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ANNEALED LYAPOUNOV EXPONENTS AND LARGE
DEVIATIONS IN A POISSONIAN POTENTIAL I

BY ALAIN-SOL SZNITMAN

ABSTRACT. - We study annealed Brownian motion moving in a Poissonian cloud of killing spheres of fixed
radius (hard obstacles) or in a Poissonian potential (soft obstacles). "Annealed" refers to the fact that statistical
weights of interest are averaged both with respect to the path and environment measures. We construct Lyapounov
exponents which for instance in the soft obstacle case measure the directional exponential decay of the environment
averaged Green's function. These exponents come naturally in the description of certain large deviation principles
which govern the large time position of annealed Brownian motion in a Poissonian potential, as well as in certain
large time asymptotics of the associated heat kernel.

0. Introduction

The goal of the present article is to develop a series of large deviation results governing
the long time behaviour of an "annealed Brownian particle" moving in a Poissonian potential
or among Poissonian traps. Here "annealed" refers to the fact that we "average out" the
Poissonian environment. Our results also apply to various asymptotics for the "annealed
kernel" of the naturally associated Schrodinger semigroup.

We investigate the behaviour of a d-dimensional, d > 1, canonical Brownian motion Z.,
under the annealed weighted measures

(0.1) Qt{dw,du)= 1 exp{- / V(Z,{w),uj)ds} Po(dw) P{dcj)
^t L Jo J

(in the soft obstacle case)

= — 1{T > t} Po{dw) P(oL;) (in the hard obstacle case) ,
^t

where St is the normalizing constant. Moreover, V{x, a;) = V^ W{x-Xi) for u; = V^ 6x^
i i

is the Poissonian potential. Here W is bounded, non negative compactly supported, non
degenerate. Po is the Wiener measure, P the law of the Poisson cloud of constant intensity
^ > 0. In the hard obstacle case, T{w, uj) is the entrance time of Z. in the trap configurations
|ĵ  B(^,a), a > 0. The hard obstacle case in fact corresponds to the singular potential
Wh.o.(^) == oo ' W < a).
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346 A.-S. SZNITMAN

The large deviation properties of Zi under Qt involve certain "annealed Lyapounov
coefficients" /3\{x), X > 0, x G R^ in the following fashion:

THEOREM:

(0.2) Zf/t satisfies a large deviation principle at rate t under Qt with rate function

(0.3) J{x)=snp{^{x)-\).
\>o

If, as t -^ oo, y{t) = o{t) and ^+2 = o{(p{t)),

(0.4) Z t / ^ p { t ) satisfies a large deviation principle at rate y{t) with rate function A)(-).

The coefficients (3\{x) just mentioned are continuous, concave increasing in A, and define
norms in the x variable. In the soft obstacle case, they describe the (nondegenerate)
exponential decay in the direction x of the P-average of the A-Green's function

E | ( - ̂  A + A + V{', u)) \ (0, x) |, and satisfy a "shape theorem" type statement:[\ z ) \
THEOREM:

(0.5) forM>0, lim sup -— - log fx{x) - fS\(x} =0, with
x^oo Q<A^M p|

(0.6) h{x) = £o[exp { - v l (l - e-r^^-^) dy - \H(x)}^

H(x) < oo , {soft obstacles)

= Eo[exp{-^ | SH^ | - \H{x)}, H{x) < oo], {hard obstacles)',

here H{x) denotes the entrance time of Z. in the closed ball B{x, 1) and

(0.7) S^= \J B(^a), foru>0^
0<s<,u

is the Wiener sausage of radius a in time u around Z. .

Here the theory runs parallel, but with different critical scales (^y^2 instead of
t/{\og t)2^), and distinct Lyapounov coefficients, to the "quenched situation", {i.e. P-almost
sure), for soft obstacles, see [10]. Indeed for the quenched problem, the corresponding large
deviation results rely on Lyapounov coefficients a\{x), A > 0, x € R^, which describe
the (non degenerate) exponential decay in the direction x of the A-Green's function
( 1 V'( - . A + A + V{',uj) ) (0,rr), for P-a.e. uj. The coefficients a\{x) also satisfy a type
\ z )

of "shape theorem".
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ANNEALED LYAPOUNOV EXPONENTS (I) 347

Let us give some comments about the coefficients (3\(x). The non degeneracy of /?o(')
{< /^A(')), stems here as in [10] from exponential estimates of first passage percolation,
(see Kesten [5]). There is also an immediate comparison l3\{') < a\{') in the case of soft
obstacles. We show that when W(') is "substantial" this inequality is strict. However, it
is an interesting question, untouched here, related to the theory of directed polymers, see
Bolthausen [I], to determine whether for "small Poissonian potentials" and high enough
dimension, the coefficients a\{-) and (3\{-) may coincide.

The special role of the scale ^/^+2 in (0.4) comes from the asymptotic behaviour
(Donsker-Varadhan [4]) of the normalizing constant St:

(0.8) St = exp{-c(d, v} fd/d^(\ + o(l))}, t -^ oo, where

(0.9) c(d, v) = ̂ {v\U\ + \(U}} = (^)2/^2 (^2)(^)d/d^ ,

if U runs over bounded open sets with negligible boundary in R^, \{U) is the principal

Dirichlet eigenvalue of - - A in U, ̂  = |B(0,1))|, and \d = A(B(0,1)).
z

In fact the scales we investigate here in (0.2), (0.4), are such that the large deviation results
are directly related to large deviation asymptotics for the average r(t^ x^ y) = E[r(^, x, y^ a;)]
of the kernel r(t, x ^ y ^ ) of the Schrodinger semigroup e^ ^ A-y) (soft obstacles), or of the
Dirichlet heat kernel e* ^ AD^R^u.B^a) ̂ ^ obstacles).

THEOREM. - If v G R^, as t —^ oo,

(0.10) if ^{t) = o^/^2), lim t-^^2 log r{t,0^(t)v) = -c(d^),
t—>00

(0.11) if v(t) == o{t), td/d+2 = o(y(*)), lim ^)-1 log r(t,0,y(t)v) = -(3o(v),
t—>00

(0.12) lim r 1 log r(^0,tv) = —J(v) .
t—>00t—>00

The study of what happens in the critical scale f^/^2 is the main object of the follow up
of the present paper. On this question, we content ourselves here with the lowerbound part
of the large deviation principle (0.4), when (p(t) = ̂ y^2.

It should be mentioned that asymptotic properties, notably the semiclassical
approximation, as well as bounds on the Schrodinger semigroups can be found in the
literature, see for instance Davies [2], Li-Yau [6], Simon [7] to quote a few. However, to
our knowledge the existing results have different goals and are not well adapted to the
study of the phenomena we describe here.

Let us finally point out that in the sequel of this paper, our large deviation results find a
natural application to the long time behaviour of annealed Brownian motion with a constant
drift h among Poissonian traps or potentials. They enable to relate the transition of regime
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348 A.-S. SZNITMAN

which occurs between the small and large \h\ situation, with the Lyapounov exponents
l3\{') introduced here.

I. Annealed Lyapounov coefficients

The main goal of this section is to construct and give estimates on the "annealed
Lyapounov coefficients". The construction is similar in spirit to [10] section I, where the
"quenched Lyapounov coefficients" were introduced. When "similar" becomes "identical",
we shall then refer to [10].

Let us first recall our notations. We denote by P the law on the space 0 of simple point
Radon measures onRd, d> 1, for which the canonical point process is a Poisson cloud of
constant intensity v > 0. To each point of the cloud we attach a "soft obstacle" by translating
to the point a fixed bounded, non negative, not almost surely equal to zero measurable
function W('). We assume the function TV(-) is supported in the closed ball B(0, a), a > 0,
and a = a(W) is the minimal possible choice. For uj = V^ Sx, € 0, we define

i

(1.1) V(x, w) = ̂  W(x -Xi}= t W{x - y) c^(dy), x 6 K'1 .
i v

The case of hard obstacles or killing traps corresponds formally and in fact for most formulas
exactly to the choice of the singular potential W^o,{x) = oo • !{{\x\ <, a}. Our canonical
Brownian motion is denoted by Z.(w) for w G C^R-^R^), Pa;, x € R^ is the Wiener
measure starting from x, and {0t)t>o is the canonical shift on C^R-^R^). For C C R^ a
closed subset He is the entrance time of Z. in C: He = inf{5 > 0, Zs € C}, and for U
an open subset, Tu is the exit time of Z. from U: Tu = inf{s > 0, Zs ^ U}.

The annealed Lyapounov coefficients (3\{x), X >: 0, x € A^, will first come as a measure
of the rate of exponential decay in the direction x of the function:

r r /^0/) -i iy -^ E^Eo exp \ - / (A + V){Zs{w),uj)ds k H{y) < oo (soft obstacles)L l Jo ) J

y -^ E^Eo[exp{-\H (?/)}, H{y) < T} (hard obstacles),

with the notations:

(1.2) H{y) = HB^ and B{y) = BQ/, 1),

and for w G C^R+^R^), ^ = ̂  6^ G 0,
z

(L3) r^) = H\J^{x^a) '

In other words T is the entrance time of Z. in the hard obstacles. To simplify notations,
for x, y e R^, A > 0, uj € ^, we define in the soft obstacle case

r . /^O/) . .
(1.4) ex{x,y^)=E^\exp\ - \ (A + V){Z^a;)ds\, H{y) < oo e (0,1]

L I Jo J J
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ANNEALED LYAPOUNOV EXPONENTS (I) 349

(1.5) A(a:)=E[eA(0,a;,^)]

= £o[exp [ - v f ( l - e-r^ ̂ '-^dy - \H(y)}, H{y) < oo]

= £_. [exp { - v f (l - e- F0' ̂ .-^) dy _ Aff(O)}, ff(0) < oo] ,

using translation invariance in the last step.
In the hard obstacle case the quantities are now

(1.6) e^x^y^) = E^e-^v^ H{y) < T] € [0,1]

(1.7) f^x) = E[e^x^)} = Eo[exp{-^|5^ | - \H{x)}^ H{x) < oo]
= £.,[exp{^ | %(o) I - Aff(O)}, J?(0) < oo] ,

with the notation of (0.7).

Remark 1.1. - 1) When W(') is spherically symmetric, and in the hard obstacle case,
it is clear from the last expression in (1.5), and (1.7) that f\{') and /^(-) are spherically
symmetric. Moreover, an application of the strong Markov property shows that f\{-) and
/^(•) are decreasing functions of the radius.

2) The function f\{') is continuous. This simply follows from the continuity of
x -^ e\(x,y,^) (Lemma 1.1 of [10]). The same is true for /^(-). This last point in
view of 1) and (1.7) can be argued on the ground that for e > 0, M > 0, lim

y—^yo

Ey[exp{-M ̂ aB(o^ol)}] = L D

We have proven in [10], the existence of coefficients a\{x) which are seminorms in a;,
such that:

(1.8) P-a.5., lim —. \ - log ex{Q,x,^) - ax(x) | = 0 .
|a;|—»'oo \X\

We now come to the first step in the construction of the "annealed coefficients". The P
integration over the cloud configuration enables to treat the case of hard obstacles. For the
quenched problem, the functions e^(0, •, a;) can very well be equal to zero outside a bounded
set, for P-a.e. u (in the absence of "infinite cluster" in the complement of obstacles). This
prevents the existence of non singular analogues of (1.8) in this case. In what follows we
shall drop the * in the notation, which distinguishes between the soft and hard obstacle case,
whenever this causes no ambiguity. In most cases the hard obstacle case is safely obtained
by replacing in formulas W{') by the singular potential Wh.o.(') = oo • 1{| • | < a}.

For A > 0, x E R^, (soft or hard obstacles) we define

(1.9) 6^)=- inf logACr-^0.
z^.B{Q)

ANNALBS SCIENTIFIQUES DE L'^COLE NORMALE SUP^RIEURE



350 A.-S. SZNITMAN

In view of Remark 1.1, when W is symmetric or with hard obstacles

(L10) bx{x) = - log fx(y) for any ^/ with \y\ == |a;| + 1 .

PROPOSITION 1.2. - There exists a function {3\{x): [0, oo] x R^ -^ [0, oo), increasing in A,
positively homogeneous of degree one, convex in x, such that:

(1.11) 0x{x) = ̂ f ^ ^(m;), A ^ 0 , ^ e R^ .

(1.12) Imi F- | ^(a;) - ̂ (aQ | = 0, (soft and hard obstacles). Moreover,

(1.13) 0x{x) ̂  k(d, ̂  a, A)|rr|, where

fc(d,^a,A) =ml^a;d_l(a+r)d-l+ \/2(Ad-i + Ar2)/^), d> 2,

=z/+\/2A, d= 1,

m'r/? ̂  notations of (0.9). /n/ac? w^n d = 1, /3*(a;) = (^ + V^)]^!. /^ case of soft
obstacles one also has

(1.14) (3^x) < a^(x) < ̂ /2(\d + A + \\W\\^ v^[a + 2)^) |^| .

Pwo/. - The first fact is that b\{') satisfies a (deterministic) subadditive property

(1.15) bx(x + y) ̂  b^(x) + bx(y)^ x ^ y e R^

which comes from the following two observations:
- Under P^ (z 6 -0(0)), one way to enter B(x + y) is to enter B(x) and then enter

B{x + 2/).
- We have a "positive correlation inequality" under P in (1.5) which stems from the

elementary inequality:

(1.16) l-e-^+6) = l-e^+l-e-^l-e-^l-e-6) ^ l-e^+l-e-6, a,6 > 0 .

This inequality is then applied with

rH{x) ^H{x^H{x-^y)o0H(^
a = / W(Z, - y)ds, b = \ W{Z, - y)ds.

JQ Jn{x)

Our claim (1.15) simply follows then from an application of the strong Markov
property. The hard obstacle case is handled in an analogous fashion, using |%^, . \ <
I %(o.) I + 1%(.+^ ° °HW I , when H(x) + H(x + y) o O^x) < oo.

The second easy fact is

(1.17) sup b\{x) < oo .
l^l^i

4° SfiRIE - TOME 28 - 1995 - N° 3



ANNEALED LYAPOUNOV EXPONENTS (I) 351

Indeed, provided \y\ = 2, using (1.10) and Remark 1.1, for \x\ <^ 1:

exp{-b^x)} ̂  exp{-b^x)} > f^y) = Ey^-^^11^^ H{0) < oo]
^ exp{-z.|B(0,a + 4)|} Ey[H(Q) < ̂ (0,4), e-^W] > 0 .

The claims (1.11), (1.12) now easily follow from (1.15), (1.17): one first defines
[j\(x) = lim — b\(ux) == inf — b(ux\ as a directional limit. The function / 3 \ ( ' ) is

u—>oo u u>l U
then homogeneous of degree one and convex. One then patches the convergence in the
various directions (in a much simpler way than for the shape theorem defining a\{-),
see [10] after (1.21)).

The inequality (1.14) follows from:

-b\(x) = inf log f\{x - z) >, inf E[log e\{z,x,uj)\
z6-B(0) 26-8(0)

^ ^€"^0) log ̂ (^^l-

Now - inf e\(z, nx, uj) = a(0, nx, uj} in the notations of [10], (1.8), converges in L^P)
^€B(0)

to a\{x). This together with (1.11) yield (1.14).
There now remains to prove (1.13). It clearly suffices to consider the case of hard

obstacles, and using rotation invariance and homogeneity, we can choose x = e\ the first
vector in the canonical basis of Rd. For u > 1, r > 0, denote by Cu,r the cylinder (interval
when d = 1), C^r = (-V^, u + ̂ u) x -B^-^r), where 3d-1(r) stands for the (d - 1)
dimensional ball in IR^"1, when d > 2, and is omitted when d = 1. Observe that for
t > 0, in view of (1.10),

exp{-^-l)ei)}=/;(^i)
^ i?o[exp{-^(|%^ o 6i\ + |^|) - \(H{ue,) o Q, + t)}, T^ > ^
Z} e [n^+l], H(ue^)o6t < oo]

if Z1 denotes the first coordinate of Z.

> mf{A*(-^), x G [0,1] x B^r)} x exp{-^|C^|} . e-^.
PO^P^-IM > t] X Pol[^(-^n+^) >t. Zt^ K^+ 1]] ,

if |C'̂ | denotes the volume of the a-neighborhood of C^y., and P^~1 and Po1 stand
respectively for the d - 1 and 1 dimensional Wiener measure, (when d = 1, the fourth term
involving P^~1 is absent). Picking t = pu, p > 0, we find

(1.18)^(e,)=J^^-log(r(^))< Jî  ^.l^l+Ap+^p

+ J^ . _ ^ - log Pj [T(-^u,u+Vu) > t, Zf £ [u, u + 1]] .

ANNALES SCENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



352 A.-S. SZNITMAN

Now, it is easy to see that the first term of the right member of (1.18) is equal to
v^d-i(a + rY~1, when d > 2, and v, when d = 1. Now by the method of images
(see (1.13) in [8]),

Po1 \T(-^u+^u) > t, Zf 6 [u,'u + 1]

^ PJ [Zt d[u,u+ 1]] - P1^ [Zt G[u,u+ 1]]

- ̂ ^u^e^+l]]

>(^--(exp{-^}-exp{-(u±^)2}

-e.p{-(-±2^}),

from this, we conclude (as in [8] (1.13)), that the last term of (1.18) is smaller than l/2p.
We thus obtain

/3*(ei) ^ ̂ -i(a + rY-1 + A p + A ^ p + ^ - , d ^ 2 ,
y Zip

^ + Ap + — ,d= l ,zp

optimizing, we find (1.13), (fc(d,z^a,0) is fc(d,^,a) in the notations of [8]). In the one
dimensional case, we also clearly have:

/*(^i) < exp{-z^-l)} Eo[exp{-\TB^ue^} = exp^^+v^) (n- 1)}, from which
/3*(ei) = z^ + v^ follows. D

We shall now reinforce the convergence statement (1.12) and prove:

THEOREM 1.3. - For M > 0,

(1.19) lim sup —, | - log f),{x) - (3\{x)\ = 0, (soft and hard obstacles).
x-^oo o^A<M p|

/3\{x) is a jointly continuous function, concave increasing in the X variable.

Proof. - We shall begin with the proof of (1.19), with A fixed. Observe for \z\ <: 1,
\x\ > 3, and A ^ 0, in the soft and hard obstacle case,

f\(x- z) = E[e^{z,x^)}
> exp{-^|B(0,a+2)|}^[e-ATB(^)A(^-^o,.))]. using(1.16),
^ exp{-^|B(0,a + 2)|} E^{-\E,[TB^IZT^}} fx{x - ZT^)] ,
using Jensen's inequality for conditional expectations.

On the other hand, we also have:

(1.21) fx{x)^Eo[f^x-ZT^^}= I f x { x - y ) d a ( y ) ^
</aB(0,2)

4e sfaUE - TOME 28 - 1995 - N° 3
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with da the normalized surface measure on 9B(0,2). Now we have for \z\ <_ 1:

(1.22) E^TB^/ZT^} = /I(^ZTB(O,^ ^-a-s., where

i r00 r(1.23) h{z,y)=———r / / p B ^ ^ ^ z . z ' ^ v ^ z ' . y ^ d z ' d s ,
V [ ^ ^ y ) Jo JB(0,2)

^€5(0,2), ^€^(0,2).

Here v { z ^ y ) is the density with respect to the normalized surface measure of

^[^(02) € ch/], that is z;(^) = 2d-2 ^:1^- for ri ^ 2, and v{z^2) = ^-2,

2 - ^ "^(^, -2) = ———, for d = 1, and pu{s, z, z ' ) stands for the Dirichlet heat kernel in U:
u

( / \ 2

(1.24) p u ^ z ^ z ' ) = (27r.)-^2 exp { ~ ^ } •^[^(0,2) > ̂

^ o ^ ^ e R ^ ,

provided jE^ ^ stands for the Brownian bridge measure in time s from z to z ' , {pu{s^ z ^ z ' )
is zero if z or ^/ is not in U). It is classical and follows from semigroup considerations that
sup j?B(o,2)(5,^,^) decays exponentially in s. Moreover, v { ' , y ) for y € 9B(0,2) belongs

to ^(^(O^)). So from (1.20) and (1.21)

fx{x)/fx{x - z) ^ expMB(0, a + 2)|} . ^_ sup (e-^^M^ 2/))~1 < oo .
^(=B(0,l),y€aB(0,2)

In view of (1.12), this proves (1.19) for fixed A.
The rest of the argument now closely follows that of Theorem 1.4 of [10]. Thanks to

proposition 1.2, y —> l3\(y) is a convex uniformly continuous function for bounded A. In
view of (1.19), for fixed A, it is also a concave non decreasing function of A. Its only point
of discontinuity in A, might be A = 0. If we show it is upper semicontinuous in A, it will
then be continuous in A, and thanks to the uniform continuity in y , jointly continuous.

Now by Remark 1.1, f\{') (hard or soft obstacles) is continuous, and therefore b\{') is
continuous. The upper semicontinuity of l3\{'), now follows from (1.11).

The uniformity in A in (1.19), now follows from the same Dini type argument as in
Theorem 1.4 of [10]. One uses that for x ^ 0, —r | - log f^{x) - l3x{x)\ = -—.\x\ \x\

( x \\ 1log f\{x) - (3\[ —. ) , together with A -^ -— log f\ {x) is increasing and f3\{z} is
\ M / 1 pi

jointly continuous increasing in A on [0,oo) x 9B(0,1). D
We shall now prove that (3o{y) ̂  0 for \y\ ̂  0, we also give an example of a "large W"

for which f3\('} < Oi\{'). Another quite interesting question which we do not discuss here
is to know whether the equality l3\{') = a\{'), is possible in some cases (for instance for
small potentials, large A, rarefied clouds and high enough dimension).

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUP^RIEURE



354 A.-S. SZNITMAN

THEOREM 1.4. - There is a constant 7(0?, ^, W) > 0, such that

(1.25) m9ix{V2d^) |^| < ft^x), for \ >_ 0, x G R^ .

M^n W^ = ^mo a) ^ ^ ^ 0, (/' a ls large, for sufficiently large c

(1.26) (3^x) < a^), /or ^ ^ 0 .

Proof. - We start with the proof of (1.25). With no loss of generality we treat the soft
obstacle case. The lowerbound \/2A|a;| < (3\{x) is standard. We shall prove that for a
-r{d,^w) > o:
(1.27) 7^1 ^ W < (3^x) .

The strategy of the proof follows ideas of first passage percolation, as in Proposition 2.3
of [9]. We chop R^ in cubic boxes of side length i > 0, centered at the points i • q, q 6 Z^:

B o x ( £ ' q ) = ( z ^ R ^ - ^ < z, - tq, < ̂  for % = l , . . , d l .

For x € R^, uj G 0 we define the occupation function through
iOc^{x) =1, if the open cube of side length - with same center as the unique

Box {i • q) containing x receives a point from w
= 0, otherwise.

It is shown in (2.50) of [9], using a suitable discrete supermartingale based on the
0 f}

successive displacements of Z. at || ||-distance —, (||rr|| =^ sup^ |^z|), that for v > 0

(1.28) -Bo[exp{ - / v V{Z,^)ds^\ < x^ ,

where Ty = TB(O,V).

(1.29) ^ = sup ^ [exp { - / W{Z, - x)ds}}, with
IMI^,NI<i L l t/o J j

r 3^ i
(1.30) [ /=mf^ >0, ||Z, -Zo|| ^ y^ and

(1.31) ^(^) = inf 7Vo,(X) ,
D(t;)

m-l

is the minimum occupation number Noc{X) = ^^ Oc^(X(j)), for a discrete path
j=o

X(j)o<j<m» which never visits twice the same Box {£'q), has successive steps in neighboring

4° SERIE - TOME 28 - 1995 - N° 3



ANNEALED LYAPOUNOV EXPONENTS (I) 355

boxes (i.e. \\q - q'\\ < 1), has final location X(m} satisfying |X(m)| > v - 2.^/df,, and
r v i

has m > —=— — 1 steps.
~ [Vd2l\

Now by Proposition 2.2 of [9], there exist a constant pr > 0 depending on d only, such
f ^ 1that, there exist positive constants C ^ D ^ E depending only on d and p = exp ^ —z/ "̂  f

such that

(1.32) p < PT ^> P[mf{NocW ^C ' m } } ^ D exp{-Em} ,

provided Cm is the family of discrete paths of m steps with successive steps in neighboring
boxes, never visiting twice the same box, and starting at the origin, (on a similar statement
in a bond percolation context, see Proposition 2.8 of Kesten [5]).

It is may be helpful to say here that pr(l) = 1. and that pT{d), for d ^ 2 is the critical
independent site percolation constant, for the adjacency relation q ~ q\ if \\q - ̂ || ^ 1,
such that when the probability p of vacancy of a site is smaller than pr, the expected size
of the vacant cluster at the origin is finite.

Observe now, that under Po, T\y\_^ < H{y\ when \y\ > 1. So from (1.28) follows:

/oQ/) ^ E^o[exp{ - J^1 V[Z^}ds}~\ ̂  E^l-^] .

t t 3£
Now if we make sure that I > 8a, from the inequality a + - + - < —, and the fact

2 o 4
that W is not a.s. equal to zero, one concludes that 0 < \ < 1. If we also make sure that

f ( d 1exp \ -y —. > < PT, then (1.32) holds, and it is plain that for any x with \x\ = 1.

(1.33) -f3o{x) = lim 1- log fo{nx) ̂  Hm ^ log E^"-^] d^ - 7 < 0 ,
n—»-oo n n—roo n

thanks to the definition of N(v). This proves (1.25).

Let us now prove (1.26). We now have W = cl-g.Q .. We choose a > — Vdt, where

f id 1i is such that exp \~v ~^\ < PT- Then,

(1.34) x(c) = Eo[exp{-cU}} < 1 .

By a Borel Cantelli argument using (1.32),

P-a.s. Inn mf{NocW}/m > C .
m—>oo —"m

It now follows from (1.28) and (1.8), that for x, with \x\ = 1,

(1.35) -aoC^lim^ log£o[exp{- f V{Z,^)ds}] <,-——-- log(l/^) .
n L L Jo J J 2Vd£.
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Now for A >: 0, by (1.13), and (1.35), for any x with \x\ = 1, f3\(x) <, k{d,v,a,\) <
—-.— log l/x^) <. ̂ o(^)» provided c is chosen large enough, since lim ^(c) = 0. D
2Vdf, • ' c^00

We shall now relate, in the case of soft obstacles the coefficients l3\{x) to the exponential
decay of the P-averaged A-Green's function of — - A + V, in the direction x. We define
for t > 0, x,y € R^, a; € ^

(1.36) ^^^a;)=(27^t)^2exp{- (^^}^[exp{-^ V{Z^ds}~\,

Then r is the kernel of a C'°-self adjoint semigroup on L^R^cte) which is for instance
known to coincide with e"^, if H is the Friedrichs extension of - - A + V on C^R^),
see for instance [7]. We denote by g\{x^y^) the A-Green's function:

/»00

(1.37) gx{x, y , ̂  == / e-^ r{s, x, y , uj)ds, A > 0, x,y € R^, a; 6 Q .
Jo

THEOREM 1.5. - For M > 0,

(1.38) lim sup 1 | - log(E[^(0,^a;)]) - ̂ (a;)] = 0 .
x-^oo o<A^M pi

Proof. - By the same Dini type argument as in Theorem 1.3, it is enough to prove (1.38)
for fixed A. By (1.37) of [10], there is a set ^ of full P-measure, on which the e\(',y^)
can be represented in terms of the g \ ( ' ^ y ^ ) via:

(1.39) for uj e ^, A > 0, y e R^, there are bounded positive measure e^(ck) on

B{y), such that for x 6 R^, e^^o;) == / ^(^^,^) e^(^) ,
J B { y )

and the g\{z,z'^) are finite continuous outside the diagonal {d >, 2), and everywhere
(d = 1).

The eA''^;(d^) are in fact the (A -h V){',uj) equilibrium measures of B{y). From (1.39)
we immediately deduce that for \y\ > 1:

e\(Q,y,uj)IA <, gx{0,y^), provided
(L40) A = e^{B{y)) sup ^(0,.,o;)/ inf ^(0,-^)

B(./) ^C1/)

We can then use the estimate (1.43) and the end of the proof of Theorem 1.6 of [10], to find:

(1.41)
A<K{d) exp{(A+ sup V(',UJ)){1 + H)} sup <,•)/_ inf <,•) ,

BQ/,2) B(0,l)xaB(0,2) B(0,l)x9B(0,2)

with H == sup /i(-, •), with the notations of (1.23).
B(0,l)xaB(0,2)
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Using now Holder's inequality, we find for p, q e (1, oo), - + - = 1

E^O^o;)^] ^ E^O^c^/A]1^ E[A^\ and from (1.40)

log(E[^(0,^)]) >p log(E[e;.(0,^)]) - ^ log E[A^]

(we used here e^ >_ e\^ since e;\ € (0,1]).

The last term in the last inequality is bounded by a fixed finite constant in view of (1.41),
since sup V{'^} < \\W\\^ • ^(B{y,a + 2)). It follows that

B(i/,2)

(1.42) J^(-- logE[^(0^,o;)]-/3,(y))<

iim^r |~ logAO/ )~ /3AQ/ ) |+ (p ' l ) sup ^( . )=(p-l) sup AO,
2/-^oo 1^/1 9B(0,1) aB(0,l)

thanks to (1.19). Letting now p tend to 1, we see the left member of (1.42) is non positive.
Let us now prove the lim inf counter part of (1.42). We have

g\{Q,y^) <: ex{o,y^) x B, with
(L43) B = , . sup ^(0,.^)/mf ^(0,.^) .

e^(BQ/)) B(y) W

Let us first consider the case when d > 3, or A > 0. Just as in [10], after (1.44),
e^{B(y)) >. cap {B{y)) or capA(-B(2/)), the capacity or A-capacity of the ball B{y)
relative to Brownian motion. Consequently,

(1.44) B < ^ ( d , A ) . e x p { ( A + s u p V ) H } ' sup <,•)/_ inf ^ ( • , > ) .
B(y,2) :B(0,l)x0B(0,2) B(0,l)xBB(0,2)

From Holder's inequality we deduce that for p, q € (1, oo), with - + - = 1,

(1.45) log(E(^(0,^o;)]) ^ ^ log E[^(0,^o;)] + ^ log E[B^}

< i logE[eA(0,2/ ,a;)]+1 logE^].
P q

Now an entirely similar argument as before shows that

H^(- - .log(EMO^o;)])-/3, (y)) ^ 0 .

This finishes the proof of (1.38), when d ^ 3 or A > 0. In the case d <: 2, and
A = 0, we replace in the right member of (1.44) the constant K\d,\) (upperbound on
l/e^(B(y)) by:

inf / g{z, z ' , a;) fJi{dz) p,{dz1) ,
/x€Mi(B(y)) JB(y)xB(y)
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where g{z, z ' , u ) = go(z, z',uj), which is finite for uj G 0, z / ^/, by Lemma 1.5 of [10].
Now the proof proceeds as before, provided we can show the quantity in (1.45) has

finite moments of any order (which do not depend on y, by translation invariance). So
it suffices to show that

(1.46) E|Y / g{z,zt,uJ)dzdAq\< oo, for q > 1, integer .
"-^Ja^x^O) / J

Using translation invariance and Jensen's inequality:

^(r^fnT / / g ^ z ' . ^ d z d z ' Y ] ^E\( ( g ^ z ' ^ d z ' Y }
\.\\t![{))\ J^(o) JB(O) / J ^Jpd } J

r°° r°° r r r />sl -n
= / dsz... / ds,E \Eo exp{ - / V{Z^^)du,} ...

Jo Jo L L l Jo J J

E,[exp[- F V{Z^^)du,}]]

r00 r00 r r r^ ^-il/g
^ / d5i... / d^E^o exp^ - / qV{Z^^)du^\ ...

Jo Jo L l Jo J J

r r />sq 111/^
E^o[exp^ - / qV[Z^uj)du^

a 00 [ ( r 8 i - iv^^^ d5iE^^o[exp^- y gY(Z^,a;)^N J .

Now by Donsker-Varadhan's result (0,8), with qW instead of W, the last quantity is
finite. It is clear that the argument we have just presented works in any dimension, but
we only need it for d = 1,2. D

COROLLARY 1.6:

(1.47) for X ^ 0, x € R^ f3\{x) = (3x{-x) (soft and hard obstacles)

and f3\{') are seminorms on Rd.

Proof. - The symmetry of /3\{-) is the only point to prove. In the soft obstacle case, it
follows from (1.38), the symmetry of g\{', •), and translation invariance. In the case of hard
obstacles it follows from (1.19), and the rotational symmetry of f\{') (Remark 1.1). D

Remark 1.7. - From Theorem 1.3 and 1.7, and the nondegeneracy of l3\{'), it is easy to
deduce the following "shape theorem": for 0 < e < 1, 0 <, A, for large enough t:

(1 48) {/3AO ^ (1 ~ e) t} c {- log Ao <t}c {/3A(l) ^ (1 + 6) t}

{AO ^ (1 - e) t} C {- log(E[^(0,., a;)]) < t} C {^(.) ^ (1 + e) t} . D

The coefficients f3\{x) in Theorem 1.3, measure a type of cost in going from 0 to a
multiple of x. In the terminology of first passage percolation, (see for instance [5]), they
are point to point constants. It is also possible to give a point to line or rather point to
hyperplane version of the result:
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COROLLARY 1.8. - Let e be a unit vector of Rd. For u > 0, define Su == inf
{ 5 ^ 0 , Zs • e ^ u}, then for A >: 0:

1 r y /*Su -v -i

(1.49) lim - log E^Fo exp { - / (A + V){Z,^)ds\\
u—^oo u L I JQ ) -I

=-mf{/?A(rr) , a; • e ^ 1}
= -l/sup{a; • e, /3;<(a0 = 1}

Proo/. - The proof is a simple repetition of the proof of corollary 1.9 in [10]. D
We shall now close this section with a variational formula for /3;\('), in the one

dimensional case with soft obstacles. This formula sheds some light on the nature of the
difference between the annealed coefficients f3\{') and the quenched coefficients a\{')
introduced in [10]; Let us first introduce some notations. For i < 0, we define

(1.50)
r r t {1} 1F^(o;)=-logFo expj - / (A+y)(Z,,cc;)d5}, H^ < H^ L A > 0, a; G 0 .
L l Jo

We also define F\{uj\ by an analogous formula to (1.50), except that the term,
Hs^\ < H^, is now omitted. Then it was shown in (1.30) of [10], that for soft obstacles,
when d == 1, A > 0,

(1.51) a^(l) = E[F^] .

Let us now recall some notations concerning entropy. For I a non empty bounded interval
of R, we denote by TTJ the canonical map from f2 onto Qj the set of pure point finite
measures on I, endowed with its natural a-algebra. We also define for Q a probability on 0
the entropy .Hj(Q|P) of Q7 = TI-J o Q with respect to P1 = TTJ o P, that is:

(1.52) Hi{q\P) = I log dq- d^ , if dq1 « dP7,+00 , otherwise
J^i du

= s u p { / F joI I jdQ- logf / exp{FjoIIj}dP)} ,
Fi l JQ v JQ / )

where Fj runs over bounded measurable functions on ^j (see [3], p. 68).
Now for Q a probability on f2 which is invariant under the translations T^, t C R,

Tt(uj}{'} = o;(- - t), one has a natural translation invariance property of Hi, as well as a
superadditivity property due to the product character of P. One then defines for a translation
invariant Q on 0

H{q\P) = lim - ̂ (Q|P) = sup - ffz(Q|P) G [0, oc] .
|JHoo \I\ |j[ |7|
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From the last formula of (1.52) it is easy to deduce with a standard truncation argument
that when ff(Q|P) < oo, £'^(7)] < oo, I bounded interval of R. Therefore, when
i:f(Q[P) < oo, using Jensen's inequality:

(1.53) E^} < ̂ [FA-I]
^ E^[{\ + \\W\\^ a;([-l - a, 1 + a])} E^H^/H^ < H^}]
+ log(l/Po[ff{i} < ^{-i}]) < + oo ,

(of course Po[ff{i} < -H^-i}] = 1/2). The coming formula should be contrasted with (1.51):

THEOREM 1.9. — {d = 1). Suppose that in addition W is continuous, then for X > 0,

(1.54) /3^1) = n^W + ff(Q|P)} ,

where Q runs over the set of translation invariant probabilities on 0.

Proof. - We shall first prove that /3,\(1) is smaller than the right member of (1.54). Using
the strong Markov property, for A > 0, (. < 0,

(1.55) / A ( n + l ) = E 0 ^ o [ e x p { - / w {X + V)(Z,,^)ds^

= E [ n exp{-F, o T_j] ^ E [exp { - ̂  F^ o T_,}]
i==0 i=0

If now Q is translation invariant and jFf(Q|P) < oo, the last term is bigger than:

^or^f v-1 ^ 1 .d^-^'1r r v-^ i a w~ ^ ' 1 "i
E^ [exp ^ - ̂  F;̂  o r-^ / ,p^_^^J > using Jensen's inequality

z==0

n-1

exp{-^[^; F^oT.^H^-a^a]W)} .
i=0

Taking the logarithm of the (n + 1)̂  root of f\{n + 1), and letting n tend to infinity,
we see that

/3^(l)^^[F^]+ff(Q|P)

letting ^ tend to —oo, we deduce that (3\{1) is smaller than the right member of (1.54).
Let us now prove the reverse inequality. To this end consider 0 = 0?o ^, endowed with

the product topology, if ^[0,1] is endowed with the usual Polish topology generated by the

maps a; e ^[0,1] —> / f{x)duj{x), f € Q,([0,1]). We have a natural map ^ : Q —> fl
Jo

defined by ^(o;) = (o;^)^z» with ̂  e O[Q,I] equal to the restriction to [0,1] ofT-^o;).
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It is plain that ^(P) = P, if P denotes the infinite product of the Poisson cloud of
constant intensity v > 0 on [0,1]. Moreover, if we define:

- r r />H{1} 11
F^)=-logEo exp{ - / (A+y)(Z^)d4h with

n r-a\ L l JO J J

(1.56) .
V{x^) = ̂  / W{x - y) T,(^)(^), /or S = (^),ez, then

i€Z J

n-1

(1.57) A(^ + 1) = ̂  [exp ^ - ̂  Fx o Ti\V (T, discrete shift on f2) .
1=0

Now F\ is easily seen to be a continuous function on Q, and therefore the map
R € Mi(0) —^ ^^IF] is a lower semicontinuous function on Mi(0), for the weak
convergence topology. Applying the process level large deviation principle for the product
measure P, see Deuschel-Stroock [3], p. 167 and p. 41, we obtain

(1.58) /?A(I) > inf {E^[F\ + ff(Q|P)} , where
Q

Q runs over probabilities on 0 invariant under the (discrete) translations T^, and for such
a probability (see also [3] p. 182).

(1.59) £T(Q|P) = lim 1- H^^ \ P^5711), with obvious notations
n—roo U

= sup 1 ff(Ql1'"] | Pi1-"').
n>i n

Consider now a translation invariant Q, with J7(Q|P) < oo. Then ^[(^({u})] = 0, for
i G Z, H £ [0,1], and we can find a unique Q e Mi(0) such that ^ o Q = Q. This Q is
such that T, o Q = Q for i € Z, ^[^({s})] = 0, s <E R and

(1.60) E^] = £^], J^+i](Q|P) = ̂ (^'"l | Pi1-"!) .

From the identity, for u £ (0,1), A >, 0,

^[exp{- t ^'^(A+y)^,^)^}] = £ _ ^ [ e x p { - / ^(A+V)^,^)^}].

Eo[exp{- t {l~u\\+V){Z„u}}ds)] ,

we deduce that for u £ (0,1), E^Fj, o Ty\ = E^F),}. However, if Qu == ^(T» o Q),
u € (0,1). then

(1.61) E^ [FA] = ^[FA o T^] = E^[Fx}, and
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(1.62) i7(QJP) - Jnn̂  ^ ff(Q[1-"] | pi1."!) = J^ ^ ff[i,^i](^ o Q|P)

= JHD^ ^ J:f[i_^+i_^](Q|P) = ff(Q|P) .

If we define Q === / Ty o Q du e Mi(^), then Q is translation invariant, by (1.60),
~.°

(1.61) J?Q[FA] = E^], and

ff(Q|P) = sup 1- ff[i,«+i](Q|P) ^ sup ^ / ff[i,»+i]C^ o q\P)du
n>l it' n>l ^ Jo

(by an easy convexity argument)

^ />1 ^(QjP)dH = i?(Q|P) .
Jo

So from (1.58) and the above construction, we see that /^(l) is bigger than the right
member of (1.54). This concludes our proof. D

II. Large deviation estimates

The object of the present section is the derivation of certain large deviation estimates on
Zt under the "annealed weighted measure" Qt on C(R+, R^) x 0, defined in (0.1). We shall
only be concerned with displacements of order y(t) where y?(t) is a scale between f^/^2

and t. As far as the scale ̂ /^ is concerned, we shall only prove here the lower part of
the large deviation principle, the upper estimate being the main object of the sequel of the
present paper. As an application of the large deviation estimates we shall derive some long
time asymptotics of the P-averaged Schrodinger heat kernel (see (1.36)). As we are now
going to see, deviations of order t for Zt under Qt are governed by

(2.1) J(^=sup(^(^-A), r r e R ^ .
A^O

From the joint continuity of (3\{x), the upperbound (1.13), it is easy to argue that J(') is
continuous convex. Moreover, from the bounds (1.13), (1.25) follows:

r.2

(2.2) when d ^ 2, ^\x\ V x ^ J{x) ̂  fc(d,^a,0) \x\, for \x\ ̂  y^-i/To
Zi

^ j(^\ <- ^d,^a,{
\ 2

^^\^(..., ( ^ > ^\d-l |- . | , ^-1 \ , x

< rn̂m (^-i(a + r)^ \x\ + -^) + y.

for \x\ > ̂ /2\d-i/ro ,

provided ro > 0 denotes the unique value of r for which ^c^_i(a + r)^"1 + ^/2Arf_i/r
fc(d,^,a,0).

x2 x2

(2.3) when d = 1, 7 \x\ V y ^ J(a;) ^ Jhard obst(^) = ̂  + — .
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Moreover, in the case of soft obstacles, we also have thanks to (1.14)

(2.4) J{x) ^ I^x)^ s\ip{ax{x) - X) < a \x\ for \x\ ^ a
\

< - {x2 + a2) for \x\ > a ,
^

with a(^lV(.)) = v /2(Ad+||W||oo^(a4-2)d) .

!{ ' ) is the rate function governing deviations of order t for the "quenched problem" (see
Theorem 2.1 of [10]). Our main object here is the proof of

THEOREM 2.1. - Under Qt, Zf/t obeys a large deviation principle at rate t with rate
function J ( ' ) , as t tends to infinity, that is:

(2.5) lim t~1 log Qt(Zt G tA) ̂  - inf J{x), for A C R^ closed .
t—>oo x(=.A

(2.6) Umt-1 log Qt{Zt E tO) ^ - inf J(x), for 0 C R^ open .
t-^oo xeo

Moreover, if (p(t) : R^. —> R-(- is such that when t tends to infinity

(2.7) ^/d+2 = o{(p{t)) and (p(t) = o{t), then

(2.8) Z t / ( p ( t ) obeys a large deviation principle at rate (p(t) with rate function /3o0 •

(2.9) If^(t) = ^/d+2, Z t / ^ { t ) = Zf/t^^2 obeys the lower estimate part of the large
deviation principle with rate ^y^2 and rate function f3o{') .

Remark 2.2. - The most difficult point to prove here is (2.6). This partly comes from
the lack of information on the coefficients l3\(x), for instance on their differentiability
properties in the A variable.

Proof. - The proof of the upperbound part of the large deviation principles (2.5), (2.8)
is a simple repetition of the arguments used in Theorem 2.1 of [10]. The only point to be
mentioned here is that from (1.28), (1.33), we deduce

(2.10) Tim" 1 log E x Eo\exp { - f V{Z,,uj)ds}] < -7 < 0 (soft obstacles),
v—>oo V L I Jo } J

and an analogous estimate for v~1 log(E x Eo[Ty < T]), for hard obstacles. This plays the
role of (2.9) in [10], and yields exponential tightness.

We now come to the proof of the lower estimates. We shall write the formulas for soft
obstacles. The case of hard obstacles should be understood, using the singular potential
^h.o.C) ^ oo • 1{| • | < a}) and interpreting the corresponding formulas as in (1.5) - (1.7).
In cases where ambiguity may arise, we shall explicitly write the hard obstacle formula.
These remarks being made, our first step is to introduce a quantity which enables to estimate
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certain probabilities of crossings in the direction v e R^VO}, at a certain velocity. More
precisely, for 0 < 71 < 72 < oo, v e R^VO}, 0 < n, we consider the stopping time

(^•l1) ^i^i = H(nv) o 0^^ + n7i, and the event

(2-12) ^n,v,7i,72 == {^n,v,7i ^ ^72} •

In words An,v^^ means that Z. has entered B(nv) during the time interval [7171^72].
Now for n ^ 0, v e R^VO}, 0 < 71 < 72, A ^ 0, we define the nonnegative constants

(2.13) c(n^7i,72,A)=

~ .e^o) log wz [An^^ exp{- f ' '^(^ + V)(Z^a;)ds^ =

- mf l0^ ̂  [^,^71,72. exp { - \S^^~
zkjD^O) L L

./(i-e-r-1^-^),,}],
using the above mentioned convention for hard obstacles. The main interest for us of these
quantities stems from:

LEMMA 2.3. - For 0 < 71 < 72 < oo, A > 0, v e R^VO},

(2-14) - c(n,^7i,72,A) _ 5(^7i,72,A) ^ [0,oo) .
lv n—foo

Moreover, if (71,72) H [/3^)+, ^(^)-1 / ^ A > 0, r̂ n

(2-15) <^,7i,72,A)</^),

provided /3^(^)+ fr^^. /3^(r)-^ flk?nc^ respectively the right and left derivative of the
increasing concave function (3.{v) at A > 0.

Proof. - We shall keep ^,71,72, A, fixed for the moment, and shall only keep track of
the n dependence in the notation. The claim (2.14) follows from a subadditive property of
the constants c(n), which we now explain.

Observe first, that for n, m ^ 0, using the notation S^m = H^m}v o 0^ ̂  + 71 m and
An,m = {Sn^ ^ ^72}, for Z € B(0):

E, [A^ exp { ~ XS^m - v I (l - e~ t^ ^(zs-2/)^)^}] >

E, [An n ̂ (A,,^), exp { - XSn ~ A5,,̂  o0s^^ [ (l-e~ C ly(z--^ds.

e-C'5———^-^)^}].

If we now use (1.16) and the strong Markov property, we find: c(n + m) < c(n) + c(m),
for n,m > 0.
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It is also very easy to check (by arguments easier but in the spirit of the proof of (1.13)),
that c(l) < oo. It readily follows that

(2.16) cw ^ ^,7i,72,A)=inf c(n) .
n n-^oo n>i n

This prove (2.14). Let us now prove (2.15). We first pick (p, 77) € (0,1) such that:

(2.17) P/3^)+ + (1 - P) PW- + [-^] C (71,72) .

Then, for a; € 5(0), A > 0, and similar methods as above

e-^) = inf £, [A,, exp { - A5, - v /\1 - e- ̂  ̂ -^dy}} >
xeB(0) L I J / } 1

inf E^ \H(pnv) € pn[l3'^v)+ - r), /3^(v)+ + r)}, exp { - XH(pnv)
a;e-B(0) L ^

-./(i-e-r'"'^-^)^].
mf E, \H{{1 - p)nv) € (1 - p) n [^(v)_ - ̂  ^(v)_ + r,], exp { - XH((1 - p)nv)

z€B(0) L >.

-./(l-e-r^^-^dy}}.

If we now pick 0 < Ag < A < Ai, then for n >_ 1:

(2.18) e-0^ ^ inf fx,(pnv - x) • inf A,((l - p)(nv - z) •
x^.B{0) z^B{0)

exp{-(A-A2)n(/3Uv)-+r?)}

• inf {Ej^"^ e [/3,(z;)+ - r,, ^(v)+ + n}, exp { - Ai H(pnv)
a;€B(0) L L pn ^

-./(i-e-r^^-^)^}]/^^-.)}
• ^. {^ [ T" ̂ ")

 £ t^)- - ̂  ^(^)- + ̂Z€B{O) I L (1 — p)n

exp { - A.ff((l - M - ./ (l - e-F'-^ -^-^),,}]

/A,((l-p)n^-^)}.

Observe that (1.19) immediately implies that for M > 0,

(2.19) lim sup sup —, | - log My - x) - /3-{y) | = 0 .
^°° O^M ^B(O) \y\

If we pick Ai > A and 0 < A2 < A such that /3^ {v) and /3^ (v) exist and respectively
belong to (/3^('y)+ - 77, /3^(i;)+] and [/?^ ('?;)-, /3^('y) + 77), it is a standard argument of large
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deviation theory, to infer from (2.19) that the fourth and fifth terms in the right member of
(2.18) converge to 1, as n goes to infinity (see also (2.21) of [10]). It now follows that for
such a choicer, 71,72, A) <, pf3^(v) + (1 - p} /3^{v) + (A - X^^v), +77). If we
now let AI and As converge to A, we precisely find (2.15). D

Let us now give a proof of the lowerbounds of the large deviation principles in Theorem
2.1. Let us first explain the strategy, for instance in the case of (2.6). The idea is that one
possibility for Zf to be in a o(t) neighborhood of a point tv, is to first wait a time ^i, and be
back in B(0) at time i\, then to travel in the v direction and be in B(tv) at a time between
ti + 7i t and i\ + 721, where 71 and 72 are picked close enough and i\ + 721 is close to
t, and let then Z. wait near tv until time t. We shall now see how the rate function J{v)
naturally appears when one optimizes the probability of a succession of such events.

We first explain how parameters are picked. Observe that for v ^ 0, /3^(v) > 0, and
decreases to zero as A tends to infinity, thanks to the bounds (1.13), (1.25), and the concavity
of A —> f3\{v). So for each fixed v -^ 0, and n > 2, we pick sequences 71 (n), 72 (^)»
A(n) > 0, such that:

when /?o(^) < 1, /^(n)^) exists, A(n) _, 0,

7i(»)=/3^)(.)(l-^)

(2.20) 72(rz) - /?^)(l + l-^o(v)) < 1

when/^) ^ 1, (l - 2) £ [/3^)(v)+, ^(n)(^)-]
\ it /

3 17i(n) = 1 - -, 72(n) = 1 - - .
l i t l b

In the case of the lower estimate part of (2.8) and (2.9) we shall instead choose:

(2.21)
A(n) = — , 0 < 7i(n) < 72 (n) are such that

n

^W < /?Ajv)_ < ̂ (n), ^(n) -^(n)) < - .
Tv

It is easy to check that such choices are possible. Moreover, they satisfy the condition
(7iM. 72(n)) n [/3^)(^)+, /?A(,)(^)-] 7' ^ (resp. (7i(^), 72^)) H [/W^-
^(n)^)-] ^ ^)5 ^ich appears in Lemma 2.3. We shall now begin with proof of (2.6).
It clearly suffices to prove that for v ^ 0,

(2.22) Inn t-1 log Q^Z, G B{Zi G B([^,2)) ^ -J(v) .
t—»-00

Define ^i = t - 72 HM > 0, so that t^ + 7i(n)M + (72 (^) - 7i(^)) ^ > ^ Then for
sufficiently large t we write with the notations of (2.11), (2.12):

2?o[exp{-^ /"(l-e-X'^'-^)^}, Z,£B([^,2)] >

£;o[exp { - ̂  f (l - e-X* w^-^)^} . 1{Z,, e 5(0)} • IA,,,,^),^) o ̂ .

l{TB([t]^,2) > (72(n) - 7i(»))Q o ̂ i,i,.,̂ (») o 0t,] .

4' SfiRIE - TOME 28 - 1995 - N° 3



ANNEALED LYAPOUNOV EXPONENTS (I) 367

Using (1.16) and the strong Markov property, this is bigger than:

(2.23) Eo[exp{-v\S^\}, Z^ £ 5(0)] •

• C v \ A f f f-i - P*1-"'^"1 W(Z.-y)ds\, 1 1z^B(o) z ^M^.^C").^^)' exp ̂  - ̂  y ^1 - e Jo jdy^ •

inf. £?(0,2) > (72(n)-7i ("))*, exp{-^ | S^_^^\}}
Z(^tf{{J)

def
= AI • A2 • AS .

It is a fairly standard calculation that

(2.24) lim u-^^2 log ^o[exp{-^ | 5^ |}, Z, C B(0)] = -c(d, v} .
H—^00

Indeed in view of (0.8), only a lower bound is required. One simply writes:

^o[exp{-^ |5:|}, ̂  € B(0)] > exp{-i/1 B(0, J?o "l/d+2 + a)|}

• -Po[^B(o,flo»l/<i+2) >u,Z^€ B(0)} ,

where Ro{d,v) is picked so that

v\B(0,Ro)\ + \{B{0,Ro)) = c(d^) .

By scaling the last term of (2.26) equals

PO[TB(OW > "d/d+2, Z^,^ £ B(0, u-1^2)} ̂  exp { - ̂  ̂ /^(l + o(l))} ,

using an eigenfunction expansion, and (2.24) follows. On the other hand,

As > exp{-^ |B(0,a + 2)|} Po[TB(o,2) > (^(n) - 71 ("))*]

= exp { - ̂  (72(n)) - 7i(") *(1 + o(l))}, and

(2.26) Az ^ eA("^l(")lt'exp{-c([t],v,7l("),72(n),A(n))} .

Collecting (2.24) - (2.26), and using (2.15) we find

(2.27) Urnr1 log f;o[exp{ - v ! (l - e-X' ̂ --^dy}, Zf G 5([t]v,2)1 >
(—>oo L L j \ / -I J

- 0xwW + 7i (^) A(^) - ̂  (72(n) - 7iM) .

Letting n tend to infinity, we see the left member of (2.29) is bigger than

- I™ (/?A(n)(^) - 7i(^) A(n)) .
n—^oo
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^Now in view of (2.20), when ^(v) < 1, this last quantity is /3o(^) = J(^). In the case
/?o(^) ^ ^ the sequence A(n) is decreasing and converges to a value A(oo) such that

(2-28) /W^<1</W^)-

(this last inequality being omitted when A(oo) = 0).

Then we have Inn {(3^(v) - 71 (n) A(n)) = ^(oo)(^) - A(oo) = J(v), since by (2.28)
A -> y^) - A increases on [0, A(oo)] and decreases on [A(oo), ex)). So the left member of
(2.27) is bigger than -J(v). In view of (0.8), this yields our claim (2.22).

In case ip{t) is given as in (2.7) or (2.9), it is enough to show that for v ^ 0

(2.29) Inn y{t)-1 log Qt{Zf G B{[^t)] v, 2)) ^ -/3o(^) .
t—>00

We now define t^ = t - ̂ ^n)[p{t}\, for sufficiently large t, so that ti + ̂ {n)
[<p(t)} + (72(71) - 7i(»)) v(*) ^ t, and similarly to (2.23)

(2.30) ^o[exp{-^y>(l-e-^^-l')ds)dy)}, Z,eB([^)]^2)] >A,.A2.A3,

with AI as in (2.23),

A2 = .̂ o) JE;-[A^«)1-^(")^(")' exp{ - ̂  y (l - e-r^'"-71'"1 ̂ -^s)^}]

A3 = .6%) ^^("'2) > (72(n) - 7i(n)) ^W, exp{-i. | %(«)_^^)^,)|}] .

From this, as before we deduce that

(2.31) Ua^)-1 log(Eo[exp{-^ / (l - e-X* ̂ --^dy}

Z, e B{[y(t}} v, 2))] ^ -^(v) + A(n) 71 (n) - ̂  (71 (n) - 7i(n)),
if ^+2 ^ ̂ y,(^^

- c(d, v) - ^{v) + \(n) 7i(n) - ̂  (^(n) - ̂ (n)), ̂  ̂ +2 = y,(() .

Letting n tend to infinity we see that the left member of (2.30) is bigger than -/?o(v),
when t11'^2 = o{y(t)), and -/3o(v) - c(d, v), when y?(*) = C^2. In view of (0.8), this
finishes the proof of (2.29), and concludes the proof of Theorem 2.1. D

We now apply our results to study certain large t asymptotics of

(2.32) r(t,x,y)=E(r{t,x,y,^}

=(2^exp{-^}

E^ [exp { - v J (l - e- ̂  ̂ -^s)^] (soft obstacles)

4° S^RIE - TOME 28 - 1995 - N° 3



ANNEALED LYAPOUNOV EXPONENTS (I) 369

with the obvious interpretation of the last formula for hard obstacles.

THEOREM 2.4. - i) if (p{t) == o^/^2), for v G R^,

limrd/d+2 log r(t, 0^(t)v) = -c(d^).t—>\j

ii) y^/^2 = o(<^)), <^) = o(t),^r ^ G R^,

lim (^(t)-1 logr(t,0^(^)=-/3o(^)
t—»00

iii)yw v € R^, lim logr(^0,^) = -.7(^).
t-^oo

Pwo/. - With the notations of (1.24), using (1.16) we find that for 0 < u < t, x e R^,
p > 0:

Eo[eXp { - V t (l - 6-^ Ty^-^)^} -pB(.,2p)(^ ^-n, ̂ ),

(2.33) Zt-. G B(r,,p)] e-^^^^l < r(t^x)

£o[exp { - ̂  / (l - e-^^ ly(z5-y)ds)^} ̂  Z,..̂ )]

with ?( ' , • , •) = ppd ( • , • , • ) . We now apply (2.33) to x = y?(t)^, with various choices of
u and p .

For i), we pick u = 1, p = 2 + H, the upperbound follows from (0.8), and the
lowerbound from (2.24), when v = 0, and from (2.30) (applied to (^(•) = y?(- + 1) with
<^(t) = 0(^+2)), when ^ ^ 0.

In the proof of ii) and iii) it suffices to consider v -^ 0. For the lowerbound, we pick
v = 1 and p = 2 + 2|v|, and use (2.22) in the case of iii) and (2.29) with ^ { ' ) = y?(- + 1)
in the case of ii), since the normalizing constant St plays no role in view of (0.8). As for
the upperbound, we pick u = 1. Then for e > 0, from the explicit form of p(l,', •)

(2.34) lim^(t)-1 log{Eo\p(l,Zt-i^{t)v), Zt-i i B{y{t)v, e^{t))] = -oo ,
t—>00

with (p{t) = t in case iii). It follows using again (0.8) that:

lim^(t)-1 \ogr{t,0,(p{t)v) <. Hm^)-1 log Qt-i(Zt-i C B{^{t)v, e(p{t)))
t—^OO t—>00

^ -_mf /3o(') by (2.8) with y/(«) = ^(- + 1) m case ii) ,
B(^,e)

^ —_inf J(-) in case iii) .
B(v,2e)

Letting e tend to zero, we now find our claim. D
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