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ON THE COMPUTATION OF THE CYCLE CLASS MAP
FOR NULLHOMOLOGOUS CYCLES OVER THE

ALGEBRAIC CLOSURE OF A FINITE FIELD

BY CHAD SCHOEN (1)

ABSTRACT. - This paper is concerned with a cycle class map CH1" (Wk)hom -^ J{ (Wk)0^^^^, where
the target space is constructed from the Galois cohomology of H21"'1 (W^, li (r)). We focus on the case in
which there is a morphism to a curve p : W -^ X and on the problem of evaluating the cycle class map mod I
on nullhomologous cycles supported in the fibers of p. When k is a finite field and p is a self-fiber-product of
non-isotrivial, semi-stable, elliptic surfaces with section we find that CH2 (W^)hom is not finitely generated. In
very special situations the ^-primary part of the Griffiths group is computed.

0. Introduction

Let W be a smooth, projective variety over a field k. Let k denote a separable closure
of k and let Gjc denote the Galois group Gal(k/k). Write

z^w^ai c z^w-^, c z^w-,)^
for the groups of codimension r algebraic cycles on W^ which are rationally
(respectively algebraically, respectively homologically) equivalent to zero. The Griffiths
group Gr^Wk) := Z^W-^hom/Z^W-^aig, and more generally the Chow group of
nullhomologous cycles C^^W^horn '-= Zr{W-^horn|Zr(W-k)rat, are important but
poorly understood invariants of W^. In fact the structure of G^^W-^) is unknown in
every instance in which it is not the zero group. Even the structure of its torsion subgroup
is very mysterious [Sch-T]. The main result of this paper is that the Griffiths group for a
variety over the algebraic closure of a finite field can in certain cases contain a non-zero
divisible subgroup. Previously it had not been known that these groups could be infinite.
In §14 we shall prove the following more precise result :

(1) Partially support by the NSF.
1991 Mathematics Subject Classification. 14 C 25.
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2 C. SCHOEN

THEOREM 0.1. - Suppose that k is a finite field whose characteristic is congruent to
1 mod 3. Let E be the Format cubic curve. If I is an odd prime and I = — 1 mod 3, then
Gr\E^ 0 Z , ^ (Qi/Zi)2.

Here the hypothesis on the characteristic is essential, but the hypothesis on / appears to
be a consequence of the method of proof and might conceivably be weakened if somewhat
more elaborate arguments are applied.

We now outline the organization of the paper and the contents of the individual sections.
The first section is devoted to preliminaries on arithmetic cycle class maps over a base field
k which is finitely generated over the prime field. We begin by recalling an observation
of Bloch [B] that the cycle class map

cl^ : Z^W) -. H^^W, Z/F(r))

defined in [Gr-D] when combined with the Hochschild-Serre spectral sequence gives rise
to a cycle class map

(0.2) d^o ^ Z^W)^ - H^G^H^-^W-^Z/l^rW

which annihilates Zr{W)rat' Given an explicit nullhomologous cycle, z G Zr(W)hom^ it
is generally difficult to compute cl^^z) directly from the definition. The search for a
more computationally feasible approach led to the observation (made independently and
in much greater generality by Jannsen [Ja, §9]) that in certain circumstances (0.2) could
be computed in terms of the first coboundary map attached to a short exact sequence of
Gfc -modules. This short exact sequence is in effect a piece of a long exact sequence for
relative cohomology. By applying the inverse limit over n and the direct limit over finite
extensions of k to (0.2), we obtain an "arithmetic Abel-Jacobi map"

(0.3) ^ : Z^W-^om -^ JI(W),

where Jf(lV) ^ H^^iW^ Z;(r)) 0 Qi/Zi when k is a finite field. The subgroup
Zr(Wk)rat will always be annihilated by a7'. In favorable instances cl^^z) ^ 0 will
already imply ^(z) -^ 0 and hence z ^ Zr(Wk)rat-

In §2 we describe circumstances under which ar{Zr(W-k)alg) = 0. In such situations
o^ provides a tool for analyzing the Griffiths group.

The third section introduces specific cycles z for which the computation of cl^^z)
might be less difficult than in general. The focus is on cycles which are supported in the
fibers of a dominant morphism p : W —^ X, where X is a smooth curve. Of particular
interest is the case when k is a finite field, W has dimension 3, and the Picard number of
every non-singular closed fiber is greater than the Picard number of the geometric generic
fiber. The Leray spectral sequence for p is applied in §4 to reduce the computation of
d^o(^) to a problem involving only constructible sheaves on the curve X. This problem
can be quite difficult to analyze when the monodromy representations associated with
these sheaves are complicated. There is however a geometric situation which gives rise
to SL(2, Z/r")/ ± 1 as the monodromy group. In the special case n = 1 the information
from representation theory which we need has been worked out in [Sch-MR]. To describe
this geometric situation begin with a non-isotrivial, semi-stable elliptic surface TT : Y —> X
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CYCLE CLASS MAP 3

which has a section. Take W to be the blow up of the fiber product Y Xx Y along
the singular locus. The resulting map p : W —>• X is the subject of §5. In particular we
will discuss complex multiplication cycles which are certain nullhomologous cycles on
W supported in fibers of p.

The sixth section contains the statements of three technical theorems culminating in

THEOREM 0.4. - Let k be a finite field and let p : W —^ X be as above. Let CH^^{Wj,)
be the subgroup of CH^^W^hom generated by complex multiplication cycles. Then for
almost all primes I, there is a surjective map CH^^W-^) —^ Q^/Z^.

After some preliminaries in §7, each of the sections 8, 9, and 10 is devoted to the
proof of one theorem from §6. In particular, §10 contains a proof of (0.4). An important
step in the argument involves showing that the image of the cycle class map on complex
multiplication cycles contains an infinite group. Our method relies on a strong form of
the Tchebotarev density theorem. Tchebotarev's theorem applies here, because we only
consider the case of finite base field and because almost every fiber of the morphism
p : W —> X contains a complex multiplication cycle.

There is a different approach to showing that the image of the cycle class map on
complex multiplication cycles can be infinite which works in the case of self-fiber-products
of elliptic modular surfaces over finite fields. These varieties come equipped with Hecke
correspondences. The action of Hecke correspondences on complex multiplication cycles is
discussed in §11. Then in §12 the results are used to prove that under suitable hypotheses
the image of a2 applied to the complex multiplication cycles is a divisible group.

Although the image of (0.3) is a torsion group when the base field k is finite, it is
not a priori clear which elements of CHr{Wk)hom have finite order. We will apply a
theorem of Soule [So, Thm 3] to this problem. First, we must dominate TV by a product
of curves. This is done for one particular self-fiber-product of elliptic modular surfaces
in §13 using the threefold product of an elliptic curve which is isogenous to the Fermat
cubic curve. The consequences for the Griffiths group, including a proof of (0.1), are
drawn in the final section.

0.5 NOTATIONS
k = a field, which after (1.2) will be assumed to be finitely generated over the prime field.
k = a separable closure of k.
Gk = Gal(k/k) endowed with the usual Krull topology.
G k ' / k = Gk/Gjc' for fc'/fc a Galois extension.
I = a prime distinct from the characteristic of k.
H^^Gk^T} = continuous crossed homomorphisms modulo coboundaries, where T is a

Z/-module and Gk acts continuously with respect to the ?-adic topology on T.
X = Xjc = is a smooth, projective, geometrically integral curve over fc.
r] = the generic point of X. rj = a geometric generic point.
X C X = a non-empty open subset. Sjc = X — X.
7r[{Xk^rj) = the tame fundamental group of X. More precisely, the composition of all

intermediate fields in the extension rj/rf which are finite over rj, unramified over X, and
tamely ramified over Ex is Galois over T]. The corresponding Galois group is denoted
7rl(X^);

Z^VF) = the group of codimension r cycles on the variety W.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



4 C. SCHOEN

S^n* ̂  îS?) ̂ ^y"^01113 of cycles rationally equivalent to zero-
NT{W')= Zr(W)|Zr{W)hom = codimension r cycles modulo homological equivalence

onanon;singular ̂ ^ w- (The P^^ ^finition of Z-(W)/^ is given in (1.2) below.)
^v{vy)hom - nullhomologous, codimension r cycles on the non-singular variety W

whose support is contained in the subvariety V.
N^(W) = 'Z•'v{W}hom|'ZS{V}ho^ where V c W is non-singular of pure codimension

s — r.

1. Preliminaries on the cycle class map

Let W be a smooth variety of dimension d over a field k. For each prime I distinct from
the characteristic and each integer n > 0 there is a cycle class map [Mi, VI.9]

ci^: z^w) -. ̂ (^z/r1^)).
Passing to the inverse limit yields a map

(1.1) clw : Z^W) -^ H2r(W-k, Z,(r)) := hm H21-^ Z//"(r)).

Using (1.1) for varying I we define

(1.2) Z^W^am = Ker [Z^W) -^ J] H2r{W^{r))}.
t7ichar(k)

Assume now and for the rest of the paper that k is finitely generated over the prime field
and that W is geometrically integral and proper over k. The purpose of this section is to
discuss the definition and properties of a cycle class map

(1.3) a'- : Z^W-^om - JRW) := Umk'/kH^Gk^H^-^W-^Ziir))/ tors),

where the limit is over intermediate Galois extensions k c k' c k of finite degree over k.
Galois cohomology is taken in the sense of [Tal, §2]; the cocycles are continuous with
respect to the Kmll topology on the Galois group and the f-adic topology on the Galois
module,

LEMMA 1.4. - (1) The natural map H^Gk^H^-^W-^r))/ tors) ^ JT(W} is
infective.

(2) The torsion subgroup of J^(W) is divisible of finite corank.
(3) Ifk is a finite field, J{(W} is a torsion group.

Proof. - Set H = H^-^W-^ Z^(r))/ tors. Let k 1 1 / k ' be a finite Galois extension.
(1) It suffices to show that the first term in the exact sequence

0 -^ H\G^^^H^") -. H\G,^H} -. H\Gk^H)
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CYCLE CLASS MAP 5

is zero. In fact H0^' is zero. This may be deduced from the Weil conjectures via a
specialization argument [B, §1] or [Co-Ra, Theorem 1.5].

(2) Form the short exact sequence

O ^ H - ^ H ^ Q I - ^ H ^ ) Qi/Zi -^ 0.

Again the Weil conjectures imply that {H 0 Qi)0^ = 0. Thus the torsion in H ^ i G k ' ^ H }
is isomorphic to (H 0 Qi/Z^^.

(3) If k is finite and (f) G Gk is the Frobenius, then

H\G^H^^i}^HI{(t>-l}H (S)Qi.

This is zero by the Weil conjectures.
A starting point for the construction of o^ is the cycle class map of Grothendieck [Gr-D]

(1.5) cl^, : Z^Wy} -^ ^(H^Z/F^r)).

The Hochschild-Serre spectral sequence gives a decreasing filtration £• on
H 2 r ( W k ' , ' Z / l n { r ) ) with graded pieces

L°/L1 'C ff^O^Z/rM)^ and L^L2 C H^Gk^H^-^W-^ Z/r(r))).

Since cl^^Z^Wk^hom) C L1, (1.5) gives a map

c^o '' Z^W^kam -^ H1 {G^, H^-^W^ Z/r(r1))).

Taking the inverse limit gives a map [Tal, §2]

(1.6) C^/,o : Z^W^Ham -^ H1 (^ , H^-1 (W-^W)).

Now (1.5) and hence (1.6) are functorial with respect to finite separable extensions of the
base field [Gr-D]. Thus (1.3) may be defined by composing (1.6) with the tautological map

^(Gfc/^^-^lV^ZKr)))-^^^^^2-1^^,^))/^^

and taking direct limits with respect to finite Galois extensions fc'/fc.
There is a second natural way to associate to an element z (E Zr{Wk')hom an element

in H^^Gk'^H^^^Wk^ ^(r))). To discribe this write \z\ for the support of z and define

(1.7) H^(W-^ Z/F(r))o = Ker [H^W-^ Z/F(r)) -. ^{W-^ Z/r(r))].

The fundamental class [z\ is a Galois invariant element of this group [Gr-D]. By purity
[Mi,VL9.1],

^-^z/rM^o.
There results a short exact sequence of G^ -modules,
(1.8)
0 ̂  H^-^W-^ Z/r(r)) ̂  H^^W - \z\)-^ Z/l^r)) ̂  H^W-^ Z/F(r))o - 0.

ANNALES SCIENTIHQUES DE L'ECOLE NORMALE SUPERIEURE



6 C. SCHOEN

Write
/% ̂ (^Z/rM)^ -^(G^^-^Z/rM))

for the first coboundary map in the long exact sequence of continuous G A;/-cohomology
associated to (1.8).

PROPOSITION 1.9. - /?^(M) = Cl^r ,^{z).

Proof. - See [Ja, 9.4].
The functoriality properties of the cycle class map are gathered together in

PROPOSITION 1.10. -Abbreviate {3^, cl^^, cl^_, respectively clwk,o ^th /?", cl^, cl^,
respectively do.

(1) /S71 is functorial with respect to smooth pullback in the category of smooth, proper
k-varieties.

(2) (^ is functorial with respect to direct image in the same category.
(3) Given z' 6 Z^tV) define ^(^(WQ/iom to be the subgroup ofnullhomologous cycles

all of whose components meet z' properly. The following diagram commutes

Z^Z^W)^ -^ Z^^W^om

^ I ^ [

H^G^H^-^W-^Z/l71^)) Hl{ ̂ ^ ffl(G<,^2r+2s-l(^,Z/^n(r+^))).

(4) /3n annihilates cycles rationally equivalent to 0.
(5) / 3 " ' is functorial with respect to extension of the base field.
(6) (3^, is G^i /k-equivariant.
(7) Let W be smooth and proper over k. Then a correspondence Y € Zd+s~r(W x W)

gives rise to a commutative diagram

CH^W^am -^ CH^W'^om

do I clo [

H^G^H^-^W-^W)) Hl( '^'^ H^G^H^-^W-^s))).

(8) When r = 1 the cohomology class ^"(/s^) may be represented by the crossed
homomorphism Gj, -^ Pic(W)(fe)[r], a -^ D - aD, where fD ^rat z'

Proof. - (1) This follows easily from the extension definition and the functoriality of
the cycle class map to local cohomology with respect to pullback by smooth morphisms
[Mi, VI.6.1c, 9.2].

(2) By Poincare duality (1.7) may be rewritten in terms of homology [Ja, 9.0.1]. The
assertion follows from the functoriality of the fundamental homology class with respect
to proper direct image.

(3) See [Ja, 10.6].
(4) A cycle on W which is rationally equivalent to zero may be written as

pnv*(r •prpi(^)), where F e Z(P1 x W), z G ^(P1)^, and F meets pr^(z)
properly. Since Hl(P^Z|ln(l}) ^ 0, (4) follows from (1), (2), and (3).

4'̂  SERIE - TOME 28 - 1995 - N° 1



CYCLE CLASS MAP 7

(5) The cycle class map to local cohomology is functorial with respect to extension
of the base field.

(6) Let y = U ^ ^ c ^ / k ^ ' K^pl^6 M by \V\ m (1-8). The first coboundary map associated
to the resulting short exact sequence applied to [z\ e H^W],, Z/F^r))^ gives /%/(^).
The coboundary commutes with the G^/y^-action and thus sends z" to /3^/ (^or) = (/%/ (^))<r.

(7) r^(^) := prw'^ ' p r ^ ( z ) ) . When pr^(^) meets F properly, the assertion follows
from (1), (2), (3). In general one may replace pr*(^) by z ' in the same rational equivalence
class such that F • z ' is well defined. Furthermore the rational equivalence class of the
intersection is independent of the choice of z ' [Ro]. The assertion follows from (1), (2),
(3), and (4).

(8) Define

(1.11) 1Cw := Ker [k{WY /k^W^1' -^ Dw^WY^I^Di^WYk}'

Kummer theory identifies JCw with the cyclic order /n etale covers of W, that is with /^rz-
torsors, hence with ^(W^ Z/F^l)). Write {Dw^W^/l^o for the group of divisors on
Wj, with Z/^-coefficients, whose class in ^(H^, Z/^(l)) vanishes and whose support
is contained in \z\. When r = 1 (1.8) may be rewritten as

(1.12) 1 ̂  1Cw -^ Kw-\.\ -^ (Pw|.|(^)/r)o ̂  0.

Now /Q^^), the image of z under the first coboundary map associated with (1.12), is
represented by the crossed homomorphism, Gk —^ A^w, a —> o-f/f, where / e k(W)
and div{f) = z — ^D. The assertion follows from the isomorphism

JCw^PW-,)Ck)[n f^-div(f).

The following proposition is a consequence of (1.10) :

PROPOSITION 1.13. - The cycle class map o^ : ̂ (H^om -^ Jl{W) satisfies
(1) functoriality with respect to smooth pullback, proper direct image and

correspondences.
(2) a^Z^W-^rat) = 0.
(3) o^ is Gk-equivariant.
It will be useful later to make explicit a special case of (1.10(8)). For this we assume that

k is a finite field of characteristic prime to L W/k will be a smooth, projective, geometrically
integral curve of positive genus and w,wo will be fc-rational points of W. Define

T = (1 - ̂ )Pic°(W)[r], A = Pic°(iy)/T, and ^ : A -^ Pic°(lV),

where (p is the isogeny induced by multiplication by /n on Pic°(iy). Embed W in
Pic°(H^) using the base point WQ. Define

W = lVxpicO(^)A.

Now W is a geometrically integral curve. Moreover, k(W) is Galois over k(W). The
Galois automorphisms are given by translating by elements of the subgroup Ker y?, which
consists entirely of fc-rational points.

ANNALES SCffiNTIFIQUES DE L'fiCOLE NORMALE SUP^RIEURE



8 C. SCHOEN

LEMMA 1.14. - The canonical isomorphism,

H^Gk.H^W-k,^)) ̂  Pic(WQ(fc)n/r(fc) ^ (Ker ^)(fc) ^ Gal(k(W)/k(W)),

sends ^{w — wo) to Frob~^~.
Proof. - The first of the three isomorphisms sends a continuous crossed homomorphism

to its value at the Frobenius element, (f> € Gk. Choose w 6 Pic°(W)(k) such that
^w = w - wo. By (1.10(8))

^{w - wo)(^) = w - (f)w e Pic(iy)(fc)[r]/r(fc).
Since ri) maps to the point w on the curve W embedded in Pic°(W), the image w'
of w in A(fc) lies on W(k). By definition Frobvj{w1) = (f>w'. Clearly translation by
—^(w — wo)(<j6) in A{k) sends w' to (;W. The lemma follows since an element of Kery?
is completely determined by its action on any point in A(k).

In practice we shall not attempt to compute either cl^Q or ̂  directly from the definition.
Instead we will focus attention on a closely related map to be described presently. Let
i : V —> W denote the inclusion of a closed, reduced, non-singular fc-subscheme of
pure codimension, r - s. Denote by Z^{W)hom (respectively Z^(W)rat) the group
i^Z^V) H Z^W^hom (respectively i^Z^V) D Z^W^rat}' We will sometimes abuse
notation and view Z^(W}hom and Z^(W)rat as subgroups of Z^V). Thus

(1.15) N^{W) =: Z^W^om/Z^V)^ and N^W^/Z^W^at

have meaning. Write

6, : J^(^Z/r(r)) ̂  H^^Z/r^r))

for the obvious map and e^ for the corresponding map in degree 2r— 1. For z G Z^(W)hom
there is an obvious commutative diagram with exact rows

(1.16)

0 -^ H^-^W-^Z/l^r)) -^ ^-^(TV-M^Z/rM) ^ H^(W-^Z/r(r))o -^ 0
PnT " T ' i

0 ^ Cokere^ -^ ^'^"^(TV - \V\)-k, Z/r(r)) -^ kere^ ^ 0

in which pn is the tautological map. Write 8^ for the first coboundary map in the long exact
Gfc-cohomology sequence associated to the bottom row of (1.16). Consider the composition

0^/w ''= ^ocl^ : Z^W^m -^ (Kere,)^ ^ ^(G^Coker 6,)

and Ov/w =lim O^y/^-

LEMMA 1,17. - (1) e^^{z) =pn0 /?n(^) and 0v/wW =lzm pn o /^M.
(2) 0^ and 6v/w factor through N^{W)/Z^(W)rat.

4e S6RIE - TOME 28 - 1995 - N° 1



CYCLE CLASS MAP 9

Proof. - (1) This follows from (1.16) and the commutative diagram

H^V^Z/l^s)) -. H^W-^Z/l^r))
I I

H^^Z/l^s)) -. H^W-^Z/l^r))

(2) ^{Z^W^at) = 0 and cl^Z^V^om) = 0.
Given an explicit cycle on an explicit subvariety V C W it seems impractical to

completely describe the cycle class 6v/w{^} ^ lim ff^G^, Cokere^). However it may
be possible to calculate O^^(z) E ^(G^Coker e[). The next lemma shows that the
calculation of 0^^(z) gives important information about ^{z) e ^f(TV).

LEMMA 1.18. - Suppose that z G Z^{W)hom satisfies 0^(z) / 0. If H^-^W-^Zi)
is torsion free, then ^(z) G J[(W) is not zero.

Proof. - By (1.17) ^(z) / 0. By (1.9) cl^(z) / 0, whence clw^z) = Izm cl^(z) /
0. Now (1.4.(1)) implies a^z) / 0. "-

We will need a slight variant of (1.18) which involves correspondences which act on
N^(W). To this end, let P e Zd(W x W) 0 Zi meet V x W properly. Assume that
P H (V x W) c V x V so that P^ induces an endomorphism of N^(W). Assume also
that P is a projector on cohomology, i.e. P2 = P in Nd(W x W) 0 Zi.

LEMMA 1.19. - Suppose that z G N^(W) satisfies 0^(P^z) / 0. If P^-^W-^ Zi)
is torsion free, then P^ar(z) G J[(W) is not zero.

Proof. - Evidently ^(P^) ^ 0, whence clw,o{P^) = P^clw,o(z) ^ 0. Since
P^H2r~l(Wk, Zi) is a direct summand of H^-1^^ Zi)/tors, the obvious map

H^G^P^-^W-^Z^r))) -. J^W)

is injective (1.4(1)). The lemma follows.

2. Preliminaries on the Griffiths group

We keep the notation of the previous section. In particular W/k is a smooth, projective,
geometrically integral variety of dimension d. Let C / k be a smooth projective curve and
suppose that the components of F G ^''((C x W)^) are flat over C^. There is a map
I\ : Z^C-k) -^ Z^Wj,) defined by T^z = prw^F ' pr^(z)). Since the usual cycle class
map (1.1) is compatible with correspondences [Lau, §6, §7], we get a map

r^.z^c-^-^z^w-^.

Define the group of cycles algebraically equivalent to zero

(2.1) Z^W-^ = Y^T^Z\C-,}^ c Z^W-,)^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



10 C. SCHOEN

where the sum is taken over all pairs [C^ F) as above. The Griffiths group is defined by

(2-2) Gr^W-k) = Z^W-k^m/Z^W-k^

We also define

(2-3) CH^W-^i, = Z^W-^IZ^W-k^

This is a divisible group since it is the image of the sum of the divisible groups,
C^^Ck^hom, as C ranges over all curves over k.

The cycle class map c^ may sometimes be used to detect non-trivial elements in the
Griffiths group, Grr{W-j,). To explain this we consider finite dimensional Q^-vector spaces
U on which Gk acts continuously and which satisfy

(2-4) ^omG„{Hl{C-^W))^U)=0

for every finite separable extension k 1 / k and every smooth projective curve C / k ' .

PROPOSITION 2.5. - Let W/k be as above and let W / k be a smooth variety Let
Q C Z^-^W x W). IfU= Q^-^W-kMr)) has property (2.4) then

Q* o ̂  : CH^W-^Ham -^ J^W'}

factors through G^^Wj,).

Proof. - Fix a finite separable extension k ' / k , a smooth projective curve C/k\ and
r e ^(((7 x W}k') whose components are flat over Cy. By property (2.4) the map
Q.r, : H\C-kW}} -^ H^-^W-^Z^/tors is 0. From (1.10(7)) the map

clwft oQ. or, : Z\Ck')hom -^ H^Gk^H^-^W-^Z^/tors)

is 0. Thus asoQ^Zr{Wk}alg = 0. Since a8 oQ^ = Q^oo^ (1.13), the proposition follows.

LEMMA 2.6. - Let k be a finite field. Let (j) G Gj, be the Frobenius. Suppose that no
eigenvalue, v, of(f)~1 acting on U{-1) is an algebraic integer. Then U has property (2.4).

Proof. - Let n = [k' : k]. The eigenvalues of the inverse Frobenius element
(f)^ G Gy acting on ^(C^Q^) are algebraic integers. The eigenvalues of ^-n acting
on U(-l) are of the form vn. Since v is not an algebraic integer, neither is ^n. Thus
Hom^^C^QO^-l)) = 0.

PROPOSITION 2.7. - Let k be a finite field, (f) e Gk the Frobenius element, W/k and
W / k smooth projective varieties, and I a prime distinct from the characteristic ofk.
Suppose that Q C Z^^^^W x W) is such that no eigenvalue of (f)~1 acting on
Q^H^-^W-k, Q^r))(-l) is an algebraic integer. Then Q^CH^W-^aig 0 Z^ 0.

For the proof we make use of a cycle class map for smooth projective varieties

(2-8) ^ : CH^W^s - ̂ 2r-1^ Qi/W)

defined by Bloch [Bl].
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PROPOSITION 2.9. - (1) A1 agrees with the usual map from Kummer theory.
(2) A2 is infective on the l-torsion subgroup of CH2 (Waters'
(3) A' is functorial with respect to correspondences.
(4) Given z G Z^IV) the following diagram commutes

CH^W)^ -^ CH^^W)^
A- I A-+5 i

Uclw, (^)
H^-^W-^IW) ———— ff2(r+s)-10^Q,/Z,(r+^))

Proof. - (1) [Bl.3.6]. (2) [M-S.18.4]. (3) [Bl.3.5]. (4) [Bl,3.4].
Proof of 1.1. - For each finite extension k ' / k and each smooth, projective curve C/k\

CH^^Ck'^hom is a finite group. The images under correspondences of all such groups for all
finite extensions of k generates CI^^W-^aig. which is thus a subgroup of C If (W-^} tors'
For any F e ^((C x WQfc/), Q* o r^fi^C^ Q;(l)) ^ 0 by (2.6) and (2.5). To show that

X^Q^CH^W-,)^)) = Q^A^CITW)^) ^ 0

it suffices to show that the induced map on Tate modules is zero [Su, 1.3]. This is indeed
the case since Q^oT^^C^ Qz(l)) ^ 0 [Su, 3.1]. The proposition follows from (2.9(2)).

remark 2.10. - (1) It would be interesting to know if (2.9(2)) generalizes to higher
codimension.

(2) Both cycle class maps o^ and V play a role in the sequel. However, we will
not consider what relationship may exist between these two maps, because it will not be
necessary to do so.

3. Cycles supported in fibers

Recall from §1 that a cycle z e ^(W^/iom gives rise to a non-trivial class in
CI^^W^hom it o^(z) e J^W) is not zero. The difficult task of showing o^) / 0 is
easier if the cycle z is chosen carefully. With this in mind, this paper focuses on cycles
supported in the fibers of a dominant morphism, p : W —> X, from a smooth, projective,
d-dimensional variety to a smooth, geometrically integral curve. Our intention is to apply
(1.17) to generators of N^^^W). One problem with this approach is that there are many
morphisms, p : W —^ X, for which N^^^W) = 0 for most x in X. We devote this
section to examples of morphisms for which Nr_^,^(W} 0 Q / 0 for many points x in X.

Fix p : W —> X as above. Assume that p is generically smooth and that the geometric
fibers are integral. Write j : X —^ X for the inclusion of the largest open subset for
which the base change p : W —^ X of p is a smooth morphism. Also write g : 77 —> X
(respectively gj^ : rj^ —^ X^) for the inclusion of the generic point.

LEMMA 3.1. - Let x G X(k). Suppose that the Tate conjecture holds for codimension
d — r cycles on p"1^). Then

rank N^^{W) = rank N7'- \p~1 (x)) - rank N^^p-1^))

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



12 C. SCHOEN

Proof. - Since k is finitely generated over the prime field, so is rj. Thus the Tate
conjecture has meaning,, There is a well defined specialization map for cycles modulo
homological equivalence which is injective [Fu, 20.3.5] :

sp : N^^p-^n)) -> A^-7^-1^)).

The lemma will follow immediately if we verify that the first of the two inclusions,

;̂-i(.)W ̂  Qi C WN^^p-1^))))1- (g) Q, c A^-1^-1^)) 0 Qi

is an isomorphism. It is clear that a cycle class in the middle vector space is numerically
equivalent to zero on W. We need to show that it is homologous to zero. For this we
consider the following commutative diagram derived from the Leray spectral sequence
(see 3.5) :

(3.2)

A^-1^-1^))^ - H^(W-^{r)} -. H^^W)
.1 T

H^X-^R^p^r)) -. ^2(X^2r-2^Q,(r)).

We may substitute j^R^-^p^Qil.r) for R^-^p^Q^r) in the bottom row. Poincare duality
gives a non-degenerate pairing [Mi, V.2.2(c), VI. 11]

H^X-^^R^pMr)) 0 H^X-.J^-^W-r^-.Q,.

An element z e (sp^-^p-1^))))1- 0 Qi gives rise to an element of
^(^fcj*^27'"2?*^^^))6^ which is orthogonal to the cohomology classes of algebraic
cycles in ^(Xj^j^R^-^p^Q^d- r))^. To show that z is homologous to zero on
TV, we need only show that this last cohomology vector space is generated by algebraic
cycles. This follows from the Tate conjecture for codimension d - r cycles on p~l(ri) :

N^^p-1^))^^ ^ {l^mH\p-\r]\g^^R2d-2rp^|ln{d-r^G^C^,

^Izm H^p-^^^g^^-^p^ir^d - r)) 0 Q^

^ Izm H°(X^ g^j^-^p^Z/r^d - r)) 0 Q^

^ H^XJ^-^p^d - r)) ̂  H^X-kJ^-^p^d - r))^.

This completes the proof of (3.1).
Let TT : V —^ X be a generically smooth, dominant morphism from a smooth, projective,

geometrically integral surface to a smooth curve. The base change of TT with respect to
j : X —^ X will be demoted -TT. Assume further that one can resolve the singularities of
the fiber product p : W := Y Xx Y -^ X. Write a : W -^ W for the resolution of
singularities. Set p = p o a.

Example 3.3. - If TT is a semi-stable family, then W has only ordinary double point
singularities. A single blow up centered at the singular locus resolves all singularities.

4° SERIE - TOME 28 - 1995 - N" 1
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LEMMA 3.4. - If the base field k is finite and ifPic^-i^ is a simple Abelian variety
which is not isogenous to the base change of an Abelian variety defined over k, then for all
rational points x G X{k\ rank TV^i^JlV) > 0.

Proof. - We will make use of the Picard scheme for which we refer to [Grot, §3].
Consider the commutative diagram of exact sequences

0 ^ N\-K-\r]))^^n -^ N\p-\r]))^Ct -> End(Pico(^T-l(ri)))0Q -^ 0
^ i ^ I [ SpEnd

0 -^ N1 (Tr-1^))®2®? -^ ^ r l(p - l(^))0Q -^ End (Pzc^Tr-1^))) 0 Q -^ 0.

The horizontal sequences are standard [Ta3, proof of Theorem 3] or [So, 2.3.1]. The
vertical maps between Neron-Severi groups result from the fact that specialization of
cycles respects homological equivalence [Fu, 20.3.5]. The induced specialization of
endomorphisms corresponds to specializing endomorphisms of the relative Picard scheme
Pic^ ^ to the fiber over x. Thus spEnd is a ring homomorphism. Now the hypothesis of
the lemma implies that End (-P^_i.^)(g) Q does not contain a CM-field whose dimension
over Q is twice the dimension of the Picard variety [Mu, p. 220]. As End (Pic° -ifa,^)0Q
always contains such a field [Ta2, Thm. I], neither spEnd nor sp is surjective. The Tate
conjecture for codimension 1 cycles on the generic fiber was proved by Zarhin [Za, 4.1].
Now apply (3.1) with d = 3 and r = 2.

We end this section with a derivation of the Leray spectral sequence with supports
for etale cohomology. This spectral sequence was used in (3.2) and will be encountered
later as well.

LEMMA 3.5. - Let f : A —> B be a morphism of varieties, T an etale sheaf on A and
i : Z —> B a closed immersion. Then there is a spectral sequence

H^B^R^f^) ̂  ffp^(A^).

Proof. - The argument parallels [Mi, III.1.18, 1.20]. Recall that H^{B^) is the p^
right derived functor of the left exact functor [Mi, p.91]

G -^ H^B^Q) := KCT(G(B) -^ Q(B - Z)).

Since ^^i^JA,*) is defined analogously, it is clear that

^-^(A^)^(BJ^)

for all sheaves T on A. Since /„ sends injectives to injectives [Mi, p. 68 and II.2.6(a)],
the usual construction of the spectral sequence for the composition of two functors gives
rise to the desired spectral sequence [Mi, Appendix B, Theorem I],

4. Reduction via the Leray spectral sequence

We return to the morphism p : W —> X described in the first paragraph of §3. Set
V = p^^x) for some x G X{k). The purpose of this section is to describe the cycle

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



14 C. SCHOEN

class map 6^ : N^{W) -^ ff^G^Cokere^) of (1.17) in terms of the cohomology
of constmctible sheaves on the curve X. This reformulation will make it more feasible
to try to calculate 6^^.. We introduce the notations X = X - x , W = W - p ~ l ( x ) ,
Tn = Z/F^r), and e^ for the standard map

Hl^R^pM -. H^X^R^p^.

LEMMA 4.1. - Suppose that
(1) H^X-^R^-1?^ = 0,
(2) H'^^X-^.R27"2'?^^} = 0, then there is a commutative diagram,

(4.2)

^r-l?^) ^ H^-^W-^^) A ^.-i^^) _ ^^ ^ Q
-- T ^ T ^ .n T ^

0 ^ H^X^R2-2?^) -. H^X^R2-2?^) -^ Kere^ -> 0.

^r^ i^n is obtained from the composition

H^X^R21--2?^) ̂  R^p^-l). ̂  H^-^p-^x^Z/l^r-l)) ̂  H^(W-^^

by restriction. Furthermore, e^ = 0.

Proof. - The vertical isomorphism on the left follows from (1) and (2) and the Leray
spectral sequence. Note also that

H^X-^R^-1?^ ^ 0 ̂  H^R^pM

so that (1) and (2) remain true when Xj, is replaced by Xj,. Thus the Leray spectral
sequence yields the vertical isomorphism in the middle. It follows that p is injective,
whence e^ = 0. The map i^n makes (4.2) commute and is clearly an isomorphism.

Remark 4.3. - Write ^(4.2) for the first coboundary map in the long exact sequence of
Gfc-modules associated to the bottom row of (4.2). The top row in (4.2) coincides with the
bottom row in (1.16). Consequently 0^^ may be identified with (^4.2) o cVy.

LEMMA 4.4. - There is a commutative diagram of Gk-modules with exact rows and
surjective vertical maps

(4.5)

0 - H^X-^R^-V^ -^ H^X-^R^-2?^) -. Ker-e^ -> 0
^l I ||

0 - H^X-.J^-V^ -. H^X-^j^-2?^) -^ Keren - 0.

Proof. - The kernel and cokemel of the restriction map ^ : R27"2?^^ —> J^R^^P^n
are skyscraper sheaves supported on X - X. The surjectivity of the vertical arrows follows
easily. To see that the bottom row is exact, we need only check the surjectivity on the
right. This follows, since ^ gives rise to isomorphisms JT^(X^) and H2^^).
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Remark 4.6. - Write (^4.5) for the first coboundary map in the G^-cohomology sequence
associated with the bottom row in (4.5). If ^4.5) o cl^{z) / 0 then 0^,^(z) / 0.

Remark 4.7. - If the map ^ is surjective, then the vertical maps in (4.5) are all
isomorphisms. An example where this occurs is given in (5.15). In fact one may deduce
from the local invariant cycle theorem [St, 5.12] that the surjectivity of ^ is a common
phenomenon, at least in characteristic 0 or when there is a lifting to characteristic 0.

In many concrete situations it is possible to replace the coboundary map ^(4.5) with the
coboundary associated to a more manageable sequence than the bottom row of (4.5). This
is done by using a projector P G CH^'^W2} (g) Zi to decompose the terms in the bottom
row of (4.5) into simpler pieces. To this end suppose given P G Zd{W2) 0 Z/ with support
in the subvariety W Xx W C W2 satisfying P2 = P e CHd{W2) 0 Z;. The action of
such a correspondence on cycles and cohomology induces endomorphisms of N^(W) and
of the Leray spectral sequences for p and p. Set M-n = P^R271'2?^^- Applying P^ to the
bottom line of (4.5) yields the short exact sequence of Gk -modules,

(4.8) 0 -^ H\X-kJ.Mn) -^ H\X-^^M^ -^ P* Kere, -^ 0,

for which the associated first coboundary map is denoted ^(4.8).

LEMMA 4.9. - Assume that the hypotheses of (4.1) hold and that P^H^-1^^, Z^(r))
is torsion free. Suppose z G Z^{W). If 6^,s) ° cl^{P^z) ^ 0 for some n, then
P^a^z) G Jl(W) is not zero.

Proof. - By (1.19) it suffices to show (9^ o d^(P^) / 0. By (4.6) this will follow
^ ^(4.5) ° cl^{P^z) / 0. Since (4.8) is a direct summand of the bottom row of (4.5)
the lemma follows.

5. Self-fiber-products of semi-stable elliptic surfaces with section

In this section we apply the considerations of the previous two sections to certain cycles
on self-fiber-products of elliptic surfaces. Let TT : Y —> X be a semi-stable elliptic surface
with section, whose ^'-invariant is transcendental over the base field k. As in the previous
section we write p : W := Y Xx Y —^ X for the tautological map. The blow up of W
along the singular locus will be denoted a : W —>• W. This is a resolution of singularities.
Set p = p o a : W — > X . Define j : X —^ X and p : W —> X as in the previous section
and let TV : Y —^ X denote the base change of TT with respect to j.

Definition. - An elliptic curve E defined over a field k is said to be CM if
(1) End(Ek) ^ End{Ek) and
(2) End(-Bfc) isomorphic to an order in an imaginary quadratic field.
According to this definition, no elliptic curve over Q is CM. If k is a finite field, then

E is CM if and only if E^ is not supersingular.
If the fiber Tr'^rr) over the point x G X{k) is CM, then the fiber p^^x) carries

so called complex multiplication cycles. To define these, let D be the discriminant of
Enc^Ti-"1^)). Set e{D} = 2 (respectively 1) when D is odd (respectively even). Given
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uj € Enc^Ti-"1^)), write I\; C p"1^) for the graph of uj. In particular Fi denotes the
diagonal. Let u —> uj denote the non-trivial ring automorphism of Enc^Tr"1^)). Fix a
Z-algebra generator v of End(7r-l(a;)) and consider the divisor class

(5.0) ^ = W)/2)(r, - r,) G ̂ (p-^)).
In fact up to a possible change of sign Zyc is independent of the choice of generator ^. It is
not difficult to check that ^ generates the free rank one Z-module

(5.1) N^p-^x)) := Span{7r-1^) x e,e x Tr-^I^ C N^p-^x))^

where e denotes the neutral element in the group law on the fiber TT"1 (re). In the case that the
base field has characteristic zero an equivalent statement is proved in [Sch-CM, §2]. When
the base field has positive characteristic one can reduce to the case of characteristic zero via
the canonical lifting [D2, §3]. The cohomology class cl^^{z^) e ff2^"1^)^ Z/Z^l))
in fact lies in the subgroup [Sym2!!1^-1^)^, Z^)^!).

LEMMA 5.2. — The cyclic subgroup generated by c^^^r^Zx) is isomorphic to Z/771.
Proof. - This follows because the cokemel of the natural map

N^p-^x)) 0 Z,- H^p-1^ Z,(l))

is torsion free [Ta3, proof of Lemma 1].

LEMMA 5.3. - If TT"1^) is CM, then A^i^JlV) ^ Z. This group is generated by a
multiple of Zx.

Proof. - It is well known and easy to see that H2(p~l{r))^Ql(l))Gr1 has dimension 3
and is generated by algebraic cycles. Also rank 7V1 (p~1 (x)) = 4. In the notation of the
proof of (3.1) Zx is a generator of the free rank one Z-module (sp (^(p"1^))))"1. Thus
Zx generates N2_^,^W) 0 Q. In fact A^i^JlV) is the free Z-module generated by the
least positive multiple of Zx which is homologous to zero on W^.

The next lemma strengthens (5.3).

LEMMA 5.4 - ̂  G Z2{W)hom• In particular, N^^(W} = Z^.
Proof. - From the diagram (3.2) with Z/ replacing Qi it is apparent that the map ^ :

X1^-1^)) -^ H4{Wk,'Zl{2)) factors through

H^X-^R^W) ̂  H^X-^j^pW)).

The restriction of i^ to the subgroup Z^a; factors through ^(JC^^Sym2!?1^^^)). To
show that this group is zero, observe that there is a fixed integer no such that multiplication
by ^no annihilates ^(X^^Sym2!?1?!-^/^) for all n. Indeed, if this were not the case,
then X^ would dominate an infinite tower of modular curves associated to various Z-power
level structures on elliptic curves. This is clearly impossible. Since the Poincar^ duality
pairing,

^(X^Sym^^Z/^-l)) 0 ̂ (Z^Sym^Tr.Z/r^)) -^ Z/F\
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is perfect [Mi, V.2.2b], multiplication by Z710 annihilates H2{Xt,J^Sym2R17^^Z/ln{2))
for all n. Since the map in the inverse system

^(X^Sym^^Z/r^)) ̂  ̂ (X^Sym^^Z/r-71^))

is zero, it follows that

^(Z^Sym^^Z^)) =Zzm ^(X^Sym^^Z/r^))

is zero. Thus c/v7(^) G ^(IV^, Z;(2)) is zero as desired.
In order to apply the results of §4 to the cycles Zx on self-fiber-products of non-isotrivial,

semi-stable elliptic surfaces with section, it is necessary to analyze the cohomology of the
sheaf R^TV^/I^ and related sheaves in considerable detail. We proceed with this now. The
goal is to be able to apply (4.9) to the present situation.

DEFINITION 5.5. - Denote by m^ the least common multiple of all integers m with the
property that the semi-stable elliptic surface TT : Y —> X has a singular fiber of Kodaira
type Im'

Since TT : Y —> X is semi-stable, the sheaf ^Ti^Z/F1 is tamely ramified [Ogg, §11]. In
other words, the sheaf is associated to a representation of the tame fundamental group,
n : 7r[(Xj,,rj) —^ GL{2,Z/ln). The representation respects the Weil-pairing on ("-torsion
points, so the image is actually contained in 57^(2, Z/F1).

LEMMA 5.6. - Let I denote, as usual, a prime distinct from the characteristic of the
base field, k. If gcd{l,m^) = 1, then the monodromy representation ^ : 7r[{Xk^rj) —>
SL{2, Z/F) is surjective.

Proof. - We use standard facts about modular curves for which the reader may refer
to [Gro, §1] and references therein. Let 71-0 : Yo —^ P1 denote an elliptic surface with
section whose j-invariant is the identity map on P1 [Sil, p. 52]. The j-invariant for
TT : Y —^ X is a non-constant map J : X —^ P1 which determines the elliptic surface TT
up to a quadratic twist. Thus TT is a twist of the pullback of 71-0 via J : X —> P1. Let
PQ : X(^) —^ P1 be the complete non-singular curve obtained from the ("-torsion in YQ
by discarding the ("^-torsion and taking the Galois closure. The quotient of X^) by
the involution induced by inversion in YQ, is the familiar modular curve for symplectic
Ie veU" -structure po : X^) —> P1. This construction is unaffected by quadratic twists
and is thus independent of the choice of YQ. We shall now deduce from the ramification
of PQ and Jsep over oo that the smooth curve C which normalizes the fiber product
X Xpi X^) is irreducible. By the hypothesis god^m^) = 1 the ramification of Jsep
and hence of its Galois closure, is prime to I [Sil, Appendix C 14.1(b) or Table 15.1].
From the classical theory of modular curves Ga^X^VP1) ^ S^^Z/^)/ ± 1. The
two elementary matrices

fl l\ , ( 1 (A
[o J M"1 (1 J

generate the stabilizers of the cusps at 0 and ioo. Each cusp has ramification index (n.
Since these two matrices generate SL(2^ Z) and hence also SL(2^ Z//")/ ± 1, it follows
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that every intermediate extension in X^l^/P1 contains a cusp whose ramification index
over oo C P1 is a positive power of I . This shows that J and po are linearly disjoint and
establishes the irreducibility of C. Projection to the first factor in the fiber product induces
a Galois morphism p : C —^ X with group SL(2, Z/F1)/ =L 1. The monodromy group of
the geometric generic fiber of TT is a subgroup of SL(2, Z/F1) which maps surjectively to
Gal{C/X). Thus it must be all of 5L(2,Z/r).

COROLLARY 5.7. -Ifgcd(l,m^) = 1, then HQ{X-^j^Rl/k^Z|ln) ^ 0.
Write Mn for the sheaf Syn^jR^Z//^) on X.

LEMMA 5.8. - Let I be an odd prime. Then there is a projector P G CH^(W x W) 0 Z[1]
-with the property that for all n there is an isomorphism

P.R2p.Z/ln(2)=M^

Furthermore P^ acts as the identity on complex multiplication cycles.
Proof. - The projector P will be constructed as the composition of two commuting

projectors : P = Q'oQ. In order to define Q' consider the two involutions r, fi e Aut(W),
where r interchanges the factors in the fiber product and TI acts by inversion on the first
factor and the identity on the second. The corresponding involutions T,TI e Aut(W)
generate a subgroup, D^ isomorphic to the dihedral group with 8 elements. Now Q' is
defined as the idempotent in the group ring Z[j][jD4] corresponding to the representation
<; : ?4 -> {±1} with kernel (rri).

In order to describe the projector Q introduce the notation s : X —> Y for the
distinguished section of the elliptic surface. The composition

YxxY^Y^Yx^Y^

in which the first map is projection on the first factor gives rise to a morphism q\ : W —> W
whose image is isomorphic to Y and which satisfies q^ = q^. Define q^ = rq^r. Write
r^ C W2 for the graph of qi and A for the diagonal. Define

Q = (A - rj o (A - F,J e CH\W2).

Evidently Q commutes with D^ and P = Q' o Q is a projector. Since Q and Qf are
supported on the subvariety W Xx W C W2, these correspondences act on the sheaves
R ^ p ^ Z / l " ' and respect the Leray spectral sequence for the map p. The first assertion of
the lemma is now immediate from the actions of Q and Q' on the various components
of the Kiinneth decomposition

(5.9) R2p^/ln(2} ̂  Mn e (A^^z/r^) e (R^z/r 0 z/r(2))®2.
For the second assertion observe that the correspondence P preserves fibers of p and
induces the identity map on Sym2^^^"1^)^, Zi) and hence on N^^p'1^)). We are
now ready to bring (4.9) to bear on complex multiplication cycles. For this consider the
short exact sequences of Gjc -modules

(5.10) 0 ̂  H\X-^j.Mn) -^ H\X-^^Mn) -^ H^X-^j^M^ -^ 0,
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(5.11) 0 - H\X-^Mn) - H\{X - x}-^Mn) - HJ{X-^Mn) - 0,

for which the associated first coboundary maps are denoted (5(5.10) and (5(5.in.

PROPOSITION 5.12. - Fix a positive integer n. Suppose that I does not divide 2m^.
V6(5.10) ° cl^(zx) ̂  0 or ;7 (5(5.ii) o cVy{z^ / 0, then a2^) e J?(W) is not zero.

Proof. - Restricting cohomology classes from Xj, to Xj, maps the short exact sequence
(5.10) to (5.11) and is the identity on the right most term. Thus ^(5.11) od^(za.) / 0 implies
(5(5.io) ° cl^(zx) / 0. The proposition will follow from (4.9) once it has been established
that the hypotheses of (4.9) hold. Specifically, we must check :

(1) H^X-^R^Z/l-W) ^ 0.
(2) H^X^R^Z/l-W) ^ 0.
(3) P^H^^Wj^Z^)) is torsion free.
We deduce (2) easily from Poincare duality, the Ktinneth formula and (5.7) :

H2(x-^Rlp^z/ln(2)) ̂  H^x-.j^z/rw) ̂  ̂ (x^^z/r^-i)^
^{H^X-.J^^Z/l^-l^^O.

In (5.16) below we show R3p^Z/ln(2) ^ ^J^3^Z/^n(2). Now

^(x^j^z/r^)) ̂  H^x-^j^R^z/r 0I?l^z/^n)(2))2

^ ̂ (x^^z/r^i))2 ^ o.
This establishes (1) and also implies that H^(W-^ Z/^n(2)) ^ fi^l(Xfc,J^2p^Z/^n(2)).

The hypothesis gcd(<,2m^) = 1 implies that .R^Z/^^) -^ ^J^2p^Z/^n(2) is
surjective (see (5.15) below). Thus ^(^.R^Z/r^)) ^ ^(X^.R^Z/r^)).
Apply the projector P and take inverse limits to get

(5.13) P^H\W-^W}} ̂  fl^l(X„^Sym2J^17^,Z^(2)).

Now assertion (3) follows from

LEMMA 5.14. -Ifgcd(l,2m^) = 1, then ̂ (X^Sym^T^Z^)) is torsion free.
Proof. - (cf. [Ne, 2.2].) Multiplication by I on M.n gives rise to a short exact sequence

0 ̂  Ml -^ Mn ̂  Mn-1 -^ 0.

By (5.6), H°{X-k,Mn) ^ 0. It follows that

0 -^ H\X-^M^ -^ H\X^Mn) ̂  H\X-^Mn-i} -^ 0

is exact. Induction on n implies that the inverse system {Hl{Xk^A4rl)}n is isomorphic
to {{Z/l^}^ where h = dimz/iH^X-^M^. Thus ff l(Xfc,Sym2a l7^,Z^(2)) ^ Z^.
Finally the natural map

^(X^Sym^Tr.Z^)) ̂  fl^l(X^Sym2J^17^,Z^(2))
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is infective by the Leray spectral sequence for j and the left exactness of the inverse
limit.

LEMMA 5.15. -//gcd(7,2m^) = 1, then R2p^/ln(2} -^ j^p^Z/l71^) ^ surjective.
Proof. - Recall from the first paragraph of this section the factorization p = po a. Clearly

0^/^(2) ^ Z/r^). It suffices to show that the map R2p^|ln(2) -^ j^R2p^/ln(2)
is surjective. Since both sides may be decomposed using the Kunneth theorem, one is
reduced to showing that R ' T T ^ Z / I " -^ j^R'^Z/l71 is surjective for each i. This is well
known. When i = 1 it follows from the theory of the Tate curve [Sil, Appendix C §14].
When % 7^ 1 it is straightforward.

LEMMA 5.16. - Suppose that I does not divide 2m^. Then the restriction map r :
R^p^Z/l" -> j^R^p^Z/l71 is an isomorphism.

Proof. - The Leray spectral sequence associated to the composition p = p o a gives
rise to the exact row in the diagram

p^R2^Z|ln ^ R^p^Z/^ ^ R^Z|ln -^ 0
(5.17) ^ ,

j^R^a^Z/^.

Recall that a^Z/f ^ Z/F1. Clearly r = r o h. The surjectivity of r is easily deduced
from the Ktinneth formula. As r is clearly an isomomorphism except possibly for the
stalks above S^, we fix a point 0 G S;̂  where the fiber has Kodaira type Im and study
(5.17) restricted to Henselization of Xj, at 0. The action of the inertia group on the r
torsion in the fiber of TT over the generic point in the Henselization depends only on the
integer m. Thus (5.17) restricted to the Henselization depends only on m. Consequently,
we may replace TT with a complex elliptic surface with an Im fiber. In this case an explicit
description of the dual map b^ is given in [Sch-CM, 1.10], from which it is apparent that
the kernel of b^ equals the image of r^. Since this is equal to the image of T^, the lemma
follows. (One may ignore that the reference computes with Q-coefficients. Everything
works with Z/771 -coefficients provided only that I is odd if m = 2.)

We end this section with a lemma which will simplify notation in later sections.

LEMMA 5.18. - Let TT : Y —^ X be a semi-stable, non-isotrivial elliptic surface with
section over a finite field k. With W as defined above, complex multiplication cycles give
well defined elements of CH2^^) horn-

Proof. - By definition a complex multiplication cycle is a generator z^ e N^^p'1^)),
where Tr"1^) is a CM elliptic curve. To show that Zy, gives rise to a well defined element
of CH^^W-j^horn it is necessary to show that the obvious map

iw. : CH\p-\xY^)^ -^ CH^W-^am

is zero. To see that this is the case use the isomorphism

CH\-K-\XY^ ̂ pr^ CH\p-\x}-^
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and the commutative diagram

CH1^-1^)^ ^ CH\Y-^om
pr*i [ {prioay [

CH\p-\xYk)Hom ^ CH^W^om^

Since k is a finite field, Roitman's theorem [Mi2] and [Roi] implies that the natural
map CH2(Y•k)hom —^ Alhy(k} is an isomorphism. For I prime to 2777,7;- and x G X the
restriction map

H^Y-^Z/l^-.H1^-1^^)

is zero (5.6). Thus the Albanese map Y —^ Alby collapses the fiber, 7^~l(x)k to a point.
It follows that iy^ is the zero map. The lemma follows.

6. Locally constant sheaves on curves

The problem of showing that the cycle class map a2 : CH'^^W^hom —^ J?{W) takes
a non-zero value when applied to an appropriate CM-cycle, Zx with x G X(k), has been
reduced in (5.12) to the computation of the first coboundary map for an appropriate
short exact sequence of Gjc -modules. This section begins by formulating the problem of
computing this coboundary map in an abstract setting. Then some theorems are stated
which give conditions under which the coboundary map is not zero.

The notations k C fc, Gje, rj G X C X, I , ^\{Xk, rj), etc. continue to have the meanings
set out in (0.5). There is a short exact sequence

(6.1) 1 - TrKX^) -. 7rl(X^) - G^ -^ 1.

Let M be an F^-vector space of finite dimension on which 7r[(Xk^rj) acts continuously.
Write M. for the associated locally constant sheaf on X. For a point x G X(k) the inclusion
j ' : X/ := X — x —> X induces a surjection

(6.2) j: : 7r[(X^r))^7r[(X-^rj)

and thus an injection on the level of Galois cohomology :

(6.3) H\^(X^rf^M)^H\7r[{Xi^M).

Now (6.3) is canonically isomorphic to the first map in the exact sequence of G^-modules,

(6.4) 0 -> H\X-^M) C H\X^M) -^ HJ{X-^M).

We now assume that X is affine. This implies H^^Xj^M) = 0 [Mi, V.2.4a], so that
the right hand arrow in (6.4) is surjective. Motivated by (5.12) we shall study the first
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coboundary map, 8^, in the long exact sequence of Galois cohomology associated with
(6.4). Actually in (5.12) M was allowed to be a locally constant sheaf of Z/^-modules
for any n. Here we have restricted to the case n = 1 in order to minimize technical
difficulties. We shall make some further simplifying assumptions. The first of these is that
k be algebraically closed in the fixed field of the kernel of the representation

(6-^) 7^(X^)^Aut(M).

View this fixed field as the function field of a smooth projective curve C / k . The assumption
implies that C / k is geometrically integral. Write F for the image of (6.5). We get a finite
morphism of curves p : Ck -^ Xk which is Galois with Galois group F. Write p : C -^ X
for the base change of p with respect to the inclusion X C X. Then p is etale and M\^ is
a constant sheaf. Define Sc = C - C, S^ = EC U p-^x), C' = C - S^, and

^(C^)o = Ker : ff^(C^) ̂  H\C-^^).

Finally denote by 8^^ the first coboundary map in the long exact sequence of
Gk -cohomology associated to the short exact sequence of Gj, -modules

(6.6) 0 - H\C-^^ -. H\C^^ -. ̂ (C^)o - 0.

A technical but important result is now

THEOREM 6.7. - Let X, C, and M be as above. If the hypotheses ( 1 ) - ( 4 ) below are
satisfied, then the coboundary map 8^ ^ is not zero.

(1) ^ C k\
(2) Gk acts trivially on ft^C^/^).
(3) All points of EC are rational over k.
(4) There is an indecomposible, projective, Fi[r]-submodule P C ^{C^^i) such that

(P 0z MY ^ 0. Furthermore there is 0 G (H^ (C^/^o)^ such that the image of the
homomorphism 8^{D) e Hom(Gfc, H1^, ̂ i}) is contained in P but not in rad(P).

The main consequence of (6.7) which interests us is

THEOREM 6.8. - Let X and C be as above. Let S C X be a closed subscheme of dimension
zero. If the hypotheses ( 1 ) - ( 4 ) below are satisfied, then, after replacing k be a finite extension
if necessary, there exists x G X(k),x ^ S{k), such that the coboundary 8^ is injective.

(1) k is a finite field,
(2) r = SL(2,Fi)/±l, with I an odd prime,
(3) the 'Fi[r]-module M is isomorphic to the second symmetric power of the tautological

representation of SL(2,Fi) on F^2.
(4) Let B C r be a Borel subgroup. If X has genus 0, then the (reduced) branching

divisor of the cover B\C —> X has degree at least four.
Using (6.8) we will show

THEOREM 6.9. - Let k be a finite field. Let TT : Y -^ X be a semi-stable elliptic surface
with section. Let W and m^ have the same meaning as in §5. Then, if I does not divide
2m^, the image of the cycle class map a2 : CH2^)^ -^ J^W) is an infinite group.
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The sections §8, §9, and §10 are devoted to the proofs of these theorems. The next
section recasts the discussion of the exact sequence (6.4) in more elementary terms.

7. Reduction to the cohomology of finite groups

The coboundary map 5(6.4) may be interpreted in terms of the cohomology of finite
groups. This reformulation will be carried through in detail in this section. An advantage
of this viewpoint is that the analysis of (6.4) takes on a more down to earth character.
The operation of the Galois group becomes more transparent. Presumably this viewpoint is
also better suited for explicit computations. As explicit computations will not be necessary
to prove the theorems of §6, we shall return to the sheaf cohomology viewpoint in later
sections.

The symbols X, C, C ' , X, C, M, etc. continue to have the same meaning as in §6.
In particular X is affine. To this we add some additional notation :

N = TrKC-^rj^ / l^[(C-^rj^ ^ Kom^H^C^ Z/Q, Z/Q,
N' = 7ri(C^r))ab I I' 7ri(C^^ ^ Hom^q^Z/^Z/O,
7~i = kernel of the tautological map 7r^(C^,^) —> N,
W == kernel of the tautological map 7r[(C^fj) —^ N\
The subgroups T-i C TT^X^, rf) and T-L' C ^(A^ ft} are closed and normal. Modding out

by these in the commutative diagram with surjective vertical maps,

1 - 7r[{C^rj) -. 7r[{X^rj) -. F x G^ -. 1

i i I I
1 -^ 7r{{C^rj) -. 7r[(X^rj) -^ F x Gk -^ 1,

gives the following commutative diagram also with surjective vertical maps :

0 -^ N1 -^ -9' -^ r x Gk -^ 1
(7.1) I I ||

O ^ A ^ - ^ ^ - ^ r x G ^ ^ l .

Pull back (7.1) with respect to the inclusion of F as the first factor in the product F x Gk
to get another commutative diagram with surjective vertical maps :

0 ^ TV' -> Q' -> r -^ 1
(7.2) [ [ ||

o - ^ N - > e - ^ r - ^ i .

LEMMA 7.3. - In the commutative diagram,

H\e,M) -^ H^ff^M)
i i

H^X-^M} - H\^{X^\M\

the vertical maps are isomorphisms.

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUP^RIEURE



24 C. SCHOEN

Proof. - There is a commutative diagram of exact sequences,

1 -. Trl(C^) -^ TrKX^) -. r - 1
i i I I

i ^ TV -^ e -^ r ^ i.
Apply the Hochschild-Serre spectral sequence to obtain a commutative diagram :

0 -^ H^r.M) ^ H^e.M) -^ RomiN.Mf -^ H^Y.M}

0 ^ iT(r,M) -^ ^(Tr^^M) - ^(Tr^^M^ - H^T^M).

The assertion of the lemma for the vertical arrow on the left now follows from the five
lemma. The vertical arrow on the right is treated similarly.

The lemma together with the fact that ff^J^.M) ^ 0 shows that (6.4) is canonically
isomorphic to the short exact sequence,

(7.4) 0 -. H^O, M) C H1^1, M) -. Coker/* -> 0.

Let v be a place over x € X^ in the cover of X^ with Galois group O1', Write D C 6 '
for the decomposition (= inertia) group at v and N for the kernel of the left hand vertical
map in (7.2). Then D C N and D ^ Z / l . The following lemma interprets Coker^'* as
a cohomology group.

LEMMA 7.5. - Cokerj'* is canonically isomorphic to Hom(2?,M).
Proof. - The discrete valuation ring at v is naturally a subring of a Henselization A

of Oxj,,x' Write K for the fraction field of A and D for the absolute Galois group of
K. Let a denote the closed point of Spec A. By excision [Mi, p. 92] the right hand
arrow in (6.4) factors as

H\X^M) -^ H^Spec K,M) ̂  H^Spec A^M) ̂  H^X-^M).

The second term is isomorphic to

Hom(D, M) ̂  Hom(D^ M) ^ Hom(DabA M),

where D* (respectively Dab) is the maximal tame (respectively abelian) quotient of D.
Since the /-primary part of Dab is procyclic [Mi3, p. 160], the natural map Dab/I —^ D
is an isomorphism. Thus there is a commutative diagram ;

H^O^M) -> Hom(D,M)
^ i i^

(7.6) H\'K\(X^r]\M) -^ Hon^M)
^ [ [ ^

H\X^M) -. Hj(X-^M)

Finally we note that the map ^(O^M) -^ Hj(Xk,M) factors through Cokerj'* by
(7.3). The lemma follows.
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The following short exact sequence translates (6.4) into the language of group
cohomology :

(7.7) 0 -^ H^O, M) C H\e', M) -^ Horn(£), M) -^ 0.

The action of the Galois group on (7.4) is determined by its action on the middle term.
This is described with the help of the exact sequence

(7.8) 1 -. Q' ^ ff ^ Gk -> 1.

Given a- e Gk, o- e p'^cr), and a crossed homomorphism F G Z^{ff\M), then
t -^ ffF(9r~ltff) is also a crossed homomorphism. Its class in ^{G'.M} depends only
on the class of F and the choice of a- € G^. This defines the action of Gk on H1^, M).
Since the subgroup ^ C ^ surjects to Gk with kernel 0, the same perscription gives an
action of Gk on H1^, M). This makes (7.4) a short exact sequence of G^-modules.

The extension (7.8) gives rise to a homomorphism <; : Gk -^ Aut^/Inn^') with
G := Gfc/Ker(^) a finite group. The action of Gk on (7.4) or (7.7) factors through G.
Since the map

H\G, H\9, M)) -^ ^(G^ H\6, M))

is injective, the computation of 5(e.4) may be treated entirely in the context of the
cohomology of finite groups.

To analyze (7.4) and (7.7) it is helpful to apply the Hochschild-Serre spectral sequence
to (7.2). This yields the following commutative diagram :

H\0,M) C H^O^M)
(7.9) ^ ^

Hom^M^ -^ Hom^M)^

LEMMA 7.10. - There is a commutative diagram of F x Gk-modules in which the vertical
maps are isomorphisms :

Hom(7V, Z/Q 0z M -> Hom(7V',Z/Z)®zM
^ i ^ i

Hom(lV,M) -^ Hom^^M).

Pwo/. - The action of F x Gk on M is Wa projection on the first factor. The action of
r x Gk on the Horn-groups in the bottom row is defined in analogy with the action of Gk
on H1^1\ M) except that (7.1) is used in place of (7.8). The action on the Horn-groups in
the top row is defined similarly with trivial F x G^-module Z / l used in place of M. Now

V/(/0m)(yi) = /(n)-m.

To check that ̂  is F x Gfc-linear take ^ e F x G^ a lifting k € ^', F e Horn(A^ Z / l )
and m C M. Then

^(^F(g)^m)(n) == (^F)(n).^m = F(k~lnk)'Km = k^'{F ®m)(k~1 nk) = (^(F^m))^).
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DEFINITION 7.11. - A functor. A, from finite type V i\T}-modules to Fi-vector spaces is
defined by A(T) = (T 0z MY.

One checks easily that A is left exact.

LEMMA 7.12. — There is a commutative diagram of Gk -modules "with exact rows :

0 -^ H\0,M} C H\e',M) -^ Hom(^,M) -^ 0
i I l^

0 -^ A(Hom(A^Z/0) -^ A(Hom(JV',Z/0) -^ A(Hom(JV, Z/Q) -^ 0.

Proof. - The left hand square comes from combining (7.9) and (7.10).
We now show the surjectivity of the horizontal arrow on the bottom right. First,

(7.13) Hom(A^ Z / l ) -^ Hom(7V, Z / l )

is a surjective homomorphism of F^[r]-modules. It suffices to check that (7.13) splits. This
will occur if the right hand side is a free F^F]-module. Write c E p~l(x)(k) for the place
of C which lies below v. Now F acts simply transitively on p"1^)^). It follows that the
submodule F^[F]I5 C N is free of rank 1. This inclusion is in fact an isomorphism since
the two vector spaces have the same dimension. Now the freeness of the right hand term
in (7.13) follows from the F;[F] -isomorphism

F,[F]^Hom(F,[FLZ/0, 7-^

where 6^ denotes the characteristic function of 7.
To explain the vertical arrow on the right, it suffices to show that the restriction map

(Hom(A^ Z / l ) 0z Mf -^ Hom(P, Z / l ) 0z M

is an isomorphism. For this, note that the tensor product representation F^[F] 0z M is
a free F;[F]-module [Al, p. 53 Ex. 3]. In fact, it is easy to see that if mi,...,mr is an
F^-basis for M, then 1 0 mi,..., 1 0 mr is an F;|T]-basis for F;[r] 0z M. Thus the map

Hom(D, Z / l ) 0 M -> (Hom(F/[r] 0 D, Z / l ) 0 M)^ ^ (g)m^^^0y?07m
7er

is an isomorphism which is inverse to the restriction map. Now (7.12) follows.
To conclude this section, we describe the action of Gjc on A(Hom(7V, Z / l ) ) . This

module becomes isomorphic to M if we assume that pi C fc* and fix an isomorphism
pi ^ Z / l . To describe this explicitly use the canonical identification of the following
two exact sequences,

0 -^ Hom(A^ Z / l ) -^ Horn^', Z / l ) -^ Hom(7V, Z / l ) -^ 0
(7'14) and 0 -^ H^C-^pi) -. H\C^pi) -^ H^^{C-^pi) ̂  0,

which follows directly from the definitions of N and N/ and the affineness of C. The term
on the right in the bottom sequence may be thought of as mod / divisors supported on
p~^{x}. The isomorphism of left F^Fj-modules given by,

Fi[Y] -^ H^-i^(Ck,pi), ^a^-> ̂ a^c,'K'
K,er K^r
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together with the isomorphism

M —^ (F^[r] 0z M)^ m -^ V ^ 0 /^m,
^er

gives rise to an identification

(7.15) X ' - M -^ A(^-i^(Cfc, /^)), ^(m) = ̂  /^c 0 /^m.
/<er

LEMMA 7.16. - The Gk action on A ^ H 2 , ^ ^ , ^ ) ) is given with respect to the
identification (7.15) by the group homomorphism h : Gk —> F defined by :

h(a)~1 oc= co a~1 Vcr G Gfc.

Proof. - Recall that r x Gk acts on p^^x}^} = Morph^Specfc,/?"1^)). In other
words the actions of F and Gk commute. It follows that a acts on the left on mod/
divisors supported on p'^^x} by

cr(V^ a^f^c) == ^1 a^c o a~1 = ^1 a^Kh{a)~lc.
Ker KGF ^er

By (7.15)

(T\{m) = y^ /^c o a~1 0 A^m = V^ /^(cr)"^ 0 ̂ m = V^ ^c 0 ^h{a)m == ^(/i(cr)m).
KGF /<er K^F

COROLLARY 7.17. - Suppose that k is a finite field and that ^ G r generates the
decomposition group of the scheme theoretic point of p~^{x) corresponding to c. Then
the action of the Frobenius (j) G Gk on Hj(Xk,M) may be identified with the action of
a generator of {£,} on M.

8. A criterion for non-vanishing of the coboundary map

The purpose of this section is to prove (6.7). Recall from §6 that X and hence C are
affine. Hypothesis (1) of (6.7) implies that p,i ^ Z/Z. Thus the commutative diagram of
Gfc-modules (7.12) may be rewritten as

0 ^ H\X-^M) - H\X^M) -^ HI{X-^M) -^ 0
(8.1) i i [ ^

0 ^ A{H\C-k^i)) - A^q^)) - A(^_^(G^)) - 0

The coboundary associated to the top row in (8.1) is (5(6.4)- To show that ^(6.4) / 0 it
will suffice to show that the first coboundary map. A, in the long exact G^-cohomology
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sequence associated to the bottom row of (8.1) is not zero. To accomplish this, we would
like to relate A to the first coboundary map, <9, in the long exact G^-cohomology sequence
associated to

(8.2) 0 -. H\C-^^) -> H\C^^ -. H^^C-k^i) -. 0.

The group F x Gk acts on (8.2). Furthermore, the sequence (8.2) has an F;[r]-linear
splitting, since ^-i(^)(C^/^) is a free rank one F^F] -module.

As our problem is purely formal, we formulate it abstractly : Let

(8.3) 0 -^A^B-> C7^0

be a short exact sequence of F^F x G^-modules. View Zl(Gk,B) (respectively
^(G^A)) as F;[r]-modules via the action of F on B (respectively A). Now

^:B^Z\G^B\ W(g)=gb-b

is Fi[T] -linear. Suppose that there is an F^[F]-linear splitting, s : C —> B. Then
the first coboundary in the long exact cohomology sequence associated to (8.3),
9 : C01^ — ^(G^A), is F^Fj-linear, since it is represented by '0 o s. The existence
of the splitting s forces

0 -. A(A) -^ A(B) -^ A(C) -^ 0

to be an exact sequence of Gk -modules. The associated coboundary will be written,
A : A(C)Gk —^ ^(Gk.^A)). There are canonical isomorphisms,

^ : A^) = (07^ 0z M^ ^ ((C 0z M)̂  ̂  {(C (g)z M)1^)^ = A(G)G^
^ : A^^G^A)) = {H\G^A) 0z M^ ̂  ̂ (G^A^z M)1^ ^ ̂ ^^(A)).

LEMMA 8.4. - v o A(9) = A o /^.
Pwq/; -Fix ̂ . ̂ (g)m^ e (^^zM)1^. Now 501 : C^zM -^ B^M is F^[r]-linear,

hence induces a map {C 0z M)1^ ̂  (J3 0z A^)1^. Clearly ^ .̂ s(cj) 0 m^ G (B 0z Af)1^
lifts ^ .̂ c^ (g) m^. As M is a trivial G^-module, Gk acts on (B 0z M^ via its action
on B. It follows that A o ̂ (^. cy 0 m^) is represented by the crossed homomorphism

g -^ ̂ gs{cj) 0 mj - ̂  s(c^) 0 m^.
^ 3

On the other hand 9{cj) is represented by ^(c^) - 5(cy). Thus the crossed homomorphism
9 —> ^j(gs{cj) - s{cj)) 0 my represents A(9)(^^. cj 0 m^). The lemma follows.

For the next lemma we introduce the following notation for the obvious restriction maps :

q : H^{C-^^ -. H^^C-k^i) and ^ : H\C-^^ -> H1^^).

Also 9 will once more refer to the coboundary map attached to (8.2).
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LEMMA 8.5. - Suppose given D G H^, ((7^,^)^. TT^n

9(^(0)) =H\G^fcm^W\

Proof. - This is immediate from the commutative diagram

0 -. H\C-^^ -. H\C^^ -. i^(C7^)o -. 0
re I I I .i

o - ^(c^) ^ ^(q^) - H^{C-^^ -. o.
We are now ready to prove (6.7). By (8.1) it will suffice to show that the first coboundary

map in the long exact sequence of Galois cohomology associated to

(8.6) 0 -^ A(H\C^,)) -. A(^(q^)) ̂  A(^-^(C^)) -. 0

is not zero. By (8.4) this reduces to checking that the map

A(9) : A(H^(C-^^) -. A^G^1^^)))

is not zero. The hypothesis (2) of (6.7) allows us to write the Galois cohomology group in
parenthesis on the right as Kom^Gk.H1^^,^)). Furthermore,

H^G^fc) : Hom^ff1^^)) ̂  Hom^^C^))

is an injective F;[r]-linear map. Choose D € H^, (C^,^)^ as in (4) of (6.7). Then
by (8.5)

^(^))=J:rl(G,,^)(^.6)^)).
Furthermore the homomorphism ^(6.6)(^) € Hon^G^.H^C^/^)) has image contained
in the projective submodule P C ^(C^,/^). This is a direct summand since projectivity
and injectivity for F^F] -modules coincide [Al,p. 41]. By hypothesis (4) of (6.7) there is an
element g C Gk such that ^(6.6) (^)(^) generates P as an F^[r]-module. Now Hom((^),P)
is a direct summand of the projective F^Fj-module Hom(Gfc,P) which via ff l((7fc,^)
is a direct summand of Hom(C?fc,.ff l(C^^)). Let

pr : Hom(G^l(C^)) ̂  Hom(^),P)

be an F^[r]-linear projection. Now the Fi[T} -linear map

pr oH^G^fc)0 ^(6.6) :^(C,,^)^ -.Hom((^),P)

is surjective and, since Hom((^),P) ^ P is projective, it splits. Apply the functor A to
this map. Since A(P) ^ 0 by hypothesis and

A(pr) a A^^G,,^) o <^.6)) = A(pr) o A(9) o A(g)

splits, we find that A(<9) -^ 0. By (8.4), A ^ 0. By (8.1), <?(6.4) / 0. This completes
the proof of (6.7).

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUPfiRIEURE



30 C. SCHOEN

9. Injectivity of the coboundary map

The purpose of this section is to prove (6.8). The statement of the theorem permits
replacing the base field k with an arbitrary finite extension field. Thus we may assume
from the outset that (1), (2), and (3) of (6.7) hold. By assumption (3) in (6.8) M is an
irreducible F;[r]-module [Al, p. 15]. Let P denote the projective envelope of M [Sel,
14.3]. Clearly P is indecomposible. It is also self-dual [Al, p. 52] so that

A(P) = (P0z Mf ^ (PV ^z Mf ^ HomF,[r](P,M) / 0.

PROPOSITION 9.1. - P C fi^C^/^).
Proof. - The F^[r]-module ^(C^,/^) has a decomposition as a direct sum of

indecomposible F;[r]-modules which is unique up to isomorphism. Write vp for the
multiplicity of the summand P in this decomposition. When ( = 3, P = M is the mod I
Steinberg representation and the proof of the proposition is greatly simplified because it
suffices to determine the multiplicity of the characteristic zero Steinberg representation
in the F-module ^(C^, Q;) [Sel, III]. Write -0 (respectively r) for the character of the
Steinberg representation (respectively of the representation ^(C^Q/)). Write B C F
for a Borel subgroup and <, > for the normalized inner-product of functions on F [Sel,
§2]. Then

vp =< r,^ >=< rjnd^l > - < r, 1 >
=< Res T\B, 1 > - < T, 1 >= 2g{B\C) - 2g{X).

When the genus of X is at least two, this number is positive by the Hurwitz formula. The
same holds if g{X) = 1, since the cover B\C^ —> X^ is not Galois and therefore must
ramify. To show that i/p > 0 when g{X) = 0 use that the degree 4 cover B\C^ —> X^ is
branched in at least four points by hypothesis (4) of (6.8). The contribution of each branch
point to the Hurwitz formula is 2. Thus g(B\C) — g(X) > 0 as desired.

For I > 3 one has the formula [Sch-MR, 7.5,7.2] :

^p=^-3e(Xfc)+2deg.(b),

where e(X^) is the /-adic euler characteristic, b C X is the (reduced) branch divisor of
p : C —> X, and $ > —1. When g{X) > 2 the positivity of vp is immediate. The same
holds when g(X) = 1, since non-abelian covers are ramified. When g{X) = 0, vp > 0 is
a consequence of the assumption (4) in (6.8) which implies that deg.(b) > 4.

The obvious observation that there are no non-trivial Ith roots of unity in F; implies that a
semi-simple element of SL(2^ Fi) has order prime to 1. Let ^ G F = SL{2^ F;)/ ± 1 be an
element of order e > 1, which is the image of a semi-simple element of 5Z/(2,F/).
Let 7 : C —> (^)\C •=: C be the canonical quotient map. Fix a fc-rational point
CQ G Sc and write Co = 7(00). Using the base points Co G C and Co G C we get
embeddings, io : C —^ Pic°((7) and %o '' C -^ Pic°(C7). Write rhi (respectively mi) for
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multiplication by I in Pic°((7) (respectively Pic^C)). Define a fiber product over P'ic°(C),
C = C X(io,mi) Pic°((7) by means of the Cartesian square

C -^ Pic°(C)
[ [m,

C ^ Pic°(C).

Similarly define two fiber products over Pic°(C):

C = C x^) Pic°(C), C = C x^^) Pic°(C).

These curves are geometrically integral and fit into a commutative diagram with obvious
maps :

C -> C -> C
I I
C ^ C -^X.

LEMMA 9.2. - Ck is Galois over Ck and Gal{Ck/Ck) ̂  (1 +^+... +$e-l)*Pic(Cf)(A;)[^].

Proof. - Since gcd(e,Q = 1, Pic\C)[l} ̂  (1 + ^ + ... + e'^PicCT] is an
isomorphism. The assumption (2) of (6.7) implies that Gk acts trivially on Pic(Cfc)[?].
Thus the group scheme Pic° ((?)[/] consists entirely of fc-rational points. An isomorphism
Pic°(C){k)[l] ^ Gal(C/C) is obtained by letting the torsion points act by translation
on Pic°((7).

LEMMA 9.3. - k(C} is Galois over fc(X).
Proof. - Indeed k(C) is the maximal, unramified, abelian, exponent I extension of k(C).

Since k(C) is Galois over k(X), so is k(C).
By the preceeding lemma we may replace the field k by a finite extension, again denoted

by fc, such that every element of Gal^C^/X^) is defined over fc. We make this extension,
so Ck is now Galois over Xjc.

LEMMA 9.4. - (1 + ^ + ... + ̂ -1)*P t rad(P).
Proof. - Recall that P is the projective envelope of M. Thus rad(P) is the kernel of any

essential map P -> M [Sel, 14.3]. It suffices to show that (1 +^+... ̂ -^'^M -^ 0. Let
^ 6 5'£(2,Ff) map to ^. In the tautological two dimensional representation of 5'L(2,F;),
the transformation ^ has two eigenvalues whose product is one. Clearly, in the second
symmetric power representation, M, ^ will have 1 as an eigenvalue with multiplicity one.
From gcd(e, 1) = 1, one deduces easily that (1 +$+. . .+ ̂ "^M ^ M^ ^ F^.

By (9.4) there is an element p G ( 1 + ^ + . . . + ^e-l)*P which is not contained in
rad(P). Use the inclusion,

(!+$+...+ r-')*^ C (1 + ^ + ... + r-1)*^1^ /^) —— Gal(Ck/Ck)^

to specify an element

(^ WP) G Ga/(C7,/^) x Gal(Ck/Ck) ̂  Ga/(^/C,).
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Choose / G Gal(Ck/Ck) which maps to (^, (7*)~1?). Make the following

ASSUMPTION 9.5. - There is x G X{k) whose Frobenius conjugacy class in Gal(Ck/Xk)
contains /.

Thus (/) is the decomposition group of a closed point of C in the fiber over x.
Since / G Gal(Ck/Ck) this closed point lies over a fc-rational point c e (7. Thus
o :=^*(c-co) e ^(C,^)^.

c-

LEMMA 9.6. - The image of the homomorphism ^(6.6) (^) ^ Ho^G^^^Cfc^)) ^
contained in P, but not in rad(P).

Proof. - Consider the analog of (6.6) with C replacing C, ^({x} U Sj^) playing
the role of E^, and C — ^^{{x} U Sjc) replacing C". Write <? for the corresponding
coboundary map. Since k is finite, Gfc is a topologically cyclic group generated by the
Frobenius, (/). There is an isomorphism,

Hom(G^ ̂ (C^ ̂ )) ̂  ff1^, ̂ ) -. Gal{k(C)/k{C))^ F ^ F(^).

Under this isomorphism, —6{c— Co) maps to Frobc = (7*)"1? (1.14). By functoriality
of the cycle class map,

W7*(^ - ̂ o)) = -p e ̂ ^(^^ ̂ ) = (l + ̂  +... + r-1)*^1^ /.O.

Now -p € (1 + ^ + ... + C6"1)^ but -p i rad(P). This proves the lemma.

COROLLARY 9.7. - Under the assumption (9.5) the coboundary map (5(6.4) is injective.
Proof. - By (9.6) and (6.7) the coboundary map 6^,4) is not zero. It remains only to

show ^(X^./M)6^ is one dimensional. In fact there is a sequence of isomorphisms :

(9.8) HKX-^M}01- ^ {H^{C-^^ 0z Mf^ ^ M^ ^ F,.

The first isomorphism comes from (8.1), the second from (7.17), and the third from the
proof of (9.4).

In order to prove (6.8) we need only show that if k is replaced by an appropriate
extension field of finite degree, then there exists x € X{k\^ x ^ S{K} such that assumption
(9.5) holds. This is a consequence of the following strong form of the Tchebotarev density
theorem.

PROPOSITION 9.9. - Let F C Gal{Ck/Xk) be a non-empty conjugacy class. Then given
any integer I one has

#{v G X{kf) : Frob^ = F} > I

for all finite extensions k 1 / k of sufficiently large degree.
Proof. - This may be derived from the Riemann hypothesis for Artin L-functions for

function fields of transcendence degree 1 over a finite field as proved by Weil (c/ [Lal]).
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10. The cycle class map evaluated at certain complex multplication cycles

In this section we prove (6.9). Fix a finite field, k. Let TT : Y -^ X denote a semi-stable
elliptic surface with section defined over k and write W for the blow up of Y Xx Y along
the singular locus. In (5.5) we associated to TT an integer m^. Let I be a prime, distinct
from the characteristic of fc, satisfying gcd(Z,2m^) = 1.

PROPOSITION 10.1. - There exist a finite extension k ' / k , a point x G X(k1), a complex
multiplication cycle z^ <E CH^^W-^hom such that a2^) <E Jf(W) is not zero.

Proof. - Let M denote the stalk of the sheaf (^wW^Z/Z^) at a geometric generic
point 77 of X. We shall check that the hypotheses of (6.8) are fulfilled in this situation.
First observe that the image of the geometric monodromy representation

7^(X^)-. Aut(M)

is isomorphic to SL(2,Fi)/ ± 1 by (5.6). Thus by replacing k by a finite extension field
if necessary we may identify the image, F, of the arithmetic monodromy representation

(10.2) ^(X^rj) ̂  AMI(M)

with SL(2,¥i)/ ± 1. Now hypotheses (1), (2), (3) of (6.8) are satisfied.
Prior to checking that hypothesis (4) in (6.8) holds in the present situation, we must

recall that the homomorphism (10.2) gives rise to a finite Galois morphism of curves
p : C -> X over k with Galois group F. Again by replacing k by a finite extension field
if necessary we may assume that fii C fc*. In the proof of (5.6) C was identified with the
normalization of X Xpi X(l\ where X(l) is the compactification of the modular curve
which parametrizes elliptic curves with a symplectic level ^-structrue and X maps to P1

via the j -invariant J : X -^ P1 associated to the family of elliptic curves TT. We need to
investigate the ramification of the cover B\C -^ X where B C F is a Borel subgroup.
Now all Borel subgroups in F are conjugate. Using the classical theory of modular curves
one checks easily that B\X{1) has a ramification point of index I over the cusp at oo on
the .7-line P1. Since gcd(^ 2m^) = 1, the ramification of J over oo has order prime to I .
Thus B\C —^ X will be ramified over each point in J^oo)^).

To verify hypothesis (4) in (6.8) we need only check that J-^oo)^) consists of at least
four points when X has genus zero. This is an immediate consequence of the following
lemma (cf. [Be]).

LEMMA 10.3. -A non-isotrivial, semi-stable elliptic surface with section, TT : Y^ —> P1,
has at least four singular fibers.

Proof. - H^Yj^Z/l^ = 0 Vn by (5.6). To compute the <-adic euler characteristic of
y^ it suffices to compute

^Y-k} = ̂ (-1)' dim^H\Y-^Z/l).
i>0
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Since the representation of 71-1 (X^, 77) on the ^-torsion subgroup of the geometric generic
fiber is tamely ramified [Ogg, §11]

e(y,)=^c,
i=l

where s is the number of singular fibers and Ci is the number of irreducible components
in the 1th singular fiber [Mi, V2.12]. It is easy to get a lower bound for the rank, r, of the
Neron-Severi group in terms of the numbers Ci. Namely,

s

r>2+^(c , - l ) .
1=1

Since e(Y^) - 2 = h2^) > r, we conclude that s > 4 as desired.
Now let S C X denote the set of closed points, x, for which Tr"^) is not CM.

This set is finite because J is non-constant and there are only finitely many supersingular
j-invariants in k [Sil, V.3.1(iii)]. By (6.8) there is a finite extension field k' of k and a
point x G X(k'),x ^ S { k ' ) such that

<?(6.4) : H^Mf^ -^ H\Gk^H\X-^M))

is injective. By (5.2) the class of the complex multiplication cycle

^-i(.)(^) e (^m^Tr-^^Z/OO))^ ^ HJ^M)^

is not zero. Now ^(6.4) coincides with ^(5.11) when n = 1. Thus ^(5.11) o cZ l _ l . ^ ( / ^a ; ) 7^ 0.
By (5.12) a2^) G J^W) is not zero. This proves (10.1).

We may strengthen (10.1) as follows :

PROPOSITION 10.4. - The image of a2 : CH^'^Wj^hom —^ ^f(^) ls isomorphic to a group
of the form (Q^/Z^ C ®?=i(Z/r11) where b < oo and 1 < a < oo.

Proof. - Write H = ff3^, Zi(2))/tors. By (1.4)

(10.5) ^(WQ ^ Umv/kH\Gk^ H) ̂  lim^/k{H 0 Qz/Z,)^ ^ ff 0 Q^.

The proposition will follow if the image of a2 is infinite. To establish this it will suffice to
construct for any finite extension field k - ^ / k a complex multiplication cycle whose image
under a2 is not contained in the subgroup J^W}0^.

Fix fci. Since G^ is a topologically cyclic group, there is a finite extension field k^/k\
with the property that the natural map

H^G^/^^H/l)^) -^ H\G^H/l)

is surjective for any finite extension k 1 / k ^ . Thus the inflation-restriction sequence implies
that the map b in the commutative diagram

H\G^HII) -^ H\Gk^H/l)
(10.6) r f ,

H\G^H) -. H\Gk^H}
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is zero. Now apply (10.1) with k^ playing the role of the base field. We find that there is
a finite extension k ' / k ^ and a point x e X{k'),x ^ S{k') such that

(10.7) (5(5.10) 0 C^-^(^) = ̂ 5.10) 0 C^^-^(P^)

G ̂ (^^(X^.Mi)) ^ H\Gk^P.H/l)

is not zero. But the cycle class in (10.7) is the image of

a 2 ( z , ) e H l ( G k ^ H ) c J i i { W )

under the map c o ?„. Suppose now that a2^) were contained in J^W)0^. By (10.5)
J^W)0^ ^ H^Gk^H). This forces a2^) to live in the lower left hand comer
of (10.6). This means that c o P^a2{z^ would be in the image of b which is not the case
Thus a2(^) ^ J^tD^i.

Let ZCM^W) denote the free abelian group on complex multiplication cycles.

COROLLARY 10.8. - Suppose that P^H 0 Q; is an irreducible representation ofGj,. Then
the arithmetic Abel-Jacobi map a2 : CH2^)^ -^ ^{W) is surjective.

Proof. - The Tate module of O^ZCM^)) tensored with Qi will be denoted Vi. It
is a non-zero subrepresentation of P^H 0 Qi. Thus Vi = P^H 0 Q^. It follows formally
that the inclusion of groups

a\ZcM(W-k}) c P.J^W)

is an isomorphism [Su, 1.3].
To complete the proof of the corollary we need to produce a subgroup of CH^^W^hom

which a2 maps surjectively to (1 - P^J^W). For this, consider the sum, <?, of the images
of CHl{Xk)hom in CH^^W^hom under the correspondences 0*^71-* :

V -^ YxxY ^- W
I-
X

where / is the diagonal map (respectively (zdy.s o 71-) ) (respectively {s o Tr^dy) ) and
s : x —> Y is a section of TT. It is not difficult to deduce from the decomposition of
^(^^ 'Zi{2))/tors via the Leray spectral sequence as described in (5.9) and the proof of
(5.12) that a2(<?) = (1 - P^J^W). As this result will not be used in the sequel, details
are left to the reader (compare also [Sch-CM, 1.7]).

COROLLARY 10.9. - Write (f) G Gkfor the Frobenius element. Suppose that no eigenvalue
of(/)~1 acting on P^H ^ Q^(-l) is an algebraic integer. Then the Griffiths group Gr2^^)
is not finitely generated.

Proof. - By (10.4) there is a surjective map P^CH2^)^ ^ Q I / Z I . By (2.7)
P.C^I2{W-k)alg 0 Zi = 0. Thus the torsion group P^CH2^)^ is in Ker(a). The
corollary follows.
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It seems reasonable to guess that the hypothesis made in (10.9) concerning the eigenvalues
of the (f)~1 action holds rather frequently. Specific, although quite special examples are
given in §12,

11. The action of Hecke correspondences on complex multiplication cycles

Presently it seems difficult to improve upon (10.4) without making further assumptions
about the semi-stable elliptic surface TT : Y -> X. In this section we shall be concerned
with certain special elliptic surfaces, so-called elliptic modular surfaces, which admit
Hecke correspondences. After defining these notions we will study the action of the Hecke
correspondences on complex multiplication cycles. These computations will be used in the
next section to obtain further information about ^(ZCM^WJ,)).

Let k be a field of characteristic p > 0. Fix a positive integer TV, prime to the
characteristic. Let F be a functor from affine fc-varieties to sets, which associates to each
affine variety the set of isomorphism classes of elliptic curves over the given affine variety
with a certain prescribed sort of level TV-structure. We require that F is representable by a
smooth, geometrically integral, affine curve over k. Furthermore the projective, relatively
minimal model of the universal elliptic curve is allowed only Kodaira type Im singular
fibers with m\N.

Examples. - (1) N > 4. F(S) = isomorphism classes of elliptic curves over S with
a section of exact order N.

(2) N > 2 and k contains the N^ roots of unity. F(S) = isomorphism classes of
elliptic curves over S with a symplectic level N structure.

(3) Further examples may be found in [Be2].
If F is taken from the above list, we refer to the non-singular, projective, relatively

minimal model of the universal elliptic curve as an elliptic modular surface.
Fix an elliptic modular surface TT : Y -> X. The notations W, X, etc. will continue

to have the same meaning as in the previous section. For each prime I which does not
divide p N , any iterated fiber product of Y with itself admits a Hecke correspondence,
Ti [D] [Sch-CM, 1.13]. We describe this explicitly in the case of the threefold W. The
normalization of the fiber product over the j-line, X Xpi Xo{l), will be denoted X.
Pulling back Y (respectively W = Y x^ Y) by the obvious map, h : X —^ X yields Y
(respectively W = Y x^ Y). Y contains a distinguished subgroup scheme A, of order I .
Set y' = V/A and write / : W -^ W for the degree I2 isogeny obtained by modding out
by A x^ A. Furthermore Y ' inherits a level structure from Y since I is prime to the level
of y. Because the functor with which we are dealing is representable the level structure
on TT : Y —>• X induces a unique fiber square

W -^ W

I I
X ^ X

Both the correspondence (T^)* := ̂  o fa* and its transpose (T^)* := h^ o g * associate to
each geometric point of X a cycle on X consisting of I + 1 geometric points. The effect
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of (T^ := (T^)* := g ^ o f^o A* on a geometric fiber p ' 1 ^ ) is to mod out distinct
copies of this fiber by each of the I + 1 subgroups A x A where A C Tr"1^) is an order
I subgroup. These correspondences are rational over the base field and extend to give
correspondences on the compactifications X and W.

In order to describe the action of the Hecke correspondences on the complex
multiplication cycles, we need a precise understanding of the behaviour of such cycles under
isogeny. Let / : E —> E ' be an isogeny between CM elliptic curves. The induced maps

(/ x /), : N\E2) -> A^O^)2) and (/ x /)* : A^^)2) -. N\E2)

respect the subgroups generated by complex multiplication cycles. Fix generators
^ € N^M^E2} and Z E ' G N^^WY) so that (f x f)^E =^ CZE' with c > 0.

LEMMA 11.1. - Ifg : E —> E ' is a second isogeny, then (g x Q)^ZE ^ ^ z ^ ' , with ^ > 0.
Proof. - The isogeny dual to /, // : E ' -^ E has the property that fof€ End(E)

is multiplication by the degree of /. Thus {f x J ' ^ ^ Z E ' is a positive multiple of ZE. Set
h = f o g e End(E). We need only check that (h x H}^ZE is a positive multiple of ZE.
But (h x h)^ acts on N1^2) by scalar multplication by the degree of h.

The lemma permits us to choose a coherent system of complex multiplication cycles
in each isogeny class of elliptic curves. In the remainder of this section and in the next
section ZE will denote a generator of N^(E2). If / : E —> £" is an isogeny, then the
generator Z E ' of A^^((E')2) will always be chosen so that (/ x f)^ZE is a positive
multiple of Z E ' . If E = Tr"1^) we generally write Zy; for z^-i(x).

LEMMA 11.2. - Let f : E -^ E ' be an isogeny of CM elliptic curves. Define R == End(E),
R = End{E'\ D = disc(R), and D' = disc{R'}. Then,

(1) For any z G N\E x E), (/ x j\z . (/ x j\z = (deg./)2^ . z,
(2) ZE • ZE = D ' e(D)2^ ___
(3) (/ x fUzE) = CZE' with c = (deg./)(^D7D7)6(P)/6(^)
Proof. - (1) It suffices to verify the identity when z is the pullback via (f x /)* of an

element in JV^i^ x -E'), in which case it is clear.
(2) One uses the explicit formula for ZE (5.0). Choose v € R such that R = Z[^],

and compute (Ty — Tp)2 = —2T^ ' T^. The isomorphism pr^ : Ty —^ E identifies the
intersection Ty D 1̂  with the kernel of (v — v} C R. The degree of this map is given by
the determinant of the action on the Tate module. In terms of norms this is

NR/T,(V - v) = 4A^/z^ -\trR/zi^)2 = -D.

This number is prime to p since E is not supersingular [Wa, Thm. 4.1].
(3) This is an immediate consequence of (1) and (2).
Fix a prime I distinct from the characteristic of the base field. The following lemma

computes D' in terms of D when f is an order I isogeny. This gives a precise formula
for the constant c.

LEMMA 11.3. - If deg.f = I then,
(1) IfKer(f) is not an R-module, then D' = l^D,
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(2) IfKer(f) is an R-module and I2 does not divide D, then D' = D,
(3) If Kerff) is an R-module and I2 divides D, then D' = l~2D.
Proof. - Let R c R denote the order of relative conductor I. As R induces an

endomorphism of the pair (£,Ker/), there is an inclusion R c R\ Furthermore one
checks easily that the orders R and R' differ only at places over /. Recall that orders in
quadratic fields are uniquely determined by their discriminant.

(1) In this case R (jL R\ whence R = R'.
(2) In this case R C R\ whence D / D ' is a non-negative even power of I , which is

necessarily zero since I2 does not divide D.
(3) Again R c W and D / D ' is a non-negative even power of I. There is an algebraic

integer 7 such that R ̂  Z[l^] and m = (7, l^) is the maximal ideal in R over ;. We need
to show that R ^ Z[^]. To establish that 7 (E R' it suffices to show that l-f annihilates
E'[l}. This will follow if ^ . f-^E^l]) c Ker(/). We have

Ker(/) c r\E'[l}) c E[l2}

and the right hand term may be identified with R/l2, since p. e R annihilates E[l2} if
and only if l2^ Now R/l2 is a local ring and f~1 (£'[<]) is an index Z, .R/^-submodule.
Thus /-^E"^]) gets identified with the maximal ideal, (^7). It is easy to see that R/l2

has a unique non-zero simple submodule. This leads to an identification of Ker(/) with
(P^R/l2. It is now a simple computation using the fact that 7 satisfies an equation of
integral dependence, 72 + 67 + d = 0 with b, d 6 Z, to show that ^7 • /-^'[fl) = Ker(/).
This shows Z[^} c R\ A consequence is that f{E[l\) is not a R' module. Indeed, if it
were, then every element of W would induce an endomorphism of E simply by modding
E' out by f{E[l}). This is impossible since R' is not isomorphic to a subring of R. Now
(3) follows by applying (1) to the isogeny /' : E ' -. E dual to / which has kernel f(E[l}).
It also follows that R' = Z[y].

For x, x ' G X(k) write E = Tr-^rr) and E ' = Tr-^rr'). If these elliptic
curves are not supersingular, write D,D/ for the discriminants of the respective
endomorphism rings. Set T,{x) = {x/ e [T^^x : D' = l^D}. As divisors on X,
(T^)^ = Y,_^^Ti{x). Similarly when considering the transposed correspondence,
write (T^YX = E-i<z<i^(^ where U,{x} = [x1 c (T^YX : D' = l^D}.

COROLLARY 11.4. - If I is an odd prime, or if I =2 and either 2 ramifies in the fraction
field of R or 4 divides the conductor of R, then

w)^= E E /
-KKlx'^T^x)

1-^.

Proof. - For arbitrary x ' G (T^)^(a;) the hypotheses on I imply that e{D)le{D') = 1.
The Corollary now follows immediately from the description of the action of (T^ on the
fiber p^^x) and the previous two lemmas. Furthermore it is evident how to write down the
formula for (T'z)^ in complete generality. As this is not needed, it is left to the reader.

We now consider the effect of the transposed correspondence (T;)* := h^ o /* o ^*.
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COROLLARY 11.5. - With hypotheses as in (11.4),

wr^= E E '
-Kt<l x'(^Ui{x)

1-̂ Z^i.

Pwo/. - For x1 (E (T^)*^) write ^ = ^{x),E' = Tr-1^'). The Hecke
correspondence gives a degree I isogeny j ' \ E' —^ E. When x1 G Ui{x), it must be
shown that the positive integer d which satisfies c' Z E ' = (// x f'Yza is ^l-l. By the
projection formula (// x f'\ZE' ^ { ^ / C ^ Z E . Let / : E -^ E ' be such that f o f is
multiplication by 1. From (11.2) and (11.3), (/ x / ) ^ Z E = l l ~ ^ Z E t ' As multiplication by
I acts by the scalar I2 on H^E' x £",Z/),

I^ZE' = (f o f x / o //),^/ = (Z2/^1-^

whence c' = Z1"1.
Remark 11.6. - We intend to apply (11.5) in the following particular case. Consider

x G X(k), with 7^~l{x) a CM elliptic curve such that I2 divides the discriminant D
of E'nc^Tr"1^)). As E[l] ^ R / l , the action of Gal(k/k) on the order ? subgroups is
described by a homomorphism,

Gal{k/k) -^ { R / i y / { Z / i y ^ Z / l .

Now the maximal ideal of R/l is identified with the distinguished order I subgroup which
is JZ-stable. This is defined over k. If some order I subgroup is not fc-rational, then at least
it is defined over some Z/Z-extension fc'/fc. In this case Gal{k' / k ) cyclically permutes the
non-distinguished subgroups and (11.5) yields

{TiYz^= ^ ^/+<2^.
aEGal{k' /fc)

where x ' G U\{x} and {x} = U-\{x). Since T^ is defined over fc, we may in fact write

(11.7) (TQ*^- ^ (^)<7+^2^.
a^Gal{k' / k )

An analogous formula holds for the transposed correspondence.

12. A divisibility result

Let p be a prime and k a finite field of characteristic p. As in the previous section W/k
denotes an elliptic modular threefold of level N prime to p. Fix a prime number I , with
gcd(l,Np) = 1. Recall that ZCM^W^) denotes the free abelian group on the complex
multiplication cycles. Let Q G CH^iW x W) 0 Zi be a correspondence which commutes
with the Hecke operator T^.
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THEOREM 12.1 . - Suppose that the l^'Hecke operator Tf acts invertibly on Q*J^(Wfc).
Then the cycle class map

Q.oa2:ZcM{W-,)^J?{W)

has divisible image.
Proof. - Write M for the image of Q^ o a2. We need the following elementary facts

about abelian groups.

LEMMA 12.2. - M is a direct sum of a finite abelian group with a group of the form
{Qi/TiiY- Furthermore Tf restricts to an automorphism of At.

Proof. - By (1.4) Jj^(W) is isomorphic to a finite direct sum of (Q^/Z^'s. Now the
two assertions of the lemma follow by applying Pontrjagin duality to the following well
known facts about finitely generated Z^-modules :

(1) A homomorphic image of ZJ" is isomorphic to a finite rank free module plus a
finite group.

(2) A surjective endomorphism of a finitely generated Z^-module is an isomorphism.
Now Tf induces an automorphism of the finite dimensional F^-vector space Af/lJ\f.

We need the explicit formulas for the action of Tf on complex multiplication cycles to
argue that M/lAf = 0.

Write a : ZCM(W],) —^ M / I J ^ for the map induces by Q* o a2. Suppose that there is
a CM cycle z^ for which a{zx] ^ 0. By replacing the original base field with a finite
extension (also denoted fc), we may assume that x € X{k) and that the absolute Galois
group Gk acts trivially on Af/lAf. Write c for the conductor of the order End(^^~'l{x))
in the integers of its fraction field. Then by (11.5)

gcd(^ c) == 1 implies T^ == ^ Zy 4-1 ^ Zu
yW^x} uWo(x)

gcd(^c) = ( implies T^Zy, == ^ Zy +12 ^ Zy
yWi{x) v€U-i{x)

Starting with XQ := x choose inductively Xj € U\{xj^} so that a(^) ̂  0 for all j > 0.
The points {xo, x^, x^,...} C X{k) are distinct since the endomorphism rings of the elliptic
curves Tr"1^) have strictly increasing conductors. Choose i minimal so that Xi ^ X(fc),
As i > 1 the second formula above applies. By (11.6) Gal{k(xi)/k) ̂  Z / l and

Tfz^, = ^ {z^Y + <2^.
a^Gal(k{xi)/k)

Since Gk acts trivially on Af/lAf, a sends the right hand side to zero. As Tf acts invertibly,
this contradicts the assumption that a(^_J ^ 0 and proves the theorem.

Remark 12.3. - Take for Q G Z3{W x W) the diagonal correspondence which induces
the identity on Chow groups and cohomology. Assume gcd{l,2Np) = 1. Now (10.1)
implies that a2 : ZCM{WJ,) —^ Jf{Wk) is not zero. Thus (12.1) implies that the image
is a non-zero divisible group.
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^marA; 12.4. - The simplest examples to which (12.1) and (12.3) apply are those for
which fi"3(W^,Q;) is two dimensional. There are exactly six semi-stable elliptic modular
surfaces which give rise to such threefolds [Be2] and [Sch-FP, §4 and §7]. These have
levels 3, 4, 5, 6, 8, and 9. In all cases the varieties are denned over Q and have good
reduction at primes which do not divide the level, N. Write T C SL(2, Z) for the modular
group associated to We [Be] or [Sch-FP. §4]. In each of the six cases the space of weight
4 cusp forms ^(F) is one dimensional and contains a unique element, f, whose Fourier
expansion at the cusp ioo, f = En^i6"?"' has bi = 1.

LEMMA 12.5. - Let W be one of the six elliptic modular threefolds mentioned above.
Let N be the level ofW. Let k = Fp with p prime to N. Ifgcd(l, Np) = 1 T; acts on
J^W) ̂  H\W^ Q,(2))/^(^, Z,(2)) by multiplication by the scalar b,.'

Proof. - By [Sch-FP, 7.1(i)] and [Sh2. 2.6]

h3(W{C),C) =-- 2h3•o(W) = 2 = 2 dim.(S^r)).

By [Zu, §12 ] and [Sch-CM, 1.11, 1.13] there is an isomorphism of modules for the
algebra of Hecke operators, H^WfC), C) ^ S^F) 9 ̂ (F). Now T,* acts on S^T) by
multiplication by hi. Thus it acts on H3{W{C)^/tors by scalar multiplication by bi.
Now standard specialization arguments such as used in the proof of (13.6) below show
that r;* acts by the scalar 6; on H3(W-e.^Zl)/tors. The lemma follows.

PROPOSITION 12.6. - Let W, k, p, N, I be as in the previous lemma. In addition assume that
(1) gcd(l,2Npbt) = 1.
(2)gcd(p,6p) = 1.

Then CH^W-^g ® Z; ^ 0 and a^Gr^Wj,)) C Jf(W) contains a non-zero divisible
group. If furthermore

(3) T2 - bpT + p3 £ Z;[T] is irreducible.
then a2(Gr2(Wk)) = J^W).

Proof. - Let <f> e GF,, denote the Frobenius. By [D], T2 - bpT + p3 is the minimal
polynomial of <f>-1 acting on H3(Wf^Z^)/tors. This polynomial is irreducible over Z,
since each root, ^, has complex absolute value p3/2 by Deligne's proof of the Riemann
hypothesis. By (2), tr^/p) ̂  Z, whence ( , / p is not an algebraic integer. The first assertion
now follows from (2.7) by taking W = W, d = 3,r = 2, and Q to be the diagonal
correspondence. This shows that a2 is well denned on Gr2^). By (1), T,* acts invertibly
on J;2(W). By (12.1) and (12.3) a^cMTO) is a non-zero, divisible subgroup which
is stable under the action of <^>-1. If (3) holds, the subgroup a2(ZcM(W^.)) C J?(W)
is all of J^W) by (10.8).

Example 12.7. - We consider the case TV = 5 in (12.4). Then F = ri(5),
S'4(ri(5)) ^ 54(ro(5)). Let r be the coordinate on C restricted to the upper half
plane. Set q = exp(2-!rir) and ??(r) = g^IIn^1 - 9")- The" [Lig, p. 28]

/ = ̂ (r)4^)4 = g^^gS+Sg^^-SgS+Gg^Sg^O '̂̂ g l̂S^-SSg13...

is the normalized weight 4 cusp form on Fo(5). When I = 3,p = 7 all hypotheses of
(12.6) are satisfied. If I is prime and ; < 100 one checks gcd(Z, &;) = 1 for I ^ 2 or 5. This
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would seem to suggest that (12.6(1) and (2)) are usually satisfied when the normalized
cusp form is not of CM-type.

Example 12.8. - We consider the cases N = 3 and N = 9 which are essentially identical
since the corresponding elliptic modular threefolds are isogenous (cf. §13). The normalized
weight 4 cusp form, /, lives in ^(^(Q)), which is one dimensional. It is most practical to
describe its Fourier coefficients with the help of an appropriate Hecke character. Begin with
the Hecke character, ^, on Q(^) of conductor 3Z[^] and infinity type (1,0). There is a
unique such. Explicitly, for each prime ideal p / y^Z^], there is a unique generator
TT = lmod3. Then ^(p) := TT. Now -03 is a Hecke character of conductor V^3Z[/^] and
infinity type (3,0). By [Sh, Lemma 3] the inverse Mellin transform of the Hecke L-series
L(^,s) gives /. This allows us to describe / explicitly as follows : Set q = exp(2mr)
and / = ̂ ^ b^. Then

(1) &i = 1,
(2) &3 = 0,
(3) bi = 0 for / = -lmod3,
(4) When I = 1 mod, bi = i/3 + P3 where I = vv and v = Imody^Z^].
In case (4) note that bi ^ 0 mod v, whence bi ^ 0 mod /. Thus the hypothesis (1)

of (12.6) is satisfied exactly when / = 1 mod 3. Similarly hypothesis (2) is satisfied
exactly when p = 1 mod 3. When both (1) and (2) hold, (3) fails since the roots of
T2 - bpT + p3 lie in Z[^} and the prime I splits in this ring. In this case (12.1) implies
^{ZCM(W^)) ̂  (Qi/^iY with r G {1,2}. If I =-1 mod 3 then T^ = 0 and (12.1) is
useless. Nonetheless we shall be able to get our most precise results in this case (see (14.2)).

Remark 12.9. - For elliptic modular threefolds of higher level the cohomology
^{XkJ^Sym'^R1^^) may be a direct sum of simple modules for the algebra of
Hecke correspondences. In this case one might wish to choose the correspondence Q in
(12.1) to be a projector to a simple summand. However, in the examples discussed in this
paper, Q will always be simply the diagonal correspondence.

13. A map from an abelian 3-fold to an elliptic modular 3-fold

According to (1.4) the arithmetic intermediate Jacobian J^(W) is a torsion group when
the base field k is finite. So far we have said nothing about whether or not complex
multiplication cycles give classes of finite order in C^2^)^. There is (up to isogeny)
only a single self-fiber product of non-isotrivial, semi-stable elliptic surfaces known to the
author where this question has been resolved. In this particular case the solution depends
on the purely geometric result (13.2) below. We state and prove (13.2) in this section and
then apply it in the following section.

Let E c P2 be the elliptic curve defined by

(13.1) ^ -^+^/4=0.

This curve is 3-isogenous over Q to the Fermat cubic curve [Ste, p. 123]. Note that ^3 acts
on E by modifying to by a root of unity and leaving t^ and ^ invariant. The substitution
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b = t-t - t ^ / 2 gives rise to the global Weierstrass equation

t^b^bt^^t^

This is the curve 27A in the well known tables [B-Ku, p.83].
The functor which associates to each finite type Q-scheme, S, the set of isomorphism

classes of elliptic curves over S together with a point of order 3 and a disjoint subgroup
scheme isomorphic to ^3 is representable. Let TT : V(3) —^ X(3) denote the projective
relatively minimal model for the the universal elliptic curve. Let W{3) denote the variety
obtained by blowing up the nodes of the fiber product V(3) x^ V(3). This variety has
already appeared in (12.8) as the example with N = 3. The main result of this section is

THEOREM 13.2. - There is a dominant rational map defined over Q, / : E3 —> W{3).
Proof. - We may identify TT with the morphism associated to the rational map P2 —> P1,

{xo : rri : x ' z } —> {x^ + x^ + X^/XQX-^X^ [Be2]. It turns out to be more convenient to work
with the isogenous elliptic surface TT' : Vo(9) —^ P1, which is the minimal elliptic surface
associated to the rational map P2 --> P1, (ro : ri : r-z) —^ (r^ + r^o + r^r^/ror^.
As the notation indicates, this elliptic surface is associated to a congruence subgroup
r C SL(2,Z) with the property that ±Id ' F = Fo(9). A degree three isogeny
K : Vo(9) -^ V(3) is given by r, = a^+i. The fiber product Vo(9) x^/ Vo(9) with
nodes blown up will be denoted Wo (9). The isogeny dual to ^ may be used to construct
a dominant map lVo(9) —^ tV(3).

The /^3 action on E mentioned above gives rise to a product action of (/^s)3 on E3.
Let N C (^a)3 denote the largest subgroup scheme which leaves the global regular 3-
form on E3 invariant. We shall in fact construct a map which factors through N\E3.
We adopt the convention that a section g G T{E, Op2(l)|^) when pulled back to the
product E3 by the projection p7*i (respectively pr'z) (respectively pr^) will be denoted g
(respectively g ' ) (respectively ^//). Define sections a, b e F(E, Op2(l)|jE;) by a = ̂ 1+^2/2
and b = t^ - t^/2. Then t^ - t^ab = 0. With these notations consider the rational map
F : E3 -^ P2 x P2 defined by

(ro : ri : r^) = {-WW : -t^b\t"^: t^W^)
v / {so : s, : s^) = (-t^W : -tWW : t^atW)^

whose image is contained in the hypersurface Wo{9) C P2 x P2 defined by

ror^Szez/s-sl^-i) - s^s^^/^r^} = 0.

This fact may be verified by a somewhat messy calculation in which one uses (13.4) to write

^z/3(^+i-r,/r^) = (toto^)- l[«^-^a /6 / /)+(-Wa"+a6 /a / /)+(-^y^+^^)]•

Expanding the expression in square brackets as a linear combination of

{^l^l^l i ̂ 1^2 -> ^1^2^1 ? " " > ̂ 2^2 }

reveals that all coefficients are zero as required. Now WQ^Q) is clearly birational
to Wo(9). As TV C Aut{E3) is generated by (to,W) ^ (Cs^^W) and
(^o^o^o') ^ {to^^C^o), F clearly factors through N\E3.

ANNALES SCIENTinQUES DE L'ECOLE NORMALE SUPERIEURE



44 C. SCHOEN

It remains only to show that the image of F, which is irreducible, is three dimensional.
Note that po := (0 : 1 : 2) e E (13.1). Write pr^ : P2 x P2 -̂  P2 for projection on the
first factor. Now pr^ o F\^E(po x Po x E) = (0 : 1 : 0). Furthermore, the same map
restricted to the small diagonal in E3 is given by (ro : ri : ra) = (-a : -a : ^2). It follows
that F(A x E) is a surface. It is clear from (13.4) that this surface is contained in the
hypersurface defined by ro = SQ. As F(po x E x E) == ((1 : 0 : 0), (0 : 0 : 1)), which
is not contained in the hypersurface ro = SQ, the image of F must be three dimensional.
This completes the proof of (13.2).

Write A < p,3 for the diagonal subgroup and Tf C E3 x W(3) for the closed subvariety
corresponding to the graph of /.

LEMMA 13.5. - The map f : H3(W(3)c,C) -^ ^(E^C)^ induced by Tf, is an
isomorphism.

Proof. - According to [Sch-CM, 1.7] or [Sch-FP, 7.1] H3(W{3)c,C) ^ H310 0 H^3

and is two dimensional. Since /* is injective on holomorphic 3-forms, the injectivity of
/* follows from the Hodge decomposition. The image is contained in H^^E^^C^ ^
H3^, C)^ ^ fi^3'o(£3) 0 H°^(E3), which is also two dimensional.

LEMMA 13.6. -For each prime p > 3 and I ^ p, /* : H3(W(3)F^Ql) ̂  H3(Ej, , Q^
is an isomorphism.

Proof. - Note that Tf C E3 x W(3) may be spread out to a scheme which is flat over
the base ring Z[l/6]. It is clear how to specialize this cycle to any prime p > 3. The cycle
class map to cohomology is compatible with specialization [Fu, 20.3.5]. Specialization on
cohomology is compatible with the Ktinneth decomposition and Poincare duality since both
hold in the relative context for smooth proper morphisms. Thus there is a commutative
diagram

HW3 x W(3))^,Q,(3)) -. H\{E3 x W(3))^ Q,(3))
1 i

^om(H3(W(3)^^^H3(E^W -. Rom(H3(W(3)^Q,)^H3(E^Q,))
in which the horizontal arrows are isomorphisms. Now apply the Lefschetz
principle and (13.5) to the Ktinneth component of clE3xw(3)(^f) m

Hom^W^ QO, H3^ QO).

14. Towards the structure of certain Griffiths groups

In this section we draw some conclusions about the Griffiths groups of the varieties
W(3)p and Ej> introduced in the previous section.

The following result of Soule will play an important role in the proof.

THEOREM 14.1. - Let Ap be a smooth projective threefold. Suppose that there is a
dominant rational map from the product of three curves to Ap . Then for primes I ^ p,
CH2{Ay^m ̂  2; C CH^Ap^tors 0 U

Proof. - [So, Thm. 3].
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There is a natural map H3{W(3)F^Ql/W)) -> H\W{3}^ W^ors [Co-S-S,
p.774] whose kernel will be denoted by Bi. Now

B, ̂  H^W^W^/H^W^W) ̂  J^(3)) ̂  (Q,/Z02.

THEOREM 14.2. - Let p and I be primes satisfying p = lmod3, I ^ p, and I > 3.
(1) If I == lmod3, then Gr'^iW^y^^Zi is isomorphic to {Qi/'Zi)2 or to Q^/Z^eZ/F

for some non-negative integer n.
(2) If I = -lmod3, then Gr2^^)^ ) 0 Z^ (Qi/Zi)2 and is generated by complex

multiplication cycles.
Proof. - Since p = lmod3 (12.6) and (12.8) imply that CH2(W(3)y^alg 0 Z; == 0.

Thus Gr2(W(3)p^ 0 Zi ^ CH'\W(3}y^ham ^ Z^. Soule's theorem implies that
Gr2(W{3)y^ (g) Zi C CH2{W(3)p^tors. Thus there is an injective map (2.9(2))

A2 : Gr^W^) 0 Z, -^ Bi ^ (Q^/ZQ2.

This gives an upper bound on the size of Gr2{W{3)p^ 0 Zf. A lower bound on the size
of Gr^H^)? ) 0 Z^ is obtained by computing its image under a2. Under hypothesis (1)
of the theorem^ (12.6) or (10.4) implies that Gr^W^)^) 0 Z; admits a surjective map
to Q^/Z^. The only subgroups of (Q^/Z^)2 with this property are listed in (1).

For the second assertion we need a better lower bound on the size of Gr^W^)^) 0Z<.
It would suffice to show that

(14.3) a\ZcM(W(3}^}} - Jf(W) ̂  (Q,/ZQ2

is surjective. To see that this is the case, we make use of certain natural automorphisms of
W(3)p which preserve complex multiplication cycles. These automorphisms are treated
in detail in [Sch-BB, §1], so we need only sketch the argument here. Since ^3 C F^,
y(3)r may be regarded as the universal elliptic curve for symplectic level 3 structure.
Such structures form a principal homogeneous space for S'L(2,Z/3). The action of
SL(2, Z/3) on the moduli problem gives rise to actions on Y(3) and on X(3) so that
Ti- : y(3) ^ ^(3) is equivariant. There results a diagonal action on W(3). The induced
action on H3^^^ QQ ^ Q2 factors through Z/3 which is the quotient of SL(2, Z/3)
by the 2-Sylow subgroup. This action is non-trivial. Since I = -lmod3 the representation
is irreducible. By (10.4) the Tate module of a2(ZcM{W(3)v^) tensored with Qi is a
non-trivial subrepresentation, which must be all of ^(W^y^Qi). The surjectivity of
(14.3) follows formally [Su, 1.3].

THEOREM 14.4. - Let p and I be primes satisfying p ^ 3, I ^- p, and I > 3.
( \ ) I f p ^ -1 mod 3, then Gr2(Ej. ) 0 Z< ^ 0.
(2) I f p = l mod 3 and I = 1 mod 3, then Gr2^ ) 0 Z^ is isomorphic to (Q^/Z;)2

or to Qi/Tji (B Z/^ for some non-negative integer n.
(3) Ifp = 1 mod 3 and I = -1 mod 3, then Gr2(E^ ) (g) Z/ ^ (Qz/Z^)2.

•r p
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In preparation for the proof of (14.4) consider the diagram

(14.5)
A^c^s

CH\E^^CH\E^ ———^ H\E^^/W))^H\E^W}}
I ^ p [ u p

CH\E^ ^ H\E^ ,Q,/Z,(2)),

in which A2^ denotes the restriction of A2 to CH2^ \ig and the left hand vertical
arrow is the intersection product. By (2.9(4)) the diagram "commutes. To see that the right
hand vertical arrow is surjective apply the fact that the cohomology of an Abelian variety
is an exterior algebra on H1 to get that

^(^^/^(l))^^2^^^!))^^3^^^^^)

is surjective. Then pass to the direct limit. Note also that A1 is surjective.
The action of ^3 on E described after (13.1) shows that E has complex multiplication by

Z[^s]. Furthermore, E has good reduction at p ^ 3. We note a few consequences of these
facts. First, when p = -1 mod 3, p is inert in Z[^s], whence Ey is supersingular [La2, §10
Thm. 10]. The diagonal action of Z[^] on Ej. makes H1 (Ej. ^Qi) a Z[/^] (g)z Qy-module,
and thus gives rise to a decomposition

H\E^Qi)^Qi^3)^VeV

in which uj e Z[/^] acts by ujidy 9 ujidy. The inverse Frobenius (f)~1 G Gp acts on
^(E^^Qi) as the geometric Frobenius endomorphism Fp e End^Ey^) [Mi, "¥1.13.5].
When p = 1 mod 3, £W(£'Fp) ^ Z[^s]. Thus there is an algebraic integer TT G Z[^s]
with TTTT = p such that (f)~1 acts on ^{Ej. , Q;) 0 Q^) by Tridv C TrJdy.

Proof of 14.4. - Suppose now that p = -lmod3. Since Ey^ is supersingular, the
image of d^ : CH1^ ) -^ ff2(^|. ,Z^(1)) tensored with Zi has finite index.
By the surjecdvity of the right hand verticle arrow in (14.5) and the divisibility of
^(.El. ,Q;/Zf(l)), A2^ is surjective. But A2 is injective on the /-power torsion
subgroup of CH^E^tors (2.9(2)). Thus CH2^)^ 0 Zi ^ CH^Ej. )tors ^ Z^.
By (14.1) CH^E^hom 0 Z^ CH2^ )aig 0 Z/and (14.4(1)) follows. p

Write Fs for the graph of 8 e A C Aut{E^ ). To prove the remaining assertions
of the theorem it is convenient to introduce the correspondences Q = ]C<$€A^ an^
Q/ = 3Id - Q e Z^E^ x E^). Note that

Q o Q = 3Q, Q' o Q' = 3Q\ Q o Q' = 0 = Q' o Q,

so that up to a factor of 3, Q and Q' are orthogonal projectors. Q projects onto the
A-invariants in cohomology or on Chow groups.

We assume for the remainder of the proof that p = 1 mod 3.
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LEMMA 14.6. - Assume gcd{l, 3p) = 1. Then
(1) Q.H^E^Qi/Zi) = 0 .
(2) d,E^ (C'.H'1^)) ® Z; has finite index in Q^H2^ , Z;(l)).
(3) CH\E^ 0 Z,^ O^3^ , Q,/Z,(2)).
(4) (^W^)^ ® Z;^ ?(4^ ® Z,.

Proo/. - The first assertion is clear so we begin with the second. Observe that

H2^^ Q;(l)) ® Q;^) ̂  A2y(i) e y 0 y(i) 9 A2^!).

The ^middle summand is both the subspace invariant under Frobenius and
Q^H (^^,Q;(1)) ® Q;(/<3). Thus (2) follows from the Tate conjecture, which follows
from Tate's deep theorem [Ta3, Thm. 4] or may be easily checked directly in this instance.

For (3) note

Q.H3^, Q<(2))(-i) ® Q;(^) ̂  A3y(l) e A3y(i).

Now <f>-1 acts by ^-Id^v(i) C ̂ Id^v(i)- Since ^ and ̂  are not algebraic integers,
Q^CH^E^, 0 Z;^ 0 by (2.7). Thus p

(14.7) CH\E^ ® Z, = Q:C7^(^)^ ® Z,^. Q;^3^, Q,/Z,(2)).

By (2) and (14.5) the cup product gives rise to an inclusion

(14.8) H\E3^ Q,/Z,(1)) U Q.H\E^ Z,(l)) c A^(^2^)^).

By (1) the left hand side may be identified with Q'.H3^ , Q,/Z;(2)). Combining (14 7)
and (14.8) yields

\^,(CH\E^ ® Z,) ^ Q^H\E^, Q,/Z,(2)).

Since A2 is injective on CH2^^)^ g) Z;, (3) follows. Finally, (4) follows from (3) via
the injectivity of A2 on CH2(E^^om ® Zi and the fact that A2 commutes with the action
of Q'^ (2.9(3)). This completes me proof of (14.6).

Returning to the proof of (14.4) we observe that (14.6(4)) implies

Q.CH2{E^^ ® Z< ̂  Gr2^) 0 Z;.

Use the injectivity of A2 on CH2^^ ')hom <2> Z; once more to view Q^CH2^ )hom ® Z;
as a subgroup of p "

Q.H^E^W^)) ̂  J,2(^)A ^ (Q,/Z,)2.
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This gives an upper bound on the size of the Griffiths group. To get the lower bound,
apply (14.2) and the correspondence Q o iy It follows from (13.6) that the right hand
vertical arrow in the commutative diagram

Gr\W(3)^)^^ ^ JKmW
Q.oFf^ [ [ Q.or^

Gr2^)^ ^ W^

may be identified with an isomorphism of (Qi/Zi)2 with itself. Now (14.4) parts (2) and
(3) follow from (14.2).

Remark 14.9. -- In the statement of (14.4) we may replace the elliptic curve Ep by any
isogenous elliptic curve - for example, by the Fermat cubic curve.

COROLLARY 14.10. - Ifp = -1 mod 3 and I ^ 3, then Gr^H^)^) (g) Z^ ^ 0.
Proof. - Soule's theorem together with (2.9(2)) implies that CH2(W(3)y )kom ̂  Z^ C

Bi ^ (Qi/'Zi)2. It would suffice to show that CH2(W(3)p^alg contains a subgroup
isomorphic to (Q^/Z^)2. In fact T^CH2^ \ig ̂  Z^ is such a subgroup. This is because
the lower line of (14,5) is surjective when p == —1 mod 3 and the map

T}:H\E-^fW)}^B,

is surjective.
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