Annales scientifiques de l’é.n.S.

MaUrizio Cornalba
 JoE Harris
 Divisor classes associated to families of stable varieties, with applications to the moduli space of curves

Annales scientifiques de l'É.N.S. 4^{e} série, tome 21, no 3 (1988), p. 455-475
http://www.numdam.org/item?id=ASENS_1988_4_21_3_455_0
© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1988, tous droits réservés.
L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

DIVISOR CLASSES ASSOCIATED TO FAMILIES OF STABLE VARIETIES, WITH APPLICATIONS TO THE MODULI SPACE OF CURVES

By Maurizo CORNALBA (${ }^{1}$) and Joe HARRIS $\left({ }^{2}\right)$

TABLE OF CONTENTS

1. Introduction and statement of the main results 455
2. Proof of the main theorem. 458
3. Morrison's counterexample 461
4. Applications to moduli of curves 463
(a) The basic inequality for non-hyperelliptic curves. 463
(b) The hyperelliptic case. 466
(c) The singular case. 473
(d) The ample cone in moduli. 474

1. Introduction and statement of the main results

The basic objects we will be concerned with in this paper are families of polarized complex algebraic varieties. By this we mean an algebraic family of pairs ($\mathrm{X}_{t}, \mathrm{~L}_{t}$), where X_{t} is an algebraic variety and L_{t} a line bundle on X_{t}; or, more precisely, a proper flat morphism $\pi: \mathrm{X} \rightarrow \mathrm{T}$ and a line bundle L on X modulo pullbacks of line bundles on T . We will always assume that X and T are separated, that T is irreducible and X puredimensional; on the other hand, X and T need not be reduced. We let k be the dimension of T and d the relative dimension of π.

What sort of cohomological invariants can one associate to such a family? Normally, given a line bundle L on a space X , we could take the first Chern class of L ; but since

[^0]here L is only defined up to twists by line bundles from T , this is not a priori welldefined. Another invariant we can look at is the first Chern class of the direct image sheaf $\pi_{*} \mathrm{~L}$, when this is locally free; but here again this class is not well-defined: if $L^{\prime}=\mathrm{L} \otimes \pi^{*} \mathrm{M}$ for some line bundle M on T , we will have $\pi_{*} \mathrm{~L}^{\prime}=\mathbf{M} \otimes \pi_{*} \mathrm{~L}$, and hence $c_{1}\left(\pi_{*} \mathrm{~L}^{\prime}\right)$ equals $c_{1}\left(\pi_{*} \mathrm{~L}^{\prime}\right)+r c_{1}(\mathrm{M})$, where r is the rank of $\pi_{*} \mathrm{~L}$. There is, however, a linear combination of these two classes, or, rather, of the first one with the pullback of the second one to X, that is invariant under twists of L by pullbacks of line bundles from T, namely the divisor class $r c_{1}(\mathrm{~L})-\pi^{*} c_{1}\left(\pi_{*} \mathrm{~L}\right)$ in the cycle group $\mathrm{A}^{1}(\mathrm{X})$. Instead of working with it directly, we will find it more convenient to use the class
$$
\widetilde{\mathscr{E}}(\mathrm{L})=\left(r c_{1}(\mathrm{~L})-\pi^{*} c_{1}\left(\pi_{*} \mathrm{~L}\right)\right) \cap[\mathrm{X}] \in \mathrm{A}_{k+d-1}(\mathrm{X})
$$
where [X] stands for the fundamental class of X and " \cap " denotes cap product. We can also define a divisor class on the base T by taking a power of the class $r c_{1}(\mathrm{~L})-\pi^{*} c_{1}\left(\pi_{*} \mathrm{~L}\right)$ and pushing it forward: we set
$$
\mathscr{E}(\mathrm{L})=\pi_{*}\left(\left(r c_{1}(\mathrm{~L})-\pi^{*} c_{1}\left(\pi_{*} \mathrm{~L}\right)\right)^{d+1} \cap[\mathrm{X}]\right) \in \mathrm{A}_{k-1}(\mathrm{~T}) .
$$

What can we say about the classes $\widetilde{\mathscr{E}}$ and \mathscr{E} in general? Apparently, not much. If, however, we make a suitable positivity and stability assumption about the line bundle $\mathrm{L}_{\mid \pi^{-1}(t)}$ for general t, we find that \mathscr{E} lies in the closure of the cone of effective divisor classes. This is the content of Theorem (1.1) below, which is the main result of this paper.

Before stating the theorem, we explain our terminology and assumptions. We begin by generalizing slightly the definition of $\widetilde{\mathscr{E}}$ and \mathscr{E}. Let F be a locally free coherent sheaf of rank r on T. We set

$$
\begin{gathered}
\tilde{\mathscr{E}}(\mathrm{L}, \mathrm{~F})=\left(r c_{1}(\mathrm{~L})-\pi^{*}\left(c_{1}(\mathrm{~F})\right)\right) \cap[\mathrm{X}] \in \mathrm{A}_{k+d-1}(\mathrm{X}) \\
\mathscr{E}(\mathrm{L}, \mathrm{~F})=\pi_{*}\left(\left(r c_{1}(\mathrm{~L})-\pi^{*} c_{1}(\mathrm{~F})\right)^{d+1} \cap[\mathrm{X}]\right) \in \mathrm{A}_{k-1}(\mathrm{~T}) .
\end{gathered}
$$

By the push-pull formula

$$
\mathscr{E}(\mathrm{L}, \mathrm{~F})=r^{d+1} \pi_{*}\left(c_{1}(\mathrm{~L})^{d+1} \cap[\mathrm{X}]\right)-(d+1) r^{d} c_{1}(\mathrm{~F}) \cap \pi_{*}\left(c_{1}(\mathrm{~L})^{d} \cap[\mathrm{X}]\right)
$$

Notice that $\mathscr{E}(\mathrm{L}, \mathrm{F})$ and $\tilde{E}(\mathrm{~L}, \mathrm{~F})$ are left unchanged if we tensor F by a line bundle M and L by $\pi^{*}(\mathrm{M})$. Also, our old $\mathscr{E}(\mathrm{L})$ and $\widetilde{\mathscr{E}}(\mathrm{L})$ are just $\mathscr{E}\left(\mathrm{L}, \pi_{*} \mathrm{~L}\right)$ and $\widetilde{\mathscr{E}}\left(\mathrm{L}, \pi_{*} \mathrm{~L}\right)$.

One can define $\mathscr{E}(\mathrm{L}, \mathrm{F})$ [and $\tilde{\mathscr{E}}(\mathrm{L}, \mathrm{F})$] also when F is just a coherent sheaf, provided it is locally free on an open subset U of T such that $\mathrm{T}-\mathrm{U}$ has codimension two or greater (notice that this is always the case when F is torsion-free and T is normal). In fact, $\mathrm{A}_{k-1}(\mathrm{~T})$ equals $\mathrm{A}_{k-1}(\mathrm{U})$, and one merely defines $\mathscr{E}(\mathrm{L}, \mathrm{F})$ to be the image of $\mathscr{E}\left(\mathrm{L}_{\mid \pi^{-1}(\mathrm{U})}, \mathrm{F}_{\mid \mathrm{U}}\right)$ in $\mathrm{A}_{\boldsymbol{k}-1}(\mathrm{~T})$.

The statement of Theorem (1.1) involves the notion of stability, whose meaning in our context we now explain. Let Z be a projective variety, M a line bundle on Z, V a vector subspace of $H^{0}(Z, M)$. Suppose that V has no base points and is very ample. Let

$$
j: \quad \mathrm{Z} \rightarrow \mathbb{P}\left(\mathrm{~V}^{\imath}\right)
$$

```
4e SÉRIE - TOME 21 - 1988 - N N 3
```

be the embedding defined by V . Then, for large enough n, the natural map

$$
\varphi_{n}: \quad \operatorname{Sym}^{n}(\mathrm{~V}) \rightarrow \mathrm{H}^{0}\left(\mathrm{Z}, \mathrm{M}^{n}\right)
$$

is onto. Thus, setting $\mathrm{N}=h^{0}\left(\mathrm{Z}, \mathrm{M}^{n}\right)$,

$$
\Lambda^{\mathrm{N}} \varphi_{n}: \quad \Lambda^{\mathrm{N}} \operatorname{Sym}^{n}(\mathrm{~V}) \rightarrow \Lambda^{\mathrm{N}} \mathrm{H}^{0}\left(\mathrm{Z}, \mathrm{M}^{n}\right)
$$

is a nonzero element of the vector space $\Lambda^{N} \operatorname{Sym}^{n}(\mathrm{~V})^{\smile} \otimes\left(\Lambda^{\mathrm{N}} \mathrm{H}^{0}\left(\mathrm{Z}, \mathrm{M}^{n}\right)\right.$). We shall say that j is a (Hilbert) stable or semistable embedding if $\Lambda^{N} \varphi_{n}$ is stable or semistable, in the sense of geometric invariant theory, under the action of $\operatorname{SL}(\mathrm{V})$, for arbitrarily large values of n.

We then have:
Theorem (1.1). - Let X and T be separated, with T irreducible of dimension k and X of pure dimension $k+d$. Let $\pi: \mathrm{X} \rightarrow \mathrm{T}$ be a flat proper morphism. Let L be a line bundle on X , and F a coherent subsheaf of $\pi_{*}(\mathrm{~L})$ that is locally free off a subvariety of T of codimension two or greater. Suppose that the following conditions are satisfied:
(i) If t is a general point of T , then $\mathrm{F}_{t} \otimes \mathbb{C} \subset \mathrm{H}^{0}\left(\pi^{-1}(t), \mathrm{L}_{\|^{-1}(t)}\right)$ is base-point-free, very ample, and yields a semi-stable embedding of $\pi^{-1}(t)$.
(ii) L is relatively ample.

Then $\mathscr{E}(\mathrm{L}, \mathrm{F})$ lies in the closure of the cone in $\mathrm{A}_{\boldsymbol{k}-1}(\mathrm{~T}) \otimes \mathbb{Q}$ generated by the effective Weil divisors; if F is locally free $\mathscr{E}(\mathrm{L}, \mathrm{F})$ lies in the closure of the cone generated by the effective Cartier divisors.

How we topologize $\mathrm{A}_{k-1}(\mathrm{~T}) \otimes \mathbb{Q}$ is immaterial: any linear topology will do, as will be apparent from the proof. In most applications of the theorem, F will be equal to $\pi_{*}(\mathrm{~L})$. We mention a simple consequence of (1.1).

Corollary (1.2). - Suppose the hypotheses of Theorem (1.1) are satisfied. Assume moreover that condition (i) holds outside of a finite number of points of T , that T is projective, and that F is locally free. Then the class $\mathscr{E}(\mathrm{L}, \mathrm{F})$ lies in the closure of the ample cone in $\mathrm{A}_{\boldsymbol{k}-1}(\mathrm{~T}) \otimes \mathbb{Q}$.

We will give a proof of the basic theorem, of a variant of it, and of the corollary, in the next section. In section 3 we will give an example, due to Ian Morrison, that shows that the hypothesis of semistability on the general fiber is a crucial one. In section 4 we will apply the basic theorem to the case of a family of curves polarized by their canonical line bundles, to obtain some inequalities among divisor classes on the moduli spaces of curves. In particular we will prove the

Theorem (1.3). - Let $\overline{\mathrm{M}}_{g}$ be the moduli space of stable genus g curves, with $g \geqq 2$, and let $\lambda, \delta \in \operatorname{Pic}\left(\overline{\mathrm{M}}_{g}\right) \otimes \mathbb{Q}$ be the Hodge class and the boundary class. Then the class $a \lambda-b \delta$ has non-negative degree on every curve in $\overline{\mathrm{M}}_{g}$ not contained in the boundary $\Delta=\overline{\mathrm{M}}_{g}-\mathrm{M}_{g}$ if and only if

$$
a \geqq(8+4 / g) b,
$$

and is ample if and only if

$$
a>11 . b>0
$$

What was previously known [12] was that $a \lambda-b \delta$ is not ample if $a<11 . b$ and is ample for $a \geqq(11.2) . b>0$. The first part of Theorem (1.3) has also been independently proved by Xiao Gang [15], using somewhat different techniques.

We thank the referee for a number of useful comments and suggestions of improvements to the first version of the present work.

2. Proof of the main theorem

We shall now give a proof of Theorem (1.1). Clearly, it suffices to deal with the case when F is locally free. For large enough n the higher direct images of L^{n} vanish and the inclusion of F in $\pi_{*}(\mathrm{~L})$ induces generically surjective maps of locally free sheaves

$$
\begin{gathered}
\varphi_{n}: \quad \operatorname{Sym}^{n}(\mathrm{~F}) \rightarrow \pi_{*}\left(\mathrm{~L}^{n}\right) \\
\Lambda^{\mathrm{N}} \varphi_{n}: \quad \Lambda^{\mathrm{N}} \operatorname{Sym}^{n}(\mathrm{~F}) \rightarrow \Lambda^{\mathrm{N}} \pi_{*}\left(\mathrm{~L}^{n}\right)
\end{gathered}
$$

where N stands for the rank of $\pi_{*}\left(\mathrm{~L}^{n}\right)$. By condition (i) of the theorem, for arbitrarily large values of n there is an SL-invariant homogeneous polynomial P that does not vanish at $\Lambda^{\mathrm{N}} \varphi_{n \mid t}$, where t is a general point of T . Choosing local trivializations for F and $\Lambda^{\mathrm{N}} \pi_{*}\left(\mathrm{~L}^{n}\right)$, we get a local regular function f by evaluating P on $\Lambda^{\mathrm{N}} \varphi_{n}$. Since P is SL-invariant, changing trivialization of F by a matrix A changes f by a factor $(\operatorname{det} \mathrm{A})^{-\mathrm{N} n / r}$, where r is the rank of F. Thus if, as we may, we choose P to have degree $r m$, the f 's give a non-zero global section of the line bundle

$$
\begin{equation*}
\mathscr{F}_{n}=\mathscr{H} \circ \mathrm{om}\left((\operatorname{det} \mathrm{~F})^{n \mathrm{~N} m},\left(\Lambda^{\mathrm{N}} \pi_{*}\left(\mathrm{~L}^{n}\right)\right)^{r m}\right) . \tag{2.1}
\end{equation*}
$$

We may evaluate the Chern class of this line bundle by applying the Riemann-Roch theorem for singular varieties $(c f .[4])$ to L^{n}; this says that

$$
\operatorname{ch}\left(\pi_{*}\left(\mathrm{~L}^{n}\right)\right) \cap \tau_{\mathrm{T}}\left(\mathcal{O}_{\mathrm{T}}\right)=\tau_{\mathrm{T}}\left(\pi_{!}\left(\mathrm{L}^{n}\right)\right)=\pi_{*}\left(\tau_{\mathbf{X}}\left(\mathrm{L}^{n}\right)\right)=\pi_{*}\left(\operatorname{ch}\left(\mathrm{~L}^{n}\right) \cap \tau_{\mathbf{X}}\left(\mathcal{O}_{\mathbf{X}}\right)\right)
$$

Recalling that, for any Y,

$$
\tau_{\mathbf{Y}}\left(\mathcal{O}_{\mathbf{Y}}\right)=[\mathrm{Y}]+\text { terms of dimension }<\operatorname{dim}(\mathrm{Y})
$$

and equating terms of degree $k-1$, we find that $c_{1}\left(\pi_{*}\left(\mathrm{~L}^{n}\right)\right) \cap[\mathrm{T}]$ is a polynomial in n with leading term

$$
(1 /(d+1)!) n^{d+1} \pi_{*}\left(c_{1}(\mathrm{~L})^{d+1} \cap[\mathrm{X}]\right)
$$

Thus $c_{1}\left(\mathscr{F}_{n}\right) \cap[T]$ is a polynomial in n with leading term

$$
\begin{aligned}
(m /(d+1)!) n^{d+1}\left\{r \pi_{*}\left(c_{1}(\mathrm{~L})^{d+1} \cap[\mathrm{X}]\right)-(d+1) c_{1}(\mathrm{~F}) \cap \pi_{*}\right. & \left.\left(c_{1}(\mathrm{~L})^{d} \cap[\mathrm{X}]\right)\right\} \\
& =\left(m /\left(r^{d}(d+1)!\right)\right) n^{d+1} \mathscr{E}(\mathrm{~L}, \mathrm{~F})
\end{aligned}
$$

```
4e SÉRIE - TOME 21 - 1988 - N` 3
```

In other words,

$$
c_{1}\left(\mathscr{F}_{n}\right) \cap[\mathrm{T}]=\left(m /\left(r^{d}(d+1)!\right)\right) n^{d+1} \mathscr{E}(\mathrm{~L}, \mathrm{~F})+\mathrm{Q}(n),
$$

where Q is a polynomial with coefficients in $\mathrm{A}_{k-1}(\mathrm{~T}) \otimes \mathbb{Q}$ of degree at most d. Thus, if E is any effective Cartier divisor class on T ,

$$
\begin{equation*}
\mathscr{E}(\mathrm{L}, \mathrm{~F})=\left(\mathrm{E}+\left(r^{d}(d+1)!/ m\right) \cdot c_{1}\left(\mathscr{F}_{n}\right) \cap[\mathrm{T}]\right) / n^{d+1}+\mathrm{R}(n) / n^{d+1}, \tag{2.2}
\end{equation*}
$$

where R is a polynomial of degree at most d. Since the divisor class $\mathrm{E}+\left(r^{d}(d+1)!/ m\right) \cdot c_{1}\left(\mathscr{F}_{n}\right) \cap[\mathrm{T}]$ is effective, letting n go to infinity concludes the proof of (1.1).

To prove Corollary (1.2), notice that its hypotheses imply not only that \mathscr{F}_{n} has a non-zero section, but also that, for all but a finite number of points $t \in T$, it has a section that does not vanish at t. In particular, the intersection number of \mathscr{F}_{n} with any irreducible curve in T is non-negative, so Seshadri's criterion of ampleness [9] implies that, for any ample line bundle $\mathrm{M}, \mathrm{M} \otimes \mathscr{F}_{n}$ is ample. Thus if, in (2.2), we choose E to be ample, the conclusion of the corollary follows.

It should be observed that our methods of proof are very similar to those used by Mumford in [12] to show that $a \lambda-\delta$ is ample if $a \geqq 11.2$. It has also been brought to our attention by the referee that our proof of (1.1) is essentially the same as the proof of Theorem 8.1 in Viehweg's paper [14].

Theorem (1.1) can be sharpened somewhat; in particular hypothesis (ii) can be slightly relaxed. To exemplify this, we shall look at a proper flat family $\pi: \mathrm{X} \rightarrow \mathrm{T}$ of noded curves over a smooth complete one-dimensional base (here, and in the sequel, by noded curve we mean a complete reduced curve that is either smooth or has at most nodes as singularities). We let L be a line bundle on X and F a (necessarily locally free) coherent subsheaf of $\pi_{*} \mathrm{~L}$. As in Theorem (1.1), we assume that F stably embeds a general fiber of π. In particular, the restriction of L to a general fiber is ample; we shall not require, however, that this be true for every fiber, but merely that the restriction of L to any component of any fiber have non-negative degree.

Now, let's analyse the proof of (1.1). This is based on the fact that

$$
\mathscr{F}_{n}=\mathscr{H} \mathrm{om}\left((\operatorname{det} \mathrm{~F})^{n \mathrm{~N} m},\left(\Lambda^{\mathrm{N}} \pi_{*}\left(\mathrm{~L}^{n}\right)\right)^{r m}\right)
$$

has a nonzero section for large n. To be more precise, this is also true of

$$
\mathscr{G}_{n}=\mathscr{H} \operatorname{om}\left((\operatorname{det} \mathrm{F})^{n \mathrm{~N} m},\left(\Lambda^{\mathrm{N}} \mathscr{L}_{n}\right)^{r m}\right),
$$

where \mathscr{L}_{n} is the image of

$$
\varphi_{n}: \quad \operatorname{Sym}^{n}(\mathrm{~F}) \rightarrow \pi_{*}\left(\mathrm{~L}^{n}\right) .
$$

Thus \mathscr{G}_{n} has non-negative degree. Notice, incidentally, that \mathscr{L}_{n} equals $\pi_{*}\left(L^{n}\right)$ except at a finite set of points. On the other hand, under our hypotheses, $\mathrm{R}^{1} \pi_{*} \mathrm{~L}^{n}$ is not necessarily zero for large n, but is concentrated at a finite set of points, so that the Grothendieck

Riemann-Roch theorem gives

$$
\begin{align*}
\operatorname{deg}\left(\mathscr{G}_{n}\right) & =\operatorname{deg}\left(\mathscr{F}_{n}\right)-r m \cdot h^{0}\left(\mathrm{~T}, \pi_{*}\left(\mathrm{~L}^{n}\right) / \mathscr{L}_{n}\right) \tag{2.3}\\
& =(m / 2 r) n^{2} \operatorname{deg} \mathscr{E}(\mathrm{~L}, \mathrm{~F})-r m \cdot h^{0}\left(\mathrm{~T}, \pi_{*}\left(\mathrm{~L}^{n}\right) / \mathscr{L}_{n}\right)+r m \cdot h^{0}\left(\mathrm{~T}, \mathrm{R}^{1} \pi_{*} \mathrm{~L}^{n}\right)+O(n)
\end{align*}
$$

The sheaf \mathscr{L}_{1} is of the form $\mathscr{I} \mathrm{L}$ for a suitable ideal sheaf \mathscr{I}. Let $e_{\mathrm{L}}(\mathscr{I})$ be the multiplicity of \mathscr{I} measured via L as defined in [12]. We claim that

Lemma (2.4). - With the above hypotheses we have:
(i) $h^{0}\left(\mathrm{~T}, \mathrm{R}^{1} \pi_{*} \mathrm{~L}^{n}\right)=O(n)$.
(ii) $h^{0}\left(\mathrm{~T}, \pi_{*}\left(\mathrm{~L}^{n}\right) / \mathscr{L}_{n}\right)=e_{\mathrm{L}}(\mathscr{I}) \cdot\left(n^{2} / 2\right)+O(n)$.

Proof. - Let's prove (i). Since $\mathrm{R}^{1} \pi_{*} \mathrm{~L}^{n}$ is concentrated at a finite set of points, the statement is local on T. Thus we may replace T with an affine U and assume that $\mathrm{R}^{1} \pi_{*} \mathrm{~L}^{n}$ is concentrated at $u \in \mathrm{U}$. By an étale base change we may also assume that π has sections $\Gamma_{1}, \ldots, \Gamma_{k}$ over U such that $L^{n}\left(\sum \Gamma_{i}\right)$ is generated by its sections and $\mathrm{R}^{1} \pi_{*}\left(\mathrm{~L}^{n}\left(\sum \Gamma_{i}\right)\right)$ vanishes for every $n \geqq 1$. For each i, let γ_{i} be the point of Γ_{i} mapping to u. Let a_{i} (resp., b_{i}) be a section of $\pi_{*}\left(\mathrm{~L}\left(\sum \Gamma_{i}\right)\right)$ (resp., $\left.\pi_{*} \mathrm{~L}\right)$ that does not vanish identically on Γ_{i}, and let α_{i} (resp., β_{i}) be the order to which its restriction to Γ_{i} vanishes at γ_{i}. Then $a_{i} b_{i}^{n-1}$ is a section of $\pi_{*}\left(\mathrm{~L}^{n}\left(\sum \Gamma_{i}\right)\right)$ whose restriction to Γ_{i} vanishes at γ_{i} to order $\alpha_{i}+(n-1) \beta_{i}$, so that, looking at the exact sequence

$$
\pi_{*}\left(\mathrm{~L}\left(\sum \Gamma_{i}\right)\right) \rightarrow \mathcal{O}_{\mathrm{U}}^{k} \rightarrow \mathrm{R}^{1} \pi_{*} \mathrm{~L}^{n} \rightarrow 0
$$

we conclude that

$$
h^{0}\left(\mathrm{R}^{1} \pi_{*} \mathrm{~L}^{n}\right) \leqq \sum \alpha_{i}+(n-1) \sum \beta_{i}
$$

as desired.
As for (ii), the question is again local on T, which we may hence replace with an affine. Then, by the definition of multiplicity,

$$
\begin{equation*}
\chi\left(\mathrm{L}^{n} / \mathscr{I}^{n} \mathrm{~L}^{n}\right)=e_{\mathrm{L}}(\mathscr{I}) \cdot\left(n^{2} / 2\right)+O(n) \tag{2.5}
\end{equation*}
$$

in [12] it is shown that

$$
\begin{equation*}
\operatorname{dim}\left(\mathrm{H}^{0}\left(\mathscr{I}^{n} \mathrm{~L}^{n}\right) / \mathrm{H}^{0}\left(\mathscr{L}_{n}\right)\right)=O(n) \tag{2.6}
\end{equation*}
$$

Actually, in Proposition (2.6) of [12], of which (2.6) is a part, it is assumed that L is generated by its sections; this hypothesis, however, is never used in the proof of (2.6). Now consider the exact sheaf sequence

$$
0 \rightarrow \pi_{*}\left(\mathscr{I}^{n} \mathrm{~L}^{n}\right) \rightarrow \pi_{*} \mathrm{~L}^{n} \rightarrow \pi_{*}\left(\mathrm{~L}^{n} / \mathscr{I}^{n} \mathrm{~L}^{n}\right) \rightarrow \mathrm{R}^{1} \pi_{*}\left(\mathscr{I}^{n} \mathrm{~L}^{n}\right) \rightarrow \mathrm{R}^{1} \pi_{*} \mathrm{~L}^{n} \rightarrow \mathrm{R}^{1} \pi_{*}\left(\mathrm{~L}^{n} / \mathscr{I}^{n} \mathrm{~L}^{n}\right) \rightarrow 0
$$

Part (i) of the lemma implies that

$$
\begin{equation*}
h^{0}\left(\mathrm{R}^{1} \pi_{*}\left(\mathrm{~L}^{n} / \mathscr{I}^{n} \mathrm{~L}^{n}\right)\right)=O(n) \tag{2.7}
\end{equation*}
$$

4^{e} SÉRIE - TOME $21-1988-N^{\circ} 3$

On the other hand, the same argument used to prove (i), or, alternatively, the proof of (2.6) in [12], shows that

$$
\begin{equation*}
h^{0}\left(\mathrm{R}^{1} \pi_{*}\left(\mathscr{I}^{n} \mathrm{~L}^{n}\right)\right)=h^{1}\left(\mathscr{I}^{n} \mathrm{~L}^{n}\right)=O(n) \tag{2.8}
\end{equation*}
$$

Putting (2.5), (2.6), (2.7), (2.8) together yields (ii).
Q.E.D.

The remark that \mathscr{G}_{n} has non-negative degree, (2.3) and (2.4) prove
Proposition (2.9). - Let $\pi: \mathrm{X} \rightarrow \mathrm{T}$ be a flat family of noded curves over a smooth complete curve. Let L be a line bundle on X , and F a coherent subsheaf of $\pi_{*}(\mathrm{~L})$ of rank r. Let \mathscr{I} be the ideal sheaf on X such that $\mathscr{I} \mathrm{L}$ is the subsheaf of L generated by F. Suppose that the following hold:
(i) If t is a general point of T , then $\mathrm{F}_{t} \otimes \mathbb{C} \subset \mathrm{H}^{0}\left(\pi^{-1}(t), \mathrm{L}_{\mid \pi^{-1}(t)}\right)$ is base-point-free, very ample, and yields a semi-stable embedding of $\pi^{-1}(t)$.
(ii) For any $t \in \mathrm{~T}$, the restriction of L to any component of $\pi^{-1}(t)$ has non-negative degree.

Then

$$
0 \leqq\left(\mathrm{~L}^{\otimes r} \otimes \pi^{*}\left(\operatorname{det} \mathrm{~F}^{2}\right)\right)^{\cdot 2}-r^{2} \cdot e_{\mathrm{L}}(\mathscr{I})
$$

3. Morrison's counterexample

It is natural to ask whether the condition of stability is really necessary for the statement of Theorem (1.1), or just a requirement of the proof. The following example of a family of unstable varieties, suggested by Ian Morrison, shows that it is essential.

Of course, we have to start with an unstable variety. Perhaps the simplest such, from our point of view, is the cubic scroll in \mathbb{P}^{4}, a surface of degree 3 that may be described in several ways:
(i) as the image of \mathbb{P}^{2} under the rational map given by the linear system of conics through a point $p \in \mathbb{P}^{2}$;
(ii) as the variety cut out by the 2×2 minors of a general 2×3 matrix of linear forms;
(iii) or, geometrically, by choosing a line L and a complementary 2-plane Λ in \mathbb{P}^{4}, a conic $C \subset \Lambda$, and an isomorphism between L and C, and taking the union of the lines joining corresponding pairs of points on L and C (Fig. 1).

Fig. 1

We now have to construct a family of these over a one-dimensional base T, in a family of projective spaces that must be a non-trivial bundle over T. To do this, we note that the destabilizing flag for a cubic scroll consists simply of the line L . This suggests that we construct our \mathbb{P}^{4}-bundle $\mathbb{P} E$ over T and our family $\mathrm{X} \subset \mathbb{P} E$ of scrolls in such a way that the \mathbb{P}^{1}-bundle formed by the lines L on the scrolls is relatively negative. For example, we can take $T=\mathbb{P}^{1}$, E the locally free sheaf

$$
\mathrm{E}=\left(\mathcal{O}_{\mathbb{P}^{1}}\right)^{\oplus 3} \oplus\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)^{\oplus 2}
$$

and $\mathbb{P} E$ the projectivization of E (by which we mean the bundle of one-dimensional quotients of fibers of the vector bundle associated to E). Note that $\mathbb{P} E$ has trivial subbundles $\mathrm{Y} \cong \mathrm{T} \times \mathbb{P}^{2}$ and $\mathrm{Z} \cong \mathrm{T} \times \mathbb{P}^{1}$ corresponding to the two summands $\left(\mathcal{O}_{\mathbb{P}}\right)^{\oplus 3}$, $\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)^{\oplus 2}$ in the direct sum decomposition of E . To construct our family of scrolls, then, we will choose a conic $\mathrm{C} \subset \mathbb{P}^{2}$ and an isomorphism of \mathbb{P}^{1} with C , and take the fiber of X over each point $t \in \mathrm{~T}$ to be the union of the lines joining corresponding points in the fibers of Z and $\mathrm{T} \times \mathrm{C} \subset \mathrm{Y}$.
Another way to describe X is via coordinates on $\mathbb{P E}$: let $\left[\mathrm{U}_{0}: \mathrm{U}_{1}\right]$ be coordinates on $T=\mathbb{P}^{1}$; let W_{0}, W_{1}, and W_{2} be a frame for $\left(\mathcal{O}_{\mathbb{P}^{1}}\right)^{\oplus 3}$, viewed as sections of E; let W_{3}^{\prime} and W_{4}^{\prime} be sections of $\left(\mathcal{O}_{\mathbb{P}^{1}}(-1)\right)^{\oplus 2}$ with poles at $U_{0}=0$ and set $W_{i}=U_{0} W_{i}^{\prime}$, $i=3,4$. Then on each fiber of $\mathbb{P} E$ over $T,\left[W_{0}: \ldots: W_{4}\right]$ are a system of homogeneous coordinates, in terms of which the fiber of Z is given by $\mathrm{W}_{0}=\mathrm{W}_{1}=\mathrm{W}_{2}=0$ and the fiber of Y by $\mathrm{W}_{3}=\mathrm{W}_{4}=0$. We can then take X to be the locus where the matrix

$$
\left(\begin{array}{lll}
\mathrm{W}_{1} & \mathrm{~W}_{2} & \mathrm{~W}_{4} \tag{3.1}\\
\mathrm{~W}_{0} & \mathrm{~W}_{1} & \mathrm{~W}_{3}
\end{array}\right)
$$

has rank not greater than one, that is, the subvariety defined by the 2×2 minors of (3.1).
Now, the Chow ring of the projective bundle $\mathbb{P E}$ is generated by two classes: the pullback η to $\mathbb{P} E$ of the class of a point in $T=\mathbb{P}^{1}$, and the first Chern class $\xi=c_{1}\left(\mathcal{O}_{\mathbb{P} E}(1)\right)$

[^1]of the tautological bundle. These classes satisfy the relations
$$
\eta^{2}=0, \quad \eta \xi^{4} \cap[\mathbb{P} \mathrm{E}]=1, \quad \xi^{5} \cap[\mathbb{P} \mathrm{E}]=c_{1}(\mathrm{E}) \cap[\mathrm{T}]=-2
$$

Note that the class of the subvariety Y is $\xi^{2}+2 \eta \xi$, since it is the complete intersection of the two divisors $\left(W_{3}\right)$ and $\left(W_{4}\right)$, each of which has class $\xi+\eta$; similarly, Z, being the intersection $W_{0}=W_{1}=W_{2}=0$ of three divisors linearly equivalent to ξ, has class ξ^{3}. Given this, it is not hard to determine the class of the threefold X : for example, the hypersurfaces defined by the two minors

$$
W_{0} W_{4}-W_{1} W_{3}, \quad W_{1} W_{4}-W_{2} W_{3}
$$

of the matrix (3.1) each have class $2 \xi+\eta$, and so their intersection has class $4 \xi^{2}+4 \xi \eta$. But the intersection of these two hypersurfaces consists exactly (and with multiplicity one) of the union of X and Y. We deduce that X has class $3 \xi^{2}+2 \xi \eta$.
Alternatively, we could also find the class of X by interpreting (3.1) as the matrix representative of a bundle map $\varphi: F \rightarrow G$, where F is the pullback to $\mathbb{P} E$ of the bundle $\mathcal{O}^{\oplus 2} \oplus \mathcal{O}(-1)$ on \mathbb{P}^{1} and G is $\mathcal{O}_{\mathbb{P} E}(1)^{\oplus 2}$, and applying Porteous' formula. We find the class of X is the second graded piece of the quotient $c\left(\mathrm{~F}^{2}\right) / c\left(\mathrm{G}^{2}\right)$, that is,

$$
\begin{aligned}
{[\mathrm{X}] } & =\left[(1+\eta)(1-\xi)^{-2}\right]_{2} \\
& =\left[(1+\eta)\left(1+2 \xi+3 \xi^{2}\right)\right]_{2} \\
& =3 \xi^{2}+2 \xi \eta .
\end{aligned}
$$

Now, taking the line bundle L on X to be the restriction of $\mathcal{O}_{\mathbb{P} E}(1)$, we have of course

$$
\pi^{*}\left(c_{1}\left(\pi_{*} \mathrm{~L}\right)\right)=\pi^{*}\left(c_{1}(\mathrm{E})\right)=-2 \eta
$$

so the divisor class $\tilde{\mathscr{E}}\left(\mathrm{L}, \pi_{*} \mathrm{~L}\right)$ associated to L is

$$
\tilde{E}\left(\mathrm{~L}, \pi_{*} \mathrm{~L}\right)=\operatorname{rank}\left(\pi_{*} \mathrm{~L}\right) c_{1}(\mathrm{~L})-\pi^{*}\left(c_{1}\left(\pi_{*} \mathrm{~L}\right)\right)=(5 \xi+2 \eta)_{\mid \mathrm{x}}
$$

and we have

$$
\begin{aligned}
\tilde{\mathscr{E}}\left(\mathrm{L}, \pi_{*} \mathrm{~L}\right)^{3} \cap[\mathrm{X}] & =(5 \xi+2 \eta)^{3}\left(3 \xi^{2}+2 \xi \eta\right) \cap[\mathbb{P} \mathrm{E}] \\
& =\left(125.3 . \xi^{5}+125.2 . \xi^{4} \eta+3.25 .2 .3 . \xi^{4} \eta\right) \cap[\mathbb{P} \mathrm{E}] \\
& =-750+250+450=-50
\end{aligned}
$$

so that $\mathscr{E}\left(\mathrm{L}, \pi_{*} \mathrm{~L}\right)=\pi_{*}\left(\tilde{\mathscr{E}}\left(\mathrm{~L}, \pi_{*} \mathrm{~L}\right)^{3}\right)$ cannot lie in the closure of the effective cone.

4. Applications to moduli of curves

a. The basic inequality for non-hyperelliptic curves. - As indicated in section 1 above, one of the main reasons for proving Theorem (1.1) was the hope of applying it to obtain informations about families of stable curves. In order to describe our results

[^2]we need to recall the structure of the Picard groups of the moduli spaces of curves. This we shall do rather sketchily, referring to [12], [8], or [2] for details.

Let $\overline{\mathbf{M}}_{g}$ be the moduli space of stable curves of genus g. As we shall see in a moment, one can define natural classes λ (the "Hodge class") and $\delta_{0}, \ldots, \delta_{[g / 2]}$ (the "boundary classes") in the rational Picard group $\operatorname{Pic}\left(\bar{M}_{g}\right) \otimes \mathbb{Q}$. It is a fundamental result of Harer that these classes generate $\operatorname{Pic}\left(\overline{\mathrm{M}}_{g}\right) \otimes \mathbb{Q}(c f .[5],[6])$; furthermore it is not hard to see that they are independent if $g \geqq 3$, while they satisfy one linear relation for $g=1,2$ ($c f$. section $4 b$ below). It should be observed that they are not classes of line bundles on $\overline{\mathbf{M}}_{g}$, but rather of "line bundles on the moduli stack of genus g curves" [11]. Roughly speaking, a line bundle on the moduli stack is the datum, for each flat proper morphism $f: \mathrm{X} \rightarrow \mathrm{S}$ with stable curves as fibers, of a line bundle L_{f} on S , natural under base change. There is an obvious notion of isomorphism for these objects, which makes it possible to define a "Picard group of the moduli stack", to be denoted $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$.

Clearly any line bundle on $\overline{\mathbf{M}}_{g}$ gives, by pullback, a line bundle on the moduli stack. This yields a homomorphism from $\operatorname{Pic}\left(\bar{M}_{g}\right)$ into $\operatorname{Pic}\left(\overline{\mathscr{M}}_{g}\right)$ which is easily seen to have finite cokernel. It has been shown by Mumford [12] that, for $g \geqq 3$, this is in fact an inclusion and $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$ has no torsion, so that we may regard both groups as lattices in $\operatorname{Pic}\left(\overline{\mathbf{M}}_{g}\right) \otimes \mathbb{Q}$. If L is a line bundle on $\overline{\mathcal{M}}_{g}$ we shall write $\mathrm{Cl}(\mathrm{L})$ to denote the corresponding class in $\operatorname{Pic}\left(\overline{\mathscr{M}}_{g}\right)$.

More specifically, the line bundle L giving rise to λ is defined by setting

$$
\mathrm{L}_{f}=\Lambda^{g} f_{*}\left(\omega_{f}\right)
$$

for each family $f: \mathrm{X} \rightarrow \mathrm{S}$ of stable curves, where $\omega_{f}=\omega_{\mathrm{X} / \mathrm{S}}$ is the relative dualizing sheaf. Instead, the line bundle M corresponding to δ_{i} is

$$
\mathbf{M}_{f}=\mathcal{O}_{\mathbf{s}}\left(\mathrm{D}_{i}\right)
$$

where D_{i} is the effective Cartier divisor in S defined as follows. We say that a stable curve has a singular point of type i at p if its partial normalization at p consists of two connected components of genera i and $g-i$, for $i>0$, and is connected for $i=0$. Let q be a point of S and let p_{1}, \ldots, p_{h} be the singular points of type i in $f^{-1}(q)$; thus X is of the form $x y=\gamma_{j}$ near p_{j}, where γ_{i} is a function on S . Then, locally near q, D_{i} is defined by the equation $\Pi \gamma_{j}=0$.

All this assuming, of course, that D_{i} does not contain a component of S . Otherwise, the definition of M_{f} is slightly more complicated. The only case that we will need in the sequel is the one when S is a smooth curve and, in addition, the locus of singular points of type i consists of isolated distinct points p_{1}, \ldots, p_{m} plus disjoint sections $\Sigma_{i}, \ldots, \Sigma_{n}$ of $f: \mathrm{X} \rightarrow \mathrm{S}$ (we can always reduce to this case by a finite base change). Thus, $f: X \rightarrow S$ can be thought of as arising from a family $\varphi: Y \rightarrow S$ of (not necessarily connected) noded curves by pairwise identification of disjoint sections of smooth points $\mathrm{S}_{1}, \mathrm{~T}_{1}, \ldots, S_{n} . \mathrm{T}_{n}$. We also let n_{k} be the multiplicity of p_{k}; in other words, near $p_{k} \mathrm{X}$ is of the form $x y=t^{n_{k}}$, where t is a suitable local coordinate on S . With these notations,

```
4e SERIE - TOME 21 - 1988 - N N 3
```

the formula for M_{f} is

$$
\begin{equation*}
\mathrm{M}_{f}=\underset{j}{\otimes}\left(\varphi_{*}\left(\mathrm{~N}_{\mathrm{S}_{j}}\right) \otimes \varphi_{*}\left(\mathrm{~N}_{\mathrm{T}_{j}}\right)\right)\left(\sum n_{k} f\left(p_{k}\right)\right), \tag{4.1}
\end{equation*}
$$

where N_{Z} stands for the normal bundle to Z .
One normally writes δ for $\sum \delta_{i}$; the locus of points in $\overline{\mathbf{M}}_{g}$ with a singular point of type i is usually denoted Δ_{i}.

Let $f: \mathbf{X} \rightarrow \mathbf{S}$ be a family of stable curves. If μ is a class in $\operatorname{Pic}\left(\overline{\mathcal{M}}_{g}\right)$, we let $\mu_{f} \in \mathrm{~A}^{1}(\mathbf{S})$ be the Chern class of the corresponding line bundle on S; if S is one-dimensional, we shall write $\operatorname{deg}_{f}(\mu)$ or $\operatorname{deg}_{s}(\mu)$ to denote the degree of μ_{f}. In addition to λ_{f} and $\left(\delta_{i}\right)_{f}$, $i=0, \ldots,[g / 2]$, there is another natural class in $\mathrm{A}^{1}(\mathrm{~S})$, namely the pushforward $f_{*}\left(c_{1}\left(\omega_{f}\right)^{2}\right)$ of the self-intersection of the relative dualizing sheaf. It follows from the Grothendieck Riemann-Roch formula that this is tied to λ and $\delta=\sum \delta_{i}$ by the relation

$$
\begin{equation*}
f_{*}\left(c_{1}\left(\omega_{f}\right)^{2}\right)=12 \lambda_{f}-\delta_{f} . \tag{4.2}
\end{equation*}
$$

Our first step in the proof of (1.3) is to apply Theorem (1.1), or rather Proposition (2.9), to $\mathrm{L}=\omega_{\pi}$, where $\pi: \mathrm{X} \rightarrow \mathrm{T}$ is a family of stable genus g curves over a smooth onedimensional base T. In order to do this, we first have to assume, of course, that the dualizing sheaf embeds the general fiber of π stably; this will be the case if the general fiber of π is smooth and non-hyperelliptic. To see this, recall that a non-degenerate curve C in \mathbb{P}^{r} is said to the linearly stable (resp. linearly semistable) if, for any linear projection

$$
\pi: \mathbb{P}^{r} \rightarrow \mathbb{P}^{s}
$$

one has

$$
\frac{\operatorname{deg}(\mathrm{C})}{r}<\frac{\operatorname{deg}(\pi(\mathrm{C}))}{s}
$$

[resp. $\operatorname{deg}(\mathrm{C}) / r \leqq \operatorname{deg}(\pi(\mathrm{C})) / s]$. By Clifford's theorem, a canonical curve is linearly stable. On the other hand, it is known that linear stability implies stability [12] $\left(^{3}\right.$).
Now (1.1) or (2.9) say that the line bundle $\left(\left(\omega_{\pi}^{\otimes g} \otimes \pi^{*} \operatorname{det}\left(\pi_{*} \omega_{\pi}\right)^{-1}\right)\right.$ has non-negative self-intersection. This implies that

$$
\begin{aligned}
& 0 \leqq g\left(\omega_{\pi} \cdot \omega_{\pi}\right)-2\left(\omega_{\pi} \cdot \pi^{*} \operatorname{det}\left(\pi_{*} \omega_{\pi}\right)\right) \\
&=g\left(\omega_{\pi} \cdot \omega_{\pi}\right)-(4 g-4) \operatorname{deg}_{\pi}(\lambda)
\end{aligned}
$$

since ω_{π} has degree $2 g-2$ on the fibers of π. Taking (4.2) into account, this becomes

$$
0 \leqq(12 g-(4 g-4)) \operatorname{deg}_{\pi}(\lambda)-g \operatorname{deg}_{\pi}(\delta) ;
$$

[^3]we have thus proved, in the special case when the general fiber is non-hyperelliptic, the
Proposition (4.3). - Any family of genus g stable curves over a smooth one-dimensional base whose general member is smooth satisfies the inequality
$$
(8+4 / g) \operatorname{deg}(\lambda) \geqq \operatorname{deg}(\delta)
$$

Actually, Proposition (2.9) gives a little more. Let p be a singular point of type $i>0$ in a fiber $\pi^{-1}(t)$. Then every section of the dualizing sheaf of $\pi^{-1}(t)$ vanishes at p. Thus, if $\mathscr{I} \omega_{\pi}$ is the subsheaf of ω_{π} generated by $\pi_{*}\left(\omega_{\pi}\right), \mathscr{I}$ is a proper ideal at p. In fact, if C_{1} and C_{2} are the two components of $\pi^{-1}(t)$ meeting at p, there is a differential φ on C_{1} that does not vanish at p, or, which is the same, vanishes simply at p as a section of the restriction to C_{1} of $\omega_{\pi^{-1}(t)}$; we can then find a section ψ of ω_{π} over a neighbourhood of $\pi^{-1}(t)$ that restricts to φ on C_{1} and to zero on C_{2}. Therefore, if X is of the form $x y=t^{n}$ near p, where y vanishes on C_{1} and x on C_{2}, then, locally, $\psi=x . \eta$, where η is a section of ω_{π} that does not vanish at p. Hence $\mathscr{I}_{p}=(x, y)$, so

$$
e_{\mathrm{L}}(\mathscr{I})=\sum_{i>0} \operatorname{deg}_{\pi}\left(\delta_{i}\right)
$$

and (2.9) yields

$$
\begin{equation*}
(8+4 / g) \operatorname{deg}_{\pi} \lambda \geqq \operatorname{deg}_{\pi} \delta_{0}+2 \sum_{i>0} \operatorname{deg}_{\pi} \delta_{i} \tag{4.4}
\end{equation*}
$$

b. The hyperelliptic case. - As we have announced, Proposition (4.3) still holds for families of hyperelliptic curves; indeed, it is sharp for some families, and in fact we will see these are the only examples of families of generically smooth curves for which (4.3) is sharp.

We denote by I_{g} the locus of hyperelliptic curves in \mathbf{M}_{g} and by $\overline{\mathrm{I}}_{g}$ its closure in $\overline{\mathrm{M}}_{g}$. As a first step, we notice that

Lemma (4.5). - $\operatorname{Pic}\left(\mathrm{I}_{g}\right)$ is a finite group.
Proof. - It suffices to show that $\operatorname{Pic}\left(\mathrm{I}_{g}\right)$ is a torsion group. Let Δ be the divisor in the symmetric product

$$
\operatorname{Sym}^{2 g+2}\left(\mathbb{P}^{1}\right)=\mathbb{P}^{2 g+2}
$$

whose points are the effective divisors in \mathbb{P}^{1} with multiple points. Clearly I_{g} is the quotient of $\mathbb{P}^{2 g+2}-\Delta$ by PGL (2) and is normal. Now let X be the set of $(2 g-1)$ tuples $\left(p_{1}, \ldots, p_{2 g-1}\right)$ of points of \mathbb{P}^{1} such that

$$
\begin{gathered}
p_{i} \neq p_{j} \quad \text { if } \quad i \neq j \\
p_{i} \neq 0,1, \infty
\end{gathered}
$$

Notice that X is the complement of a divisor in affine $(2 g-1)$-space, so Pic (X) vanishes. Let

$$
\alpha: \quad X \rightarrow I_{g}
$$

```
4e SÉRIE - TOME 21 - 1988 - N N
```

be the morphism that sends $\left(p_{1}, \ldots, p_{2 g-1}\right)$ to the class of the divisor

$$
\sum_{i=1}^{2 g+2} p_{i}
$$

where $p_{2 g}=0, p_{2 g+1}=1, p_{2 g+2}=\infty$. Clarly, α is a finite morphism: let k be its degree.
Now let M be any line bundle on I_{g}; we know that $\alpha^{*}(\mathrm{M})$ is trivial. On the other hand, since α is a k-sheeted covering and I_{g} is normal, there is a natural map $H^{0}\left(X, \alpha^{*}(M)\right) \rightarrow H^{0}\left(I_{g}, M^{k}\right)$, and any nowhere vanishing section of $\alpha^{*}(M)$ maps to a nowhere vanishing section of M^{k}.
Q.E.D.

We denote by \mathscr{I}_{g} the moduli stack of genus g smooth hyperelliptic curves, and by $\overline{\mathscr{I}}_{g}$ the moduli stack of stable genus g hyperelliptic curves. Mimicking what one does for \mathscr{M}_{g} and $\overline{\mathcal{M}}_{g}$, one can define Picard groups $\operatorname{Pic}\left(\mathscr{I}_{g}\right)$, $\operatorname{Pic}\left(\overline{\mathcal{I}}_{g}\right)$. Our next goal is to determine the rational Picard group

$$
\operatorname{Pic}_{\mathbb{Q}}\left(\overline{\mathscr{I}}_{g}\right)=\operatorname{Pic}\left(\overline{\mathscr{I}}_{g}\right) \otimes \mathbb{Q} .
$$

We begin by observing that Lemma (4.5) implies that

$$
\operatorname{Pic}_{\mathbb{Q}}\left(\mathscr{I}_{g}\right)=0 .
$$

In fact, if L is a line bundle on \mathscr{I}_{g}, a power of L descends to a line bundle M on I_{g}; on the other hand a power of M is trivial, so the same is true for L .

What this means is that a class in $\operatorname{Pic}_{\mathbb{Q}}\left(\overline{\mathscr{\Phi}}_{g}\right)$ should be a linear combination of "boundary classes". Things are slightly complicated by the fact that, while Δ_{i} cuts out on $\overline{\mathrm{I}}_{g}$ an irreducible divisor when $i>0$, the intersection of Δ_{0} with $\overline{\mathrm{I}}_{g}$ breaks up into several irreducible components. To see this, let C be a stable hyperelliptic curve of genus g : then \mathbf{C} has a semistable model \mathbb{Z} which is a two-sheeted admissible cover (cf. [3] or [8]) of a stable ($2 g+2$)-pointed noded curve \mathbf{R} of arithmetic genus zero. Let $f: \widetilde{\mathbf{C}} \rightarrow \mathbf{R}$ be the covering map, and let p be a singular point of R . The complement of p has two connected components R^{\prime} and $R^{\prime \prime}$, so the set of marked points of \mathbf{R} breaks up into two subsets, those lying on R^{\prime} and those lying on $\mathrm{R}^{\prime \prime}$; let α and $2 g+2-\alpha \geqq \alpha$ be the orders of these two subsets. We will call α the index of the point p; notice that $\alpha \geqq 2$. Suppose that p has odd index $\alpha=2 i+1, i>0$; then f must be branched at p, and the unique point q lying above p is a singular point of type i, according to the terminology introduced at the beginning of this section. In particular, it follows from the irreducibility of the space of h-pointed stable curves of genus zero that the intersection of Δ_{i} with $\overline{\mathrm{I}}_{g}$ is irreducible. Suppose instead that the index of p is even and equal to $2 i+2$. Then f is unbranched at p, so $f^{-1}(p)$ consists of two points q_{1} and q_{2}, and $f^{-1}\left(\mathrm{R}^{\prime}\right)$ and $f^{-1}\left(\mathrm{R}^{\prime \prime}\right)$ are semistable hyperelliptic curves of genera i and $g-i-1$, joined at couples of points that are conjugate under the hyperelliptic involution. In particular, q_{1} and q_{2} are singular points of type 0 . We let Ξ_{i} be the locus of all curves C in $\overline{\mathrm{I}}_{g}$ such that R has a singular point of index $2 i+2$. The preceding discussion shows that

$$
\Delta_{0} \cap \overline{\mathbb{I}}_{g}=\Xi_{0} \cup \Xi_{1} \cup \ldots \cup \Xi_{[(g-1) / 2]}
$$

It is also clear that each Ξ_{i} is irreducible.
A typical member of $\Delta_{i} \cap I_{g}$

A typical member of Ξ_{i}

Fig. 2

Let C be a general point of Ξ_{i} or $\Delta_{i} \cap \overline{\mathrm{I}}_{g}$, and $f: \widetilde{\mathrm{C}} \rightarrow \mathrm{R}$ the corresponding admissible covering. Suppose C belongs to Ξ_{0}. Thus C is obtained from a smooth hyperelliptic curve of genus $g-1$ by identifying two points that are conjugate under the hyperelliptic involution, while \widetilde{C} is the blow-up of C at its singular point. It follows that the universal deformation space of the admissible covering $f: \widetilde{\mathrm{C}} \rightarrow \mathrm{R}$ is a two-sheeted covering of the universal deformation space of C , branched along the locus of curves in Ξ_{0}. On the other hand, if C belongs to Δ_{i} or to $\Xi_{i}, i \geqq 1$, then the universal deformation spaces of $f: \widetilde{\mathrm{C}} \rightarrow \mathrm{R}$ and of C are the same.

The divisors Ξ_{i} pull back to Cartier divisors on $\overline{\mathscr{I}}_{g}$, since the universal deformation space of a hyperelliptic curve within hyperelliptic curves is smooth; the class of Ξ_{i} in $\operatorname{Pic}\left(\overline{\mathcal{S}}_{g}\right)$ will be denoted ξ_{i}. In what follows, we shall improperly use the symbols λ, δ_{i} also to denote the restrictions of λ and δ_{i} to $\overline{\mathscr{I}}_{g}$. In view of the discussion above, the class δ_{0} is related to the ξ_{i} by the identity

$$
\begin{equation*}
\delta_{0}=\xi_{0}+2 \xi_{1}+\ldots+2 \xi_{[(g-1) / 2]} \tag{4.6}
\end{equation*}
$$

If L is a line bundle on $\overline{\mathscr{I}}_{g}$ which is trivial on \mathscr{I}_{g} there are integers n_{i}, m_{i} such that

$$
\mathrm{Cl}(\mathrm{~L})=\sum n_{i} \xi_{i}+\sum_{i>0} m_{i} \delta_{i}
$$

The $n_{i}\left(\right.$ resp. $\left.m_{i}\right)$ are determined as follows. Choose a nowhere vanishing section s of L on \mathscr{I}_{g}, and let C be a curve in Ξ_{i} (resp. Δ_{i}). Then n_{i} (resp. m_{i}) is the order of zero of s along the locus of hyperelliptic curves belonging to Ξ_{i} (resp. Δ_{i}) in the universal deformation space (as a hyperelliptic curve) of C. Thus $\xi_{0}, \ldots, \xi_{[(g-1) / 2]}, \delta_{1}, \ldots, \delta_{[g / 2]}$ generate $\operatorname{Pic}_{Q_{Q}}\left(\overline{\mathscr{g}}_{g}\right)$. In particular λ is a rational linear combination of them.
Proposition (4.7). - The classes $\xi_{0}, \ldots, \xi_{[(g-1) / 2]}, \delta_{1}, \ldots, \delta_{[g / 2]}$ freely generate $\operatorname{Pic}_{\mathbb{Q}}\left(\overline{\mathscr{J}}_{g}\right)$. Furthermore in $\operatorname{Pic}_{Q_{Q}}\left(\overline{\mathscr{I}}_{g}\right)$ we have:

$$
(8 g+4) \lambda=g \xi_{0}+\sum_{i=1}^{[(g-1) / 2]} 2(i+1)(g-i) \xi_{i}+\sum_{j=1}^{[g / 2]} 4 j(g-j) \delta_{j}
$$

Since we already know that λ is a linear combination of the ξ_{i} and the δ_{i}, to prove Proposition (4.7) it is enough to check that the degrees of the two sides of the identity in the statement are the same on sufficiently many "independent" families of hyperelliptic curves with a one-dimensional base.

To see all this, let's start with the simplest case of a family $\pi: \mathrm{X} \rightarrow \mathrm{T}$ of hyperelliptic curves, the case where T is a smooth curve and X is given simply as a double cover $\eta: X \rightarrow Y$ of $Y=T \times \mathbb{P}^{1}$ branched along a general curve C of type $(2 g+2,2 m)$ in Y (here "general" means C is smooth and simply branched over T). In this situation, \mathbf{X} will be smooth since C is, and all the fibers of X over T will be irreducible curves with at most one node. In particular, if singular, they will be stable and will not belong to Ξ_{i} or Δ_{i} for $i>0$. Thus the degree of ξ_{i} and of δ_{i} is zero for $i \geqq 1$, while the degree of ξ_{0} equals the number of branch points of C over T , i.e.,

$$
\begin{aligned}
\operatorname{deg} \xi_{0} & =\left(\mathbf{C} \cdot \omega_{\mathbf{Y / T}}\right)+(\mathbf{C} \cdot \mathbf{C}) \\
& =-2 \cdot 2 m+4 m \cdot(2 g+2) \\
& =8 m g+4 m,
\end{aligned}
$$

since the relative dualizing sheaf $\omega_{\mathbf{Y} / \mathrm{T}}$ has type $(-2,0)$. Next, to calculate the selfintersection of the relative dualizing sheaf ω_{n}, observe that, by the Riemann-Hurwitz formula,

$$
\omega_{\pi}=\eta^{*} \omega_{\mathbf{Y} / \mathbf{T}}(\widetilde{\mathrm{C}}),
$$

where $\tilde{\mathbb{C}} \subset \mathbf{X}$ is the ramification curve of η. We then have

$$
\begin{gathered}
\left(\eta^{*} \omega_{\mathrm{Y} / \mathrm{T}} \cdot \eta^{*} \omega_{\mathrm{Y} / \mathrm{T}}\right)=2\left(\omega_{\mathrm{Y} / \mathrm{T}} \cdot \omega_{\mathrm{Y} / \mathrm{T}}\right)=0 \\
\left(\eta^{*} \omega_{\mathrm{Y} / \mathrm{T}} \cdot \widetilde{\mathrm{C}}\right)=\left(\omega_{\mathrm{Y} / \mathrm{T}} \cdot \mathrm{C}\right)=-2.2 m \\
(\widetilde{\mathrm{C}} \cdot \tilde{\mathrm{C}})=(\mathrm{C} \cdot \mathrm{C})=2 m \cdot(2 g+2),
\end{gathered}
$$

and so

$$
\begin{aligned}
\left(\omega_{\pi} \cdot \omega_{\pi}\right) & =-8 m+2 m \cdot(2 g+2) \\
& =4 m g-4 m .
\end{aligned}
$$

Using formula (42) we find that the degree of the Hodge bundle is

$$
\operatorname{deg}_{\pi} \lambda=\frac{4 m g-4 m+8 m g+4 m}{12}=m g,
$$

so that

$$
(8 g+4) \operatorname{deg}_{\pi} \lambda=g . \operatorname{deg}_{\pi} \xi_{0},
$$

as desired.
The analysis of a general family of hyperelliptic curves over a smooth one-dimensional base is of course more complicated. Since we are only interested in comparing the degrees of the two sides of the identity in (4.7), we may limit ourselves to families $\pi: \mathrm{X} \rightarrow \mathrm{T}$ of admissible covers; that is, double covers of families $f: \mathrm{Y} \rightarrow \mathrm{T}$ of stable ($2 g+2$)-pointed noded curves of arithmetic genus 0 , branched along the $2 g+2$ distinguished sections σ_{i} of f and possibly at some of the nodes of fibers of f, in accordance with the local description of such covers given in [3] or in [8]. In fact, from any family of hyperelliptic curves over a smooth one-dimensional base we may get a family of admissible covers by base change and blow-up of singular points in the fibers, and these operations have the effect of multiplying all degrees by the same constant.

We begin our analysis with the base Y of our family of double covers. Let $\left\{p_{i}\right\}$ be the set of points of Y that are nodes of their fibers; if the local equation of Y at p_{i} is $x y-t^{m_{i}}$ we will say that p_{i} has multiplicity m_{i}. We also let α_{i} be the index of p_{i}. We have then the:

Lemma (4.8). - $(2 g+1) \sum_{i}\left(\sigma_{i} . \sigma_{i}\right)=-\sum_{i} m_{i} \alpha_{i}\left(2 g+2-\alpha_{i}\right)$.
Proof. - First, observe that both sides of (4.8) are unchanged if we resolve the rational double points of Y ; we may thus assume that Y is smooth, and thus is the blow-up of a \mathbb{P}^{1}-bundle Z over T at a sequence of points smooth in their fibers. Now, if τ_{1}, τ_{2} are sections of a \mathbb{P}^{1}-bundle over the curve T , the difference $\tau_{1}-\tau_{2}$ is numerically equivalent to a multiple of the fiber, and so has self-intersection zero; thus

$$
\left(\tau_{1} \cdot \tau_{1}\right)+\left(\tau_{2} \cdot \tau_{2}\right)=2\left(\tau_{1} \cdot \tau_{2}\right)
$$

Given n sections τ_{i}, we can sum over all couples of indices i, j such that $i<j$ to obtain

$$
\begin{equation*}
(n-1) \sum_{i}\left(\tau_{i} \cdot \tau_{i}\right)=2 \sum_{i<j}\left(\tau_{i} \cdot \tau_{j}\right) . \tag{4.9}
\end{equation*}
$$

Now, blowing up the bundle \mathbf{Z} at a smooth point of a fiber through which exactly k of the sections τ_{i} pass, we create a node p of a fiber with index k; at the same time the left hand side of (4.9) decreases by $k(n-1)$ and the right hand side decreases by $k(k-1)$. We deduce that after any sequence of such blow-ups we will have

$$
(n-1) \sum_{i}\left(\tau_{i} \cdot \tau_{i}\right)=2 \sum_{i<j}\left(\tau_{i} \cdot \tau_{j}\right)-\sum_{h} \alpha_{h}\left(n-\alpha_{h}\right) .
$$

Assuming that all the sections τ_{i} are disjoint and setting $n=2 g+2$ we arrive at formula (4.8).

> Q.E.D.

We may now start our analysis of the family $\pi: \mathrm{X} \rightarrow \mathrm{T}$. We denote by η the double cover $\mathrm{X} \rightarrow \mathrm{Y}$ and by $\mathrm{R} \subset \mathrm{X}$ its ramification divisor. We denote by ε_{j} the number of points p_{i} of index $2 j+1$, counted according to their multiplicity, and by v_{j} the number of points p_{i} of index $2 j+2$. Clearly

$$
\begin{array}{lr}
\operatorname{deg}_{\pi} \xi_{0}=2 v_{0} & \\
\operatorname{deg}_{\xi_{i}} \xi_{i}=v_{i}, & i \geqq 1 \tag{4.10}\\
\operatorname{deg}_{\pi} \delta_{i}=\varepsilon_{i} / 2, & i \geqq 1 .
\end{array}
$$

To determine the other invariants of π note that, by the Riemann-Hurwitz formula

$$
\omega_{\pi}=\eta^{*} \omega_{f}(\mathrm{R})
$$

Writing σ for $\sum \sigma_{i}$ and observing that, since σ consists of a bunch of disjoint sections of f, $(\sigma . \sigma)$ equals $-\left(\sigma . \omega_{f}\right)$, we have

$$
\begin{aligned}
\left(\omega_{\pi} \cdot \omega_{\pi}\right) & =\left(\eta^{*} \omega_{f} \cdot \eta^{*} \omega_{f}\right)+2\left(\eta^{*} \omega_{f} \cdot \mathrm{R}\right)+(\mathrm{R} \cdot \mathrm{R}) \\
& =2\left(\omega_{f} \cdot \omega_{f}\right)+2\left(\omega_{f} \cdot \sigma\right)+(\sigma \cdot \sigma) / 2 \\
& =2\left(\omega_{f} \cdot \omega_{f}\right)-3(\sigma \cdot \sigma) / 2
\end{aligned}
$$

Since Y is (after resolving its rational double points, which won't affect this) the blowup of a \mathbb{P}^{1}-bundle over T a total of $\sum m_{i}=\sum \varepsilon_{j}+\sum v_{j}$ times, we have

$$
\left(\omega_{f} \cdot \omega_{f}\right)=-\sum \varepsilon_{j}-\sum v_{j}
$$

Next, by Lemma (4.8),

$$
(2 g+1) \sum_{i}\left(\sigma_{i} \cdot \sigma_{i}\right)=-\sum_{j}(2 j+2)(2 g-2 j) v_{j}-\sum_{j}(2 j+1)(2 g+1-2 j) \varepsilon_{j} .
$$

Putting these together, we have

$$
\begin{aligned}
2(2 g+1)\left(\omega_{\pi} \cdot \omega_{\pi}\right)=\sum_{j}[6(j+1)(2 g-2 j)-4(2 g & +1)] v_{j} \\
& +\sum_{j}[3(2 j+1)(2 g+1-2 j)-4(2 g+1)] \varepsilon_{j},
\end{aligned}
$$

and combining this with (4.10), (4.6), and the standard relation (4.2),

$$
\begin{aligned}
& 24(2 g+1) \operatorname{deg}_{\pi} \lambda=2(2 g+1)\left[\left(\omega_{\pi} \cdot \omega_{\pi}\right)+\operatorname{deg}_{\pi} \delta\right] \\
& \qquad=6 g \operatorname{deg}_{\pi} \xi_{0}+\sum_{j>0} 6(j+1)(2 g-2 j) \operatorname{deg}_{\pi} \xi_{j} \\
& \quad+\sum_{j} 6[(2 j+1)(2 g+1-2 j)-(2 g+1)] \operatorname{deg}_{\pi} \delta_{j} .
\end{aligned}
$$

We arrive finally at the relation

$$
\begin{equation*}
(8 g+4) \operatorname{deg}_{\pi} \lambda=g \cdot \operatorname{deg}_{\pi} \xi_{0}+\sum_{i>0} 2(i+1)(g-i) \operatorname{deg}_{\pi} \xi_{i}+\sum_{j>0} 4 j(g-j) \operatorname{deg}_{\pi} \delta_{j} \tag{4.11}
\end{equation*}
$$

as desired.
Proposition (4.7) now follows readily from looking at families of curves obtained by taking double covers of $\mathrm{T} \times \mathbb{P}^{1}$ branched over curves of type $(2 m, 2 g+2)$, generic except for ordinary j-fold points: it is easy to see that, in addition to the family constructed above with all $\operatorname{deg} \delta_{i}$ and $\operatorname{deg} \xi_{i}$ zero except for $\operatorname{deg} \xi_{0}$, there exists for each $j>0$ a family with all $\operatorname{deg} \delta_{i}$ and $\operatorname{deg} \xi_{i}$ zero except for $\operatorname{deg} \xi_{0}$ and $\operatorname{deg} \xi_{j}\left(\right.$ resp. $\operatorname{deg} \delta_{j}$).
Q.E.D.

Observe that formula (4.11) proves Proposition (4.3) in the hyperelliptic case; one simply has to use (4.6) and to remark that, for $1 \leqq i \leqq[(g-1) / 2]$ (resp., $1 \leqq i \leqq[g / 2]$), $(i+1)(g-i)$ [resp., $4 i(g-i)$] is strictly larger than g. This concludes the proof of (4.3); it also shows that the families of hyperelliptic curves all of whose singular fibers are not in Δ_{i} or in Ξ_{i} for $i \geqq 1$ are the only ones for which equality holds in (4.3). In fact, these are essentially the only families of curves, hyperelliptic or not, for which this happens, as our next result indicates.

Theorem (4.12). - Let $\pi: \mathrm{X} \rightarrow \mathrm{T}$ be any non-isotrivial family of stable curves of genus g whose general member is smooth. Then equality holds in (4.3) if and only if the general fiber of π is hyperelliptic and the singular fibers of π do not belong to Δ_{i} or to Ξ_{i} for $i \geqq 1$.

Proof. - It suffices to show that the general fiber of π is hyperelliptic if equality holds in (4.3). Assume this is not the case: to get a contradiction, we go back to the proof of Theorem (1.1), with $L=\omega_{\pi}$ and $F=\pi_{*}(\mathrm{~L})$. The proof is based on the fact that the line bundle $\mathscr{F}_{n}[c f .(2.1)]$ has nonzero sections for large n, and thus the degree of its Chern class is non-negative. This degree, in the case at hand, is a polynomial in n of degree at most 2, and our hypotheses precisely say that its degree 2 term vanishes. Thus the coeeficient of the degree 1 term is non-negative; on the other hand, the Grothendieck Riemann-Roch formula shows that this coefficient is

$$
m(g-1) \operatorname{deg}_{\pi} \lambda-\frac{g m}{2}\left(\omega_{\pi}\right)^{\cdot 2}=-\frac{m}{2}\left[(10 . g+2) \operatorname{deg}_{\pi} \lambda-g \cdot \operatorname{deg}_{\pi} \delta\right]
$$

[^4]which is negative as soon as $g>1$ unless the family is isotrivial.

Q.E.D.

Remark (4.13). - When $g=1,2$, Proposition (4.7) implies that, over \mathbb{Q},

$$
\begin{gathered}
12 \lambda=\delta, \\
10 \lambda=\delta_{0}+2 \delta_{1},
\end{gathered}
$$

respectively. In fact, these equalities are valid over \mathbb{Z} : the first follows from (4.2) by noticing that $\omega_{\mathbf{X} / \mathrm{T}}$ is trivial along the fibers of any family of elliptic curves, while the second is due to Mumford [13]. Thus, (4.7) can be viewed as a partial generalization of Mumford's result.
c. The singular case. - It is natural to ask now whether the inequality (4.3) holds as well for families of singular stable curves. The answer, of course, is no: there is the standard example [12] of the family of curves $\left\{\mathrm{C}_{\mu}\right\}$ obtained by taking a general pencil $\left\{\mathrm{E}_{\mu}\right\}$ of plane cubics with base point q and attaching a fixed curve C^{\prime} of genus $g-1$ to E_{μ} by identifying a fixed point $p \in \mathrm{C}^{\prime}$ with q. For this family (as we shall see) the ratio of $\operatorname{deg} \delta$ to $\operatorname{deg} \lambda$ is 11 . To complete our discussion, then, we would like to claim that in fact this example is extremal, i. e., that for any family of stable curves we have

$$
\begin{equation*}
11 . \operatorname{deg} \lambda \geqq \operatorname{deg} \delta . \tag{4.14}
\end{equation*}
$$

To do this, suppose that $\pi: \mathrm{X} \rightarrow \mathrm{T}$ is any family of stable curves of genus g. Possibly after a finite base change, which won't affect the validity of (4.14), we can realize π as the union of families $\pi_{i}: \mathrm{X}_{\boldsymbol{i}} \rightarrow \mathrm{T}$ flat with generically smooth fibers over T , with sections σ_{α} of $\pi_{i(\alpha)}$ identified with sections τ_{α} of $\pi_{j(\alpha)}$. We see from the exact sequence

$$
0 \rightarrow \oplus \pi_{i *}\left(\omega_{\pi_{i}}\right) \rightarrow \pi_{*}\left(\omega_{\pi}\right) \xrightarrow{\mathrm{R}} \mathcal{O}^{h} \rightarrow 0,
$$

where the map R is given by residues along the sections σ_{α} giving rise to singular points of type 0 in the fibers, and h is the number of these sections, that the degree of the Hodge bundle of π will then be the sum of the degrees of the Hodge bundles of the π_{i}. As for the degree of δ, formula (4.1) gives

$$
\operatorname{deg}_{\pi} \delta=\sum\left(\sigma_{\alpha}\right)^{2}+\sum\left(\tau_{\alpha}\right)^{2} .
$$

We can thus write $\operatorname{deg}_{\pi} \delta$ as the sum of contributions γ_{i}, where γ_{i} is the sum of $\operatorname{deg}_{\pi} \delta_{i}$ and of the self-intersections of all sections σ_{α} and τ_{α} lying on X_{i}. We claim now that

Lemma (4.15). - For any i, 11. $\operatorname{deg}_{\pi i} \lambda \geqq \gamma_{i}$.
Proof. - We break this up into cases, according to the genus g_{i} of the general fiber of X_{i}. First, if $g_{i} \geqq 2$, then we have $(8+4 / g) \operatorname{deg}_{\pi_{i}} \lambda \geqq \operatorname{deg}_{\pi_{i}} \delta$, and since any section of a family of curves of positive genus has nonpositive self-intersection (see [1] or [7]),

$$
\begin{equation*}
\gamma_{i} \leqq \operatorname{deg}_{\pi_{i}} \delta \leqq\left(8+4 / g_{i}\right) \operatorname{deg}_{\pi_{i}} \lambda \leqq 11 . \operatorname{deg}_{n_{i}} \lambda . \tag{4.16}
\end{equation*}
$$

Next, if $g_{i}=1$, the self-intersection of a section of π_{i} not passing through any singular points of fibers is just minus the degree $\operatorname{deg}_{\pi_{i}} \lambda$ of the Hodge bundle of π_{i} (we have in fact an isomorphism of $\pi_{i *}\left(\omega_{\pi_{i}}\right)$ with the restriction of $\omega_{\pi_{i}}$ to $\left.\sigma_{\alpha}\right)$. We thus have

$$
\begin{equation*}
\gamma_{i} \leqq \operatorname{deg}_{\pi_{i}} \delta-\operatorname{deg}_{\pi_{i}} \lambda=11 \cdot \operatorname{deg}_{\pi_{j}} \lambda . \tag{4.17}
\end{equation*}
$$

Finally, if $g_{i}=0$, Lemma (4.8) tells us that the sum of the self-intersections of 2 or more disjoint sections of a family of noded rational curves is non-positive, which is what we need.

Q.E.D.

d. The ample cone in moduli. - We simply remark here that, taking into account the inequality (4.14) above and Mumford's result that $a . \lambda-\delta$ is ample for large enough a, the remainder of Theorem (1.3) follows from Seshadri's criterion for ampleness [9].
It should also be observed that, while this settles the question of ampleness for linear combinations of λ and δ, the more general question of what divisor classes $a \lambda-b_{0} \delta_{0}-b_{1} \delta_{1}-\ldots$ are ample remains mysterious. To begin with, we can certainly improve Theorem (1.3), and even (4.4), if we take into account the various boundary components. For example, if a family of generically smooth curves has a reducible fiber, we don't necessarily have to apply (2.9) to the relative dualizing sheaf of the family; we can twist ω by some linear combination E of the components of the reducible fiber without affecting the hypotheses of (2.9), and, for some E, obtain a better estimate. Consider, for instance, a family $\pi: \mathrm{X} \rightarrow \mathrm{T}$ of stable curves over a smooth complete curve T; suppose the general fiber of π is smooth and non-hyperelliptic. For any singular point p of type $i \geqq 1$ in the fibers of π, write the corresponding fiber as the union of curves E_{p} and D_{p} of genera i and $g-i$, meeting at p, and let m_{p} be the multiplicity of p. Set

$$
\mathrm{E}=\sum m_{p} \mathrm{E}_{p},
$$

where the sum is extended to all singular points of positive type, and apply (2.9) with $\mathrm{L}=\omega_{\pi}(\mathrm{E})$ and $\mathrm{F}=\pi_{*} \mathrm{~L}$: one gets

$$
(8 g+4) \operatorname{deg}_{\pi} \lambda \geqq g \cdot \operatorname{deg}_{\pi} \delta_{0}+\sum_{i=1}^{[g g / 2]} 4(g-i) \operatorname{deg}_{\pi} \delta_{i}
$$

which is slightly better than (4.4). We have not yet, however, been able to obtain in this way estimates that we believe are sharp.

A further problem arises when we try to look at the boundary. Specifically, one can say something on the basis of the inequalities (4.16) and (4.17); but since in particular (4.16) is known not to be sharp, we won't get an exact answer this way. Indeed, the general rule seems to be that to determine exactly the ample cone in the Picard group of $\overline{\mathrm{M}}_{g}$ we have to understand what inequalities hold, not just between $\operatorname{deg}_{\pi} \lambda$ and $\operatorname{deg}_{\pi} \delta$ on families of generically smooth curves, but among $\operatorname{deg}_{\pi} \lambda, \operatorname{deg}_{\pi} \delta$ and $\left(\sigma_{\alpha}\right)^{2}$ for a family of generically smooth curves of genus g with sections σ_{α}. Put another way, we need to know what divisor classes on the moduli space $\overline{\mathrm{M}}_{g, k}$ of stable k-pointed curves have nonnegative degree on every curve not contained in the boundary of $\overline{\mathbf{M}}_{g, k}$.

```
4e SÉrIE - TOME 21 - 1988 - N N 3
```

There is some hope of getting information about such families by applying (2.9) not only to the relative dualizing sheaf, but to linear combinations of it and the sections σ_{α}. It is possible to give estimates on the ample cone in this way, but we do not as yet have any sharp inequalities. Indeed, to know that a given estimate was sharp, we would need a stock of examples of such families to try it on, and at present we don't know of any families that might even be suspected of being extremal.

REFERENCES

[1] S. Ju. Arakelov, Families of Algebraic Curves with Fixed Degeneracies (Math. U.S.S.R. Izvestija, Vol. 35, 1971, pp. 1277-1301).
[2] E. Arbarello and M. Cornalba, The Picard Groups of the Moduli Spaces of Curves (Topology, Vol. 26, 1987, pp. 153-171).
[3] A. Beauville, Prym Varieties and the Schottky Problem (Invent. Math., Vol. 41, 1977, pp. 149-196).
[4] W. Fulton, Intersection Theory, Springer Verlag, Berlin, 1984.
[5] J. Harer, The Second Homology Group of the Mapping Class Group of an Orientable Surface (Invent. Math., Vol. 72, 1983, pp. 221-239).
[6] J. Harer, The Cohomology of the Moduli Space of Curves, in Theory of Moduli, E. Sernesi, Ed. (Lecture Notes in Mathematics, n° 1337, Springer-Verlag, Berlin, 1988, pp. 138-221).
[7] J. Harris, Families of Smooth Curves (Duke Math. J., Vol. 51, 1984, pp. 409-419).
[8] J. Harris and D. Mumford, On the Kodaira Dimension of the Moduli Space of Curves (Invent. Math., Vol. 67, 1982, pp. 23-86).
[9] R. Hartshorne, Ample Subvarieties of Algebraic Varieties (Lecture Notes in Mathematics, ${ }^{\circ}$ 156, SpringerVerlag, Berlin, 1970).
[10] I. Morrison, Projective Stability of Ruled Surfaces (Invent. Math., Vol. 56, 1980, pp. 269-304).
[11] D. Mumford, Picard Groups of Moduli Problems, in Arithmetical Algebraic Geometry, O. F. G. Schilling Ed., Harper \& Row, New York, 1965, pp. 33-81.
[12] D. Mumford, Stability of Projective Varieties (L'Enseignement Math., Vol. 23, 1977, pp. 39-110).
[13] D. Mumford, Towards an Enumerative Geometry of the Moduli Space of Curves, in Arithmetic and Geometry, Vof. 11, M. Artin and J. Tate, Eds., Birkhäuser, Boston 1983, pp. 271-328.
[14] E. Viehweg, Weak Positivity and the Additivity of the Kodaira Dimension for Certain Fibre Spaces, in Algebraic Varieties and Analytic Varieties, S. Ittaka, Ed., Adv. Stud. Pure Math., Vol. 1, NorthHolland, Amsterdam 1983, pp. 329-353.
[15] G. Xiao, Fibered Algebraic Surfaces with Low Slope (Math. Ann., Vol. 276, 1987, pp. 449-466).
(Manuscrit reçu le 15 octobre 1987, révisé le 8 février 1988).
M. Cornalba,

Università di Pavia, Dipartimento di Matematica, 1-27100 Pavia, Italia;
J. Harris,

Brown University,
Department of Mathematics, Providence, RI 02912, U.S.A.
Present address: Harvard University,
Department of Mathematics Cambridge, MA 02138, U.S.A..

[^0]: (${ }^{1}$) Partially supported by C.N.R. and by the MPI national project "Geometria Algebrica".
 (${ }^{2}$) Partially supported by N.S.F. grant DMS-84-02209.

[^1]: 4^{e} SÉRIE - TOME $21-1988-\mathrm{N}^{\circ} 3$

[^2]: - ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

[^3]: $\left.{ }^{(3}\right)$ What is proved here is that linear stability implies asymptotic Chow stability; but Chow stability implies Hilbert stability [10].

[^4]: 4^{e} SÉrie - TOME $21-1988-\mathrm{N}^{\circ} 3$

