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LEAST-VOLUME REPRESENTATIVES OF
HOMOLOGY CLASSES IN G (2, C4)

BY FRANK MORGAN

1. Introduction

This paper finds a least-volume representative of every integer homology class in the
Grassmannian G(2,C4) of complex 2-planes in C4. Each degree d integral homology
group H^ is given in Table I . O . I (cf. 2.2).

TABLE I . O . I

The homology groups o/G(2, C4).

HQ H^ H^ H3 H^ n^ He H7 Hg

Z { 0 } Z { 0 } Z2 { 0 } Z { 0 } Z

The new case, H^ has rank 2. It is generated by two C P2 s,

CP2=G(2,C3) and CP^G^C3).

Both C P2 s are volume-minimizing. So is the quaternionic projective space H P1 of the
quaternionic lines in C^H2. Theorem 2.7 shows that every integral homology class
has a least-volume representative that is a linear combination of some two of these three
cycles. It is volume-minimizing because it is either complex or quaternionic.

1.1. COMPLEX AND QUATERNIONIC STRUCTURES. — G (2, C4) ̂  L^/U^ x U^ has an inva-
riant Kahler structure and two invariant quaternionic (or "quaternionic-Kahler") structu-
res, or twice that number if you count their negatives, for a total of six. Equivalently,
the tangent space ToG(2,C4) admits a standard Kahler form co and two standard
quaternionic forms q, q' invariant under U^ x U^. This occurs because the holonomy
action of U^xL^ on ToG(2,C4) is contained in certain actions of \J^ Spi xSp^ and
Sp2 x Spi.

Actually, every G(2, R") has an invariant Kahler form, every G(2, C") has an invariant
quaternionic form and every G(n—2, C") has an invariant quaternionic form. G(2, C4),
which happens to be isometric to G(2, R6), falls into all three categories.
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128 F. MORGAN

By Wirtinger's inequality, w2/! attains its maximum value of 1 on precisely the complex
planes. Similarly, q and q' attain their maximum values of 1 on precisely the associated
quaternionic lines. It follows from the fundamental theorem of calibrations that complex
and quaternionic subvarieties are volume-minimizing.

1.2. THE FUNDAMENTAL THEOREM OF CALIBRATIONS. — Let S be an m-dimensional surface
(rectifiable current) in a smoooth, compact, n-dimensional Riemannian manifold. Let (p
be a closed differential m-form such that for all unit m-planes i;,

<^ , (p(x)>^l ,

with equality whenever ^ is the oriented unit tangent to S at x. Then S is homologically
volume-minimizing.

Remark. — Any closed m-form (p, normalized so that its comass

(1) || (p ||* = sup { < ^, (p (x) >: ^ is a unit m-plane }

equals 1, is called a calibration. The planes ^ on which (p attains the value 1, and any
surface S with those tangent planes, are said to be calibrated by (p. In G(2,C4), every
4-dimensional surface S with complex (or quaternionic) tangent planes is calibrated by
co2^ (or q or q') and hence volume-minimizing.

Proof. — Let T be homologous to S. Then

volS= (p= (p^volT.

Therefore S is homologically volume-minimizing.

1.3. MASS AND COMASS. — The comass norm 1.2 (1) on m-co vectors and the dual
mass norm on m-vectors play important roles in the theory of calibrations. This paper
includes a complete description of these norms on H4G(2,C4) and H4G(2,C4) as
Corollaries 2.9 and 2.8.

1.4. REFERENCES. — Surveys with historical remarks appear in [Mol] and [Mo2]. For
basic definitions and results, also see [Mo3] and [HL].

1. 5. ACKNOWLEDGEMENTS. — I would like to thank Hans Samelson for helpful conver-
sations and the referee for making me realize no computations were necessary. This
work was partially supported by a National Science Foundation grant and was carried
out at M.I.T., Stanford, and Williams.

2. Least volume representatives in G(2, C4)

2.1. DEFINITIONS. — Let C and H=C+7*C denote the complex and quaternionic
fields. C4 = Hi ® H^, H^ = C^ @j C^ H^ = C^ ©7 C^. The quaternionic-linear isometry
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LEAST VOLUME IN G (2, C4) 129

of Hi © H^ which switches Hi and H2 induces an isometry Go of G(2, C4). The Hodge
* operator gives another isometry of G(2,C4). Let cj=ao°^.

G(2, C^^L^/U^ xU^. At the complex 2-plane ^o m Hi, the tangent space
ToG(2, C4)=Homc(Hl,H2). A homomorphism AeHom^Hi.H^) is the tangent vec-
tor to the curve in G(2, C4) given by graph (tA). Since a leaves Hi invariant, it induces
an isometry of Honic(Hi, H2), namely, A -> A^

We will need to consider a number of cycles in G(2, C4): the subgrassmannians

cp^^'jCi^cHiec^Gac2),
C P2 = G (2, C3) where C3 = Hi ® C^

={^c:Hi®C,},
CP^c^CP2)^:^! c ̂ G(1,C3),

quaternionic projective space

HP^G^Hi®^),

a product

CP^CP^GO.CieC^xGOJCi®^);

and the Schubert cycle

cM^dim^nCiec^i}.
TABLE 2.1.1

Cycles in G (2, C4) and their tangent spaces at ^o.

Real
Cycle S dimension To S

era o'
CP1.. . . . . . . . . 2 Homc(Ci,C2)=-{[: 3}0 Oj

C P - . . . . . . . . . . 4 Homc(H,,C,)=^ ̂
^i_ " - \ j

'-{[; 3}
-{[; 1]}
'-{E;]}
-{[; 3}

C P - . . . . . . . . . 4 Homc(C,H,)={[^]j

rra -BI
H P 1 . . . . . . . . . . 4 HomH(H,,H,)=^ r

cLP ^
CP1 x C P 1 . . . . . 4 Home (Ci, C^)

era 01
eHomc(/CiJCy=<M

CL0 PJ
C6.. . . . . . . . . . 6 Homc(Ci,C2)

©HomcO'Ci,H2)=JP n

Table 2.1.1 lists these cycles S and their unit tangents ToS at i;o m

To G (2, C4)^ Home (Hi, H,).
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130 F. MORGAN

TABLE 2.2.1

The integral homology ofG(2, C4).

H G (2, C4)

Degree Homology Generators

o . . . . . . . . . . . . . . z Ko}
1 . . . . . . . . . . . . . . { 0 }
2. . . . . . . . . . . . . . Z CP1

3 . . . . . . . . . . . . . . { 0 }
4. . . . . . . . . . . . . . Z2 C P2, C P2

5 . . . . . . . . . . . . . . { 0 }
6 . . . . . . . . . . . . . . Z C6

7 . . . . . . . . . . . . . . { 0 }
8. . . . . . . . . . . . . . Z G(2, C4)

2.2. PROPOSITION. — The integral homology o/G(2,C4) is given by the table 2.2.1.
Proof. - See Chern [C], §8, p. 74, which deduces the homology of G(2, C4) [which he

calls Gr(3,l)] from a Schubert cell decomposition. The generators listed in our table
are precisely his Schubert cycles (00), (01), (11), (02), (12), (22), respectively.

2.3. KAHLER AND QUATERNIONIC STRUCTURES. — As a complex vectorspace,
ToG(2,C4)=Homc(Hl,H2) has a Kahler form o. Since CD is invariant under a
U 4 = > U 2 x U 2 , it extends to an invariant Kahler form on G(2,C4) that exhibits the
Kahler structure of G(2,C4). Hom^H^H^) is a quaternionic vectorspace in two
different ways, by pre- or post-right-multiplication by quaternions a, i.e., (a A) (x) is
either A (x a) or (A(x))a. (Left multiplication would not yield a complex-linear
map). These multiplications yield two commuting actions of the imaginary unit quater-
nions ̂ SU^ on Hom^H^H^).

Pre-right-multiplication by an imaginary unit quaternion u defines an orthogonal
complex structure J^ on Homc(Hi, H^), with associated Kahler form o)y. By Wirtinger's
inequality, for any real 4-plane ^ in Hom^ (H^H^), <^,(o^/2>^l, with equality if and
only if ^ is a complex 2-plane for the complex structure Jy. Define a quaternionic
calibration

q=ave^/2,
u

which incidentally equals (1/3) (G)?/2+o)f/2+o)^/2). Then <^>^1, with equality if
and only if ^ is a complex 2-plane for every complex structure Jy, i. e., if and only if ^ is
a quaternionic line under pre-right-multiplication by quaternions.

Similarly, for post-right multiplication by quaternions there is a second quaternionic
calibration q\ Incidentally, q' = a^q.

Both q and q' are invariant under both pre- and post- right-multiplication by quater-
nions, which give the standard representation of SU^.x ̂ 2- Of course they are also

46' SERIE — TOME 22 — 1989 — N° 1



LEAST VOLUME IN G (2, C4) 131

invariant under the standard action of U^ on Hom^H^H^) as a complex
vectorspace. Hence q and ^/ are invariant under Ui(SU2^SU2)=U2»U2. Therefore
^ and q' extend to L^-invariant forms on G (2, C4) that exhibit two quaternionic (or
"quaternionic-Kahler") structures on G(2,C4).

2.4. PROPOSITION. —-CP1, CP2, CP2', CP^CP1 and C6 are all complex analytic.
HP1 and —CP2 are quaternionic for the first quaternionic structure. —HP1 and
—CP2 are quaternionic for the second quaternionic structure. Therefore all are homologi-
cally volume-minimizing.

Proof. - Since CP1, CP2, CP2', and CP^CP1 are orbits of subgroups of U^ it
suffices to check that the tangent space at ^o ls complex, which is apparent from Table
2.1.1.

Let ^ be a generic point in C6, so that ^ meets Ci © C^ in a complex line ^
and *^ meets jC^ QJC^ in a complex line ^- Let §e}J2 (c! ® ̂  x HzO^i ®7C2)
such that ^^i=Ci, g^2=JC^ and hence gi,=^Q. One checks that
To^C^Hom^C^C^) © HomcOCi^H^), which is complex. Therefore C6 is complex
analytic.

The statements about quaternionic structure follow immediately from Table 2.1.1, at
least up to orientations. One checks that the quaternionic structures on C P2 and C P2

induce orientations opposite to the canonical ones induced by the complex
structure. Finally, one checks that the two quaternionic structures induce opposite
orientations of H P1; we choose the first.

An explanation of the relation to volume minimization appears in the introduction
1.1,1.2.

2.5. COROLLARY. — CP1 and C6 and their multiples give least-volume representatives
of all the integral homology classes in H2G(2, C4) and H^ G(2, C4).

Proof. — They give the homology by 2.2 and minimize volume by 2.4.

2.6. PROPOSITION.—The intersection numbers of various cycles in H4G(2,C4) are
given by Table 2.6.1.

TABLE 2.6.1
Intersection numbers in H^ G (2, C4).

Cycles C P2 C P2' H P1 C P1 x C P1

C P 2 . . . . . . . . . . . . 1 0 -1 1
CP2'. . . . . . . . . . . 0 1 +1 1
H P 1 . . . . . . . . . . . -1 +1 2 0
C P1 x C P 1 . . . . . . . 1 1 0 2

Proof. - First consider CP2=G(2,C3), where C^Hi ©C^. By perturbing C^ to
a nearby complex line in H^, one sees that the self-intersection number is ±1. Since
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132 F. MORGAN

C P2 and its perturbation are both complex, it must be +1. Similarly the self-intersection
number of CP2' is +1.

CP2 is isotopic to {^:jC^ c ^}, which has no intersection with CP2.
HP1 meets CP2 and CP2 in the single point £,0- Since HP1 shares the first quater-

nionic structure with —CP2, and —HP1 shares the second quaternionic structure with
—CP2 ' , the intersection numbers are —1 and +1.

C P1 x C P1 meets C P2 and C P2 in the single point ^o. Since all three are complex,
the intersection numbers are +1.

Since CP2 and CP2' form a basis for the homology, the other intersection numbers
follow as consequences.

The following theorem is the main result of this paper.

2.7. THEOREM. — Least volume representatives of every homology class in
H4G(2,C4). In Figure 2 .7.1 each of the six vertices of the hexagon is homologically

• •

Fig. 2.7.1. — Least-volume representatives of every homology class in H4 G (2, C4).

volume-minimizing. Indeed, each nonnegative integral linear combination of two adjacent
vertices is homologically volume-minimizing.

Remarks. — The proof shows that each of the six regions of Figure 2.7.1 is either
complex analytic or quaternionic for the indicated Kahler or quaternionic forms.
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Least volume representatives are not generally unique, even up to congruence. For
example, CP1 xCP^CP^CP2', and both are complex analytic.

The regularity results of F. J. Almgren [A] guarantee that a 4-dimensional homologi-
cally volume-minimizing surface is a smooth submanifold except for a singular set of
dimension at most 2. Note that CP2-^CP2f has the 2-dimensional singular set CP1,
where C P2 and C P2' intersect.

Proof. — Note that since CP2 and CP2' generate the integral homology (Proposition
2.2) and HP1- -CP2-{-CP2t by Proposition 2.6, Figure 2.7.1 gives an accurate
picture of H4 G(2,C4).

By Proposition 2.4, each adjacent pair is simultaneously complex or quaternionic,
with the calibrations indicated in Figure 2.7.1. Therefore all nonnegative linear combi-
nations are homologically volume-minimizing (cf. 1.1, 1.2).

2.8. COROLLARY.—The hexagon of Figure 2 .7.1 gives the unit mass ball in
H4 G (2, C4) ̂  {IJ2 x U^-invariant 4-vectors in To G (2, C4) }. Each cycle S stands for the
U^ x U^ average of its unit tangent 4-plane at ^o.

Proof. — Let S^, 83 be cycles at adjacent vertices, let (31, t^ be their unit tangent
4-planes at ^o, let i^, (32 be their U^ x U^ averages, and let (p be the common calibration
of Si and 82. Of course ̂  ̂  and any convex linear combination ̂  ^1+^-2^2 have
mass at most 1. But since q> is U^ x U^ invariant.

(p(^Cl+^2Q=^l+^2=l.

Therefore convex linear combinations of adjacent vertices have mass 1, and the unit
mass ball is the pictured hexagon.

2.9. COROLLARY. — Figure 2.9.1 gives the unit comass ball in H4G(2, C4) ̂  \J^-invari-
ant differential 4-forms on G(2, C4).

Proof. — The unit comass ball is just the polar or dual of the unit mass ball. Its
vertices calibrate the corresponding sides of the unit mass ball.

Remarks. — c^, c^ denote the second Chern calibrations, defined as dual to C P2 and
CP2' ([C], §8, cf. [MS], Problem 14-D, p. 171). c^ calibrates CP2 (because both co2^
and —q do). Similarly, c^ calibrates CP2'. The first Chern calibration is just the
Kahler form CD.

p denotes the first Pontryagin calibration, characterized as a positive multiple of
-C2+C2 (cf. [MS], Cor. 15.5, p. 177). It calibrates HP1. Note that our calibrations
have been normalized to have unit comass.

As self-dual 4-forms in R8, (Q2/!, q, c^ and p appear as types (2,0), (3,0), (3,2), and
(3,3) of [DHM], Chapter 3.
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Fig. 2.9.1. - The unit comass ball in H4 G (2, C4).

It happens that G(2, C4) is isometric to G(2, R6). The universal Euler calibrations in
H2G(2,R6) and H4G(2,R6) correspond to ±co and/?. The first universal Pontryagin
calibration in H4G(2,R6) corresponds to co2/^.

2.10. Remark. - H4G(m,C1) for m^2, n ^ m + 2 continues to be generated by CP2

and CP2'. The various calibrations in H4G(2, C4), such as co2/^ q, and q\ extend by
averaging to calibrations o)2/!, q, q' in H4G(2,C4). w2/! always calibrates CP2 and
CP2, so that their nonnegative [nonpositive] linear combinations still give least-volume
representatives of the homology classes in the first [third] quadrant of Figure 2.7.1. For
m=2, q still calibrates —CP2, HP1, and the associated subquadrants of Figure 2.7.1;
for m > 2, the question is open. Similarly, for n = m + 2, q' still calibrates — C P2, — H P1,
and the associated subquadrants of Figure 2.7.1; for n>m+2, the question is open.

2.11. G(2, C5). — The next case, G(2, C5) has nontrivial homology in even degrees:

G e n e r a t o r s . . . . . . . . .

H,

Z
. . . . . . . C P1

H4

z e z
C P2 C P2

H^

Z @ Z
C P3 C6

Hg

z e z
G (2. C^}. C8

HIO
z

C10

The generators, including certain Schubert cycles C6, C8, C10, are all complex analytic
varieties. Therefore these generators and nonnegative (or nonpositive) integral linear
combinations of them are volume-minimizing. Some of the other classes have known
quaternionic (and hence volume-minimizing) representatives (cf. Remark 2.10).
However, the whole story is far from known.

4€ SERIE - TOME 22 - 1989 - N° 1



LEAST VOLUME IN G (2, C4) 135

REFERENCES

[A] F. J. ALMGREN Jr., Q Valued Functions Minimizing Dirichlefs Integral and the Regularity of Area
Minimizing Rectifiable Currents up to Codimension Two (Bull. Amer. Math. Soc., Vol. 8, 1983,
pp. 327-328).

[C] SHIING-SHEN CHERN, Complex Manifolds without Potential Theory, Springer-Verlag, 1979.
[DHM] J. DADOK, R. HARVEY and F. MORGAN, Calibrations on R8 (Trans. Amer. Math. Soc., 307, 1988,

pp. 1-40).
[F] H. FEDERER, Geometric Measure Theory, Springer-Verlag, 1969.
[HL] R. HARVEY and H. B. LAWSON Jr., Calibrated Geometries (Acta Math., Vol. 148, 1982, pp. 47-157).
[MS] J. W. MILNOR and J. D. STASHEFF, Characteristic Classes, Ann. of Math. Studies, No. 76, Princeton

University Press, 1974.
[Mol] F. MORGAN, Area-Minimizing Surfaces, Faces of Grassmannians, and Calibrations (Amer. Math.

Monthly, Vol. 95, 1988, pp. 813-822).
[Mo2] F. MORGAN, Calibrations and New Singularities in Area-Minimizing Surfaces: a Survey [Proc. Conf.

Problemes Variationnels, Paris, 1988 (to appear)].
[Mo3] F. MORGAN, Geometric Measure Theory: A Beginner's Guide, Academic Press, 1988.

(Manuscrit recu Ie 4 janvier 1988,
revise Ie 8 septembre 1988.)

F. MORGAN,
Department of Mathematics,

Williams College,
Williamstown, MA 01267.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE


