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CONNECTED COMPONENTS OF THE STRATA OF
THE MODULI SPACES OF QUADRATIC

DIFFERENTIALS

 E LANNEAU

A. – In two fundamental classical papers, Masur [14] and Veech [21] have independently
proved that the Teichmüller geodesic flow acts ergodically on each connected component of each stra-
tum of the moduli space of quadratic differentials. It is therefore interesting to have a classification of
the ergodic components. Veech has proved that these strata are not necessarily connected. In a recent
work [8], Kontsevich and Zorich have completely classified the components in the particular case where
the quadratic differentials are given by the global square of Abelian differentials.

Here we are interested in the complementary case. In a previous paper [11], we have described some
particular components, namely the hyperelliptic connected components and showed that some strata
are non-connected. In this paper, we give the general classification theorem: up to four exceptional
cases in low genera, the strata of meromorphic quadratic differentials are either connected, or have
exactly two connected components where one component is hyperelliptic, the other not. This result
was announced in the paper [11].

Our proof is based on a new approach of the so-called Jenkins-Strebel differential. We will present
and use the notion of generalized permutations.
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2 E. LANNEAU

R. – Dans des travaux maintenant classiques, Masur [14] et Veech [21] ont démontré indé-
pendamment que le flot géodésique de Teichmüller est ergodique sur chaque composante connexe de
chaque strate de l’espace des modules des différentielles quadratiques. Il devient dès lors intéressant
d’avoir une description de ces composantes ergodiques. Veech a montré que ces strates ne sont pas né-
cessairement connexes. Dans un article récent, Kontsevich et Zorich [8] donnent une description com-
plète des composantes dans le cas particulier où les différentielles quadratiques sont données par le
carré de différentielles abéliennes.

Dans cet article, nous considérons le cas complémentaire. Dans un précédent article [11], nous mon-
trions que les strates ne sont pas forcément connexes. Nous donnions une série de strates non-connexes
possédant des composantes connexes hyperelliptiques. Dans cet article, nous démontrons le théorème
général annoncé dans [11] : excepté quatre cas particuliers en petits genres, les strates de l’espace des mo-
dules des différentielles quadratiques ont au plus deux composantes connexes, les cas de non-connexité
étant décrits exactement par [11] : une composante est hyperelliptique, l’autre non.

Notre preuve repose principalement sur une nouvelle approche des différentielles quadratiques de
type Jenkins-Strebel, à savoir la notion de permutations généralisées.

1. Introduction

The moduli space of a genus g compact connected Riemann surface S endowed with an
integrable meromorphic quadratic differential q is a disjoint union Hg t Qg, where the iso-
morphism class of (S, q) belongs to Hg if and only if q is the (global) square of a holomor-
phic Abelian differential. It can be identified with the cotangent bundle of the moduli space
Mg of compact connected smooth complex curves (see e.g. [5]). It carries a natural flow,
called the Teichmüller geodesic flow (see [14, 21]). It has a natural stratification, whose strata
are denoted by H(k1, · · · , kn) = Hg(k1, · · · , kn) contained in Hg and Q(k1, · · · , kn) =

Qg(k1, · · · , kn) contained in Qg, where k1, . . . , kn is the (unordered) list of multiplicities of
the zeroes and poles of the quadratic differentials. It is well known that the flow preserves this
stratification and that each stratum carries a complex algebraic orbifold structure of complex
dimension 2g+n−ε (here ε = 1 or 2 depending respectively of the strata of Abelian differen-
tial or quadratic differentials). Masur and Smillie [15] proved that all of these strata (corre-
sponding to the multiplicities satisfying the Gauss-Bonnet condition), except four particular
cases in low genera, are non-empty.

The aim of this paper is motivated by a fundamental theorem, independently proved by
Masur and Veech [14], [21], which asserts that the Teichmüller geodesic flow acts ergodically
on each connected component of each stratum (with respect to a finite measure equivalent
to the Lebesgue measure).

Kontsevich and Zorich [8] have recently described the set of connected components for
the strata of Hg. In [11], using a construction developed in [8] (hyperelliptic components),
we showed that some strata in Qg are non-connected. More precisely, we presented three
series of one discrete-parameter strata which are non connected; those strata have a con-
nected component consisting of hyperelliptic curves equipped with a “hyperelliptic differen-
tial”. This component is called a hyperelliptic component.
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CONNECTED COMPONENTS OF QUADRATIC DIFFERENTIALS 3

In this paper, we describe the set of connected components of any stratum of Qg. The
general case stabilizes at genus 5 and corresponds to Theorem 1.1. Theorem 1.2 gives the
remaining cases.

T 1.1. – Let us fix g ≥ 5. Each stratum of the moduli spaceQg having a hyperel-
liptic connected component has exactly two connected components: one is hyperelliptic — the
other not; the detailed list is given in [11] (see also below).

Any other stratum of the moduli space Qg of quadratic differentials is non empty and con-
nected.

In small genera, there are some exceptional cases coming from the geometry of genus one and
genus two surfaces (respectively elliptic and hyperelliptic curves). There are also 4 mysterious
cases which appear.

T 1.2. – Let us fix g ≤ 4. The connected components of the strata of the moduli
space Qg fall in the following description:

– In genera 0 and 1, except two strata that are empty, any stratum is non empty and con-
nected.

– In genus 2, there are two empty strata. There are also two non-connected strata. For these
two, one component is hyperelliptic, the other not. Any other stratum ofQ2 is non empty
connected.

– In genera 3 and 4, each stratum with a hyperelliptic connected component has exactly two
connected components: one is hyperelliptic, the other not.

– There are 4 sporadic strata in genus 3 and 4 which are non-connected and which do not
possess a hyperelliptic component.

– Any other stratum of Q3 and Q4 is non empty and connected.

1.1. Precise formulation of the statements

In order to establish notations and to give a precise statement, we review basic notions
concerning moduli spaces, Abelian differentials and quadratic differentials. There is an abun-
dant literature on this subject; for more details and proofs see for instance [2], [3], [4], [5], [9],
[8], [14], [19], [20], [21], [23], [22],. . . . For a nice survey see [16] or [24].

1.1.1. Background. – For g ≥ 1, we define the moduli space of Abelian differentials Hg as
the moduli space of pairs (S, ω) whereS is a genus g (closed connected) Riemann surface and
ω ∈ Ω(S) a non-zero holomorphic 1−form defined on S. The term moduli space means that
we identify the points (S, ω) and (S ′, ω′) if there exists an analytic isomorphism f : S → S ′
such that f∗ω′ = ω.

For g ≥ 0, we also define the moduli space of quadratic differentialsQg which are not the
global square of Abelian differentials as the moduli space of pairs (S, q) where S is a genus
g Riemann surface and q a non-zero meromorphic quadratic differential defined on S such
that q is not the global square of any Abelian differential. In addition, we assume that q has
at most simple poles, if any. This last condition guaranties that the area of S in terms of the
metric determined by q is finite: ∫

S
|q| <∞.
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4 E. LANNEAU

We will denote byH(k1, . . . , kn) the subset ofHg consisting of (classes of) pairs (S, ω) such
that ω possesses exactly n zeroes on S with multiplicities (k1, . . . , kn). We will also denote
by Q(k1, . . . , kn) the subset of Qg consisting of pairs (S, q) such that q possesses exactly n
singularities on S with multiplicities (k1, . . . , kn), ki ≥ −1.

Note that the Gauss-Bonnet formula implies that the sum of the multiplicities
∑
ki equals

2g− 2 in the case ofH(k1, . . . , kn) and 4g− 4 in the case ofQ(k1, . . . , kn). In Section 2.1.1,
we will present Thurston’s approach to these surfaces via the theory of measured foliations.

From these definitions, it is a well known part of the Teichmüller theory that these spaces
are (Hausdorff) complex analytic, and in fact algebraic, spaces (see [2] for a nice description
of the stratum Q(1, . . . , 1); see also [5], [9], [23]). Basically, one can see that as follows. We
first concentrate on the strata of the moduli spacesHg.

Let (S, ω2) be a representative of an element in H(k1, . . . , kn), S its underlying topo-
logical surface, and P1, . . . , Pn its singular points. Let us denote by hol = hol(S,ω) the
group morphism H1(S, {P1 . . . , Pn},Z) → C defined by hol([γ]) =

∫
γ
ω for every 1-cycle

γ in S relative to {P1 . . . , Pn}. Fix a basis (γ1, . . . , γ2g+n−1) of the free abelian group
H1(S, {P1 . . . , Pn},Z). Any other element of H(k1, . . . , kn) will be represented by an ele-
ment having the same underlying surface and the same singular points. With these notations,
the map

Φ =

(
H(k1, k2, . . . , kn) −→ H1(S, {P1, . . . , Pn},C)

S ′ 7−→ (γ1, . . . , γ2g+n−1) 7→ (holS′(γ1), . . . , holS′(γ2g+n−1))

)
is named the period map and is a local homeomorphism in a neighbourhood of (S, ω2).
Therefore we get a locally one-to-one correspondence between the corresponding stratum
of Hg and an open domain in the vector space H1(S, {P1, . . . , Pn}; C) ' C2g+n−1. The
changes of coordinates are affine maps outside the singularities of H(k1, k2, . . . , kn) and
produce after a study of the singularities a differentiable orbifold structure on the strata of
Hg.

Let us now consider the case of a stratum of the moduli spaceQg. For every (S, q) ∈ Qg,
consider the canonical double cover π : Ŝ → S such that π∗q = ω2 for some holomorphic
Abelian differential ω on Ŝ (see for instance [12]). As above, we consider the period map
between a neighborhood of the point (Ŝ, ω) and an open subset of H1(Ŝ, {P̂1, . . . , P̂n}; C).
The covering involution τ : Ŝ → Ŝ induces an involutive linear map on this cohomology
vector space. Therefore, this vector space decomposes in two eigenspaces for τ∗, sayE−1 and
E+1, with eigenvectors −1 and +1. Abelian differentials in E−1 are precisely those which
arise from quadratic differentials on S by pull-back by π. Hence we obtain a one-to-one
correspondence between a neighborhood of any point in the corresponding strata ofQg and
an open domain of E−1 ' C2g+n−2.

We next recall the construction of a measure µ defined on each stratum. For that, the
tangent space toHg (respectively Qg) at each point contains a lattice:

H1(S, {P1, . . . , Pn}; Z)⊕ i ·H1(S, {P1, . . . , Pn}; Z) ⊂ H1(S, {P1, . . . , Pn}; C).

We define a measure µ on each stratum by pulling back the Lebesgue measure defined on
H1(S, {P1, . . . , Pn}; C) normalized so that the volume of the unit cube is 1.
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CONNECTED COMPONENTS OF QUADRATIC DIFFERENTIALS 5

Let us define the function A : Hg → R+ by the formula A(S, ω) =
i

2

∫
S ω ∧ ω. This is the

area of S in terms of the flat metric associated to ω.

The group SL2(R) acts by linear transformations with constant coefficients on the pair of
real-valued 1-forms (Re(ω), Im(ω)). In the local affine coordinates, this action is the action
of SL2(R) on the coefficient field of the cohomology vector space H1(S, {P1, . . . , Pn}; C).
From this description, it is clear that the subgroup SL2(R) preserves the measure µ and the
function A.

One can define an induced measure µ(r) on each hypersurfaceH(r)(k1, . . . , kn) = A−1(r)

in the following way. If E is a subset ofH(r)(k1, . . . , kn) then we define

µ(r)(E) = µ ({λ(S, ω); (S, ω) ∈ E and 0 < λ ≤ r}) .

We also define in an analogous manner a measure µ(r) on each stratum of Q(r)
g .

Recall that each stratum carries a complex algebraic orbifold structure modeled on
the first relative cohomology group (see for instance [9]). The dimensions are respectively
given by

dimCH(k1, . . . , kn) = 2g + n− 1 where k1 + · · ·+ kn = 2g − 2

dimCQ(k1, . . . , kn) = 2g + n− 2 where k1 + · · ·+ kn = 4g − 4.

The action of the 1-parameter subgroup of diagonal matrices gt := diag(et/2, e−t/2) presents
a particular interest for our purpose. It gives a measure-preserving flow for µ(1) on each stra-
tum. This flow is known as the Teichmüller geodesic flow. Note that orbits under gt project to
Teichmüller geodesics on the moduli space of Riemann surfacesMg. The next fundamental
result motives our study (see [14], [21, 22, 23]).

T (Masur, Veech). – The Teichmüller geodesic flow acts ergodically on each con-
nected component of each stratum of Q(1)

g with respect to the measure µ(1), which is finite and
in the Lebesgue class.

A direct corollary of the finiteness of the measure µ(1) on any stratum ofH(1)
g is a proof of

the Keane’s conjecture (see [6]): almost all intervals exchange transformations are uniquely
ergodic.

R 1.3. – This theorem was proved by Masur [14] for the Q(4g − 4) case and by
Veech [21] for theH(k1, . . . , kn) case.
The ergodicity of the Teichmüller geodesic flow is proved in full generality in [22], Theo-
rem 0.2. The finiteness of the measure µ(1) appears in two 1984 preprints of Veech: Dynam-
ical systems on analytic manifolds of quadratic differentials I,II (see also [22] p.445). These
preprints have been published in 1990 [23].
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6 E. LANNEAU

1.1.2. Topology of the Moduli Space. – Following the theorem of Masur and Veech, we are
interested in a classification of the connected components of the strata of Hg t Qg. Veech
and Arnoux discovered, by direct calculations in terms of extended Rauzy classes, that some
strata are non-connected. They have proved thatH(2) is connected,H(4) have 2 connected
components andH(6) have 3 connected components.

Recently, in the context of moduli space of Abelian differentialHg, Kontsevich and Zorich
(see [8]) obtained the following complete description.

T (Kontsevich, Zorich). – Let g ≥ 4 be any integer. The topology of any stratum
ofHg is given by the following list:

– The strataH(2g − 2) andH(2k, 2k), for any k ≥ 2, have three connected components.
– Any other stratumH(2k1, . . . , 2kn), for any ki ≥ 1, has two connected components.
– The stratumH(2k − 1, 2k − 1), for any k ≥ 2, has two connected components.

Any other stratum of Abelian differentials on a surface of genus g ≥ 4 is non-empty and con-
nected.

The description of connected components for strata of genera 1 ≤ g ≤ 3 is similar to
the previous one with some exceptions; we do not present the result here (see [8]). Roughly
speaking, Kontsevich and Zorich used two invariants to obtain this classification: the parity
of the spin structure and the hyperellipticity.

In [12], we proved that the first invariant extends trivially to the moduli space Qg. How-
ever, the second invariant produces non-trivial values. In order to present our statement, we
will recall briefly this construction in Section 1.1.3.

In this paper, we will show that this (hyperelliptic) invariant is complete in genera g ≥ 5: it
classifies precisely the components of the strata ofQg. For small genera, we obtain a similar
result with 4 additional mysterious components.

R 1.4. – As a direct corollary of our result and Kontsevich-Zorich’s theorem, we
conclude that the ergodic components of the Teichmüller geodesic flow are given by an ex-
plicit list. In particular, if n ≥ 5, for any g ≥ 0, any stratum ofHg tQg with n singularities
is connected.

R 1.5. – This paper achieves the classification of connected components of the
strata of the moduli spaces Hg t Qg announced in the vast program in [9]. Nevertheless a
more precise description of the strata remains open. Observe that each hyperelliptic compo-
nent is isomorphic to a configuration space, and thus we know perfectly well the fundamental
group. There is a general conjecture due to Kontsevich for the other connected components.

C (Kontsevich). – Each connected component of the strata of the moduli space
Hg tQg is a K(π, 1), where π is a group commensurable with some mapping class group.
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CONNECTED COMPONENTS OF QUADRATIC DIFFERENTIALS 7

1.1.3. Hyperelliptic components. – We will need the following statement. A proof can be
found in [8]; see also [11].

P 1.6. – Any stratum of the moduli space Q(k1, . . . , kn) in genus 0 is con-
nected.

Let Sg be a (compact, connected) Riemann surface endowed with a (integrable, mero-
morphic) quadratic differential q0 which is not the global square of any Abelian differen-
tial. Let (k1, . . . , kn) be its singularity pattern. We do not exclude the case when some of
ki are equal to zero: by convention this means that we have some marked points. We shall
use the “exponential” notation to denote multiple singularities (simple poles), for example
Q(−15, 1) := Q(−1,−1,−1,−1,−1, 1).

Let π : S̃g̃ → Sg be a (ramified) covering such that the image of any ramification point
of π is a marked point, or a zero, or a pole of the quadratic differential q0. Fix the combi-
natorial type of the covering π: the degree of the covering, the number of critical fibers and
the ramification index of the points in every critical fiber. Consider the induced quadratic
differential π∗q0 on S̃g̃; let (k̃1, . . . , k̃m) be its singularity pattern.

Deforming slightly the initial point (Sg, q0) ∈ Q(k1, . . . , kn), we get a ramified cover-
ing over the deformed Riemann surface with the same combinatorial type as the covering
π. The induced quadratic differential π∗q has the same singularity pattern (k̃1, . . . , k̃m) as
π∗q0. Thus we obtain a map from the stratum Q(k1, . . . , kn) to the stratum Q(k̃1, . . . , k̃m).
We will denote this map by Π. In [11], we proved that Π is an immersion.

Now we recall an example of this construction for strata having four singularities. Con-
sider a meromorphic quadratic differential q on CP (1) having the singularity pattern (2(g−
k) − 3, 2k + 1,−12g+2), where k ≥ −1, g ≥ 1 and g − k ≥ 2. Consider a ramified double
covering π over CP (1) having ramification points over the 2g + 2 poles of q, and no other
ramification points. We obtain a hyperelliptic Riemann surface S̃ of genus g with a quadratic
differential π∗q on it. A straightforward computation shows that the induced quadratic dif-
ferential π∗q has the singularity pattern (2(g − k) − 3, 2(g − k) − 3, 2k + 1, 2k + 1). Thus
we get a map

Q(2(g − k)− 3, 2k + 1,−12g+2)→ Q(2(g − k)− 3, 2(g − k)− 3, 2k + 1, 2k + 1),

where k ≥ −1, g ≥ 1 and g − k ≥ 2. Computing the dimensions of the strata, we get

dimCQ(2(g − k)− 3, 2k + 1,−12g+2) = 2 · 0 + (2g + 4)− 2 = 2g + 2

dimCQ(2(g − k)− 3, 2(g − k)− 3, 2k + 1, 2k + 1) = 2g + 4− 2 = 2g + 2

Since the dimension of the strata coincide, and the mapping is an immersion, we obtain an
open set inside the stratum Q(2(g − k) − 3, 2(g − k) − 3, 2k + 1, 2k + 1). Note that the
action of the geodesic flow is equivariant, thus by ergodicity the image of this map has full
measure and contains only hyperelliptic curves. Therefore it is onto. This remark, together
with Proposition 1.6, motivates the following definition. We callQhyp(2(g−k)−3, 2(g−k)−
3, 2k+1, 2k+1) the hyperelliptic connected component of the stratumQ(2(g−k)−3, 2(g−
k)−3, 2k+1, 2k+1) consisting of the quadratic differentials on genus g hyperelliptic curves
that are images by the above map of quadratic differentials on the sphere with singularities
data (2(g − k)− 3, 2k + 1,−12g+2).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



8 E. LANNEAU

In [11], we classify all components of this type. This motivates the following definition.

D. – By hyperelliptic components, we mean the following connected compo-
nents of the following strata of quadratic differentials.

1. The connected component Qhyp(2(g − k) − 3, 2(g − k) − 3, 2k + 1, 2k + 1) of the
stratum Q(2(g − k) − 3, 2(g − k) − 3, 2k + 1, 2k + 1) consisting of the images of the
pull-back of the quadratic differentials of the stratumQ(2(g− k)− 3, 2k+ 1,−12g+2)

where k ≥ −1, g ≥ 1, g − k ≥ 2.
The corresponding ramified double covering has ramification points over the 2g + 2

poles.
2. The connected component Qhyp(2(g − k) − 3, 2(g − k) − 3, 4k + 2) of the stratum
Q(2(g − k)− 3, 2(g − k)− 3, 4k + 2) consisting of the images of the pull-back of the
quadratic differentials of the stratum Q(2(g − k)− 3, 2k,−12g+1) where k ≥ 0, g ≥ 1

and g − k ≥ 1.
The corresponding ramified double covering has ramification points over the 2g + 1

poles and over the zero of degree 2k.
3. The connected component Qhyp(4(g − k) − 6, 4k + 2) of the stratum Q(4(g − k) −

6, 4k+ 2) consisting of the images of the pull-back of the quadratic differentials of the
stratum Q(2(g − k)− 4, 2k,−12g) where k ≥ 0, g ≥ 2 and g − k ≥ 2.
The corresponding double ramified covering has ramification points over all the sin-
gularities.

R 1.7. – Hyperelliptic connected components of type (1) were first discovered by
Kontsevich.

1.1.4. Main result. – We are finally in a position to give a precise statement of our result.

T 1.1. – Let g ≥ 5 be any integer. Let us consider the following families Fi, i =

2, 3, 4, of strata inside the moduli space of integrable meromorphic quadratic differentials Qg.

F2 = {Q(4(g − k)− 6 , 4k + 2) | 0 ≤ k ≤ g − 2}
F3 = {Q(2(g − k)− 3 , 2(g − k)− 3 , 4k + 2) | 0 ≤ k ≤ g − 1}
F4 = {Q(2(g − k)− 3 , 2(g − k)− 3 , 2k + 1 , 2k + 1) | −1 ≤ k ≤ g − 2}

Then any stratum listed above has exactly two connected components: one is hyperelliptic —
the other not.

Any other stratum of the moduli space Qg is non-empty and connected.

In small genera, some components are missing compared to the general case. The complete
description is given by the following theorem.

T 1.2. – Let g ≤ 4 be any non-negative integer. The components of the strata of
the moduli space Qg can be described as follows.

– In genera 0 and 1, any stratum is non-empty and connected, except Q(0) and Q(−1, 1)

that are empty.
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CONNECTED COMPONENTS OF QUADRATIC DIFFERENTIALS 9

– In genus 2, there are two non-connected strata: Q(−1,−1, 6) and Q(−1,−1, 3, 3); they
have two connected components, one component is hyperelliptic the other not. There are
two empty strata: Q(4) and Q(1, 3). Any other stratum of Q2 is non-empty and con-
nected.

– In genera 3 and 4, each stratum possessing a hyperelliptic connected component has ex-
actly two connected components: one is hyperelliptic, the other not.

– There are 4 sporadic strata:

Q3(−1, 9), Q3(−1, 3, 6), Q3(−1, 3, 3, 3), Q4(12)

that have exactly two connected components.
– Any other stratum of Q3 and Q4 is non-empty and connected.

R 1.8. – The fact that the four sporadic strata are not connected has been proved
by Zorich (see [25]). Zorich proved this result by a direct calculation in terms of extended
Rauzy classes on generalized permutations (see also [1]). In this paper we only prove that
theses strata have at most two connected components.
It would be interesting to have an algebro-geometric proof of the non-connectedness of these
strata.

R 1.9. – Using our approach of quadratic differentials, we get a new proof of a
result of Masur and Smillie [15] concerning the fact that the strata Q(0), Q(−1, 1), Q(1, 3)

and Q(4) are empty.

1.2. Outline of the proof

The proof involves the dynamics and topology of measured foliations. We will use the
well known relation between quadratic differentials q on S and pair of transverse measured
foliations on S (see e.g. [5]). We will say that a component C1 of a strata ofQg is adjacent to
a component C2 if C2 ⊂ C1 where the closure is taken inside the whole space Qg.

1 (Claim A). – Let C be any component of any stratum Qg(k1, . . . , kn) with n ≥ 2 and
g ≥ 3. We assume that C is neither a hyperelliptic component nor a sporadic component
Qirr(−1, 9), Qirr(−1, 3, 6) or Qirr(−1, 3, 3, 3) (to be defined later on). Then C is adjacent to
a connected component of the stratum Q(4g − 4). We postpone the idea of a proof in 6.

2. – We will use the following corollary of a theorem of Konsevich (see also [8]): The
number of connected components of a stratum ofQg, which are adjacent to a component of
the stratumQ(4g−4), is bounded from above by the number of components ofQ(4g−4). In
addition, for a given stratum, there is at most one hyperelliptic or one sporadic component.
These two remarks, together with Claim A, provide us a bound on the number of compo-
nents of any stratum in terms of the number rg of components ofQ(4g−4). More precisely,
the number of components of a stratum containing a hyperelliptic component (or a sporadic
component) is bounded from above by rg+1. The number of components of a stratum con-
taining nor a hyperelliptic component neither a sporadic component is bounded from above
by rg.
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10 E. LANNEAU

3. – The list of strata which possess a hyperelliptic component has been given in [11]. In
particular, these strata are non connected for g ≥ 3. Hence the proof of Theorem 1.1 is
reduced to the proof of the equality rg = 1 for any g ≥ 5.
Theorem 1.2 follows from the equality r3 = 1 and the inequality r4 ≤ 2 that we prove in
Section 6. The small genera cases g = 1, 2 are considered separately; this is done in Section 8.

Therefore the proof of our result is reduced to the one of Claim A and to the computation
of rg.

We will say that a saddle connection γ on (S, q) has multiplicity one (see [17]) if one can col-
lapse γ to a point to get a new non degenerated flat surface S ′. In particular, this condition
is satisfied if γ is “small” with respect to the other saddle connections in the direction of γ.
More precisely it follows from results in [17]

(1.1) |γ| < 1

2
|η|, for any saddle connection η, if any, on S\γ in the direction −→γ

then γ has multiplicity one. We will give a useful criterion on flat surfaces to have such an
inequality.

4. – Let (S, q) ∈ C and γ be a multiplicity one saddle connection of (S, q). Then γ can be
collapsed to a point to get a new flat surface (S ′, q′). The component C′ containing (S ′, q′)
is contained in C.

5. – Let us assume that S is decomposed in a single cylinder for the horizontal direction.
It means that any two regular horizontal geodesics are closed and homologous: they form
a family which fill the surface in a metric cylinder. The boundaries of this cylinder consist
of a set of saddle connections and separatrix loops. The arrangement of these separatrices is
described by a “generalized permutation” π (see Section 3). We will note (S, q) = S(π) for
a one cylinder surface. In Section 5, we give a combinatorial criterion (namely irreducibility)
on the combinatorics of π so that there exists a saddle connection satisfying Equation (1.1).
In particular this produces a multiplicity one saddle connection.

6. – The proof of Claim A is the following. Let S(π) ∈ C be a point in an arbitrary
component (such points are dense in each stratum of the moduli spaceQg). We consider the
set of surfaces S(πs) := hs · S(π) where hs = ( 1 s

0 1 ).
If S(πs) has a multiplicity one saddle connection for some s, we are done thanks to 4.

Otherwise the generalized permutation πs must obey to some combinatorial conditions. Re-
peating that for any s we get that either S(π) has a multiplicity one saddle connection or π is
an exceptional (or hyperelliptic) permutation. The last case implies that C is an exceptional
(or hyperelliptic) component contradicting the assumptions of Claim A.

7. – The proof of the connectedness of Q(4g − 4) (i.e. of the equality rg = 1) for g ≥ 5

is done by induction on the genus g of the surfaces. We first show by a direct computation
that the minimal stratum in genus 5 is connected. We then use the surgery “Bubbling a han-
dle” for the step of the induction (see [8]). Precisely, we find in each connected component
a surface with a cylinder filled by closed geodesic such that the boundary is formed by two
single multiplicity one saddle connections. Therefore one can “erase” this cylinder to obtain
a closed (g − 1) flat surface and get the induction process.
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The paper is organized in the following manner. In Section 2 we remind key results con-
cerning the geometry of quadratic differentials. Then Sections 3–5 are devoted to the notion
of generalized permutations. We develop this useful notion and give some relations between
the combinatorics of π and the dynamic of the measured foliation on S(π). Finally in Sec-
tion 6 and Section 7 we prove respectively the two points 7 and 6.
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2. Preliminaries and preparatory material

In order to establish notations and preparatory material, we review basic notions concern-
ing quadratic differentials versus flat surfaces. These surfaces have been considered and stud-
ied by numerous authors in various guises, see say [5], [7], [19] for more details; See also [3]
and [17] for recent related developments on surgeries about flat surfaces.

2.1. Flat metrics

2.1.1. Flat surfaces and geodesics. – A flat surface is a (compact, connected, real) genus g
surface equipped with a flat metric (with isolated conical singularities) such that the holon-
omy group belongs to {±Id}. Here holonomy means that the parallel transport of a vector
along a small loop going around a conical point brings the vector back to itself or to its neg-
ative. This implies that all cone angles are integer multiples of π. An equivalent definition
is the following. A flat surface is a triple (S,U ,Σ) such that S is a topological compact con-
nected surface, Σ is a finite subset of S (whose elements are called singularities) and U =

(Ui, zi) is an atlas of S \Σ such that the transition maps zj ◦z−1
i : zi(Ui∩Uj)→ zj(Ui∩Uj)

are translations or symmetries: zi = ±zj + const. This implies that the holonomy belongs
to {±Id}.

Therefore, we get on S a flat metric with conical singularities located in Σ (possibly not
all Σ). We also get a quadratic differential defined locally in the coordinates zi by the formula
q = dz2

i . This form extends to the points of Σ to zeroes, poles or marked points (see [16]).
We will sometimes use the notation (S, q) or simply S.

R 2.1. – The holonomy is trivial if and only if all transition functions are trans-
lations or equivalently the quadratic differentials q is the square of an Abelian differential.
We will then say that S is a translation surface.
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12 E. LANNEAU

Hence the flat structure defines onS\Σ a Riemannian structure; we therefore have notions
of directional foliation, geodesic, length, angle, measure, etc.

C

– The singularities are the zeroes and poles of q.
– Leaves of the directional foliation are called geodesics.
– Geodesics meeting singularities are called separatrices. A geodesic emanating from a

singularity and going back to the same is called a separatrix loop. A geodesic connect-
ing two different singularities is called a saddle connection.

– A geodesic not passing through a singularity is called regular.

One can see the equivalence between flat surface and quadratic differential as follows. We
start with the first definition. If we cut a flat surface S successively along an appropriate
collection of saddle connections, we can decompose it in polygons contained in C. We may
then view S as a union of polygons with sides ordered by pairs consisting of parallels sides
of the same length. The surface S is then isometric to the polygons where we identify these
pair by translations or symmetries. Note that we have endowed each polygon with a complex
coordinate. By construction, the transition functions in these complex coordinates z have the
form

z 7→ ±z + const.

Thus any flat surface with the conical singularities removed is endowed with a natural com-
plex structure. Moreover, consider a holomorphic quadratic differential q = dz2 on ev-
ery polygon. Since dz2 = d(±z + const)2 we obtain a globally well defined holomorphic
quadratic differential on S ′. It is a direct calculation to check that the complex structure
and the quadratic differential can be extended to the singularities; the quadratic differential
q extends to a (possibly meromorphic) form on S with zeroes or simple poles at every conical
point. Note that when all transitions function are only translations, the quadratic differen-
tial q can be globally written as q = ω2, where ω is an Abelian differential. In this case the
corresponding foliation is oriented.

Conversely, given a pair (S, q), and a point P ∈ S such that q(P ) 6= 0, the integral
∫ z
z0

√
q

produces a local coordinate z near P such that q = dz2. Thus |dz|2 defines a flat metric on
S. At a singularity of multiplicity k ≥ −1 the total angle we get is (k + 2)π. Remark that
for regular point of q (k = 0), one get regular point of the metric.

2.1.2. SL2(R)-action. – Given any matrix A ∈ SL2(R), we can post-compose the local co-
ordinate of the charts of our translation atlas on (S, q) byA. One easily checks that this gives
a new flat surface, denoted by A · (S, q). In local coordinates, this gives

A · (S, dz2) = (S, (dAz)2).

Hence this produces an SL2(R)-action on these flat surfaces.
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2.1.3. Cylinders. – Closed regular geodesics appear in families of parallel geodesics of the
same length. Such parallel closed geodesic, typically, do not filled the surface, but only a
cylindrical subset. Each boundary component of such a cylinder is comprised by saddle con-
nections.

Generically, each boundary component of a cylinder filled with closed regular geodesics
is a single closed saddle connection. The converse, however, is false. A closed saddle con-
nection does not necessarily bound a cylinder of regular closed geodesics. In fact, it bounds
such a cylinder if and only if the angle at the singularities between the outgoing and incom-
ing segments is exactly π. One calls such a cylinder a simple cylinder (see Section 6). See also
Figure 7.

2.1.4. Adjacency. – Let C, C′ be two connected components of the moduli space Qg. We
will say that C′ is adjacent to C if C ⊂ C′ (the closure being taken inside the whole spaceQg).

We end this section with an example of flat surface with Figure 3. Identifying pairs of
sides of the polygon by isometries, we get a flat surface of genus g = 1. Note the form dz is
not globally defined but dz2 is; therefore the holonomy is exactly {±Id}.

2.2. Homologous saddle connections

Let S be a flat surface. We denote by π : Ŝ → S the standard orientating double cover-
ing so that π∗q = ω̂2 (see [12]). Let τ be the induced involution of the covering. Given an
oriented saddle connection γ on S let γ+, γ− be its lifts to the double cover. We denote by
P the set of singularties of q and P̂ = π−1(P ). If [γ+] = −[γ−] as cycles in H1(Ŝ, P̂ ; Z) we
let [γ̂] := [γ+], otherwise we define [γ̂] as [γ̂] := [γ+]− [γ−].

2.2.1. Homologous saddle connections. – Following Masur and Zorich [17], we say that the
saddle connections γ, η on a flat surface S defined by a quadratic differential q are homolo-
gous if [γ̂] = [η̂] in H1(Ŝ, P̂ ; Z) under an appropriate choice of orientations of γ, η.

Note that this definition does not depend of the choice of the orientation of the geodesics
neither the choice of a direction on S. Moreover, γ and η are not supposed to be homeo-
morphic to a circle. For instance, one can have a saddle connection (homeomorphic to a
segment) homologous to a separatrix loop (homeomorphic to a circle); see Figure 3. The
following proposition gives a necessary condition for two compact separatrices to be homol-
ogous.

P 2.2 (Masur, Zorich). – Let us assume that γ and η are two saddle connec-
tions. If γ and η are homologous then they are parallel and their lengths are equal or differ by
a factor two:

|γ|
|η| ∈

®
1, 2,

1

2

´
E 2.3. – In Figure 3, one can check that the vertical saddle connection γ(π) and

the vertical separatrix loop η are homologous.
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2.2.2. Multiplicity. – Let γ be a saddle connections on S. We will say that γ has multiplicity
n, and we will denote mult(γ) = n, if there exist exactly n different classes [η] ∈ H1(Ŝ, P̂ ; Z)

where η is a saddle connections homologous to γ.
We will say that a simple cylinder has multiplicity n if the multiplicity of its boundary

(which can be represented by a saddle connections) is n.

L 2.4. – Let (S, q) be any flat surface in any hyperelliptic connected component of
the following type:

Qhyp(4(g − k)− 6, 4k + 2)

Qhyp(2(g − k)− 3, 2(g − k)− 3, 4k + 2)

Qhyp(2(g − k)− 3, 2(g − k)− 3, 2k + 1, 2k + 1)

For each of these strata, let γ be a saddle connection on (S, q) between (respectively):

– the zero of degree 4(g − k)− 6 and the one of degree 4k + 2,
– one of the two zeroes of degree 2(g − k)− 3 and the other zero of degree 4k + 2,
– one of the two zeroes of degree 2(g − k)− 3 and one of the two zeroes of degree 2k + 1,

2k + 1.

Then γ has multiplicity at least two.

Proof of the lemma. – The surface S is hyperelliptic so it is equipped with an hyperelliptic
involution, say τ . Take a saddle connection γ as indicated in the assumptions. By construc-
tion [11], γ2 := τ(γ) 6= γ thus we obtain an other saddle connection in the same direction
of γ (and of the same length). Always by construction we get that γ̂ = γ̂2. Therefore γ2 is
homologous to γ and [γ] 6= γ2 hence mult(γ) ≥ 2. The lemma is proven.

2.3. Surgeries

The principal ingredient of our proof is to decrease the complexity of a stratum. By com-
plexity, we mean the genus g of the surfaces and the number n of the singularities. The next
two subsections describe how one can increase the complexity. For details and proofs of the
two next sections see [3], [8] and [17]). In Section 5 we will present some results to get the
converse.

2.3.1. Breaking up a singularity. – Let (S, q) be a flat surface and let P be a singularity of
q. Let (k + 2)π be the conical angle around P with k ≥ −1. Choose any partition of k in
two non-zero integers k1, k2 with ki ≥ −1. We recall the well known construction to obtain
a new flat structure q′ on S with the same singularities pattern as q except at the point P ;
The new flat surface will possess two singularities Pk1 and Pk2 of multiplicities k1 and k2.
Moreover S ′ will possess a multiplicity one saddle connection between Pk1 et Pk2 . Here we
detail the case k odd and the case k1, k2 even.

Consider a small geodesic neighborhood of P , that is an ε−“polydisc” constructed from
k+2 half Euclidean discs of radii ε glued in their centers (see Figure 1, see also also Figure 4

and Figure 5 in [11]).
Now, for ε small enough, there is no critical geodesic passing through this polydisc, other

than the k+ 2 emanating rays from P . Let us remove this polydisc and change continuously
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5π
ε

ε

εε

ε

ε

δ

δ

ε + δ

ε + δ ε + δ

ε− δ

ε− δ

ε− δε− δ ε− δ

F 1. Breaking up a zero of order 3 in two zeroes of orders 1 and 2 corre-
spondingly. Note that the surgery is local: we do not change the flat metric outside
of the neighborhood of the zero.

the parameters in the following manner. We break up the singularity P in two singularities
of conical angle (k1 + 2)π and (k2 + 2)π. This is possible by the choice of ki (see Figure 1
for details). Now one can re-glue this polydisc on the surface S to obtain the desired new flat
structure on S.

R 2.5. – The geodesic (for q′) on S connecting Pk1 and Pk2 has multiplicity one.
Indeed one can choose its length arbitrary small without changing the others lengths thus
Proposition 2.2 applies.

If C denotes the component which contains (S, q) and C′ denotes the component which con-
tains (S, q′) then C′ is adjacent to C i.e. C ⊂ C′.
The construction we have presented is local: we do not change the metric outside the
ε−polydisc. In the case where the parameters k1 and k2 are odd, the construction is global.
This is the parallelogram construction (see [17]).

T 2.6 (Masur, Zorich). – Let (S, q) ∈ Q(k1, . . . , kn) be a point. Let us also as-
sume that there exists a multiplicity one saddle connection on S between the singularities P1 ∈
S of order k1 and P2 ∈ S of order k2. We will make the additional assumption {k1, k2} 6=
{−1, −1}.
Then there exists a point (S ′, q′) ∈ Q(k1 + k2, k3, . . . , kn) such that one can break up the sin-
gularity P ′k1+k2 ∈ S ′ (for q′) in two singularities to obtain the initial flat surface (S, q).

Proof of Theorem 2.6. – Here we address the proof in cases of k1, k2 even or k1 +k2 odd.
Assume that γ is a multiplicity one saddle connection between P1 and P2. As usual we will
assume that γ is vertical. Using the geodesic flow, we contract it to a short segment of length
δ. Choose any ε with δ

2 < ε. Now consider an ε−polydisc D(ε) of these two points as in-
dicated in Figure 1. The assumption on the multiplicity of γ implies that one can and do
choose ε and δ small enough so that there is no (vertical) critical geodesics insideD(ε) other
than γ and the k1 + 2 and k1 + 2 verticals emanating from P1 and P2. We can apply above
construction to replace this polydisc by a new one, where one has glued the two singularities
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together. The new surface (S, q′) we have constructed satisfies the conclusions of the theo-
rem: on can break up the singularity P = P1 = P2 in two to obtain our initial surface (S, q).
The theorem is proven.

From the previous construction one easily gets the following useful result for the next.

C 2.7. – Let S be a flat surface in the stratum Q(k1 + k2, k3, . . . , kn). Let us
assume that k1 +k2 6= ki for all i = 3, . . . , n. Then all surfaces obtained from S by breaking up
the singularity of multiplicity k1 +k2 with discrete parameters k1, k2 (and arbitrary continuous
parameters) belong to the same connected component of the stratum Q(k1, k2, k3, . . . , kn).

In terms of adjacency. Let us assume C0 ⊆ Q(k1 + k2, . . . , kn) is a connected component and
C1, C2 ⊂ Q(k1, k2, . . . , kn) are two components such that C0 ⊂ C1 ∩ C2 and k1 + k2 6= ki for
all i = 3, . . . , n. Then C1 = C2.

2.3.2. “Bubbling a handle”. – Let (S, q) be a flat surface and P ∈ S a singularity of q. Let us
break up the singularity P in two singularities P1, P2 ∈ S (see previous section). One gets a
new flat structure, say q1 on S, and a closed saddle connection γ (of length δ) between P1 and
P2. Let us cut this surface along γ. We obtain a surface with some boundaries components.
We identify the two points P1, P2 on this surface to obtain a surface S1 with a boundary
component isometric to the union of two circles, each of length δ. Then let us glue a straight
metric cylinder with the following parameters. The height and the twist are chosen arbitrar-
ily, and the weight (circumference) is δ. The new surface (S ′, q′) we get is a (genus(S) + 1)
flat surface. The angle between the new handle is k1 + 2 (or k2 + 2 if we consider the com-
plementary angle). See Figure 7 for an example.

Let (S, q) be any flat surface. Assume that the singularities data ofS are either (4g−3,−1)

or (4g− 4). Let s be any non-negative integer. Thanks to Corollary 2.7, the surfaces (S ′, q′)
constructed by the surgery “bubbling a handle” at the unique zero of q in S with arbitrary
continuous parameters (height, twist and width of the cylinder) and let us fix discrete pa-
rameter s represent quadratic differentials belonging in the same connected component of
the stratum. This motivates the following definition.

D 2.8. – Let (S, q) be any flat surface, with singularities pattern (4g−3,−1) or
(4g−4) and let s be any non-negative integer. We will denote by S⊕s, a surface constructed
by the surgery “bubbling a handle” at the unique zero of q in S with arbitrary continuous
parameters (height, twist and width of the cylinder) and discrete parameter s. If C denote
the component containing (S, q) then we denote the component containing S ⊕ s by C ⊕ s.
In other terms we obtain the two well defined mappings.

For any g ≥ 2, ⊕ =

(
π0(Q(4g − 3,−1)) × N −→ π0(Q(4g + 1,−1))

(C, s) 7−→ C ⊕ s

)
.

For any g ≥ 3, ⊕ =

(
π0(Q(4g − 4)) × N −→ π0(Q(4g))

(C, s) 7−→ C ⊕ s

)
.
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Here π0(E) denotes the set of connected components of the topological space E. Note also
that the discrete parameter s corresponding to the angle between the two new sectors can be
chosen modulo 2g (s ∈ {1, . . . , 2g}).

P 2.9. – Let C be any connected component of any above stratum, namely
Q(−1, 4g − 3) or Q(4g − 4). Then the following statements hold.

(1) C ⊕ s1 ⊕ s2 = C ⊕ s2 ⊕ s1 for any s1, s2.

(2) C ⊕ s1 ⊕ s2 = C ⊕ (s2 − 2)⊕ (s1 + 2) for any s2 ≥ 3.

(3) C ⊕ s1 ⊕ s2 = C ⊕ (s2 − 4)⊕ s1 for any s2 − s1 ≥ 4.

Proof of Proposition 2.9. – The proof uses the description of quadratic differentials in
terms of separatrices diagrams (see [8]) and ribbons graphs. For such diagrams, an element
of Q(4g − 4) (respectively of Q(−1, 4g − 3)) is presented by a measured foliation with
4g− 4 + 2 (respectively 4g− 3 + 2) leaves emanating from the singularity. Gluing an handle
of angle sπ consists topologically to glue two news sectors with an angle of sπ. We thus get
measured foliation with 4g − 4 + 2 + 4 (respectively 4g − 3 + 2 + 4) leaves around the new
singularity. Geometrically it is easy to see that the two surgeries consisting to first glue the
handle of angle s1π or to first glue the handle of angle s2π produces surfaces belonging to
the same component. This is the first point of the proposition.
The two last statements are also clear in terms of diagrams. This is illustrated in Figure 2.
The proposition is proven.

s1π

s2π

F 2. Gluing two handles attached on a singularity. Gluing first the “white”
handle of angle s1π and then the “grey” handle of angle s2π is equivalent to glue
first the “grey” handle of angle (s2 − 2)π and then the “white” handle of angle

(s1 + 2)π.

2.4. Jenkins-Strebel surfaces

An important class of flat metrics is given by the so-called Jenkins-Strebel differentials.
We first explain these particular metrics and then we give a density result.

Let us denote by Γ(q) the critical graph of (S, q) induced by the horizontal foliation, that
is the union of all separatrices in the horizontal direction. It is easy to see that Γ is compact if
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and only if the horizontal measured foliation of q is completely periodic; this means that any
horizontal geodesic is closed. We then call such a form a Jenkins-Strebel differential (see [19]).

Recall that locally, a stratum of the moduli space Qg is modeled by the first cohomology
group with coefficients in C

H1(S, {P1, . . . , Pn}; Q)⊕ i ·H1(S, {P1, . . . , Pn}; Q) ⊂
⊂ H1(S, {P1, . . . , Pn}; C) = H1(S, {P1, . . . , Pn}; R⊕ iR) .

Taking forms such that the absolute and relative periods are in Q ⊕ iQ, we get arithmetic
surfaces: the orientating covering is itself a ramified covering over the standard two torus.
Therefore we get that Jenkins-Strebel differentials are dense in each stratum (see [2], [5], [13],
[8] and [19]).

R 2.10. – In [2], Douady and Hubbard proved a stronger result: the Jenkins-
Strebel differentials are dense on each Riemann surface, not just in a stratum.

The complement of Γ(q) in S is a disjoint union of maximal periodic components for the
horizontal foliation. These components are isometric to metric straight cylinders, foliated
by regular horizontal leaves. A simple computation with the Euler characteristic, using the
cylinders decomposition, shows that the number of the cylinders is bounded above by 3g−3.

In [13] Masur proved that the set of Jenkins-Strebel differentials with exactly r cylinders
(for any 1 ≤ r ≤ 3g−3) is dense inside the principal stratumQ(1, . . . , 1) of genus g. Recently,
Kontsevich and Zorich [8] have obtained a similar result. They proved that the set of Jenkins-
Strebel differentials with exactly one cylinder is dense inside any stratum of Hg. Here we
extend their proof to the case of strata of Qg.

T 2.11. – The set of quadratic differentials, such that the horizontal foliation is
completely periodic and decomposes the surface in a unique straight metric cylinder, forms a
dense subset of any connected component of any stratum of Qg.

Proof of Theorem 2.11. – We will only prove the existence of such surfaces on each con-
nected component of the moduli spaceQg. For the density result, we refer to the Kontsevich-
Zorich’s proof. Note that in this paper, we will only need the existence result.

Let (S, q) be a point. Thanks to the previous discussion we may assume that the surface
(S, q) is an arithmetic surface: its orientating double covering Ŝ covers the standard torus
T2 = C/Z2. The vertical foliation on S is completely periodic and decomposes the surface
in many vertical cylinders Ci.

Let us construct a closed regular curve γ transverse to this foliation. The surface Ŝ is a
ramified covering π : Ŝ → T2. Obviously the directional flow on Ŝ projects to the directional
flow on the two-torus T2. Let us consider a foliation on this torus in the direction θ = 1/b

with b arbitrary large. The lift of this foliation allows us to obtain a closed regular geodesic
γ on Ŝ, and thus a closed geodesic on S. This leaf is transverse to the vertical foliation de-
termined by q and γ does not contain any singularity of q. In addition one can choose γ in
such a way that its length with respect to the metric defined by q is arbitrary large; Indeed
the length of γ is greater than

√
1 + b2.

The closed loop γ cuts the boundaries of cylinders Ci many times (this means that γ cuts
the set of vertical saddle connections and separatrix loops of q). By construction ∂Ci\γ is
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a disjoint union of vertical intervals. One can and do choose γ long enough so that each
component of ∂Ci\γ contains at most one singularity of q. Now we will change slightly the
transverse structure (in the vertical direction) to obtain a periodic horizontal foliation with
only one cylinder. We will do that without changing the structure in the direction of γ.

We cut the surface along the vertical critical graph Γ(q) of q and also along γ. We obtain
a finite union of parallelogramsRi. Up to the SL2(R)−action one may assume that γ is ver-
tical. The set of horizontal sides of Ri is a part of γ and the set of vertical sides of Ri is a
part Γ(q). By construction in each vertical side of Ri there is at most one singularity of q.

Let us construct a new foliation as follows. We conserve all horizontal parameters and we
change vertical parameters in the following way: we declare that the length of any vertical
side of Ri is 1 for all i. In addition, if there is a singularity located on a vertical side, we
declare that it is located at the middle of this side. With our above considerations, there is no
contradiction. Finally we obtain a new set of parallelograms R′i endowed with the natural
metric dz2.

Let (S ′, q′) be the flat surface constructed from the new rectanglesR′i with the correspond-
ing identifications of vertical and horizontal sides given by gluing described above. We obtain
a new flat structure q′ on our surface.

The surfaces (S, q) and (S ′, q′) carry the same topology. By construction the vertical crit-
ical graphs Γ(q) and Γ(q′) coincide. We just have changed absolute and relative periods of
the form q. The subvariety of quadratic differentials sharing the same vertical foliation is
connected and depends continuously on the suitable of deformations of the vertical foliation
(see [5] and [21]). Thus it implies that the two points (S, q) and (S ′, q′) belong to the same
connected component. It is easy to check that in the horizontal direction on S ′ for q′ the foli-
ation is completely periodic and decomposes the surface into a single cylinder. The theorem
is proven.

3. Generalized permutations

In this section, we propose a natural way to encode Jenkins-Strebel differentials with one
cylinder; namely we will introduce the notion of generalized permutations.

Let (S, q) denote a surface which is decomposed into a unique metric cylinder into the
horizontal direction. Note that the holonomy of (S, q) is not assumed to be non-trivial.

3.1. Combinatorics of (S, q)
Let Γ(q) be the horizontal critical graph of (S, q). The complement S\Γ(q) is a metric

cylinder Cyl(S). The horizontal saddle connections are labelled by γ1, . . . , γk.

One can encode the sequence of saddle connections contained in the bottom and in the
top of Cyl(S), and ordered following the cyclic ordering of the boundary of the cylinder, by
a sequence of labels into the following manner. Each saddle connection γi is presented twice
on the boundaries of Cyl(S). Let us denote by γ1

i and γ2
i these two copies. Hence the top

(respectively the bottom) of Cyl(S) is a sequence of γεi where i ∈ {1, . . . , k} and ε = 1, 2.
Roughly speaking a generalized permutationπ is a table with two lines encoding the sequence
of labels of the saddle connections. The precise definition is the following.
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D 3.1. – Let r, l be any non-negative integers. A generalized permutation π (of
type (r, l)) is an involution, without fixed points, of the set {1, . . . , r, r + 1, . . . , r + l}.

Through this paper, we will represent a generalized permutation by a table.

E 3.2. – The generalized permutation (of type (7, 5)) given byπ(1) = 10, π(2) =

12, π(3) = 5, π(4) = 7, π(5) = 3, π(6) = 11, π(7) = 4, π(8) = 9, π(9) = 8, π(10) =

1, π(11) = 6, π(12) = 2 is represented by the table

π =

(
1 2 3 4 3 5 4

6 6 1 5 2

)

in a natural way.

The term “generalized” is justified by the fact that a classical permutation π1 of the sym-
metric group Sk is a generalized permutation with l = r = k and

π(i) =

{
k + π−1

1 (i), for i ≤ k
π1(i− k), for i > k

In the present paper, we are interested by the quadratic differentials which are not the global
square of any Abelian differential. Thus, in order to avoid “true” permutations, we require
the following technical condition

(3.1) there exist i0 ≤ r and j0 ≥ r + 1 such that π(i0) ≤ r and π(j0) ≥ r + 1

3.2. Admissible vectors

Let π denote a generalized permutation of type (r, l).

D 3.3. – We say that λ ∈ Rr+l+ is an admissible vector (for π) if{
λi = λπ(i) for all i = 1, . . . , r + l∑r
i=1 λi =

∑l
j=1 λr+j

Note that for the “true” permutations π the vector

(λ1, . . . , λr, λπ(1), . . . , λπ(r))

is admissible for any λi > 0.
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3.3. Suspension over a generalized permutation

Let π be a generalized permutation and let λ be any admissible vector for π. We denote
by w (width of the cylinder) the quantity

w :=
r∑
i=1

λi =
l∑

j=1

λr+j

Let C = [0, w]× [0, 1] be an Euclidean cylinder endowed with the form dz2. Let us consider
a partition of the top (respectively bottom) of C into horizontal intervals of length λi for
i = 1, . . . , r (respectively i = r+1, . . . , r+l). Now we identify the horizontal interval labeled
i with the horizontal interval π(i) for all i into the following manner. If the two intervals are
presented twice on a side, we identify them by a centrally symmetry and otherwise we identify
them by a translation.

The resulting space is a Riemann surface, denoted by S(π, λ), endowed with a natural
quadratic differential q = dz2. We call this flat surface (S, q) the suspension over the element
(π, λ).

1 1

3 2 3
π =

(
1 1 2
3 2 3

) 2

S(π, λ) γ(π)η

F 3. A suspension over a permutation π with an appropriate admissible vec-
tor λ. The resulting point (S(π, λ), dz2) belongs to the stratumQ(−1,−1, 2). The
black bullets correspond to the poles and the white bullets to the unique zero of the
differential q on S(π, λ).

N. – The surface S = S(π, λ) decomposes in a single cylinder in the horizontal
direction. By construction there exists in the vertical direction a compact separatrix on this
surface. We will denote it by γ(π) ⊂ S.

R 3.4. – π is a true permutation if and only if the surface S = S(π, λ) is a trans-
lation surface.

L 3.5. – The surfaces S(π, λ) with fixed parameter π and arbitrary parameter λ be-
long to the same connected component.
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Proof of the lemma. – The lengths λi of the horizontal intervals correspond to the abso-
lute and to the relative periods of the corresponding form q on S. Thus the lemma is a direct
consequence of the local description of the orbifoldic structure of the strata in terms of the
cohomological coordinates.

This construction implies a simple but important fact: we can encode the set of connected
components using generalized permutations. Given a permutation, it determines completely
the type of the singularities and hence a stratum. In addition, above lemma shows that it also
determines the connected component of the stratum as well. The set of generalized permu-
tations, for a fix stratum is obviously finite. Thus it gives an independent proof of a theorem
of Veech [21].

T (Veech). – The set of connected components of a stratum Q(k1, . . . , kn) of the
moduli space Qg of meromorphic quadratic differentials is finite.

3.4. Cyclic order and horocyclic flow

The class of Jenkins-Strebel quadratic differentials is stable under the horocyclic flow hs =

( 1 s
0 1 ). More precisely the surfaces

hs · S(π, λ) = S(π′, λ′)

are related in the following way. Elements of π′ correspond to the elements of π with a “ro-
tating” of the first line and the second line. We will say that π is equivalent to π′ and we will
note π ∼ π′. For example the permutation of Example 3.2 is equivalent to the following one

π =

(
1 2 3 4 3 5 4

6 6 1 5 2

)
∼
(

1 2 3 4 3 5 4

1 5 2 6 6

)
= π′.

Note that this relation preserves the stratum and also the connected component.

1

11
hs

action of the mapping class group

F 4. Action of the horocyclic flow hs on a flat surface.

4. Representative elements

In this section, we give a set of representative elements of the connected components in
terms of generalized permutations (see previous Section 3).
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4.1. Hyperelliptic connected components

Let r, l be two non-negative integers. We construct the generalized “hyperelliptic” permu-
tation Π1(r, l) of type (k + 2, k + 2) in the following way.

Π1(r, l) =

(
01 1 . . . r 01 r + 1 . . . r + l

r + l . . . r + 1 02 r . . . 1 02

)
.

A direct computation of the type of conical angles identifies the stratum which contains sur-
faces S(Π1(r, l), λ). It depends on the parity of the two integers r and l. We easily establish
the next lemma.

L 4.1. – Let (S, q) be the flat surface given by S(Π1(r, l), λ) for any admissible vec-
tor λ. If r and l are odd then q has two singularities. If r and l have different parities then q has
three singularities. If r and l are even then q has four singularities. The following table gives the
type of the singularities in terms of r and l:

r l stratum which contains (S, q)
2k + 1 2(g − k)− 3 Q(4k + 2, 4(g − k)− 6)

2k + 2 2(g − k)− 3 Q(2k + 1, 2k + 1, 4(g − k)− 6)

2k + 2 2(g − k)− 2 Q(2k + 1, 2k + 1, 2(g − k)− 3, 2(g − k)− 3)

According to [11], each above stratum contains a hyperelliptic connected component. We
have the following lemma.

L 4.2. – For any λ and any integers r, l, the surface S(Π1(r, l), λ) belongs to the
hyperelliptic connected component (of the corresponding stratum).

Proof of Lemma 4.2. – Here we present the proof of the first case; that is r and l are odd.
The other cases are similar and left to the reader. Take r = 2k+ 1 and l = 2(g− k)− 3. We
consider the rectangle

R =

ô
−r + l

2
− 1 ,

r + l

2
+ 1

ñ
× ]− 1, 1[

Let τ : R → R be the involution ofR given by τ(x, y) = (−x,−y). The combinatorics of Π1

implies that τ induces a global involution of the surface S = S(Π1(r, l), λ); we still denote
it by τ . By Lemma 4.1 the surface (S, q) belongs to the stratum Q(4k + 2, 4(g − k) − 6);
therefore the Gauss-Bonnet formula implies that S has genus g.

Recall that the hyperelliptic component of this stratum is, by definition, the image of the
map

Q(2k, 2(g − k)− 4,−12g)→ Q(4k + 2, 4(g − k)− 6)

(CP (1), q0) 7→ (S0, π
∗q0)

where π : S0 → CP (1) is a double ramified covering, the ramification locus being the zeroes
and poles of q0.
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In order to prove that (S, q) belongs to the hyperelliptic component, we have to construct
a double ramified covering π : S → P1 and a quadratic differential q0 on the sphere such
that π∗q0 = q. Let us count the number of fixed points of the map τ :

– there are r + l fixed points of τ on the horizontal sides of R located at the middle of
the intervals (precisely at the middle of separatrix loops),

– there is a fixed point located at the middle of the vertical side,
– there is a fixed point at (0, 0),
– there are two fixed points which corresponds to the two zeroes of q.

Therefore the total number of fixed points of τ on S0 is

r + l + 1 + 1 + 2 = 2k + 1 + 2(g − k)− 3 + 4 = 2g + 2.

The Riemann-Hurwitz formula implies that the genus of S /(x ∼ τ(x)) is zero. Let us con-
sider the projection map

π : S → S /(x ∼ τ(x)) ' CP (1).

It is easy to check that above covering gives the desired map. Lemma 4.2 is proven.

R 4.3. – The permutation Π2(r, l) of type (2r, 2l) given by:

Π2(r, l) =

(
1 . . . r 1 . . . r

r + 1 . . . r + l r + 1 . . . r + l

)
furnishes also a representative element for hyperelliptic connected components.

Through the proof of Theorem 7.2 on adjacency of strata, we will get a characterization
of hyperelliptic components. We will obtain the following nice description.

T 4.4. – Let (S, q) be any point in any hyperelliptic component. Let us assume that
S is decomposed in a unique metric cylinder for the horizontal flow. Then there exist i ∈ {1, 2},
non-negative integers r, l, an admissible vector λ and s ∈ R such that

(S, q) = hs · S (Πi(r, l), λ) .

4.2. Irreducible connected components

Here we give representative elements of the sporadic components discussed in Theo-
rem 1.2: we will denote them by the irreducible connected components.

D 4.5. – The irreducible connected components are defined to be the compo-
nents containing the elements S(π, λ) given by the next table.

Irreducible components Representative elements

Qirr(−1, 9)

(
0 1 2 3 4 0

4 3 2 5 1 5

)

Qirr(−1, 3, 6)

(
0 1 2 3 4 5 0

5 4 3 2 6 1 6

)
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Qirr(−1, 3, 3, 3)

(
0 1 2 3 4 5 6 0

6 5 3 2 7 4 1 7

)

Qirr,I(12)

(
1 2 3 4 2 5 6

1 4 5 7 6 7 3

)

Qirr,II(12)

(
1 2 3 4 3 5 6

1 5 7 4 2 6 7

)

5. Dynamical properties of S(π, λ) versus combinatorics of π

An important part of our proof is to find surfaces with multiplicity one saddle connection.
For that we will give a combinatorial condition such that Proposition 2.2 applies.

5.1. Irreducibility

There exist “bad” permutations π such that, for any λ, the saddle connection γ(π) has
multiplicity at least two on S(π, λ). More precisely the two next cases can occur.

∀λ, ∃ saddle connection η such that |η| = |γ(π1)| on S(π1, λ)

and

∀λ, ∃ saddle connection η such that |η| = 2|γ(π2)| on S(π2, λ).

The first class of “bad” permutations will lead to the notion of weak reducibility. The second
class will lead to the Irred2 notion.

5.1.1. Weak irreducibility. – We say that π (of type (r, l)) is weakly reducible if there exist
1 ≤ i0 < r and r+ 1 ≤ j0 < p = r+ l such that at least one of the following two conditions
holds.

1. π({1, . . . , i0}) = {r + 1, . . . , j0} or π({i0 + 1, . . . , r}) = {r + j0 + 1, . . . , p}
2. each 1 ≤ i ≤ r with 1 ≤ π(i) ≤ r satisfies i ≤ i0 and π(i) > i0. All other i ≤ i0 with
π(i) ≥ r + 1 satisfy π(i) ≤ j0.
each r+1 ≤ j with r+1 ≤ π(j) satisfies j ≤ j0 and π(j) > j0. All other r+1 ≤ j ≤ j0
with π(j) ≤ r satisfy π(j) ≤ i0.

We will say that π is weakly irreducible if π is not weakly reducible.

L 5.1. – Let S = S(π, λ) be a flat surface. Then π is weakly irreducible if and only
if there exists a full Lebesgue measure set of admissible vectors λ such that any vertical separa-
trix η (different from γ(π)) on S satisfies |η| ≥ 2 · |γ(π)|.

The proof is obvious.
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N. – In order to clarify the situation, for a weakly reducible permutation π, we
will denote by a vertical segment the position of the corresponding elements i0, j0. For in-
stance the permutation (

1 2 3 4 3 5

6 1 2 6 5 4

)
is weakly reducible with corresponding i0 = 3 and j0 = 9.

5.1.2. The condition Irred2. – This is a technical condition and we first prefer to address the
relating result to this notion. The definition will then become clear.

P 5.2. – Let S = S(π, λ) be a flat surface. Let us assume that π satisfies the
condition Irred2. Then there exists a full Lebesgue measure set of admissible vectors λ such
that any vertical separatrix η on S satisfies |η| 6= 2 · |γ(π)|.

D 5.3. – We say that π does not satisfy the condition Irred2 if there exists a
(non-empty) decomposition of π (up to exchange lines) in the following way (in terms of ta-
ble)

π =

(
Y ′1 Y ′′1 Y ′′′1

Y ′2 0 Y ′′2 0 Y ′′′2

)
with {

∀i ∈ Y ′1 ⇒ π(i) ∈ Y ′′′1 t Y ′2
∀i ∈ Y ′′1 ⇒ π(i) ∈ Y ′′1 t Y ′′2

and

{
∀j ∈ Y ′2 ⇒ π(j) ∈ Y ′′′2 t Y ′1
∀j ∈ Y ′′2 ⇒ π(j) ∈ Y ′′2 t Y ′′1 .

E 5.4. – The permutation ( 1 2 2 3 3 1
0 0 ) does not satisfy the condition Irred2. In-

deed, Y ′1 = {1}, Y ′′1 = {2, 2, 3, 3}, Y ′′′1 = {1} and Y ′2 = Y ′′2 = Y ′′′2 = ∅ is a decomposition.
The permutation of Example 3.2 satisfies the condition Irred2.

Proof of Proposition 5.2. – As usual we will assume that γ(π) has length 1. Recall that
an admissible vector λ satisfies a linear equation given by Equation (3.3). Let Rr+l−1 be the
parameters space. Let us consider the subset E consisting of coordinates linearly indepen-
dent over Q. This is obviously a full Lebesgue measure set. Let us choose any λ ∈ E. We
will prove that if there exists a vertical separatrix of length 2, then the above decomposition
of Irred2 occurs.

Let us assume that one has found a vertical separatrix η ∈ S(π, λ) of length 2. A straight-
forward computation shows that one of the two cases presented by Figure 5 and Figure 6 has
to occur.

Euclidean elementary geometry on the flat surface S on Figure 5 gives
i0∑
i=1

λi =

j0∑
j=1

λj+r − ε and
i1∑
i=1

λi − ε =

j1∑
j=1

λj+r .

Adding these two formulas and recalling that λi1 = λj0+r, we get

(5.1) 2

i0∑
i=1

λi +

i1−1∑
i=i0+1

λi = 2

j0−1∑
j=1

λj+r +

j1∑
j=j0

λj+r .
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i0
i1

j0

j1ε

ε

S(π, λ) γ(π)η

F 5. A separatrix of length 2 (here the canonical separatrix γ(π) has
length 1). The two corresponding horizontal intervals of lengths λj0+r and λi1 , la-
belled by j0 and i1, are glued by a translation.

i0 i1

j0 j1

εε

S(π, λ) γ(π)η

F 6. A separatrix of length 2 (here the canonical separatrix γ(π) has
length 1). The two corresponding horizontal intervals of lengths λj0+r and λj1+r,
labelled by j0 and j1, are glued by a central symmetry.

The same argument on Figure 6 produces similar equalities. More precisely

i0−1∑
i=1

λi =

j0−1∑
j=1

λj+r + ε and
i1∑
i=1

λi =

j1∑
j=1

λj+r − ε.

Adding these two formulas and recalling that λj0+r = λj1+r, we get the new one:

(5.2) 2

i0−1∑
i=1

λi +

i1∑
i=i0

λi = 2

j0−1∑
j=1

λj+r +

j1−1∑
j=j0+1

λj+r + 2λj0+r .

Recall that by assumption on λ, there exists exactly one rational relation between λi. This is
the following one.

(5.3)
r∑
i=1

λi =
l∑

j=1

λr+j .

It is easy to check that Equation (5.1) cannot occur: on the right part there is a term λj0+r
and on the left part, the corresponding term does not appear.

Therefore only the second case arises. Comparing the coefficients of λi, and forcing the
terms to cancel (using Equation (5.3)) this leads to the fact that π does not satisfy Irred2;
with corresponding sets

Y ′1 = (1, . . . , i0) Y ′′1 = (i0 + 1, . . . , i1 − 1) Y ′′′1 = (i1, . . . , r)

Y ′2 = (1, . . . , j0 − 1) Y ′′2 = (j0 + 1, . . . , j1 − 1) Y ′′′2 = (j1 + 1, . . . , l).
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Therefore if λ belongs toE and π satisfies Irred2, any vertical separatrix η has length different
from 2. Proposition 5.2 is proven.

5.1.3. Irreducibility

D 5.5. – We say that π is irreducible if π is weakly irreducible and satisfies the
condition Irred2.

P 5.6. – Let us consider a surface S(π, λ) with an irreducible permutation π.
Then there exists a full Lebesgue measure set of admissible vectors λ such that any vertical sep-
aratrix η ⊂ S(π, λ), different from γ(π), satisfies |η| ≥ 3 · |γ(π)|.

Proof of Proposition 5.6. – The proof is obvious using Lemma 5.1 and Proposition 5.2:
the length of any separatrix is a positive integer different from 1 and 2 for a full Lebesgue
measure set.

R 5.7. – Proposition 5.6 is related to Keane’s property. More precisely, for “true”
permutations, weak irreducibility coincides with the classical definition. This means that
π{1, . . . , k} 6= {1, . . . , k} for any k = 1, . . . , r − 1. The Keane’s property asserts that, for
irreducible permutations, for almost all λ, any separatrix η 6= γ(π) has infinite length. See [1]
for similar results in this context.

5.2. Irreducibility and weak irreducibility

D 5.8. – Let π be a type (r, l) generalized permutation. We say that π satisfies
the Condition (∗) if there exists only one element i0 ≤ r (respectively j0 ≥ r + 1) such that
π(i0) ≤ r (respectively π(j0) ≥ r + 1).

We end this section by the following obvious lemma.

L 5.9. – Under condition (∗), weak irreducibility implies irreducibility.

5.3. Irreducibility and “breaking up a singularity”

Let π be a generalized permutation and let λ be any admissible vector. Recall (Section 3)
that for a horizontal separatrix β, we denote by β1 and β2 the two corresponding intervals
on the cylinder Cyl(S).

P 5.10. – Let π be a generalized permutation and let S = S(π, λ) be the sus-
pended flat surface over (π, λ). If π is irreducible then there exists a full Lebesgue measure set
of λ such that γ(π) has multiplicity one.

Proof. – It follows from Proposition 5.6 and properties of homologous separatrix de-
tailed in Proposition 2.2.

P 5.11. – Let π be a generalized permutation and let S = S(π, λ) be the sus-
pended flat surface over (π, λ). We denote by β and η any two horizontal separatrices. Assume
that one of the two following holds:

• β1 and β2 are located in two different horizontal boundaries of the cylinder Cyl(S),
• all intervals β1, β2 and η1, η2 are located in the same horizontal boundary of Cyl(S).

Then there exists a full Lebesgue measure set of λ such that β has multiplicity one.
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Proof of Proposition 5.11. – In the first case there is no condition on the horizontal pa-
rameter |β1| = |β2| = |β|: see Equation (5.3). Thus one can and do choose the length of β
in the flat metric, arbitrary small with respect to the other length of horizontal separatrices.
Therefore Proposition 2.2 applies.

In the second case there is only one linear relation on the length of γ, namely Equa-
tion (3.3). Therefore one gets:

|β1|+ |β2|+ |η1|+ |η2|+ · · · = . . .

In the left part of this equality, the terms βi, ηi survive. In particular, we can choose |β1|+
|β2| + |η1| + |η2| arbitrary small and hence |β1| = |β2| = |β| become arbitrary small with
respect to the length of other horizontal separatrices. We are done.

As direct corollary, one gets the following useful result.

T 5.12. – Let us assume that either γ(π) or β (in above propositions) is a saddle
connection connecting two different singularities, not two poles. Let us also assume that one
of the assumptions of above Proposition 5.11 holds. Then the surface S(π, λ) is obtained from
the surgery “breaking up a singularity” on a surface in a lower dimensional stratum for a full
Lebesgue measure set of λ.

5.4. Irreducibility and “bubbling a handle”

N. – Let π be a generalized permutation of the set {1, . . . , r + l} satisfying the
condition π(1) = r + 1. We will denote by π̂ the restricted generalized permutation of the
set {1̂, 2 . . . , r,’r + 1, r + 2, r + l} (where ı̂ means that we have forgotten the element i). In
terms of table, this gives

π =

(
0 A

0 B

)
and π̂ =

(
A

B

)
.

Clearly, the surface S(π, λ), with π as above, possesses a simple cylinder in the vertical
direction (see Figure 7 and Section 2.1.1). This cylinder is filled with regular vertical closed
geodesics; each boundary component is a single vertical separatrix.

Using Theorem 5.12, one deduces the following useful result.

T 5.13. – Let S(π, λ) ∈ Qg(4g− 4) be a point. Let us assume that π(1) = r+ 1.
If π̂ is irreducible then for a full Lebesgue measure set of λ, the surface S is obtained from the
surgery “bubbling a handle” on a surface in the stratum Qg−1(4g − 8).

Proof of Theorem 5.13. – In the vertical direction, for any λ the surface S has a simple
cylinder. Let us remove it. We obtain a flat surface with boundaries. Each boundary com-
ponent is a single geodesic circle: γ(π) and another one, say β. By construction, they have the
same length. Let us remove the singularity and glue these two geodesics segments together.
We obtain a closed flat surface S ′ of genus g− 1. The induced quadratic differential has two
singularities, say P1 and P2, of multiplicities k1, k2 depending on the conical angle between
γ(π) and β. We denote this angle by kπ. By definition

k1 = k − 2 and k2 = 4g − 6− k.
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P

P

P

P

P

P

P

γ(π) γ(π)

γ(π)

β

β

η1

η2

4π

F 7. On the left, the figure represents a flat surface S(π, λ) with π satisfying
π(1) = r+1. In the vertical direction, one can easily see that there is a simple cylin-
der. The boundary component of this cylinder is γ(π)tβ. On the figure presented
on the right, we have represented the diagram of the vertical foliation of q = dz2. In
this example, the angle of this cylinder is 4π (or 6π if we consider the complementary
angle). If the generalized permutation π̂ is irreducible, one can choose horizontal
parameters so that γ(π) has multiplicity one. In this case this surface is obtained
from a surface in genus g − 1, where g =genus(S), by “bubbling a handle”.

By assumptions π̂ is irreducible. Thus Theorem 5.12 implies that one can choose λ in such a
way that γ(π) has multiplicity one. Applying Theorem 2.6 we can collapse γ(π) to a point.
Therefore we obtain a closed flat surface S ′′ of genus g − 1 with a unique singularity. By
construction, “bubbling a handle” at the unique zero of S ′′ with the appropriate angle kπ,
we get the surface S. The theorem is proven.

We end this section with the following lemma.

L 5.14. – The three following statements hold.

• The component Qirr(−1, 3, 6) is adjacent to the component Qirr(−1, 9).
• The component Qirr(−1, 3, 3, 3) is adjacent to the component Qirr(−1, 3, 6).
• Qirr,I(12) = Q(8)⊕ 2 and Qirr,II(12) = Q(8)⊕ 6.
• Qirr(−1, 9) = Q(−1, 5)⊕ 3.

Proof of the Lemma 5.14. – We first prove the first two assertions. Let S(π, λ) ∈
Qirr(−1, 3, 6) be a point with π as in Definition 4.5. Observing the horizontal foliation,
it is easy to see that there exists a multiplicity one saddle connection connecting the two ze-
roes. Then the first assertion deduces from Proposition 2.6. One proves the second assertion
in the same manner.

Now let us concentrate on the third assertion. Let S1 = S(π1, λ),S2 = S(π2, λ) be
two representative elements of Qirr,I(12),Qirr,II(12) with π1, π2 as in Definition 4.5 and
λ = (1, . . . , 1).
We detail the first case, that is S1; the second case is similar. The vertical foliation on S1

is completely periodic and decomposes the surface in two cylinders (see Figure 8). One of
the cylinders is a simple cylinder and the angle between the separatrix loops which form the
boundary is 2π. Hence S1 = Q(8)⊕ 2. The proof of S2 = Q(8)⊕ 6 is similar and left to the
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F 8. A vertical decomposition on a flat surface representing the componentQirr,I(12).

reader.
The last statement is a direct verification left to the reader. The lemma is proven.

We now have all necessary tools to prove Main Theorem 1.1 and Main Theorem 1.2.

6. The minimal stratum

This section is devoted to the so-called minimal stratumQ(4g − 4) in case g ≥ 3. We will
prove this stratum is connected except for genus 4. In this last case we will show there exist
at most two connected components.

The proof is done by induction on the genus of the surfaces. The step of induction is given by
Theorem 6.3. The initialization of the induction is reduced to the proof of the connectedness
of the stratum Q5(16) which we establish by a direct argument.

T 6.1. – The connected components of the stratumQ(4g− 4) are described in the
following list.

– The stratum Q(8) is connected.
– The stratum Q(12) possesses at most two connected components — corresponding to
Qirr,I(12) and Qirr,II(12).

– Any other stratum Q(4g − 4), in genus g ≥ 5, is non-empty and connected.

R 6.2. – The stratum Q(4g − 4) is empty for g ≤ 2 (see [15]).

Zorich (see [25]) has proved that the stratum Q(12) is non-connected. The proof uses the
Extended Rauzy classes.

6.1. Step of induction

T 6.3. – Let C be a connected component of the stratumQ(4g−4) in genus g ≥ 4.
Then there exist a flat surface (S, q) ∈ Q(4g−8) and s ∈ N∗ such that the surgery “bubbling a
handle” at the unique singularity of q in S (with discrete parameter s and arbitrary continuous
parameters) produces surfaces belonging to the component C. In other words the map

⊕ : π0(Qg−1(4g − 8))× N∗ → π0(Qg(4g − 4))

(C′, s) 7→ C′ ⊕ s
is onto for any g ≥ 4.
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R 6.4. – Geometrically the previous statement is equivalent to finding a flat sur-
face in C with a multiplicity one simple cylinder. In order to do that we will use Theorem 5.13.
Kontsevich and Zorich have obtained a similar result in the particular case of Abelian differ-
entials. Their proof uses Rauzy classes. Here we first give an independent (geometric) proof
of their result. We then give the proof in full generality.

Hence Theorem 6.3 is equivalent to the following.

T 6.5. – Let C be a connected component of the stratumQ(4g−4) in genus g ≥ 4.
Then there exists S(π, λ) ∈ C with π̂ irreducible.

Proof of Theorem 6.3 for Abelian differentials. – Let C ⊂ H(2g− 2) be a connected com-
ponent in genus with g ≥ 2.

Let π be a “true” permutation in the symmetric group Sr. We will assume that the surface
S(π, λ) ∈ C has no marked point that is π(i + 1) 6= π(i) + 1 for all i = 1, . . . , r with the
“dummy” condition π(r+1) := π(1). We will show that there exists a permutation π1 in the
class of π for the cyclic order with π1(1) = 1 and such that π̂1 is irreducible. This will prove
the theorem, indeed the surface S(π1, λ) ∈ C.

The differentialω has a unique singularity thus one can assume, using the cyclic order, that
π(1) = 1. If π̂ is irreducible then the theorem holds with π1 = π. Otherwise let us assume
that the restricted permutation π̂ is reducible. Then by definition, there exists 2 ≤ i0 < r

such that
π({2, . . . , i0}) = {2, . . . , i0}.

Let us consider the following new set: π(i0 + 1, . . . , r) = (A1 r A2). With these notations,
we have(

1 2 . . . i0 i0 + 1 . . . r

1 . . . . . . π(i0) A1 r A2

)
= π ∼ π1 =

(
r 1 2 . . . i0 i0 + 1 . . . r − 1

r A2 1 π(2) . . . . . . π(i0) A1

)
.

It is easy to see that A2 6= ∅: otherwise the corresponding surface S(π1, λ1) will possess
a marked point (see above). In particular S(π, λ) possesses also a marked point which is
a contradiction. Thus if π̂1 is reducible, it is easy to see that the corresponding invariant
set (after re-labeling elements) π1({2, . . . , i′0}) = {2, . . . , i′0} will satisfy the condition i′0 ≥
i0 + 1 > i0. The set {0, . . . , r} is finite, thus the theorem follows by repeating finitely many
times this process. Theorem 6.3 for Abelian differentials is proven.

To clarify the situation, we decompose the proof in general case in several steps. We first
prove the theorem in a weaker version: we add the additional assumption that there exists a
surface S(π, λ) ∈ C such that π satisfies the condition (∗) (see Section 5.2). This corresponds
to Proposition 6.6. We then prove Corollary 6.11 in order to get this additional condition.
This last corollary follows from Lemma 6.9 and Lemma 6.10.

P 6.6. – Let π be a generalized permutation such that S(π, λ) ∈ Q(4g − 4)

with g ≥ 4. Let us assume that π satisfies the condition (∗). Then there exists π1 ∼ π such that
π̂1 is irreducible.

We first prove the proposition for four particular classes of permutations. This corre-
sponds to Lemma 6.8.
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N. – A generalized permutation π is an ordered partition ofX = {0, . . . , r+ l}
in two ordered lists, X = Y1 t Y2. In the present paper we shall always consider only those
generalized permutations, for which each set Y1, Y2 contains at least one entry of multiplic-
ity two. The permutation satisfies the condition (∗) so that each set Y1, Y2 contains exactly
one entry of multiplicity two. Up to re-labeling, one can assume in the sequel that the two
particular elements are 1 ∈ Y1 and 2 ∈ Y2. Finally, up to cyclic order, one can always put π
in the form π =

(
0 A C
0 B D

)
.

Note that if π̂ is reducible, it involves one of the two following decomposition cases:

1. π(A) = B or π(C) = D

2.
For all i ∈ A, with i 6= 1, one has π(i) ∈ B; 1 ∈ C, π(1) ∈ C.

For all j ∈ B, with j 6= 2, one has π(j) ∈ A; 2 ∈ D, π(2) ∈ D.

In addition, we assume that this decomposition is minimal: we do not have a decomposition
into smaller sets A′, B′, C ′, D′. This condition, in case of “true” permutation, is equivalent
to say that i0 is minimal (see the proof versus Abelian differentials).

L 6.7. – If π̂ involves reducibility of type (1) then one can find π1 ∼ π such that π̂1

is irreducible.

Proof. – The proof parallels the one of Theorem 6.3 versus Abelian.

L 6.8. – Let π be a generalized permutation satisfying the condition (∗). Let us also
assume that one can put π in one of the four following forms:( 0 A 1 C | 3 1

0 B 2 D | 3 2

) ( 0 A 1 C | 1
0 B 2 D | 2

) ( 0 A 1 C | 3 1
0 B 2 D | 2 3

) ( 0 A 1 C | 4 3 1
0 B 2 D | 4 2 3

)
.

Let us assume that π̂ is reducible (with corresponding marked invariant minimal sets) and
S(π, λ) ∈ Q(4g − 4) with g ≥ 4. Then there exists π1 ∼ π such that π̂1 is irreducible.

Proof of Lemma 6.8. – Here we address the proof for the first class of permutations, the
others being completely similar. By assumption on minimality of the decomposition, at least
one of the two setsC orD is non-empty. Up to a permutation of the lines, we assumeC 6= ∅.
Up to re-labeling, let us denote C := (C1 4) with π(4) ∈ B tD. Depending on the value of
π(4), we also put B := (B1 4 B2) or D := (D1 4 D2). Therefore π is equivalent to

πB =
(

4 3 1 0 A 1 C1

4 B2 2 D 3 2 0 B1

)
if π(4) ∈ B or πD =

(
4 3 1 0 A 1 C1

4 D2 3 2 0 B 2 D1

)
if π(4) ∈ D.

This involves the two following cases:

Case 1. If B2 or D is non-empty, the restricted permutation π̂B is eventually reducible but
in this case it involves decomposition of type (1); thus the lemma follows from Lemma 6.7.
Therefore let us assume thatB2 = D = ∅. IfB1 is empty then the surface S(π, λ) belongs to
the stratum Q(8) and hence it has genus 3 which is a contradiction. Thus up to re-labeling,
one can put B1 := (B 5) with π(5) ∈ A t C1. As above depending on the value of π(5), we
also put A := (A1 5 A2) or C1 := (C11 5 C12). Therefore π is equivalent to

πA =
(

5 A2 1 C1 4 3 1 0 A1

5 4 2 3 2 0 B

)
if π(5) ∈ A or πC =

(
5 C12 4 3 1 0 A 1 C11

5 4 2 3 2 0 B

)
if π(5) ∈ C1.

Now we easily see that each of these permutations π̂A and π̂C is eventually reducible but it
then involves decomposition of Type (1). Thus Lemma 6.7 applies.
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Case 2. The discussion of this case is completely similar to the above one, depending on
the dichotomy π(D2) ⊆ A or not. We do not give the complete details here. Lemma 6.8
is proven.

Proof of Proposition 6.6. – Let π be a generalized permutation, satisfying condition (∗),
such that S(π, λ) ∈ Q(4g − 4) with g ≥ 4. If π̂ is reducible then, according to previous
notation and Lemma 6.7, one can assume that decomposition of Type (2) arises. We have
π =

(
0 A C
0 B D

)
with 1 ∈ A and π(1) ∈ C, 2 ∈ B and π(2) ∈ D. Let us introduce the following

new notations: C = (C1 1 C2) and D = (D1 2 D2). Then we put π in the following form
π =

( 0 A | C1 1 C2

0 B | D1 2 D2

)
.

C. – Either there exists π1 ∼ π with π̂1 irreducible or π can be put in one of the two
forms (with π(1) ∈ C and π(2) ∈ D):(

0 A C 1
0 B D 2

)
or
(

0 A C 1 3
0 B D 3 2

)
.

Proof of the Claim. – Obviously, if C1 and C2 are empty, the first form arises. Thus, by
symmetry, let us assume C2 6= ∅. Up to re-labeling, we put C2 := (C2 3) with π(3) ∈ D1 t
D2. As usual, depending on the value of π(3) we putD1 := (D′1 3D′′1 ) orD2 := (D′2 3D′′2 ).
Thus, each case involves the two new permutations in the class of π:

πD1
=
( 3 0 A C1 1 C2

3 D′′
1 2 D2 0 B D′

1

)
or πD2

=
( 3 0 A C1 1 C2

3 D′′
2 0 B D1 2 D′

2

)
.

For the first permutation: IfD′′1 = D2 = ∅ then the permutation is of the second class of the
lemma; thus we are done. Otherwise it is easy to see that the restricted permutation π̂D1

can
possibly be reducible but then the invariant set is larger thanA and we are done by repeating
finitely many times this process.

For the second permutation: We haveD′′2 6= ∅. As above, the restricted permutation π̂D2
can

possibly be reducible but then the new invariant set is larger than A and we are also done by
repeating finitely many times this process. The claim is proven.

Now we will consider the two lists C, D of the claim. Each permutation of the claim pro-
duces two new classes of permutations. Here we do not give the details but the algorithm is
completely similar to the one described above. Namely, the following holds:

C. – Either there exists π1 ∼ π with π̂1 irreducible or π can be put in one of the four
forms: (

0 A 1
0 B 2

) (
0 A 3 1
0 B 3 2

) (
0 A 3 1
0 B 2 3

) (
0 A 4 3 1
0 B 4 2 3

)
.

Now, let us remark that each of the permutations of the previous claim is one element of
the list of Lemma 6.8, and for those, we have already proved the proposition. Proposition 6.6
is proven.

L 6.9. – Let C0 be a connected component of the minimal stratum Q(4g − 4). Then
there exist two sequences of connected components

• Ci ⊂ Q(4g − 4) for i = 0, . . . ,m (m ≥ 1)
• Cj ⊂ Q(kj , 4g − 4− kj) for j = 1, . . . ,m, kj ≥ 1
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and a flat surface S = S(π, λ) ∈ Cm such that:

Ci ∪ Ci+1 ⊂ Ci+1, ∀i = 0, . . . ,m− 1 and π satisfies the condition (∗).

Proof of Lemma 6.9. – Let S(π, λ) be a point in C0. If π satisfies the condition (∗) we are
done. Otherwise let us denote η1, . . . , ηm the set of horizontal separatrices such that η1

i and
η2
i belong to the same boundary component of the cylinder Cyl(S). By assumption m ≥ 3.

Let us “break up” the unique zero in two zeroes in order to obtain a new surface, say S ′1,
which belongs to a component C1. By Proposition 5.11 and the fact that m ≥ 3, the saddle
connection η1 on S ′1 has multiplicity one. One can collapse it to a point to get a new surface
S1 in the minimal stratum, that belongs to a component C1 (eventually different from C0).
By construction we have

C0 ∪ C1 ⊂ C1.
Repeating inductively this process on saddle connection ηi for i = 2, . . . ,m − 1 we obtain
the following diagram

C1

@@
@@
@@
@@

C2

AA
AA
AA
AA
A

. . . Ci+1

FF
FF
FF
FF

. . . . . . Cm

EE
EE
EE
EE
E

C0 C1 . . . Ci Ci+1 . . . Cm−1 Cm

with Ci ∪ Ci+1 ⊂ Ci+1.

Finally by construction there exists a single pair of horizontal separatrices ηm and ηm−1

on Sm(πm, λm) ∈ Cm such that η1
i and η2

i belong to the same boundary component of the
cylinder Cyl(S). In other words, πm satisfies the condition (∗). Lemma 6.9 is proven.

L 6.10. – Let C0 ⊂ Q(4g− 4) be a connected component. Let us assume there exist
two components C1 ⊂ Q(4g − 4) and C1 ⊂ Q(k, 4g − 4− k) such that

C0 ∪ C1 ⊂ C1.
Let us also assume there exists a flat surface (S, q) ∈ C1 with a multiplicity one simple cylinder.
Then there also exists a flat surface (S ′, q′) ∈ C0 with a multiplicity one simple cylinder.

Proof of Lemma 6.10. – The proof is obvious using description of surfaces in terms of
separatrices diagrams.

C 6.11. – For each connected component C ofQ(4g−4) with g ≥ 4, there exists
a surface S(π, λ) ∈ C such that π satisfies the condition (∗).

Proof. – It follows from Lemma 6.9 and Lemma 6.10.

Proof of Theorem 6.3. – It follows obviously from Corollary 6.11 and Proposition 6.6.
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6.2. Connectedness of the minimal stratum

We are ready to prove Theorem 6.1. First we directly show thatQ(4g−4) is connected for
g = 3, 5 and has at most two components for g = 4. We then prove the theorem inductively
on g.

L 6.12

The stratum Q(8) is connected.

The stratum Q(12) has at most two connected components.

Proof of Lemma 6.12. – See Lemma A.1 and Lemma A.2 in the appendix.

L 6.13. – The stratum Q(16) is connected.

Proof of Lemma 6.13. – Thanks to previous lemma let C0 be the unique connected com-
ponent of the stratum Q(8). Let C1 be the component of Q5(16) obtained by bubbling two
handles on a surface of C0 with an angle of 2π. Namely C1 = C0 ⊕ 2⊕ 2. Recall that

C0 ⊕ 2 = Qirr,I(12) and C0 ⊕ 6 = Qirr,II(12).

Let C′ be any component of Q(16). By Theorem 6.3, there exists s0 such that C′ = C ⊕ s0
where C is a component of Q(12) = Qirr,I(12) ∪ Qirr,II(12). Using the properties of the
map ⊕ (Proposition 2.9), we directly get the relations

C0 ⊕ 2⊕ s = C0 ⊕ 6⊕ s = C1 for any s = 1, . . . , 8.

Thus C′ = C ⊕ s0 = C1 which proves the lemma.

Proof of Theorem 6.1. – We process by induction, initialization being given by Lemma
6.13. Let us fix g > 5. Let us assume thatQ(4g′ − 4) is connected for all genera 5 ≤ g′ < g.
We have to show that Q(4g − 4) is connected. We denote by Cg−1 = Q(4(g − 1) − 4) the
unique connected component of this stratum. We also define Cg ⊆ Q(4g − 4) by

Cg = Cg−1 ⊕ 1.

By Theorem 6.3 the map

⊕ : π0(Qg−1(4g − 8))× N∗ → π0(Qg(4g − 4))

(C′, s) 7→ C′ ⊕ s
is onto. But the stratumQ(4(g− 1)− 4) is connected and s can be chosen in {1, . . . , 2g− 2}
(up to consider the complementary angle). Thus we obtain a (onto) map

⊕ : {1, . . . , 2g − 2} → π0(Qg(4g − 4))

s 7→ Cg−1 ⊕ s.
In order to end the proof, it remains to show that

(6.1) Cg = Cg−1 ⊕ s for any s.

Now always by Theorem 6.3, there exists r0 such that

Cg−1 = Cg−2 ⊕ r0 with Cg−2 ⊆ Q(4(g − 2)− 8)
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(this stratum is non-empty because g−2 ≥ 4). But recalling that the stratumQ(4(g−1)−4)

(g − 1 ≥ 5) is connected, we also have

Cg−2 ⊕ s = Cg−1 for any s.

Using properties of the map ⊕, this yields to

Cg = Cg−1 ⊕ 1 = (Cg−2 ⊕ s)⊕ 1 = (Cg−2 ⊕ 1)⊕ s = Cg−1 ⊕ s for any s.

Thus we get the desired relation (6.1). Theorem 6.1 is proven.

7. Adjacency of the strata

The main result we prove in this section is

T 7.1. – For any g ≥ 3, n ≥ 2, let C be a connected component ofQg(k1, . . . , kn).
Let us also assume that C is neither a hyperelliptic component nor an irreducible component.
Then there exists a connected component C0 ⊂ Q(4g − 4) such that C0 ⊂ C.

We will deduce Theorem 7.1 from the following one.

T 7.2. – For any g ≥ 1 and n ≥ 2, let C be a connected component of the stratum
Qg(k1, . . . , kn). Let us also assume that C is not of the following form:

– the hyperelliptic connected componentQhyp(4(g−k)−6, 4k+2) orQhyp(−1,−1, 4g−2)

– a component of Q(−1, 5)

– the irreducible component Qirr(−1, 9).

Then there exists a flat surface (S, q) ∈ Qg in a lower dimensional stratum and a surgery
“breaking up a singularity” at a singularity of q on S such that the resulting surface (S ′, q′)
belongs to C.

R 7.3. – The corresponding statement for Abelian differentials is obvious. Sur-
prisingly, in the general case we find that some connected components, in small genera, are
neither hyperelliptic nor adjacent to the minimal stratum.

7.1. Link with our main result

Following the description of the topology of the strata of the moduli space in local coor-
dinates (see [8]), one has

T 7.4 (Kontsevich). – For any (S, q) ∈ Q(4g− 4) with g ≥ 3 there exists a small
open set U(S, q) of (S, q) in the whole space Qg such that

Q(k1, . . . , kn) ∩ U(S, q)
is non-empty and connected for any (k1, . . . , kn) with

∑
ki = 4g − 4.
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Combining this result with Theorem 7.1 we get an upper bound for the number of con-
nected components of any stratum. Let us denote by rg the number of connected compo-
nents of the minimal stratumQ(4g− 4). Then for any g ≥ 3, Theorem 7.1 and Theorem 7.4
together give

1 ≤ #

{
components of a stratum which neither contains

a hyperelliptic component nor an exceptional component

}
≤ rg

2 ≤ #{ components of a stratum which contains a hyperelliptic component } ≤ rg + 1

1 ≤ #{ components of a stratum which contains an exceptional component } ≤ rg + 1

In Section 6 we have proved that rg = 1 for g ≥ 5 which implies main Theorem 1.1.

7.2. Strategy of the proof of Theorem 7.2

Let C be a connected component of the stratum Qg(k1, . . . , kn) with g ≥ 1 and n ≥ 2. Ac-
cording to Theorem 2.6 one has to construct a surface (S, q) ∈ C with a multiplicity one
separatrix between two different singularities, not two poles. In order to do that we will use
the criterion given by Proposition 5.11 and Proposition 5.10.

Let (S(π, λ), q) be a point in C. Either Proposition 5.11 applies and then we are done or
assumptions of the proposition do not hold. In this last case we get some restrictions on the
combinatorics of π.

Now let us consider the vertical foliation on (S(π, λ), q). As above either Proposition 5.10
applies and we are done or assumptions of the proposition again do not hold. In this last case
we also get new restrictions on the combinatorics of π. In particular a simple computation
shows that the permutation π is completely determined. It corresponds to a “hyperelliptic”
or “irreducible” permutation. These two cases are avoid; indeed the component C is neither
hyperelliptic nor irreducible.

The proof is decomposed into several cases. Recall thatn denotes the number of singularities.
First we consider the general case n ≥ 4. We then prove the case n = 3. Finally we conclude
with the holomorphic case n = 2 and the meromorphic case n = 2, that is the stratum
Q(−1, 4g − 3).

R 7.5. – The corresponding statement of Theorem 7.2 versus Abelian differen-
tials is trivial. Indeed Proposition 5.11 applies directly (all transitions functions are given by
translations).

7.3. Proof of Theorem 7.2 in case n ≥ 4

Let C be a connected component and S(π, λ) ∈ C. We denote the horizontal cylinder of S
by Cyl(S). The boundaries components of Cyl(S) are denoted by I and J . One associates
to each saddle connection η two intervals η1, η2 on I t J .

C 1. – There exists a saddle connection α between a zero P1 and another singular-
ity P2.
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Proof of the claim. – The assumption g ≥ 1 implies there exists at least a zero P1. If there
exists a saddle connection attached to this zero we are done. Otherwise any separatrix ema-
nating from P1 is actually a separatrix loop.

Exchanging the role of I and J if necessary, the previous assertion means that any saddle
connection located in I is a separatrix loop emanating from P1 (see Figure 9a).

We claim there exists a separatrix attached to a zero, sayP ′1 6= P1, located on J . Otherwise
it will mean that any separatrix in J is attached to a pole. The only possibility to obtain such
a configuration is presented in Figure 9b. In particular the stratum is Q(k,−1,−1) contra-
dicting the assumption n ≥ 4. If there exists no saddle connection attached to P ′1 then any

Cyl(S)

P1P1P1P1 P1

P ′
1 P ′′

1

........................

I

J

γ(π)

(a)

Cyl(S)

P1P1P1P1 P1

P ′
1P ′

1 P ′′
1

........................

I

J

γ(π)

(b)

F 9.

separatrix located on J is a separatrix loop emanating from P ′1. It implies that the surface
has only two zeroes. This is again a contradiction and the claim is proven.

Let α be a saddle connection between the zero P1 and the singularity P2 (we assume that
α1 ⊂ I). If α2 ⊂ J then Proposition 5.11 implies that α has multiplicity one and the theorem
is proven. Hence let us assume that

α1, α2 ⊂ I

(we refer to Figure 10a).
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Cyl(S)

P1P1 P1P2P2 ........................

I

J
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I1 I2
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(a)
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P1 P1P1P1

P1 P1P1P1 P1P2P2

P3P3 ........................

............

I

J

γ(π)

J1J3

......

αα

β

β

ηη

(b)

Cyl(S)

P1 P1P1P1

P1 P1P1P1 P1P2P2

P3P3 ........................

............

I

J

γ(π)

I1
I2

J1J3

......

αα

β

β

η η

(c)

F 10.

The complement of α1, α2 in I has two connected components. Following the figure, we
will refer to these two components as I1, I2. The interval Ii is a union of separatrices.

C 2. – Either the theorem is proved or any separatrix τ , with τ1 ⊂ Ii, is a separatrix
loop attached to Pi. In addition τ2 ⊂ J (eventually I2 = ∅).

Proof of the claim. – Observe that either there exists a saddle connection τ between two
singularities (not two poles) with τ1 ⊂ I1 or any separatrix of I1 is a separatrix loop attached
to P1. The first case is the conclusion of the theorem. Thus let us consider the second case.

4 e SÉRIE – TOME 41 – 2008 – No 1



CONNECTED COMPONENTS OF QUADRATIC DIFFERENTIALS 41

Let τ be a separatrix with τ1 ⊂ I1. Then τ2 ⊂ I t J . Recalling that α1, α2 ⊂ I and
applying Proposition 5.11 we get that if τ2 ⊂ I then α has multiplicity one and therefore we
again get the conclusions of the theorem. Otherwise τ2 ⊂ J giving the second conclusion of
the claim.

Repeating the same argument for separatrices τ with τ1 ⊂ I2, we get the claim.

Let us assume that the second conclusion of Claim 2 holds. The singularity P1 is a zero;
hence there exists a separatrix loop β attached to P1 with α1 ⊂ I1. Thanks to Claim 2,
α2 ⊂ J (see Figure 10b). In particular there exists a saddle connection η between P1 and
a singularity P3 6= P1 (possibly P3 = P2) such that η1 ⊂ J . If η2 ⊂ I then thanks to Propo-
sition 5.11, η has multiplicity one and the theorem is proved. Thus one can and do assume
η2 ⊂ J . The complement of η1, η2 in J has two connected components. Following the figure,
we will refer to these two components as J1, J3. The interval Ji is a union of separatrices.

C 3. – Either the theorem is proved or any separatrix τ , with τ1 ⊂ Ji, is a separatrix
loop attached to Pi. In addition τ2 ⊂ I.

Proof of the claim. – The proof parallels the previous one (see Claim 2).

Finally we can summarize above claims. Either the theorem is proved or S can be put in
the form prescribed by Figure 10c. The last case implies thatS has at most three singularities:
P1, P2, P contradicting n ≥ 4. Therefore Theorem 7.2 in case n ≥ 4 is proven.

7.4. Proof of Theorem 7.2 in case n = 3

The proof is similar to the case n ≥ 4 with a refinement. We first prove the following
lemma.

L 7.6. – Let C be a connected component of Qg(k1, k2, k3) with g ≥ 1. Then there
exists a flat surface (S(π, λ), q) ∈ C such that one of the two following holds.

• (S(π, λ), q) has a multiplicity one saddle connection between two different singularities
(not two poles),

• the singularity pattern is exactly (k1, k2, k3) = (−1,−1, 4g − 2) and the combinatorics
of π has the form

π =

(
1 . . . r 01 01

02 02 π(1) . . . π(r)

)
or π =

(
A

0 0

)
with π(A) = A.

Proof of Lemma 7.6. – Let S(π, λ) be a point in C. Imitating the proof of Claim 1 one
gets that either there exists a saddle connection α between a zero and another singularity
or one can put the surface S in the form prescribed by Figure 9b. The last case produces a
surface S(π, λ) belonging to the stratum Q(k,−1,−1) with π = (A0 0 ) and π(A) = A; and
so the lemma is proven.

Therefore let us assume that S possesses a saddle connection α between a zero and another
singularity. One can extend Claim 2 and Claim 3 to the case n = 3 which leads to the follow-
ing dichotomy. Either S possesses a multiplicity one saddle connection, and so the lemma is
proven, or S can be put in the form prescribed by Figure 10c.
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Finally one can assume the following situation: Any separatrix τ belonging to I1 or J1 is a
separatrix loop attached to P1. In addition τ1 ⊂ I1 and τ2 ⊂ J1. Moreover n = 3 thus
P3 6= P2.

If P2 is not a pole then there exists a separatrix loop τ attached to P2 with τ1 ⊂ I2. If τ2 ⊂ J
then τ2 ⊂ J3 implying P2 = P3 which is contradiction. Therefore τ2 ⊂ I. Now Proposi-
tion 5.11 implies that α has multiplicity one (indeed α1, α2 ⊂ I) and so the lemma is proven.
The same proof holds if P3 is not a pole.

Therefore let us assume that P2 and P3 are two poles. Then the stratum containing S is
Q(k,−1,−1) and the permutation π has the combinatorics

Ä
1 ... r 01 01

02 02 π(1) ... π(r)

ä
. The lemma

is proven.

Therefore in order to prove Theorem 7.2 in case n = 3 we have to analyse the combina-
torics of two permutations given in Lemma 7.6.

L. – Let π be the permutation
( 2 ... r 01 01 1

02 π(1) π(2) ... π(r) 02

)
. Let us assume that π is dif-

ferent (up to the cyclic order) from Π1(r, 0). Then there exists π′ ∼ π such that π′ is irreducible
and γ(π′) is a saddle connection between the zero and a pole.

Proof of the lemma. – First of all, let us remark that the separatrix γ(π) is actually a sad-
dle connection. Let us also remark that π satisfies the condition (∗), therefore by Lemma 5.9,
weak irreducibility implies irreducibility for any permutation in the class of π.

The above generalized permutation π is reducible if and only if π(r) = 1. One observes that

π =
( 2 ... r 01 01 1

02 π(1) π(2) ... π(r) 02

) ∼ π′ =
( 3 ... r 01 01 1 2

02 π(1) π(2) ... π(r−1) 1 02

)
.

It is easy to check that π′ is irreducible if and only if π(r − 1) = 2.

Therefore repeating finitely many times this process, one shows that either there exists an
irreducible permutation π′ in the class of π or

π(i) = r − i+ 1 for all i = 1, . . . r.

The last equations mean that π ∼ Π1(r, 0) which is a contradiction. The lemma is proven.

L. – Let π = (A0 0 ) with π(A) = A. Assume π is different (up to the cyclic order)
from Π2(r, 1). Then there exists π′ ∼ π such that π′ is irreducible and γ(π′) is a saddle con-
nection between the zero and a pole.

Proof. – It is easy to see that for each permutation π′ in the class of π, the separatrix γ(π′)
is actually a saddle connection between the zero and a pole. If π is weakly reducible then by
definition, we have π =

(
B C
0 0

)
with π(B) = C. Let us decompose the two lists B, C in the

following way: B = (1 B2) and C = (C1 1 C2). With these notations, π ∼ ( 1 C2 1 B2 C1
0 0

)
.

This permutation is weakly reducible if and only if C1 = ∅.

One can repeat finitely many times this process, with B := B2 and C := C2 for the new sets,
to get the following statement. Either there exists a weakly irreducible permutation π′ ∼ π

or B = C = (1 2 . . . r). The last case means that π = Π2(r, 1) which is a contradiction.
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Therefore we have proved that there exists a weakly irreducible π′ ∼ π. From this permuta-
tion it is easy to check that there exists π′′ ∼ π′ irreducible. Hence π′′ ∼ π and the lemma is
proven.

Now we are ready to prove Theorem 7.2 in case n = 3. Let C be any component of any
stratumQg(k1, k2, k3). Applying Lemma 7.6 combining with the two above lemmas one gets
the following dichotomy. There exits S ∈ C such that either S possesses a multiplicity one
saddle connection between two singularities (not two poles), and so the theorem is proved,
or S = S(π, λ) with π = Π1(r, 0) or π = Π2(r, 1). These last two permutations correspond
to hyperelliptic permutations and in particular it implies that C is itself a hyperelliptic com-
ponent of Q(−1,−1, 4g − 2) which is a contradiction. The theorem is proven.

7.5. Proof of Theorem 7.2 in the holomorphic case n = 2

We first prove the following lemma.

L 7.7. – For any k1, k2 > 0 and g ≥ 2, let C be a connected component of the stratum
Qg(k1, k2). Then there exists (S(π, λ), q) ∈ C a flat surface such that one of the two following
holds.

• (S(π, λ), q) has a multiplicity one saddle connection between the two zeroes.
• The combinatorics of π has the form

π =
Ä

01 1 ... r 01 r+1 ... r+l
02 σ1(1) ... σ1(r) 02 σ2(r+1) ... σ2(r+l)

ä
or π = ( AB ) with π(A) = A, π(B) = B

where σ1, σ2 are “true” permutations of the sets {1, . . . , r} and {r + 1, . . . , r + l}.
Proof of Lemma 7.7. – The proof is similar to the one of Lemma 7.7, it parallels the one

of Claim 1, Claim 2 and Claim 3.

Therefore in order to prove Theorem 7.2 in the holomorphic case n = 2 we have to analyse
the two permutations of Lemma 7.7.

L. – Let π be the permutation
Ä

01 1 ... r 01 r+1 ... r+l
σ1(r) 02 σ2(r+1) ... σ2(r+l) 02 σ1(1) ... σ1(r−1)

ä
.

Let us assume that π 6= Π1(r, l). Then there exists π′ ∼ π such that π′ is irreducible and γ(π′)
is a saddle connection between the two zeroes.

Proof of the lemma. – Let us first remark that the separatrix γ(π) on S(π, λ) is actually
a saddle connection. Note also that π satisfies Condition (∗); thus the permutation π is irre-
ducible if and only if π is weakly irreducible.

One checks directly that π is reducible if and only if σ1(r) = 1. In this case one can put π in
the form

π =
Ä

01 1 ... r 01 r+1 ... r+l
σ1(r) 02 σ2(r+1) ... σ2(r+l) 02 σ1(1) ... σ1(r−1)

ä
∼ π′ =

=
Ä

01 1 2 ... r 01 r+1 ... r+l
σ1(r−1) 1 02 σ2(r+1) ... σ2(r+l) 02 σ1(1) ... σ1(r−2)

ä
.

Repeating this process to π′ this yields to the following dichotomy. Either there exists an
irreducible permutation π′ with π′ ∼ π, and so the lemma is proven, or{

σ1(i) = r − i+ 1 for i = 1, . . . , r

σ2(j) = 2r + l − j + 1 for j = r + 1, . . . , r + l.
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These last equalities mean that π = Π1(r, l) which is a contradiction. The lemma is proven.

L. – Let π = ( AB ) with π(A) = A, π(B) = B. Let us also assume that π 6= Π2(r, l).
Then there exists π′ ∼ π such that π′ is irreducible and γ(π′) is a saddle connection between
the two zeroes.

Proof. – The proof is completely similar to the previous one and left to the reader.

We are now ready to prove Theorem 7.2 in the holomorphic case n = 2. Let C be any
component of any stratum Qg(k1, k2). Applying Lemma 7.7 combining with the two above
lemma one gets the following dichotomy. There exits S ∈ C such that either S possesses a
multiplicity one saddle connection between the two zeroes, and so the theorem is proved, or
S = S(π, λ) with π = Π1(r, l) or π = Π2(r, l). These last two permutations correspond
to hyperelliptic permutations and in particular it implies that C is itself a hyperelliptic com-
ponent of Q(4(g − k) − 6, 4k + 2) (where r = 2k + 1 and l = 2(g − k) − 3) which is a
contradiction. The theorem is proven.

7.6. Proof of Theorem 7.2 in case Q(−1, 4g − 3)

The proof is decomposed in two steps. We recall that a simple cylinder is a metric cylin-
der with boundary components consisting of two single homologous separatrices. A simple
cylinder has multiplicity one if its boundary has multiplicity one.

P 7.8. – Let C ⊂ Q(−1, 4g − 3) with g ≥ 3. Then there exists S(π, λ) ∈ C a
flat surface such that one of the two followings holds.

• S has a multiplicity one saddle connection between the zero and the pole.
• S has a multiplicity one simple cylinder (i.e. C = C′ ⊕ s with s ∈ {1, . . . , 2g} and C′ ⊂
Q(−1, 4(g − 1)− 3) is a connected component).

P 7.9. – The following assertions hold.

1. For any s ∈ {1, 2, 4}, there exists a flat surface (S, q) ∈ Q(−1, 5)⊕ s with a multiplicity
one saddle connection.

2. Any connected component of Q(−1, 13) possesses a flat surface with a multiplicity one
saddle connection.

3. If (S, q) has a multiplicity one saddle connection then so has (S, q) ⊕ s (by bubbling a
handle).

We postpone the proof of the second proposition to the appendix (see Proposition A.4).
Let us first show how these two propositions give the theorem and then let us prove the first
proposition.

Proof of Theorem 7.2. – It is done by induction on g. The theorem is already proven in
case g = 4 (Proposition 7.9, (2)). Let g > 4 be any integer and let C ⊂ Q(−1, 4g − 3) be a
connected component. One has to prove that C possesses a surface with a multiplicity one
saddle connection.

Thanks to Proposition 7.8, either C possesses a surface with a multiplicity one saddle connec-
tion, and then the theorem is proved, or C contains a surface with a multiplicity one simple
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cylinder. In the last eventuality we have C = C′ ⊕ s where C′ ⊂ Q(−1, 4(g − 1) − 3) =

Q(−1, 4g′ − 3) is a connected component. We have 4 ≤ g′ < g thus by assumption C′ con-
tains a surface S ′ with a multiplicity one saddle connection. Then we conclude by Proposi-
tion 7.9, (3): S ′ ⊕ s ∈ C is the required surface and the theorem is proven.

It remains to prove the theorem for the genus g = 3 case. Again from Proposition 7.8,
if C ⊂ Q(−1, 9) has no surface with multiplicity one saddle connection then C has the
form Q(−1, 5) ⊕ s with s = 1, 2, 3, 4. Moreover Lemma 5.14, (5.14) implies Q(−1, 9)irr =

Q(−1, 5)⊕3. Therefore the theorem follows from Proposition 7.9, (1) which examines cases
s = 1, 2, 4. The theorem is proven.

Proof of Proposition 7.8. – Let C ⊂ Q(−1, 4g−3) be a connected component with g ≥ 3

and S(π, λ) ∈ C. The surface S has a pole and a unique zero P . Hence one can put S in the
form prescribed by Figure 11.

Cyl(S)

P PP

P PP P

polepole
........................

....................................

I

J

γ(π)

αα

F 11. A flat surface with a unique zero and a unique pole.

Let α be the horizontal saddle connection between the pole and the zero.

C. – Either α has multiplicity one or S(π, λ) = S(π′, λ′) with π′ =
(

0 1 ... r 0
A

)
and

π′({1, . . . , r}) ⊂ A.

Proof of the claim. – Apply Proposition 5.11.

Therefore thanks to the above claim let us assume that S(π, λ) ∈ C where π is a permutation
given by previous claim. We define σ ∼ π by σ =

(
1 2 ... r 0 0
1 A

)
and σ({1, . . . , r}) ⊂ A.

Note also that the vertical direction onS(σ, λ) decomposes the surface in (at least) one simple
cylinder (see also Figure 7). The reducibility of σ̂ involves one of the two following possible
decompositions

Type(1) σ =
( 1 2 ... k | k+1 ... r 0 0

1 A1 k A2 | A′
)

with σ({1, . . . , r}) = A1 tA2

Type(2) σ =
( 1 2 ... r 0 | 0

1 A | A′
)

with σ(A′) ⊂ A.
C. – If σ̂ involves reducibility of Type (1) then there exists σ1 ∼ σ such that σ̂1 is

irreducible.

Proof of the claim. – The proof parallels the one of Theorem 6.3 versus Abelian differen-
tials (Section 6.1).

For reducible permutations σ of Type (2), let us denoteA = (A1 k A2) with σ(A2) ⊆ A′ and
2 ≤ k ≤ r (eventually A2 = ∅).
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C. – If σ̂ involves reducibility of Type (2) then either there exists σ1 ∼ σ such that σ̂1

is irreducible or k = r.

Proof of the claim. – With above notations, if k 6= r then one has

σ =
(

1 2 ... k ... r 0 0
1 A1 k A2 A′

) ∼ σ1 =
( k k+1 ... r 0 0 1 2 ... k−1
k A2 A′ 1 A1

)
.

If σ̂1 is irreducible then the claim is proven. Otherwise it is easy to see that σ̂1 involves re-
ducibility of Type (1). Thus previous claim applies.

Finally the last case we have to consider is the following one: σ̂ is reducible with decom-
position of Type (2) and k = r. Reporting these data in the permutation π one gets π =(

0 1 ... r 0
r A2 A

′ 1 A1

)
with π(A2) ⊆ A′.

C. – The vertical separatrix γ(π) on S(π, λ) is a saddle connection. Moreover the
above permutation π is reducible if and only if

π =
( 0 1 ... ... r 0
r A′ 1 π(2) ... π(r−1) A′′

)
with A′′ = π(A′).

Proof of the claim. – Let π =
(

0 1 ... r 0
r A2 A

′ 1 A1

)
with π(A2) ⊆ A′. A direct observation

shows that if π is reducible then A2 = ∅. The same approach shows that if π is reducible
then A1 = (π(2) . . . π(r − 1) A′′) with π(A′) = A′′. The claim is proven.

The conclusion of previous claims is the following one. We have proved that C contains a
surface S(π, λ) such that either S satisfies the conclusion of the proposition or

π =
Ä

0 1 ... ... r 0
r A′ 1 π(2) ... π(r−1) A′′

ä
and π(A′) = A′′.

Then we have to study the last two cases r ≥ 2 and r = 1. This corresponds to the next two
lemmas which end the proof of Proposition 7.8.

L. – Let r ≥ 2 be any integer. Let π =
( 0 1 ... ... r 0
r A′ 1 π(2) ... π(r−1) A′′

)
be a permutation

with π(A′) = A′′. We also assume that S(π, λ) ∈ Q(−1, 4g − 3) with g ≥ 3.
Then there exists a permutation π′ ∼ π such that S(π′, λ) has a multiplicity one saddle con-
nection.

Proof of the lemma. – Let us assume that r ≥ 3, then r − 1 6= 1. Let us introduce
some notations to clarify the situation. Let C stand for (π(2) . . . π(r − 1)). One decom-
poses C in the following way: C = (C1 r − 1 C2). Equipped with these notations: π =( 0 1 ... r−1 r 0
r A′ 1 C1 r−1 C2 A

′′
) ∼ σ =

( 0 1 ... ... r−1 r 0
r−1 C2 A

′′ r A′ 1 C1

)
. A direct observation shows that σ is

irreducible and γ(σ) is a saddle connection. The lemma then follows from Theorem 5.12.

Now let us assume that r = 2. The list A′′ is non-empty. Let us denote A′′ = (3 B) with
π(3) ∈ A′. We also use A′ = (B1 3 B2). Thus π =

(
0 1 2 0
2 A′ 1 A′′

) ∼ σ =
(

0 1 2 0
B 2 B1 3 B2 1 3

)
.

This permutation is reducible if and only if B = B1 = B2 = ∅. This case consists of π =(
0 1 2 0
2 3 1 3

)
and then S(π, λ) ∈ Q(−1, 5) contradicting g ≥ 3. Hence σ is irreducible and the

lemma again follows from Theorem 5.12.

Next lemma studies the r = 1 case.
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L. – Let π =
(

0 1 0
A′ 1 A′′

)
be a permutation with π(A′) = A′′. Then one of the follow-

ing assertions holds.

– There exists π′ ∼ π such that S(π′, λ) has a multiplicity one saddle connection.
– The combinatorics of π is given by A′ = A′′ = (2 3 . . . l). Moreover there exist π′ ∼ π

and an admissible vector λ0 such that S(π′, λ0) has a multiplicity one simple cylinder.

Proof of the lemma. – Let π be the permutation π =
(

0 1 0
A′ 1 A′′

)
. The listA′ is non-empty

thus let us introduce A′ = (2 A′2) with π(2) ∈ A′′. Hence we can also introduce lists A′′1 , A
′′
2

such that A′′ = (A′′1 2 A′′2). According to these notations, one has π =
( 0 1 0

2 A′
2 1 A′′

1 2 A′′
2

) ∼
π′ =

( 0 1 0
2 A′′

2 2 A′
2 1 A′′

1

)
. A straightforward computation shows that the permutation π′ is

reducible if and only if A′′1 = ∅. Thus, repeating inductively this process with A′ := A′2 and
A′′ := A′′2 , we get either S(π′, λ) has a multiplicity one saddle connection or

π ∼ π′ =

(
0 1 0

3 4 . . . l 2 3 4 . . . l 1 2

)
.

In order to finish the proof of the lemma, we have to present an admissible vector λ0 such that
the vertical foliation on S(π′, λ0) is completely periodic and decomposes the surface with at
least a multiplicity one simple cylinder. Let us consider the admissible vector (for π′):

(7.1) λ0 =

Ö
(l − 1)α ; α ; (l − 1)α ; α ; . . . ; α︸ ︷︷ ︸

2l−1 times

è
for any α ∈ R+.

It is easy to see that the vertical foliation on S(π′, λ0) decomposes the surface in g− 1 cylin-
ders (see Figure 12). One checks that the vertical cylinder corresponding to the horizontal
interval numbered l is a multiplicity one simple cylinder (see the figure). In Figure 12, we
present a complete description for the surface given by the case r = 5 (i.e. g = 3). This
completes the proof of the lemma.

Now we can deduce from Theorem 7.2 our main result, namely Theorem 7.1.

7.7. Proof of Theorem 7.1

We first establish

P 7.10 (Reformulation of Theorem 7.2 in the holomorphic case n = 2)

C ⊆ Q(k1, k2), ki > 0, is hyperelliptic ⇐⇒
∀ (S, q) ∈ C, any saddle connection on S has multiplicity at least 2.

Through the proof of Theorem 7.2 in casen = 3 andn = 4 one gets a similar characterization
of hyperelliptic components (compare with Lemma 2.4).

P 7.11. – Hyperelliptic components of strata with 3 and 4 singularities are
characterized by the following:

1. C ⊆ Q(k1, k2, k3) is hyperelliptic ⇐⇒ ∃i0 6= i1 ∈ {1, 2, 3},∀ (S, q) ∈ C,
any saddle connection on S between Pki and Pkj , with i ∈ {i0, i1} and j 6∈ {i0, i1}, has
multiplicity at least 2.
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F 12. A flat surface S ′ = S(π′λ0) suspended over the permutation π′ and
the admissible vector λ0 (see Equation (7.1). The vertical foliation decomposes S ′

in two cylinders C1 and C2. The cylinder C2 is a simple cylinder: the conical angle
of its boundary η is π. Moreover the length of η can be chosen arbitrary small with
respect to other vertical parameters: C2 has multiplicity one.

2. C ⊆ Q(k1, k2, k3, k4) is hyperelliptic ⇐⇒ ∃i0 6= i1 ∈ {1, 2, 3, 4},∀ (S, q) ∈ C,
any saddle connection on S between Pki

and Pkj
, with i ∈ {i0, i1} and j 6∈ {i0, i1}, has

multiplicity at least 2.

P 7.12. – Let C be a connected component ofQ(k1, . . . , kn) with n ≥ 5. Then
for each i 6= j, there exists a flat surface S ∈ C with a multiplicity one saddle connection
between two singularities Pki , Pkj ∈ S of multiplicities ki and kj .

Proof of Theorem 7.1. – We discuss the theorem following the different values of n (the
number of singularities). First let us note that if we prove the theorem in case n = 2, 3, 4, 5

then the theorem follows for any n ≥ 6 because the locus of hyperelliptic and irreducible
components is located on strata with 2, 3 and 4 singularities.

The theorem in case n = 2 corresponds to Theorem 7.2 which is already proved.

Thus let us assume that n = 3. Let C ⊆ Q(k1, k2, k3) be a non-hyperelliptic component.
Recall that all ki are non-zero. Up to permuting the ki’s, one can assume k1 ≤ k2 ≤ k3.
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Proposition 7.11 with i0 = 1, i1 = 2, gives a flat surface (S, q) ∈ C with a multiplicity
one saddle connection between Pk3 ∈ S and Pki

∈ S for i ∈ {1, 2}. In other terms there
exists a component C′ of the strata Q(k1 + k3, k2) tQ(k2 + k3, k1) such that C′ ⊂ C. There
are three possibilities: C′ is hyperelliptic, irreducible or “regular” (neither hyperelliptic nor
irreducible).

If C′ is regular then Theorem 7.2 leads to the result. Indeed one can find C0 ⊆ Q(4g − 4) a
component with C0 ⊂ C′. But C′ ⊂ C therefore C0 ⊂ C and we are done.

Assume that C′ is hyperelliptic. Applying Proposition B.1, one can connect the hyperelliptic
component C′ to another non-hyperelliptic component C′′ ofQ(ki+k3, kj) passing through
the stratum Q(k1, k2, k3). Therefore there exists a component C2 ⊆ Q(k1, k2, k3) such that
C′ t C′′ ⊂ C2. Thus C′ ⊂ C t C2. The assumption 0 ≤ k1 ≤ k2 ≤ k3 implies ki + k3 6= kj ;
thus Corollary 2.7 implies C2 = C. Therefore C is adjacent to a non-hyperelliptic component
of Q(ki + k3, kj) and we are done again.

Finally let us assume that C′ is irreducible; that is C′ = Qirr(−1, 9). Recall that the com-
ponent C 6= Qirr(−1, 3, 6), therefore the theorem follows from Proposition B.2 and Corol-
lary 2.7.

The proof for cases n = 4, 5 is similar to the above discussion. Theorem 7.1 is proven.

8. Proof of Main Theorem 1.1 and Main Theorem 1.2

Proof of Main Theorem 1.1. – As mentioned in Section 7.1, Main Theorem 1.1 follows
from Theorem 7.1 on the adjacency of the strata and Theorem 6.1 on the classification of
the minimal strata.

Proof of Main Theorem 1.2. – Theorem 1.2 is already proved for the genus 0 case (see
Proposition 1.6). The genus 3 case is also proved (see Theorem 7.1 and Section 7.1).

Thus let us consider genera 1 and 2 cases. One can first prove, by a direct argument on finitely
many strata, Theorem 1.2 for g = 1, 2 and n ≤ 5 cases. Indeed the number of such a strata
ofQ2 and ofQ1 with n = 2, 3, 4, 5 is finite. We can check, using extended Rauzy classes, that
the theorem holds. In particular we get that any stratum of Q2 with n = 5 is connected and
any stratum of Q1 with n = 5 is also connected.

Now let us prove that any stratum of Q1 with n ≥ 6 is also connected. Let C1, C2 be two
components ofQ(k1, . . . , k6). Let us assume that k1 ≤ · · · ≤ k6. Then k5 + k6 6= ki for any
i = 1, . . . , 4. By Proposition 7.12 there exist two components C0 and C′0 ofQ(k1, . . . , k4, k5+

k6) with C0 ⊂ C1 and C′0 ⊂ C2. Any stratum of Q1 with n = 5 being connected, one has
C0 = C′0, hence C0 ⊂ C1 ∪ C2. Therefore Corollary 2.7 applies and C1 = C2; so that any
stratum of Q1 with n = 6 is connected. The above argument extends to any stratum of Q1

with n ≥ 6. Theorem 1.2 in case g = 1 is therefore proven. The same argument holds for the
genus 2 case.

We now prove Theorem 1.2 in the case g = 4. We have already proved that any compo-
nent of a stratum ofQ4 which is neither irreducible nor hyperelliptic is adjacent toQirr,I(12)

or Qirr,II(12) (Theorem 7.1). In order to prove the theorem it suffices to show that those
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components are in fact adjacent toQirr,I(12). By Theorem 7.2, any non-irreducible or non-
hyperelliptic component is adjacent to a non-irreducible or non-hyperelliptic component of
a stratum of Q4 with n = 2. Let C be any non-irreducible or non-hyperelliptic component
of Q(k1, k2) with k1 + k2 = 12. One has to prove that C is adjacent to Qirr,I(12). By Theo-
rem 7.1, C is adjacent to Qirr,I(12) or Qirr,II(12). Let us assume that the second case holds.
By Proposition B.3 there exists C′ ⊂ Q(k1, k2) such thatQirr,II(12) ⊂ C′ andQirr,I(12) ⊂ C′.
ThereforeQirr,II(12) ⊂ C′ ∪C and Corollary 2.7 implies C = C′. Theorem 1.2 is proven.

Appendix A

Connectedness of particular strata

This section is devoted to the computation of the connected components for strata in low
dimension.

L A.1. – The stratum Q(8) is connected.

Proof. – Let (S(π, λ), q) be a genus three flat surface, with a single singularity. The coni-
cal angle around this singularity is 10π. We will show that the number of possibilities for the
combinatorics of the gluing maps of the set of horizontal separatrix loops is very small.

Recall that with each permutation π one associates two lines of the table representing π
(see Section 3). There are obviously two possibilities for these two lines: either the numbers
of elements are equal or they are different. One defines A1 to be the set of generalized per-
mutations corresponding to the first case. We also defineA2 to be the set of generalized per-
mutations corresponding to the second case.

By assumption (S, q) ∈ Q(8), hence there are exactly five separatrix loops. Therefore the
number of elements of the lines for permutations in A1 is (5, 5) and for permutations in A2

is (6, 4). A straightforward computation shows that the two sets A1, A2 are very simple.
More precisely, up to cyclic order, one has #A1 = 4 and #A2 = 3.

Up to cyclic order: A1 =
{(

5 3 5 2 4
1 2 1 3 4

)
,
(

5 4 5 2 3
1 2 1 3 4

)
,
(

5 4 5 3 2
1 2 1 3 4

)
,
(

5 3 5 3 4
1 2 1 2 4

)}
Up to cyclic order: A2 =

{(
5 2 5 3 4 2
1 3 1 4

)
,
(

3 5 4 2 5 2
1 3 1 4

)
,
(

5 3 2 5 4 2
1 3 1 4

)}
This proves that the stratum Q(8) has at most 7 connected components. Now, let us con-
sider surfaces S(π, λ2) with π ∈ A2 and λ2 = (1, 1, 1, 1, 1, 1, 2, 1, 2, 1). A direct verification
shows that the vertical foliation on surfaces S = S(π, λ2) decomposes S in a single cylinder.
Therefore, we get a permutation encoding this cylinder. One can check that this permutation
belongs to the setA1. This procedure connects permutations ofA2 to permutations ofA1.

To conclude, let us consider surfacesS(π, λ1) with π ∈ A1 and λ1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
These surfaces are arithmetic surfaces. It is easy to check that all of these surfaces belong to
the same PSL2(Z)-orbit. The lemma is proven.

L A.2. – The stratum Q(12) has at most two connected components.
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Proof. – One has to show that Q(12) = Qirr,I(12) ∪ Qirr,II(12). Thanks to the previous
lemma, let C0 be the unique connected component of the stratumQ(8). Theorem 6.3 implies
that any component C of the stratum Q(12) has the following form

(A.1) C = C0 ⊕ s with s = 1, . . . , 6 = 2g.

We now recall the construction of the two irreducible components Qirr,I(12), Qirr,II(12).
Let π1 =

(
1 2 3 4 2 5 6
1 4 5 7 6 7 3

)
and π2 =

(
1 2 3 4 3 5 6
1 5 7 4 2 6 7

)
be two permutations. Let Si = S(πi, λ0)

be the suspended flat surfaces with admissible vector λ0 = (1, 1, 1, 1, 1, 1, 1). By definition
Qirr,I(12) is the component containing S1 and Qirr,II(12) is the component containing S2.
Let us recall (see Lemma 5.14) that the vertical foliation on Si produces a multiplicity one
simple cylinder which gives:

Qirr,I(12) = C0 ⊕ 2

Qirr,II(12) = C0 ⊕ 6.

We will show:
C0 ⊕ 4 = C0 ⊕ 1 = C0 ⊕ 5 = C0 ⊕ 2 = Qirr,I(12)

C0 ⊕ 3 = C0 ⊕ 6 = Qirr,II(12).

Combining with above Equation (A.1) this will give the lemma.

Let C0 ⊕ s, s = 1, . . . , 6 be any component of Q(12).

Case s = 3.

Let us consider the new permutation π2 ∼ π′2 =
(

5 6 1 2 3 4 3
5 7 4 2 6 7 1

)
. Obviously, π̂′2 is irre-

ducible; thus one gets a (vertical) multiplicity one simple cylinder on S(π′2, λ0). This cylinder
has angle 3π. In other words C0 ⊕ 3 = Qirr,II(12).

Case s = 4.

Let us consider the new permutation π1 ∼ π′1 =
(

5 6 1 2 3 4 2
5 7 6 7 3 1 4

)
. Obviously, π̂′1 is irre-

ducible; thus one gets a (vertical) multiplicity one simple cylinder on S(π′1, λ0). This cylinder
has angle 4π or in other words C0 ⊕ 4 = Qirr,I(12).

Cases s = 1 and s = 5.

Now let us consider the new permutation σ =
(

1 2 3 4 5 6 5
1 4 7 3 7 2 6

)
. The permutation σ̂ is irre-

ducible; therefore the surface S(σ, λ0) has a (vertical) multiplicity one simple cylinder. This
cylinder has angle 4π, therefore this surface S(σ, λ0) belongs to component Qirr,I(12).

Let us consider the new permutation σ ∼ σ′ =
(

3 4 5 6 5 1 2
3 7 2 6 1 4 7

)
. Obviously, σ̂′ is irreducible;

thus one gets a (vertical) multiplicity one simple cylinder on S(σ′, λ0). This cylinder has an-
gle π. In other words C0 ⊕ 1 = Qirr,I(12).

Let us consider the new permutation σ ∼ σ′′ =
(

2 3 4 5 6 5 1
2 6 1 4 7 3 7

)
. Obviously, σ̂′′ is irre-

ducible; thus one gets a (vertical) multiplicity one simple cylinder onS(σ′′, λ0). This cylinder
has angle 5π or in other words C0 ⊕ 5 = Qirr,I(12).

The lemma is proven.

L A.3. – The stratum Q(−1, 5) is connected.
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Proof of Lemma A.3. – Let S(π, λ) ∈ Q(−1, 5) be any surface. One can directly check
that (up to cyclic order) there are only two combinatorics for the permutation π

π1 =
(

0 0 1 2
1 3 2 3

)
or π2 =

(
0 1 0
2 3 2 1 3

)
.

Equipped with the two admissible vectors

λ1 = (1, 1, 2, 1, 2, 1, 1, 1) and λ2 = (2, 1, 2, 1, 1, 1, 1, 1),

we obtain two flat surfaces Si = S(πi, λi), i = 1, 2. A direct computation shows that the
vertical foliation on S2 produces the surface S1. The lemma is proven.

P A.4. – The following assertions hold:

1. For any s ∈ {1, 2, 4}, there exists a flat surface (S, q) ∈ Q(−1, 5)⊕ s with a multiplicity
one saddle connection.

2. Any connected component of Q(−1, 13) has a flat surface with a multiplicity one saddle
connection.

3. If (S, q) has a multiplicity one saddle connection, then (S, q)⊕ s has also a multiplicity
one saddle connection by bubbling a handle.

Proof of Proposition A.4. – We consider separately the three cases.

Proof of the first point

We will present three surfaces in Q(−1, 5) ⊕ s (for s = 1, 2, 4) with a multiplicity one
saddle connection. For that we construct surfaces inQ(−1, 9) with a multiplicity one simple
cylinder of angle π, 2π and 4π.

Thus let π1 =
(

3 4 0 0 1 2
3 5 2 1 4 5

)
and π2 =

(
2 3 4 0 0 1
2 4 5 1 3 5

)
be two permutations. The corresponding

surfaces belong to Q(−1, 9). The surfaces S1 = S(π1, λ) and S2 = S(π2, λ) possess a (ver-
tical) multiplicity one simple cylinder. One can check that π̂i is irreducible for i = 1, 2; thus,
by Theorem 5.13, each of the surfaces S1 and S2 possesses a multiplicity one simple cylinder.
Thanks to a direct computation, this cylinder has angle π for i = 1 and 2π for i = 2. In other
words this proves S1 ∈ Q(−1, 5)⊕ 1 and S2 ∈ Q(−1, 5)⊕ 2.

Let us show that Q(−1, 5) ⊕ 4 = Q(−1, 5) ⊕ 1. One has π1 ∼ π3 =
(

1 2 3 4 0 0
1 4 5 3 5 2

)
. The

permutation π̂3 is irreducible and the angle of the cylinder onS(π3, λ) is 4π. Then the surface
S(π3, λ) belongs to Q(−1, 5)⊕ 4 and Q(−1, 5)⊕ 1.

To end the proof it remains to find a multiplicity one saddle connection on each surface
S1, S2. This is done with the following remark. Let us consider the permutations

π1 =
(

3 4 0 0 1 2
3 5 2 1 4 5

) ∼ π′1 =
(

0 1 2 3 4 0
1 4 5 3 5 2

)
and π2 =

(
2 3 4 0 0 1
2 4 5 1 3 5

) ∼ π′2 =
(

0 1 2 3 4 0
4 5 1 3 5 2

)
.

For i = 1, 2 the vertical separatrix loop γ(π′i) is a saddle connection and π′i is irreducible.
Therefore Proposition 5.10 applies. Hence the first point of the proposition is proven.
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Proof of the second point
One has to prove that each component ofQ(−1, 13) has a flat surface with a multiplicity

one saddle connection. Thanks to Proposition 7.8, we are reduced to consider components
of the form C ⊕ s with C ⊂ Q(−1, 9). The previous proof shows that each component of
Q(−1, 9) (different fromQirr(−1, 9)) possesses a surface with a multiplicity one saddle con-
nection. Finally one has to consider components of the form

Qirr(−1, 9)⊕ s with s = 1, . . . , 6

Let us recall thatQirr(−1, 9) = Q(−1, 5)⊕ 3. Moreover any componentQ(−1, 5)⊕ s, with
s = 1, 2, 4, 5, possesses a flat surface with a multiplicity one saddle connection. Using prop-
erties of the map ⊕ (see Proposition 2.9), this yields to Q(−1, 9)irr ⊕ s = Q(−1, 5) ⊕ s ⊕ 3

which proves the proposition for s = 1, 2, 4, 5.

The case s = 6 is reduced to the case s = 3.

Q(−1, 9)irr ⊕ 6 = Q(−1, 5)⊕ 6⊕ 3 = Q(−1, 9)irr ⊕ 3.

We finish the proof of the second statement using the second property of the map ⊕.

Q(−1, 5)⊕ 3⊕ 3 = Q(−1, 5)⊕ 1⊕ 5

The proof of the third part is obvious and left to the reader.

We finish this section with an independent proof of a theorem of Masur and Smillie [15].
The original proof uses algebraic geometry. Here we only use combinatorics of generalized
permutations.

T (Masur, Smillie). – The following strata

Q(∅), Q(1,−1) (in genus g = 1) and Q(4), Q(1, 3) (in genus g = 2)

are empty.

Proof of the theorem. – Let us assume that the stratum Q(4) is non-empty. Thus there
exists a genus two flat surface with a single zero. Applying “breaking up a singularity” to this
zero in two zeroes of order two we get a point inside the stratumQ(2, 2) (see [11] or [17], [3]).
By construction, this new surface has a multiplicity one saddle connection so it belongs to
a non-hyperelliptic component ofQ(2, 2). Now we will prove that this stratum is connected
and equal to its hyperelliptic component which leads to a contradiction.

Let us consider a point S(π, λ) ∈ Q(2, 2). As usual, a direct computation shows that one can
put (up to cyclic order) π in one of the two following forms

(
1 2 1 3
4 3 4 2

)
or
(

1 2 1 2
3 4 3 4

)
. Accord-

ing to Lemma 4.2, each of these two permutations gives rise to surfaces in the component
Qhyp(2, 2). Therefore Q(2, 2) = Qhyp(2, 2) is connected and hence the stratum Q(4) = ∅.

Using the same approach, we prove that Q(1,−1) and Q(1, 3) are empty (one considers re-
spectively the hyperelliptic connected components Q(−1,−1, 2) and Q(1, 1, 2)).

The stratum Q(∅) is empty because the quotient of a holomorphic quadratic differential q
by dz2 is a holomorphic function on the torus thus constant. Therefore q = ω2 which is a
contradiction.
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Appendix B

Deformations of hyperelliptic and irreducible components

P B.1. – Let (S, q) ∈ Qhyp(4(g−k)−6, 4k+2) be a point with 0 ≥ k ≥ g−2

and g ≥ 2. Let (k1, k2) be a positive partition of 4k + 2. Then there exists a continuous path
ρ : [0, 1] −→ Qg of the interval [0, 1] in the whole moduli space Qg such that:

• ρ(0) = (S, q)
• ρ(t) ∈ Q(4(g − k)− 6, k1, k2) ∀ 0 < t < 1.
• ρ(1) ∈ Q(4(g − k)− 6, 4k + 2) \ Qhyp(4(g − k)− 6, 4k + 2).

Proof. – We remark that it is sufficient to prove the proposition for a particular point of
the component Qhyp(4(g − k)− 6, 4k + 2). We first claim:

C. – Let us fix r = 2k+1 and l = 2(g−k)−3. Let a be any integer with 2 ≤ a ≤ r+1.
Let us consider the generalized permutation

Π1(r, l, a) =

(
01 03 1 . . . r 01 r + 1 . . . r + l

r + l . . . r + 1 02 r . . . a 03 a− 1 . . . 1 02

)
.

Then for any admissible vector λ one has S(Π1(r, l, a), λ) ∈ Q(a− 2, 4k+ 4− a, 4(g− k)−
3). Moreover, the horizontal saddle connection labeled 03 has multiplicity one. The resulting
surface S̃ obtained by shrinking this saddle connection to a point is S(Π1(r, l), λ) that belongs
to the hyperelliptic component.

Proof of the claim. – A straightforward calculation of the angle of the conical singulari-
ties located at end-points of the intervals gives the result.

The proposition follows from above claim taking a = k1 + 2.

One can easily have similar results on deformations of hyperelliptic components of other
strata. Here we present a similar result concerning irreducible components. The proof is just
based on the deformations of an adequate generalized permutation.

P B.2. – Let (S, q) ∈ Qirr(−1, 9) be a point. Let (k1, k2) be any pair in the
list {(−1, 10), (1, 8), (2, 7), (3, 6), (4, 5)}. Then there exists a continuous path ρ : [0, 1] −→ Q3

of the interval [0, 1] in the whole moduli space Q3 such that:

• ρ(0) = (S, q)
• ρ(t) ∈ Q(−1, k1, k2) ∀ 0 < t < 1.
• ρ(1) ∈ Q(−1, 9) \ Qirr(−1, 9).

Proof. – The proof is similar to the previous one, deforming the permutation ( 0 1 2 3 4 0
4 3 2 5 1 5 )

representing the irreducible component of Q(−1, 9).

P B.3. – Let (S, q) ∈ Qirr,II(12) be a point. Let (k1, k2) be any pair in the list
{(−1, 13), (1, 11), (2, 10), (3, 9), (4, 8), (5, 7), (6, 6)}.
Then there exists a continuous path ρ : [0, 1] −→ Q4 of the interval [0, 1] in the whole moduli
space Q4 such that:

• ρ(0) = (S, q)
• ρ(t) ∈ Q(k1, k2) ∀ 0 < t < 1.
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• ρ(1) ∈ Qirr,I(12)

Proof. – The proof parallels the one of Proposition B.1 deforming the permutation
( 1 2 3 4 3 5 6

1 5 7 4 2 6 7 ).
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