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LIFTING DIFFERENTIAL OPERATORS
FROM ORBIT SPACES

BY GERALD W. SCHWARZ

ABSTRACT. - Let X be an affine complex algebraic variety, and let T>(X) denote the (non-commutative) algebra
of algebraic differential operators on X. Then T>(X) has a filtration {^(X)} by order of differentiation, and
the associated graded grT>(X) is commutative. Now assume that X is smooth and a G- variety, where G is a
reductive complex algebraic group. Let TTX : X —> X//G be the quotient morphism. Then we have a natural map
(Ti-x)* : (^(X))0 —> ^(X/fG). We find conditions under which (Tvx)* is surjective for all n, in which case
gr/D(X//G) is finitely generated. We conjecture that the latter is always true. We also consider generalizations to
algebras of differential operators on sections of G- vector bundles.

0. Introduction

All varieties we consider will be algebraic and defined over our base field C.
Let Z be an affine variety, and let V(Z) denote the (non-commutative) algebra of

differential operators on Z. Then V(Z) has a filtration {^(Z)} by order of differentiation,
and the associated graded grP(Z) is commutative. If Z is smooth, then gvV(Z) is finitely
generated [Bj], hence V(Z) is finitely generated, left and right noetherian. If Z is not
smooth, all of these properties can fail ([BGG], see 3.11). It seems to be difficult to
determine the properties of V(Z) in the singular case, e.g., to determine when grP(Z)
is finitely generated.

We will be considering the case where Z is a quotient: Let X be an affine G-variety,
where G is reductive. Then canonically there is a quotient variety X//G and a surjection
7^ ; ̂  _> X//G (see 1.1). Work of Kantor, Musson, Levasseur, Stafford and others has
shown that quotients of smooth varieties, although usually singular, often have well-behaved
algebras of differential operators. Their work leads one to formulate the following:

(0.1) CONJECTURE. - Let X be a smooth affine G-variety, -where G is reductive. Then
giV(X//G) is finitely generated.

One can also consider analogous problems and conjectures for differential operators on
sections of G-vector bundles. There are some new phenomena in this case (see 0.13-0.14).

Research partially supported by the NSF and NSA.

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPERIEURE. - 0012-9593/95/03/$ 4.00/© Gauthier-Villars



254 G. W. SCHWARZ

For most of this introduction we restrict ourselves to the case of "ordinary" differential
operators. We will also assume here that all of our affine G-varieties are irreducible.

(0.2) There is a canonical morphism (TT^)* : V(X)° -^ V(X//G) which respects
the filtrations by order. If (-!Vx).{Vn{X)G) = ̂ (Xy/G) for every n ̂  0 (equivalently,
if gr(TTx)* : gT(V(X)0) -^ grP(X^G) is surjective) we say that (TT^)* is graded
surjective. If X is smooth we will show that

(1) gr{V{Xf) = (gr^X))^ is finitely generated (3.19).
(2) (TTjc)* is "usually" graded surjective.

Graded surjectivity clearly implies that the conjecture holds. The main focus of our paper
is on properties of (TT^)*.

(0.3) Let X be an affine G-variety. Set k := mm{dimG^ : Gx is closed} and
/ := min{no. of components of Ga. : Gx is closed and dimGa, = k}. Let X' denote those
x G X such that Gx is closed, dimG^ = k and G^ has I components. The orbits in
X' are called principal orbits, and their isotropy groups are all conjugate and are called
principal isotropy groups (see 1.4). If k = 0, then X has finite principal isotropy groups
(abbreviation: X has FPIG). Set Xpr = ^x^^x^X')).

We have a geometric criterion for (Ti-x)* to be graded surjective, X smooth, consisting
of the following three conditions:

(1) X has FPIG.
(2) The codimension in X of X \ Xpr is at least 2.
(3) mod(X \ X(o), G) < dimX//G - 2.

Here X(Q) denotes the orbits with zero dimensional stabilizer. If Z is a G-variety,
then mod(Z, G') is the modularity of Z or the "number of parameters in the orbit
space Z/G." More precisely, it is the maximum of dim Z^ - dim G + n where
Z(n) := {z e Z : dimG^ = n}. We say that X is 2-principal if (2) is satisfied, and
we say that X is 2-large if (1)-(3) are satisfied. Note that X is 2-large if X = Xpr,
e.g., if G acts freely on X.

Our main results on (graded) surjectivity are the following:
(0.4) THEOREM. - Let X be a smooth affine G-variety.
(1) If X is 2-large, then {^x)^ is graded surjective (9.10).
(2) Suppose that G is semisimple. Consider G-modules V such that Ker(G —^ GL(W))

is finite for each non-zero irreducible G-submodule W ofV. Then, up to isomorphism, all
but finitely many V are 2-large (11.6).

Now suppose that (TT^)* is surjective.
(3) If all G-orbits have the same dimension (e.g., G is finite), or if G° is semisimple or

a torus, then X is 2-principal (6.5, 5.16 and 7.11, 10.2).
(4) IfG° is a torus, then (TT^)* is graded surjective. If, in addition, X has FPIG, then

X is 2-large (10.4).
(5) Suppose that X = V is a G-module. IfV is coregular, then V is fix pointed (5.5).

Recall that a G-module V is said to be coregular if V//G is smooth, equivalently, if
0(V) is a polynomial algebra. We say that V is fix pointed if V° ^ V//G, equivalently,
if all closed G-orbits are fixed points (1.5).
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LIFTING DIFFERENTIAL OPERATORS FROM ORBIT SPACES 255

Parts (3) and (4) generalize results of Kantor [Ka] on finite groups (see also [Lei]) and
of Musson [Mu] on tori. One is led to

(0.5) CONJECTURES. - Let X be a smooth affine G-variety. Then
(1) (^x)* is surjective if and only if it is graded surjective.
(2) If (TTx)^ is surjective, then X is 2-principal.
The property of 2-largeness has some interesting consequences for G-modules.

(0.6) PROPOSITION. - Let V be a G-module.
(1) IfV is faithful and 2-large, then its principal isotropy groups are trivial (7.7).
(2) Let V be coregular with FPIG. If V is 2-large or V \ Vpr is of codimension 3 in

V, then V is fix pointed (9.12).
(3) ([Po2], [Go], cf. [Kn]) If G is semisimple, then up to isomorphism and the addition

of trivial factors, there are only finitely many coregular V (11.7).
Regarding conjecture 0.1 we have the following:

(0.7) THEOREM. - Let X be a smooth affine G-variety. Then conjecture 0.1 holds in the
following cases.

(1) X is 2-large (9.10).
(2) X//G is smooth.
(3) G is commutative (10.7).
(4) All the G-orbits on X have the same dimension, e.g., G is finite (6.7).
There is an interesting dichotomy in (1) and (2) above. Let us just consider G-modules

for the moment. If V is 2-large, then (Try)* is graded surjective, conjecture 0.1 holds, and
V is not coregular (unless V is fix pointed). On the other hand, if V is coregular, then
we know that V(y//G) is finitely generated, etc. without needing to know anything about
(Try)*. Coregularity indicates that V is a "small" representation. Unfortunately, there are
representations in a "gray area" which are neither 2-large nor coregular. In general, we
have no tools to determine whether or not conjecture 0.1 holds in these cases. Examples
are some of the SL^-modules of the form kV 9 <(C71)* (see 11.15).

(0.8) There is another type of "small" representation; those for which the principal
isotropy groups are positive dimensional. We are sometimes able (e.g., for tori) to reduce
to the case of finite principal isotropy groups by the Luna-Richardson theorem (7.10). In
other cases we can show that lifting does not hold (7.13), i.e., (vry)* is not surjective.

(0.9) The inspiration for this paper was the work of Levasseur and Stafford ([LS],
[Le2]). They showed that conjecture 0.1 holds for the actions of the classical groups on
sums of their standard representations. More precisely:

(0.10) THEOREM ([LS]). - Let (V,G) = (fcC" C ((C^^GL,), (fcC^O,), (fcC^SOJ
or (fcC^SpaJ; fc, I ^ 0, n > 1. Then

(1) V is coregular, or
(2) (Try)* is graded surjective.

In either case
(3) V{V//G) is simple.
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256 G. W. SCHWARZ

The methods of [LS] depend upon results in the theory of enveloping algebras and
Howe's theory of reductive dual pairs [Ho], and they essentially only apply in the cases
of 0.10. Levasseur [Le2] put the results of [LS] in a more general setting, and provided
general criteria for (7ry)^ to be graded surjective. His criteria depend upon estimating the
homological codimension (depth) of certain algebras, and in the cases of 0.10, he obtains
these estimates from [LS].

(0.11) Definition. - We say that a certain collection of representations satisfies the
LS-alternative if for every (V, G) in the collection, (V, G) is coregular or 2-large (so
conjecture 0.1 holds).

In this paper, we establish the LS-alternative in the following cases:
(1) G = SL2 (11.9)
(2) For the representations in Theorem 0.10 (11.10-20).
(3) For the "classical" representations of G-z and Spn^ (11.21).
In [S7] we prove:

(0.12) THEOREM. - Let G be simple. Then irreducible representations of G satisfy the
LS-alternative.

Regarding the simplicity of V(V//G) we have the result 0.10(3) of Levasseur and
Stafford. Recently, Van den Bergh [VdB] showed that V{V//G) is simple when G = C*
(His techniques also hold for tori, although he does not work out the details). He also
considers differential operators on certain 0{V)°-mod}des of covariants. It would be
interesting to extend his work to more general group actions.

(0.13) We now consider the case of differential operators on (trivial) G-vector bundles:
Let V and W be G-modules and let E denote the trivial G-vector bundle V x W p£o^ V.
Then T^E)0, the G-invariant sections of E, is just the 0(V)° -module Mor(Y, W)° of
covariants. There is a corresponding sheaf of Oy/yc-modules £ on V//G, and we let
V£{V//G) = UnV^(V//G) denote the algebra of differential operators on £ (see §§2-3).
There is a canonical map ^E : (P^V) 0 End^W))0 -> V^(V//G) and we are able
to prove the following results.

(0.14) THEOREM. - Let V, W and E be as above. Then
(1) gr((P(V) 0 End^W))0) = (gr(P(V) 0 End^W)))0 is a finite gr (p(Vf)-module

(3.19).

(2) Suppose that V is 2-large. Then (ivy)^ and 7rv,E are graded surjective, hence
grP^yy/G) is a finite grV(V//G)-module, where grP(V//G) is finitely generated (3.20
and 9.10).

This result is somewhat surprising. One expects that Vs(X) is nasty for the general sheaf
of Ox -modules £ on an affine variety X. For quotients of G-modules which are 2-large,
there are a huge number of sheaves £ with Ve finitely generated. Theorem 0.14 generalizes
to the case of G-vector bundles E over smooth affine G-varieties X, as do many of our
other results. However, not all of theorem 0.7 generalizes. For G = C* and G = SLn we
give examples of V and E = V x W such that V is coregular and gr2^(Y//G) is not
finitely generated over any finitely generated commutative algebra (3.27-28). Moreover,
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LIFTING DIFFERENTIAL OPERATORS PROM ORBIT SPACES 257

some of these examples just "barely" miss being 2-large. Thus, in the case of G-vector
bundles, the condition of 2-largeness is close to being necessary as well as sufficient for
gTVs(Y//G) to be finite over a finitely generated commutative algebra.

(0.15) The contents of this paper are as follows. In §1 we recall fundamental properties
of quotient spaces and Luna's slice theorem. In §2 and §3 we discuss G-vector bundles and
properties of differential operators on G- vector bundles. In §4 we reduce conjecture 0.1 to
the case of representations. More specifically, we show that (Trjc)* is (graded) surjective
if and only if the analogous property holds for all the slice representations of X. In §6
we discuss the connection between the conjecture for G and G°. In particular, we handle
the case when G is finite.

In §5 we consider properties of (Ti-x)* when X//G is smooth, and §7 is devoted to
considering representations which have positive dimensional principal isotropy groups. In
§8 we develop homological criteria which are sufficient for graded surjectivity and which
also enable us to determine the kernel ^(X)0 of (TTjc)*. These criteria require certain
collections of functions to be regular sequences in 0(T*X). In §9 we show that these
criteria hold if X is 2-large. In §10 we consider representations of tori, and in §11 those
of SL2 and of the classical groups. In §12 we apply our results to the Nakai Conjecture.

(0.16) The results of this paper (in the case of "ordinary" differential operators)
were announced in [S6]. In [S6] we attached a slightly different meaning to the term
"LS-altemative."

(0.17) I wish to thank T. Bloom, M. Brion, H. Kraft, V. Popov, T. Stafford, M. Van
den Bergh and several referees for their help and comments.

1. Quotient Spaces and Stratifications

The symbol G will always denote a reductive complex algebraic group.
(1.1) Let X be an affine G-variety. (We will sometimes write (X, G) in place of X to

emphasize the group involved. We do not assume that X is irreducible, but make a related
assumption in 1.3 below.) The algebra 0{X) of G-invariant polynomial functions on
X is finitely generated ([Kr, 11.3.2]). Let X//G denote the corresponding affine variety,
and let TT^G (o1' Just Ti-jc) denote the morphism X —> X//G corresponding to the inclusion
0{Xf C 0(X).

(1.2) PROPOSITION (see [Kr, 11.3.2] or [MumF, Ch. I §2]).
(1) ImTTx = X//G.
(2) TTx separates disjoint closed G-invariant algebraic subsets of X.
(3) Every orbit contains a unique closed orbit in its closure, and TTX sets up a bijection

between the closed orbits in X and the points of X//G.
(1.3) Throughout this paper we will always assume that the group G acts transitively

on the irreducible components of the affine G-varieties that we consider. If X is an affine
G-variety, then our assumption gives that X = GXo where XQ is an irreducible component
of X. Let Go denote [g G G : gX^ = Xo}. Then X//G ^ XQ//GQ is irreducible.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



258 G. W. SCHWARZ

(1.4) Let x G X. Then Gx denotes the isotropy group of G at x, and (Ga.) denotes its
conjugacy class in G, which we also call an isotropy class of X. We say that an isotropy
class (and its conjugacy class) are closed if the corresponding orbit Gx is closed. Then Ga.
is reductive (Matsushima's theorem, see [Lul] or [PS]), and there are only finitely many
closed isotropy classes of X ([Lul]). If (H) is a conjugacy class of subgroups of G, then
we let (X//G)(H) denote the points in X//G corresponding to closed orbits with isotropy
class in (H), and X^ denotes its inverse image in X.

The isotropy classes are partially ordered, where (L) <_ (M) if L is conjugate to a
subgroup of M. Since X//G is irreducible, there is a unique minimal closed isotropy class
(H), the principal isotropy class [Lul]. We call H a principal isotropy group, and closed
orbits Gx with Gx G (H) are called principal orbits. The subset (X^G)pr C X//G of
principal orbits is Zariski open and dense, and Xpr := (^X^^^XI/G)^) is open and
dense in X.

(1.5) We say that X is a fix pointed G-variety if all the closed G-orbits are fixed points.
Equivalently, the canonical injective morphism X° ̂  X//G is an isomorphism. If X is
a G-module, then clearly X is fix pointed if and only if {0} is a principal orbit.

(1.6) Assume that X is smooth, and let Gx be a closed orbit in X. Let H denote Gx'
Then the tangent space T^(Gx) is isomorphic to fl/(), where 5, t) denotes the Lie algebra
of G, H, respectively. Since H is reductive, we have an Jf-decomposition

r,(X)^7Vefl/f).

The representation A := ( N , H ) is called the slice representation of H at x, or the slice
representation at x. Luna's slice theorem (see below) shows that the isomorphism class
of the slice representation of H is constant on components of ( X / / G ) ( ^ H ) ' We denote by
(X//G)\ the union of the components of (X//G)(H) with slice representation A. Since
X//G is irreducible, the principal stratum is connected, so the slice representation of a
principal isotropy group is uniquely determined. In fact, the principal orbits are exactly the
closed orbits whose associated slice representations are fix pointed.

(1.7) Suppose that X = V is a G-module. Then the H -module TV of 1.6 is uniquely
determined by ff, since T^(V) ^ V as H-modu\e. Thus the stratifications of V//G by
"isotropy type" (i.e., by the (V//G\H)) and "slice type" (by the (V//G)\) coincide. If
(L) and (M) are closed isotropy classes, then (L) <_ (M) if and only if the closure of
(V//G)(L) contains (V//G)(M) (see [S3, §5]). An important role is played by the null cone
Mc(V) := Try-^O)).

(1.8) Let H be a reductive subgroup of G and Y an affine ^-variety. We denote by
G^Y the quotient of Gx Y by the ff-action: h(g, y) = (gh~1, hy), h € H, g C G, y C Y.
The orbit of ( g , y ) is denoted [g,y]. Now G ^H Y is a G-variety (obvious G-action), and
(G ^H Y ) / / G ̂  Y / / H . If V is an if-module, then G ̂ H Y is a G-vector bundle (see §2).

(1.9) Let p : P —^ Z be a surjective morphism of varieties. We say that p is a
fibration with fiber F if there is an etale surjective map (p : Z ' —> Z and an isomorphism
( p ' . Z ' X z P ^ Z ' x F preserving the projections to Z ' . If G acts on F and on P preserving
the fibers ofp and (p is G-equivariant, then we say that p is a G-fibration. If, in addition,
G acts freely on the fibers of p, then p : P —^ Z is called a principal G-bundle (by
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LIFTING DIFFERENTIAL OPERATORS FROM ORBIT SPACES 259

convention, one assumes that G acts on the right in this case). If p is a principal G-bundle
and V is a G-variety, then the quotient P *G Y is a fiber bundle with fiber V, where the
G-action on P x Y is given by g{p, y) = {pg^.gy), 9 G G, p G P, y G V.

Suppose that ff is a reductive subgroup of G?. Then H acts on G on the right in
the obvious way, and the quotient G / / H is the coset space G / H . One can easily show
that G -^ G / H is a principal H -bundle. If Y is an affine ^-variety, then the G-variety
G *^ V is a G-fiber bundle over G / H .

(1.10) Remark. - Fiber bundles are not necessarily locally trivial in the Zariski topology,
although they are in the usual Hausdorff topology. For example, the Z/2 quotient C* -^ C*
is a principal bundle, but is certainly not locally trivial in the Zariski topology. For certain
G (special groups [Gri]) any principal G-bundle is automatically locally trivial in the
Zariski topology. For example, SL^(C) and GL^(C) are special.

(1.11) PROPOSITION ([Lul]). - Let X be a smooth affine G-variety, and let Z denote
X//G. Let \i = {Ni.Hi) represent the slice representations of X, and let Zi denote Z\,,
i = 1,. . . , r. Write Ni as a direct sum of Hi-modules: N, = N^ C N^. Then

(1) The Zi are locally closed smooth subvarieties of Z.
(2) The map X, := TTx'^Zi) -^ Z, is a G-fibration with fiber G *^ A/"^(7VJ).
We now present a version of Luna's slice theorem ([Lul], [Sl]).

(1.12) Definitions. - Let X and Y be affine G-varieties. A subset Z of X is said to be
G-saturated if Z = TTx^^xW). A G-morphism (p : X -^ Y is said to be excellent if

(1) (p is etale,
(2) the induced morphism y / / G : X//G -^ Y / / G is etale, and
(3) the morphism (^,7Tx) : X -^ Y XY//G X//G is an isomorphism.

(1.13) Remark. - If y? is excellent, then clearly it induces an isomorphism of the fibers
over 7Tx{x) and 7ry((/?(rc)), x G X. Thus i p / / G preserves isotropy type, and it preserves
slice type if X and Y are smooth.

(1.14) THEOREM (Luna). - Let X be an affine G-variety, Gx a closed orbit, and let
H denote Gx.

(1) There is a locally closed affine H-stable and H-saturated subvariety S ofX containing
x such that U := G • S is a G-saturated affine open subset ofX. Moreover, the canonical
G-morphism

^:G^ S ->U CX

[g^]^gs

is excellent.
Now suppose that X is smooth at x, and let {N, H) denote the corresponding slice

representation. Then
(2) S is smooth at x and the H-modules T^S and N are isomorphic. Possibly shrinking

S we can arrange:

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPfiRIEURE



260 G. W. SCHWARZ

(3) There is an excellent surjective H-morphism ^ : S —> Nf which sends x to 0,
inducing an excellent G-morphism

r ' . G ^ S - ^ G ^ N f ,

where f C 0{N)11 and /(O) ^ 0.

(1.15) Remark. - Let X, etc. be as in (2) and (3). Then Luna's slice theorem says
that, up to excellent maps, X is locally isomorphic to affine open subsets of G-vector
bundles of the form G ̂ H Nf.

(1.16) COROLLARY ([Lul]). - Let X be an affine G-variety where G acts freely. Then
X —> X//G is a principal G-bundle.

2. G-Vector Bundles

We assume that the reader is familiar with the notions of algebraic vector bundles and
bundle maps. In this section we assume that X is an affine G-variety.

(2.1) Definition. - A G-vector bundle over X is a vector bundle E over X such that
(1) E is a G-variety.
(2) The projection PE '. E —> X is G-equivariant.
(3) The elements of G act on E as vector bundle maps. In other words, for all g € G

and x G X, g maps the fiber Ex at x linearly to the fiber Egx at gx.
We denote the sections of E over U C X by T{U,E) and abbreviate T{X,E) by

r(jB). The functor U i—^ T(U^E} is a coherent sheaf of 0^-modules, which we denote
by E_. There is also the coherent sheaf £ of 0^//G-mod\des associated to E, where
F(i7,f) = T^x-^U^E)0, U C X//G an open set.

Given G-vector bundles E and F over X, we have natural G-vector bundle structures
on Hom(F, F), E 0 F, etc.

(2.2) We call a G-vector bundle E over X trivial if it is isomorphic to a G-vector
bundle Qw := X x W —> X where W is a G-module and the G-action is diagonal. Note
that the G-invariant sections of Qw are isomorphic to Mor(X, W)°, the O^X^-module
of covariants of type W* (usually W is assumed irreducible, but we will not require this).
We use lx (or Ix.c) to denote the trivial bundle, i.e., the trivial G-bundle whose fibers
are isomorphic to C with trivial G-action.

While not all G-vector bundles are locally G-isomorphic to trivial G-bundles, they do
have a nice local form.

(2.3) LEMMA. - Let E be a G-vector bundle over X, and let Gx be a closed orbit. Choose
a slice S at x as in 1.14, so that there is an excellent map ^ ' . G ^ S — ^ U C X . H ^ Gx.
Set W := Ex, an H-module. Then, after perhaps shrinking S, we have an isomorphism of
G-vector bundles ^{E} ̂  (G *^ (S x W) pr^ G *^ S).

Proof. - Since E\ox ^ G ̂ H W, we have a G-isomorphism <I> of G ̂ H (5 x W) and
y * ( E ) defined over the closed G-invariant subset G ̂ H {x} C G ̂ H S. Then <& extends
to a morphism (also called $) of vector bundles over G ̂ H S, and applying the Reynold's
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LIFTING DIFFERENTIAL OPERATORS PROM ORBIT SPACES 261

operator, we may assume that $ is G-invariant. Since $ is an isomorphism on Gx, it is a
G-isomorphism on a G-neighborhood of Gx, which we can assume to be all of G ^H S. D

If E is a G-vector bundle over a G-module V, then there is an open cover {U^} of V//G
such that E\^-i(jj^ is trivial for all a ([Kr2]). However, E may fail to be trivial ([S5]).

(2.4) There is a 1-1 correspondence between vector bundles over X of fiber dimension
n and principal GLn -bundles over X. If E —^ X is a vector bundle, then the associated
principal bundle PE —> X has fibers {PE^X = {bases of E'a;}, a; G X. Given a principal
GL^-bundle P, then P *GL7^ Cn is the associated vector bundle. If E is a G-vector bundle,
then G acts on P£; such that PE —> X is equivariant, and the actions of G and GLn
on PE commute.

Suppose that E is a vector bundle on X^G. Then E := 7Tx*(E) is a G-vector bundle on
X such that Gx acts trivially on Ex for every closed orbit Gx in X. Conversely, we have

(2.5) PROPOSITION ([Kr2]). - Let E be a G-vector bundle on X such that Gx acts trivially
on Ex for every closed orbit Gx in X. Then E c^. 7tx*(E) for some vector bundle E
on X//G.

Proof. - Let ^ : PE -> X be the principal bundle of E. Then y / / G : P E / / G -^ X//G is
the quotient by GLn. The condition on E assures that GLn acts freely, hence ( p / / G is a
principal GL^-bundle, and E := {PE//G) *GLrl C71 is the required vector bundle on X//G.

(2.6) Definition. - Let £ be a G-vector bundle over X. We say that E is admissible
if Gx acts trivially on Ex whenever Gx is a principal orbit. (Recall that principal orbits
are closed.)

(2.7) Remarks.
(1) lx is always admissible.
(2) If X has trivial principal isotropy groups, then all G-vector bundles on X are

admissible.
(3) E is admissible if and only if T(E) evaluated at x spans Ex for every principal

orbit Gx.
(4) E is admissible if and only if E\x^ is the pull-back of a vector bundle on (X//G)^.
(5) E is admissible if and only if E \ jCp, is locally G-isomorphic to a trivial bundle

Xpr x C7' —^ Xpr, where G acts trivially on C7'
Suppose that X = V is a G-module and that E = Qw is a trivial G-bundle. Let H

be a principal isotropy group of V. Then
(6) E is admissible if and only if H acts trivially on W.
(7) If G is finite, then H = Ker(G -^ GL(V)).
(8) (Exercise in using the Luna-Richardson Theorem ([LR]), cf. 7.2). If E is admissible,

then r(E)0 = Mov^W)0 ^ Mor^HQ^W/^.
"Most" affine G-varieties have trivial principal isotropy groups, so admissibility usually

holds. We found it difficult to make meaningful statements about differential operators on
sections of nonadmissible G-vector bundles (see 3.23, 5.4). In a very few cases, however,
we can work around the problem of nonadmissible bundles (see 5.2-3, 6.7, 7.10). The
reader who prefers to consider only differential operators on functions can always assume
that E = l x '
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3. Differential Operators

We recall the basic definitions and properties of algebras of differential operators on
sheaves on a variety X ([Lei], [Bj], [Gr2], [SmSt] and [Sw] are references for what
follows). We then consider some properties of differential operators on G-vector bundles
over G-varieties.

(3.1) Let A be a localization of a finitely generated commutative C-algebra, and let
M and N be A-modules. If P € Homc(M, N) and a 6 A, then [P, a] denotes the usual
commutator: [P,a](m) = P(am) - a(P(m)), m G M. Define D^{M,N) == 0 for n < 0,
and for n > 0 indued vely define:

D^M.N) = {P G Homc(M,AO : [P,a] G D^~\M,N) for all a G A}.

Clearly, D°^M, N) = HomA(M, N). An element of D^M, N) is called a differential
operator from M to N of order at most n. An element of D^{M,N) \ D^^M.N)
is said to have order (exactly) n. Note that D^{M,N) C D^^M.N) for all n.
We call D^{M,N) := \JD^(M,N) the differential operators from M to N. We set
D^(M) := D^M.M) and D^(M) := D^{M,M).

Let P G D^{M,N) and let a G A. Then aP and Pa are in D^(M,N), where
(aP)(m) := a(P(m)), (Pa)(m) := P(am), m G M. We call the action P ̂  aP (resp.
P i—^ Pa) the left (resp. right) action of A on D^(M,N), and we speak of the left
(resp. right) A-module structures on J9^(M,7V) and 25^(M,7V). We always use the left
A-module structure.

(3.2) PROPOSITION. - Let M, N and R be A-modules.
(1) (see 3.4 below). IfM and N are finite A-modules, then so is each Z^(M, TV).
(2) ([Gr2, 16.8.9]). //P G D^M.N) and Q G D^[N,R\ then QoP G D^rn(M,R).
(3) ([Lei, L2]). IfM = N = R = A, then [Q,P] := QoP - PoQ G ir^-^A).
From 3.2(2) we see that DA^M) is a C-algebra, called the algebra of differential

operators on M.
(3.3) As in the case of smooth manifolds, there are universal differential operators

of order n. Set A := A (g)c A and M := A 0c M. Give M the A-module structure
such that (a 0 a') (a" 0 m) = aa" 0 a'm; a, a7, a" G A, m G M. Let I A
denote the kernel of the multiplication mapping A —> A sending a 0 a' \—> aa\ a,
a' G A. Define P^ ̂  := M/I^M and define j^ ̂  '' M -^ P^ by the formula:
j'^^(m) = 1 (g) m + J^M. We give P^M ̂  A-module structure induced by
multiplication on the first factor of M = A 0c M. We denote P^ ̂  by P^ and j^ A
by jl.

(3.4) PROPOSITION. - Let J"A M '. M —^ P^j^ be as above. Then
(1) ([Gr2, 16.7.3]). IfM is a finite A-module, then so is P^M'
(2) ([Gr2, 16.8.2]). J^M ^ DW^P^).
(3) ([Gr2, 16.8.4]). j^ is universal, i.e., ifN is an A-module and Q G D^M, N), then

there is a unique q G Hoir^P^ Mi ̂ 0 sucn tnat Q = (103rA M' ^n otner ^ords, q i—> qoj^ ̂
induces an isomorphism of HomA(P^ M ?^0 w1^1 ^K^^O-
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(3.5) PROPOSITION. - Suppose that (A, Wl^.) is local with A/Wl^ = C. Let M be a finite
A-module. Then

(1) M/W^M ̂  (A/9JIA) 0c M/Wl^M -. P^M/^AP^M

m + aJt^M ̂  1 0 (m + OTT^M) ̂  (1 0 m + 9^?^)

;51 an isomorphism of vector spaces over C = A/SJtA-

(2) ^(M,A/9JtA) ^ (M/SOT^M)*.

Proof. - As A-module, JA is generated by elements a 0 1 — 1 0 a, where a € S^A-
Thus, modulo WA 0c M, J^M is generated by 1 (g)c aJT^M, and

p^/ajtAP^M ̂  (A 0c M)/(a7tA 0c M + A 0c art̂ M)
^ A/9JtA 0c M/ajT^M,

giving (1). Part (2) follows from 3.4(3). D
(3.6) All of the notions above localize nicely: Let 5 be a multiplicative subset of A,

and let Ms denote S^M. Then j^ ^ : M —^ P^ ̂  canonically gives rise to a differential
operator {j^^s : Ms ̂  As 0A P^M which can be identified with j^ : Ms -^ PIs.Ms
(see [Sw, §13]). In particular, the P^g^Ms ^rve rise to a sheafon SPec A which is canonically
identified with the sheaf corresponding to the A-module P^M' Let TV be an A-module,
q e HomA(P^M^) and Q = qoj^ ^ D^(M^N). Set '

qs := id 0 q : As 0A P^M ̂  ^s.Ms -^ ̂  ^A N,

and set Qs := qs^s ,Ms e D^{Ms,Ns). The homomorphism Q ̂  Qs gives rise to
an isomorphism of As 0A D^{M,N) with 1)^5(^,^5).

(3.7) Because of 3.6, one can define differential operators on varieties; we briefly sketch
the definitions. Let X be a variety and let T be a coherent sheaf of Ox-modules. Let
JF denote the tensor product Ox <^c 7 with the obvious Ox 0c Ox ^ Ox xx -module
structure. Let Ix denote the sheaf of Oxxx -ideals of the diagonal X —^ X x X. For each
n ^ 0, define P^ to be the quotient ^/{Ix)^1^' We give 7^ the Ox-module structure
induced by multiplication on the first factor of Ox ̂ c^' Define V^p to be Home^ (^ • '̂)-

Let U be an affine open subset of X. Set A := Ox(U) and M := T{U^}. Then
there are canonical isomorphisms of T(U,V"p} with JD^M), n >, 0. Applying the "local"
results in 3.1-3.6 we see that Vy := \JV}- is an Ox-algebra, the sheaf of differential
operators on T. The Ox-modules V^p are coherent, while Vy is quasi-coherent. Let
P^-(X) = r(X,P^.) and P,r(X) == Up?•(x) denote the global sections. If T -=- Ox.
then we use the notation ^(X), 'D(X), etc.

(3.8) EXAMPLE. - Let A := 0(0^) = C[a;i, . . . , xj,}. Then I5(A) is the kth Weyl algebra,
i.e., the noncommutative algebra C(a; i , . . . , Xk, 9i , . . . , Qk) generated by the Xi and the
9j := 9 / 9 x j . Note that grZ5(A) ^ C[rri , . . . ,Xk,y\,... ,^] is a polynomial ring. If
a = ( a i , . . . , 0 f c ) e N^, let |a| denote V^Oi, let a! denote a i S - ' - a f c ! , let re0' denote
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x^ ' " x ^ and let Q^ denote 9^ ' - 9 ^ . Then every element Q G Dn(A) is a sum
^ a^ where the a^ are in A. The (nth order) symbol ofQ is Y^ Oa^0'.

[c»;|<n

We now describe P;p etc. Let a; G C^ and let 9J^ denote the corresponding maximal
ideal of A. Then, by 3.5-6, we can identify P^/2)t,P^ with J^ := A/9J^+1 = {nth
order Taylor series at x of elements of A}. Thus P^ is the module of sections of the trivial
bundle J71 over C^ whose fibers J^ are all isomorphic to C 9 (C^)* C • • • C S^C^)*. If
/ G A, then j'3(/) is the section of J71 whose value at x is the nth order Taylor series of
/ at x. If q G HomA(P^A), then q is uniquely determined by the values a^(v), v G C^,
|a| ^ n, where (a!)a^(v) = qU^x - v)0'))^). The corresponding differential operator
Q = 9°j3 ls. as expected, V^ 0^9°'.

o'<n

(3.9) Remarks. (1) Suppose that B = A/J where I is an ideal in A := 0(0^). Let
P G ^(-B). Then the composition A -> B -^ B is a differential operator P7 = ̂  aaS0

|a|^n

where P\I) = 0 and the a^ are in B. Lifting the a^ to A we obtain Q G ^(A)
which induces P. It follows that ^(B) is the quotient of {Q G ^(A) : Q(J) c J}
by ^(AJ) = J.^(A).

(2) Let F = A" be a free A-module and N a submodule. Then, as above,
one shows that D^(F/N) is the quotient of {Q G D^{F) : Q(N) c N} by
DWN) = HomA(F,7V)^(F).

(3.10) EXAMPLE (T. Stafford). - Let A == C[x, y\ and let M = rrA+^/A, the homogeneous
maximal ideal. We show that DA^M) is not left noetherian: Let Q G DA^M). Since
Mx = Aa; (localization), Q extends to a differential operator Qx G -D(Aa;) which preserves
M C Ay,. Similarly Q gives rise to Qy G D(Ay) preserving M. Write Qx = Y^ daQ0',

_ 0;
da G Aa; and Qy == ^60,9°, 6^ ^ Ay. Since Qa; = Q^ on M^y = A^, we have

Q

^a = &a ^ A for all a. Thus Q is simply an element of -D(A) which preserves M C A.
Hence DA<,M) = C + aLD(A) + yD(A) C D{A). By Resco [Re], DA<,M) is finitely
generated and right noetherian, but not left noetherian. In fact, DA^M) is generated by
Z)^(M) and the left ideals 4 generated by x(9/0y)\ 0 < i < fc, form an increasing
sequence which does not stabilize.

(3.11) We now consider the BGG example: Let X be {x3 + y3 + z3 = 0} C C3. Then
00

0{X) =: A = ^A^ is a graded algebra. Let V^{X) denote the elements of ^(X)
n=0

which send elements of An to An+j for all n. Then in [BGG] one finds a proof that:
(1) V^X) - 0 for j < 0.
(2) V{X) has an infinite ascending chain of two-sided ideals.
(3) Z>(X) is not generated by P^X) for any k.

(3.12) Remarks. - (1) If Y = V//G is a quotient of a G-module V, then for every
0 / / G 0(r), there is a Q G V(Y) such that Q(f) = 1: Since / G S^V*)0, we may
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choose a dual element P e S*(V)0 C {constant coefficient differential operators} so that
P(/) = 1. Set Q = (7Ty)*(P).

(2) (T. Bloom) The BGG variety X fails to have the property in (1), because of 3.11(1).
Thus X cannot be a quotient. It is known that X does not have rational singularities, so
it cannot be a quotient for this reason. However, one can modify the BGG example to
have rational singularities ([LS, 0.13]).

We now consider differential operators on sections of vector bundles.
(3.13) Let E be a vector bundle on X. We have the associated coherent sheaf E_ of

Ox-modules. We will usually use the notation V^ for VE_ and ^E for PE. Note that the
zeroth order differential operators on E are just r(End(£)).

(3.14) Assume that X is smooth, let x G X and let x ^ , . . . , Xn G 0{X) generate 9Jta.,
the maximal ideal of Ox,x, where n = dimX. Then T)\ (the germs at x of differential
operators of order at most 1) is freely generated over Ox,x by the function 1 and the vector
fields 9 / Q x - L , . . . , 9 / 9 x n , and V^ is freely generated by all monomials in the Q/Qxi of
degree at most n ([Gr2]). Thus 2^/^T1 ^ r{X,Sn{TX))^

This generalizes to the case of differential operators on a vector bundle E on X. We
have the exact symbol sequence

0 _ V^-\X) -^ V^X) "S 0(T*X), 0o(x) r(End(£)) -. 0,

where 0(T*X)^ ^ I^X^TX)) denotes the elements of 0(T*X) homogeneous of
degree n with respect to the scalar action of C* on T*X. The homomorphisms a^ are
called the symbol maps. If P G 2^(X), e G E, and ^ G T;X, the value of ^(P)(Q(e)
can be computed as follows: Choose s G F(E) such that s{x) == e, choose / G 0(X) such
that f(x) = 0 and df(^) = ^. Then a^(P)(0(e) = P^s^x). The symbol map gives an
isomorphism of grP^X) with 0(T*X) 0o(x) r(End(£)).

(3.15) Let V and X be affine varieties, and let E be a vector bundle on Y x X. Then
T>E(Y x X) has a bifiltration {^^^(V x X)}, where the (n, m)th subspace consists of the
elements P G P^^V x X) such that any (n + l)-fold (resp. (m + l)-fold) commutator
of P with elements of 0(Y) (resp. 0{X)) is zero.

(3.16) LEMMA. - Let Y and X be affine, let E be a vector bundle on X, and let pi (resp.
p-^) denote projection onto the first (resp. second) factor of Y x X. Then

(1) 0(V) ^c WX) ^ V^(Y x X).

(2) There is a projection ofO(Y x X)-modules, p : ̂ ^Y x x) -^ ̂ E^Y x x^
where p(P)(f ^ s) = p^f) ' P(P^)\ P ^ ̂ E^ x x^ 8 G r^ E\ f G 0(Y).

(3) p is a left inverse to the natural inclusion V^^Y x X) C V^^(Y x X).

Proof. - Set A := 0(Y), B := 0(X), M7 := r(X,£), R := A 0c 5 and
M := A 0c M' ^ R 0a M'. Set ^"(M) := {Q G D^(M) '. [Q,a] = 0 for all
a G A}. Set M := R 0c M (resp. M7 = B 0c M7) with {R 0c P)-module (resp.
(P 0c B)-module) structure as in 3.3. There is a canonical J%-module mapping

R ̂ B PS,M' ~^ P^M
(a 0 &) (g) (b' 0 m1 + (^+1M/)) ̂  (a ̂  6&/) ^ (1 ® m/) + ̂ +1M-
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Composition with a gives an Ji-module morphism

p : D^{M) ̂  Hom^P^M) ̂  Rom^R^B P^M^-K^B M')
^ A 0c Hom^P^M/^) ^ A 0c DW).

The projection p of (2) is just p followed by the inclusion

0(Y) 0c WX) ̂  A 0c ̂ W - ̂ 'W ^ ̂ )(^ x X).

Since p is the identity on V^^{Y x X), we have (1), (2) and (3). D
(3.17) Suppose that <& : E —^ E is a vector bundle isomorphism over y? : X —^ X.

Then <I> induces an isomorphism <!>„ on r(£'), where $^(/5) = (/(^"^(^o.soy?"1),
/ G 0(X), 5 G r(£'). On r%(X) we have the isomorphism $^, where ^(/.Q) ==
(/o^H^oOo^-1), / e 0(X), Q e 2^(X).

We now suppose that E is a G-vector bundle over the affine G-variety X. The action
of each g € G gives a bundle isomorphism Tg over g : X —^ X, and we define ^Q
for Q G P^(X) to be (r^Q. Then {gh)Q = ^(/^Q), hence P^(X) and D£;(X) are
G-modules.

(3.18) PROPOSITION. - Let E be as above. Then T>^{X), m >_ 0, is a locally finite
G-module. That is, V^(X) is the union of finite dimensional rational (i.e. algebraic)
G-modules.

Proof. - Let ^2 '- G x X —> X be projection. Consider the isomorphism (p : G x X —^
G x X, ( g ^ x ) ^—> { g ^ g x ) . Then there is a vector bundle isomorphism <I> : p^E —> p^E
over (p, sending {g} x Ex to {g} x Egx via the action of g. Let Q G P^(X). Then
1 0 Q G 0(G) 0 P^(X) ^ ^^)(G x X), and p(<^(l 0 Q)) C 0(G) 0c ̂ (^).
Unwinding the definitions, we see that there are fi e 0(G) and Qi e P^(X), i = 1,. . . , r,

r

such that ^Q = y^ fi{g)Qi. Hence P^(X) is a locally finite G-module. D
1=1

(3.19) THEOREM (cf. [Bj, Ch. 3], [MR, §15]). - Let X be a smooth affine G-variety and
E a G'vector bundle on X. Then

(1) g^I^X)6') = (gr^X))6' is a finitely generated commutative C-algebra.
(2) gr^EW0) == (grP^X))0 is a finitely generated gi(V{X)°)-module.

Proof. - Since X is smooth, grP^X) c^ 0(T*X) 0o(x) F(End(^)) is a finite
0(r*X)-module, where 0(T*X) ^ grP(X) is finitely generated commutative. We get
the analogous result for gr^^X)0): Reductivity of G shows that

(a) g^VEW0) ̂  {grVEW^ ^ (0(T*X) ̂ ow ^(E^d(£)))G.
(b) (0(T*X) 0o(x) ^(End(^)))G is a finite O^X)0 ^ (grP(X))G-module. D

From now on we use grV^X)0 as shorthand for gi^T^X)^ = (gr^Z))^ and
similarly for grI^X)0.

(3.20) PROPOSITION. - Let X be an affine G-variety and E a G-vector bundle on X.
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(1) The restriction map

VE(Xf 3 Q ̂  Q\r(E)o=rw

induces a homomorphism ^x,E : T^E^X)0 —-> V^(X//G) which preserves the filtrations
by order of differentiation.

(2) IfX is smooth and TTx^V^X)0) = V^{X//G) for every n (we say that TTX^E is
graded surjective), then gTVs(X//G) is finite over grP(X) .

(3) If X is smooth and both TTX.E ^d (TTjc)* = ^x,\x are §raded surjective, then
grT>f:(X//G) is in a natural way a finite grV{X//G)-module.

Proof. - Parts (1) and (2) are obvious. Let P € ^(X)0 and let PE G V^X)0 have
symbol ̂ (P^id^. Suppose that (7Tx)*P G Vn~l{X//G). To establish (3), we must show
that TTX EPE e /D^~1{X//G). This is obvious if n = 0. If n > 0, let / (E 0{X)°. Then
^E~\[PEJ}} = ̂ ([PJD^id^. Since (7TxWf}_= [^xWf\ C P-W/G),
induction gives that Ti-x £;[?£;,/] = [^x EPE^f} ^ ̂  2{X//G). since / is arbitrary,
WPE e vrl{x//G)• D

(3.21) Let E, £, etc. be as above, and let /C^(X) denote the elements in V^{X)
which act trivially on ^{E)G. Set )CE{X) = U^W- Then ^W0 is the kernel
of 7Tx,E : VEW0 -^ Vs{X//G), and similarly for IC^X)0. In order to show that
^X,E '- ^{X)0 —^ V^(X//G) is surjective, it is obviously very useful to have a good
description of /C^(X). Assume that G acts almost faithfully on E. Then we may consider
Q as a subspace of /C^(X) (by differentiating the action of G on F(E)), and clearly
P^"'1^)^ C /C^(X). In §8 and §9 we find conditions guaranteeing equality when X
is smooth.

(3.22) Remarks. - Let A G S.
(1) An easy calculation shows that a^(A) = a1 (A) 0 id G T{TX 0 End(£)), where

a1 (A) is the symbol of A as a differential operator on functions.
(2) If x lies on a principal orbit and E is admissible, then we may choose

5 i , . . . , 5 y < G I^i?)6' such that they give a basis of sections of E near x. If 5 is a
r r

section of E near x, then s = V^ fiSi for some functions /,, and A{s) = ̂  A{fi)si. In
i=l i=l

other words, near x, A can be identified with its symbol.

(3.23) Remarks. - Let E be a G-vector bundle on X.
(1) Let Gx be a principal orbit, and write Ex = E^ 9 E^ as Gx -module. Then

End^)^ = End^f") C End^)^, and /C^X)6' evaluated at x is isomorphic to
End^)^. The latter is nonzero if and only if E ' ^ 0. It follows that ^{X)0 = 0
if and only if E is admissible. Hence, if E is not admissible, one cannot hope to have
(P^W^)0 = ̂ (J^ for all n.

(2) In example 5.4 we will show that if E is not admissible, then TTX.E can be surjective
without being graded surjective.

(3.24) Let X, E, etc. be as above. We say that TTX.E is surjective (resp. n-surjective)
if TTx^WX)0) = Ve(X//G) (resp. ̂ E^X)0) = 2^(X//G)). Recall that ^E
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is graded surjective if TTX,E is n-surjective for all n. We say that E is good if Ti-jc £;
is surjective, n-good if TT;̂  is n-surjective and JC^X) = P^'^Z)^, and very good
if it is n-good for all n. The notation "(n-surjective" will denote "n-surjective (resp.
surjective)," and similarly for "(n)-good."

In light of remark 3.23 we say that X is good (resp. n-good, resp very good) if E is
good (resp. n-good, resp. very good) for every admissible G-vector bundle on X. Note
that all these definitions make sense even if X is not smooth. However, we will be mostly
interested in the smooth case.

The following generalization of 0.5(1) seems reasonable.

(3.25) CONJECTURE. - Let E be an admissible G-vector bundle over the smooth affine
G-variety X. Then TTX.E is surjective if and only if it is graded surjective.

(3.26) Remark. - The most natural generalization of conjecture 0.1 would say that
gj'V^(X//G) is finite over some finitely generated commutative algebra whenever E is
an admissible G-vector bundle over X and X is smooth. But this is false (see 3.27-28
below). Even the LS-altemative (X//G is smooth or X is 2-large) is not sufficient. One
needs to add to smoothness of X//G the condition that TTX is equidimensional (see 5.2-3).
If we are considering a G-module V, then the condition is that either V is cofree (see 5.1)
or V is 2-large. This stronger version of the LS-altemative follows from the usual one
whenever coregular representations of G are automatically cofree. For example, this holds
for irreducible representations of the simple algebraic groups.

(3.27) EXAMPLE. - Let G = C* act on V = C3 where there are coordinate functions 5, t
and u transforming by weights 1, 1 and -1, respectively. Let W be the one-dimensional
G-module of weight 1 and set E := Qw Then A := 0(V)° = C[x, y] where x == su and
y = tu, and M := r(E)° is generated over A by s and t with the relation xt == ys. Note
that V is coregular (so V satisfies the LS-altemative) and that M is A-isomorphic to the
homogeneous maximal ideal xA + yA. By example 3.10, DA(M) is not left noetherian.
Hence ^DA^M) (which is commutative) is not finitely generated. Of course, (V,G) is
not 2-large, but it is 1-large, that is, the conditions of 0.3 hold with the twos in 0.3(2-3)
replaced by ones.

(3.28) EXAMPLE. - Let (V, G) = ((n + 1)C71, SLn) and W = (C", SL^), n > 2. Then it
follows from classical invariant theory ([Weyl]) that A := 0(V)° is a polynomial algebra
generated by the n + 1 determinant functions Xi, where

Xi(v^,... ,^n+i) = det(^i,... , i ) i , . . . ,'L'n+i),

1 ^ % < n + 1, (v^ . . . . v^i) e (n + 1)C71.

Moreover, M := ^'(E)0 ^ MorCV.W)0 is generated over 0(V)° by the projections
mi, 1 ^ i < n + 1, where m,(vi , . . . ,Vn+i) = Vi G C'1 = W. The relations are

n+l

generated by ^(-l)^m, = 0, so that (after a slight change of basis) we have
z=l

M ̂  An+l/A(a;l,... , Xn-\-i). The proposition below shows that ^DA^M} is not finitely
generated over any finitely generated commutative algebra. The case n = 2 is especially
interesting, since (V,G) = (3C2,SL2) is 1-large, but, of course, not 2-large (9.11).
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(3.29) PROPOSITION. - Let A = C[a;i, . . . , Xn], F = An and N = A(a:i , . . . , x^ n ^ 2.
TT^n DA{F/N) is not left noetherian, hence ^ D A ^ F / N ) is not finite over any finitely
generated commutative algebra.

If n = 2, define (^ : F = A2 —^ A by y?(a, 6) = a;2^ — x\b. Then (/? is an isomorphism
of F / N onto Ax-t + Aa;2, hence 3.10 is the case n = 2 of the proposition. Our proof of
proposition 3.29 is an elaboration on the ideas in 3.10.

We give a proof in the case n = 3 and indicate the necessary changes for the general
case in 3.32 below. We rename the variables to be x, y and z and we think of F = A3 as
consisting of column vectors. Then A = C[x, y , z], elements of DA^F) are 3 x 3 matrices

\(^\ \
of elements of Z)(A) and N = < [ y f , f e A >. Let B denote {P e ^(F) :

IW7 J
P{N) C N}, and let Ann(lV) C B denote the two-sided ideal of elements annihilating N.

(3.30) LEMMA. - Let P G D{A).
(1) P = a;Q + ̂  for some Q, E G J9(A).
(2) P = xQ + 2/J2 + zS -\-T for some Q, jR, S and T, -where T has constant coefficients,

and T is unique. Moreover, we may assume that R = R(y^ z) has coefficients which are
polynomials only in y and z, and that S = S{z) has coefficients which are polynomials
only in z, in which case Q, R and S are also unique.

(3) Part (2) remains true if one replaces xQ by Qx and/or yR by Ry and/or zS by S z .

Proof. - Part (1) holds since -j7——[x, UQ1^1} = U9^ for any differential operator U
[k -+- 1)

which does not involve 9x. Part (2) is obvious.
In (3), consider the case of expressing P uniquely in the form Qx-\-yR(y^ z)-\-zS{z}-}-T.

We may reduce to the case that P == xQ\ for some Qi. Then P = Q^x + [x^ Qi]» where,
by induction on order, [rr, Q\} has a unique representation [a;,Qi] = Q-^x + yR{y^ z) +
zS{z) + T. Thus P = (Qi + Q^x + yR{y, z) + zS(z) + T is a unique representation of
the required form. The other possibilities in (3) are handled similarly. D

(3.31) LEMMA. - B = Ann(TV) + DA<,F,N) + C • idp where
(1) Ann(TV) consists of the operators whose rows are of the form

{Qy + Rz -Qx 4- Sz -Rx - Sy ), Q, R, S G D(A).
(2) DA^F^N) consists of the operators whose columns are of the form

(xQ\
\yQ , Q £ D(A).
\zQl

Proof. - Let P £ Ann(AT), and let (Q I? 5) be a row of P. Then Qx + Ry + Sz = 0.
Since grD(A) 2; C[x,y,z,8x,9y,9z] is a polynomial algebra, one can establish (1) by a
downward induction on order. Part (2) is obvious.

We now show that B is as claimed. Let
(Q R S\

P= \T U V \
\W X Y I
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be an element of B. By 3.30(1) we may write R in the form xR^ -\- R^x for some J?i
and R^. Subtracting

1-R2V R2X 0\ /Q xR^ 0\
0 0 0 + 0 yR^ 0 G Ann(AO + DA^F.N)

\ 0 0 O/ \0 ^Ri O/
from P we may reduce to the case that R = 0. Similarly we can assume that 5=0.

By 3.30(2-3) we may write Q uniquely in the form xQ^Q^y, z)y-}-Qs{z)z+Q^ where
C?4 has constant coefficients, etc. Since V preserves TV, Q preserves xA, so x must divide
xQiX^Q^y,z)yx^Q^z)zx^Q4X.ThusxT^[Q^y,z),x}y-^[Qs{z),x]z-{-[Q^x} = 0
for some T. By uniqueness, we have [Q^y,z),x\ = [Q^{z),x\ =. [Q^x] = 0. Hence
Q2 = Q2(y,z,9y,9^, Qs = Q^{z,Qy,Q^) and Q^ = Q^Qy.O^) do not involve &,. We
have

Q = xQ, + Q^y^ z, Qy^Q^y + Q^z, Qy^^z + Q^Qy, 9.).
Subtracting the element

(Qiy^-Q^ -Q^x -Q3X\ fxQ^ xQ'2 xQ3\
o o o + h/Oi yQ2 yQs e Ann(A^)+2?AWTV)

\ 0 0 0 / ^Oi zQ^ z Q ^ )
we can reduce to the case that Q = Q^(9y,Qz}.

Since P preserves N, we must have that yQ^Qy,Qz)x = a:(Ta; + ?7?/ + Vz). We may
divide by x to get that

yQ^Qy,Q.)=Tx+Uy+Vz,
hence [^/, 04(<9y, 9^)] € D(A)a; + I^(A)t/ + D{A)z. By uniqueness again, [?/, Q^] = 0, and
04 = Q^{Qz) does not involve 9y. Similarly, Q^ does not involve 9^, hence Q4 =: A e C.
Adding -A • id^ to P, we can reduce to the case that the first row of P is zero. It follows
that the second and third rows of P annihilate N, so P e Ann(TV). D

Proof of 3.29. - We construct left ideals h of B such that

h + DA{F^N) $ J,+i + ^A^TV) $ . . . .

Then {4 + DA^A^)} is an increasing sequence of left ideals in B / D A ( F , N ) ^
DA{F/N) which does not stabilize, establishing the proposition.

Set
/ 0 0 0\

Qi = -Q^y Q^x o ,
\ 0 0 O/

and let Ij denote the left B -ideal generated by Qo,...,Qj. Suppose that Qk-^-i G

Ik + DA{F, N). Then P + ̂  7Z,Q, = Q^i for some P e ^(-F, A^) and 7Z, e B. Just
1=0

considering the middle (= (2,2)) terms of the matrices involved we obtain an equation
k

yT + ̂ (A, + R,x + Siz)a^x = Q^x^
i=0
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where T and the Ri and Si are in D{A). Since all terms are multiplied on the right
by x, except for yT, we must have T = T ' x for some T/'. Dividing out the factor of
x we obtain an equation

k k
aw - Exi^ = y^ + E ̂ ^ + 5^-

By the uniqueness part of 3.30(2-3), we must have that ^+1 - ^A,9^ = 0, a
i=0

contradiction. D

(3.32) Remark. - Suppose that n > 3. As above, let B denote {P G DA^F) : P{N) C
N}, and let Ann(TV) C B denote the two-sided ideal of elements annihilating N. The
analogues of 3.30 and 3.31 go through. In particular, B == Ann(AQ + DA{F, N) + C • idp,
where Ann(TV) is generated by matrices whose rows are the "Koszul relations" of
r r i , . . . ,Xn- For the proof of 3.29, set

/ 0 0 Oi,,_2 \
Q, = -a^x, a^x, Oi,,-2 ,

\ On-2,1 0^-2,1 On_2,n-2 /

where Oij indicates an i x j matrix of zeroes, and proceed as before.

4. Reduction to representations

We establish some results on behavior of differential operators under morphisms.
We show that a smooth affine 07-variety X is (n)-good if and only if all of its slice
representations are (n)-good, and we establish analogous results for (n)-surjectivity.

We use the following:

(4.1) Remarks. - Let E be a G- vector bundle over the affine G- variety X.
(1) Let {Ua} be an affine open cover of X//G, and let Ea denote the restriction of E

to Ua := Trx"1^)- Then E is (n)-good (resp. TTX,E is (n)-surjective) if and only if each
Ea is (n)-good (resp. each TT^ ^ is (n)-surjective).

(2) (see 3.6) Let / e 0{X)°, and let Ef denote the G-vector bundle E\x^ -^ Xf. Then
V^^Xff ^ 0(X)^ ^ow0 ^SW^ In particular, for every Q G V^^Xff there is
a k> 0 and P € VWf such that P = f^.

(4.2) THEOREM. - Let (p : X —^ Y be an etale morphism of varieties, let Q be a coherent
sheaf of Oy-modules and set T := ^G. Then (p induces isomorphisms:

(1) (p : ^VQ -^ P^ and
(2) W : ̂  -^ V^.
Let x € X, y = (p(x) E Y, and consider B := Ox,x as an A := Oy^y-algebra via (^.

Let M (resp. N ) denote the stalk of Q at y (resp. of T at x), so that B 0A M = N. Let
R be an A-module. Then ̂  induces canonical isomorphisms
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(3) ^ : B 0A PI,M^PS^N^ and
(4) (^y : B 0A -DSW -R) -^ -DSW B 0A -R).

Pwo/. - It is enough to establish (3) and (4): Let A : M —^ N denote the canonical
A-homomorphism. There is a commutative diagram where ^ is the A-module morphism

Dn ^ . r>n
^A.M ————> ^B,N

p^.M pS,N

M —x-^ N

which sends P^ 3 (a 0 m + J^^A ® M)) to ^(a) 0 A(m) + I^^B (g) TV) e Pj^y.
From ^ we obtain in a canonical way a 5-module morphism ̂  : B (S>A P^ M —)> -PS ^v-
Reducing modajta and using 3.5 and the etaleness of ̂  we see that

B/WIB 0A P^M ̂  A/CTA 0 PI,M ^ M/ajl^^ ^ N/Wl^N ^ B/mB 0B P^,jv

Thus, by Nakayama, (px is an isomorphism. We have obtained (3).
Now A — ^ B i s flat and P^M is a finite A-module. Thus the canonical homomorphism

B 0A HomA(P^M^) -^ HomB(P^ ̂  ^ B 0A P^.B (g)A P) is an isomorphism, and
we have (4). D

(4.3) Remark. - In [Lei] Levasseur proves the theorem above in the case that X and
y are smooth.

(4.4) COROLLARY. - Let (p : X —^ Y be an excellent morphism ofaffine G-varieties. Let
F be a G-vector bundle on Y and E = ( p * F the pull-back. Then E is (n}-good (resp.
^X,E is (n}-surjective) if F is {n)-good (resp. T^Y,F is (n)-surjective), and conversely if
(p is surjective.

Proof. - Set A := 0(V), B := 0{X), M = F(Y,F) and N = F(X,E) ̂  B 0A M.
Since y? is excellent, we have B° 0A0 A -^ B and B° 0A° M -^ N. There is a commutative
diagram of B^-modules where the horizontal maps are isomorphisms by 4.2 and the

B° ®AO D^ (M) ———> JDS (N)

id0res^G? ^BG

B0 (SAO D^a (M ,̂ M) ———. D^^ ( ,̂ JV)

vertical maps are induced by restriction of domain. Since B° is A^-flat, we have
Ker(resBG) ^ B° 0AG Ker(resAG). If Ker(resAG) is the product of D^'^M) and the
image of g in D\{M), then the analogous result holds for Ker(resBG). Taking (^-invariants
in the diagram we obtain that resBoD^N)0 ^ B^^^AoTesAoD^M)0. Thus E is n-good
(resp. TTX^E is n-surjective) if F (resp. TTy^) is. If (p is surjective, then B° is faithfully
flat over A°, and one sees that F is n-good if E is, and similarly for n-surjectivity.
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Suppose that E is good, and let n € N. Then there is w m > n such that

M m{x//G) c Trx^P^x)0 c V^{X//G).

Arguments as above show that (*) holds if it holds with F, Y / / G , etc. in place of E,
X//G, etc., and conversely if (p is surjective. D

(4.5) COROLLARY. - Let X be an affine G-variety where G acts freely. Let E = (7Tj<)*(i?)
where E is a vector bundle on X//G (see 2,5), Then E is a G-vector bundle and

(1) For all n > 0, V^X//G) = WXf/^-^X)^0'
(2) X is very good.
Proof. - We handle the case where E == I X//G (hence E = lx), and leave the

general case to the reader. Working locally on X//G we may reduce to the case that
X = G x V, where Y is an affine variety on which G acts trivially and where G
acts on itself by left multiplication, Then TTX is just projection G x Y —^ Y. We can
consider the elements of g C r(G, TG) as vector fields on G x Y. Clearly the kernel of
p : ̂ {G x Y ) -^ V^^G x Y) is V^^G x Y)Q (see 3.16), hence

^(X^/CP'-Wfl)0 ̂  ̂ (G x Yf ̂  (0(C?) 0c ̂ (Y))0 ^ ̂ (Y).

The composition of the isomorphisms is induced by (?rjc)*. D
(4.6) COROLLARY, - Let H be a reductive subgroup of G, let Y be an affine H-variety

and let E be an H-vector bundle on V. Set E = G ̂ H E -^ G ̂ H Y =: X. Then
(1) TT^^ is (n}-surjective if and only if ^Y,E is {n}-surjective
(2) E is (n}-good if and only if E is {n)-good
Proof. - We will use the symbol E to also denote the (G x J^-bundle G x E -^ G x Y.

Consider the commutative diagram below: The vertical sequence is exact, by 4.5, and

V^(G^Y) ^— PI^G^y^

A T"
^(G x Yf —6-* 'D^G x Y}11 ^-^- V^-^G x Yfg

rj

V^GxYft)

}
0
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V^{G x Y)11 is clearly the direct sum of the terms to its right and left.
We now show that TT^ is (n)-surjective if and only if TT^E is (n)-surjective.

Let Q e V^G^Yf. Then Q = (7oW) modulo (ao/?)^-1^ x Y)^11 c
JC^G^Yf, where Q1 G V°^{G x vf^ ^ V^Yf. Under the isomorphisms
F^X^E)0 ^ F(G x Y^E)0^ ^ r(Y^E)11, the action of Q goes over into that of Q'.
Hence we have (1).

We now consider /C|(X) and ^(V). Assume that ^(V) = P^-^Y)!), and suppose
that Q e /C|(Gf*Jfy). As above, modulo Im(ao/3), Q equals (7o^)(07) for some

f
Q' £ ̂ {G x Yf ̂  (0(G')0c^(y))ff. Write Q' = ̂  /,®P, where the /, e 0(G)

i=l

are linearly independent and the P, e P^(Y). Since Q kills F(X, JS)0, Q7 kills r(V, £)^
and the P, must lie in /C^(V) = P^-^r)!). Hence ^(Q') e Ker7, i.e., Q e Ima.

Conversely, suppose that /C|,(X) = V^~1(X)Q. Let (7 be a j5nite dimensional irreducible
^-module in )C^(Y). Since fC^Y) is a locally finite H -module, it suffices to show that
some non-zero element of U is in P^'^V)^. Since H is a subgroup of G, there is certainly
a copy of (7* in the ff-module 0(G) (ff acting on G on the right). Thus there is a non-zero

r

element Q7 of the form ̂  /, 0 P, in P^(G x Y)11 ^ (0(G) 0c %(^))^ where the
i=lz=l

Pi are in U. Then Q' annihilates r(G x V, E)^^ ^ F(X, £1)G!, and our hypotheses imply
that (7^)(0/) lies in Im(ao/3). It follows that Q' lies in the projection ofV^^G x V)^()
to (0(6') 0c ̂ (V))^. But this projection is clearly (0(G) 0c <OFl(y)l))^• T^ each
P, lies in V^-\Y)\). D

(4.7) Let V be a G-module, and let E be a trivial G-vector bundle over V. Then r(£') is a
graded 0 (V)0 -module and, as in 3.11, we let P^(V) C P^(V) and Pd,£;(V) C P^V)
denote the differential operators sending F{E)rn to r(J5)^+d for all m. We have induced
gradings on ^E^V)0 and Ve(V//G), where f is the sheaf corresponding to F^)0.

(4.8) PROPOSITION. - Let V and W be G-modules, let E denote Qw. and let f G 0(V)°,
/(O) ^ 0. Let Ef denote E\Vf. Then

(1) TTV,E is {n}-surjective if and only if ^Vf,Ef is (n}-surjective
(2) E is (n)-good if and only if Ef is (n}-good

Proof. - Applying 4.4 to the inclusion Vf C V, we see that if TTV,E is (n)-surjective,
then ^Vf.Ef is (n)-surjective Conversely, suppose that Ti-y^ is (n)-surjective Let
Q G T)^{V/IG) be homogeneous of degree d. By 4.1(2) there is an I > 0 and a
P G 'P^1^)6', m ^ n (m = n if TTy^ is n-surjective), such that TTy^P = /^Q. Write
-P = ̂  Pi and / = ̂  /^ where the P^ and fi are homogeneous of degree i. Then
7Ty,£;Pd = (/o^Q, where /o is a non-zero constant. Thus Ti-y^ is (n)-surjective, and we
have (1). Part (2) is similar. D

The following result is now immediate from Luna's slice theorem (see 1.15), 2.3, 4.1,
4.6 and 4.8.
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(4.9) THEOREM. - Let X be a smooth affine G-variety and E a G-vector bundle on X.
Let x G X where Gx is closed, let (-/V, H := Gx) be the slice representation at x and let
E' denote 6^ = (£^ x N -^ N).

(1) E is {n)-good (resp. TTX.E is (n}~ surjective) in a G-neighborhood ofx if and only
if E' is (n)-good (resp. ' K N , E ' is (n)-surjective).

(2) X is (n}-good if and only each slice representation ofX is (n)-good

5. Coregular and Cofree Representations

(5.1) Definitions. - Let V be a G-module. We say that V is cofree if 0(V) is a free
O^vf-moduk. Equivalently ([S3, 17.29]),

(1) V is coregular.
(2) Try : V —f V//G is, equidimensional.

Consequently, if G is finite, then V is coregular if and only if it is cofree.
Coregular and cofree modules are "small" actions (see discussion following 0.7). We

begin with some positive results for such actions. Then we establish the main negative
result: If V is coregular and not fix pointed, then V is not good. In fact, we have: V(Y//G)
cannot be finitely generated as both a left and right ^(l^-module.

(5.2) PROPOSITION. - Let G be reductive, \vhere G is a normal reductive subgroup ofG
and X is a smooth affine G-variety. Assume that X//G is smooth, and let E be a G-vector
bundle on X. Suppose that

(1) E = lx, or
(2) TTx : X —> X//G is equidimensional.

Then £ is the sheaf of germs of sections of a G/G-vector bundle E on X//G. In particular,
gTVs{X//G) is a finite gTV{X//G)-module, \vhere gTV{X//G) is finitely generated.

Proof. - Clearly G/G acts on the sections Y^E)0 = F(<?) compatibly with its action
on 0{X//G), so we have our desired result if we can show that £ is locally free. This
is clear in case (1). In case (2), [Ma, Thm. 81] shows that Ti-x is flat. It follows that the
push forward of the sheaf of sections of E is a flat sheaf of O^G'-modules, hence so
is its (coherent) direct summand £. Thus £ is locally free. The finite generation claims
follow from 3.19 (with G = {e}!)» D

(5.3) PROPOSITION. - Let G, etc. be as above where all the closed G-orbits are principal.
Let E be a G-vector bundle on X. Then

(1) X —^ X//G is equidimensional.
(2) £ is the sheaf of sections of a G/G-vector bundle E on X//G.
(3) TTX^E : VE{X)° -^ V€{X//G) is surjective.
(4) S e t E ' := (^xY{E). ThenE' is admissible, andE = E ' if and only if E is admissible.
(5) ^X,E' '' T^E^X)0 —^ V^{X//G) is graded surjective, hence TTX,E is graded surjective

if E is admissible.
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Proof. - By 1.11, X —> X//G is a fibration, so l^x is equidimensional and we have
(1). Part (2) follows from 5*2. Using 4.9 we can reduce (3) and (4) to the case of slice
representations. So we may assume that X = V and E == 9^, where V and W are
G-modules and V = Vpr.

Clearly V is fix pointed, so V = V° e V as G-module where 0^)° = C. Set
W' := (0(V) 0 W)°. Then TV' is finite dimensional, and E is the trivial bundle
V//G x W -^ VUG. Hence E ' := {^vY{E) = e^/. We let E and ^/ also denote
their restrictions to V° and V. Note that £' = E ' if and only if W = 0, L£?., if and
only if E is admissible. Thus (4) holds, and (5) holds since the restriction of 'KV,E' to
1DE'{V0} C VE'(y)G is an isomorphism.

We now show that ^(V)0 -^ Vs^f/G) is surjecdve. It then follows that

^E t 2W)° ̂  2>(^) 0 2W)0 -> W0) 0 Ve{V'/IG) ̂  Vs(V//G)

is surjective, giving (3). Choose a basis { . $ 1 , . . . , Sr} of W where each Si : V —^ W is
homogeneous of degree Oi and ai ^ . . . >_ dr. Suppose that ai = Oyn where m < r is
maximal. We view elements of Mor^'*, W*) as constant coefficient differential operators
from r{V^W) to r^Qc). It is clear that there are elements P, e Mo^y^TV*)6',
homogeneous of degree a^, such that Pi{sj) = 5^ E C = Mor(y', Qc)6', 1 < ^ J < ^.
Moreover, the P^ annihilate the s^ for j > m. Multiplying the P^ by the sj we obtain
differential operators Pij such that

P^-(5fc) = S i k S j , 1 < z < m, 1 < j, fc < r.

Now consider the covariants of the next lower degree Oyn+i = . . . = Oyn+t. Then, as
above, we can construct differential operators Qij such that

Qij(sk) = SikSj^ m + l ^ % < m + ^ l <J<n m-}-l <, k ̂ r.

We would like that Qij{sk) = 0 for k <^ m, and this can be accomplished by modifying
the Qij by the P^. Thus, inductively, we obtain elements of D^V)0 which map onto
a basis of End(lV') = 2W//G). D

(5.4) Example. - Let G' = C*, V = C and TV = C2 where G acts with weight 1 on V
and with weights 1 and 2 on t^. Set E = 9fv. We leave it to the reader to show that
^E^vf + ̂ (V/fG) but that ̂ E^Vf = ̂ (VUG) = Ve{V//G) for all n > 1.

The following shows that there are cases where one can definitely not lift differential
operators.

(5.5) THEOREM. - Let G be reductive, and let V be a coregular G-module such that
V° = (0) and m := dimV^G > 0. Then ly is not good, i.e., {^^(V)0 ^ V(V//G).

(5.6) Remark ([Le2]). - If V is as above, then (Try)* cannot be 1-surjective: Let
/i? • • • ? fm be a minimal homogeneous generating set of O^V)0, where deg/i = d > 1.
There is a derivation of 0(Y)0 ^ ©(C^) which sends A to 1. If A € ^{V}0 and
A(/i) == 1, then the degree -d part of A is nonzero. But the degree of any A G ̂ (V)0

is at worst -1.
(5.7) Example. - We illustrate the proof of theorem 5.5 in the case that dim V//G = 1.
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(1) Suppose that G = {±1} and V = C where G acts on V by multiplication. Let x
be a coordinate function on V and let Pa; denote differentiation with respect to x. Then
0(V)0 is generated by x2. Let ^ denote the coordinate function on V//G = C such
that (Try Y(y) = x2, and let D denote differentiation with respect to y. Let P denote
D^ e V(vf. Now ^(V) is a Lie algebra, where (adO)P = [Q, P], Q, R <E P(Y). Then
P, being a constant coefficient operator, is locally ad-nilpotent, i.e., given an element of
'D(V), some power of adP annihilates it. If (Try)* were surjective, then P := (TTy)^P
would be locally ad-nilpotent in 'D(C). This is not the case:

It is easy to see that P = 4yD2 + 2D. Set Qj = (adPpA j > 0. Then, up to nonzero
constants, Qj = I5•7+l+ lower order terms. Hence P is not locally ad-nilpotent, and
consequently (Try)* is not surjective.

(2) In general, 0(Y)° = C[h} where h is a homogeneous polynomial of degree n > 2.
The constant coefficient differential operator P £ ^(V^ C 'D{V)° dual to /i gives rise
to P := (7ry)*P G ^(C), where the symbol of P is a multiple of yn~lDn. The following
sequence of facts shows that Qj := (adPpP, j ^ 0, has symbol a non-zero multiple of
^(^-2)^j(n-i)+i^ proving that (Try)* is not surjective.

(i) Dkyl == ^2^ 4- {k^y^D1'-1-}- lower order terms, fc, ; G N.
(ii) [yiDj,ykDl} = (jk - %^)^^+fc-l.DJ+^-l+ lower order terms, fc, ; C N.

(iii) [^n-lJD^^n-2)PJ(n-l)+l] == (1 -j - n)^+l)(n-2)I^'+l^n-l)+l+ lower order
terms.

(5.8) LEMMA. - Let V be as in 5.5 and let / i , . . . , /m be a minimal homogeneous
generating set ofO(V)0. Then there are coordinates x ^ , . . . , Xn on V such that /i G x^ +I2

and fi € I , i > 2, where a := deg/i and I denotes the ideal in 0(V) generated by
^2? • • • 5 xn'

Proof. - Since V is coregular, we may find a point z € V^G such that /i(^) = 1
and fi(z) = 0 for % ^ 2. Let ^ G (Try)"1^). Choose a basis v,v^^ " ^ V n of V, and let
3:1,..., Xn be the corresponding dual basis. Then it follows from our construction that the
fi have the desired form, i > 2. Replacing x^ by x\ plus a linear combination of the x^
i >_ 2, we may arrange that fi ^ x^ + I2. D

(5.9) LEMMA. - Let V be a complex vector space. Let a > 2 and let f G S^V*).
Choose coordinates x ^ , . . . , Xn on V so that f G x^ + I2 where I is the ideal generated
by x^...,Xn. Let P € S^V) be dual to f under the isomorphism ofS"^) and ^(V*)
given by the choice of coordinates. Set 9i = 9/9xi, i = 1,. . . , n, so that, up to a constant,
p ^ g^ 4- 'D"-2^)^!)2 where SI is the span of Q^,... ,Qn' Inductively define differential
operators Pj by: Pa = P and Pj == [P,+i, /]; 0 <; j < a. Then, up to nonzero constants,

Pi e {x^-1^-^ + I^Qi + 181 + 0{V\ a > 3,
PiC^'^^'^Qi+J^+O^), if a =2,

PoG^-^+J2 .

Pwo/^ - By a straightforward induction one can show that

P, G a^^.lj^-^-^Qi +PJ-2(V)((?J)2 +J2)J-l(y)(?J+J2PJ(V)+PJ-l(V),
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where the term PV^V) only appears for j ^ a - 2. Thus ?o and Pi have the desired
form. D

(5.10) COROLLARY. - Let Vbea G-module, and let P <E ^(V)0 be an invariant constant
coefficient differential operator. Then (TTy)^(P) has order exactly d.

Proof of 5.5. - Let / i , . . . , /^, a ; i , . . . , ̂ , J, 61 and a = deg /i be as above. Let P be
dual to /i as in 5.9. Let 9Jt denote the ideal (/i,... J^) C C^y)0 c 0{V). We have a
decreasing filtration ^k of 2rt/9Jt2, where ^k = {^ n 9Jt+ ajt2)/^2, fc ^ 0. Note that /i
projects to a C-basis of (T0 = 9Jt)/jF1. We may assume that there is an r ^ 1 such that
/2, . . . Jr project to a basis of JF1/^2 and that /^+i , . . . f^ lie in .772. Let A, 1 ̂  i^ m
denote the differential operators on 0(V)° ^ C[/i,... J^] dual to the /,. Let J (resp.
K) denote the ideal generated by the /„ 2 <, i ̂  r (resp. /„ i > r), and let 6J (resp. <?JO
denote the linear span of the Di, 2 <, i <, r (resp. i > r). By our choice of the /„

I n 0{Vf C J + K, and J2 H 0(1^ C J2 + AT.

Set 2^ := V^V//G), j > 0, and for s > 0 set

M8 := J2!)8 + JV^SJ + ̂ P" + P'-^^J)2 + P8-1.

For the moment assume that

M GP := (7rv)*(-P)) e /r-1^? + ̂ ra.

Define Qj := (adP)^i, j ^ 0. A calculation shows that, up to a nonzero constant, Qj
lies in /j^-2)^0-^1 + M^-^1 (^ 5.7). Thus P is not locally ad-nilpotent, hence
(TTy)^ cannot be surjective.

We now establish (*). The symbol of P has the form V a^D", where a =
|a|=m

(ai,. . . ,o^) e IS^, ^Q =^1...^-, etc. as in 3.8. Since P € <9? + P^y)^!)2,
[[p. /dJj] ̂ s coefficients in I2 ifz, j > r. Thus a^ G J^A" whenever ̂ a e Pa-2(^A^)2.
Similarly, a^ C J + K if D" G V^SJSK. Reinterpreted in terms of the /„ 5.9 shows
that the coefficient of jD? lies in C*/^"1 + (J2 + K). Similarly, the coefficient of D^D,
lies in J + K if i > 1 and in J2 + ̂  if i > r. These results establish (*). D

Our techniques can also be used to establish non surjectivity of (Try),, in certain
(non-coregular) classical cases.

(5.11) PROPOSITION. - Let (V, G) = ((n + fc)C71, SL^) where n ^ 3 and 2 ^ k < n - 1.
TA^z (TTy)^ is not surjective.

Proof. - Let x, : (n+fc)^ -^ C71 and ^ : (n+A^C71)* ̂  (C71)* denote the projections
onto the %th factor, 1 < i < n + k. Now gTV{V)° ^ 0(V C V*)0, and classical invariant
theory ([Weyl], [Sl, §2]) gives us the following generators:

(1) Determinants [ x ^ , . . . , a;,J, 1 < %i < . • . < ^ < k + n.
(2) Contractions (^,^), 1 < % , j < n + k.
(3) Determinants [^ , . . . , <^J, 1 ̂  %i < . . . < %^ ^ fc + n.
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The elements in (1) generate 0(V)°, and those in (2) correspond to vector fields. The
invariants in (3) correspond to constant coefficient differential operators, which, via (rry)^,
give elements in V(V//G) of order exactly n (corollary 5.10). The quotient V//G lies in

(77 -I- A* \
C^, N = ) , and we let f i , . . . /N be coordinates corresponding to the generators

n )
in (1), where /i corresponds to [a; i , . . . , Xn}' Let D ^ , . . . , DN be the partial derivatives
dual to the fi and let I denote the ideal generated by the fj, j ^ 2. The ideal J of
V//G C C^ is generated by quadratic polynomials in the fi, and J C I . We consider
^(VIIG) as the quotient of {P C P^C^) : P(J) C J} by JP^C^) (^ 3.9). Let
V^ be shorthand for P^C^).

Set Pi = [$i, • . • ,^n] ^ ^(V)0. Then, up to a nonzero constant,

P := (7Ty)*Pi C A71"1^ + Jpn + pn-l + Jpn

^J^-^^+JP'+P71-1.

It follows from classical invariant theory that 0{V)° is isomorphic to O^V')01, where
{V^G') = ((n + fc)C^SLfc). Let ^ : (n + fc)^ -^ C^, 1 ^ i ^ n + fc, denote
projection onto the %th factor. Then, under the isomorphism, [ x ^ , . . . , Xn} G 0(V) goes to
[a^+i, • . . ^n+fc] G 0(^/)G'\ etc. It follows that there is a constant coefficient differential
operator in V^V')0 which gives an operator Q on V//G lying in

^-i^+jp^+p^-i.

Now, reasoning as in 5.5 and 5.7, we see that, up to nonzero constants,

(adPVO G fk~l~{~j^n~2^Dk~}~j('n~l') +J<Dfc+^n~l) + 'p^+j(n-i)-i^

Hence P is not locally ad-nilpotent in V(V//G), and (Try)* is not surjective. D
The next results show that (Try)* is rather far from being surjective when (V,G) is

coregular.
(5.12) LEMMA ([LS, IV 1.3]). - Suppose that V(V//G) is a finitely generated left and

right V(Y)°-module. IfV(V//G) is simple, then V is good.

Proof. - Let A := {^^(V)0 C B := V(V//G). We give B its natural filtration
{Bn}. Let 0 7^ / G OiY)0 such that / vanishes on the nonprincipal strata. By 4.1, 4.9
and 5.3, given Q G B there is an I G N and P G A such that fQ = P. Since B is finitely
generated as a right A-module, B -•= BnA for some n, where Bn is a finitely generated
0(V//G)-module. Thus there is an ( such that fBn C A, hence fB C A.

Similarly, there are m and k such that B = ABm and /^Byn C A. An easy induction
shows that B/^^ = AB^-^ C A/^B^ C A. Thus there is a non-trivial left (resp.
right) B-ideal I (resp. J) contained in A. Since B is a simple domain, I J == B, hence
A = B. D

(5.13) COROLLARY. - Let V be as in theorem 5.5. Then V(V//G) cannot be finitelyc^generated as both a left and right V(V) -module.
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Proof. - By assumption, P(V//G) is the mth Weyl algebra, which is simple [Bj
Ch. I]. D

We now give more global versions of the results above.
(5.14) Let X be a smooth affine G- variety, and let {X//G)sm denote the smooth points

of X//G. Recall that (Z//G)p, C (X//G)^.

(5.15) THEOREM. - Let X be a smooth affine G-variety such that {X//G)pr / (^G)sm.
Then

(1) lx (hence X) is not good, in fact,
(2) V(X//G) cannot be finitely generated as both a left and right V(X)°-module.

Proof. - There has to be a slice representation (V, H) of X, where {H) is a non-principal
isotropy class such that (X//G)(^) n (X//G)sm + 0, Apply 5.13. D

(5.16), COROLLARY. - Let X be a smooth affine G-variety. If X is good, then X//G has
no codimension 1 strata.

Proof. - Since X//G is normal, it is smooth in codimension 1. D

6. Extensions by Finite Groups

Let X be an affine G-variety. Then X is also a G°-variety, and we investigate
relationships between various lifting properties for (X,G) and (X,G°). In particular,
we investigate the case where G is finite.

We will need the following.

(6.1) LEMMA (see [Ka], [Lei]). - Let X be normal and Y a subvariety of codimension
at least 2. Let E be a vector bundle on X. Then every element of V^{X \ Y) extends
uniquely to an element ofV^^X).

Proof. - We may assume that E ^ X x C7' is trivial. Then the restriction map
T{X^E) ^ 0{XY ^ 0\X \ YY ^ F{X \ Y^E) is an isomorphism, and the result
follows .

(6.2) By abuse of language, we say that X has no codimension 1 strata if
X//G \ {X//G)pr has codimension 2 in X//G. If G is finite, then X is good if and
only if it has no codimension 1 strata, a result which goes back to J.-M. Kantor [Ka]
(see also [Lei]).

(6.3) THEOREM. - Let X be normal and G finite. Let E be an admissible G-vector bundle
on X. Then

(1) ^X,E is injective.
Let X' denote the smooth points ofX and set X^ = X'DXpr. The following are equivalent:

(2) codimZ \ X^ > 2.
(3) X has no codimension 1 strata.
(4) The slice representations at points of X' contain no pseudoreflections.
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(5) X is very good.
(6) lx is good.

Proof. - Any P G Va^X)0 is determined by its restriction to X' . Since TTX\X\ is a
covering and E is the pull-back of a vector bundle on (Xy/G)pr, (1) follows from 4.2.

If X == V is a G-module, then clearly V//G has a codimension 1 stratum if and only
if there is a g G G, 5? 7^ e, such that V5 is a hyperplane, L^., if and only if G contains
a pseudoreflection. Since codim(y := X \ X') > 2 and codimY//G > 2, Luna's slice
theorem shows that (2), (3) and (4) are equivalent.

Let Q G V^{X//G). By 4.5, for any affine open G-stable subvariety Z C Xp,, O^z)
is the image of some Pz G V^(Z). By (1), the Pz patch together to give P € VE^X'^}
covering Q\^^(^X' )• If (3) holds, then P is the restriction of an element of P^(X) , and
clearly ^x.aP = Q' Thus (3) implies (5), which in turn implies (6). If (6) holds, then we
may apply 5.16 to the affine open G-stable subvarieties of X^ to obtain (3). D

(6.4) Example. - Let G = {±1} act on V = C2 by multiplication. Let s and t be
coordinate functions on V. Then 0{V)° is generated by x := s2 + t2, y := s2 - t2

and z := 2^. Thus V//G is the cone C := {x2 = y2 -^- z2} C C3. Since
gTV(V)° ^ 0(V C V*)^, the generators of 'D(Y)0 are

(1) The invariants x, y and ^.
(2) The vector fields s 9 / 9 s , t9/9s, s9/9t and t9/9t.
(3) The order 2 differential operators 92/9s2, 92/9s9t and a2/^2.

Since G contains no pseudoreflections, (TTy)^ is graded surjective, and we see that
grD(G) is generated by P^G).

(6.5) COROLLARY. - Let X be a normal affine G-variety such that all G-orbits have the
same dimension. Then 6.3( 2) -6.3(6) are equivalent.

Proof. - Since all G-orbits have the same dimension, all G-orbits are closed. Let S be
a slice at re G X (see 1.9). Then S is normal since X is, and the G^-orbits on S all have
the same dimension. Thus Gy, acts on S via a finite quotient and we may apply 6.3. D

(6.6) COROLLARY. - Let V and W be G-modules, G finite. Let E denote Qw, let
Q G V^V/IG) and let P G ^(Vpr)0 be the unique lift of Q\{V//G}^' Then there is a
PE e V^Vp,)0 such that

(1) CT^(P£;) = ^(P) 0 id^, where a^ and an are symbol maps (see 3.14).
(2) There is a Qe G V^(V//G) such that PE is a lift of Q£\(V//G)^'
(3) IfPE and Qe satisfy ( 1 ) and (2), then Qe - Qe G /D^~1(V//G).

Consider gT'D{V//G) as a subalgebra of gTVe{V//G) by sending Q + Vn-l(V//G) to
Qe + V^-\VHG\ Q G V^Vf/G). Then

(4) grP^(y//G) is a finite grV (V//G}-module, where grV{V//G) is finitely generated.

Proof. - Let K = Ker(G -^ GL(V)), and set (V^GQ = (V,G/AT), E' = 6^. Then
HjE7)^ ^ ^(£1)G', and if we can prove (1), etc. for E\ then it follows for E. Hence we
may assume that G acts effectively on V so that E is admissible.
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Let H be the (normal) subgroup of G generated by its pseudoreflections. Then it is easy
to see that V := V / / H has a vector space structure such that Q := G/H acts linearly
and effectively and contains no pseudoreflections (see [S3, 8.1]). Moreover, since (V,H)
is cofree, (0(V) 0 W)11 ^ 0(V)11 0 W is a free (0(V)11 = W^-module where we
can choose W to be a G/H-mod\de (compare 5.2). Set E ' := 6^/. Now (V\ G1) is very
good, V U G ' ^ V//G and T^E')01 ^ ^(E)G. There is a unique lift P ' G ̂ {V')01 of Q,
and PE' := P ' 0 id^ e P^V')^ induces an operator Qe G V^{V//G). If P£; is the lift
of Q^ to ^(Vpr)6', then (1) and (2) hold. If PE and Qe are as in (3), then the element
PE' G ^^(V')0 covering Qe has the same symbol as PE' on V^, hence on all of V.
Thus P^ - P^/ e P^r)^, and ̂  - Qe € V^-1(V//G), giving (3). Part (4) follows
from the fact that { V ' , G ' } is very good (see 3.20). D

(6.7) COROLLARY. - Let X be a smooth affine G-variety such that all the G-orbits have the
same dimension. Let E be a G-vector bundle on X. Then grP^X^G) is a finite module
over gTV(X//G), where grV(X//G) is finitely generated.

Proof. - The slice representations of X are all of the form (W, H) where H -^ GL(W)
has finite image. Let Q e V^Xf/G). Using the slice theorem and 6.6, we can find an open
cover {Uo} of X//G such that gr 2^((7J is a finite gr Z^C/J-module for all a. In particular,
there are elements Q^a G V^U^) such that Q\u^ +Pn-l(^) has image 0^a+^-l((7a)
and such that Qe^ - Qe^ € V^~\U^ H U^) for any a and (3. Since X//G is affine and
P^-1 coherent (3.7), we can find Qe G V^(X//G) such that [Qe}\u. G Qe^ +P^1(^).
If Q' G Vrn{X//G), then the uniqueness part of 6.6 shows that (OQ')^ = Qe • Qe modulo
^+^-1^^ ^^ gTVe{V//G) is a grP(X//C?)-module. Locally (hence globally) on
X//G, giVe{X//G) is finite over grP(X//G'), and grV{X//G) is finitely generated. D

We now investigate connections between goodness of I(X,G) and I(^,G°)-

(6.8) PROPOSITION. - Let X be a smooth affine G-variety, let H be a normal subgroup
°f G of finite index, and let Z denote X / / H . Then

(1) (X,G) has no codimension 1 strata if and only if (X,H) and ( Z , G / H ) have no
codimension 1 strata.

(2) If(X, G) has no codimension 1 strata and I{X,H) is (n}-good, then I(X,G) is (n)-good
(3) If XH H is smooth and I(X,G) is good, then X / / H = { X / / H ) ^ , i.e., every closed

orbit is principal.

Proof. - We leave the proof of (1) and (2) to the reader. In case (3) we may assume that
we are in the case where X = V is a G-module. Then V ( V / / H ) ̂  ^(C^), d = dim V / / H ,
where F := G/H acts linearly on C^ [S3, 8.1]. Since (V,G) is good, F contains no
pseudoreflections, and V^f -^ P(C^r) ^ V{V//G) is an isomorphism. In particular,
V{V//H) is a finitely generated left and right V(V//G)-mo(Me, hence V{V//H) is a finitely
generated left and right P(y ̂ -module. Now 5.13 shows that (V, H) is fix pointed. D

(6.9). COROLLARY. - Suppose that V is a G-module, where G° is semisimple, (V, G°) is
not fix pointed and dim V//G0 = 2. Then (V, G) is not good.

Proof. - A theorem of Kempf [Ke] shows that (V, G°) is coregular. D
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7. Finite Principal Isotropy Groups

It is technically easier to work with G-modules V (resp. G-varieties X) with finite
principal isotropy groups (FPIG). We find conditions which allow us to reduce to this
case (7.10). However, for G-modules V, the failure of FPIG often implies that V is not
good (7.13).

(7.1) For the rest of this section X will denote a normal affine G-variety and H will
denote a principal isotropy group of X. Let N denote N c ( H ) / H . Let Xm denote the
points in X11 which lie on principal G-orbits. Then X^ is open in X11, and its closure
X is a union of components of X11.

(7.2) Remark. - The inclusion X^ c-^ X induces an isomorphism (p : X^ / / N ^ X//G
where ^((Z^y/AQp,) = (X//G)^ (Luna-Richardson theorem [Lu2], [LR]). In case X
is smooth, there is a 1-1 correspondence between the Luna (i.e. slice type) stratifications
of X//G and Z^/yW (see [S3, 11.3]).

(7.3) We say that X is stable if there is an open dense subset of X consisting of closed
orbits . We let X(Q) denote [x G X : dimGa; = 0}.

(7.4) Remarks. - From Luna's slice theorem we have
(1) X has FPIG if and only if X^ C X(Q).
(2) If X is smooth, then X is stable if and only if the slice representations of principal

isotropy groups are trivial.

(7.5) THEOREM. - Let X, H, etc. be as in 7.1. Suppose that
(1) X is 2-principal.
(2) X is stable.
Then there is a canonical isomorphism

y : G ̂ NGm Z^ -^ X, [g, x} ̂  gx.

____/ TT\ ____/ Tr\

In particular, codimX \ X^ = codimX \ Xpr.
____/ TT\

Proof. - Set V :== G^^^X . By construction, ^ | Vp, : Vpr —^ X^ is an
isomorphism. Thus ^ is birational. Since codimX \ y(Y) > 2, Richardson's Lemma
([Kr, 11.3.5]) gives that (p is an isomorphism. D

(7.6) PROPOSITION. - Let X, H, etc. be as in 7.1. IfH is normal in G, then
(i) Z^ = x11.
(2) X is a fix pointed H-variety.
(3) If X is stable, then H is the ineffective part of the G-action on X.
(4) IfX is smooth, then TTX,H '. X —^ X11 is equidimensional.

___/ rr\ ___/ rr\

Proof. - There is an inclusion X C X / / H where G / H acts on X and X / / H with
FPIG. The morphisms ^ ^ / / ( G / H ) -^ ( X / / H ) / / ( G / H ) -^ X//G are isomorphisms.
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___/ rr\

Thus { X / / H ) \X is an open subset of X / / H containing no principal orbits, hence it
must be empty, i.e., Z^ = X / / H . It follows that X^ = X11 = X / / H , giving (1)
and (2). If (X, G) is stable, then X11 = G • X11 is dense in X, hence X = X11, and we
have (3). Part (4) follows from 5.3. D

(7.7) COROLLARY. - Let X, H, etc. satisfy 7.5(1) and 7.5(2).
____I TT\

(1) Let Gx C X be a closed orbit with x € X , and let S be a slice at x. Then H is
a normal subgroup of Gx and H acts trivially on S.

(2) If X° -^ 0, then H is normal in G and is the ineffective part of the G-action on X.
In particular, if X is a G-module, then H is the ineffective part of the G-action.

Proof. - In (1), Gx is a subgroup of Nc(H) by 7.5, hence it normalizes H. Now H is
the principal isotropy group of (5, Gx), hence it acts trivially by 7.6. If x G X°, then S is
a G-neighborhood of x in X on which H acts trivially. Hence H acts trivially on X. D

(7.8) Example. - Let (V,G) = (2A2(C5) + (C5)*^). Then H := SL^ is a principal
isotropy group, where (C5,^) = 3C + J?i with H acting trivially on C and as usual
on R\ c^ C2. The slice representation of H is J?i + 2C, and V//G ^ C2 with principal
stratum C2 \ {0}. One can compute that

(V11, N G { H ) / H ) ̂  (2^-3 + 2C3 0 ̂  + C3 0 z^-i, (SLa x C*)/(Z/3))

where vj denotes the one dimensional representation of C* of weight j. Thus we have:
(1) (V,G) is 2-principal (see 7.11(3)).
(2) { V H , N G { H ) / H ) is not 2-principal.
(3) H acts effectively on V.

Hence stability of (V, G) is necessary in 7.5 and 7.7.

If G° is a torus, then one can sometimes apply a mixture of 7.5 and 7.6 to reduce
to the case of FPIG.

(7.9) PROPOSITION. - Suppose that G° is a torus and that X is smooth. Then
(1) The action of H° is fix pointed.
(2) 7Tx,H0 : X —^ X11 is equidimensional.

If, in addition, X is 2-principal, then

(3) X110 ^ G^W^.
(4) codimX^ \ Z^° = codimX \ Xp,.

Proof. - Proposition 7.6 shows that the action of the principal isotropy group Hf of
(X, G'0) is fix pointed, that X = X11' and that ' K X . H ' is equidimensional. Clearly
{H')° = H° is normal in G and an orbit H ' x is closed if and only if H°x is closed. Thus
the action of H° is fix pointed with X110 = X11', and we have (1) and (2).

Set G := G / H ° , H := H / H ° and X := X110. Using (2) and our hypotheses, we see
that codimX \ X^ > 2. Since (X,G) has FPIG, 7.5 shows that X ^ G ̂ oW ^^\
which gives (3). Part (4) follows from (2) and (3). D
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(7.10) THEOREM. - Let X, H, etc. be as in 7.7. Let E be a G-vector bundle on X and set
^ ___/ rr\ ^

X := X , G := N c { H ) / H . Assume that X is 2-principal and that
(1) X is stable, or
(2) X is smooth and H is normal in G, or
(3) X is smooth and G° is a torus.

Then
(4) There is an admissible G-vector bundle E ' on X such that HE)0 ^ ^{E/)G ^

T^E)0, where E := E'\^. If E is admissible, then E ' = E. If X is stable, then E ' C E
is a G-subbundle.

(5) T^X.E' is (n)-surjective if and only if TT^ ^ is (n) -surjecti've
(6) 7Tx,E is surjective if TT^- ^ is surjective.
(7) X is good if and only if X is good.
(8) IfX is smooth and TT^ ^ is graded surjective, then gr V^{X//G) is a finite gr V{X) -

module. If(^^}^ is also graded surjective, then gr V^ [X//G) is a finite gr V{X//G) -module.

Proof. - Clearly (4) and (5) imply (7) and (8). In case (1), set E := (E^w)11 and
E ' := G ̂ ^W E. Then E ' C E is an admissible subbundle with the same G-invariant
sections, so (4) is obvious, and (5) and (6) follow from 4.6. In case (2), 7.6 shows that
X —> X / / H = X11 is fix pointed, and we can apply 5.3. In case (3), 7.9 shows that
X —> X11 is equidimensional and that X11 c^. G ^NG(<H>) X , so we can just combine
the techniques used above. D

Here are some useful criteria for showing that a G-module has trivial principal isotropy
groups.

(7.11) LEMMA. - Let V be a G-module.
(1) If(V^ G°) is orthogonal (i.e. carries a non-degenerate symmetric G^-invariant bilinear

form), then V is stable ([Lul]).
(2) // G° is semisimple and Y(O) i=- 0, then (V, G) has FPIG ([Pol]). In particular,

(V, G) is stable.
(3) Let S be a stratum of V//G of codimension 2. If (V, G°) is orthogonal or G° is

semisimple, then codimTTy'^S) ^ 2 ([S3, 7.4]).

(7.12) COROLLARY. - Suppose that V is a G-module such that
(1) (V, G°) is orthogonal or G° is semisimple and Y(O) 7^ 0.
(2) G acts effectively on V.
(3) V has no codimension one strata.

Then the principal isotropy groups of V are trivial.
In many cases, the failure of V to satisfy FPIG implies that V is not good.

(7.13) THEOREM. - Let G be connected and let V be a G-module without FPIG such that
V° = (0) and dimV//G > 0. //

(1) G is simple, or
(2) G is semisimple and V is irreducible,

then ly (hence V) is not good.
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Proof. - For part (1) it suffices to compare the tables in [Ell] and [Sl]. One finds that
V has a non-principal coregular slice representation, hence V is not good. Now let V be
as in (2). We may assume that V is not coregular and "castling reduced" (see [Li, §1]).
From [E12] and [Li] one sees that the possibilities are the following:

(1) (C71 0 W.SOn x H), dimW < n - 2.
(2) (C271 (g) W,Sp^ x AT), dimTV < 2n - 1.
(3) (C71 (g) C^ ® C2, SLn x SLn x SL2), n ̂  5.
(4) (A^271 0 C^SLan x SLz), n ̂  5.
(5) (C^^C2 ,^ x SL2).

'(6) (C^C3,^ x SOs).
Here (W, H) denotes an irreducible representation of the semisimple group H, and the
rest of the notation above is, hopefully, self explanatory.

In cases (3)-(6), let H denote the last simple factor of G and let G' denote the product
of all the other simple factors. Then in all cases we have (V, G) = (Vf (g) W, G' x H)
for an appropriate G' and V. In every case except (2), when dim W is odd, the quotient
V / I G ' is smooth and has codimension 1 strata. Since H is semisimple, the images of the
codimension 1 strata of V f / G ' in V//G have codimension 1. Hence V has codimension
1 strata and is not good.

There remains the case (V, G') = (C271 (g) W, Sp^n x AT), dim TV := 2k + 1 < 2n. Set
K = Sp2^_2fc+2- Then {K) is the isotropy class corresponding to the codimension 3
stratum of ({2k + l)C<2n)//Sp^. The classification of [E12] shows that if (V,G) is not
coregular, then ^.NcW/K) = (C^-2 0 W,Sp^-2 x H) has FPIG. Thus there is
a closed orbit Gx, x G V^, such that No{K}x is a finite extension K of K ([Lu2]).
From the special form of (V,G) one can see that Gx C No(K), hence Gx = ^. The
slice representation of K in (V.Sp^n) is (SC271"'2^2,^), modulo trivial representations,
and it follows that the slice representation of K in (V,G), when restricted to K, is of
the same form (with dim If fewer trivial factors). Since (SC2^"2^4"2,^) is coregular, 6.8
shows that the slice representation of K is not good. D

8. Regular Sequences in 0(T*X)

We find sufficient conditions for a smooth affine G-variety X to be very good.
We begin with some homological preliminaries; see [BE] for a more general treatment.
(8.1) Let A be a noetherian commutative ring with identity and M an A-module.

Let / i , . . . , /5 be a sequence of elements of A, and let {fi^..,fs) denote the ideal
they generate. The fi are an M-sequence (or M-regular sequence) if multiplication by
/,+i is injective on M/(/i,... ,/z)M, 0 <_ i < s. If I is an ideal of A we write
depthjM > s if there is an M-sequence of length s in I . Suppose now that M is finite.
Then depthjM ^ s if and only if Ext^(A/J,M) = 0 for i < s (see [Ma, Th. 28]). If
M == JM, then Ext^(A/J,M) = 0 for all i, and depthjM = oo.
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(8.2) In the following, X denotes an affine variety, V is a closed subvariety, and
I C A := 0(X) denotes the corresponding ideal. If M is an A-module, we will confuse
M with the corresponding sheaf M of Ox-modules. For example, we say that m G M is
zero on X \ Y if the corresponding section of M vanishes on X \ Y C Spec A.

Suppose that X is smooth. Then / i , . . . , fs are A-regular if and only if their zero set
Z { f i , ' . • , fs) c X has codimension s ([D], [Se], [Ma]). In particular, depthjA = codim V
(where codim0 = oo).

Suppose that X is a smooth G- variety and that Y == ^x^^x^Y)). An induction
argument produces f t / i , . . . , hm ^ 1° which are an 0(X)-regular sequence (cf. [S3, 10.5]),
where m = codim V.

(8.3) LEMMA. - Let

0-^M^TV^O

be a complex of finite A-modules which is exact when localised at any point of X\Y.
(1) If depth jM > 1, then (p is injective.
(2) T^depthjM >_ 2 and depthjTV >_ 1, then (p is an isomorphism.
(3) Suppose that M and N are projective. Then ^ is injective if codim Y > 1 and (p

is an isomorphism if codim Y > 2.

Proof. - If depthjM ^ 1, there is an / G I which is not a zero divisor on M. Let
m C Ker (p. Since Xf C X \ V, y : Mf —^ Nf is injective and fm = 0 for some I > 0.
This implies that m = 0, and we have (1). In (2), suppose that n G N . Let /i, f^ G I be
M-regular. Since (p is an isomorphism over X^ and X^, we can find k, I >_ 0 and mi,
m2 € M such that (/?(mi) = /^n and ^(m/2) = j\n. Since (^ is injective, we must have
ffm^ = J^mi. The /z are M-regular, hence we must have 7712 = j\m and mi = f^m
for some m G M. Then n - (^(m) vanishes on X \ Y, and depthjiV >_ 1 implies that
n = y?(m), so we have (2). Part (3) follows from the remarks in 8.2 D

(8.4) COROLLARY. - Let

M 0 - A4 -^ Mfc _ i ̂  ... - Mi ̂  Mo

te <2 complex of finite A-modules which is exact on X\Y. Suppose that r > 0 anJ either
(1) depth^(M^) > j + r, j = 0 , . . . , fc, or
(2) each Mj is projective, X is smooth and codim Y > k + r.

Then (*) is exact and depthjM,-/^-+i(Mj+i) > j + r, j = 0 , . . . , fc.

Pwo/. - We may assume (1) since it is implied by (2). If k = 0 there is nothing to
prove. If k = 1, then 8.3(1) and the exact sequence of Ext give the result. Suppose that
k >, 2. Then 0 -^ Mj, -^ Ker((^-i) -^ 0 is exact by 8.3, and

0 -> Mk-i/Mk -^ Mk-2 -^ . • •

is exact over X\Y. The exact sequence of Ext shows that depthj(Mfc-i/Mfc) ^ k- 1+r,
hence by induction (*) is exact and depthjMj7^+i(M^+i) > j + r. D
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(8.5) From now on X will always denote a smooth affine G-variety. We construct a
Koszul-like complex from the ^-action on X.

Since Q consists of sections of TX, we may consider Q as functions on T*X. Explicitly,
if A G 0, we obtain a function /A whose value at ̂  e T^X is the contraction {A(x),^)'
The functions /A are closely related to the moment mapping p, : T*X —> 3*. In fact,
^)(A) = /A(^); ̂  e r*x, A c s .

Let A i , . . . , Ai be a basis of 0. Then Z := Z( /Ai , . . . , /A<) ^ T*X is independent of
the basis, and we say that 0 is regular in 0(T*X) if Z has codimension Z. Equivalently,
the /A, form an 0(r*X)-regular sequence. Note that Z = ̂ (O).

In case X = V is a G-module, then T*Y c^ V 0 V*, and the /A are quadratic elements
of O(Y e v*).

(8.6) Remarks. - (1) If 5 is regular in 0(T*X), then the general G-orbit in X has
finite isotropy, i.e., X(Q) 7^ 0. The converse is false (see 9.3-4). However, if X = X^,
then s is regular in 0(T*X).

(2) fl is regular in 0(T*X) if and only if 1} is regular in 0(W C W*) for every slice
representation (W^H) of X (see 9.4).

(3) The moment map ^ '' T*X —^ g* is equivariant with respect to the scalar
C*-actions on T*X and g*. Thus ^ is equidimensional and dominant if and only if
codim^'^O) == dimG, i.e., if and only if Q is regular in 0(T*X).

(8.7) Let E be an admissible G- vector bundle over X. We show how to use the
regularity of Q in 0(T*X) to obtain information about JCa^X): Let U := U(Q) denote
the universal enveloping algebra of 5, and let {U1^} denote the usual filtration. There is
a free resolution B. of the trivial ^/-module C:

o^^A^_^...^^^c-o
where Bp == U 0c A^s, as follows (see [HS, Ch. VII §4]): Let A i , . . . ,Ai be a basis
of Q C U1. Set

P
dp(Ak, A • • • A Afc,) = ̂ (-l)^^ (g) (Afe, A . • • A Ak, A • • • A AfcJ

i=l

+ ^ (-1)^'^^^.] A Ak, A • • • A Afc, A • • • A A^. A • • • A A^.
Ki<j<p

Clearly the dp preserve the filtration of B. by the subcomplexes F^B., where
F^Bp := ^m-p 0c A^^. The associated graded complex is just the Koszul complex
of the elements A i , . . . ,A^ of S*(0), and this complex is exact.

We map the Ai G Q C U1 to the corresponding elements (also denoted Ai) in P^(X),
and we thus obtain a homomorphism U —> T>E(X). From the complex B» we obtain a
complex C» where

Cp = VEW 0^ 0p ^ P£;(X) 0c A^s,

and there is a natural surjection C. -> <D£;(X)/P£;(X)0. There is a filtration {F771^} of
C, by subcomplexes, where F^Cp = V^~P(X) 0c A^fl, and there are natural surjections
F^C. -> VrS(X)|V^~l(X}^ The F^C. and C. are complexes of 0(X)-modules.
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(8.8) LEMMA. - Let E be an admissible G-vector bundle on X, where X has FPIG. Then
(1) F^C. is exact when localised at any point of X(Q).
(2) Locally on X^ ^(X) = V^~\X^.
(3) Locally on (X//G)^ 7Tx^(Xf = V^(X//G).

Proof. - The associated graded to VE^X) is 0(T*X) 0<?(x) r(End(F)), and the image
of A G fl is J A ̂  '^E (see 3.14 and 3.22). Thus the associated graded to the filtration
{F^C.} of C. is the Koszul complex of the /A, tensored with r(End(F)). Since the
/A, form a regular sequence on any affine open subvariety Z of T*X\x^, the associated
graded complex is exact on Z. By induction on m, the complexes F^C. are also exact on
Z, and (1) follows. Proposition 5.3 gives (3). By 4.9, we may reduce (2) (and (3)) to the
(obvious) case where X = V is a G-module, G is finite, G acts trivially on V, E = @w
and G acts trivially on W (by admissibility). D

The following result is an extension of the methods of [S3], which dealt only with vector
fields, to the case of differential operators.

(8.9) THEOREM. - Suppose that X is smooth and has FPIG and that codim(X \ Xpr) >_
m >_ 2. Let E be an admissible G-vector bundle on X. Then

(D jc^x) = pr'w^1 ̂  p < m -L
(2) Ifm > dimG + 1, then JC^X) = P^~1(X) Q for all p.
(3) X is (m - 2) -good.
(4) Ifm>_ dim G + 2, then X is very good.

Proof. - Let Y denote X \ Xpr, and let I denote the corresponding ideal in 0(X). If
p < mm{dimG,m - 1}, consider the complex F^C,:

0 ̂  VtW (g)c A^S) ̂  • • • ̂  ̂ F'W ^c Q -^ WX).

The image of V^W (g)c 0 ̂  ̂ W lies in /C^(X), so we also have a complex

(#) 0 ̂  M := (V^\X) (S)c sVM^-'W ^c A2^) -. /C^(X) ̂  0.

All the 0(X)-modules in FPC. are locally isomorphic to copies of ^(X) for some g,
and these are, in turn, projective over 0{X). Then 8.4 shows that FPC. is exact and that
depth^M > 2. Since /C^(X) C ̂ (X) is torsion free, depth^(X) > 1. Applying 8.3
and 8.8(2) to (#), we see that M ̂  /C^(X). If m > dimG + 1, our argument applies to
/C^(X) for all j9, hence we have (1) and (2).

To prove (3) and (4) we may reduce to the case that X = V and E = Q^, where V
and W are G-modules. Set J := 1° C 0(V)°, and suppose that p < mm{dim G, m - 2}.
From 8.2 we have that depthj{0(V)) > m. The complex (F^C)^ has terms which are
sums of ©(iQ^-modules of covariants, i.e., the modules are direct summands of several
copies of 0(V) (cf. [S3, 10.5]). Each such module has J-depth at least m. Applying 8.4
to {FPC.)0 we see that

depth^P^lO/PF1^)^ = depth^^VV/C^y))0 > m -p > 2.
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Since V^{X//G) has no 0(V)° -torsion, its J-depth is at least 1. Applying 8.3 and 8.8(3)
we see that the sequence

0 - (PWIICW}0 -. W//G) -. 0

is exact. If m > dim G + 2, then we can carry out the same argument for any V^(V//G),
hence (3) and (4) hold. D

We now establish versions of 8.9 which rely on hypotheses which include regularity
of Q in 0(T*X).

(8.10) Let A denote 0(X) and let Q^(X) denote 0(r*X)(g)Ar(End(£)). Then G^(X)
is a projective A-module, and the symbol sequence is a (split) exact sequence of A-modules:

o -. v^-\x) -^ P^(X) ̂  g^(x) -^ o.
Denote by %(Z)fl the product of G^(X) and Im(s -^ 0(T*JC)) in 0(T*X) (g)A
F(End(^)).

(8.11) PROPOSITION. - Suppose that Q is regular in 0(T*X). Then
(1) The sequence

Q ^ ^m v^'w Q^W
V^-\X)Q " V^WQ -" G^WQ ^u

is exact, m > 0.
(2) For fc > m >, 0, ̂  /z^v^ V^WQ H P^(X) = P^-^X)^.
(3) gr2W)/gr(2W))s ^ gr(^(X)/^(X)s).

Pwo/. - The complexes F^^C./F^C. have trivial homology in positive degree since
their direct sum is the Koszul complex of Q C 0(T*X) tensored with r(End(£)). Using
induction on m and the exact sequences

0 -. F^C. -> F^C. ̂  Frn'^lC.|FmC. -^ 0

one establishes the vanishing of higher homology for each F^C.. Taking homology in
the exact sequences we obtain (1). Part (2) follows from (1) by downward induction on
fc, and (3) follows from (2). D

(8.12) PROPOSITION. - Let f a i , . . . , ^ G 0(X) and let A i , . . . , A ^ be a basis of Q.
Suppose that hi,..., hs, /Ai, • • . , /Ai is a regular sequence in 0(T*X). Then / i i , . . . , hs
is a regular sequence/or ^(X)/?^"1^)^, m > 0.

Proof. - Let /C» denote the Koszul complex of the hi e 0(X). Let

q-m _ r ^ •?|[(̂ 0
J. - ̂ . 00(X) ^m-l/y^-

^E (X)S

Since the )Cp are projective 0(X)-modules, from 8.11(1) we obtain a short exact sequence
of chain complexes

/-jm+l/ y\
n _. qrn r7-m-\-l ^)m+l . }r ^> •y E V"1- / f\^-^ J. -> J. -> y. .= /C. 0o(jc) ^^. ^ 0.
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The higher homology of ^+1 is trivial, since the /A, and hj are 0(T*X)-regular. By
induction, each J^ has trivial higher homology, i.e., the hj are a regular sequence on
each ^(X)/^-1^. D

(8.13) LEMMA. - Let E be an admissible G-vector bundle on X, where X has FPIG. Let
AI , . . . , Ai be a basis ofQ such that h and /Ai , • • • , /A; form a regular sequence in 0(T*X\
where 0 ̂  h G 0(X) vanishes on X \ Xp,. Then /C^(X) = ̂ ^{X^Qfor all m.

Proof. - By 8.12, h is not a zero divisor on /D1g{X)//D^~l(X)Q, hence it is not a zero
divisor on M :== /q^JO/r^-^JQfl. Since M vanishes on X/, c X^ M - 0. D

(8.14) COROLLARY. - L^? X, h, etc. be as above where we now assume that h G 0(X)°.
Let r denote the injection YaW0/ICE^X}0 ^ 2^(X//G). Then

(1) grr : gr(P£;(X)G//C£;(Xf) ^ grVe(X//G) is injective.
(2) £' ^ ^ood if and only if it is very good.

Proof. - By 8.11(1), (the proof of) 8.12, and 8.13, h is not a zero divisor on

(^(x)/^-1^) + /cr1™)0 ̂  LS^ )^m—l/v\ i ik"m—l

Since

o - ̂ wKp^w + /c^w))0 - ̂ (x//G)/prlw/^)
is injective locally over (Xy/G)pr, it is injective. Hence grr is injective, and X is very
good if it is good. D

(8.15) PROPOSITION. - Let A i , . . . ,A^ be a basis of Q, and let h^, h^ be elements of
0{X)°. Suppose that:

(1) fai, /i2, /Ai, • . • ? /Ai is a regular sequence in 0(T*X).
(2) /ii and h^ vanish on X \ Xpr.
Then X is very good.

Proof. - Apply 8.3 to

0 ̂  V^{Xf/JC^(Xf -^ V^{X//G) -^ 0.

(8.16) Remark. - Let Y denote X \ Xpr, and let I denote the corresponding ideal of
0{X). Suppose that codimY := m > dim G+2 = (+2. Then there are fai, ^2 C ^G which
are 0(X)-regular (see 8.2). Now the vector fields A i , . . . , Ai are linearly independent on
X(o), hence the zero set 2'(/Ai? • • • ->fAi) has codimension I in the restriction of T*X
to Z(^i, /i2) \ Y. Since codimV = m >: < + 2, it follows that /ii, /i2, / A ^ ' • • ? /Az is
a regular sequence in 0(T*X}. Thus both 8.15 and 8.9(4) show that X is very good.
However, for (V,G) = (2nCn,SLJ, the hypotheses of 8.15 hold (see 11.15), while
codimY \ Vpr = n + 1 < n2 + 1 =- dimG + 2, so that 8.9(4) does not apply.
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9. Modularity

We reformulate the results of §8 in more geometric terms. In this section, X denotes
an affine G-variety.

(9.1) Recall that X^ = [x G X : dimG^ = n}. Define mod(X,G), the modularity
of (X, G), to be sup^{dimX(^) - dimG + n} (see [Vi]). Our standing assumption on X
is that X = GXo where XQ is an irreducible component of X. Define d(X, G) to be the
transcendence degree of Q(Xo}GO, where Q(Xo) denotes the field of rational functions on
XQ and Go is the stabilizer of XQ (see 1.3).

(9.2) Remarks. - (1) By a theorem of Rosenlicht, d(X,G) = dimX - sup^dimGx.
Thus d(X, G) = mod(X(fc), G) where fc e N is minimal such that X^) / 0.

(2) d(X,G) < mod(X,G).
(3) If the G-action is stable, then d(X, G) = dimX//G. In particular, if X has FPIG,

then d(X,G) = dimX - dimG.
(4) Both mod(X,G) and d(X,G) only depend on (X,G°).
(5) If G is a torus, then mod(X, G) = d(X, G) (Vinberg [Vi]).

(9.3) Example. - Let G = SL^, V = (k + n)C71, n > 3 , 0 < f c ^ n - 3 . Then
d(V,G) = f cn+1 < [(n+fc)2 /^ = mod(A/G(^), G) =mod(Y,G) (see 11.13).

(9.4) PROPOSITION. - Let X be a smooth affine G-variety. The following are equivalent.
(1) Q is regular in 0(T*X).
(2) X(o) / 0 anrf mod(X,G) = d(X,G).
(3) codimX(^) > n for all n € N.
(4) codim W^n) >. n for all n G N /or every slice representation (IV, ff) of X.
(5) (} /5- regular in 0(W 0 W*) for every slice representation (W, H) of X.

Proof. - If (W,H) is a slice representation of X, then (G *^ WQ(^) == G *^ (W(n)),
so clearly (3) and (4) are equivalent. Thus we need only show that (1), (2) and (3) are
equivalent. We may assume that X(Q) 7^ 0 since this is implied by (1) (see 8.6(1)) and (3).
Then d(X, G) = dim X - dim G by 9.2(1), and the equivalence of (2) and (3) is clear. The
zero set ofg inside 0(T*X)\x^ has codimension dimG-n, since dimg(x) = dimG-n
for every x G X^y Thus (1) and (3) are equivalent. D

(9.5) Definitions. - Let k > 0 and let X be a smooth affine G-variety with FPIG.
We say that X is

(1) k-modular if mod(X \ X(Q), G) + k ^ dimX//G,
(2) k-principal if codim X \ Xpr > fc, and
(3) k-large if it is fc-modular and fc-principal.

(9.6) Remarks. - Let X be as above.
(1) Suppose that G is finite. Then X is automatically fc-modular for all k. In addition,

if G acts trivially, then X is automatically fc-large for all k.
(2) X is fc-modular (resp. fc-principal, resp. fc-large) if and only if all of its slice

representations are also.
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(3) X is fc-modular if and only if codim X^n) ^ n + fc; n == 1 ,2 , . . . , dim G.
(4) If X is 2-principal, then X has no codimension one strata.
(5) X is fc-large if and only if mod(X \ Xpr, G) + k ^ dimX//G.

(9.7) LEMMA. - Let X be smooth and k-modular and let A i , . . . ,Ai be a basis of 5.
Suppose that / i i , . . . , hj, e 0{X)° are 0(X)-regular. Then f a i , . . . , hj,, /Ai, • . • , JA, are
0(T"X)-regular.

Proof. - Let Y denote an irreducible component of the zero set of the hi. Then Y has
codimension k in X. By hypothesis, X^ has codimension at least j + k in X, hence
Y H X(^) has codimension at least j in Y. As in 9.4, this implies that / A ^ ' " , /Ai is a
regular sequence on T*X|y, and the lemma follows. D

Let X be smooth. Using 7.10, 8.2, 8.9, 8.13-8.15 and 9.7 we obtain the following
three results.

(9.8) THEOREM. - Suppose that X has FPIG and is m-principal, m > 2. Then X is
(^ _ ^-good. Ifm > dimG + 2, then X is 2-large and is very good.

(9.9) THEOREM. - Suppose that X is 1-large, and let E be an admissible G-vector bundle
on X. Then

(D /c^(x) = P^-W^ m > ot

(2) The canonical morphism g^VaW0/ICa^X)0) -^ giVe{X//G) is injective.
(3) E is good if and only if it is very good.

Hence X is good if and only if it is very good.

(9.10) THEOREM. - Suppose that X is 2-large. Then
(1) X is very good.
(2) IfE is a G-vector bundle on X, then TVX,E is graded surjective. Hence gTVs(X//G)

is finite over the finitely generated algebra gvV{X//G).

(9.11) Example. - Let (V, G) = (fcC2, SL2), k ^ 2. We will see that V is (fc - 2)-large.
When k = 2, IC^V)0 + (W)^ ([S3, 9.2]). When k = 3, V is 1-large but not good,
since it is coregular. For k > 4, V is very good.

As a consequence of 5.6, 5.15, 9.8 and 9.10 we have the following, somewhat mysterious,
result.

(9.12) THEOREM. - If X is a smooth affine G-variety with FPIG which is 2-large or 3-
principal, then (X//G)sm = W/G)pr. In particular, ifV is a non-trivial G-module which
is 2-large or ^-principal, then V cannot be coregular.

One can find related results about the smoothness and flatness of -KX in [Br, 4.3 Cor. 2]
and [Kn].

10. Tori

Throughout this section, X denotes a smooth affine G-variety. We also assume that G°
is a torus T. We find necessary and sufficient conditions for X to be (very) good. We also
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prove that conjecture 0.1 is true for actions of tori, a result essentially due to Musson [Mu].

(10.1) PROPOSITION. - Suppose that X has FPIG. IfX is k-principal, then X is k-modular,
k >_ 0. Hence X is k-large if and only if X is k-principal.

Proof. - By 9.6(2) we may reduce to the case that X is a G-module V with FPIG. We
are given that V is fc-principal, and we must show that it is fc-modular. We may assume that

(1) V° = (0).
Now principal G-orbits are finite unions of principal G°-orbits. Hence if (V,G) is
fc-principal, then so is (V,G°), and we may add

(2) G is connected, i.e., a torus.
Since the principal isotropy groups are the ineffective part of the action, we may assume

(3) (V, G) has trivial principal isotropy groups.
By induction over slice representations we may reduce to the following problem:

(4) Show that mod(A/G(^),G) ^ dimV//G - 2.
Let n = dim V, I = dim G. Then dim V//G = n- I. Choose coordinates x - i , . . . , Xn on

V so that the action of G is diagonal. Then A/c(^) is a finite union of coordinate subspaces.
Let W C AfoiV) be a coordinate subspace, where W has codimension s in V.

Let G/ = Ker(G -^ GL(W)). If dimG' ^ s - fc, then by Vinberg ([Vi], see 9.2(5))
mod(iy,G) = mod^G/G') = {n-s)-l+dlmGf = (n-O-5+dimG' ^ dimV//G-fc,
so we get the desired estimate.

Suppose that dim G' > s — fc+1. Consider the G'-action on the 5-dimensional coordinate
subspace W complementary to W. Then (W, G') has trivial principal isotropy groups and
dim W ' H G ' < k-1. Thus A/G/ (W), a fiber o i - K w ' ^ G ' . has codimension at most fc-1 in W.
Choose nonconstant monomial generators / i , . . . , ft G (D^W)01. Then 0{V)° is generated
by (nonconstant) monomials in the coordinates of W and the fj. Since W C A/c(^),
each such monomial involves some of the fj. Hence W x MG'(W) C A/G^V), where
W x MG'(W) has codimension at most k - 1 in V, contradiction. D

(10.2) PROPOSITION. -IfXis not 2-principal, then lx is not good, hence X is not good.

Proof. - We assume that lx is good and derive a contradiction. There must be a
nonprincipal closed isotropy class {H) such that X^ has codimension 1 in X. Choosing
a slice representation at a closed orbit in X^ and using 4.9 we may reduce to the case
that X is a G-module V such that codimY^ = 1. We may further reduce to the case
that V° = (0), so that A/c(^) has codimension 1 in V. We now show that we may
assume that V has FPIG:

Let H denote a principal isotropy group of (V,G). Then H° is normal in G and
we may write V = V C Vo as G-module, where VQ := V110. The action of H° is fix
pointed (7.9), hence 0(y1)110 = C, Vp, - V x (lo)pr and (VQ,G) is not 2-principal. If
P G P^V C Vo)°, then p(P) G P0^' C Vo)° = (O^)110 0 Vn{Vo))G ̂  ^{Vo)0

(see 3.16). In other words, if / e 0{V)°, then P{f)\v, = p(-P)(/k)- Thus ly, is good
since ly is. Since (Vo, G / H ° ) has FPIG, we may assume that (V, G) has FPIG.

Since (V,G) is 1-principal with FPIG, it is 1-large by 10.1, and 9.9 shows that (7ry)^
is graded surjective. If Q G P^V/yC), then Q = (Try),? where P e ̂ (V)0. Now the
degree (see 4.7) of P is at worst -n, hence order Q + degQ > 0 for all Q e V{V//G).
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We now construct a Q where this inequality fails.
Choose coordinates x\,..., Xn on V so that the X{ transform by characters ̂  of T = G°.

Clearly n > 1, else ly is not good. Thus Afo{V) = A/r(^) has dimension n - 1 > 0,
and there is an Xi, say rri, which divides every nonconstant monomial in 0{V) . Let
{a^aeAcN- be monomial generators of 0(V}1'. Let

a = min{ai : a = (ai,..., Oyi) G A}.

Then a > 0, and there is a monomial / = x^f^x^,... ,Xn} € ^(V)71 where
deg / = d > a. Let Pz be the constant coefficient differential operator in 9 / 9 x ^ , . . . , Q/9xn
dual to /2. Then P := x^P^ is T-invariant and preserves 0(V)1'. Clearly Q := (7Ty,r)*-P
has order d - a and degree -d. Set Q' = JJ ^Q. Then Q' G P(y//^)G/T induces

5€G/T

Q € V(V//G) such that deg Q + order Q < 0, contradiction. D

(10.3) EXAMPLE [Mu, 2.9] Let G = C* act on V = C3 so that there are coordinate
functions s, t and u transforming by weights 1, 1 and -2, respectively. Then 0(V) is
generated by x := s2^^, y := s^u-t^u and 2; := 2^. Note that these generators satisfy
the same relations as those in example 6.4, so that V//G = C = {x2 = y2 + z2} C C3.
Using the description of the generators of V(C) given in 6.4, one can see that (Try)* is
1-surjective but not 2-surjective. The missing order 2 differential operators come from the
images of u-^^Qs2, u-192/9s9t and u-192/9t2.

(10.4) THEOREM. - Let H denote a principal isotropy group of X. Then the following
are equivalent:

(1) 7Tx,E ls surjective for every G-vector bundle E on X.
(2) X is very good.
(3) X is good.
(4) lx is good.
(5) X is 2-principal.
(6) (X^^G/H) is 2-principal.
(7) (X^^G/H) is 2-large.
(8) 1^<H) is good.j\.
Proof. - Using 9.10, 10.1 and 10.2 we see that (6), (7) and (8) are equivalent and that

(4) implies (5). Clearly, (1) (or (2)) implies (3) which implies (4). By proposition 7.9, (5)
implies (6), and by 9.10 and 7.10, (7) implies (1) and (2). D

We have the following "toral analogue" of 6.9:

(10.5) PROPOSITION. - Suppose that dimV//G = 2, where (V, G°) is not fix pointed.
Then V is not good.

Proof. - We may assume that V is 2-principal. Then (V, G°) is equidimensional, hence
coregular [We], and we may apply 6.8(3). D

The following results establish finite generation for differential operators on quotients
by commutative groups, but only for the case of the trivial line bundle.
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(10.6) THEOREM (cf. [Mu]). - Let V be a G-module, where G is commutative. Then
V//G ^ X ' l / G ' and P(V//G) ^ V ^ X ' I / G ' ) where X1 is a very good G'-variety. Hence
gTV(V//G) is finitely generated.

Proof. - By 7.10 (Luna-Richardson), we may reduce to the case that V has trivial
principal isotropy groups. Suppose that (V//G\H) is a codimension 1 stratum. Then the
slice representation of H is of the form (W 9 C^, H), where dim W / / H = 1 and H acts
trivially on Cp. Since G is commutative, we have that V ^ W (D CP as H -module, where
H acts trivially on CP . Quotienting V by H we obtain a representation V of G' := G / H
such that V//G ^ V//G\ and V J I G has fewer codimension 1 strata than V / / G .

By induction, we may reduce to the case that V//G has no codimension 1 strata. Fix
coordinate functions a;i , . . . ^Xn on V which transform by characters of G. Suppose that
codm^y^ ^ V° x A/'G^)) = 1, and let (7i , . . . , Ur be the hyperplanes contained in
V^°\ We may assume that Ui is the zero set of Xi, i = 1,... ,r. For 1 < i <^ r there
are 1-parameter subgroups \i of G such that Xi transforms under \i by a negative
weight, while all other xj, 1 < j < n, transform by non-negative weights. Thus
0(V)[(x^"Xr)~l]G = 0(V)° and O^V}0 = 0{X)° where X := V \ {zeroes of
^i • • • Xr}. Moreover, X^ = V^ H X has codimension at least 2 in X.

Now suppose that (H) is a closed isotropy class with codimV^ = 1, and let
(TV, H) denote the corresponding slice representation. Note that (V, H) = (W, H) modulo
trivial representations. As above, there are coordinate functions on V, say a;i , . . . ,a^,
such that X := V \ {zeroes of x\ • ' -Xr} has the same G-invariant functions as V, and
codimxX^ > 2. We may perform this procedure for all (H) such that codimyW = i^
The resulting affine G-variety X is 2-principal with quotient V//G. D

(10.7) COROLLARY. - Let X be a smooth affine G-variety, where G is commutative. Then
gTV(X//G) is finitely generated.

Example 3.27 shows that we cannot generalize 10.7 to the case of vector bundles.

11. Classical Groups

We develop techniques for establishing that representations are fc-large, and we show
that 2-largeness holds generically. We then consider the standard representations of the
classical groups.

(11.1) DEFINITIONS. - Let X be an affine G-variety, and let (H) be a closed isotropy
class of X. Define:

(1) ^(X,G) = dimX//G - mod(X \ X^,G).
(2) ^W(X,G) = dimX//G - mod(XW,G).
(3) comod(X,G) = dimX - mod(X,G), the comodularity of (X,G).

If X(Q) 7^ 0, then we define
(4) ^(^ G) = dim^7/G - mod(X \ X(^ G).

We use notation /^(X), etc. if the group involved is clear.

(11.2) Remarks (cf. 9.4).
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(1) dimG — comod(X) = sup{n — codimX^n)} >. 0.
n^o

(2) comod(X) == dimG if and only if Q is regular in 0(T"X) if and only if X(Q) 7^ 0
and Km{X) > 0.

(3) Let V be a G-module, and write V = V° C V where V is G-stable. Then
y(G) ^ yG x A^Cn and V//G ^ V° x V HG. Thus

dimVy/G - mod^^) = dimYV/G - mod(A/G(^G).

so that ^°\V) = ^{V}.
Assume that X has PPIG.

(4) X is fc-modular (resp. fc-large) if and only if k < i^m{X) (resp. k <: ^(X)).
(5) ^{X) ^ ^(X).

(11.3) LEMMA. - L^^ X be a smooth affine G-variety such that G acts non-trivially with
FPIG. Let (Wi, ̂ i),..., (W^ Hr) represent the isomorphism classes of non-principal slice
representations. Then ̂ ^(X) == ^^^(Wi) for each i and

^X)=\^{^\Wi)}.

Proof. - X \ X^ == \JiX^\ By the slice theorem,

mod^^G) = mod(G*^ W^^G) = mod(W,w\^),

and the lemma follows. D

(11.4) PROPOSITION. - Let V be a G-module, -where G° is semisimple or (V^G0) is
orthogonal. Suppose that V is 2-modular, i.e., Y(O) 7^ 0 anc^ i^m(Y) >_ 2. Then V is
2-large if

(1) V has no codimension 1 strata, or
(2) G is connected.

Proof. - Part (1) is immediate from 7.11. If (2) holds, we need to show that there is not
a codimension 1 stratum (V//G)(H). If dimff > 0, then mod(VW,G) >dimy//G-l ,
a contradiction. Thus H is finite. By 1.6, V ^ W 9 Q as H-module, where {W,H)
is the slice representation of H and the H actions on V and Q are the restrictions
of the actions G -> SL(V) and G -^ SL(fl). Hence H ^ GL(W) has image in
SL(W) and lm(H —^ SL(W)) contains no pseudoreflections. Thus ( V / / G ) ( ^ H ) cannot
be a codimension 1 stratum. D

(11.5) PROPOSITION. - Let V and W be G-modules -where W is almost faithful.
(1) Tjfcomod(y) < dimG, then comod(V C W) > comod(V).
(2) // Y(O) ^ 0, then ^{V C W) > ^(V).
(3) // V has FPIG, then so does V C W.

Proof. - Let {v,w) € (V C W)(n), n > 0. If v € Y^), then w € W00- ^ W, else
^ e T^yn) for some m > n. It follows that

codimv@w(V © W\n) — n> sup{codimyy(^) — m}.
m>n
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Hence (1) and (2) follow from 11.2(1) and 9.6(3), respectively. If V has FPIG, then the
slice representation at points (v, 0) € Vpr x W is of the form (U, H) where H is finite.
Since (U,H) has FPIG, so does V C W. D

(11.6) COROLLARY. - Let G be connected.
(1) If G is simple, then, up to isomorphism, all but finitely many G-modules V -with

V° = (0) are 2-large.
(2) Let G be semisimple, and consider G-modules V ^here V° == (0) and each irreducible

component of V is almost faithful. Then, up to isomorphism, all but finitely many V are
2-large.

Proof. - In both (1) and (2), the numerical criteria and estimates of [AP], [AVE] or
[Go] show that, up to isomorphism, only finitely many irreducible G-modules V i , . . . , Vr
fail to satisfy: V has FPIG and ^n(Y) ^ 2. By 11.5, any (possibly reducible) V failing
these conditions is isomorphic to a direct sum of the Vi, and only finitely many sums can
fail the conditions. Now apply 11.4. D

(11.7) COROLLARY ([Po2], [Go]; cf. [Kn]). - Let G be connected semisimple and consider
G-modules V such that V° = 0. Then, up to isomorphism, there are only finitely many
V -which are coregular.

Proof. - It follows from 11.6 and 9.12 that there are, up to isomorphism, only finitely
many irreducible (not necessarily faithful) coregular representations V i , . . . , Vr of G to
consider. Since a subrepresentation of a coregular representation is coregular [Sl, I.I], any

coregular V must be isomorphic to a sum Vm^. Let Gi denote Im(G? —> GL(Vi)),
1=1

i = 1,... ,r. Then Gi is semisimple, and by 11.5 there is an rii such that (n^, Gi) is
2-modular, hence 2-large. It follows that mi < n^ for each i. D

We now consider some representations satisfying the LS-altemative (see 0.11). This
property holds for irreducible representations of simple groups [S7]. It does not hold if
one drops the irreducibility assumption.

(11.S) Example (see also 5.11 and 11.15). - Let (V,G) = (S^C71) 9 2C71, SL^), n ^ 3.
Then V is not coregular ([Sl]), yet it has a non-principal coregular slice representation
(namely, (C C 2Cn,SOn), where SOn acts trivially on C). Thus V is neither coregular
nor good.

Let Ri denote the (irreducible) representation of SL-z on S^C2).

(11.9) THEOREM. - Let G = SL2 and V = ̂ )mA. Then V is 2-large, except in the
i>l

following cases:
(1) kR^ 0 ^ k < 3.
(2) ^2, 2^2, P2 C -Ri.
(3) J?3, R^.
Each of the representations listed is coregular, hence all representations of SL2 satisfy

the LS-altemative.

4® SfiRIE - TOME 28 - 1995 - N° 3



LIFTING DIFFERENTIAL OPERATORS FROM ORBIT SPACES 299

Proof. - By 11.4, it is enough to show that (1)-(3) list all the representations which are
not 2-modular. Let Y := V \ Y(O). If 0 / v G V, then G^ is a copy of C4- (the additive
group) or C*. Up to conjugacy, there is only one subgroup of each type in G, and each such
subgroup fixes at most a one-dimensional subspace of any Ri. Thus dimY ^ 2 + ̂ ^ mi

i

and mod(V, G) ^ ̂  rm. Now V has FPIG if dimY < dimY = ̂ (i + l)m,, and V is
% ^

2-modular if, in addition, mod(V, G) + 2 ^ dim Vy/G = dim V - 3. Hence V is 2-modular
if 5 <, V mii. The cases where V %m, < 5 not listed in (1), (2) and (3) are:

(4) 4Ei.
(5) R^ ® 2^i.
(6) J?3 C I?i.
Consider case (5). The fixed points of any copy of C* have dimension 1. The normalizer

of any copy of C"^ contains a copy of C*, so that our estimate for mod(Y,G) can be
improved to dimY^ -1=2 . Since dimV//G = 4, V is 2-modular. Cases (4) and (6)
are similar. D

We now consider the classical representations of GLn, SLyi, On, SOn and Sp^.

(11.10) LEMMA. - Let k > 0, p > 0. Then

A(^P nj \ n^/c f c ^ 2 p + i
mod(M-G4)=^_^ ^2p-l

Proof. - Let Wr denote { ( ^ i , . . . ,Vk} ^ ^C^ : dimspan{i;i,... ,Vk} = r}. Set
Ur := { (e i , . . . , e^ )} x (fc - r)^ C M^, where e i , . . . , ep is the standard basis of
C^ and (7 denotes span{ei,. . . ,e^} C 0\ Let the symmetric group Sk act on fcC^
in the usual way. If (z?i , . . . ,Vk) G Wr, then modulo the action of Sk x GLp, we can
assume that Vi = e,, i <, r. Then ^+1,...,^ lie in C7', L^., Wr = {Sk x GLp)£^.
Clearly, if g G GLp and gUr H (7^ / 0, then p acts trivially on (7^. Hence
mod(l^,Sfc x GLp) = mod(W^,GLp) = dim Ur = r(fc - r). Now fcC^ is the disjoint
union of the Wr for 0 < r <, max{fc,p}, and the maximum value of mod(Wr,GLp)
occurs when r = min{[fc/2],j)}. D

(11.11) PROPOSITION. - Let k ̂  I > 0 and n ̂  1, and let (V, G) = (fcC71 C ((C71)*, GLn).
Then mod(A/G(^),Gf) =

(fe^2)/^, fc+«2n+l

^(fc + l _ n)n + ^(fc - O2] , 2 n - K f c + ^ f c < ^ + 2 n + 2

. nk - n2, 2n - 1 ^ fc + ̂ , k ^ < + 2n - 2

I f k ^ l ^ n , then ^°\V) ^ nl.

Proof. - Let e i , . . . , e^ denote the standard basis on C71 with dual basis e\^..., e^.
Let T denote the standard maximal torus of G. If A : C* —^ T is a 1-parameter
subgroup, define Z\ := {v € V : lim A(t)^ == 0}. Then, by the Hilbert-Mumford criterion,
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MG(V) === G*A/r(V) = G(UxZx). Clearly, up to the obvious action of S^ x S;, any Z^
is determined solely by the number p (resp. q) of positive (resp. negative) weights of the
A-action. Thus we may assume that

ZA = fcspan{ei , . . . , ep} ® Zspan{e;^,... , e^_J ^ A;C7 C ̂ OQ*.

Let Wr,s denote the points ( ' y i , . . . , Vk^i,..., $0 € ^A such that the span of {v^ . . . , vj,}
has dimension r and the span of {^ i , . . . , ^} has dimension s. Modulo the action of
Sj, x Si x G, any point in Wr,s has a representative in

U^ := { ( e i , . . . , e,)} x (fc - r)^ x {(e;^,..., e;^)} x (Z - ̂ (C)*.

Moreover, if g € G and gUr,s H ^,5 ^ 0, then g acts trivially on Ur,s' Reasoning as
in 11.10 we see that

mod^G^G) = supn^GZ^C?)
\

= sup{r-(fc - r) -h s{l - 5) : r + 5 ^ n, r ̂  fc, 5 ^ ^}

and it follows that 11^(^(^)50]?) is as claimed.
Suppose that k >, I >, n (which implies that V has FPIG). If k < I 4- 2n, then

K^(V) ^ l/2(fc +1 - n}n - l/8{k -1)2. Fixing fc + Z, the least value occurs if k = I + 2n
or fc = Z + 2n - 1, yielding the estimate ^^(V) ^ nl. One has ^^^V) = nl if
fc ^ Z + 2n. D

(11.12) THEOREM. - Let {V,G) == (fcC71 C ^(C71)*^^). r^n y satisfies the LS-
alternative.

Proof. - We may suppose that k ^ I . Classical invariant theory shows that V is coregular
if and only if / < n. Suppose that I > n. Then V has FPIG and the non-trivial part of
every non-principal slice representation is isomorphic to a representation of the form
(V^\G^) := ((fc - ̂ C^ C (I - rXC^^GL^), 0 < r < n. Then 11.11 shows
that ^'^(V^) >.{l-r){n-r) > 2. By lemma 11.3, V is 2-large. D

We now consider representations of SLn. The techniques we use are the same as for
GLn. One only has to notice that for any 1-parameter subgroup of SLn, the number of
positive (or negative) weights of the action on (^ cannot be zero. Also, the only closed
isotropy groups occurring in (fcC^SLn) are the trivial group and SLn itself.

(11.13) PROPOSITION. - Let (V,G) = (fcC^SLn), k ^ 0, n ^ 2. Then

A ( \ r (\r\ n\ f [fc2/4]^ k <2n-lmod(^(V), G) - ̂ _ [^ _ ̂  ̂  ^ 2^ 3.

Suppose that k ^ 2n - 2. Then V has FPIG and /^(V) == ^(V) = k - 2n + 2. Hence
V is {k - 2n + 2)-large.
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(11.14) PROPOSITION. - Let (V,G) = (feC71 ® ^C^^SLn); fc > < > 0, n > 2. TT^n
mod(A/G(^),G) ==

fR^2)/^, f c + ^ 2 n - 3
[(fc2 + ;2)/4], fc + < = 2n - 2, fc< e^en
[k2 + Q/4] +1, k ^ l ^ 2 n - 2 , kl odd

^{k-^l- n)n + ^(fc - O2] +1, 2 n - 3 < f c + ^ A ; ^ + 2 n - 2
^ (^ _ i)(fc ̂  + i) -^ 2 n - 3 < f c + ; , f c ^ < + 2 n - 6

I f k ^ l > 2 n - 2 , then V has FPIG and ^(V) ^ k + I - 2n + 2.

(11.15) THEOREM. - L^r (V,G) = (fcC71 9 ̂ (C71)*^^), n > 2. Then
(1) V ^ 2-;ar^ if and only if k + I > 2n.
(2) V ^ good yanfif onfy yy is 2-large or V//G = {pt}.

In particular, when n >, 3, r/i^r^ ar^ representations which are neither good nor coregular
{e.g,, ((n + 2)Cn, SLn)). Hence the representations (V, G) do not satisfy the LS'alternative.

Proof. - Arguing as in 11.12, we obtain (1) from 11.14. Now suppose that k +1 < 2n.
We may assume that k >, 1. If k <, n, then V is coregular [Sl]. If k > n, then there
is a slice representation whose non-trivial part is (W,H) := ({p + 771)0', SLp), where
p^n-l>2,m=k-nmdl<^m<p. Either (W, H) is coregular or proposition 5.11
shows that lw ls not good. Hence ly is not good. D

(11.16) Remark. - If (V,G) = (fcC71^^) does not satisfy the LS-altemative, then
k == n + p where 2 < p < n - 1. However, this implies that V//G ^ V I J G ' where
(y1\G') == (fcC^SLp) is 2-large. Hence conjecture 0.1 holds for representations of the
form (fcC^SLJ.

(11.17) PROPOSITION. - Let (V,G) == (fcC71^^) or (fcC^SOn), n ^ 2. T^n

^^r ^\ n\ J^2/4]^ A ;<n
mod(^(y), G) = ^ ̂ ^^ _ ̂ ^ ^ ̂  ̂

and , ( G ) ^ ^ ^ ( f c + l ) 2 / 4 ] , i ^ ^ n1 ^ fc <, n
+1), f c ^ n - 1' ' i K ^ + ^ ^ K f c - K n + l ) / ^ ^ ! ) , f c ^ n - 1

Pwof. ~ We first consider the case that n === 2m is even. We may choose coordinates
e i , . . . , e2m on C2171 so that (e^) = ^+m,j for i <: j, where ( , ) is an SOzm-
invariant bilinear form on C27". Then GL^ C SOsm where the GLyn-actions on
Vm := span{ei, . . . , e^} and V^ :== span{e^+i,.. . , earn} are dual. The diagonal maximal
torus T of GLm is a maximal torus of SOsm. Thus if A is a 1-parameter subgroup of SOam,
up to conjugation by an element of G, we can assume that A has image in T. Then, modulo
a rearrangement of the order of our basis, we can assume that Z\ == C^ C Vm' Applying
the techniques in 11.10 we see that sup^mod(GZA,G) = sup{r(fc - r):0 < r <: m}.
One gets the same answer in case n = 2m + 1 is odd, hence one obtains the given values
for mod(A/e(y),G) and /^(V). D
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(11.18) THEOREM. - Let V = feC" with the standard action ofSOn or On, n > 2. Then
V has FPIGfor k ^ n - 1 and

(1) K{V,SOn) = 1, 1 < k < n.
(2) ^(V, SOn) = f c - n + 2 , f c > n - l
(3) ^{V,0n) = 1, 1 ̂  k ^ n.
(4) /<V,OJ = k - n + l , k > n .
In particular, (V,SOn) a^ (V,0n) satisfy the LS-altemative.

Proof. - Let G = SOn. The nontrivial parts of the non-principal slice representations of
(y,G) are of the form {(k - r^-^SOn-r), 1 ̂  r < max{n - 2, fc - 1}. From 11.17
and 11.3 we see that ^SOTl-r)(V;G?) ^ 1. If k ^ n, then

^(so.-.)^ ̂  ^ ^(^-^((fc - r)^^)

has its minimum value when r = n-2, giving ^(V, SOn) = fc-n+2. We have established
(1) and (2). Now (V, SO^) is coregular if and only if k < n - 1, hence (V, SOn) satisfies
the LS-altemative.

Now suppose that G = On. If k < n - 1, then (V, SOn) and (V, OJ have isomorphic
(stratified) quotients and quotient mappings, so (3) holds for k < n. When k > n the
principal stratum (relative to SOJ breaks up into the principal stratum for On and the
stratum corresponding to the slice representation whose nontrivial part is((fc-n-l)C,Oi ^
1/21). Thus (V,0n) is {k - n - l)-principal, and one obtains (3) and (4). Moreover,
(V, 0^) is coregular if and only if k <, n, hence (V, On) satisfies the LS-altemative. D

The calculations for the symplectic group are similar to those for the orthogonal group.
We omit the details.

(11.19) PROPOSITION. - Let {V,G) = (AC^SpaJ, n > 1. Then

mod(^(nG)={[fc2/4^ k-2n^l

[nk-n2, k>_2n-l,

and
^(V) = [ [(fe ~ 1)2/4]' 1 ̂  k ^ 2n + 1

/ \kn-n2 -n, k >_ 2n

(11.20) THEOREM. - Let (V,G) = (fcC^SpaJ. Then V has FPIGfor k ^ 2n and is
coregular if and only if k <: 2n + 1. Moreover,

(1) K{V) = 0, 2 <, k ^ 2n, k even.
(2) f^{V) = 1, 3 < k < 2n + 1, k odd.
(3) /^(V) == k - 2n, k ^ 2n.
(4) V satisfies the LS-altemative.
Finally, we have the "neoclassical" cases involving G^ and B^ = Spin^ (see [S4]). Here

the irreducible representation (^i,C?2) (resp. (^3,53)) we consider has dimension seven
(resp. eight). We again omit the details.

(11.21) THEOREM. - Let (V,G) denote (k^,G^) or (k^,B^) and let m denote 3 or
4, respectively. Then
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(1) V is coregular if and only if k <, m.
(2) V has FPIG if and only if k > m.
(3) ^(V) = l , l ^ f c ^ m - l .
(4) ^(V) = 2(k - m), k ^ m.
(5) V satisfies the LS-alternative.

12. NakaFs conjecture

The version of NakaFs conjecture ([Ish]) that we consider is the following.

(12.1) CONJECTURE. - Let Y be a complex affine variety. IfV(Y) is generated by P^V),
then Y is smooth.

We are able to say something in the case that Y is a quotient variety.

(12.2) PROPOSITION. - Suppose that Y == X//G \vhere X is smooth and affine and (Ti-x)*
is 1-surjective. Then Nakai's conjecture holds for Y. In particular, Nakai's conjecture holds
if X is 2-large or 3-principal.

Proof. - We may reduce to the case of a G-module V such that V° = (0) and V ^ (0).
Then every element of P^V) has degree at least 0, so if V(V//G) is generated by
^(Vy/O), then every element of V(V//G) has non-negative degree. If 0(V)° / C, then
there are elements of V{V) whose images in V(V//G) have strictly negative degree
(constant coefficient operators of order at least two, see 5.10). It follows that 0(V)° = C,
hence Y = {pt} is smooth. D

(12.3) COROLLARY. - Let Y == X//G. Then the Nakai conjecture holds for Y if
(1) G is commutative, or
(2) G is finite (see [Ish]) or, more generally, if
(3) all G-orbits on X have the same dimension.

Proof. - In the cases given, locally we have Y = X' H G ' where X/ is very good
(6.6, 10.6). D
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