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MORITA EQUIVALENCE AND SYMPLECTIC
REALIZATIONS OF POISSON MANIFOLDS

BY PING Xu

Introduction

The role of symplectic realizations in the theory of Poisson manifolds is similar to
that of representations in the study of noncommutative algebras, so their investigation is
of basic importance in Poisson geometry. However, according to our knowledge, there
is little work done in this direction because of the lack of a powerful general method. The
main purpose of the present paper is to compute the realizations for several interesting
Poisson manifolds by using the device of Morita equivalence developed in [XI] and [X2].

Three types of Poisson manifolds are of particular interest to us: locally trivial bundles
of symplectic manifolds, semi-direct products of Poisson manifolds and reduced Poisson
manifolds. Although it seems that these three kinds of Poisson manifolds are very
different from each other, they have one thing in common, that is, they all can be
considered as reduced Poisson manifolds. Therefore, it is not surprising that Poisson
reduction plays a very special role in this work. The key result, roughly speaking, is
that the reduced symplectic groupoids of Morita equivalent symplectic groupoids are
still Morita equivalent. Many interesting examples can be obtained as a direct conse-
quence of this fact, including the Morita equivalence between the symplectic groupoids
of locally trivial bundles of symplectic manifolds and the cotangent bundle groupoids of
the base spaces. Another example is the Morita equivalence between the symplectic
groupoids of semi-direct products of Poisson manifolds and the symplectic groupoids of
reduced Poisson manifolds.

We also note that complete symplectic realizations of Poisson manifolds are in fact
the same as symplectic left modules of their oc-simply connected symplectic groupoids,
which are much more tractable. Hence, it is essential to find explicit constructions of
symplectic groupoids for these Poisson manifolds, a problem to which we will devote
the first section.

In Section 1, following a general construction of the symplectic groupoids of reduced
Poisson manifolds by means of symplectic reduction for symplectic groupoids, we obtain
the symplectic groupoids for locally trivial bundles of symplectic manifolds and semi-
direct products of Poisson manifolds. The structures of these symplectic groupoids are
also investigated. In particular, we prove that when the Lie group G is simply connected
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308 P. xu

and the Poisson G-action on P has an equivariant momentum mapping J, the symplectic
groupoid r (- J) x 5 G° of the corresponding semi-direct product of Poisson manifolds,
constructed by this process, is isomorphic to a direct product of the symplectic groupoid F
of P and the transformation groupoid T* G ̂  ^*, as expected.

In Section 2, we obtain several interesting Morita equivalence relations by using
reduction, as described earlier in this introduction.

In Section 3, by using the machinery of Morita equivalence, we compute the complete
symplectic realizations of locally trivial bundles of simply connected symplectic
manifolds. Any such realization corresponds to a unique complete symplectic realization
of the base space equipped with zero Poisson structure. The construction of such a
realization from a given one of the base space is very similar to the usual Yang-Mills
construction. Another example discussed in this section is the reduced space S/G of
any simply connected symplectic manifold S.

Section 4 is devoted to the investigation of the complete symplectic realizations of
semi-direct products of Poisson manifolds. The main result of this section is that the
complete symplectic realizations of semi-direct products of Poisson manifolds P x ̂ *
are in one-to-one correspondence with the complete covariant symplectic realizations
of P. Equivalently, on the level of symplectic modules, the symplectic left modules of
r(-J)x^G°, which is a symplectic groupoid of P X ^ ^*, are in one-to-one correspon-
dence with the covariant symplectic left F-modules. Here, by covariant symplectic
realizations (or covariant symplectic modules), we mean symplectic realizations (or
symplectic modules) that are also Hamiltonian G-spaces such that the G-actions commute
with the realization morphisms.

In Section 5, we study the symplectic left modules of (r)o, a symplectic groupoid of
the reduced Poisson manifold P/G, by using Morita equivalence. As a consequence,
we obtain a classification of complete symplectic realizations of reduced Poisson man-
ifolds under certain assumptions.

Finally, we note that although all the discussions here are purely geometric, one can
find counterparts in C*-algebra theory for many notations and techniques used here. In
fact, it is the counterparts in C*-algebra theory that motivate some of our work. For
instance, Poisson G-spaces correspond to C*-dynamical systems. The two basic con-
structions associated to a Poisson G-space, the semi-direct product of Poisson manifolds
and the reduced Poisson manifold, correspond to the crossed product C*-algebra and
the fixed point algebra. The notion of covariant realizations corresponds to that of
covariant representations in C*-algebras. In C*-algebras, under certain reasonable con-
ditions, one has a strong Morita equivalence between a certain ideal of the crossed
product algebra and the generalized fixed point algebra [Rie4]. In particular, in the
case of transformation C*-algebras, one obtains a strong Morita equivalence between
the crossed product algebra C^ (M) oc G and the fixed point algebra C^ (M/G), which
is one of the basic examples in Morita equivalence theory of C*-algebras [Rie3]. Also,
the one-to-one correspondence between the representations of crossed product C*-
algebras and the covariant representations is a well-known fact in C*-algebras. All this
once again indicates the similarities between these two subjects. Conversely, we hope
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that our discussions here are useful to the study of C*-algebras. In particular, by
"quantizing" the results in this paper, we hope to obtain some results about C*-
algebras. Indeed, Karasev-Maslov attempted much the same in their work on spectral
theory [KaMa].
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1. Symplectic groupoids of reduced Poisson manifolds and semi-direct products
of Poisson manifolds

The construction of symplectic groupoids for given Poisson manifolds is of particular
importance in Poisson geometry. A great deal of progress has been made in this
direction by many authors ([Dl], [LW], [W3], [W5]). In this section, we will present a
construction of symplectic groupoids for reduced Poisson manifolds and semi-direct
products of Poisson manifolds, which is motivated by the construction in
[W5]. Although the proofs are very easy, almost trivial in fact, this construction is very
important to our later discussions. In the sequel, by (X)o we always denote the symplec-
tic reduction at 0 [MW] of a Hamiltonian G-space X, i.e., (X)o=J~1 (0)/G, where
J: X -> ^* is an equivariant momentum mapping.

THEOREM 1 . 1 . — Let (F ̂  P, a, P) be a symplectic groupoid, G a Lie group acting on
r by symplectic groupoid automorphisms with an equivariant momentum mapping
JeZ1 (T, ^*)(1). Furthermore, assume that the action is free and proper. Then
((T)o ̂  P/G, (Xi, Pi) is a symplectic groupoid over P/G, where the source and target maps
are defined by o^ ([y]) = [a (y)], Pi ([y])=[P(y)], and the multiplication is defined by
[Yi] • [Yz] == [Yi • TiL ^ere P (yi) = a (72).

Proof. — By using the fact that the G-action preserves the groupoid structure and
JeZ1 (r, ^*), it is easy to check that the multiplication introduced above defines a well-
defined groupoid structure on (T)o. On the other hand, since the symplectic structure

(1) Z^r,^*) denotes the set of all groupoid 1-cocycles of F with values in ^*, where ^* is considered as
an Abelian group with the usual addition. I.e., JeZ^F,^*) if and only if J:r->^* satisfies
J (x • y) = J (x) + J (y) for all composable pairs (x, y) e F2. See [WX] for some details.
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310 P.XU

on the reduced symplectic manifold (F)o is induced from that on F, and the graph of F
is a Lagrangian submanifold o f F x r x r ~ , t h e graph of(T)o is a Lagrangian submanifold
of (T)o x (T)o x (T)o . Hence, (T)o is a symplectic groupoid over P/G.

Q.E.D.
Let (S,co) be a symplectic G-space such that the G-action is free and proper. This

action on S can be lifted in an evident way to an action on the fundamental groupoid
(IIi (S) =! S, a, (3) by symplectic groupoid automorphisms, having an equivariant momen-
tum mapping JeZ1 (II i (S), ^*) given by

(1) <J( [a] ) ,0=-f i ; s^CD, V[(j]€lIi(S), ^,
Jcy

where ^ is the Lie algebra of G, ^* the dual of ^ and ̂  the fundamental vector field
on S defined by £, [MiW]. As a consequence of the preceding theorem, we have
the following corollary, where a symplectic groupoid over the reduced space S/G is
obtained. Some form of this result has appeared in [KaO], [Ka].

COROLLARY 1.1.- ((n^ (S))o =^ S/G, oci, Pi) is a symplectic groupoid over S/G, where
ai(M)=[^(0)], Pi([o])=[a(l)] and the multiplication is defined by [aj-[a2]=[ai -aj
for any a, a^, a^eII^S) such that a^(l)=<j^(0).

As an immediate consequence of the above corollary, we have the following proposition
describing the symplectic leaves of the reduced space S/G, a process that can be viewed
as a generalization of the usual symplectic reduction.

PROPOSITION 1.1. - If S is a symplectic G-space, then P(J~1 (0) C\ a"1 (^))/G is a
symplectic manifold, -where the symplectic structure is naturally induced from that on S,
J: IIi (S) -> ̂ * is the momentum mapping as given by equation (1) and (9^ is the G-orbit
through XQ.

In fact, PCJ^Wna'^^O/G is the symplectic leaf of S/G passing through
^eS/G.

In particular, if the G-action on S has an equivariant momentum mapping F, then
the momentum J on IIi(S) can be written as ^(r)=V (r(0))-Y (r(\)\ Therefore,
reJ-^COnor1^) if and only ifr(r(0))=r(r(l)) and r(0)e^, which is equivalent
to saying that

PM^rOer-1^), where u=J'(x^

Therefore, P(J~1 (0) n a"1^))^'"1 (^). Hence, we obtain the usual symplectic
reduction J' -1 (^)/G (^ F -1 (^)/GJ.

Example 1.1. (Weinstein [W5]). - Let F-»P-">M be a locally trivial bundle of
symplectic manifolds with structure group G. Suppose that F is a Hamiltonian G-space
with an equivariant momentum mapping J. Let B be the associated principal bundle
with zero Poisson structure; then the reduced Poisson manifold (B x F)/G is Poisson
diffeomorphic to P. According to Theorem 1.1, (T* B x F x F~)o is a symplectic grou-
poid over (B x F)/G(^P). As a symplectic manifold, (T* B x F x F~)o is just the Yang-
Mills-Higgs phase space for a classical particle with configuration space M and internal
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phase space F x F~ [W4], which is just a fibre product of the bundle P(=P x j^P) -, M,
with the cotangent bundle T*M considered as an affine bundle rather than a vector
bundle, and is usually denoted by T* M x ^ P. The groupoid multiplication is given by
(Q^x,y)'(Q^y,z)=(Q^+Q^,x,z) with source and target maps a^ (9,x,^)==.x and
Pi(9,x,^)=^ for any (9i,x,^), (9^,z), (9,x,^)eT*M x^p.

Another useful construction of Poisson manifolds is the so-called semi-direct product
[W4], which is defined as follows. Consider a Poisson manifold on which G acts by
automorphisms. The quotient Poisson manifold (P x T* G)/G, where G acts on the
factor T*G by the lifts of right translations, is diffeomorphic to Px^* under the
correspondence

(2) 0: [9,a,]->(g.9,r,*a,).

The induced Poisson structure on P x ^* is in general not the product Poisson
structure. This manifold P x ^* together with the induced Poisson structure is called
the semi-direct product of P and ^* with respect to the G-action on P and is denoted
by Px^*.

In order to construct symplectic groupoids over semi-direct products of Poisson
manifolds, we begin with the following two well-known constructions for building up
new groupoids from the old ones, namely skew product and semi-direct product of
groupoids [Ren].

DEFINITION 1.1. — Let (F ̂  FQ, ao, Po) be a groupoid, A a group and c:r->A a
homomorphism. The skew product F (c) is the groupoid V x A with unit space Fo x A,
where

a (x, a) = (ao (x), a\ P (x, a) = (Po (x), a - c (x)) and (x, a) • (y, b) = (xy, a\

tf^o(x)=(lo(y) andb=a'c(x).
DEFINITION 1 . 2 . — Let (T ^t FQ, ao, Po) ^e a groupoid, on which the group A acts by

automorphisms a:A-^Aut(r). The semi-direct product F X ^ A is the groupoid F x A
with unit space FQ, where (x,a) and(z,b) are composable ifz=a~1 - y with x,y composable,
(x,a)'(a~l'y,b)=(xy,ab\ and (x,a)~l=(a~l •x~1,^"1). Then, a(x,^)=ao(x) and
PM^-^PoM.

When r is a group, this semi-direct product is the usual semi-direct product of groups.
THEOREM 1 . 2 . — Let (F ̂  P, a, P) be a symplectic groupoid, on which G acts by

symplectic groupoid automorphisms with an equivariant momentum mapping JeZ1 (T,^*).
Then r ( — J ) x ^ G ° is a symplectic groupoid over the semi-direct product P x ̂ *,
where G°, the opposite group of G, acts on the skew-product groupoid r (—J)
by g - (y, u) = (g~1 • y, Ad^-1 u). Here Adg = Ig-1 ° Yy The symplectic structure on
r ( - J )x^G°(^rx^*xG) is given by (p* (00^ ® - CO^G^ ^here CO^G is the standard
symplectic structure on T* G, C0r is the symplectic structure on F, and cp is the map from
T x ^* x G to r x T* G defined by (p(y, u,g)=(y, l^-i (M-J(y))).

Proof. — The groupoid direct product H of r with the coarse groupoid
T* G x (T* G)~ =t T* G is a symplectic groupoid over P x T* G. Consider the G-action
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on T* G by the lifts of right translations. Then, this action's equivariant momentum
mapping J ^ : T* G -> ^* is given by J\ (o^) = - /^ o^. Identify T* G with ^* x G by right
translations. Under this identification, the above G action on T*G is given by
h'(u,g)==(u,gh~1), for all (M,^)e^*xG, and the momentum mapping Ji is given by
JiO^)^ -Ad^-iM.

Now G acts on H in a natural way; in fact, it is trivial to check that G acts on H by
symplectic groupoid automorphisms. Therefore, (H)o is a symplectic groupoid over
(P x T* G)/G, which is just the semi-direct product P x 5 ^*, by definition. The momen-
tum mapping J on H==r x T* G x (T* G)~ ̂ F x ^* x G x ^* x G is given by

^(y^^g^u^g^^JW-Ad^iu^Ad^iu^

so J"1 (0) is defined by the equation ̂  = Ad^ (Ad^-1 ̂  - J (y)); therefore, (H)o = J~1 (0)/G
is diffeomorphic to F x ^* x G under the correspondence

(3) ^ '• [Y. u^g^ u^g^] -^ (gi y, u^g^g^ 1).

Hence, the induced symplectic structure on F x ^ * x G is given by (p*^^®—^^)?
where ( p : r x ^ * x G ^ r x T * G i s defined by (p (y, u, g) = (y, /^-1 (u - J (y))). In order to
define the groupoid structure, first note that under the identification T*G^^*xG by
right translations, the correspondence <S> defined by equation (2) becomes

(4) 0: [M,^(g9^).

Let oc^ and Pi denote the source and target maps of the groupoid (H)o, respectively. By
Theorem 1.1, Pi [y, u, IQ, u\g] = [? (y), u\g\, where \Q is the identity of the group G. To
apply the natural isomorphism ^F from (H)o to r x ^* x G, we need to take
z/=Ad^(M—J(y)) . Then [y,u,\Q,u',g] goes to (y,u,g) under the correspondence T,
while [P (y), u , g] goes to

fe P (Y), u) = (g P (y), Ad,* (u - J (y))).

Therefore, Pi : F X ^* x G -. P X ^* is given by Pi (y,^)==(^P(y),Ad^~J(y))).
Similarly, 04 is given by a^ (y, M, ̂ ) = (a (y), M). As for the multiplication, again according
to Theorem 1.1, we have

[yi,Mi,lG,Ad^(Mi-J(yi)),^]-[y2,^,lG.Ad^(^-J(y2)),^]

=[Yi» ^i. IG. Ad^(Ml-J(yl)),^J•[^l~ ly2, ^, g^ Ad^(^-J(y2)), ^2^1]

=[Yl•(^^ l Y2). ^i. lG.Ad^(M2--J(y2)),^iL

ifP(yl)=^ loc(y2)and^=Ad^(^-J(yl)).
Now under the isomorphism ^F from (H)o to F x ^ * x G , [Vi, ^i, IG?

Ad^(^i-J(yi)), ^i] and [y^ u^ lo, Ad^(^-J(y2)). ^2] g0 to (Yi. ^i. ^i) and (y^, M2»
^2), respectively, while [yrfer^), u^ l^, Ad^(^-J(Y2)). gigi] goes to (yl• fe^ ly2) ,
^i? §281)' I11 other words, the multiplication on F x ^* x G is given by [(y^, u^ g ^ ) ' ( y ^
^ ^2)=(Yl•te^ ly2). ^i^ g2§i) for a11 composable pairs (y^, u^ g ^ ) and (y^, u^ g^)
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satisfying ^(y^^Si P(7i) anc! ̂ =Ad^ (u^ -J(yi)). Finally, it is not difficult to check
directly that the groupoid structure on r x ^* x G arising from this coincides with that
onr(-J)x,G°.

Q.E.D.

If P is a Hamiltonian G-space with an equivariant momentum mapping J^ :P->^*,
the semidirect product P x 5^* is isomorphic to the direct product Poisson structure
P x ^* under the isomorphism K defined by K(9, u)=(Q, u-]^ (9)) ([KM], [W4]).

On the other hand, if (T ̂  P, a, P) is a symplectic groupoid over P, it is easy to see
that ^/:^->^(r) given by ^ (£,) = X^j^ - Xp*j^, for all ^e^, is a Lie algebra
homomorphism, where J^ (^) (p) == < Ji (/?), ^ ) e C00 (P). If G is simply connected, corre-
sponding to j^/, there is a natural G-action 0. on F, which is a lift of the given Poisson
G-action on P (denoted by (p^) by symplectic groupoid automorphisms [CDW] and has
J = a * J i — P * J i as its equivariant momentum mapping. Therefore, we can form the
symplectic groupoid F ( — J) x ^G° over P x ̂ *. We shall show below that this symplectic
groupoid r (— J) x ^G° is naturally isomorphic to the symplectic groupoid direct product
rxT*G, as expected. By Rg and Lg, we denote the Hamiltonian G-actions on F
corresponding to the Lie algebra homomorphisms

{^-X^JV;;e^} and {^X^ JV^},

respectively. Here, the notation Rg and Lg is motivated by the fact that if r = T* G,
then these actions are just the lifts of right translations and left translations, respectively.

It is clear by definition that R ° L - L ° R - 0.,.- y i if i y

LEMMA 1.1. — (1) o^R^a and P°R^=(p^°(3; a°L^=(p^°a and P°L^=P .

(2) R,(yl•y2)=yl<(R.Y2); L^ry2)=(4Yi)'y2.

(3) (R.Yi^-yra^-iY^

Proof. — (1) is quite obvious.

(2) Without loss of generality, assume, that ^==exp ^ for some ^e^, and y^=^(u),
where (p01 is a product of Hamiltonian flows generated by the functions of the form a* /
for /6C°°(P) and u is an element in P. Let \|/j3 denote the flow generated by the
Hamiltonian vector field - Xp*^ ̂  Then Rg y = ̂  (y) for all y e r. Therefore,

R. (Yi • Y2) = P. (<?" (Y2))= ¥1 W (72)) = ̂  ¥1 (72)= (P" (R, 72) = 7i • (R, 72).

Similarly, we have Lg (y^ • y^)= (4 7i) • 72-
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(3) For the multiplication to be defined, we must have ^•P(Yl)= a(Y2)• From this,
it follows that Rg p (71) = Lg-1 a (y^). Then, by using (2), we have

(R,Yi)-Y2=[R,(YrP(Yi))]-Y2
=[Yr(R,P(Yi))]-Y2
=Yr[L,-ia(Y2)-Y2]
=Yr[L,-i(a(72).Y2)]

=Yl•(L, - l 'y2)•
Q.E.D.

LEMMA 1.2. - (1) We have

(Or (8 (R, y), 5' (R, y)) = ©r (§Y, 8' Y) + < T (Ji»P) §y, g-1 • 8' g >

-(T^^S'Y.^-S^-^iCpCY)),^-1-^"1-^]).

(2) T/zff wa/? 3: r x (T* G)-(sr x ̂ * x G) ->• F x T* G(sF x ̂ * x G) ^roe« by

(Y, M, g) ̂  (R, Y, Ad,*-1 u - Ji (P (y)), g-1)

is a symplectic diffeomorphism.

Proof. — (1) By definition,

8(R,Y)=TR,.8Y-X^^.,-i) and §'(R,Y)=TR,-§'Y-Xp.,^-,.^).

Thus,

<»r (8 (R, Y), 8' (R, Y)) = ®r (TR, • 8y, TR, • §' y) + ©r (TR, • 87, - Xp.,, (,,,.,-1,)

+®r(-Xp.j^5,.,-i), TR,-8'7)+a)r(Xp.^ (g,.,-i), Xp.j,^,.,-!)).

Now Or (TR, • §7, TR^ • §'Y) =: <0r (SY? 8'7). since Ry is a Hamiltonian G-action. On the
other hand,

(Or(TR,.8y,-Xp.,^,,.,-i))=(TR,.87).(P*Ji(8'g.g-1))

=(TpTR,.8Y)(Ji(8'g.^-1))
=<T(Jl»P»R,)8y,S'^•^- l> (by Lemma 1 . 1 )

^(Ad^J^BY^.g-1)
=<T(Jl«P)6y,T(Ad,)(5'g•^-l)>
=<T(Jl«p)6Y,g- l•5'^>.

Similarly, we have ©r (- Xp.̂  (g,.,-1), TR, • 8' y) = - < T (Ji«P) 5' y, g~1 • Sg >.
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For the last term, we get

co^(Xp^(8...-l),Xp^^,.,-l))={P*J,(8g^-l),P*J,(§^^-l)}(R,y)
=-{Jl(^^-l),Jl(8^^-l)}(P(R,y))
——Ji^^y^-^^R.y))

=-aho^oR,Hy\^g'g~\yg'g~l]>
--((Ad^j^pKy),^^--1,^^-1])
=-<(ho^^{g~l'^g~l'yg}>

(2) Under the identification T*G with ^*xG by right translations, the lift
;'*: T* G -^ T* G of the diffeomorphism i of G, i(g)'=g~1, is given by

(U, ^)l-^(-Ad^-lM, g~1).

Hence, the map ;f:(T*G)~ -^T*G defined by i^(u, g)=(Ad^-iM, g~1) is a symplectic
diffeomorphism. Using this fact, part (1) of this lemma, as well as the explicit formula
describing the symplectic structure on T*G(s^*xG) (see Example 3.1 of [MiW] for
the formula), we can easily prove (2) by a routine computation.

Q.E.D.
With the two lemmas above, we can prove the following:

THEOREM 1.3. — Suppose that P is a Hamiltonian G-space with an equivariant momen-
tum mapping J\: P —^ ^*, and G is simply connected so that G acts on T by symplectic
groupoid automorphisms with momentum mapping J = a * J i — P * J i as in the observation
preceding Lemma 1.1. Then the symplectic groupoid T (— J) x ,G° is isomorphic to the
symplectic groupoid direct product T x T* G under the correspondence

<T: (y,^)^(R,y,M-Ji(a(y)),^-1).

Proof. — Note that the symplectic groupoid structure on T*G(^^*xG) can be
described as follows [MiW]:

a (u, g) = u, P (u, g) = Ad^-1 M, £ (u) = (u, e)\

(̂  ^i)'(Ad^-iMi, gz)^(u^ g^g^).

By using Lemma 1.1, it is simple to check that the diagram

r(-J)x,G°^rxT*G
" U P "U"

Px^* ^ px^*
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commutes with respect to both a and P. As for the multiplication, on the one hand,

^(Yi. ^1^1)^(72. u^g^)

=(R^Yi. ̂ i-Ji^yi))^!'1)-^^ ^2-Ji(a(y2))^2~1)
= (R,, Yi.R^ Y2, ̂  - Ji (a (y0), ̂ i"1 §2 1).

On the other hand, we have

^[(Yi. ̂ i^iHY2. ̂ ^^(yrfer^). ̂ ^i)
= (R^! (^i • fei"1 T2», ^i - Ji (oc (Yi)), gi-1 ̂  1).

So it remains to show that R^ (y^ • (^i~172)) = R^ Yi • R^ 72. By Lemma 1.1,
R^! (^i • ter1 ̂ 2)) = Yi • R^i (^i~1 ^2)

-^•(R^R.i^R^"^^
-Tr^'i1^^
=R.lYl•R^T2•

Hence, <^ preserves the groupoid structure.
Finally, note that <f=^°cp, where (p:r( -J)x^G°-^rx(T*G)~ is as defined in

Theorem 1.2. Therefore ^ is a symplectic diffeomorphism.
Q.E.D.

A Poisson manifold is called integrable in the sense of Dazord [Dl] if it is the unit
space of some symplectic groupoid.

If the symplectic groupoid F is a-simply connected, then any Poisson action on
the base Poisson manifold P can be lifted naturally to an action on F by symplectic
groupoid automorphisms with an equivariant momentum mapping JeZ^F,^*)
(c/. [WX]). Hence, the conditions of Theorem 1.1 and Theorem 1.2 hold automati-
cally. Consequently, we have the following:

COROLLARY 1.2. — If'P is an integrable Poisson G-space, then both P/G and PX,^*
are integrable. (Here, when we refer to P/G, we assume, of course, that P/G exists as a
smooth manifold.)

2. Morita equivalence in reduction

In the last section, we have provided a construction of symplectic groupoids for
reduced Poisson manifolds and semi-direct product Poisson manifolds by means of
symplectic reduction of symplectic groupoids. In this section, we will see that this
process produces many interesting examples of Morita equivalence as well. Our main
theorem is the following:

THEOREM 2.1. — Let (F =! E, a, P) be a symplectic groupoid, on which G acts freely and
properly by symplectic groupoid automorphisms with an equivariant momentum mapping
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J^ eZ1 (F,^*). Suppose that F ^ ^ Hamiltonian G-space with an equivariant momentum
mapping ] ^ . Then the symplectic groupoid ((T x F x F~)o =t (E x F)/G, o^, Pi) is Morita
equivalent [XI] to the symplectic groupoid ((Do ̂  E/G, o^, P^) mt^ equivalence bimodule
((F x F)o; p; a), provided both p <^W a ^re surjective submersions^ where

p:(rxF)o->(ExF)/G

^ A?/iW by p([y,.x])=[a(y),x], a:(Tx F)o-^ E/G ^ CT ([y, x]) = [P (y)], and the left and
right groupoid actions are defined in an obvious way by [ y i , x , y ] - [ y ^ y ] = [ y ^ y ^ x ] and
hw] • [Ysl = [Y2 Y3»yL respectively.

Remark. — It goes without saying that we need the usual assumptions of clean value,
etc., to make the symplectic reduced spaces smooth manifolds.

Proof. — It is easy to check that both p and a, and the left and right groupoid actions
are all well-defined. In order to show that the left groupoid action on (F x F)o is free,
let us assume that ^^x,y\'[^^y\=[^^y\. That is, [^^^x\=[^^y\. Hence, there is
an element geG such that x=gy and y^ ̂ z ^ g ^ z - Thus,

P(Y2)=P(YlY2)=Ptey2)==^P(y2).

Therefore, ^=id. From this, it follows immediately that y ^ e E and x=y. So the left
groupoid action is free. The freeness of the right groupoid action on (T x F)o is
obvious. As for the transitivity of the left groupoid action on a-fibres, we assume that
[Vi^iL [V2. ̂ 2\ e (r x F)o, such that

^ ([Yi, ̂ il) = o ([y^, x,]), i. e., [P (y,)] = [P (72)].

Hence, there is a g e G such that P (y^) = g P (73) = P (g y^). Take 73 = (g y^) • Yi"1. Then
(ya^^^i)6^"1^ where J : r x F x F ~ - > ^ * is the momentum mapping given by
J (y, x, y) = Ji (y) + J^ (x) - J^ (^), since

J (Ya. ̂ 2. ̂ i) = Ji (Ys) + J2 (^2) - ̂ 2 (^i)
=Ad,*J,(y2)-Ji(yi)+Ad,*J2(^)-J2(xi)
= Ad,* (J, (y^) + J^ (^2)) - (Ji (Yi) + h (^i))
=0.

It can be easily seen that [y^gx^x^]-[y^x^\=[y^x^\. So the left groupoid action on
(F x F)o is transitive on each o-fibre. The transitivity of the right groupoid action on
p-fibres of (F x F)o can be proved similarly.

Finally, it is straightforward to show directly that both the left and the right groupoid
actions are symplectic, using the same techniques used repeatedly in [XI].

Q.E.D.
Remarks. — (1) It is worth noting that a is always surjective, while p is not, in

general. If p is not surjective, one can still get an equivalence relation as in the theorem
by considering the symplectic subgroupoid of ((T x F x F~)o ̂  (E x F)/G, o^, Ri) over
p ((F x F)o) instead of the whole groupoid.
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(2) The above theorem is in fact a special case of a more general theorem in Section 4,
which says, roughly speaking, that the reduced symplectic groupoids of Morita equivalent
symplectic groupoids are still Morita equivalent. For a precise statement and the proof,
see Theorem 4.1.

Theorem 2.1 has many interesting consequences, one of which applies to the case of
the symplectic groupoid over a bundle of symplectic manifolds, constructed in Example

1.1. Let F -> P ̂  M be a locally trivial bundle of symplectic manifolds. Take E to be
its associated principal bundle with zero Poisson structure. Then E/G is diffeomorphic
to M, and the symplectic groupoid ((F)o =^ E/G, 03, ̂ 2) ls J^1 the cotangent bundle
groupoid T* M =t M. On the other hand, we have indicated in Example 1.1 that the
symplectic groupoid ((F x F x F-)o =^ (E x F)/G, o^, Pi) is diffeomorphic to

(T*Mx^P,ai,Pi).

Also, it is quite clear that the equivalence bimodule <T x F)o is symplectically diffeo-
morphic to the Yang-Mills-Higgs phase space T*MX^P. Moreover, the morphisms
p : T * M x ^ p - > P and CT : T* M x ^ P -> M are the natural projections, and the left and
right groupoid actions on T * M X ^ P are given by (Q^p^p^'^^Pi^^^i^-^i.Pi) and
(82^2) • 63 = (Q! + Q3^P2)^ respectively. Hence, we have the following:

COROLLARY 2 .1 .—Suppose that F -^P^M is a locally trivial bundle of symplectic
manifolds. Then the symplectic groupoid (T* M x ̂ p =? P, oci, Pi) is Morita equivalent to
the symplectic groupoid T* M =? M with equivalence bimodule (T* M x ^ P; p; a), where
p, CT and the left and right groupoid actions are as described above.

In particular, we have

COROLLARY 2.2. — If P -"»- M is a locally trivial bundle of simply connected symplectic
manifolds, then P is Morita equivalent to M with zero Poisson structure.

Remarks. - (1) See [X2] for a general discussion in the case where the symplectic
strucrures along the fibres are not constant.

(2) The C*-version of this result is rather trivial. Any infinite dimensional Hilbert
bundle is trivial according to the remarkable theorem of Kuiper [Ku]. Thus, its associ-
ated bundle of compact operator algebras must be isomorphic to a direct tensor product
of the algebra of functions on the base space with the algebra of compact
operators. Hence, this associated bundle is obviously Morita equivalent to the algebra
of functions on the base space.

Our next corollary indicates that semi-direct products of Poisson manifolds and
reduced Poisson manifolds are Morita equivalent under certain mild conditions. First
of all, we need a lemma.

LEMMA 2.1 (Weinstein [W4]). — Let X be a Hamiltonian G-space with momentum
mapping!. Then the reduced space (XxT*G)o is naturally isomorphic to X under the
mapping ^ : [x, l^-1 J (x)] -^ gx.
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If we identify T*G with ̂ * x G by right translations, then the correspondence ^F becomes
[x,Ad^J(x),g]\-^gx.

THEOREM 2.2. — Let (T ^ P, a, P) be a symplectic groupoid, on which G acts
by symplectic groupoid automorphisms with an equivariant momentum mapping
JeZ^r,^*). Suppose that the map p:r-^Px^* given by p (y) = (a (y), J (y)) is a
submersion. Then ((F)o =^ P/G, a^, Pa) is Morita equivalent to the symplectic subgroupoid
of (r^-.^x^G^Px^^ai.Pi) over the Poisson submanifold p(F)cpx^* with
equivalence bimodule (r;p;a), where a'.T ->P/G is defined by <7(y)=[P(y)]. On r, the
left groupoid action o/T(-J)x^G° is given by ( 7 ^ u ^ g ^ ' y = y ^ g ^ l y , ^p(y)=P(Yi,Mi,gi),
while the right groupoid action of (r)o is given by y • [yj = y • y^, n^r^ P (y) = a (y^).

Proof. — Again, we shall use Theorem 2.1. Take E = P and F = T* G with G acting
on T* G by the lifts of right translations. As we have seen in Theorem 1.2, the
symplectic groupoid (T x F x F~)o =^ (E x F)/G is isomorphic to F(-J) x ^G° =t P x ̂ *.
Now by Lemma 2.1, (F x F)o = (T x T* G)o is naturally isomorphic to r under the
correspondence ̂ . By Theorem 2.1, p [y, J (y), 1 o] = [a (y), J (y), 1 ol. Now [y, J (y), 1 J
goes to y under ^, while [a(y),J(y), \o\ goes to (a(y), J(y))ePx^* under the
correspondence 0. Hence, we have p(y)==(a(y),J(y)). Similarly, we have
a(y)=[P(y)]. The right groupoid (r)o-action on (FxT*G)o is given by
[7, J (Y), Id • [yJ = [V • V2, J (V), loL if P (V) = oc (y^). Under the map ̂ , [y, J (y), 4] corre-
sponds to y and [y • y^ J (y), \o\ corresponds to y • y^. Hence, it follows immediately that
the right groupoid action on F is given by y • [y^] = y • Va, it P (y) = a (y^).

As for the left groupoid action of F(-J) x ^G° on F, we leave the proof to Section 4,
where a more general result will be proved (see Theorem 4.2).

Q.E.D.

COROLLARY 2.3. — Under the same assumptions as in the preceding theorem, and if G
and a~1 Cp)OJ~1 (u) are connected and simply connected for all peP and M€^*, then
P/G is Morita equivalent to the Poisson submanifold p(F) of the semi-direct product
Px^*.

If G is simply connected and the Poisson G-action on P has an equivariant momentum
mapping J^, then the symplectic groupoid r(-J)x^G° is isomorphic to the symplectic
groupoid direct product F x T* G. Therefore, in this case, we have

PROPOSITION 2 .1 .—Let P be a Hamiltonian Poisson G-space with an equivariant
momentum mapping J^ and (T:=? P, a, P) a symplectic groupoid over?. Suppose that G is
simply connected and G acts on V by symplectic groupoid automorphisms with momentum
mapping J=a*Ji-P*Ji. If the morphism p :F-^Px^* given by p(y)=(a(y),
-Ji (P(y))) is a submersion, then as a symplectic groupoid, ((F)o ̂  P/G, 02, Pa) is Morita
equivalent to (T x T* G =? P x ^"(, a^, Pi) |p ̂  with equivalence bimodule (T; p; a), where the
groupoid (F x T* G =^ P x ^*, a^. Pi) is a symplectic groupoid direct product of Y ~^ P with
T* G =t ^*, and (F x T* G =? P x ^*, a^. Pi) |p ̂  is its subgroupoid over p (F) c p x ^*.
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In particular, we have

COROLLARY 2.4. — Let S be a symplectic Hamiltonian G-space with an equivariant
momentum mapping]. IfG is simply connected and J: S -> ̂ * is a submersion, then

1. The symplectic groupoids

(IIi (S) x T* G =t S x ̂ *, a,, P.) |p (ni (S)) ^ ?1 (S))o ̂  S/G, a,, ̂

are Morita equivalent.
2. T/'J"1^) ^ simply connected for all MG^*, n^r^ J ^ ̂  corresponding momentum

mapping on the universal covering space §, then S/G is Morita equivalent to S x (-J(S)).

COROLLARY 2.5. — If S is a simply connected symplectic Hamiltonian G-space with an
equivariant momentum mapping J such that J is a submersion, and G and all ^-fibres are
simply connected, then S/G is Morita equivalent to —J(S), a Poisson submanifold of^.

In fact, on the level of symplectic groupoids, we always have the following general
fact.

THEOREM 2 . 3 . — L e t S be a symplectic Hamiltonian G-space with an equivariant
momentum mapping J, such that J is a submersion, then the symplectic groupoid
((S x S~)o =^ S/G, (Xi, pi) is Morita equivalent to (T* G ̂  ̂ *) | -j (s), the symplectic subgrou-
poid of T* G ̂  ̂ * over - J (S), with equivalence bimodule (S; n; - J) and obvious left and
right groupoid actions, where n is the natural projection from S onto S/G.

Note that here the corresponding dual pair S/G<"-S——^* is just the usual well-
known dual pair studied by Weinstein [Wl].

The proof of this theorem is rather straightforward and similar to those of the theorems
above, so we omit it here [see the remark (2) following the proof of Theorem 2.1].

Finally, to end this section, we point out a direct consequence of Proposition 2.1 in
the following:

COROLLARY 2.6. — Under the assumption as in Proposition 2.1, any symplectic leaf of
P/G is of the form P[a-1 (L) 0 (Ji ° P)~1 (^«)]/G for a symplectic leaf L of P and a
coadjoint orbit (9^ of^*.

In particular, if P is a symplectic manifold, the symplectic leaf described above becomes
the usual Marsden-Weinstein reduction.

3. The generalized Yang-Mills construction and examples of symplectic realizations

First recall that a symplectic realization of a Poisson manifold P is a pair (X, p), where
X is a symplectic manifold and p is a Poisson morphism from X to P. A symplectic
realization p: X -> P is called complete if p is complete as a Poisson map and p is said
to be full if it is a submersion. As an application of the machinery of Morita equivalence
of Poisson manifolds, we can compute complete symplectic realizations of some particu-
larly interesting Poisson manifolds, such as reduced Poisson manifolds and semi-direct
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products of Poisson manifolds. We will devote the rest of this paper to these
computations. In this section, we start with a few simple examples.

Our first example will be a locally trivial bundle of simply connected symplectic

manifolds F-^P-^M, as discussed in Example 1.1. Corollary 2.2 asserts that P is
Morita equivalent to M with the zero Poisson structure. Hence, any complete symplectic
realization of P corresponds to a unique complete symplectic realization of M, and vice
versa [X2]. In order to describe complete symplectic realizations of P more precisely,
we shall start with any complete symplectic realization p: X -> M and then construct the
corresponding realization of P. Through this process, we shall obtain all complete
symplectic realizations of P. Note that p: X -> M becomes a symplectic left module of
the groupoid (T*M =t M,p,p) under the action defined as follows. For any GeT^M,
let (p*9)# denote the vector field on p~ 1 (m) defined by the equation:

(5) (p*9)#Jco=psl i9,

where co is the symplectic form onX. Let q>? be the flow of (p*9)#, and define the
groupoid action by 9-x=(p^(x) for any xep'^w). cp^ always exists, since p is
complete. This definition works when m is a reguir value. However, this action can
always be defined without any conditions on regularity, as in the following. Take a
smooth function/such that Q==(df){m) and replace (p*9)^ by (p*^y=Xp^. It can
be checked that this definition does not depend on the choice of/.

According to [XI], for the realization p: X -> M, the corresponding complete symplectic
realization of P is given by p: ((T* M x ^ P) x ^X)/T* M -> P, where the groupoid T* M
acts on (T*Mx^P)x^X from the right by (w, V, x ) ' 9 == (w, ̂  + 9,/ (- 9) • x), when
^)=^(e)=7r(/)=p(x)=w. ((T*Mx^P)x^X)/T*M is naturally isomorphic to
P x ^ X under the correspondence Jf : [m, ^, /, x} -^ (m, / ^ • x), under which p goes to the
natural projection from P X ^ X to p- In order to analyze the symplectic structure on
P x ^ X more carefully, we need to recall the structure of the symplectic manifold
T*MX^P. According to Weinstein [W4], T * M X ^ P is a fiber bundle over M. If

{(U^, q^)} is family of local coordinate systems of the fiber bundle P ̂  M, then over
each U,, T * M X ^ P is isomorphic to the symplectic direct product T*U^xF. The
transition between two local coordinate systems is given by

(Pap: (̂  ̂  /) ̂  (̂  + Kp W J (A ^p (̂ ) A

where J: F -> ̂ * is an equivariant momentum mapping on F and r^: U^ C\ Up -> G is

the gauge transformations of the fiber bundle P -^ M. Let T : P x ^X -> M be the natural
projection. Then T"1^) is symplectically diffeomorphic to the symplectic manifold
direct product Fxp'^U^). As for transitions, notice that (p^p induces a transition
between the corresponding local coordinate charts of the fibre bundle (T* M x ^ P) x ^ X,
hence a transition (p^p between the local coordinate charts of

((T*MX^P)X^X)/T*M.
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Under (p^p, [m, 0, /, x] goes to [m, Kp(w)]*J(/), ^p(w) /, x]. By applying the iso-
morphism JT, [w, 0, /, x] goes to (w, /, x), while [m, Kp(w)]*J(/), r^(ni)f, x] goes to
(w, r^p (m) f, ([r^p (w)]* J (/)) • x). Hence, the transition o f T : P x ^ X - ^ M i s given by

(p^p: (m,/, x) -^ (w, r^p (w) /, (Kp (w)]* J (/)) • x).

For instance, i fX=T*M, with p being the natural projection from T*M onto M, the
groupoid T* M =^ M action on X is just the usual addition of cotangent vectors. Hence,
we recover the usual Yang-Mills construction of the phase space T* M x ̂ p [W4], which
is just the complete symplectic realization of P corresponding to the symplectic realization
T* M -> M. For this reason, we call this construction of the symplectic manifold P x M x
the generalized Yang-Mills construction. We summarize the results above in the follow-
ing theorem.

THEOREM 3.1. — Let P -"> M be a locally trivial bundle of simply connected symplectic
manifolds. If p: X -> M is a complete symplectic realization of M considered as a zero
Poisson manifold, then p : P x ^ X - ^ P , mth p being the natural projection and PX]^
being the symplectic manifold obtained from the generalized Yang-Mills construction above,
is a complete symplectic realization of P. Conversely, any complete symplectic realization
of? is of the above form for some complete symplectic realization of M,
p: X -> M. Moreover, p is full (or surjective) if and only if p is full (or surjective).

In particular, we have

COROLLARY 3.1 If S is a simply connected symplectic manifold, then any complete

symplectic realization ofS is of the form S x X -^ Sfor a symplectic manifold X.
Therefore, the "category" of complete symplectic realizations of S is equivalent to that

of all symplectic manifolds.

Remark. - It is essential that realizations be complete in the corollary above. For
example, if U + S is any open submanifold of S, then the natural inclusion i: U -> S is a
symplectic realization, which is obviously not of the form S x X.

Our next example will be the reduced space S/G of a simply connected symplectic
Hamiltonian G-space S. First of all, we need a lemma.

LEMMA 3.1 [CDW]. — Let G be a simply connected Lie group mth Lie algebra ̂ , and
let ^* be the dual of^. Suppose that J: X -> ̂ * is a symplectic realization of^. Then
J is complete if and only ifX is a Hamiltonian G-space mth J as its equivariant momentum
mapping.

Proof. - Suppose that J: X -> ̂ * is a complete symplectic realization. Consider the
symplectic groupoid T* G =t ^* over ^*, which is obviously a-simply connected.

It follows from Theorem 3.1 in [X2] that X admits a symplectic action of the groupoid
T* G. In other words, X becomes a Hamiltonian G-space with equivariant momentum
mapping J. The converse follows from Theorem 3.1 in [X2] as well.

Q.E.D.

THEOREM 3.2. — Let S be a simply connected symplectic Hamiltonian G-space mth an
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equivariant momentum mapping J, such that J is a submersion, and G and J-fibres are simply
connected. For any Hamiltonian G-space X, the natural projection? : (S x X~)o -> S/G is
a complete symplectic realization of SjG. Conversely, any complete symplectic realization
of S/G is of the above form for some Hamiltonian G-space X satisfying J^ (X) ^ J(S),
where J^ is an equivariant momentum mapping onX. Moreover, p is surjective if and only
ifJ^ (X)==J(S); p is full if and only ifJ^ is a submersion.

Proof. - According to Corollary 2.5, S~/G is Morita equivalent to the Poisson

submanifold J (S) c ̂ * with equivalence bimodule ^* <<- S -» S~/G. Hence, the complete
symplectic realizations of S~/G and J(S) are in one-to-one correspondence. By
Lemma 3.1, any complete symplectic realization of J(S) corresponds to a Hamiltonian
G-space with an equivariant momentum mapping J^ satisfying J^ (X) c J(S). It follows
from Theorem 3.1 in [XI] that the corresponding complete symplectic realization of
S~/G is T* G\(S~ x ^,X) -> S~/G, which is clearly isomorphic to p : (S~ x X)o -> S~/G.
Hence, the corresponding complete symplectic realization of S/G is just
p : (S x X~)o -> S/G. Finally, notice that for any given symplectic Hamiltonian G-space
X with momentum mapping J^, Xlj^^Ji'^.US)) would be such a candidate of
Hamiltonian G-space described above. However, it is easy to see that
(S x X~ |j (s))o = (S x X~)o, by definition.

Q.E.D.

For example, corresponding to the Hamiltonian G-space T* G, the complete symplectic

realization of S/G can be easily seen to be S -> S/G, the most natural one.

4. Covariant symplectic realizations and covariant modules

The notion of covariant symplectic realizations is given by the following:

DEFINITION 4.1. — Suppose that P is a Poisson G-space. A symplectic realization
p: X -> P is called covariant ifX is a Hamiltonian G-space so that p is G-equivariant.

The relation between covariant symplectic realizations and symplectic realizations of
semi-direct products of Poisson manifolds is indicated by the following:

PROPOSITION 4.1. — If p:X->P is a G-covariant symplectic realization, then the mor-
phism p: X -> P x ^ ̂ * defined by p (x) = (p (x), J (x)) is a symplectic realization of P x ^ ̂ *,
where J is an equivariant momentum mapping on X. Conversely, if p: X -> P x ̂ * is a
symplectic realization such that J = pr^ ° p: X -> ̂ * is complete, then p = pr^ ° p: X -> P is
a covariant symplectic realization of P.

Proof. - By definition, both P and ^* are Poisson submanifolds of Px^*. Since
p and J are Poisson maps, it suffices to show that

(6) P*({/^})={J*/,P*^}
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for all fe C00 (^*) and ^ e C°° (P). Since p is co variant, for any

^, p(exp^-x)=exp^-p(x).

By taking the derivative with respect to t at ^=0, we obtain the following infinitesimal
condition for a co variant realization:

(7) Tp(^)=^p,

where by ^x ^d ^>p» we denote the corresponding vector fields on X and P induced from
the G-actions, respectively.

By /^, we denote the linear function on ^* corresponding to ^e^. Hence, the above
equation is equivalent to the equation:

(8) TpX^^p.

On the other hand, by the definition of the semi-direct Poisson structure, { /^ , g ] = (^p) g
for all g e C°° (P). Therefore,

P*^^})-?*^^))
=P*(TpX^)

=X^(p*^)

={J%p*^}.

That is, equation (6) holds for all linear functions { / ^ } . Hence, it holds for all smooth
functions/eC°° (^*). Conversely, if p :X->Px^* is a symplectic realization such
that J=pr2 ° p: X -> ̂ * is complete, by Lemma 3.1, X becomes a Hamiltonian G-space
with J as its equivariant momentum mapping. From the equation

P*({^^})={P*^P*^}={J*^P*^},

it follows immediately that T p (^x)= ^p- Hence, the symplectic realization p: X -> P is
covariant.

Q.E.D.
Consequently, any complete symplectic realization p :X-^Px^* of PX^* corre-

sponds to a complete covariant symplectic realization p=pr^°p:X->P of P. Then, it
is natural to ask if the converse is still true, that is, if the completeness of both p and J
can imply the completeness of p = p x J . At this moment, we do not know a direct
proof of this. However, we will prove this fact for integrable Poisson manifolds by
means of symplectic groupoids. For this purpose, as well as for studying symplectic
left modules of the symplectic groupoid r ( — J ) x G°, we need to introduce the following
notion of covariant modules.

DEFINITION 4 . 2 . — L e t (r^P.a,?) be a symplectic groupoid. A symplectic left T-
module is called covariant if its momentum mapping is covariant as a symplectic realization
of P.
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DEFINITION 4.3. — A symplectic groupoid (T =? P, a, P) ^ c^/fe^ G-covariant if both T
and P are Poisson G-spaces, such that a, P a^ ;: P -> F ar^ G-equivariant.

LEMMA 4.1. — L^ (F ̂  P, a, P) be a G-covariant symplectic groupoid, p: X -> P a G-
covariant symplectic left Y-module. Suppose that J^ and J^ are equivariant momentum
mappings on V and X, respectively. Then

1. There is a [ie ̂ * such that J^ (r • x) == J^ (r) + J^ (x) — p-, for all re F and x e X satisfying
P (r) = p (x). /^ particular, if J^ e Z1 (T, ̂ *), ̂  J^ (r • x) == J^ (r) + J2 (x).

2. .For any

(r,x)eF^pX={(r,x)GrxX|P(r)=p(x)} ^ geG,

H ?̂ have g (r • x) = (̂ r) • (^x).

Proof. — It follows from the G-equivariance of the inclusion ;' that the G-action on r
leaves P invariant. Therefore, the vector field ^r ^or every ^e^ is always tangent
toP. Since P is a Lagrangian submanifold and ^=X.^^, J i (^)(r)==<(Ji(r) ,^) is
constant along P, as is J^. Let H=J I |p£^. Without loss of generality, we may always
assume below that J^ |p=0, otherwise we only need to consider J'i =Ji — |̂ .

Let A c r F x X x X " be the graph of the symplectic groupoid action and
J (r, x, y) = J^ (r) + J^ (x) — J^ (y). Then J is a momentum mapping on F x X x X~ for the
G-action naturally induced from that on T and X. For any ^e^,

J (^ (r, x, jQ = < J (r, x, >-), 0 = J, (^) (r) + J, (^) (x) - J, (Q (^).

Now consider L, the unique Lagrangian immersion in F x X x X " , maximal among
all the Lagrangian immersions contained in K={(r ,x,^) | p(^)=a(r)} and containing
I = {(u, x, x) | p (x) = u e P } as a submanifold, as introduced in Theorem 1.1 in Chapter 3
of [CDW]. It is clear that A c= L; therefore, it is sufficient to show that J vanishes
on L. By construction, it suffices to show that J remains constant along the characteristic
foliation ofK, which is spanned by all the Hamiltonian vector fields generated by the
functions in {(a* h) (r) — (p* h) (y) \ h e C°° (P)}, since J already vanishes on I. However,

X^,_^^J(^)={(x*/ i -p*/z ,J(y}
={a*/i ,J,(y}(r)-{p*/z,J,(^)}(^)
=-^(a*A)(r)+^x(P*^)W
= - (T a ̂ ) (K) (a (r)) + (Tp ̂ ) W (p (y))
=-(^p/0(a(r))+C;p/0(pOO)
=0 (onK).

Therefore, we can conclude that J = 0 on L, hence on A. For the second part, it follows
from J = 0 on the Lagrangian A that (^r» ^x? ̂ x)ls tangent to A for any ^ e ̂ . Therefore,
its corresponding flow, which is generated by the one parameter group action of exp t ̂ ,
leaves A invariant. Since G is connected, the action of G leaves A invariant.

Q.E.D.
This lemma yields as an immediate consequence that the group actions on covariant
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symplectic groupoids with momentum mappings must preserve the groupoid
structures. In fact, this is still true without the assumption on the existence of momentum
mappings. Although we do not need this fact in the sequel, we would like to list it
here as an interesting result.

PROPOSITION 4.2.- Symplectic groupoid (T ̂  P, a, P) is G-covariant if and only if G
acts on it by symplectic groupoid automorphisms.

Proof. — It is obvious that F is G-covariant if G acts on it by symplectic groupoid
automorphisms. For the other direction, let A <= F x r x r~ be the graph of the grou-
poid multiplication and L c F x r x r " the maximal Lagrangian immersion as in the
above proof. Since L is already a graph in this case [CDW], clearly A=L. It follows
from the G-co variance of the groupoid that g A is also contained in K and contains I as
a submanifold. Hence, gA. ̂  L=A. Therefore, ^A=A.

Q.E.D.
Remark. — This result follows essentially from the fact that the groupoid multiplication

on r is determined by a, P and ;(P) c r [CDW].
Now we are in the position to prove the result claimed in the remarks following the

proof of Theorem 2.1.

THEOREM 4 . 1 . — Suppose that symplectic groupoids

(H ̂  Ho, ai, P,) and (K ̂  Ko, a^, P^)

are Morita equivalent with an equivalence bimodule (X; p; a). Suppose also that both
H and K are G-covariant symplectic groupoids with equivariant momentum mappings
J^eZ^H,^*) and J^eZ^K,^*) respectively, and both p:X-.Ho and a:X-> Ko are
G-covariant symplectic realizations. Then (H)o ̂  Ho/G and (K)o ^t K()/G are Morita
equivalent with equivalence bimodule ((X)o; p; a), provided that both p and cr are surjective
submersions, where p: (X)o -^ HQ/G and a: (X)o -> K()/G are morphisms naturally induced
from p and a respectively, and the left and right groupoid actions on (X)o are defined in
an obvious way, respectively, by [h] - [x] = [h' x] and [ x ] ' [k] = [ x ' k] if Pi(/z)=p(x) and
a(x)=^(k).

Proof. — It follows from Lemma 4.1 that both the left and right groupoid actions on
(X)o are well-defined. In order to show that the left (H)o-action on (X)o is free, let us
assume that [/?]-M=M, where Pi(/?)=p(x). That is, [A-x]=[x]. Hence, there is an
element geG such that h'x=gx. Thus, a(x)=a(h-x)=a(gx)=go(x). Hence,
g=id. Since the left H-action on X is free, it follows immediately that heHo. Hence,
the left groupoid action on (X)o is free. Similarly, the right (K)o-action on (X)o is also
free.

As for the transitivity of the left groupoid action on cr-fibres, let us assume that [xj,
[x2]e(X)o such that 5([xJ)=CT([^]), i.e., [o(x^)]=[a(x^)]. Hence, there is an element
geG such that o(x^)=go(x^)=<j(gx^). As the left groupoid action of H on X is
transitive on a-fibres, there is a AeH such that h ' x ^ = g x ^ . Suppose that J:X-^* is
an equivariant momentum mapping on X. It follows from Lemma 4.1 that
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J(/FXi)=Ji(/0+J(Xi)=Ji(/0. On the other hand, we have ]{gx^=M^J(x^)=0.
Hence, h e J ^ 1 (0), and [h] • [xj = [x^]. Therefore, the left (H)o-action on (X)o is transitive
on each a-fibre. The transitivity of the right groupoid action on p-flbres of (X)g can
be proved similarly.

Finally, it is trivial to show directly that both the left (H)o-action and the right (re-
action on (X)o are symplectic.

Q.E.D.

Remark. — The corresponding C*-version of this result should be interesting,
too. Roughly speaking, the C*-version can be stated as follows: the fixed point algebras
of strongly Morita equivalent C*-algebras are still strongly Morita equivalent. If this
can be formulated rigorously, we believe that we can obtain some interesting Morita
equivalence relations, including the one between a certain ideal of the crossed product
algebra and the generalized fixed-point algebra [Rie4], and the one between the crossed
products of Morita equivalent C*-algebras ([Co], [CMW]), at least in the case where the
group is compact.

THEOREM 4.2. — Suppose that (T ^ P, a, P) is a G-covariant symplectic groupoid with
an equivariant momentum mapping JeZ^F,^*), and p : X — > P is a covariant symplectic
left Y-module with momentum mapping J^. Then X becomes a symplectic left module of
the symplectic groupoid

(r(-J)x^G°^Px^*,ai,(3,)

under the action ( H f , u , g ) ' x = y • g ~ l x , for any xeX, yeF, ue^* and geG such that
p(x)=^P(y) and J^(x)=Ad^ (M—J(y)), with the momentum mapping p :X->Px^*
being given by p (x) = (p (x), ]^ (x)).

Proof. — As proved in Theorem 1.2, the symplectic groupoid

(r(-J)x,G°=tPx^*,ai,(3,)

is isomorphic to the symplectic groupoid ((F x T* G x (T* G)~)o =t (P x T* G)/G, a^, P2)-
Consider the morphism p: (X x T* G)o -> (P x T* G)/G given by p ([x, Qg]) = [p (x), 9J, and
define an action of the groupoid ( F X T * G X (T*G)~)o on (XxT*G)o in an evident
way, namely by [y, a, b] • [x, b] = [y • x, a] for any composable [y, a, b] e (F x T* G x (T* G) ~)o
and [x,Z?]e(XxT*G)o. By using Lemma 4.1, it is easy to check that this action is
well-defined and in fact is a symplectic action. According to Lemma 2.1, (XxT*G)o
is symplectically diffeomorphic to X under the correspondence

^:[x,Ad,*J,(x),g]-^x.

Here again T* G has been identified with ^* x G by right translations. It can be easily
checked that p ° ^F = 0 ° p, where 0 is the natural isomorphism from (P x T* G)/G to
Px^*, introduced by equation (4). As for the groupoid action, we map (r,u,g) under
^~1 [cf. equation (3)] to [y,u,l^Ad^ (u-J(j)\g] in (F x T*GX (T*G)-)o and map x
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under ^-1 to [g~1 x^^(x\g\ in (XxT*G)o. Therefore, if p(x)=^P(y) and
^2 (Jc)= Ad* (M — J (y)), we have

[r.u^^Ad^u-J^g^^^x^^g^r^g^x.u^^

which corresponds to y • g~1 x in X under ^ ' . Therefore, (y, u, g ) ' x = y • g ~ 1 x.
Q.E.D.

In fact, the converse of Theorem 4.2 is also true. In order to show this, we need the
following lemma describing explicitly the symplectic structure on r ( — J ) x ^ G ° .

LEMMA 4.2.- Let Q. be the symplectic structure on Y (- J) x ^ G° (^ F x ^* x G)
(1) For all Su, S^eT^*^^*), 8y, S' yeT^F and og, o ' g e T g G , we have

Q ((87,8^, 8 )̂, (87 7,8^,5^))

=o)^(8Y,8 /y)-<8 /^,8^^- l>+<8^,8^^- l>+<^[8^^- l,8^^- l]>,

where u^ = Ad* (M — J (y)).
(2) In particular, ifSg=6fg==0, then

Q ((8y, 8^, 0), (8- y, 8' u, 0)) = o)r (8y, 8- y).

THEOREM 4.3. — 77^?^ is a one-to-one correspondence between symplectic left modules
of the groupoid T (— J) x 5 G° and G-covariant symplectic left Y-modules.

Proof. - We only need to prove the other direction. Suppose that p: X -> P x ̂ * is
a symplectic left module of F (— J) x ^ G°. Let p =pr^ ° p and J^ =pr^ ° p, where pr^ and
^2 are tne natural projections from PX^* onto P and ^*, respectively. Define a
G-action on X by

^•x^-pCx^Ad^Cx),^"1)-^,

where the dot on the right side means the groupoid r ( - J )x^G°(^rx^*xG)
action. It is trivial to check that this is a well-defined group action. More precisely, it
is a Hamiltonian action with momentum mapping J^. In order to show this, we let
A c ̂ ( - ^ x ^ G ^ x X x X " be the graph of the groupoid action and ox, 6' x be two
arbitrary tangent vectors at xeX. It is clear that both

and

[((Tg ° T p) 8x, ((T Ad*) ° TJ,) 8x, 0), 8x, (T^) 8x]

[((T^°Tp)8/x,((TAd,*)°TJ2)8/x,0),8/x,(T^)yx]

are tangent to A. According to Lemma 4.2,

Q (((T ̂  ° T p) 8x, ((T Ad*) ° TJ^) 8x, 0), ((T g ° T p) 8' x, ((T Ad*) ° TJ^) 8' x, 0))

=o)r((T^Tp)8x,(T^Tp)yx)

=0 (since P is a Lagrangian of F).
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However, since A is a Lagrangian, it follows immediately that

^x.^-cOxrtT^x.CW^O.

That is, the G-action on X is symplectic.
For any ^e^ and xeX, consider a smooth path

(exp ̂  • p (x), Ad*,p, ^ J^ (x), exp (- ^ ̂ ))

in r ( - J )x^G°(^ rx^*xG) and let v be its derivative at ^=0, i.e., v = (^p (p (x)),
Ad*J2(x),—y. As in Lemma 4.2, ^^^(-t^^xpt^C^)- Hence, 8^==0. On
the other hand, let x(Q be any smooth path in X starting at x and 8x=x/(0), then
(p(x(Q), .L,(X(O),IG) is a path in F(-J) x ,G°(^rx ^* x G) and v1 = (T p8x, TJ^ 8x, 0)
is its tangent vector at ^==0. For this vector z/, the corresponding u'^ in Lemma 4.2 is
given by ^ = h ̂  (0) - J (P (-^ (0))= h (x (0) so that S^TJ^x. It follows from
Lemma 4.2 that

Q (r, ̂ ) = cor (^p (p (x)), T p5x) - < TJ^ 8x, - Q
=<TJ28x,0
=5x(J,(^)).

Since exp ̂  • x = (exp ̂  • p (x), Ad ̂ p ̂  J^ (x), exp (-1 £,)) • x by definition, (r, 0, ^x (^)) is
tangent to A. Similarly, it follows from the equation (p(x),J^(x),\o)'x==x that
(z/, 8x, 8x) is also tangent to A. Hence,

Q (z;, v) - cox (^ 8x) = 0, L ̂ ., 8x (J^ (y) - cox (^ 8x) = 0.

For any/eC^X), setting 8x=X^ leads to ^x (/)= ̂  (^)/• Therefore, J^ is a momen-
tum mapping of the G-action on X. Moreover, since

p (g • x) = (pr, ° p) [(g. p (x), Ad,* J, (x), ̂ - ̂ . x]

-prilaQ-p^.Ad^x)]

=^'PM,

the G-action on X is covariant. Similarly, we can show that J ^ ( g ' x ) = A d ^ J^ ( x ) , in
other words, J^ is an equivariant momentum mapping.

Next we define a groupoid F-action on X by

yx=(y,J(y)+J2(x),lG).x, if (3(y)=p(x).

It is trivial to check that this is a well-defined groupoid action. By A i, we denote the
graph of this groupoid action, which is a submanifold of F x X x X~. Let (8y, 8x, 8 (yx))
and (87 y, 8' x, 8' (yx)) be two arbitrary tangent vectors of A^ at (y, x, yx). Then both

((8y, TJ 8y + TJ^ 8x, 0), 8x, 8 (yx)) and ((8' y, TJ 8' y + TJ^ 8' x, 0), 8' x, 8' (yx))

are tangent to A. By Lemma 4.2,

0 ((8y, TJ 8y + TJ^ 8x, 0), (&' y, TJ S ' y + TJ^ 87 x, 0)) = ©r (8y, 8' y).
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Since A is a Lagrangian, it follows immediately that

o)r (8y, y y) + ©x (8x, 8' x) - o)x (8 (yx), 8' (yx)) = 0,

L ^., AI is a Lagrangian. So the groupoid r-action on X is symplectic.
Finally, it is quite easy to check directly that if

PCY)^"1?^) and M^u-JW)=J^x),

then (y,u,g)'x=y'g~lx.
Q.E.D.

The following result is an immediate consequence of Theorem 4.2.

COROLLARY 4.1. — IfP is an integrable Poisson manifold and p :X->P is a complete
co-variant symplectic realization ofP, then the symplectic realization p: X -> P x 5^* defined
by p (x) = (p (x), J (x)) is also complete, where J:X->^* is an equivariant momentum
mapping on X.

Proof. — Let Y be an a-simply connected symplectic groupoid of P. According to
[WX], G has a natural action on F by symplectic groupoid automorphisms with an
equivariant momentum mapping J'eZ1 (T,^*), and by Thorem 3.1 in [X2], X naturally
becomes a covariant symplectic left F-module. It follows from Theorem 4.2 that
p: X -> P x ̂ * becomes a symplectic left module of the groupoid F (- F) x ^ G°. Hence,
p must be complete [X2].

Q.E.D.
Combining Proposition 4.1 with Corollary 4.1 leads to the following:

THEOREM 4.4. — If P is an integrable Poisson G-space, then there is a one-to-one
correspondence between complete co-variant symplectic realizations of P and complete
symplectic realizations of P x 5 ̂ *.

Remark. — The C*-analogue of this result is the well-known theorem [Pe] that the
covariant representations of a C*-algebra are in one-to-one correspondence with the
representations of the crossed product C*-algebra.

5. Complete symplectic realizations of P/G

This section is devoted to the discussion of complete symplectic realizations of reduced
Poisson manifolds, as well as symplectic modules of reduced symplectic groupoids (T)o.

THEOREM 5 . 1 . — Suppose that (T ̂  P, a, P) is a symplectic groupoid, on which G acts
freely and properly by symplectic groupoid automorphisms with an equivariant momentum
mapping J e Z1 (T, ̂ *). Assume that the map p: F -> P x 5 ̂ * given by p (y) = (a (y), J (y))
is a submersion. If (p: X -> P is a covariant symplectic left T-module with an equivariant
momentum mapping J^, then (p: (X)o -^ P/G, with (p the map naturally induced from (p, is
a symplectic left module of the symplectic groupoid ((T)o =^ P/G, o^, P2) under the natural
action given by [y]-M=[y-^-], where P(y)=(p(x). (Here (X)o always exists as a
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manifold) Conversely, every symplectic left module of ((F)o ̂  P/G, o^, ̂ z)^s of the above
form for some covariant symplectic left T-module (p: X ->• P. Moreover, (p is full if and
only if (p: X -> P x ̂ *, q> (x) = ((p (x), Ji (x)) is a submersion; (p ^ surjective if and only if
(p(X)=p(U.

Proof. - According to Theorem 2.2, the symplectic groupoid ((F)o =^ P/G, 03, Pa) is
Morita equivalent to (F(-J) x ,G°) |p(r), a symplectic subgroupoid of

(r(-J)x,G°^Px^,ai,PO.

Hence, every symplectic left module of (F)o corresponds to a unique symplectic left
module of (r(-J)x^G°)|p(r) and vice versa. However, it follows from Theorem 4.3
that there is a one-to-one correspondence between symplectic left modules of
(r(-J)x,G°)[p(r) and G-covariant symplectic left F-modules (p:X->-P satisfying
(p(X) c p(r), where (p:X-^Px^* is given by (p(x)=((p(^),Ji(x)) with Ji being the
momentum mapping onX. Therefore, given any such G-covariant symplectic left F-
module (p:X^P,^:(r(-J)x,G°)\(r- ^p,^X)^P/G becomes a symplectic left
module of (F)o, and conversely, any symplectic left module of (F)o must have such a
form. It remains for us to show that cp:(r(-J)x,G°)\(r- ^p^X)-^P/G and
(p; (x)o -^ P/G are isomorphic as symplectic left modules.

Introduce a map <D:r- ^px^X^CXV^r'W/G) by (DM^r-1.^. For any
xeJi-^O), Let M=(p(jc)eP. Then (M,^)er-^(P^^)X since p(M)==(M,0)=(p(^).
Obviously, €> (M, x) = [x], so 0 is surjective. Now it suffices to show that ^-fibres coincide
with the orbits of the groupoid r(-J)x,G° action. Suppose that
(r,,x,)=(r\ i/,^)-(r,x). Then by Lemma4.1,

r^'x^y^g'-1^-1^''^"^)]
=(^-l^•)-l•(^-lx)
=gl~l(r-l'x).

Conversely, if €> (r^, x^) = 0 (r^ x^\ then we may assume that r^ • x ^ = g ( r ^ 1 ' x^). Take
r ' = '•2 • fe~1 ri"1), M' = Ji (^-2) and ̂  = g. It is easy to check that

Pi(^i/,^)=(p(^)=p(r0.

Then, clearly
^ter^i^'te"1^1)]^"1^

=^•[g-l(r^l^l)]
^•(r^-^)
=X2.

On the other hand, it is quite obvious that r ' ' ( g ' ) ' 1 r^ = r^. Hence, we have

(r\u\g')'{r^x^{r^x^

The diffeomorphism ^ from (r(-J)x,G°)\(r~ ^(P^^)X) onto (X)o induced from0>
clearly preserves symplectic structures, since the symplectic structures on both
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(r(-J)x,G°)\(r~ ^(px^X) and (X)o are induced from that of X. It is quite easy
to check that the following diagram

(r(-J)x,G°)\(r- ^px^x)^(X)o
n r

P/G ^ P/G

commutes and the groupoid action of (T)o on (X)o becomes the natural one defined in
the theorem.

Finally, note that for any covariant symplectic left F-module

q^X^P.Xip^^'^PO

would be such a covariant symplectic left F-module satisfying (p(X|p^)) c p(F). It is
simple to see that (X |p y^o = (X)o.

Q.E.D.
With these preliminaries taken care of, we are ready to prove the main theorem of

this section.

THEOREM 5.2. — Let P be an integrable Poisson G-space where the action is proper
and free, and let (T ̂  P, a, P) be its ^.-simply connected symplectic groupoid, on which G
acts by symplectic groupoid automorphisms with an equivariant momentum mapping
JeZ^r,^*). Assume that the map p:r-^Px^* given by p (y) = (a (y), J (y)) is a
submersion, and G and a~1 (p) H J ~ 1 (u) are connected and simply connected for all peP
and u e ̂ *: Then (p: Y -> P/G is a complete symplectic realization if and only if Y == (X)o
for some complete covariant symplectic realization (p : X —> P, and (p = [n ° (p], where
K : P -> P/G is the natural projection. Moreover, (p is full if and only if (p: X -> P x, ̂ *,
(p(x)=((p(;c),Ji(x)) is a submersion, where J i :X->^* is a momentum mapping onX', (p
is surjective if and only if (p (X) = p (T).

Proof. - Under the assumption above, (F)o ̂  P/G is an a-simply connected symplectic
groupoid over P/G. Thus, the conclusion follows immediately from Theorem 3.1 in
[X2] and Theorem 5.1.

Q.E.D.
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