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LEAST-VOLUME REPRESENTATIVES OF
HOMOLOGY CLASSES IN G (2, C*)

By FRANK MORGAN

1. Introduction

This paper finds a least-volume representative of every integer homology class in the
Grassmannian G (2, C* of complex 2-planes in C*. Each degree d integral homology
group H, is given in Table 1.0.1 (cf. 2.2).

TaBLE 1.0.1
The homology groups of G(2, C*).

H, H, H, H, H, H, H, H, H,
z {0} z {0} z* {0} z {0} Z

The new case, H,, has rank 2. It is generated by two C PZs,
CP2=G(2,C? and CP¥*=G(1,C3.

Both CP?s are volume-minimizing. So is the quaternionic projective space HP! of the
quaternionic lines in C*~H?2. Theorem 2.7 shows that every integral homology class
has a least-volume representative that is a linear combination of some two of these three
cycles. It is volume-minimizing because it is either complex or quaternionic.

1.1. COMPLEX AND QUATERNIONIC STRUCTURES. — G (2, C*)~U,/U, x U, has an inva-
riant Kahler structure and two invariant quaternionic (or ‘“‘quaternionic-Kahler”) structu-
res, or twice that number if you count their negatives, for a total of six. Equivalently,
the tangent space T,G(2,C* admits a standard Kahler form ® and two standard
quaternionic forms ¢, ¢’ invariant under U, x U,. This occurs because the holonomy
action of U, xU, on T,G(2,C* is contained in certain actions of U,, Sp, x Sp, and
Sp, x Sp;.

Actually, every G (2, R") has an invariant Kahler form, every G (2, C") has an invariant
quaternionic form and every G (n—2, C") has an invariant quaternionic form. G (2, C*%),
which happens to be isometric to G (2, R®), falls into all three categories.
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128 F. MORGAN

By Wirtinger’s inequality, ®?/2 attains its maximum value of 1 on precisely the complex
planes. Similarly, g and g” attain their maximum values of 1 on precisely the associated
quaternionic lines. It follows from the fundamental theorem of calibrations that complex
and quaternionic subvarieties are volume-minimizing.

1.2. THE FUNDAMENTAL THEOREM OF CALIBRATIONS. — Let S be an m-dimensional surface
(rectifiable current) in a smoooth, compact, n-dimensional Riemannian manifold. Let ¢
be a closed differential m-form such that for all unit m-planes &,

G o(x)>=1,
with equality whenever & is the oriented unit tangent to S at x. Then S is homologically
volume-minimizing.

Remark. — Any closed m-form ¢, normalized so that its comass
€)) |l@|/*=sup{ <& @(x)):&isaunitm-plane }

equals 1, is called a calibration. The planes & on which ¢ attains the value 1, and any
surface S with those tangent planes, are said to be calibrated by ¢. In G(2,C*), every
4-dimensional surface S with complex (or quaternionic) tangent planes is calibrated by
®?/2 (or q or q) and hence volume-minimizing,

Proof. — Let T be homologous to S. Then
volS=J <p=J ¢o=volT.
s T

Therefore S is homologically volume-minimizing.

1.3. Mass AND coMASs. — The comass norm 1.2 (1) on m-covectors and the dual
mass norm on m-vectors play important roles in the theory of calibrations. This paper
includes a complete description of these norms on H*G(2,C* and H,G(2,C* as
Corollaries 2.9 and 2.8.

1.4. REFERENCES. — Surveys with historical remarks appear in [Mol] and [Mo2]. For
basic definitions and results, also see [Mo3] and [HL].

1.5. AckNowLEDGEMENTS. — I would like to thank Hans Samelson for helpful conver-
sations and the referee for making me realize no computations were necessary. This
work was partially supported by a National Science Foundation grant and was carried
out at M.I.T., Stanford, and Williams.

2. Least volume representatives in G (2, C*)

2.1. DeriNiTioNs. — Let C and H=C+,C denote the complex and quaternionic
fields. C*=H,®H,,H,=C, ®jC,,H,=C,®jC,. The quaternionic-linear isometry
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LEAST VOLUME IN G (2, C% 129

of H; @ H, which switches H, and H, induces an isometry o, of G(2,C*. The Hodge
* operator gives another isometry of G(2,C*%. Let c=0,0 *.

G(2,CY=U,/U, xU,. At the complex 2-plane &, in H,, the tangent space
T, G(2,C*=Hom¢(H;,H,). A homomorphism A e Hom¢(H,, H,) is the tangent vec-
tor to the curve in G (2, C*) given by graph (tA). Since o leaves H, invariant, it induces
an isometry of Hom¢ (H,, H,), namely, A — A™T.

We will need to consider a number of cycles in G (2, C*): the subgrassmannians

CP! ={&:jC, ctcH, ®C,}=G(1,C?,

CP*=G(2,C?Y where C’=H, ®C,
={§:EcH, ®C,},

CP¥=0(CP)={¢&:jC, = §}=G(1,C),

quaternionic projective space
HP'=G(1,H, ®H,),
a product
CP'xCP'=G(1,C,®C,) xG(1,jC, ®jCy);
and the Schubert cycle
Cé=(¢:dimENC, ®C,21}.

TABLE 2.1.1

Cycles in G (2, C*) and their tangent spaces at &,

Real
Cycle S dimension T, S
cp! 2 Homg(C,,C;)=4[* °
.......... (€ CY=4|
Cp? 4 Hom(H,,C,)={|* P
.......... o(Hy, C)=4f 0
CP? 4 Home(C, Hy={[* ©
........ c(Culi=t| o o
HP . ........ 4 Hom“(HI,H2)={ * __B}}
B a
CP'xCP'. . ... 4 Home (C,, C,)
a 0
@®Hom(jC,,jC,) =
c(CLiCy) {I:O B:I}
Coviiii 6 Hom, (C,, C,)

a

@Homc(icl,ﬂz)={[o 8]}

Table 2.1.1 lists these cycles S and their unit tangents T,S at &, in
T, G (2, C*)=Homc (Hy, Hy).

=
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130 F. MORGAN

TABLE 2.2.1
The integral homology of G (2, C*).

HG (2 C%

Degree Homology Generators
0.0t Z {&}
) {0}
2. Z CP!
3 {0}
4. ... VA CP?, CP*
S {0}
6. . Z (ol
T {0}
8 z G (2, CY

2.2. ProposITION. — The integral homology of G (2, C*) is given by the table 2.2. 1.

Proof. — See Chern [C], §8, p. 74, which deduces the homology of G (2, C*) [which he
calls Gr(3,1)] from a Schubert cell decomposition. The generators listed in our table
are precisely his Schubert cycles (00), (01), (11), (02), (12), (22), respectively.

2.3. KAHLER AND QUATERNIONIC STRUCTURES. — As a complex vectorspace,
T,G(2,C*)=Hom¢(H;,H,) has a Kahler form o. Since ® is invariant under a
U, o U, xU,, it extends to an invariant Kahler form on G(2,C* that exhibits the
Kabhler structure of G(2,C*. Hom¢(H;,H,) is a quaternionic vectorspace in two
different ways, by pre- or post-right-multiplication by quaternions a, i.e., (xA) (x) is
either A (x o) or (A(x))a. (Left multiplication would not yield a complex-linear
map). These multiplications yield two commuting actions of the imaginary unit quater-
nions~SU, on Hom¢(H,, H,).

Pre-right-multiplication by an imaginary unit quaternion u defines an orthogonal
complex structure J, on Hom¢ (H,, H,), with associated Kahler form ®,. By Wirtinger’s
inequality, for any real 4-plane £ in Hom¢ (H,, H,), (&, ®2/2 > <1, with equality if and
only if & is a complex 2-plane for the complex structure J,. Define a quaternionic
calibration

q=ave ®2/2,
which incidentally equals (1/3) (0?/2+®?}/2+®7/2). Then <& g)<1, with equality if
and only if & is a complex 2-plane for every complex structure J,, i.e., if and only if & is
a quaternionic line under pre-right-multiplication by quaternions.
Similarly, for post-right multiplication by quaternions there is a second quaternionic
calibrationq’. Incidentally, ¢’ = c%q.

Both g and ¢’ are invariant under both pre- and post- right-multiplication by quater-
nions, which give the standard representation of SU, x SU,. Of course they are also
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LEAST VOLUME IN G (2, C* 131

invariant under the standard action of U, on Hom¢(H,,H,) as a complex
vectorspace. Hence g and ¢’ are invariant under U, (SU,eSU,)=U,eU,. Therefore
q and g’ extend to U, -invariant forms on G (2, C*) that exhibit two quaternionic (or
“quaternionic-Kahler”) structures on G (2, C*).

2.4. ProposiTioN. — CP!, CP? CP%, CP' xCP! and C® are all complex analytic.
HP! and —CP? are quaternionic for the first quaternionic structure. —HP! and
—CP? are quaternionic for the second quaternionic structure. Therefore all are homologi-
cally volume-minimizing.

Proof. — Since CP!, CP?, CP?*, and CP! x CP! are orbits of subgroups of Uy, it
suffices to check that the tangent space at &, is complex, which is apparent from Table
2.1.1. )

Let £ be a generic point in C® so that & meets C, @ C, in a complex line &,
and *£ meets jC, ®jC, in a complex line §,. Let geU, (C,®C,)xU,(C,®jC,)
such that g&,=C,, g&,=jC,, and hence g&=&, One checks that
T,gCé=Hom(C,, C,) @ Hom¢(j C,, H,), which is complex. Therefore C® is complex
analytic.

The statements about quaternionic structure follow immediately from Table 2.1.1, at
least up to orientations. One checks that the quaternionic structures on CP? and C P?
induce orientations opposite to the canonical ones induced by the complex
structure. Finally, one checks that the two quaternionic structures induce opposite
orientations of HP'; we choose the first.

An explanation of the relation to volume minimization appears in the introduction
1.1, 1.2

2.5. CoroLLARY. — CP! and C® and their multiples give least-volume representatives
of all the integral homology classes in H, G (2, C*) and Hg G (2, C*).

Proof. — They give the homology by 2.2 and minimize volume by 2.4.

2.6. ProrosITION. — The intersection numbers of various cycles in H, G(2,C*) are
given by Table 2.6. 1.

TABLE 2.6.1

Intersection numbers in H, G (2, C*.

Cycles C P? C pP¥ H P! CP!'xCP!
CP ............ 1 0 -1 1
CP¥. .. ........ 0 1 +1 1
HP'. .......... -1 +1 2 0
CP'xCP'... .. .. 1 1 0 2

Proof. — First consider CP*=G (2, C3), where C>*=H, ® C,. By perturbing C, to
a nearby complex line in H,, one sees that the self-intersection number is +1. Since
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132 F. MORGAN

C P? and its perturbation are both complex, it must be +1. Similarly the self-intersection
number of CP? is +1.

CP?¥ is isotopic to {£:jC, = £}, which has no intersection with C P2

HP! meets CP? and CP? in the single point &, Since HP! shares the first quater-
nionic structure with —CP? and —H P! shares the second quaternionic structure with
—C P?, the intersection numbers are —1 and + 1.

CP! x CP! meets CP? and CP? in the single point &, Since all three are complex,
the intersection numbers are + 1.

Since CP? and CP? form a basis for the homology, the other intersection numbers
follow as consequences.

The following theorem is the main result of this paper.

2.7. THEOREM. — Least wvolume representatives of every homology class in
H,G(2,C*%. In Figure 2.7.1 each of the six vertices of the hexagon is homologically

Fig. 2.7.1. — Least-volume representatives of every homology class in H, G (2, C*%).

volume-minimizing. Indeed, each nonnegative integral linear combination of two adjacent
vertices is homologically volume-minimizing.

Remarks. — The proof shows that each of the six regions of Figure 2.7.1 is either
complex analytic or quaternionic for the indicated Kahler or quaternionic forms.
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LEAST VOLUME IN G (2, C%) 133

Least volume representatives are not generally unique, even up to congruence. For
example, C P! x CP' ~C P2+ CP?, and both are complex analytic.

The regularity results of F. J. Almgren [A] guarantee that a 4-dimensional homologi-
cally volume-minimizing surface is a smooth submanifold except for a singular set of
dimension at most 2. Note that C P?+CP? has the 2-dimensional singular set C P!,
where CP? and CP? intersect.

Proof. — Note that since CP? and CP*’ generate the integral homology (Proposition
2.2) and HP'~ —CP?4+CP? by Proposition 2.6, Figure 2.7.1 gives an accurate
picture of H, G(2, C*).

By Proposition 2.4, each adjacent pair is simultaneously complex or quaternionic,
with the calibrations indicated in Figure 2.7.1. Therefore all nonnegative linear combi-
nations are homologically volume-minimizing (¢f. 1.1, 1.2).

2.8. CoroLLARY. — The hexagon of Figure 2.7.1 gives the unit mass ball in
H, G (2, CY=~{U, x U,-invariant 4-vectors in TG (2,C* }. Each cycle S stands for the
U, x U, average of its unit tangent 4-plane at &.

Proof. — Let S;, S, be cycles at adjacent vertices, let {,, {, be their unit tangent
4-planes at &, let {,, {, be their U, x U, averages, and let ¢ be the common calibration
of S, and S,. Of course {,, {,, and any convex linear combination A, {; +A,{, have
mass at most 1. But since ¢ is U, x U, invariant.

O G +A ) =h +A,=1.

Therefore convex linear combinations of adjacent vertices have mass 1, and the unit
mass ball is the pictured hexagon.

2.9. CoRrOLLARY. — Figure 2.9.1 gives the unit comass ball in H* G (2, C*) = U,-invari-
ant differential 4-forms on G (2, C*).

Proof. — The unit comass ball is just the polar or dual of the unit mass ball. Its
vertices calibrate the corresponding sides of the unit mass ball.

Remarks. — c,, ¢, denote the second Chern calibrations, defined as dual to CP? and
CP? ([C], §8, cf. [MS], Problem 14—D, p. 171). c, calibrates C P? (because both ®?/2
and —q do). Similarly, ¢, calibrates CP?>. The first Chern calibration is just the
Kahler form o.

p denotes the first Pontryagin calibration, characterized as a positive multiple of
—cy+c; (cf. [MS], Cor. 15.5, p.177). It calibrates HP'. Note that our calibrations
have been normalized to have unit comass.

As self-dual 4-forms in R®, ®?/2, g, c,, and p appear as types (2,0), (3,0), (3,2), and
(3,3) of [DHM], Chapter 3.
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-4 ¢ 0?2

@ ° # ¢

. -

—0?/2 —¢ q

Fig. 2.9.1. — The unit comass ball in H* G (2, C%).

’

It happens that G (2, C*) is isometric to G(2,R®). The universal Euler calibrations in
H2G(2,R® and H* G (2, R®) correspond to +® and p. The first universal Pontryagin
calibration in H* G (2, R®) corresponds to ®?/2.

2.10. Remark. — H, G (m,C" for m=2, n=m+2 continues to be generated by C P2
and CP?. The various calibrations in H* G (2, C*), such as ©?/2, q, and ¢/, extend by
averaging to calibrations ®2/2, q, ¢’ in H*G(2,C*. ®2%/2 always calibrates CP? and
CP?, so that their nonnegative [nonpositive] linear combinations still give least-volume
representatives of the homology classes in the first [third] quadrant of Figure 2.7.1. For
m=2, q still calibrates —C P2, HP, and the associated subquadrants of Figure 2.7.1;
for m>2, the question is open. Similarly, for n=m +2, ¢’ still calibrates —C P¥*, —H P!,
and the associated subquadrants of Figure 2.7.1; for n>m+ 2, the question is open.

2.11. G(2, C®). — The next case, G (2, C°) has nontrivial homology in even degrees:

H2 H4 H6 HB HIO
Z Z®Z 717 Y AW Z
Generators. . . . .. ...t CP! C P? C P?¥ C P3, C* G (2, C%, C® Ccto

The generators, including certain Schubert cycles C®, C8, C°, are all complex analytic
varieties. Therefore these generators and nonnegative (or nonpositive) integral linear
combinations of them are volume-minimizing. Some of the other classes have known
quaternionic (and hence volume-minimizing) representatives (cf. Remark 2.10).
However, the whole story is far from known.
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