B of (2.9) (2.10). To simplify the exposition, we will denote by C, K0 andK
constants which may vary from one line to another, C denoting universal constants depend-
ing only on the paradifferential calculus;K0 depending also onAL∞/δ0;K, still independent
of the parameters (γ, ε), but dependent also on δ0, δ1, θ0, θ1 and the various norms of the
coefficients.

4.2. Estimating v

First, we give estimates that link v and ∂tu.

L 4.2. – Suppose that u satisfies (4.4). Then v = Xu + c0u belongs to the space
H−θ+ 1

2 log,λ(T ) ⊂ L2([0, T ];H−θ1) and for almost all t,

‖v(t)‖
H−s(t)+

1
2

log ≤ CAL∞
(
‖u(t)‖

H1−s(t)+ 1
2

log + ‖∂tu(t)‖
H−s(t)+

1
2

log

)
+ C(ALL +B)

(
‖u(t)‖H1−s(t) + ‖∂tu(t)‖H−s(t)

)
,

(4.12)

‖∂tu(t)‖
H−s(t)+

1
2

log ≤ K0‖u(t)‖
H1−s(t)+ 1

2
log +

C

δ0
‖v(t)‖

H−s(t)+
1
2

log

+K
(
‖u(t)‖H1−s(t) + ‖v(t)‖H−s(t)

)
.

(4.13)

There are similar estimates in the spaces Hs without the 1
2 log.

If in addition Lu = f with f satisfying (4.6), then ∂tv ∈ L1([0, T ];H−1−θ1).

Proof. – a) First, we note that the multiplication (a, u) 7→ au is continuous from (L∞∩
LL)([0, T ]×Rn)×H−θ+ 1

2 log,λ(T ) toH−θ+ 1
2 log,λ(T ). Indeed, the corresponding norm es-

timate of the product is clear for smooth u, from (3.15) integrated in time. The claim follows
by density. In particular, this shows that a0∂tu and the aj∂xju belong to H−θ+ 1

2 log,λ(T ).
Similarly, the estimate

(4.14) ‖bu(t)‖
H−s(t)+

1
2

log ≤ C‖bu(t)‖H1−s(t) ≤ C‖b‖Cα‖u(t)‖H1−s(t)

implies that c0u ∈ H−θ+ 1
2 log,λ(T ). Therefore v ∈ H−θ+ 1

2 log,λ(T ) and the estimate (4.12)
holds. The proof of (4.13) is similar, noting that

∂tu =
1

a0
v −

d∑
j=1

aj
a0
∂xju−

c0
a0
u.

b) As in the proof of Lemma 2.2, we see that the equation implies that

∂tv = f −
d∑
j=1

∂xj (ãjv)− b̃0v + L̃2u− L̃1u− d̃u.

The conservative form of L̃2 and the multiplicative properties above show that

∂xj (ãjv), L̃2u ∈ H−θ−1+ 1
2 log,λ(T ) ⊂ L2([0, T ];H−1−θ1).

Similarly, L̃1u and b̃0v belong toH−θ+ 1
2 log,λ(T ) and thus to L2([0, T ];H−θ1). The last term

ũ is inL2. Therefore, ∂tv−f ∈L2([0, T ];H−1−θ1). Since f ∈L1([0, T ];H−θ2) for θ2 ∈ ]θ1, α[,
the lemma follows.
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Next, we give a-priori estimates in the spaceH−θ+ 1
2 log,λ(T )∩ C−θ,λ(T ) for smooth solu-

tions of

(4.15) (Z + c̃0)v = ϕ, v|t=0 = v0.

We define the operators

(4.16) (Qv)(t) = (1−∆x)−s(t)/2v(t), (Qγv)(t) = e−γt(Qv)(t).

P 4.3. – Suppose that v ∈ L2([0, T ];H1) and ∂tv ∈ L1([0, T ];L2). Then the
functions vγ(t) := Qγv belong to C0([0, T ], L2) and satisfy

‖vγ(t)‖2L2 + 2

∫ t

0

‖(γ + λΛ)1/2vγ(t′)‖2L2 dt′

≤ 2

∫ t

0

〈(Z + c̃0)v(t′), Q2
γ(t′)v(t′)〉 dt′ + ‖vγ(0)‖2L2 +

∫ t

0

F (t′) dt′(4.17)

with

F (t′) ≤ K0
ALL
δ0
‖e−γt

′
Λ1/2v(t′)‖2

H−s(t′)
+K‖v(t′)‖2

H−s(t′)
.(4.18)

Proof. – a) Since v ∈ L2([0, T ];H1) and ∂tv ∈ L1([0, T ];L2), we have

(4.19) ∂tQγv = Qγ∂tv − (γ + λΛ)Qγv ∈ L1([0, T ];L2)

as immediately seen using the spatial Fourier transform. Moreover, vγ = Qγv ∈ C0([0, T ];L2)

and satisfies the following identity

‖vγ(t)‖2L2 − ‖vγ(0)‖2L2 = 2 Re

∫ t

0

〈∂tQγv,Qγv〉 dt′.

Thus,

(4.20)
2Re

∫ t

0

〈∂tv,Q2
γv〉 dt′ = 2 Re

∫ t

0

〈Qγ∂tv,Qγv〉 dt′

= ‖vγ(t)‖2L2 − ‖vγ(0)‖2L2 + 2

∫ t

0

‖(γ + λΛ)1/2vγ(t′)‖2L2 dt′

b) Next we consider the terms ∂xj (ãjv). We note that they belong to L2([0, T ];H−σ)

for all σ > 0. In particular, since s(t) ≥ θ > 0, we note that the pairing

〈∂xj (ãjv), Q2
γv〉

is well defined. We give an estimate for

2 Re

∫ t

0

〈∂xj (ãjv), Q2
γv〉 dt′,

using the decomposition
ãjv = Tãjv +Rãjv.

By Proposition 3.4 it follows

‖Rãjv(t)‖
H1−s(t)− 1

2
log ≤ C‖ãj‖LL‖v(t)‖

H−s(t)+
1
2

log

since s(t) ∈ [θ, θ1] ⊂]0, 1[. Moreover,

‖Q2
γv(t)‖

Hs(t)+
1
2

log ≤ Ce−2γt‖v(t)‖
H−s(t)+

1
2

log .
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Thus
|〈∂xjRãjv(t), Q2

γ,εv(t)〉| ≤ ‖Rãjv(t)‖
H1−s(t)− 1

2
log ‖Q2

γ,εv(t)‖
Hs(t)+

1
2

log

≤ C‖ãj‖LLe−2γt‖v(t)‖2
H−s(t)+

1
2

log
.

It remains to consider

Re〈∂xjTãjv,Q2
γv〉 = Re〈Qγ∂xjTãjv,Qγv〉

= Re〈∂xjTãjQγv,Qγv〉+ Re〈∂xj [Qγ , Tãj ]v,Qγv〉.

Note that these computations make sense because v(t) ∈ H1 and all the pairings are well
defined. Proposition 3.7 implies that

‖〈∂xj [Qγ , Tãj ]v(t)‖0− 1
2 log ≤ Ce−γt‖ãj‖LL‖v(t)‖−s(t)+ 1

2 log

and therefore

(4.21) |〈∂xj [Qγ , Tãj ]v(t), Qγv(t)〉| ≤ C‖ãj‖LLe−2γt‖v(t)‖2
H−s(t)+

1
2

log
.

Next, for vγ(t) ∈ H2−θ1 , we have

2 Re〈∂xjTãjvγ , vγ〉 = Re〈(∂xjTãj − T ∗ãj∂xj )vγ , vγ〉
= Re〈(Tãj − T ∗ãj )∂xjvγ , vγ〉+ Re〈[∂xj , Tãj ]∂xjvγ,, vγ〉.

Using Propositions 3.8 and 3.7, one can bound both terms by the right hand side of (4.21).
Adding up, we have proved that∣∣∣∣∣2 Re

∫ t

0

〈∂xj (ãjv), Q2
γv〉 dt′

∣∣∣∣∣ ≤ C‖ãj‖LL
∫ t

0

‖e−γt
′
Λ1/2v(t′)‖2H−s(t) dt

′.

c) The zero-th order term is clearly a remainder, and the multiplicative properties imply
that

|〈c̃0v(t), Q2
γv(t)〉 ≤ K‖v(t)‖2H−s(t) .

d) We note that

‖aj/a0‖LL ≤ ‖aj‖LL‖‖1/a0‖L∞ + ‖aj‖L∞‖‖1/a0‖LL

≤ ALL
δ0

+
AL∞ALL

δ2
0

≤ 2
AL∞ALL

δ2
0

,

since δ0 ≤ a0 ≤ AL∞ . Using identity (4.20) and the estimates of parts b) and c), implies
(4.17) and so the proof of the lemma is complete.

4.3. Estimating∇xu

We now get estimates of∇xu from the analysis of

(4.22) − 2 Re〈L̃2u,Q
2
γXu〉 = −

n∑
j,k=1

2 Re〈∂xj (ãj,k∂xku), Q2
γXu〉.
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P 4.4. – Suppose that u ∈ L2([0, T ];H2) with ∂tu ∈ L2([0, T ];H1). Then
uγ := Qγu ∈ C0([0, T ], H1) and

(4.23)

1

2
δ0δ1‖∇xuγ(t)‖2L2 +

∫ t

0

δ0δ1‖(γ + λΛ)1/2∇xuγ(t′)‖2L2 dt′

≤ −2 Re

∫ t

0

〈L̃2u,Q
2
γv〉 dt′ + CA2

L∞‖∇xuγ(0)‖2L2 +

∫ t

0

E(t′) dt′,

where

(4.24)
|E(t)| ≤ K0ALLAL∞e

−2γt
(
‖u(t)‖2

H1−s(t)+ 1
2

log
+

1

δ2
0

‖Xu(t)‖2
H−s(t)+

1
2

log

)
+Ke−2γt

(
‖u(t)‖2H1−s(t) + ‖Xu(t)‖2H−s(t)

)
.

To simplify the exposition, we note here that all the dualities 〈·, ·〉 written below make
sense, thanks to the smoothness assumption on u. This will not be repeated at each step.
Moreover, in the proof below, we assume that u itself is smooth (in time).

Proof. – a) We first perform several reductions. Using iii) of Proposition 3.4, one shows
that

〈∂xj (ãj,k∂xku), Q2
γXu〉 = 〈∂xj (Tãj,k∂xku), Q2

γXu〉+ E1

with

(4.25) |E1(t)| ≤ C‖ãj,k‖LL‖∂xku(t)‖
H−s(t)+

1
2

log‖Q2
γXu(t)‖

Hs(t)+
1
2

log .

Since ‖ãj,k‖LL ≤ K0ALL ≤ K0ALLAL∞/δ0, E1 satisfies (4.24). Similarly,

〈∂xj (Tãj,k∂xku), Q2
γXu〉 = 〈∂xjQγTãj,k∂xku,QγXu〉

= 〈∂xjTãj,k∂xkQγu,QγXu〉+ E2

where E2 also satisfies (4.25), and hence (4.24).

b) Next we write

Xu = Ta0
∂tu+

∑
Taj∂xju+ r

and

‖r(t)‖
H1−s(t)− 1

2
log ≤ CALL

(
‖u(t)‖

H1−s(t)+ 1
2

log + ‖∂tu(t)‖
H−s(t)+

1
2

log

)
+ CB‖u(t)‖H1−s(t) .

Therefore, r contributes to an error term E3 = 〈∂xjTãj,k∂xkQγu,Qγr〉 such that

|E3(t)| ≤ e−2γtK0AL∞‖u(t)‖
H1−s(t)+ 1

2
log‖r(t)‖H1−s(t)− 1

2
log .

Using (4.13) in the estimate of r, we see that

|E3(t)| ≤ e−2γtK0AL∞ALL‖u(t)‖
H1−s(t)+ 1

2
log(

‖u(t)‖
H1−s(t)+ 1

2
log + 1

δ0
‖Xu(t)‖

H−s(t)+
1
2

log +K‖u(t)‖H1−s(t) +K‖Xu(t)‖H−s(t)
)

and hence satisfies (4.24).
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c) Consider now the term

〈∂xjTãj,k∂xkQγu, QγTa0
∂tu〉 = −〈Tãj,k∂xkQγu, ∂xjQγTa0

∂tu〉
= −〈Tãj,k∂xkQγu, Ta0

∂xjQγ∂tu〉+ E4

= −〈(Ta0)∗Tãj,k∂xkQγu, ∂xjQγ∂tu〉+ E4

= −〈Ta0
Tãj,k∂xkQγu, ∂xjQγ∂tu〉+ E4 + E5

= −〈Ta0ãj,k∂xkQγu, ∂xjQγ∂tu〉+ E4 + E5 + E6

where E4, E5 and E6 are estimated by Proposition 3.7, 3.8 and 3.9 respectively. They all
satisfy

|Ek(t)| ≤ Ce−2γtA‖u(t)‖
H1−s(t)+ 1

2
log‖∂tu(t)‖

H−s(t)+
1
2

log .

withA = ‖ãj,k‖LL‖a0‖L∞+‖ãj,k‖L∞‖a0‖LL ≤ K0AL∞ALL. Again using (4.13) to replace
∂tu by Xu, one shows that these errors satisfy (4.24).

Similarly

〈∂xjTãj,k∂xkQγu, QγTal∂xlu〉 = −〈Talãj,k∂xkQγu, ∂xl∂xjQγu〉+ E7

where E7 satisfies

(4.26) |E7(t)| ≤ Ce−2γtK0AL∞ALL‖u(t)‖2
H1−s(t)+ 1

2
log

thus (4.24).

d) Introduce the notation

(4.27) wj = ∂xjQγu.

Because ãj,k = ãk,j , we have

Re〈Talãj,kwk, ∂xlwj〉+ Re〈Talãk,jwj , ∂xlwk〉
= Re〈((Talãj,k)∗∂xl − ∂xlTalãj,k)wk, wj〉 := E8

Using Propositions 3.8 and 3.7, one shows that E8 satisfies

|E8(t)| ≤ C‖alãj,k‖LL‖wj(t)‖
H0+ 1

2
log ‖wk(t)‖

H0+ 1
2

log

and therefore E8 also satisfies (4.26) thus (4.24).

e) It remains to consider the sum

(4.28) S := Re
n∑

j,k=1

〈Tbj,k∂xkQγu, ∂xjQγ∂tu〉

with bj,k = a0ãj,k = a0aj,k + ajak. By the strict hyperbolicity assumption (2.8), it follows
for all ξ ∈ Rn

n∑
j,k=1

bj,k(t, x)ξjξk ≥ δ0δ1|ξ|2.

Therefore, we can use Corollary 3.16. Since ‖bj,k‖LL ≤ 2AL∞ALL, there exists an integer ν,
with

(4.29)
2ν

ν
≈ AL∞ALL

δ
,
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such that for all t ∈ [0, T0] and (w1, . . . , wn) in L2(Rn), the following estimate is satisfied

(4.30) Re
n∑

j,k=1

〈P νbj,k(t)wk, wj〉 ≥
δ0δ1

2
‖w‖2L2 .

From now on we fix such a ν and use the notation Pb in place of P νb .

Using Lemma 3.10 and Proposition 3.14, we see that

‖∂xjTbj,kwk − ∂xj‹Pbj,kwk‖H0− 1
2

log ≤ C‖bj,k‖LL
(
‖wk‖

H0+ 1
2

log +K‖wk‖L2

)
Therefore

S = Re
n∑

j,k=1

〈‹Pbj,k∂xkQγu, ∂xjQγ∂tu〉+ E9

where
|E9(t)| ≤ Ce−2γt‖bj,k‖LL‖u(t)‖

H1−s(t)+ 1
2

log‖∂tu(t)‖
H−s(t)+

1
2

log

+ e−2γtνK‖u(t)‖H1−s(t)‖∂tu(t)‖
H−s(t)+

1
2

log .

Using (4.13), implies that E9 satisfies (4.24).

Next, we use Proposition 3.14 to replace ∂xj‹Pbj,k by 1
2∂xj (

‹Pbj,k + (‹Pbj,k)∗) at the cost of
an error E10 similar to E9.

At this stage, we commute Qγ and ∂t as in (4.19). Using the notation (4.27), yields

(4.31)

2S =
n∑

j,k=1

Re〈(‹Pbj,k + (‹Pbj,k)∗)wk, ∂twj〉

+ γ
n∑

j,k=1

Re〈(‹Pbj,k + (‹Pbj,k)∗)wk, wj〉

+ λ
n∑

j,k=1

Re〈(‹Pbj,k + (‹Pbj,k)∗)wk,Λwj〉+ 2E9 + 2E10.

We denote by S1, S2 and S3 the sums on the right hand side.

f) The symmetry bj,k = bk,j implies the identity

S1 =
d

dt

n∑
j,k=1

Re〈‹Pbj,kwk, wj〉+ E11

E11 =
n∑

j,k=1

Re〈[‹Pbj,k , ∂t]wk, wj〉where

is estimated using Proposition 3.14:

|E11(t)| ≤ C‖bj,k‖LL
(
‖w(t)‖

H0+ 1
2

log + ν‖w‖L2

)
‖w(t)‖

H0+ 1
2

log

≤ Ce−2γt‖bj,k‖LL‖u(t)‖
H1−s(t)+ 1

2
log

(
‖u(t)‖

H1−s(t)+ 1
2

log + ν‖u(t)‖H1−s(t)
)

and therefore satisfies (4.24). Moreover,

Re〈‹Pbj,kwk,Λwj〉 = Re〈‹Pbj,kΛ
1
2wk,Λ

1
2wj〉+ Re〈Λ 1

2 [Λ
1
2 , ‹Pbj,k , ]wk, wj〉

Re〈(‹Pbj,k)∗wk,Λwj〉 = Re〈Λ 1
2wk, ‹Pbj,kΛ

1
2wj〉+ Re〈wk, [‹Pbj,k ,Λ 1

2 ]Λ
1
2wj〉.
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We use Proposition 3.17 to estimate the commutators and

S3 = 2
n∑

j,k=1

Re〈‹Pbj,kΛ
1
2wk,Λ

1
2wj〉+ E12

where |E12(t)| ≤ K‖w(t)‖2L2 ≤ K‖u(t)‖2
H1−s(t) .

Summing up, we have shown that up to an error which satisfies (4.24), the quantity (4.22)
under consideration is equal to

(4.32)

d

dt

n∑
j,k=1

Re〈‹Pbj,kwk, wj〉+ γ
n∑

j,k=1

2 Re〈‹Pbj,kwk, wj〉
+ λ

n∑
j,k=1

2 Re〈‹Pbj,kΛ
1
2wk,Λ

1
2wj〉.

By (4.30), the last two sums are larger than or equal to δ0δ1‖w(t)‖2L2 and δ0δ1‖w(t)‖2
H0+ 1

2
log

,

respectively. Similarly, integrating the first term between 0 and t and using (4.30) give control
of δ0δ12 ‖w(t)‖L2 , finishing the proof of (4.23).

4.4. A-priori estimates for the solutions of (4.11)

The proof of Theorem 4.1 is based on a-priori estimates for smooth solutions of the sys-
tem (4.11).

T 4.5. – There are λ0 ≥ 0 of the form (2.30) and γ0 such that for λ ≥ λ0 and
γ ≥ γ0 the following is true: for all u ∈ L2([0, T ];H2) and v ∈ L2([0, T ];H1) with ∂tu ∈
L2([0, T ];H1) and ∂tv ∈ L1([0, T ];L2) and for all parameters λ, γ and all t ≤ T , the following
holds:

(4.33)

sup
0≤t′≤t

e−2γt′
Å

1

2
δ0δ1‖u(t′)‖2

H1−s(t′) + ‖v(t′)‖2
H−s(t′)

ã
+ δ0δ1

∫ t

0

e−2γt′(λ‖u(t′)‖2
H1−s(t′)+ 1

2
log

+ γ‖u(t′)‖2
H1−s(t′)) dt

′

+

∫ t

0

e−2γt′(λ‖v(t′)‖2
H−s(t

′)+ 1
2

log
+ γ‖v(t′)‖2

H−s(t′)
) dt′

≤ CA2
L∞‖u(0)‖2H1−θ + ‖v(0)‖2H−θ + 2 Re

∫ t

0

〈f,Q2
γv〉 dt′

+K

∫ t

0

e−2γt′‖g(t′)‖1−s(t)− 1
2 log‖u(t′)‖1−s(t)+ 1

2 log dt
′,

with f = Zv + b̃0v − L̃2u + L̃1u + d̃u ∈ L1([0, T ];Hα′−1), g = Y u + c̃0u − v/a0 ∈
L2([0, T ];Hα′) for all α′ < α.

Proof. – We compute the integral over [0, t] of Re〈f,Q2
γv〉. Proposition 4.3 takes care of

the first term 2 Re〈Zv + b̃0v,Q
2
γv〉. We split the second term into three pieces

〈L̃2u,Q
2
γv〉 = 〈L̃2u,Q

2
γXu〉 − 〈L̃2u,Q

2
γ(a0g)〉+ 〈L̃2u,Q

2
γ(c0u)〉
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and use Proposition 4.4 for the first piece. The multiplicative properties imply that

|〈L̃2u(t), Q2
γ(a0g)(t)〉| ≤ K‖g(t)‖1−s(t)− 1

2 log‖L̃2u(t)‖−1−s(t)+ 1
2 log

≤ K‖g(t)‖1−s(t)− 1
2 log‖u(t)‖1−s(t)+ 1

2 log,

and

|〈L̃2u(t), Q2
γ(c0u)(t)〉| ≤ K‖u(t)‖1−s(t)‖L̃2u(t)‖−1−s(t)

≤ K‖u(t)‖21−s(t).

Next, using the multiplicative properties stated in Corollary 3.6 for the products b̃j∂xju and
∂xj (c̃ju), and the embedding L2 ⊂ H−s for the term d̃u, we see that

‖(L̃1u+ d̃u)(t)‖H−s(t) ≤ K‖u(t)‖H1−s(t) .

Thus

|〈(L̃1 + d̃)u(t), Q2
γv(t)〉| ≤ K‖u(t)‖1−s(t)‖v(t)‖−s(t)

≤ K
(
‖u(t)‖21−s(t) + ‖v(t)‖2−s(t)

)
.

Proposition 4.4 gives an estimate of∇xu. We also need an estimate for u. The identity (4.20)
applied to u yields

e−2γt‖u(t)‖2H−s(t) +

∫ t

0

e−2γt′(λ‖u(t′)‖2
H−s(t

′)+ 1
2

log
+ γ‖u(t′)‖2

H−s(t′)
) dt′

= ‖uγ(0)‖2H−s(0) + 2 Re

∫ t

0

〈∂tu,Q2
γu〉 dt′.

Next, we use the inequality

|〈∂tu,Q2
γu〉| ≤ C

(
‖u(t)‖2H1−s(t) + ‖∂tu(t)‖2H−1−s(t)

)
.

In addition, we note that the second equation in (4.11) yields

‖∂tu(t)‖H−1−s(t) ≤ K
(
‖v(t)‖2H−s(t) + ‖u(t)‖2H−s(t)

)
+ ‖g(t)‖2H−1−s(t) .

We add the various estimates and use Propositions 4.3 and 4.4 to obtain a final estimate.
On the left hand side we have

sup
0≤t′≤t

e−2γt′
(1

2
δ0δ1‖u(t′)‖2

H1−s(t′) + ‖v(t′)‖2
H−s(t′)

)
(4.34)

+ γ

∫ t

0

e−2γt′
(
δ0δ1‖u(t′)‖2

H1−s(t′) + ‖v(t′)‖2
H−s(t′)

)
dt′(4.35)

+ λ

∫ t

0

e−2γt′
(
δ0δ1‖u(t′)‖2

H1−s(t′)+ 1
2

log
+ ‖v(t′)‖2

H−s(t
′)+ 1

2
log

)
dt′.(4.36)

On the right hand side, we find the initial data

(4.37) CA2
L∞‖u(0)‖2H1−s(0) + ‖v(0)‖2H−s(0) ,

the contribution of f

(4.38) 2 Re

∫ t

0

〈f(t′), Qγv(t′)〉 dt′,
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an estimated contribution of g

(4.39) K

∫ t

0

e−2γt′‖g(t′)‖1−s(t′)− 1
2 log‖u(t′)‖1−s(t′)+ 1

2 log dt
′,

and two types of “remainders”:

(4.40) K0ALLAL∞

∫ t

0

e−2γt′
(
‖u(t′)‖2

H1−s(t′)+ 1
2

log
+

1

δ2
0

‖vγ(t′)‖2
H−s(t

′)+ 1
2

log

)
dt′

and

(4.41) K

∫ t

0

e−2γt′
(
‖uγ(t′)‖2

H1−s(t′) + ‖v(t′)‖2
H−s(t′)

)
dt′.

If

(4.42) λ ≥ 2K0
ALLAL∞

δ0δ1
and λ ≥ 2K0

ALLAL∞

δ2
0

the term in (4.40) can be absorbed by (4.36). Note that this choice of λ is precisely the choice
announced in (2.30), with a new function K0 of AL∞/δ0. Finally, if γ is large enough, the
term (4.41) is absorbed by (4.35), finishing the proof of the main estimate (4.33).

4.5. Proof of Theorem 4.1

From now on, we assume that λ ≥ λ0 and γ ≥ γ0 are fixed, so that the estimate (4.33)
holds. Consideru, f , u0 andu1 satisfying the equation (4.3) and the smoothness assumptions
(4.4), (4.5), (4.6). Consider v = Xu+ c0u, which by Lemma 4.2 satisfies

(4.43) v ∈ H−θ+ 1
2 log, ∂tv ∈ L1([0, T ];H−1−θ1), v|t=0 = v0 ∈ H−θ,

with v0 = a0|t=0u1 +
∑
aj |t=0∂xju0 + c0|t=0u0. In particular, (u, v, f) and g = 0 satisfy

(4.11).

We mollify u and v and introduce, for ε > 0,

(4.44) uε = Jεu, vε = Jεv with Jε = (1− ε∆x)−1.

For all ε > 0, (4.4) and (4.43) imply that

uε ∈ L2([0, T ], H2), ∂tuε ∈ L2([0, T ], H1),

vε ∈ L2([0, T ], H1), ∂tvε ∈ L1([0, T ], L2),

(see (4.7)). Moreover, using the spatial Fourier transform, one immediately sees that uε con-
verges to u inH1−θ,λ(T ) and vε converges to v inH−θ,λ(T ).

Define

fε = Zvε + b̃0vε − L̃2uε + L̃1uε + d̃uε,

gε = Y uε + c̃0uε − vε/a0.

L 4.6. – Assumptions (4.4) and (4.6) imply that fε = f1,ε + f2,ε with f1,ε → f1 in
L−θ,λ(T ) and f2,ε → f2 inH−θ− 1

2 log,λ(T ). Moreover, gε → 0 inH1−θ− 1
2 log,λ(T ).
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Taking this lemma for granted, we finish the proof of Theorem 4.1. We use the estimate
(4.33) for (uε, vε), together with the estimates

|〈fε(t), Q2
γv(t)〉| ≤ Ce−2γt

(
‖f1,ε(t)‖H−s(t)‖vε(t)‖H−s(t)

+ ‖f2,ε(t)‖
H−s(t)−

1
2

log‖vε(t)‖H−s(t)+ 1
2

log

)
and ∣∣∣∣∣

∫ t

0

〈fε, Q2
γv〉 dt′

∣∣∣∣∣ ≤ C(
∫ t

0

e−γt
′(
‖f1,ε(t

′)‖H−s(t′) dt
′
)

sup
0≤t′≤t

e−γt
′
‖vε(t′)‖H−s(t′)

+C
(
e−2γt′‖f2,ε(t

′)‖2
H−s(t

′)− 1
2

log
dt′
) 1

2
(
e−2γt′‖vε(t′)‖2

H−s(t
′)+ 1

2
log

)
dt′
) 1

2

.

This implies that there is a K such that for all ε > 0, one has

(4.45)

sup
0≤t′≤t

‖uε(t′)‖2H1−s(t′) + sup
0≤t′≤t

‖vε(t′)‖2H−s(t′)

+

∫ t

0

(
‖uε(t′)‖2

H1−s(t′)+ 1
2

log
+ ‖vε(t′)‖2

H−s(t
′)+ 1

2
log

)
dt′

≤ K
{
‖uε(0)‖2H1−s(0) + ‖vε(0)‖2H−s(0) +

∫ t

0

‖gε(t′)‖2
H1−s(t)− 1

2
log
dt′

+
(∫ t

0

‖f1,ε(t
′)‖H−s(t′) dt

′
)2

+

∫ t

0

‖f2,ε(t
′)‖2

H−s(t
′)− 1

2
log
dt′
}
.

In addition, there are similar estimates for the differences (uε− uε′ , vε− vε′). Since uε(0) =

Jεu0 and vε(0) = Jεv0 converge to u0 and v0 in H1−s(0) and H−s(0), respectively, the es-
timate implies that uε is a Cauchy sequence in H1−θ,λ(T ) and in C0([0, t];H1−s(t)) for all
t ∈ [0, T ]. Therefore, the limit u in H1−θ,λ(T ) also belongs to C1−θ,λ(T ). Similarly, vε is a
Cauchy sequence inH−θ,λ(T ) and in C0([0, t];H−s(t)) for all t ∈ [0, T ] and v ∈ C1−θ,λ(T ).
In addition, we can pass to the limit in (4.45) proving that

(4.46)

sup
0≤t′≤t

‖u(t′)‖2
H1−s(t′) + sup

0≤t′≤t
‖v(t′)‖2

H−s(t′)

+

∫ t

0

(
‖u(t′)‖2

H1−s(t′)+ 1
2

log
+ ‖v(t′)‖2

H−s(t
′)+ 1

2
log

)
dt′

≤ K
{
‖u0‖2H1−s(0) + ‖v0‖2H−s(0)

+
(∫ t

0

‖f1(t′)‖H−s(t′) dt
′
)2

+

∫ t

0

‖f2(t′)‖2
H−s(t

′)− 1
2

log
dt′
}
.

Using the equation Y u+c̃0u = v/a0 and the estimate (4.13) of Lemma 4.2 to bound the time
derivative ∂tu, we see that ∂tu ∈ C−θ,λ(T ) and that the energy estimate (2.29) is satisfied.

Therefore, it remains only to prove the lemma.

Proof of Lemma 4.6. – By assumption (4.6), f = f1 +f2 and Jεf1 → f1 inL−θ,λ(T ) and
Jεf2 → f2 inH−θ− 1

2 log,λ(T ). Therefore, it is sufficient to prove that the commutators

[Z, Jε]v, [L̃2, Jε]u,

[b̃0, Jε]v, [L̃1, Jε]u, [d̃, Jε]u,

4 e SÉRIE – TOME 41 – 2008 – No 2



THE CAUCHY PROBLEM FOR WAVE EQUATIONS 207

converge to 0 inH−θ,λ(T ) and that the commutators

[Y, Jε]u, [c̃0, Jε]u, [1/a0, Jε]v

converge to 0 inH1−θ,λ(T ). We note that Jε commutes with ∂t in Z and Y . Thanks to (4.4)
(4.43) and to the conservative form of Z and L̃∗2, we see that there are four types of com-
mutators to consider :

[a, Jε]w → 0 inH1−θ,λ(T ), when a ∈ L∞ ∩ LL([0, T ]× Rd), w ∈ H−θ,λ(T ),(4.47)

[b, Jε]w → 0 inH−θ,λ(T ), when b ∈ Cα([0, T ]× Rd), w ∈ H−θ,λ(T ),(4.48)

[c, Jε]w → 0 inH1−θ,λ(T ), when c ∈ Cα([0, T ]× Rd), w ∈ H1−θ,λ(T ),(4.49)

[d, Jε]w → 0 inH−θ,λ(T ), when d ∈ L∞([0, T ]× Rd), w ∈ H1−θ,λ(T ).(4.50)

The first commutators [a, Jε] = [Ta, Jε] + Ra, Jε − JεRa are uniformly bounded from
H−θ,λ(T ) to H1−θ,λ(T ): this is true for the first term by Proposition 3.7, since the Jε form
a bounded family of operators of degree 0; for the last two terms, this follows from Propo-
sition 3.4. Moreover, [a, Jε]w → 0 in L2([0, T ];Hσ) for all σ < 1, and thus also in H1−θ,λ,
when w is smooth and a ∈ L∞ ∩ LL. By density, this implies (4.47).

For the commutators (4.48), we note that they are uniformly bounded fromH−θ,λ(T ) to
H−θ,λ(T ). This is true for both terms bJε and Jεb since s(t) remains in a compact subset of
[0, α[. Because [b, Jε]w converges to zero in L2([0, T ];Hσ) for all σ < α, when w is smooth
and b ∈ L∞ ∩ LL, the convergence in (4.48) follows. The proof for (4.49) is similar.

Finally, we note that [d, Jε]w → 0 in L2([0, T ] × Rd), hence in H−θ,λ(T ) when
d ∈ L∞([0, T ]×Rd) and w ∈ L2([0, T ]×Rd), thus in particular when w ∈ H1−θ,λ(T ).

4.6. Existence and uniqueness

Proof of Theorem 2.4. – Assume that u ∈ Hs(]0, T [×Rn) with s∈ ]1 − α, α[, T ≤ T0,
and satisfies

(4.51) Lu = 0, u|t=0 = 0, Xu|t=0 = 0.

We want to prove that u = 0.
Fix θ < θ1 in ]1−α, α[ with 1−θ < s. Let λ and T ′ be the parameter and time associated

to them by Theorem 4.1. Note that they depend only on θ, θ1, the norms AL∞ and ALL in
(2.9) and the constants of hyperbolicity δ0 and δ1 in (2.8).

From Lemma 2.2, we know that u ∈ L2([0, T ];Hs(Rn)) and ∂tu ∈ L2([0, T ];Hs−1(Rn))

and therefore, on [0, T ′]×Rn, u ∈ H1−θ+ 1
2 log,λ and ∂tu ∈ H−θ+ 1

2 log,λ since s > 1− θ−λt.
By Theorem 4.1, u satisfies the energy estimate (2.29) on [0, T ′], and since the right hand side
vanishes, u = 0 for t < T ′. By a finite number of iterations, u vanishes for t < T .

Proof of Theorem 2.6. – On [0, T0]×Rd, the coefficients ofL2 can be approximated inL∞

and Cα
′

for all α′ < 1 by C∞ functions which are uniformly bounded in L∞ and in LL, in
such a way that the hyperbolicity condition (2.8) remains satisfied. Similarly, the coeffficients
of L1 can be approximated in L∞ and Cα

′
for all α′ < α by smooth functions which are

uniformly bounded inCα. Further, the coefficient c can be approximated inL2
loc by functions

uniformly bounded inL∞. This defines operatorsLε withC∞ coefficients which satisfy (2.8),
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(2.9) and (2.10) uniformly in ε and converge to the coefficients of L in the sense described
above.

We fix the parameter λ ≥ λ0, where λ0 is given by Theorem 4.1. Recall that T is then given
by (4.2). Consider Cauchy data u0 ∈H1−θ and u1 ∈H−θ and a source term f = f1+f2 with
f1 ∈ L−θ,λ(T ) and f2 ∈ H−θ− 1

2 log,λ. We can approximate these data in the corresponding
spaces byC∞ functions uε0, uε1, fε1 and fε2 , compactly supported in x. The strictly hyperbolic
problems with smooth coefficients and smooth data

(4.52) Lεuε = fε1 + fε2 , uε|t=0 = uε0, Xεuε|t=0 = uε1

have a unique smooth solution uε, compactly supported in x.

By Theorem 4.1, the energy estimate (2.29) is satisfied with a constantK independent of ε.
Therefore the family {uε} is bounded inH1−θ+ 1

2 log,λ, thus inL2([0, T ], H1−θ1) and the fam-
ilies {∂tuε} and {Xεuε} are bounded in H−θ+ 1

2 log,λ, hence in L2([0, T ], H−θ1). Therefore,
extracting a subsequence if necessary, uε converges to a limit u, weakly in L2([0, T ], H1−θ1)

and in H1([0, T ], H−θ1). Moreover, u ∈ H1−θ+ 1
2 log,λ and ∂tu ∈ H−θ+ 1

2 log,λ. There is no
difficulty in passing to the limit in the equation in the sense of distributions: all the products
are well defined and involve one strong and one weak convergence. Thus Lu = f .

The weak convergence in L2([0, T ], H1−θ1)∩H1([0, T ], H−θ1) implies the strong conver-
gence inC0([0, T ];H−θ1loc ) and therefore the convergence of uε|t=0 to u|t=0 inH−θ1loc . Therefore,
u|t=0 = u0.

Using the equation as in Lemma 2.2, we prove that the family vε = Xεuε + cε0u
ε, which

converges weakly to v = Xu + c0u, is bounded in L2([0, T ], H−θ1) ∩ H1([0, T ], H−1−θ1).
Thus vε|t=0 converges to v|t=0 inH−θ1loc . Hence v|t=0 = u1 +c0|t=0u0 implying thatXu|t=0 =

u1.

By Theorem 4.1 the solution u also belongs to C1−θ,λ with ∂tu ∈ C1−θ,λ and satisfies the
energy estimate (2.29).

5. Local results

We consider the equation (1.1) together with an initial hypersurface Σ satisfying Assump-
tion 1.1. This section contains the proofs of Proposition 1.4 and Theorems 1.5 and 1.6.

5.1. Change of coordinates. Traces

Consider a smooth change of variables y = χ(ỹ) and for a function u let ũ denote u ◦ χ.
Then

(∂yju) ◦ χ =
∑
k

ψ′j,k ∂ỹk ũ =
∑
k

∂ỹk
(
ψ′j,kũ

)
−

(∑
k

∂ỹkψ
′
j,k

)
ũ

with ψ′j,k = (∂yjψk) ◦ χ
)

and ψ = χ−1. Thus

(5.1) ›Lu = L̃ũ

where L̃ has the same form as L and satisfies Assumption 1.1.
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If ν(y) is conormal to Σ, then ν̃(ỹ) = tχ′(y)ν(χ(ỹ)) is conormal to Σ̃ = χ−1(Σ). Using
the notations (1.7), for smooth functions, the Neumann traces associated to (L, ν) and (L̃, ν̃),
are linked by the relation

(5.2) (Nνu) ◦ χ = ‹Nν̃ ũ.
The Green’s formula (1.9) can be transported by χ, taking into account the Jacobian factors:

(5.3)
(
f, g
)
L2(Ω+)

=
(
f̃ , Jg̃

)
L2(Ω̃+)

with J = |detχ′|. This relation extends to the duality Hs ×H−s for |s| < 1
2 . In particular,

comparing the Green formula for L and L̃ tested on smooth functions implies that :

(L̃)∗(Jṽ) = JL̃∗v(5.4) ‹N ′ν̃(Jṽ) = JΣ
fiN ′νv(5.5)

where JΣ is the Jacobian of χ|Σ̃.

As a corollary, the statement of Proposition 1.4 is invariant by smooth changes of vari-
ables and therefore can be proved in any suitable system of coordinates.

Proof of Proposition 1.4. – a) Uniqueness. We prove that if u0 ∈H
s− 1

2

loc and u1 ∈H
s− 3

2

loc

satisfy 〈
u1, DΣv

〉
Hs−

3
2×H

3
2
−s −

〈
u0, N

′
Σv
〉
Hs−

1
2×H

1
2
−s = 0

for all s′ ∈ ]1− α, 1
2 [ such that s′ ≤ s and all v ∈ H2−s′

comp(Ω ∩ {ϕ ≥ 0}), then u0 = u1 = 0.

It is sufficient to prove that for v0 and v1 in C∞0 (Ω ∩ Σ), there is v ∈ C1+α
0 (Ω) such that

v|Σ = v0 and N ′νv = v1. This can be done in local coordinates y = (t, x) where Σ = {t = 0}
and this amounts to solve

v|t=0 = v0, ∂tv|t=0 = g0v1 +
∑

gj∂xjv0 + hv0

where g0, . . . , gd belong to LL(Ω) and h belongs to Cα(Ω).
b) Existence. According to the discussion above we may assume that we are working in

coordinates y = (t, x) such that y = (0, 0) and Σ = {t = 0}. The conormal direction is
ν = λ(x) dt and the Neumann trace for smooth functions is:

Nνu = λ (Xu)|t=0

where X is the vector field (2.11).
Let s∈ ]1− α, α[. For u ∈ Hs

loc(Ω∩ {t ≥ 0}) such that Lu ∈ L2(Ω+). Local versions of
Lemmas 2.1 and 2.2 imply that for T > 0 small and ω relatively compact in Ω ∩ {t = 0}

(5.6) u ∈ H1,s−1(]0, T [×ω)), Xu ∈ H1,s−2(]0, T [×ω)).

Indeed, the proofs are identical, using local multiplicative properties and local versions of the
spaces Hs,s′ . The trace operator w 7→ w|t=0 has a unique extension as a bounded operator
from H1,σ(]0, T [×ω) to Hσ+ 1

2 (ω). Therefore, the traces u|t=0 and Xu|t=0 are well defined
in Hs− 1

2 and Hs− 3
2 respectively. We show that, in these coordinates, Green’s formula (1.9)

holds with

(5.7) DΣu = u|t=0, Nνu = λ(Xu)|t=0.
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This follows immediately by integration by parts, the only difficulty is to check that at each
step we have enough smoothness to justify the computations. We sketch here the main points
of the discussion. First, recall that for w ∈ H1,σ and v ∈ H1,−1−σ compactly supported in
[0, T [×ω:

(5.8)
〈
∂tw, v

〉
L2(σ)

= −
〈
w, ∂tv

〉
L2(σ+1)

+
〈
w|t=0, v|t=0

〉
Hσ+ 1

2×H−
1
2
−σ ,

and for w ∈ H0,σ+1 and v ∈ H0,−σ compactly supported in [0, T [×ω:

(5.9)
〈
∂xjw, v

〉
L2(σ)

= −
〈
w, ∂xjv

〉
L2(σ+1)

where 〈 · , · 〉L2(σ) denotes the duality L2([0, T ], Hσ) × L2([0, T ];H−σ) and the traces are
taken in the sense indicated above.

Consider v ∈ H2−s′
comp([0, T [×ω), where s′ ∈ ]1−α, 1

2 [ with s′ ≤ s. Using (5.6), (5.8), (5.9)
and the multiplicative properties of functions in LL-functions and Hσ, one obtains that〈

ZXu, v
〉
L2(s−2)

=
〈
Xu,Z∗v

〉
L2(s−1)

+
〈
Xu|t=0, v|t=0

〉
Hs−

3
2×H

3
2
−s ,

=
〈
Y u, a0Z

∗v
〉
L2(s−1)

+
〈
Xu|t=0, v|t=0

〉
Hs−

3
2×H

3
2
−s ,

(recall the definitions (2.11) and (2.13) of X, Y and Z). Let w = a0Z
∗v ∈ H1−s′ . Because

1− s′ ≥ 0 and s′ ≤ s, w ∈ H0,1−s′ ⊂ H0,1−s. Therefore,〈
ãj∂xju,w

〉
L2(s−1)

= −
〈
u, ∂xj

(
ãj v

)〉
L2(s)

.

The term 〈∂tu,w〉 is more delicate since ∂tw ∈ H−s
′

and s′ > 0. However, as in Lemma 1.3,
one can use the duality Hs′({t ≥ 0}) ×H−s′({t ≥ 0}) for 0 ≤ s′ < 1

2 and for u ∈ H1,s−1

and w ∈ H1−s′
comp, (5.8) can be extended as

(5.10)
〈
∂tu,w

〉
L2(s−1)

= −
〈
u, ∂tw

〉
Hs′×H−s′ +

〈
u|t=0, w|t=0

〉
Hs+

1
2×H

1
2
−s ,

noticing that the trace w|t=0 belongs to H
1
2−s

′ ⊂ H 1
2−s.

Repeated use of (5.9) implies that for the tangential second order part L̃2 defined in (2.13),
there holds 〈

L̃2u, v
〉
L2(s−2)

=
〈
u, (L̃2)∗v

〉
L2(s)

.

First order terms are treated similarly, and summing up we get that

(5.11)

(
Lu,v

)
L2({t>0} −

〈
u, L∗v

〉
Hs′ ({t>0})×H−s′ ({t>0})

=
〈
Xu|t=0, v|t=0

〉
Hs−

3
2×H

3
2
−s −

〈
u|t=0, X

′v|t=0

〉
Hs−

1
2×H

1
2
−s

In the computations above, the underlying measure in {t = 0} is the Lebesque measure dx.
The surface measure associated to the conormal λ dt as in (1.6) is λ−1dx. This proves that
the identity (1.6) is proved with DΣ and Nν given by (5.7), as claimed.
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5.2. Local existence

Choose Φ, a smooth map from R1+n to Ω, with Φ(y) = y on a smaller neighborhood Ω1

and Φ(y) = 0 for y large enough. Changing the coefficients according to the rule a](y) =

a(Φ(y)) we obtain an operator L] which coincides with L on Ω1, satisfies the regularity con-
ditions (2.4) to (2.6), and the hyperbolicity conditions (2.8) globally on R1+n.

Fix s > 1−α. Without loss of generality for the statement of Theorem 1.5, we can assume
that s < α. We are going to apply Theorem 2.6 to the operator L] with θ = 1−s∈ ]1−α, α[.
Choosing θ1 ∈ ]θ, α[, this theorem provides us with λ and T = (θ1 − θ)/λ. We fix Ω′ =

Ω1 ∩ {|t| < T}.
Suppose that u0 and u1 are Cauchy data in Hs(ω) and Hs−1(ω) respectively, on a neigh-

borhood ω of 0 in Rn. There are restrictions to ω of functions u]0 ∈ Hs(Rn) and u]1 ∈
Hs−1(Rn) respectively. Suppose that f ∈ L2(Ω′ ∩ {t > 0}). We extend it, for instance by 0,
to f ] ∈ L2([0, T ]× Rn). By Theorem 2.6, the Cauchy problem

(5.12) L]u] = f ], u]|t=0 = u]0, (X]u])|t=0 = u]1

has a solution u] on [0, T ] × Rn, which belongs in particular to L2([0, T ];Hs1) with s1 =

1− θ1 and such that ∂tu ∈ L2([0, T ];Hs1−1). In particular, u] ∈ Hs1([0, T ]× Rn) and by
restriction to Ω′ defines a solution of (1.10).

5.3. Local uniqueness

To prove Theorem 1.6, we first reduce the problem to proving a theorem of propagation
of zero across the surface {t = 0}.

L 5.1. – Suppose that s > 1− α and u ∈ Hs(Ω ∩ {t > 0}) satisfies

(5.13) Lu = 0, u|t=0 = 0, Xu|t=0 = 0.

Then the extension ue of u by 0 for t < 0 satisfies

(5.14) ue ∈ Hs and Lue = 0

on a neighborhood Ω1 of 0.

Proof. – If the coefficients were smooth, this would be immediate. We check that we have
enough smoothness to extend the result to our case.

We can assume that Ω =] − T, T [×ω. From Lemma 2.2 (localized in space) we know
that u ∈ L2([0, T ];Hs

loc(ω)), thus its extension ue ∈ L2([−T, T ];Hs
loc(ω)). Moreover, ∂tu ∈

L2([0, T ];Hs−1
loc (ω)) and by assumption u|t=0 = 0. Therefore, ∂tue is the extension of ∂tu by

0 and thus belongs to L2([−T, T ];Hs−1
loc (ω)). In particular, ue ∈ Hs

loc(]− T, T [×ω).
Let v = Xu + c0u ∈ L2([0, T ];Hs−1

loc (ω)) and let ve ∈ L2([−T, T ];Hs−1
loc (ω)) denote its

extension by 0. The first step implies that Xue is the extension of Xu and therefore ve =

Xue + c0ue. Write the equation as

(5.15) ∂tv = P (u, v),

where P involves only spatial derivatives (see (2.17)). Morever, we have seen in the proof
of Lemma 2.2 that P (u, v) ∈ L2([0, T ];Hs−2

loc (ω)). Since by assumption the trace of v van-
ishes, this implies that ∂tve is the extension by 0 of ∂tv, thus the extension of P (u, v), that
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is P (ue, ve). Since ve = Xue + c0ue, this means that ue satisfies the equation on Ω =

]−T, T [× ω.

We now finish the proof of Theorem 1.6. We suppose that u ∈ Hs(Ω ∩ {t > 0}) satisfies
(5.13), with s > 1− α and we denote by ue its extension by 0 for t < 0. We use the classical
convexification method, and consider the change of variables

(5.16) (t, x) 7→ (t̃, x̃) t̃ = t+ |x|2, x̃ = x,

which maps the past {t < 0} to {t̃ < |x̃|2}. Thus there is T0 > 0 such that the function ũ
deduced from ue is defined for t̃ < T0 and vanishes for t̃ < |x̃|2. Moreover, decreasing T0

if necessary, the operator L̃ deduced from L is defined on a neighborhood Ω̃ of the origin
which contains the closed lens D = {|x̃|2 ≤ t ≤ T0} and L̃ũ = 0 on Ω̃ ∩ {t < T0}. Now
we extend the coefficients of L̃, as above, and obtain a new operator L], defined on R1+n,
satisfying the assumptions of section 2, and equal to L̃ on a neighborhood of D. Therefore,
on ]−∞, T0[×Rn

(5.17) L]ũ = 0, ũ ∈ Hs, ũ|{t̃<|x̃|2} = 0.

Since ũ vanishes in the past, the traces ũ|t=−ε and X]ũ|t=−ε vanish for all ε > 0. Therefore,
Theorem 2.4 applied to the Cauchy problem for L] with initial time −ε implies that ũ = 0

for all (t̃, x̃) such that t̃ < T0. Hence u = 0 on a neighborhood of the origin.

6. Application : a blow-up criterion for nonlinear equations

6.1. Statement of the result

In coordinates y = (t, x), we consider a nonlinear wave equation:

(6.1)

∂t
(
a0(u)∂tu

)
+

n∑
j=1

∂t
(
aj(u)∂xju

)
+ ∂xj

(
aj(u)∂tu

)
−

n∑
j,k=1

∂xj
(
aj,k(u)∂xku

)
+ ∂t

(
b0(u)) +

n∑
j=1

∂xj (bj(u)) = F (u).

A 6.1. – The coefficients are smooth functions of u ∈ R. Morever, for all
fixed u, the polynomial a0τ

2 + 2
∑
ajτξj −

∑
aj,kξjξk is strictly hyperbolic in the direc-

tion dt.

The Cauchy problem for (6.1) with initial data

(6.2) u|t=0 = u0, ∂tu|t=0 = u1,

is well posed for u0 ∈ Hs(Rn) and u1 ∈ Hs−1(Rn) when s > n
2 + 1. The solution u belongs

to C0([0, T ], Hs)∩C1([0, T ];Hs−1). By uniqueness, there is a maximal time of existence T ∗

and u ∈ C0([0, T ∗[;Hs)∩C1([0, T ∗[;Hs−1). Moreover, there is a classical blow-up criterion
for the creation of singularities:
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T 6.2. – For s > n
2 + 1 and data u0 ∈ Hs, u1 ∈ Hs−1, if the maximal time of

existence is finite, then

(6.3) sup
0≤t<T∗

∥∥u(t)
∥∥
L∞

+
∥∥∂t,xu(t)

∥∥
L∞

= +∞.

See e.g. [1] for an extensive discussion of blow-up for solutions of wave equations or [9] for
general first order quasilinear systems. Our goal is to show that one can replace the Lipschitz
norm in (6.3) by a LL -norm.

T 6.3. – For s > n
2 + 1 and data u0 ∈ Hs, u1 ∈ Hs−1, if T ∗ < +∞, then

(6.4) sup
0≤t<T∗

∥∥u∥∥
L∞([0,t]×Rn)

+
∥∥u∥∥

LL([0,t]×Rn)
= +∞.

The proof of Theorem 6.2 is based on the estimate :

T 6.4. – For s > n
2 + 1, M ∈ R and T0 > 0 given, there is a constant C, such that

if T ≤ T0 and u ∈ C0([0, T [;Hs) ∩ C1([0, T [;Hs−1) is a solution of (6.1) such that

(6.5) sup
0≤t<T

∥∥u(t)
∥∥
L∞

+
∥∥∂t,xu(t)

∥∥
L∞
≤M

then

(6.6) sup
0≤t<T

∥∥u(t)
∥∥
Hs

+
∥∥∂tu(t)

∥∥
Hs−1 ≤ C

(∥∥u0

∥∥
Hs

+
∥∥u1

∥∥
Hs−1

)
.

Similarly, the proof of Theorem 6.3 is based on the following estimate :

T 6.5. – For s > n
2 + 1 and K ∈ R, there are constants T1 > 0, C1 and λ such

that if u ∈ C0([0, T [;Hs) ∩ C1([0, T [;Hs−1) is a solution of (6.1) such that

(6.7) sup
0≤t<T

∥∥u∥∥
L∞([0,t]×Rn)

+
∥∥u∥∥

LL([0,t]×Rn)
≤ K

then, for t < min{T, T1},

(6.8)
∥∥u(t)

∥∥
Hs−λt

+
∥∥∂tu(t)

∥∥
Hs−1−λt ≤ C1

(∥∥u0

∥∥
Hs

+
∥∥u1

∥∥
Hs−1

)
.

Proof of Theorem 6.3 assuming Theorem 6.5. – It is sufficient to prove that if u ∈
C0([0, T [;Hs) ∩ C1([0, T [;Hs−1) satisfies (6.7) then,

(6.9) sup
0≤t<T

∥∥u(t)
∥∥
Hs

+
∥∥∂tu(t)

∥∥
Hs−1 < +∞,

implying that the solution can be continued after T .
Fix s1 ∈ ]1 + n

2 , s[. Decreasing T1, we can assume that T1 ≤ (s − s1)/λ. Then (6.8) and
the Sobolev imbedding theorem imply that

sup
0≤t<T1

∥∥u(t)
∥∥
L∞

+
∥∥∂t,xu(t)

∥∥
L∞
≤ C(K)

(∥∥u0

∥∥
Hs

+
∥∥u1

∥∥
Hs−1

)
,

where C(K) depends only on K. Therefore, Theorem 6.4 implies that

sup
0≤t<T1

∥∥u(t)
∥∥
Hs

+
∥∥∂tu(t)

∥∥
Hs−1 ≤ C

(
K,
∥∥u0

∥∥
Hs
,
∥∥u1

∥∥
Hs−1

)
.

The important point is that T1 depends only on K. One can repeat the analysis for the
Cauchy problem with initial time T ′1 arbitrarily close to T1, and after a finite number of
iterations, this implies (6.9).
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6.2. Proof of the nonlinear estimate

We write the equation as a system

∂tv +
n∑
j=1

∂xj
(
ãj(u)v

)
−

n∑
j,k=1

∂xj
(
ãj,k∂xku

)
= −

n∑
j=1

∂xj
(
b̃j(u)

)
+ F (u)(6.10)

∂tu+
n∑
j=1

ãj(u)∂xju+ b̃0(u) = v/a0(6.11)

with ãj = aj/a0, ãj,k = aj,k + ãjak, b̃0 = b0/a0, b̃j = bj − aj b̃0.

Introduce a dyadic partition of unity in space,
∑

∆k(Dx) = Id, as in (3.3). The first step
in the proof of Theorem 6.5 is an estimate of ∆k∂tu and ∆kv:

P 6.6. – There is a constant C(T,K) such that if u ∈ C0([0, T [;Hs) ∩
C1([0, T [;Hs−1) is a solution of (6.1) which satisfies (6.7), then for all k ≥ 0 and t ∈ [0, T [:

(6.12)
∥∥Sk∂tu(t)

∥∥
L∞

+
∥∥Skv(t)

∥∥
L∞
≤ C(T,K)(k + 1).

This estimate is proved in the next subsection. Taking it for granted, we finish the proof
of (6.8).

We use the para-differential calculus introduced in Section 3. The para-linearization pro-
cedure is based upon the following result.

L 6.7. – Given s > s1 > 0, there is a constant C such that for σ ∈ [s1, s], a ∈
Hσ+ 1

2 log(Rn) and v such that

(6.13) sup
k≥0

(k + 1)−1
∥∥Skv∥∥L∞ ≤ K

there holds av − Tav ∈ Hσ− 1
2 log(Rn) and

(6.14)
∥∥av − Tav∥∥

Hσ−
1
2

log ≤ CK
∥∥a∥∥

Hσ+ 1
2

log .

Proof. – There holds av − Tav =
∑
wk with wk = ∆kaSk+2v. The spectrum of wk is

contained in the ball {|ξ| ≤ 2k+4} and∥∥wk∥∥L2 ≤ CK(k + 1)
1
2 2−ksεk

∥∥a∥∥
Hs+

1
2

log

with {εk}k in the unit ball of `2.

We also use the following nonlinear estimates :

L 6.8. – Suppose that u ∈ Hσ+ 1
2 log(Rn) ∩ L∞(Rn) and a is a C∞ function on R

such that a(0) = 0. Then a(u) ∈ Hσs+ 1
2 log(Rn) and

(6.15)
∥∥a(u)

∥∥
Hσ+ 1

2
log ≤ C

(
‖u‖L∞

)∥∥a∥∥
Hσ+ 1

2
log .
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Proof of Theorem 6.5. – Consider a solution u ∈ C0([0, T [;Hs) ∩ C1([0, T [;Hs−1) of
(6.1) satisfying (6.5). Fix s1 ∈ ]d2 + 1, s[. We show that there are constants C and C1, which
depend only on K, such that for all λ > 0 and t ≤ min

{
T, s−s1λ

}
:

(6.16)

∥∥u(t)
∥∥2

Hs−λt
+
∥∥∂tu(t)

∥∥2

Hs−1−λt

+ λ

∫ t

0

(∥∥u(t′)
∥∥2

Hs−λt+
1
2

log +
∥∥∂tu(t′)

∥∥2

Hs−1−λt+ 1
2

log

)
dt′

≤ C
(∥∥u(0)

∥∥2

Hs
+
∥∥∂tu(0)

∥∥2

Hs−1

)
+ C1

∫ t

0

(∥∥u(t′)
∥∥2

Hs−λt+
1
2

log +
∥∥∂tu(t′)

∥∥2

Hs−1−λt+ 1
2

log

)
dt′.

Choosing λ ≥ C1, this implies (6.8).

a) We use the para-differential calculus as in Section 4. In addition to the quantization
Ta we use the modified operators P νa (3.23). Using Corollary 3.12, we can fix ν and δ > 0

depending only on K, such that for all t ∈ [0, T ] and w = (w1, . . . , wn) ∈ C∞0 (Rn):

(6.17) Re
n∑

j,k=1

(
P νbj,k(t)wk, wj

)
L2 ≥ δ‖w‖2L2

with bj,k = a0(u)ãj,k(u).

From now on we fix such a ν and use the notation Pb in place of P νb . Lemma 3.10 can be
extended to all values of σ and there is a constantC such that for all t ∈ [0, T ] and σ ∈ [s1, s]:

(6.18) ‖(Pa − Ta)w‖Hσ+1 ≤ C2ν‖a‖L∞ ‖w‖Hσ .

Similarly

(6.19) ‖(Pa − Ta)∂xj‖Hσ± 1
2

log ≤ C2ν‖a‖L∞ ‖w‖
Hσ±

1
2

log .

Using Proposition 3.3 for the spatial derivatives ∂xju and Proposition 6.6 for v, we deduce
from the lemmas above that

(6.20) v = Pa0∂tu+
n∑
j=1

Paj∂xju+ g

where aj stands for aj(u) and

(6.21)
∥∥g(t)

∥∥
Hs−λt−

1
2

log ≤ C(K)
(∥∥∂tu(t)

∥∥
Hs−1−λt+ 1

2
log +

∥∥u(t)
∥∥
Hs−λt+

1
2

log

)
.

In particular, this implies that∥∥v(t)
∥∥
Hs−1−λt ≤ C(K)

(∥∥∂tu(t)
∥∥
Hs−1−λt +

∥∥u(t)
∥∥
Hs−λt

)
,(6.22) ∥∥v(t)

∥∥
Hs−1−λt+ 1

2
log ≤ C(K)

(∥∥∂tu(t)
∥∥
Hs−1−λt+ 1

2
log +

∥∥u(t)
∥∥
Hs−λt+

1
2

log

)
.(6.23)

Similarly,

(6.24) ∂tu+
n∑
j=1

Pãj∂xju = Pa−1
0
v + g1
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where ãj = ãj(u) and

(6.25)
∥∥g1(t)

∥∥
Hs−λt−

1
2

log ≤ C(K)
(∥∥u(t)

∥∥
Hs−λt+

1
2

log +
∥∥v(t)

∥∥
Hs−1−λt+ 1

2
log

)
.

With (6.23), this implies that g1 also satisfies an estimate similar to (6.21).
Another consequence is that∥∥∂tu(t)

∥∥
Hs−1−λt ≤ C(K)

(∥∥v(t)
∥∥
Hs−1−λt +

∥∥u(t)
∥∥
Hs−λt

)
,(6.26) ∥∥∂tu(t)

∥∥
Hs−1−λt+ 1

2
log ≤ C(K)

(∥∥v(t)
∥∥
Hs−1−λt+ 1

2
log +

∥∥u(t)
∥∥
Hs−λt+

1
2

log

)
.(6.27)

In the same vein,

(6.28) ∂tv +
n∑
j=1

∂xjPãjv −
n∑

j,k=1

∂xjPãj,k∂xku = f

with

(6.29)
∥∥f(t)

∥∥
Hs−1−λt− 1

2
log ≤ C(K)

∥∥u(t)
∥∥
Hs+λt+

1
2

log .

b) Multiply the equation (6.28) by (1 − ∆x)2(s−1−λt)v and integrate over Rn. Using
proposition 3.8 to bound the terms

(
Pãj∂xjv, (1−∆x)2(s−1−λt)v

)
L2 , implies that

(6.30)
d

dt

∥∥v(t)
∥∥2

Hs−1−λt + 2λ
∥∥v(t)

∥∥2

Hs−1−λt+ 1
2

log − 2 Re

Å n∑
j,k=1

∂xjPãj,k∂xku, (1−∆x)2(s−λt)v

ã
L2

≤ C
∥∥f(t)

∥∥
Hs−1−λ− 1

2
log

∥∥v(t)
∥∥
Hs−1−λ+ 1

2
log + C

∥∥v(t)
∥∥2

Hs−1−λt+ 1
2

log ,

where C depends only on K.

c) Multiply the equation (6.11) and (1 − ∆x)2(s−λt)∑ ∂xjPãj,k∂xku. Using Proposi-
tions 3.8 and 3.9,

− Re

Å n∑
j,k=1

∂xjPãj,k∂xku, (1−∆x)2(s−λt)v

ã
L2

= Re

Å n∑
j,k=1

Pa0ãj,k∂xku, (1−∆x)2(s−λt)∂t∂xju

ã
L2

+ E

(6.31)

where

E(t) ≤ C(K)
(∥∥∂tu(t)

∥∥2

Hs−1−λt+ 1
2

log +
∥∥u(t)

∥∥2

Hs−λt+
1
2

log

)
.

By Lemmas 6.10 and 6.11 below, the coefficients bj,k(u) = a0(u)ãj,k(u) satisfy estimates
similar to (6.12) ∥∥Sk∂tbj,k∥∥L∞ ≤ (k + 1)C(K).

Therefore P∂tbj,k is of order Log(D) and

2 Re

Å n∑
j,k=1

Pa0ãj,k∂xku, (1−∆x)2(s−λt)∂t∂xju

ã
L2

=
d

dt
Re

Å n∑
j,k=1

Pbj,kwk, wj

ã
L2

+ 2λ

Å n∑
j,k=1

Pbj,k w̃k, w̃j

ã
L2

+ E1
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where E1 satisfies an estimate similar to E, wj = (1 − ∆x)(s−λt)∂xju and w̃j =
(

ln(1 −
∆x)

) 1
2wj .

Substituting these estimates in (6.30), integrating between 0 and t and using (6.17) imply
(6.16) and the theorem follows.

Notes on the proof of Theorem 6.4. – The proof of this theorem is quite similar, but much
simpler, using the para-differential calculus with no logarithmic loss when the coefficients are
Lipschitz continuous.

6.3. Proof of Proposition 6.6

For aC1 function a bounded with bounded derivatives on [0, T ]×Rn, introduce the norm:

(6.32)
∥∥a∥∥Z = sup

k≥0
(k + 1)−1

∥∥Sk(Dx)a
∥∥
L∞([0,T ]×Rn)

.

L 6.9. – There is a constantC such that if a = {aj , aj,k, bj , c} is a set ofC1∩W 1,∞

functions on [0, T ]× Rn satisfying

(6.33) ∂2
t a0 =

d∑
j=1

∂xj
(
∂taj + bj

)
+

n∑
j,k=1

∂xj∂xkaj,k + ∂tb0 + c,

then

(6.34)
∥∥∂ta0

∥∥
Z ≤ C

(∥∥a∥∥
L∞([0,T ]×Rn)

+
∥∥a∥∥

LL([0,T ]×Rn)

)
.

Proof. – a) Introducing a partition of unity, it is sufficient to prove the result when the
functions are defined and compactly supported in [0,+∞[ and ]−∞, T ]. The two cases are
similar, so we assume that the functions are defined for t ≥ 0.

Consider the extension operator

P0a(t, x) =

{
a(t, x) t ≥ 0,

αa(−t, x) + βa(−2t, x) + γa(−3t, x), t ≤ 0
(6.35)

with

α+ β + γ = 1, α+ 2β + 3γ = −1, α+ 4β + 9γ = 1,

so that P0a, ∂tP0a and ∂2
t P0a are continuous at t = 0 when a is C2 on {t ≥ 0}. Moreover

∂tP0a = P1∂ta, ∂tP1b = P2∂tb,

where P1 and P2 are similar extension operators. Then, the equation (6.33) can be extended
to R1+n, with P0a0 in place of a0, P1aj in place of aj , P2aj,k in place of aj,k, etc. Because
the extensions operators preserve continuity at t = 0, there is a constant C such that∥∥Pla∥∥L∞(R1+d)

≤ C
∥∥a∥∥

L∞({t≥0}),
∥∥Pla∥∥LL(R1+d)

≤ C
∥∥a∥∥

LL({t≥0}).

Hence it is sufficient to prove the lemma when the functions are defined on R1+d, which we
now assume.
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b) In addition to the partition of unity Id =
∑

∆k(Dx) consider a similar partition of
unity in time: Id =

∑
∆′p(Dt). By Proposition 3.3,∥∥S′pSp∂ta0

∥∥
L∞(R1+d)

≤ C(p+ 1)
∥∥a∥∥

LL(R1+d)
.

Similarly, for q > p there holds∥∥∆′qSp∂t∂xjaj
∥∥
L∞
≤ C(q + 1)2p

∥∥aj∥∥LL,∥∥∆′qSp∂xk∂xjajk
∥∥
L∞
≤ C(p+ 1)2p

∥∥aj,k∥∥LL.
Finally, using the equation (6.33) and similar estimates for the other functions, we see that
for q > p: ∥∥∆′qSp∂

2
t a0

∥∥
L∞(R1+d)

≤ CKq2p.
For q > p, the spectral localization of ∆′q implies that∥∥∆′q∂tSpa0

∥∥
L∞
≤ C2−q

∥∥∆′q∂
2
t Spa0

∥∥
L∞
≤ CKq2p−q.

Therefore, writing that Sp∂ta0 = S′pSp∂ta0 +
∑
q>p ∆′qSp∂ta0 and adding the estimates

above, one obtains (6.34).

To complete the proof of Proposition 6.6 we need the following estimates:

L 6.10. – Let F be s smooth function on R and let a ∈ W 1,∞([0, T ] × Rn). Then
F (a) ∈ W 1,∞([0, T ]× Rn) and

(6.36)
∥∥F (a)

∥∥
LL
≤ C(‖a‖L∞)

∥∥a∥∥
LL
.

L 6.11. – Let a ∈ W 1,∞([0, T ]× Rn) and b ∈ L∞([0, T ]× Rd). Then

(6.37)
∥∥ab∥∥Z ≤ C(∥∥a∥∥L∞ +

∥∥a∥∥
LL

)∥∥b∥∥Z .
Proof. – The proof of (6.36) is immediate from the definition of the LL semi-norm.
To prove (6.37) write

Sk(ab) = Sk(Sk+2aSk+4b) +
∑
p≥k+3

∑
|q−p|≤2

Sk(∆pa∆qb).

The first term satisfies∥∥Sk(Sk+2aSk+4b)
∥∥
L∞
≤ C

∥∥Sk+2a
∥∥
L∞

∥∥Sk+4b
∥∥
L∞
≤ C(k + 1)

∥∥a∥∥
L∞

∥∥b∥∥Z .
Next, note that for |p− q| ≤ 2,∥∥Sk(∆pa∆qb)

∥∥
L∞
≤ C

∥∥∆pa
∥∥
L∞

∥∥∆qb
∥∥
L∞
≤ C(p+ 1)22−p

∥∥a∥∥
LL

∥∥b∥∥Z .
Adding up for p ≥ k + 3, this implies (6.37).

Proof of Proposition 6.6. – Let A0, Aj and Aj,k be smooth functions on R, vanishing at
the origin, with derivative equal to a0, aj and aj,k respectively. Then for C0([0, T ];Hs) ∩
C1([0, T ];Hs−1) solutions the equation (6.1) reads:

(6.38)

∂2
tA0(u) +

n∑
j=1

2∂t∂xjAj(u)−
n∑

j,k=1

∂xj∂xkAj,k(u)∂t
(
b0(u))

+
n∑
j=1

∂xj (bj(u)) = F (u).
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By Lemma 6.10, the A0(u), Aj(u) and Aj,k(u) are C1 and their L∞ and LL norms are
bounded by C(K). Therefore, by Lemma 6.9 there is a constant C(T,K) such that∥∥∂tA0(u)

∥∥
Z ≤ C(T,K).

Since

∂tu =
1

a0(u)
∂tA0(u),

Lemma 6.11 implies that ∥∥∂tu∥∥Z ≤ C(T,K).

Proposition 3.3 implies that ∥∥∂xju∥∥Z ≤ C∥∥u∥∥LL.
Therefore, with Lemma 6.11 this implies that v also satisfies the estimate (6.12) and the proof
is now complete.
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