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Introduction

Numerical properties of degeneracy loci of morphisms of vector bundles are useful
tools in many problems concerning "enumeration" in algebraic geometry and
topology. The most typical is the following situation. Let E and F be vector bundles
of ranks n and m on a scheme X. Let (p: F -> E be a morphism of vector bundles.

The set:
D, (cp) = [x e X, rank cp (x) ^ r}

(1) This research was partially carried out while the author was a guest at the Brown University and was in
part supported by the N.S.F. Grant D. M.S.-84-02209. He expresses his gratitude to both.
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414 p. PRAGACZ

is called the degeneracy locus of rank r of (p. D^((p) as a subscheme of X is locally
defined by the ideal generated by all (r+l)-order minors of q>. In [T] Thorn observed
that for a "general" rnorphisrn of vector bundles (p: F -> E, the fundamental class of
D^((p) should be a polynomial in the Chern classes of E and F independent of the
morphism (p itself. This polynomial, generalizing Giambelli's formula for the degree of
a projective determinantal variety, was subsequently found by Porteous (see [Po]).

[D,((p)]=Det[c^_^(E-F)], 1 ̂ p, q ̂  m-r,

and was applied in numerous situations in geometry and topology.
For some geometric purposes, however, a deeper insight into enumerative properties

of degeneracy loci is required. For example, a study of the Chern numbers of degeneracy
loci and their Chow groups leads in a natural way to an investigation of the following
more general

Problem. — What are the polynomials in the Chern classes of E and F which describe
cycles supported in D^((p), in an universal way?

More precisely, let i/.D,(n>)->X be the inclusion map and let
(Q^: A. (D^((p)) -> A. (X) be the corresponding map of the Chow groups (cf. [F]). Let
Z[c.(A), c.(B)]=Z[ci(A), . . ., c^(A), Ci(B), . . ., cJB)] be a graded polynomial Z-
algebra where degCfe(A)=degCfc(B)=fe. Let ^, be the ideal of all polynomials
Pe Z [c. (A), c. (B)] such that for every morphism (p: F -> E of vector bundles of ranks m
and n on an arbitrary scheme X, and for every aeA(X)

P(c.(E),c.(F))noc6lm(0,.

Here c. (E), c. (F) denote the Chern classes of E and F. Of course the Giambelli-Thom-
Porteous polynomials describing the fundamental classes [D^((p)] for i ̂  r belong to ̂ ,
but they do not generate this ideal for r > 0.

In the present paper we give an explicit description of the ideal ̂  for every r. This
is done in Theorem 3.4. A proper language to achieve this goal is provided by certain
class of symmetric polynomials. Maybe it is in order to recall that symmetric polynomi-
als very often play a significant role in cohomological computations; they lead to a
description of cohomology rings of many important varieties and to discovery of import-
ant formulas in cohomology rings, as well (see [H], [M] and [F]). In our situation these
are the so called Schur S-polynomials which play a fundamental role in a description of
the ideal ̂ . More precisely, we use a generalization of the usual Schur S-polynomials
depending on two sets of variables. The definitions and properties of these generalized
Schur S-polynomials are given in Section 1. Our new geometric applications of them
are based on their factorization property stated in Lemma 1.1, and on a certain formula
for Gysin push forward (see Proposition 2.2).

Let us notice that the ideal ̂  has a remarkable interpretation in elimination theory
as a generalization of the resultant. Let

n m

A(x)=x"+ ̂  ^(A)^-1, B(x)=xm+ ̂  Cj(B)xm~j

i=l j=l
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ENUMERATIVE GEOMETRY OF DEGENERACY LOCI 415

be two polynomials in Z[c.(A), c.(B)][x]. Then the ideal of all polynomials
PeZ[c.(A), c.(B)] which vanish if A(x) and B(x), specialized to a field, have r+1 roots
in common, is equal to ̂  (see [P^])' A geometric interpretation of this ideal allows us
to study its algebraic properties by methods of intersection theory, and especially of
Schubert Calculus. We obtain in this way a certain "small", finite set of generators of
^ as well as a certain Z-basis of it (see Propositions 6.1 and 6.2).

The main Theorem 3.4 and methods used to prove it, allow us to give an
explicit description of the Chow groups of universal degeneracy loci
(see Propositions 4.2, 4.3). Moreover, as a by-product of our considerations we obtain
a simple rule for the computation of the Chern numbers of kernel and cokernel bundles
(see Proposition 5.3) and an algorithm which gives the Chern numbers of smooth degener-
acy loci themselves. In particular we arrive at a closed expression for the Euler-Poincare
characteristic of a smooth degeneracy loci in an arbitrary dimension (see Proposition 5.7).

For some geometric aims it is important also to investigate the two cases when F=EV

and (p: E" -> E is symmetric or antisymmetric (in the last case we assume that r is even
and that the subscheme structure imposed on D^(q>) is defined by the ideal generated by
all (r+2)-order subpfaffians of (p). The formulas for fundamental classes of D^((p) in
these cases were found in [J-L-P]. If (p is symmetric and "sufficiently general", then

[D^^—Dettc^^^^E)], 1 ̂ , q^n-r.

If (p is antisymmetric and "sufficiently general", then

[D,((p)]=Det[c^_^,(E)], 1 ̂ , q^n-r-L

A description of the ideal in Z[Ci(A), . . ., c^(A)], which corresponds to the ideal ^,
requires another family of symmetric polynomials. It turns out that a family of the so
called Schur Q-polynomials provides a good tool for investigation of symmetric and
antisymmetric degeneracy loci from the above point of view. These polynomials were
introduced by Schur in [Sch] in order to describe projective characters of the symmetric
group. Schur Q-polynomials satisfy the corresponding factorization property
(see Lemma 1.13) and, specialized to the Chern classes of some vector bundles, behave
nicely when pushing forward in the Chow groups of Grassmannian bundles
(cf. Proposition 2.8). This, with some little modifications, makes it possible to carry out
in Section 7 the previous program in the case of symmetric and antisymmetric degeneracy
loci. To compute the Chern numbers of these loci we need formulas for the Segre
classes of the second symmetric and exterior power of a vector bundle. Such a formula,
involving Pfaffians and binomial coefficients, is given in Proposition 7.12.

Let us notice that Propositions 5.3, 5.7, 7.9 and 7.13 give an explicit answer to
questions left open in [H-T].

This paper is a unified and extended version of the author's earlier preprints "Degener-
acy loci and symmetric functions I and II".
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We thank A. Bialynicki-Birula, A. Collino, W. Fulton and A. Lascoux for helpful
discussions.

The results of this paper were reported at the Algebraic Geometry seminar at Steklov
Mathematical Institute in Moscov (December 1986), and announced in [PJ.

Notations and conventions

SCHEMES AND CHOW GROUPS

The word scheme means in this paper an equidimensional algebraic scheme of finite
type over a field K.

The word point means always a closed point
If X is a scheme its Chow group graded by dimension will be denoted by A. (X), and

graded by codimension by A* (X). If a specification of the grading is not necessary, we
will write A(X).

MATRICES
A symmetric matrix X = [XpJ, 1 ̂  /?, q ̂  n, where Xpq = Xqp will be denoted by X = [XpJ,

1 ̂  p ^ q ̂  n. Similarly, an antisymmetric matrix X =[XpJ, 1 ̂  p, q ̂  n, where Xpp=0,
Xpq= -Xqp will be denoted by X = [Xpq], 1 ̂  p < q ̂  n.

PARTITIONS
By a partition we mean a weakly decreasing sequence I=(i*i, . . ., iy) of integers where

h ^ h ̂  • • • ^ ^ ^ °-
Instead of (i, . . ., i) (r-times) we will write (f/.
If for some k i\ > i^ > . . . i\ > f j^+i ̂ k^^"" • • • ==^=0, then I will be called strict.
For given partitions I==(i"i, . . ., ^), J=0i? • • • »7 r )» I ± J w1^ denote the sequence

O'l ±Ji, . . . ? i'r ±7r) and I c J will mean that ^ ^7^ for every k.
If I=0'i, . . ., y, J=(/i, . . .,7s) are two sequences of integers, then the juxtaposition

sequence (i\, . . ., i^ j\, . . ., jy) will be denoted by I, J.
The conjugate partition of a partition I, noted I~, is the partition (/\, 73, . . .), where

7fe=card{/i : i^k}.
r

Finally, for a given partition I its weight: ^ i\ will be denoted by [ 11 and its length:
k=l

card{fe, i\ + 0} will be denoted by ;(!).

1. Two classical families of symmetric polynomials

SCHUR S-POLYNOMIALS

Let A =(ai, . . ., a^ and B =(&i, . . ., b^ be two sequences of elements of a commuta-
tive ring R. For a given sequence I=(fi, . . ., iy) of integers, the Schur S-polynomial
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ENUMERATIVE GEOMETRY OF DEGENERACY LOCI 417

5j(A; B) is defined as the determinant of the matrix

W [^-^,(A; B)], l ^ p , q ^ r

where sJA; B) eR is given by the following identity in R [[t]].

r~ n -j-1 rn oono-^-) no-^z^AiB)^
L i = i J j=i fc=o

and ^(A; B) =0 if k < 0. By permuting the rows of the matrix (1), if necessary, we see
that each different from zero Schur S-polynomial is equal —up to a sign— to a
certain Schur S-polynomial indexed by a partition. Assume for a moment that I is a
partition. Notice that if b^=. . . =fo^=0, then Sj(A; B) becomes the "usual" Schur S-
polynomial s,(A) (cf. [M], [L-S]), and if a,=. . . =^=0, then Si(A; B)=(-l)11 ' s^(B)
where I~ is the conjugate partition of I. The following formula expresses 5j(A; B) in
terms of usual Schur S-polynomials

(2) 5,(A; B)^-!)!1'-^^)^^),

where the sum is over all partitions J, and 5i~/j~(B) denotes the corresponding skew
Schur polynomial (see [M], 1.5). The formula (2) is a simple consequence of a general
X.-ring calculus. Recall that for every element x in an arbitrary X-ring one defines Si(x)
as the determinant of the matrix

[s^-p+q(x)], 1^ A n y -

where Sk(x)=(-l)k'kk(- x) for any k. Then the following Linearity Formula holds

(3) ^-^^(-l)111-1^^)^^

where the sum is over all partitions J (see [M] Remark 1.5.3, and [L-S]). Let Sym(A)
be the ring of symmetric polynomials in A. Recall that Sym(A) has a natural 5l-ring
structure (see [M] Remark L2.15). Then in the X-ring Sym(A) <g)2Sym(B)=Sym(A, B)

n m

the formula (2) is a consequence of the formula (3) with x= ̂  a^ y= ̂  fc.. We refer
1=1 j=i

to [L-S] for the theory of Schur S-polynomials in the X-ring set-up. Another consequence
of the linearity formula (3) is

(4) Si(A)=^5j(A;B)si/j(B).
j

Moreover, inspired by the notation in ^,-ring calculus, from now on we will use the
following more suggestive notation for Schur S-polynomials

(5) Si(A-B)=5i(A; B).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



418 P. PRAGACZ

The following Lemma will be constantly used in this article.

LEMMA 1.1. — (Factorization Formula) Let I=0'i, . . ., in) and J=0i» • • ' ^ J p ) f J i ^ m

be two partitions. Then

^)"+i,j(A-B)=Si(A)5^n(A-B)5j(-B).

For a proof (see [B-R] 6.20 or [L-S] 7.6).
For the partition (m)" we have the following expression of the corresponding Schur S-

polynomial in terms of {flj and {bj}.

LEMMA 1.2:

s^n(A-B)=n(^-^ i=^ ' " . ̂  7=1. • • •. ^i-
u

For a proof see for example [J-L-P] Proposition 3 or [L-S] 7.6.
If E and F are two vector bundles of rank n and m respectively then we define Si(E-F)

as Si(A-B) where A(resp. B) is the set of the Chern roots of E (resp. F) (cf. [F]
Remark 3.2.3 for this last notion).

By the splitting principle, Lemma 1.2 can be rewritten as

LEMMA 1.3. — Let E and F be two vector bundles of ranks n and m on a
scheme X. Then c,,p (E ® F v) = s^n (E - F).

Remark 1.4. - The polynomials denoted here by 5i(A-B) appear in the literature
also under the names "Hook Schur functions" [B-R], "Super-Schur functions" or "Schur
bisymmetric functions".

The reader who is interested mainly in the case of degeneracy loci associated with the
generic morphism (p: F -> E, can omit the next (sub)section in the first reading.

SCHUR Q-POLYNOMIALS

The rest of this Section will be devoted to description of another important family of
symmetric polynomials introduced by Schur in [Sch], which are less well known than the
Schur S-polynomials.

Let A=(a^, . . ., a^ be a sequence of elements of a commutative ring R. Define
Q(OeR[[(]]and^(A)eRby

(6) Q^-ri ( i+^ofn (i-^o1 '= z ^(A)^
i= l l_ i=l J k=0

and ^(A)=0 if k < 0. Thus for every k, ^(A)eR is symmetric with respect to
a^ . . ., a^. For given nonnegative integers i, j define

Q^(A)=g,(A)^(A)-2^^(A)g,_i(A)+ . . . +(-1)^2^,(A).

Since Q(t) Q(-Q=1, we have for k > 0

^(A)-^(A)^_l(A)+^(A)^-2(A)+...+(-l) fc^(A)=0

46 SERIE - TOME 21 - 1988 - N° 3



ENUMERATIVE GEOMETRY OF DEGENERACY LOCI 419

and therefore

Q,,,(A) = -Q, ,(A) for i, j ^ O and 1+7 > 0.

In particular, Q»,o(A)=^(A)= -Qo,;(A) if f > 0. Finally, let I=0\, . . . , y be a
sequence of nonnegative integers. If r is even, we define the Schur Q-polynomial Q(A)
as the Pfaffian of the antisymmetric matrix

(7) [Q.,JA)] l ^ s < t ^ r

and if r is odd we put Q(A) =Q(^ ^ ̂  (A).
The following properties of Schur Q-polynomials follow from standard properties of

Pfaffians

LEMMA 1.5. — (i) For any sequence I=(fi , . . ., 0 of nonnegative integers,

Q(4,. . . .^o.. . . .o)(A)=Q(A).

(ii) For any I=(fi , . . ., i,), Qi(A) 15 a symmetric polynomial in a^ . . ., a^ of degree
! l+ . . .+f , .

(iii) For any nonnegative integers f, j such that i+j > 0

Q(....,,,...)(A)=-Q(....,,,,.)(A).

In particular Q( , ,. ^ (A)=0 for i > 0.
It follows from (iii) that the only nonzero Q-polynomials are given -up to a sign-

by Qi(A) where I is a strict partition, (i.e. i\ > 1*2 > . . . > h > h+i=' - - =ir=0 for
some k).

Example 1.6. — <^(A) =2 ̂  5, (A), where the summation ranges over all hook partitions
k

I of length k. It follows from the formula (6) that ^(A)= ^ s,(A)s^k-i(A). Then
1=0

Herts formula for Schur S-polynomials (see [M] 1.5.17) yields the desired identity.
Assume for a moment that a^ . . ., a^ are algebraically independent over Z. Let I be

a strict partition. Then, by the (7) Qi(A) is a sum of monomials of the form
z^(A). . .^(A), where zeZ and k i + . . . +^=;(I). Therefore Example 1.6 implies
that there exists in Z[ai, . . ., aj a polynomial Pi(A) such that QI(A)=2<(I)PI(A). We
will call Pi (A) the Schur P-polynomial and use it interchangeably with the Q(A).

The following fact proved by Schur (see [Sch] p. 225) will be crucial for applications
of Schur Q-polynomials for our purposes.

PROPOSITION 1.7. — Let I=(fi , . . ., ffc), k ^ n be a strict partition of length k. Then
the following equality holds

P, (A) = ^ w [a\^ af. . . ̂  [I (^ + ̂ -) (^ - ̂ )-1],
w e SnKS^ x Sn-fe 1 ̂  i < J ^ n

i ^ k

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



420 P. PRAGACZ

where for a given polynomial fe:Z[a^ . . .aj, wf(a^ . . ., a^ means f(a^^, . . ., a^).
For example,

n

P(.)(A)=E ^ ]-[ (^+a,-)(a,-a,.)-1,
s=l s' ^ s

WA)= z a^^ n as+fl' n ^±at:.
,,(=! ^+^5,' ^ s ^s—^s' r ^t a^—a^

For the reader's convenience we will give a proof of Proposition 1.7 in the Appendix
to this paper. Comparing Proposition 1.7 with definition 2.2 of the Hall-Littlewood
polynomials in [M] p. 104 we obtain

COROLLARY 1.8. — PI (A) is a specialization of the Hall-Littlewood polynomial Pi(A, t)
fort^-1.

Let I, J be partitions. Let Qi/j(A; t) be the skew Hall-Littlewood polynomial as
defined in [M].III.5. Define the skew Q-polynomial Qi/j(A) by

Qi/j(A)=Qi/j(A;(=-l).

As a consequence of the formulas III.5.2 and III.5.5 in [M] satisfied by Hall-Littlewood
polynomials, we obtain

LEMMA 1.9. — (i) For any partitions I, J Qi/j(A) is a Z-linear combination of the Schur
Q-polynomials QL(A).

(ii) Let I be a partition and let A=(ai, . . ., a^) B=(&i, . . . , & „ ) be two sequences of
elements in a commutative ring. Let A, B be the sequence
(a^ . . ., a^ foi, . . ., fcj. Then we have

Q(A,B)=^Q,(A)Q/j(B),

where the sum is over all (strict) partitions J.
For a given sequence A=(ai, . . ., a^ of elements in a commutative ring we write

A~=(-ai , . . ., -a^) and {A}-for the set {a^ . . ., aj.

LEMMA 1.10. —Assume that {A}={A~}. Then Qi/j(A)=0 for every I, J such that
I^J .

Proof. — By Lemma 1.9 (i) it suffices to show that for every I Qi(A)=0 if
{A}={A~}. Since Qi(A) is a polynomial in the <?JA), fc=l , 2, . . ., the assertion is
reduced to showing that ^(A)=0 if {A}={A~}. But this follows immediately from
the formula (6). •

Let pfc denote the partition (fe, k — 1, . . ., 2, 1).

4® SERIE — TOME 21 — 1988 — N° 3



ENUMERATIVE GEOMETRY OF DEGENERACY LOCI 421

LEMMA 1.11:

^-i (A) = n (^ + ̂  ^ (A) = n a, n ^ + ̂ )i < j i i < j
(for example s^ [M] p. 31).

If E is a vector bundle on a scheme X, then by Qi(E) (resp. Pi(E)) we will denote
Qi(A) (resp. Pi (A)) where A is the set of Chern roots of E. By the splitting principle
the above Lemma can be rewritten as

LEMMA 1.12.—Let E be a vector bundle of rank n on a scheme X. Then
c^ (S^ E) = 2" s^ (E), c^ (A2 E) = s^_, (E).

The following factorization property of Schur Q-polynomials (and its proof) is due to
R. Stanley.

LEMMA 1.13 ([St]). — Let A=(^i, . . ., a^ and let I=0'i, . . ., („) be a partition. Then

Pp^+i(A)=5^(A)5i(A).

Proof. — By Proposition 1.7 we have

^-^(A) z w^-1^-2.. .a^ n (^+^) n te-^r1]
w e Sn i < j i < j

=n (">+^) E ^[ay-^ay1-1...^ n (".-^r1]^,,.^)^).
» < J w 6 Sn i < j

The last equality follows from Lemma 1.11 and the Jacobi definition of Schur polynomial
(see [M\ (3.1) p. 24). •

COROLLARY 1.14:

^-^^-JA), QpJA)=2"^(A).

2. Formulas for Gysin push forwards in Grassmannian and flag bundles

In this chapter E will denote a vector bundle of rank n on a scheme X and
TT: G=G^(E) ->X will be the Grassmannian bundle parametrizing the rank r subbundles
of E. Let 0 -> R -> EG -> Q -> 0 be the tautological sequence of vector bundles on G,. (E),
where rank R==r. Letting q=n-r we will also treat G as the Grassmannian bundle of
g-quotients of E and write G=G€(E).

LEMMA 2.1. — With the above notation, assume that q=l. Then for every vector bundle
H on X, and any aeA(X)

^[sI(R-HG)5,(Q-HG)n7l i l{a]=5,_^l(E-H)na.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



422 P. PRAGACZ

Proof. — Let i,=Ci(Q). It follows from the identity

S;(R-HG)=S,(EG-HG)-^S;_I(EQ-HQ)

that

^
c / R - H }- ^-^-"G) ^(EQ-HG)
snK "G)- S,^(EG-HG) ^(EG-HG)

^-1

^l+n-^CEG"!"^)
si2+n-3(^G~^G)

It is well known that ^(^^s^-^^E). Therefore by the linearity formula
7 l*(5k(Q-HG))=Esfc_f(-H)^(^)=5fc_„+l(E-H). Since rfeQ=l, we have also

^s,(Q-HG)=5,^(Q-Ho). Hence

^(R-HG^Q-Hjn 71*00
5,_^(E-H) 5,_^(E-H)
5,^(E-H) ^(E-H)

s,(E-H)
s^_i(E-H) na

=s,_^i(E-H)Ua.

An induction procedure described in the proof of Proposition 1 in [J-L-P] allows us
easily to generalize the above Lemma for any q.

PROPOSITION 2.2. — With the above notation, for every vector bundle H on X and any
aeA(X)

^[si(R-HG)sj(Q-HG)n^a]=5^_^,(E-H)ncx.

For 0 < k ^ n, let ^k:¥lk(E)->X be the flag bundle parametrizing the flags of
consecutive quotients of E of ranks fe, k— 1, . . ., 2, 1. Let

E-^Q^-^Q^-1-^ . . . -H.Q2_^Ql

be the tautological sequence on ¥lk(E). Define the line bundles L^, . . ., L^ on F/^E)
by L^Ke^Cy-^Q1"1). Let ^=Ci(Lf). In particular if fe=n=rankE we obtain the
flag bundle F?(E) parametrizing the complete quotient flags of E. Recall that the
consecutive projections

Ff(E) -> F ̂ (E) -> G^E) -^ X

induce the following chain of injections of the corresponding Chow groups

(8) A(X)-.A(Gk(E))-.A(F;k(E))^A(F^(E)).

Let A=(ai, . . ., aj, A^^Oi, . . ., flfc), A^_fc=(^+i , . . ., aj. The sequence (8) allows
us to identify A(X) as the subring in A(F?(E)) of all symmetric polynomials in A,
A(Gk(E)) as the subring in A(F;(E)) of all symmetric polynomials in A^ and in A,,_^,
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and finally, A(Flk(E)) as the subring of polynomials in a^ . . ., a^ which are symmetric
inA^.

Using the presentation of F/(E) as a composition of successive projective bundles and
the well known description of the Gysin push forward for a projective bundle (see
Lemma 2.1) one proves easily

LEMMA 2.3. — For aeA(X), the following equality holds (T=T"):

^W^...a^nT*a)=^_^i,,,_^,.,.,,JE)ncx

(see also [H-T] Proposition 2.3).
The following two Lemmas give some alternative formulas for Gysin push forward

for (total) flag bundle and Grassmannian bundle. We will prove only the first
formula. A proof of the second one is similar, and is left to the reader.

LEMMA 2.4. — For any polynomial P in n variables and any aeA (X)

(9) T^(P(ai, . . ., ^)UT*a)= ^ w[P(a,, . . ., a^) Y[ (a.-a^-^Ua.
W 6 S» I < J

Proof. — Denote the morphism A(F?(E)) -^A(X) defined by the right hand side of
(9) by T'. Recall that T^ is an A (X)-morphism and that a1^. . . ̂ ", ^ ̂  n—k, k = 1, . . ., n
are generators of A'(F?(E)) over A(X) (see [H]). Therefore it suffices to prove that T'
is an A (X)-morphism and ^(a1^. . . ̂ ")=T^ (a1^. . . a'y), i^ ^ n—fe , k = 1, . . ., n. Indeed,
it follows from the definition of T' that ^(Pi'P^^^Pi)^ if P^ is symmetric
in A. Furthermore, T' sends a polynomial P to a certain polynomial of the degree

( ] less than the degree of P. In particular T'^. . .a^)=0 if f j^n—fe,

^=1, . . ., n and ^ < n—k for some fe. One checks readily that ^(a\~1. . .a^_i)=l .
But by Lemma 2.3 the same equalities hold with T^ used instead of T'. •

LEMMA 2.5. — With the above notation the Gysin morphism n^: A(Gk(E)) -^A(X) is
induced by the following operation on polynomials

P(ai, . . ., a^ ^ w[P(ai, . . ., ̂ ) [I (^-^)~1].
w e Sn/Sfc x So -fc 1 ^ i ̂  k

k+l ^ j ^ n

As a consequence of these two facts we have

LEMMA 2.6. — With the above notation the Gysin morphism T^ : A(F? fc(E)) -^A(X) is
induced by the following operation on polynomials

P(a,, . . ., a^ ^ ^[P^i. • • - ^n) Ft (^-^r1].
weS^Si^xSn-fc 1 ̂  i < J ^ n

i ^ k

Proof. — The flag bundle T^: F;*(E) -> X can be presented as the composition

T^: FHQ^G^E))-"^
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where Q is the tautological quotient vector bundle of rank k on Gk(E). Therefore the
assertion follows from a presentation of T^ as the composition

^ : A (F ̂  (E)) == A. (F l(Q))(T^ A (G^ (E)) ̂  A (X)

and from Lemmas 2.4, 2.5. •
Proposition 1.7 combined with Lemma 2.6 gives

COROLLARY 2.7. — For every strict partition I=(ii, . . ., i\) o/ length k where k ^ n,
and /or any a e A (X)

PI (E) U a = ̂  W. . . ̂  [I (a. + ̂ ) ̂  (Tk)* a]'
1 ^ i < j ^ n

i ^ k

The following fact extends the main calculation in [J-L-P].

PROPOSITION 2.8. — With the above notation, for every strict partition I=0'i, . . ., iq) of
length ̂  q—\, and for every aeA(X)

^[Ctop(R®Q)Pi(Q)n^a]=Pi(E)na.

Proof. - Observe that if l(I)=q or g-1, then by Corollary 2.7, for peA(G^(E))

Pi(Q) n P=(^Q)* K1. . • <9 n (a^) n (TQ)* P].
i ̂  » < j ^ 4

Indeed, T^~ 1 = T^ = TQ. Therefore we have

^K>p(R®Q)PiQn^a]

=^o)M1' • -^ n (^+^.)(TQ)*c^(R®Q)n(TTa]
1 ^ i < J ^ q

(by the projection formula for Tp)

= (T% [a^i. . . a^ n (^f + a.) n (T')* a]
1 ^ i < j ^ n

» ^ «

(by the splitting principle for R ® Q)
=PI (E) n a (by Corollary 2.7). •

Remark 2.9. — The results in this Section were stated and proved for Chow
groups. They remain valid, however, also for other (co)homology theories—in particular
for complex manifolds and singular cohomology. The proofs are the same.

3. The ideal of universal polynomials describing cycles supported in a degeneracy locus

Let us fix integers m > 0, n > 0 and r ^ 0. Let (p: F -> E be a morphism of vector
bundles on a scheme X. Assume that rank E=n, rank F=m. Consider the degeneracy
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locus

U. (<P) = {x e X, rank (p (x) ^ r}

where a subscheme structure is determined by the ideal generated by all (r+l)-order
minors of (p. The aim of this chapter is to study the following set ̂  of polynomials in
the graded polynomial Z-algebra

Z[c.(A), c.(B)]=Z[ci(A), . . ., c^(A), Ci(B), . . ., c,(B)],

where Ci(A), . . ., c^(A), Ci(B), . . ., c^(B) are two sets of independent variables and
degCfc(A)=degCfc(B)=fe for every k. Let i,:D,((p)->X be the inclusion, and let
O'r)*: A. (D^ (<p)) -^ A. (X) be the induced push forward map of the Chow groups. Define
,̂ to be the set of all polynomials PeZ[c.(A), c.(B)] such that for every morphism

(p: F-^E of vector bundles on an arbitrary scheme X (rank E=n, rank F=m), and
every a e A. (X)

P(ci(E), . . ., c^(E), Ci(F), . . ., c,(F)) na6lm(f^.

(^(E), ^(F) denote here the fe-th Chern classes of the vector bundles E and F). It is
not difficult to see that ̂ , is an ideal in Z [c. (A), c. (B)].

We start with a computational Lemma which will be frequently used in this work. Let
E, F be two vector bundles on a scheme X of ranks n and m respectively. Let
HE'- G^(E)->X (resp. Tip: G''(F) ->X) be the Grassmannian bundle parametrizing r-sub-
bundles of E (resp. r-quotients of F). Moreover, let

O^R^E^-QB^-O

O-Rr^For^Q^O

be the tautological sequences on G,(E) and G''(F) involving bundles of the indicated
ranks. Consider the following product of Grassmannian bundles

7l:G=G r(F)XxG,(E)^G,(E)^X.

In the sequel instead of (Rg)^ (Qp)^ • . ., we will write Rg, Qp, . . ., for short.

LEMMA 3.1. — For any partitions I, J such that 1(1) ^ n-r, ?(J~) ^ m-r and any
aeA(X) the following equality holds

^[SiQESj(-RF)^op(Hom(F, E)e/Hom(QF, RE))n7c*a]=s^_^-r+^(E-F)na.

Proof. - First, let us record the following simple consequence of Proposition 2.2. For
every vector bundle H on X and every peA(X) we have

(10) (^ [S(n,-rf, j (Her ̂  - R^) U ̂  ?] = s, (H - F) n P.
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Indeed, G^F) is isomorphic to the Grassmannian bundle Tip : G^F^ -> X. The tauto-
logical exact sequence on G^F^ can be written as

O^QF-^F^V^R^O.

Then we have

(^ [S(m-rf, J (HG- (F) - RF) U ̂  ?]

=W)*[^+(^-(RF-HG^FV))n(^F)'l(P]

=5j~ (FV -H^ Pi P (by Proposition 2.2)

=Sj(H-F)np

and (10) is proved. Next, notice that in the Grothendieck group

[Hom(F, E)e/Hom(QF, RE)]=[RF ® RE+F" ® Qe].

Therefore we have to evaluate

^ [Si QE Sj (- Rp) ^top (RF ® RE) ^top (F v ® Qg) 0 TI* a]
=^[SjQE5j(-RF)s^-^(RE-RF)s^-,)"(QE-F)n7t*a]

(by Lemma 1.3)

=^[5(m-r) r,J(RE-RF)S(„-r)"+I(QE-F)n7C*a]

(by the factorization formula)

=(^EU5j(RE-F)s^_^(QE-F)n^a]
(by (10))

=s^_,)n-r.^j(E-F)na

(by Proposition 2.2 applied to Tig). •

PROPOSITION 3.2.—L^ I, J fc^ t\vo partitions such that 1(1) ^ n—r,
((J~) ^ m—r. Th^n r/i^ 5'c/iMr S-polynomial s^_^n-r+, j ( A — B ) belongs to ̂ .

Proof. — Let (p: F -^ E be a morphism of vector bundles on a scheme X, where rank
E=n, rank F=m. Preserving the above notation, consider the following geometric
construction. The morphism (p induces the section s^ of Hom(F, E) and thus the
section 5<p of the vector bundle Hom(F, E)o/Hom(QF, Rp) on G. Let Z be the subsch-
eme of zeros of Sy. It follows from the definition of Z that the restriction p of n to Z
factorizes through D,. (<p); in other words we have a commutative diagram of schemes

Z -> G

(ii) r Ir r
D,((p)^ X

ir
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where f; is the inclusion. Let P=P(E, F)=s^_^-r^j(E-F). To see that
P 0 a e Im (f,)^ we can pass to generic case. Let X = Horn (F, E) and denote by p: X -^ X
the canonical ^projection. Recall that there exists on X the canonical (tautological)
morphism q>: F-^E where E=Ex, F=Fx and we have D,(^) c= X-the corresponding
degeneracy locus. The_ morphism (p induces a section s^: X-^X such that j^os =id,
(^)*(E)=E and (^(^F. Thus ^[P(E, F) n^*oc]=P(E, F) HOC. Now from the
cartesian square

D,(^ X
ir

T T^
D,(q>)^ X

ir

we obtain the commutative diagram of the Chow groups (cf. [F] Proposition 1.7)

A.(D^))^A.(X)
(ir)*

I 1^

A.(D,((p))^A.(X)
(»r)*

In particular we infer that P(E, F) 0^* aelm^ implies P(E, F) 0 aelm(0^. There-
fore we can assume that the morphism (p: F -^ E in question is generic in the above
sense. But, then by looking at the local coordinates we see that codimG(Z)=mn-r2

and thus

(12) OrUZ]=c^[Hom(F, E)G/Hom(Qp, R^UtG].

Now, let a e A (X). Since the diagram

A(Z) ^A(G)
Or),

i^ i^
A(D,((p))^A(X)

(ir),

of the Chow groups is commutative (see [F] chap. 1) the Proposition will be proved if
we find elements z^, e A (Z) such that n^ (f;)^ (z^ j) = P(E, F) U a. Indeed, for the element
P^J in A(Dr((p)), we then have (^(p^z, j)=P(E, F) Ha. Define z, j as
O'r)* [si QE 5j (- Rp) U TT* a]. We have

^* O'r)* (̂ i. j) = ̂ * 0';)* {0';)* [s, QE sj (- Rp) H TC* a]}

= 7t* {si QE Sj (- Rp) c^p [Horn (F, E /̂Hom (Qp, Rg)] n TT* a}

by the projection formula for f; and by (12). The final assertion now follows from
Lemma 3.1. •
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Remark 3.3. - Let M^^^(K) be the affine space of m x n matrices over a field K. Let
D^cM^xn(K) be the determinantal subscheme of matrices of ranker. Then the
construction (11) is a desingularization of D^. The morphism p restricted to
P'^D^-D^.i) is an isomorphism; if we identify M^JK) with Hon^K^, K"), then the
inverse morphism to p on D^—D^_i is given by/h^(/, Km-^lmf, Im/q: K").

Assume that A=(ai, . . ., aj, B=(foi, . . ., foj are two disjoint sequences of algebrai-
cally independent elements over Z. Let

Z[c.(A), c.(B)]=Z[ci(A), . . ., cJA), Ci(B), . . ., c,(B)]

be a graded polynomial Z-algebra where degCjk(A) =degCfc(B) =fe. The assignment

Cfc(A) t—^(fe-th elementary symmetric function in A)

and likewise for c^(B), defines an isomorphism Z[c.(A), c.(B)] ̂ Sym(A, B) and allows
us to treat ̂  as an ideal in Sym(A, B).

The main result of this paper is the following

THEOREM 3.4. — The ideal ̂ , o/Sym(A, B) 15 generated by Schur S-polynomials
Si(A-B), where I ranges over all partitions such that I => (m—r)""^

Let us denote by ̂  the ideal of Sym(A, B) generated by all Schur S-polynomials
Si(A-B), where I ^ (m-r)"-'.

First we prove that ^ c ̂ . It suffices to show that the Schur S-polynomials
s^-»)"-f+i ,j(A-B) belong to ̂ , where f=0, . . ., r and ((I) ^ n-i, ;(J~) ^ m-i. By
Proposition 3.2 s^_,)n-i+i j(A-B) belongs to ̂ . Since clearly .̂ c ̂  f==0, . . ., r,
the assertion follows.

Now we will prove that ̂  <= ̂ . Consider the following situation. Let V, W be
two vector spaces over a field K. Assume that i;=dim(V) > m, w=dim(W) > n. Let
G^G^V) be the Grassmannian of m-quotients of V and let G^=GJW) be the
Grassmannian of n-subspaces of W. Let Q^ be the tautological m-quotient bundle on
G'" and let R-w be the tautological n-subbundle on G^. Finally, let

(13) X=X,^=Hom(((^)Gm,^,(R^)^,^),F=F,^=(Qy)x,E=E,^=(R^)x.

We have on X the canonical (tautological) morphism q>: F-^E. Let D^=D^(u, w)
denote the degeneracy locus D^((p). Observe that by Thorn isomorphism (see [F]
Theorem 3.3) we have A'(X) ̂  A'(GmxG^ because X is a vector bundle on
G"1 x G^. Let us notice two features of this situation.

1). The morphism (p is given locally by m x n matrix of variables.
2). By Schubert Calculus all elements of the form SiE-SjF, ;(J) ^ m, ;(I) ^ n are

non-zero for v, w » 0, and every finite set {s^ E • s^ F, . . ., 5i, E • 5j, F}, (Ip, J^) + (1^ J^)
if p ^ q, becomes a family of Z-linearly independent elements for v, w » 0.

Let J^.(E, F) be the ideal in A(X) generated by all Schur S-polynomials ^(E-F)
where I => (m-r)""'. Our aim is to prove the following

4e SERIE - TOME 21 - 1988 - N° 3



ENUMERATIVE GEOMETRY OF DEGENERACY LOCI 429

PROPOSITION 3.5. — For the degeneracy locus Dy=Dy(v, w) described above and for any
v > m, w > n, we have Im(^)^=^(E, F).

Notice that this Proposition implies that ^ c= ĵ .. Indeed, the property 2) of the
construction (13) guarantees that letting v, w -> oo, we do not lose any of the polynomials
from ̂  in this counting.

We recall the following fact

LEMMA 3.6.—Let f / H ' c ^ H be a monomorphism of vector bundles on a
scheme Y. Then the following two exact sequences are isomorphic

A* (H') ———————. A* (H) -^ A" (H - H') -^ 0

A' (Y) ———————. A* (Y) -> A' (H-HQ -̂  0 •
qop (H/H') n -

Proof. — The assertion follows easily from the Thorn isomorphism
A' (HQ ^ A* (H) ^ A' (Y), from the self-intersection formula f* ̂  (h) = c^p NH (H') • h,
where he A (H'), and from the well known identification Nn(H') ^ (H/H')^. •

In particular the exact sequence

A (Zero section of H) -> A (H) -^ A (H-Zero section of H)

can be identified with

A(X) ——> A (X)-. A (H-Zero section of H)^0.
C(op H n —

The following Lemma will be frequently used in this paper

LEMMA 3.7. — Let D=D^ =3 D,_i = ) . . . = > D^ =3 Do =) D_i =0 be a sequence of irre-
ducible and closed subschemes of a scheme D over a field K. Let n: Z -> D be a proper,
surjective morphism of schemes. Assume that for every fe==0, . . ., r there exists an open
covering {U^g^ o/Dfc-D^.i and a scheme G^ such that for every aeA, n'1^) is
isomorphic to U^xG^, and the restricted morphism n: n~^ (U^) -> U^ is equal to the
projection U^ x G^ -> U^ onto the first factor. Then the induced map n^: A. (Z) -> A. (D)
of the Chow groups is surjective.

Proof. — Let Z^^^D^), fe=0, . . ., r. There is a commutative diagram

A.(Z,_,) -^ A.(Z,) -^ A.(Z,-Z,_0 ^0
^<"IZ,_^ ^("IZ,), ^"IZfc-Zk-1^

A.(D,_i) ^ A.(D,) ^ A.(D,-D,_i) ^0

with exact rows (the commutativity of the diagram on the right hand side follows from
[F] Proposition 1.7). By a diagram chase we see that it suffices to prove that
(^Izk-Zfc-i)* ls surjective for ^=0, . . ., r and induct on k. Write D° for D^—D^.i and
n for 7i |^_^_^: Z^—Zfc_i -^D°. Choose an open subscheme U in D° where
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K : n~1 (U) -> U is equal to the projection p : U x G^ -> U. Similarly as above, there is a
commutative diagram with exact rows

A.^-W-U^A^Zfc-Zfc.O^ A^TI-^U)) -^0
J/"IDO-LJ), ^", ^Oil^-l(u)) ,

A.(D°-U) ^ A.(D°) ^ A.(U) ^0

By Noetherian induction, i.e. repeating the process on D°—U, we can assume that the
left vertical map is surjective. Then the assertion follows by a diagram chase, because
the surjectivity of (7c|n-i(u))*=^^ A. (UxGfc) ^A.(U) is obvious. This proves the
Lemma. •

The proof of Proposition 3.5 will be carried out in such a way that as a by-product
we obtain a certain finite set of generators of e .̂. The following construction will lead
to a particularly simple set of generators of .̂ Recall that to a given morphism
q>: F -> E of vector bundles on X one can associate the following geometric construction
(cf. [J-L-P] or [F] Ex. 14.4.10).

Z = Zeros (FG-^ EG-^Q) -> G=G,(E)
I Ir I

(14) I P 1"
D,((p) ————. X

*r

Here ^ is the inclusion, n is the canonical projection and p is the restriction of n to
Z. Let us apply the construction (14) to the generic situation (13). Let U", where
a=(oci, . . . . a,), 1 ̂  oq < . . . < a, ̂  m, and Up, where P=(Pi, . . . . P,),
1 ̂  Pi < . . . < p, ^ n be the standard coverings of G^V) (respectively of G^(W)) which
trivialize the bundles Qy and Ryy. Let A be the set of all pairs (a, p) with a and P as
above. For (a, P)eA define U^ p) as the inverse image of U'xUp with respect to the
projection X -> Gm (V) x G^ (W). Let

D=D^D,_i:D . . . =3D^Do^D_i=0

be the sequence of determinantal varieties. Define an open covering {U^ oJ,
f e = 0 , l , . . . , r , (oc,P)eA of the variety D,-D,_i by V^^='U^^r}(^k-^k-i)'
Then p'^U^ ̂ )=U^ ̂ xG^K"). Since the assumptions of Lemma 3.7 are satisfied,
we infer

LEMMA 3.8. — With the above notation, the induced map p^: A. (Z) -^ A. (D^) is surjec-
tive.

Consider now the commutative diagram of the Chow groups, induced by (14)

(»r),
A.(Z) ^A.(G)

(15) i^ I".

A.(D,)^A.(X)
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This diagram can be treated as a commutative diagram of A (X)-modules. Indeed A (G)
is a (free) A(X)-module by the Schubert Calculus for Grassmannian bundles (cf. [F]
chap. 14); then the Gysin morphism (iy allows to define a A(X)-module structure on
A.(Z) in such a way that (f^ is a A (X)-morphism because of the projection formula
for iy. Lemma 3.8 and the commutativity of the diagram (15) imply

LEMMA 3.9. — Im(^)^=7i^[Im(OJ.
In order to compute Im(^)^ we will describe now the geometry of Z in an explicit

way. Recall that Z is the scheme of zeros of the section OQ -> FG (g) Q induced by the
<PG

composition: FQ -> EQ -> Q. We can identify G=G^(E) with the vector bundle

H = Hom [(Q^G"* x F lr, n9 (^w)G"* x F ̂  J

on the scheme G"1 x F ly „ (F ly „ = F ly „ (W) is the scheme parametrizing flags of subspaces
in W of dimensions r and n). Under this identification the subscheme Z c= G becomes
the subbundle

H' = Horn [(Q^Gm, F ̂  ^ (R^ x F i,, J-

Therefore the exact sequence

(^(16) A(Z) -^A(G)-^A(G-Z)->0

is equal to

(17) A^/^AW-^H-ir)-^.

By Lemma 3.7 the exact sequence (17) corresponds via Thorn isomorphism to the
sequence

Ct (H/H') n -
A(Y) -"———> A(Y)-^A(H-H')-^0,

where Y=G w xF^ and

H/H" = (Q^G"* x F ̂  „ ® (Rw/Rw)G"1 x F ̂ , „•

Therefore, by expressing the assertion of Lemma 3.4 in terms of the exact sequence (16)
we infer the following fact.

LEMMA 3.10. — Im(iy)^ is a principal ideal in A(G) generated by c^ (FQ ® Q).

LEMMA 3.11. — The A(X)-module 7i^[Im(f,l)J is generated by Schur S-polynomials
s^.^n-r+^Q-Fc), where I c (r)""'.
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Proof. — By the Schubert Calculus for Grassmannian bundles the A(X)-module A(G)
is generated by Si(Q) where I <= W. Since c^p(Fo (x) Q)=S(^n-r(Q-FG), the A(X)-
module Im(i^ is generated by s^n-r+^Q—Fe), where I c= (r)""^ by the factorization
formula. The assertion now follows from Proposition 2.2. •

Finally, Lemmas 3.9 and 3.11 imply Proposition 3.5. This finishes the proof of
Theorem 3.4.

Remark 3.12. — It is possible to give a more "down-to-earth" proof of inclusion
^ c ̂  by showing by induction on r that in the generic situation (13) a somewhat
weaker assertion holds: if v, w»0, then Im(^)^=^(E, F). We will demonstrate this
alternative method for a symmetric morphism in Section 7.

COROLLARY 3.13. — Consider the generic situation (13) where m=n=s, r=s— 1. Then
Im (i,)^ is generated by all Schur S-polynomials Si(E-F), where I ranges over all partitions
of positive weight. By the linearity formula (4), we easily see that Im (Q^ is also generated
by the elements of the form SjE—SiF, where I ranges over all partitions of positive weight.

4. Chow groups of determinantal schemes

As a by-product of considerations in Section 3, we will obtain here an explicit descrip-
tion of the Chow groups of determinantal schemes.

Let M=M^x^(K) be the affine space of mxn matrices over a field K. Let
U. c= M^n(K)=HomK(V, W), where y=Km, W==K" be the determinantal subscheme
determined by the vanishing of all (r+l)-order minors. Before going further
we recall the following fundamental fact from Schubert Calculus. Let
^.=(0, . . ., 0, 1, 0, . . ., 0), i= I, . . ., n, be the standard basis in K". For each sequence

i
a=((Xi, . . ., a,.) where 0 < o^ < . . . < a^ n, let A^ be the space spanned by e^ . . .,
e^ and let ^(QL)={LeG,(Kn), dim(LnAf) ^ f, 1 ̂  i ̂  r}. Then the fundamental
classes of Q(a), 0 < a^ < . . . < a^ n form a Z-basis of A. (G,(K")). Let ^(a) be the
subset of all linear homomorphisms / of rank r in Dy—Dy_^ such that Im(/)e0(a).

LEMMA 4.1. — Assume that m ^ n. Then the assignment [0. (a)] \-^ [0.' (a)] defines an
isomorphism o/A*(G^(K")) and A ' (D^—D^_i) .

Proof. - It is not difficult to see that the map D,-D,_i -^(V) xG,(W) such that
/i-^(V/Ker/, Im/) is a locally trivial fibration with the fiber isomorphic to
GL(r, K). More precisely, it defines an isomorphism

D,-D,_^X-D,_,((p)

where for G=Gr(V) xG,(W) and F=(Q^)e, E=(Rw)G» x denotes the bundle
Hom(F, E) on G and (p: F-^E is the tautological morphism on X. It follows from
Corollary 3.13 that

A'(X-D^((p))^A-(G)/^
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where / is the ideal in A'(G) generated by all elements of the form 5j(E)—Si(F), where
[ 11 ^ 1. By Schubert Calculus A(G) is isomorphic to Z[c.(E), c.(F)] modulo the ideal
generated by SjE, 14: (n—rf and SjF, J c|= (m—r/. This implies that the ring A* (G)j/
is isomorphic to Z [c. (E)] modulo the ideal generated by Si(E), I 4= (^—y/ i' ^- isomorphic
to A(G,(W)). Therefore A'(D,-D,_i) can be identified with A^G^K")) via the
isomorphism described above. •

In above notation let Q(a) be the closure of Q(a) in D^.

PROPOSITION 4.2. — Assume that m ̂  n. Then the assignment [Q (a)] i-̂  [ft (a)] defines
an isomorphism o/A^G^K")) and A'(D^). In particular for every k, A^D,.) ̂  © Z, the

i
sum over all partitions I c= (r)""^ [ 11 = fe.

Proof. — Apply the geometric construction (14) to the above situation. Recall that
Z c: G^W^) is the subscheme of zeros of the section

G,(WM)-VG^®Q

where Q is the tautological quotient bundle on G^W^). Therefore we can identify Z
with the vector bundle Hom(Vo (^, R^) on the Grassmannian G^(W). In particular
A" (Z) =A' (G,.(W)) by Thorn isomorphism. Moreover, by Lemma 3.7 the induced map
p^: A (Z) -> A (Dy) is surjective. The Proposition now follows from Lemma 4.1 and the
chain of surjections

<A.(Z)-.A.(D,)^A.(D,-D,_,).

This result can be generalized in the following way. Let E and F be two vector
bundles of. ranks n and w, on a scheme X. Let D^ c= Hom(F, E) be the r-th universal
(tautological) degeneracy locus. Then, using the Schubert Calculus for Grassmannian
bundles (see [F] chap. 14) and repeating previous arguments one proves

PROPOSITION 4.3. — Assume that m ^ n. Then

A-(D,) ^ A'(D,-D,_0 ̂  A-(G,(E)).

In particular, for every fe, A^D,.) ^ A^D^—D^.i) ̂  ©A^'^X), the sum over all

partitions I <= (r)"""", [ 11 ^ k.
For example, if E, F are trivial we get A^X x D^) ̂  ©A^"' ' ' (X), the sum as above.

5. Chern numbers of kernel and cokernel bundles, Euler-Poincare characteristic of smooth
degeneracy loci

For the purposes of this chapter we assume that E and F are C°° complex vector
bundles on a complex manifold X. Let (p: F -> E be a morphism of vector bundles
on X. Assume that rank F=m, rank E=n. The morphism (p induces the section
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s<p€H°(X, Hom(F, E)). Let Dy be the universal (tautological) degeneracy locus of
rank r in Hom(F, E). We say that (p is general if s^ is transversal to D^ for all
r=0, . . ., min(w, n)—l. For the rest of this section (p: ¥->E will always denote
a general morphism of vector bundles. The morphism (p has rank exactly r over
H-^) "H--! (^ so we may define its kernel and cokernel bundles over D^((p) —D^_ i ((p)
by the exact sequence

O-^K-^F^E-^C-^O.

Of course rank K = m — r and rank C=n—r. Suppose D^_i((p) is empty. Then
D^((p) is smooth because it is isomorphic to the transversal intersection of the section s^
with the universal degeneracy locus D^—D^_i in Hom(F, E) which is known to be
smooth (see [G-G]). Moreover the (complex) codimension of Dy (q>) is (m — r) (n — r). In
this chapter we use the usual singular cohomology groups H' ( — ) ==H' ( — , Z) rather than
the Chow groups. In particular (Q*: H'(X)->H'(D^(q>)) (resp.
(Q^'. H* (D^(q>)) -> H* (X)) denotes the multiplicative (resp. additive push forward) morph-
ism associated with the inclusion i/. D^((p) -> X. Recall that the formula for Gysin push
forward of cycles established in Lemma 3.1 remains true in the category of complex
manifolds and C°° complex vector bundles.

LEMMA 5.1. — In the above situation, let I, J be two partitions such that l(T) ^ n—r,
;(J~) ^m-r. Then for aeH"(X)

(0*[5i(C)-Sj(-K)-i*a]=^_^-^^(E-F)-cx.

Proof. — Consider the geometric construction (II):

Z ^ GIP r
D,((p)^ X

described in Proposition 3.2. Recall that n: G^G^F) XxG^(E) -»X is a product of
Grassmannian bundles and that Z is the set of zeros of the section of the bundle
Hom(F, E)G/Hom(Qp, Rg), induced by Sy. Since D^_i((p)=0, p establishes an iso-
morphism D^((p) ^ Z. This isomorphism allows us to identify K with (^)*(RF), C with
(^)*(QE) and iy with i^n. Therefore by the projection formula we get

(0. [5i (C) • s, (- K) • f* a] = TC, (f;), {(f;)* [s, (Qe) • s, (- Rp) • TT* a]}

=^{5I(QE)•SJ(-RF)(^[Z]•7lijca}=5(,_^-^^(E-F)•a,

where the last equality follows from Lemma 3.1 (cf. Remark 2.9). •
Remark 5.2. — Assume that i: D->X is a complex submanifold, say with connected

components D1, . . . , D5, then the push forward map

i^: W^ (D, Z) = Z® s -> W^ (X, Z) = Z
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assigns to (z^, . . ., zj in H^D, Z) the sum: ^ z, in H^X, Z). Therefore for a
i = = i

s

given vector bundle E on D the Chern number n^^ritD^ ^ ["[^(E)01*?!^],
i J= l i

where ^ia,=dimD, may be written as i^(Y[ ^(E)"1'). The same remark applies to the
i

Chern numbers of the submanifold D itself. However, since i^: H* (D, Z) -> H' (X, Z)
is not usually injective it may be not possible to invert i^ to get the Chern classes of E
and D. In [H-T] an example is given, which shows that the Chern classes of K are not
in general restrictions of polynomials in the Chern classes of E and F.

Let us fix integers o^, o^, . . ., ^n-r ^ ^ (resp. Pi, P^, . . ., ?„,_,. ̂  0). Define nonne-
gative integers n^ (resp. m,) by the formula

n^^'^z^^^^p-n^w^-s^j^w)-
i I J J

The numbers n, can be evaluated from Heri's formula (see [M] 1.5.17), and if
a==((Xi, . . ., ^_^) is a partition, they are the Kostka numbers Kj~^ in the notation of
[M] 1.6. The same remark applies to the m?

Lemma 5.1 yields the following closed form expression for the Chern numbers of K
and C. Let d = dim D, ((p).

PROPOSITION 5.3. — Assume that ^fa;=]^/P^=dimD,.((p). Then

ft €,(0^ U [D,((p)]=I>,5^_^-^i(E-F)
i i

^c,(K)^n[D,((p)]=(-l)dS^^_^-^~(E-F).
j J

Example 5.4. — dimD^((p)=2.

C2(C)n[D,((p)]=^_^-r^^(E-F)
ci(C)n[D,((p)]=s^_^-r^^(E-F)+^_^-r^^^(E-F)

C2(K)n[D,((p)]=^^n-r^^^(E-F)

c?(K)n[D,((p)]=5^_^-^2)(E-F)+^_^-^^,)(E-F).

Remark 5.5. — The Chern numbers of K and C were originally investigated by Harris
and Tu in [H-T], where they gave a certain rule for calculation of these numbers. Our
approach seems to be simpler. Indeed, if PJc^IQ'^^miS^K), then the algorithm of

Harris and Tu requires one to evaluate ̂  m, dim V, monomials in the Chern roots of K

on [D^((p)], and to perform numerous cancellations of pairwaise opposite terms
(Vj denotes here the irreducible polynomial representation of Gl(m—r, C) corresponding
to the weight I). On the contrary our recipe requires only the evaluation of
card {I, Wj ̂  0} expressions, which is much more economical in practice.
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Let a, b be two positive integers such that a ̂  b. For two partitions I=0\, . . ., fj,
J=(/i» • • •?Ja) define

D^^Detrf^^^^-^-^l l^^a.
|_\ ip+a-p )\

LEMMA 5.6 ([L-S] 4.2). — Lei A, B ̂  ?wo vector bundles of ranks a and b, a ̂  b. Then
the total Segre class of A ® B is given by

00

5. (A®B)= ^ ^(A®B)=^D?;^(A)sj(B),
p=o i , j

where the sum is over all partitions I==(ii, . . ., ia), J=0i» • • • »7a ) -
Lemmas 5.1 and 5.6 yield an algorithm for computation of the Chern numbers of

D=D^((p). Let Tx be the tangent bundle on X and Tp be the tangent bundle on
D. According to Remark 5.2 we want to calculate

aun^D)011].i
This expression can be rewritten as

(is) (OjE^iCiD)]
I

where d^ come from Heri's formula. Then the exact sequence
0 -> To -> Tx |p -> Nx(D) -> 0 allows us to rewrite (18) as

(19) O^ E < L 5K (TX I,,) SL Nx (D)]

where d^ ^ can be obtained from d^ and from the universal coefficients appearing in the
linearity formula for Si(Txip-Nx(D)). Since Nx(D)=KV ®C (see [G-G] p. 145) the
expression (19) can be replaced by

(O* £ < M. N 5K (TX |̂  SM ( - K) SN (C)]

where ^K.M,N are computable from d^.L ^th the help of Lemma 5.6. Finally, by
Lemma 5.1 we obtain the equality

(y*(^^(TD)al)=KM.N^-.)"-^N.M(E-F)5K(Tx)
i

A particularly simple case is the computation of the Euler-Poincare characteristic of
D,((p).

PROPOSITION 5.7. — Assume that m ^ n. Then the (topological) Euler-Poincare charac-
teristic of the smooth degeneracy locus Dy((p) is given by the expression

^(_l)li | .UlD^——^_^-^^(E-F)c,.,,, . , , ,(X)
i,j
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where the sum is over all partitions I=(i\, . . ., f,,_,), J=(/\, . ..,;„_,). Here cJX)
denotes the k-th Chern class ofTX and ifk < 0 we define Cfc(X) to be zero.

Proof. - By the Gauss-Bonnet theorem the Euler-Poincare characteristic of D=D,((p)
is equal to c^p (T^) Ft [D]. Therefore we have to calculate (f,)^ (c^p To). We follow the
notation and the strategy described above. The expression in question is equal to

r ' \(f^MTX ID-K- ®C)]=(f,)J ^ (-lA.O^ ®C)f?c,.,(X)
L i = o /

=(0*[Z(- l ) I I I + I J I D^/ l w - r 5I(C)5J~(-K)f*c ,_ l , ,_ l , , (X)]
i, j

=^(_l)li |+HlD^——S(^n-^,~(E-F)c,_|, |_| , |(X)
I, J

where the sum is over all partitions I=Q'i, . . ., i^-r) and J=(/i, . . .,./„-,.). •
Example 5.8. — (i) The Euler-Poincare characteristic of a smooth determinantal curve

is given by the expression:

5^_^-r(E-F)ci(X)-(n-r)^_^-r^i)(E-F)-(m-r)s^_^-r+(^(E-F).

(ii) The Euler-Poincare characteristic of a smooth determinantal surface is equal to:

^_^-r(E-F)c2(X)-[(n-r)s^_^-^^(E-F)+(m-r)s^_^-^^(E-F)]ci(X)

^"-^^^-.o.^E-F)^"";^)^-."-^

+(n2 r)s(w-r)" - r ' (2) (B~F)+(m2 - r)s(w~ r )" - r+( l ' l ) (B-F)

+[(m-r)(n-r)+l]s^_^-r+^^(E-F).

6. The structure of the ideal ̂

The ideal ̂  of Z [c. (A), c. (B)] admits various interpretations. In Section 3 a geomet-
ric interpretation of ^ was discussed. In [P^] we have interpreted the ideal ̂  as a
generalization of the resultant in elimination theory. Therefore ^ seems to be an
interesting object and its algebraic structure is worth studying. In loc. cit. we proved
that ̂  is a prime ideal. In this section, as a by-product of the previous geometrical
considerations we obtain some informations concering sets of generators and a Z-basis
of the ideal ̂ .

PROPOSITION 6.1.—(a) The ideal ^y is generated by Schur S-polynomials
S(n,-.)"-^i(A-B), where I c (r)^.

(b) The ideal J^ is generated by Schur S-polynomials s^_^n-r j(A-B), where
Jc^m-ry.
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Proof. - (a) This follows immediately from ̂  c ̂ , Lemmas 3.9 and 3.11, by letting
v, w -> oo. Indeed if u, w tend to the infinity then A' (X) becomes Sym (A, B) and
^.(E, F) becomes ̂ .

(b) The proof can be carried out in a similar way but instead of the construction (14)
one needs to consider the following one (cf. [F] chap. 14)

Z=Zeros(R-. FG-. Be)-. G=G,._,(F)
i i

D,((p) ^ X •

We use the notation introduced to describe the construction (13). By Lemma 4.1 we
obtain the following presentation of A'(D^-D^_i) in the generic situation (13):

(20) A^D.-D^O^A^FF^xF^W))/^

where FF'^V) is the flag manifold parametrizing the flags of rank m, rank r quotients
of V, F ly „ (W) is the flag manifold parametrizing the flags of rank r, rank n subspaces
of W. Moreover / ^ is the ideal generated by elements of the form 5i(Rw)—Si(Q^),
where |l[ ^ 1 and R^, Q^ denote the corresponding tautological bundles on F(^ ^(W)
andFr'W

Let A,., A""^ B^_^, Br be four sets of algebraically independent elements over Z of
cardinality r, n—r, m—r and r respectively.

PROPOSITION 6.2. — The polynomials 5^.(A—B)s^(A) \vhere 1̂  contains the partition
(m—0"~1 and does not contain the partition (m—f+l)""1^1 , l ( J i ) ^ f, f==0, 1, . . ., reform
a Z-basis of ̂ . Another Z-basis of ̂  fs g«^n fc^ s^.(A—B)5jjB) /or ̂  same !„
H J , ) ^ f , f = 0 , 1, . . . , r .

Proo/. — Consider the exact sequence (y=(m—r)(n—r))

(21) A^-^D^, w)-D,_,(r, w)) ̂ A^X^-D^Q;, w)) ̂ A^X^.-D^i;, w))^0.

Let us identify A,., A""', B^_^ and Br with the Chern roots of the following vector
bundles R^, RW/^ ker(Q^->Q^) and Q^, if u, w tend to the infinity. By (20), if
v, w -> oo, then (21) gives the exact sequence

S/^^R/^_,->R/^-^0

where R=Sym(A, B), S=Sym(B^_,, B', A,, A""') and / , is the ideal generated by all
elements of the form Si(A^) —Si(B^), 111 ^ 1.

Claim. — a is a monomorphism.
To see it, consider the ring homomorphism P: R/^_i -> S / ^ y induced by the injection

R -^ S. If v, w -^ oo then the self-intersection formula applied to the inclusion
D,(u, w)-D,_i(u, w)-^X^-D,_i(u, w) gives Pa(s)==5^_,)n-r(An~r--B„_,)•5, where
seS/^. The claim now follows from the easy observation that a polynomial which is

4° SERIE - TOME 21 - 1988 - N° 3



ENUMERATIVE GEOMETRY OF DEGENERACY LOCI 439

not in the ideal generated by Schur S-polynomials in A^-B' cannot belong to this ideal
after multiplication by s^_^„-,(A"-''-B„_,).

In particular we obtain an isomorphism ^/J^_i ^ S / / , of abelian groups. Observe
that S/ ,̂ is a free abelian group with a Z-basis given by polynomials of the form
s^-B^s^A^A''-'-), where /(J~) ^ m-r, l(K) ̂  r, 1(1) ̂  n-r.

It was essentially proved in Lemma 5.1 that

(22) ^(A'-Q^-B^^.^-^^A-B).

It follows easily from the projection formula applied to the inclusion
D, (v, w) - D, _ i (c, w) ->• X,, ̂  - D, _ i (v, w) that a is a morphism of R-modules. Thus

a[sJ(-B„_,)sK(A,)sI(A»-r)]=a[sJ(-B„_,)sK(A-A'•-r)s,(A"-r)]
=a[ ^ (-^"''^(-B^.^S^^^SL^A^OS^A"-^]

L <= K

=a[^ K-l)11-'^-, I; M)s,(-B„_,)sK/L(A)sM(A'•-r)]

= I: ^(-^'(L^IiMH^-^^A-BK/JA)
L c K M

where (L~, I; M) eZ. This last expression can be rewritten as

(23) 5(m-r)"-^I,J(A-B)SK(A)+ ^ ^(A-B)SK-(A)
K' <= K

where ^(A-B) are Z-combinations of Schur S-polynomials ^(A-B) where
T^^-r)" r andT^(m-r+ l ) "~ r + l .

It follows from (22) and (23) by induction on |K[, that 5,(A-B) 5, (A), where
I^(^-^-r and I^Qn-r+iy-^1 , l ( J ) ^ r , generate the image of a. Since the

isomorphism in question S/^-^/^_, is induced by a, the above elements generate
-W-r

To show a Z-linear independence of these elements we use the specialization
B^A,. Indeed, by the factorization formula and the linearity formula we easily get
that

^m-r)"-+I.J(A-B)SK(A)=5^_^-r(AW-r-B^_,)5I(An-r)5K(A)5J(-B^_,)

=^^n-r(An-r-B^)[s,(An-r)s^)s,(-B^)

+ E ^T. K'. J 5T (A^-Q 5K- (A,) 5j ( - B,_,)]
I K' I < I K I

where ̂ . K'. j e Z. Since the different elements of the form s^ (A" ~r) s^ (A,) Sj (- B^ _ ) are
Z-linearly independent, the Z-linear independence in question follows.

The final assertion now follows by induction on r, the case r=0 being an immediate
consequence of the factorization formula.

This finishes the proof of Proposition 6.2. •
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7. The symmetric and antisymmetric form case

The aim of this Section is to develop a theory similar to the one in Sections 3, 4, 5, 6
in the case of degeneracy loci associated with symmetric (resp. antisymmetric) morphisms
of vector bundles. We will follow the main lines of the quoted Sections; and the
arguments which are analogous to the corresponding ones given in previous sections will
be just sketched.

Let (p: E^ ->E be a symmetric (resp. antisymmetric) morphism of vector bundles on
a scheme X. Assume that rank E = n. Let r be a nonnegative integer; if (p is antisymme-
tric we assume that r is even. Let q=n—r. Consider the Grassmannian bundle
n: G=G^(E)=G^(E) ->X endowed with the tautological sequence

O-^R->EG-^Q-^O.

Apply to the morphism (p: E^^ —> E the geometric construction (14)

Z=Zeros(Eo ̂  E(, -> Q) -> G=G,(E)

^ r r
D,=D,((p) ^ X

»r

Here \, iy are the inclusions, n is the canonical projection, p is the restriction of n to Z.

LEMMA 7.1. — Let aeA(X).
(i) J/(p is symmetric, then for any partition I, 1(1) ^ n—r,

Qp^+i(B)na6lm(^.

(ii) 7/(p is antisymmetric, then for any partition I, <(I) ^ n—r,

Pp^,-^i(E)naeIm(i^.

(Recall that p^=(fe, fe-1, . . . , 2, 1)).

Proof. — (i) Since (p is symmetric, the section G -> EQ (g) Q induced by E^ -^ EQ ->- Q
is in fact a section of H=Ker(Eo® Q-^A2?). Observe that in K(G) we have
[E®Q-A2Q]=[R®Q+S2Q]. By Lemma 1.12, c^(S2Q)=2qs^(Q). Now the
proof is the same mutatis mutandis as the one of Lemma 3.2; we use factorization
property from Lemma 1.13 instead of Lemma 1.1, and Proposition 2.8 instead of
Proposition 2.2.

(ii) The proof is the same. •
Let Z[c.(A)]=Z[ci(A), . . ., ^(A)] be a graded polynomial Z-algebra where

deg ̂  (A) = k. Let ̂  (resp. ̂ s, r-even) be the ideal of all polynomials in Z [c. (A)] such
that for every symmetric (resp. antisymmetric) morphism (p: Ev -> E of vector bundles
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on an arbitrary scheme X and any aeA(X)

P(c.(E))na6lm(0^.

c.(E) denotes here the Chern classes of the bundle E.
Now let A==(ai, . . ., aj be a sequence of algebraically independent elements over

Z. The assignment

Cfc(A)i-^(fe-th elementary symmetric function in A)

allows us to identify Z[c. (A)] with Sym(A) and to treat ̂  and ̂ 5 as ideals of Sym(A).

THEOREM 7.2. — (i) The ideal ̂  o/Sym(A) 15 generated by Schur Q-polynomials Qi(A)
-where I ranges over all strict partitions I => ?„_,..

(ii) The ideal ̂  o/Sym(A) is generated by Schur P-polynomials Pi(A) where I ranges
over all strict partitions I => pn-r-i (^-even).

Let J^ (resp. ^s) be the ideal generated by all Schur Q-polynomials (resp. P-
polynomials) Qi(A) where I => ?„_, (resp. Pi(A) where I => Pn-r-i)-

It follows from Lemma 7.1 applied for i=0, . . ., r instead of r itself that ̂  c= ̂
and J^5 <= ̂ s. We will give now a proof of the inclusion ^ c= j^ which uses no
geometric constructions over D^((p). Consider the following situation. Let V be a
vector space over a field K of dimension v > n. Let G^=G^(V) be the Grassmannian
of n-subspaces of V. Let R be the tautological (sub)bundle on G^(V). Let

(24) X=S2(R), E=Rx.

On X we have the canonical (tautological) morphism q^E"-^. Let
D,=D,((p). Observe that by Thorn isomorphism we have A' (X) ^ A' (G^); moreover

1) The morphism (p is given locally by a symmetric n x n matrix of variables.
2) Every element Si(E), ;(I) ^ n is non-zero for v»0 and every finite set

{^i (E). • • • , SiJE)}, lp -^ \ if p ^ q, becomes a family of Z-linearly independent elements
for v » 0.

We will prove by induction on r (n can vary), that for v»0 Im(f,)^=j^,(E), where
^,(E) is the ideal in A(X) generated by all polynomials Qi(E) where I => ?„_,. This
implies our assertion, since we do not lose any of the polynomials from ^ in this
counting because of 2).

Do can be identified with G^ imbedded by the zero section in X. Therefore, by
Lemma 3.6 we get that Im(fo)^ as an A(X)-module is generated by Ctop(S2E)=Qp^(E).

To make the inductive step r— 1 -> r we consider a commutative diagram

(25)
A.(D,_,)^A.(D,)^A.(D,-D,_0^0

(ir-^ \ [(i^

A.(X)
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where the row is the corresponding exact sequence and k/. D^—D^_i -^D^ is the
inclusion. From Schubert Calculus we know that A (X) is generated by polynomials in
the Chern classes of E and F. Thanks to the theory developed in [F], which allows us
to treat polynomials in Chern classes as operators on A.( ), we can treat the above
diagram as a diagram of A (X)-modules.

PROPOSITION 7.3. — For v » 0 there exist elements XieA(Dy), where I ranges over all
partitions contained in (r)""'1, satisfying the following conditions

(i) (0^i)=Qp^+i(E).
(ii) The elements (fe,)*(>Cj) generate the A(X)-module A(D,.-D,_i).
Observe that this Proposition implies that Im(^)^=^(E). Indeed, reasoning by

induction on r we assume that Im(^_i)^ is generated by Qp _;+i,(E) where IfC^y1"'1

and i=0, . . ., r—1. The above Proposition applied to the exact sequence (25) gives us
then, that Im(i,)^ is generated by Qp^_^(E) where I, c= (f)"-1 and f=0, . . ., r. But all
these elements belong to J^.(E). Therefore Im(^)^=^(E). To prove Proposition 7.3
consider arbitrary elements XieA.(D^) satisfying (i). Their existence follows from
Lemma 7.1. Let K and C be the kernel and cokernel bundles of the morphism (p
restricted to D^—D^_i . Since cp is symmetric we have K" ^ C.

LEMMA 7.4:

Qp^(CHfe*(^i)-5i(C)]=0 in A(D,-D,_,).

Proof. — Consider the following cartesian square

D, ^ D - D .

X ^ X-D,_i

By [F] Proposition 1.7, we infer that ;* i,^ = (f;)^ fe*. Thus
(O* '* ̂  (^i) = 0';)* (O* fe* Oci). We have

0'r)*'*^*^i)=0;)*<*(Qp^^i(E)) (by the definition of x,)

=Qp,,_,+i(Q (by Lemma 1.9(ii) and 1.10, because E=Im(p®C and InKp^Imcp)^

=Qp^(C)'Si(C) (by Lemma 1.13).

On the other hand denoting by N the normal bundle Nx-o _ ^ ( D ^ — D ^ _ i ) = S 2 C
(cf. [G-G]) we have

Or)* Or)* ̂ * (^i) = ̂ op N' ̂ * (^i) (by the self-intersection formula)
=c^(S,C)'k!(x,)

-Q^(C)'k*(x,) (by Lemma 1.12).

This proves the Lemma. •
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Notice that all elements fe*(xj) are in codimension-graded components A^D^—D^i)
where i ̂  dimG^(n)=N(n, r), say, i.e. i is bounded by a number which does not depend
on v.

The next two facts require an analysis of a geometry of D^—D^_i . A point in
D^—D^_i is a pair (N,/: N" -)-N) where N is a n-dimensional subspace of V and
/: N" -^N is a linear, symmetric map of rank r. To this point we assign the point
(Im/q:N) in F;,JV) where F;,^(V) is the Hag manifold parametrizing the Hags of
rank r, rank n subspaces of V. This makes D^-D^_i a locally trivial fibration with
fiber isomorphic to the set of nondegenerate symmetric r x r matrices. More precisely if
R/ is the tautological bundle of rank r on F^ „ then D^—D^_i is the open complement
of the r — l — t h degeneracy locus D^.^cp") associated with the tautological morphism
q/^ROx'^ROx' on X'^RQF^. In other words we have
H.—D,._i c^ X'—D^.^q)'). Consider now the Grassmannian G^=G^(V). Denote the
corresponding tautological bundle on G,. by Rr for short. Then for the tautological
morphism q/': (RQx" -^ (RQx" on X^S^^R')^, we know the image of the map
A.(D^_i((p")) ->A..(X") by our inductive hypothesis. Namely this image is generated
by all Schur Q-polynomials in R1'. Let now

p: X- -^ X- and ̂ : D,_, (q/) ̂  D,_ , ((p-)

be the natural projections. We have the following cartesian square

D,.^)-^ X' D^^cp')^ G
\PD [ P = \PD [P

D^cD^X- D^cD^X-

where p : G -> X" is the Grassmannian bundle

G^CV^AROx-).

Thus A(X') (resp. A(D,_l((p /))) is a free-module (resp. A (D,_i (((/'^-module) via p
(resp. via p^). Moreover there exist bases {Q^}, {Q^} such that A(X')=© A(X")Qfc,

k

A(D,_l(cp /))=© A(D,_l((p / /))n^ and (i%(S^)=^ for every fe. Consider the follow-
k

ing commutative diagram (see [F] Proposition 1.7)

A(D^((p')) (^A(X /)
T^D t^

AtD^.^cp^^ACX-)
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WehaveO•%(^^(^)n,D)=^^f/; (W ̂ =1^ Wn,mA(X'). Thisimplies
k k k

that Im(f^ ) is generated by/?*(Imi^ ) i.e. by all Schur Q-polynomials (^((R^xO? I-strict,
|i|^.

LEMMA 7.5. — Ifv^> 0, then multiplication

•Qp^(C): A^-D^-A-^-D^),

15 a monomorphism for i ̂  N(n, r), (y^^n—r^n—r+l)^).
Proof. — From the above description and from the exact sequence

ACD^^cp^ACX^-^D.-D^-O

where A(X') ^ A(F^ J by Thorn isomorphism, we get

(26) A (D,-D^)^A(F;, „)/(?, (R-), | l |^l) .

Under the above identification C=(Rn/Rr)Q^^_^ Let A^, A""'' be two sets of algebrai-
cally independent elements over Z of the cardinality r and n—r respectively. The
assignment s^Ay.SJAn~r\—>s^Rr.SJ(Rn/Rr), gives a ring homomorphism from the ring

(27) Sym(A,A"-0/(Qi(A,),[l[^l)

to (26). Here Sym(A^, A""^ is the ring of partially symmetric polynomials in two
distinguished sets of variables. If v » 0 then the components of degree ^ N (n, r) in (26)
and (27) are isomorphic. Thus it suffices to prove that multiplication by Qp^^A""^
in (27) is a monomorphism. But the polynomial which is not in the ideal generated by
Q-polynomials in Ay of positive degree, cannot belong to this ideal after multiplication
by Qp^^A""1') (e.g. consider the specialization {A^}={A^~} and use Lemma 1.10). •

Comparing Lemma 7.4 and 7.5 we see that if v » 0 then fe*(xj)=Si(C). Thus to end
the proof of Proposition 7.3 we need

LEMMA 7.6.—The elements Si(C), where I c (r)""^ generate the A(X)-module
A(D,-D,_,).

Proof. — Recall that the A(X)-module structure on A(D^—D^_i ) is given by the
action of polynomials in the Chern classes of E. Consider the following map

a: A(X)=A(Gy^\(FU=A(Xy-^A(D,-D^)

where q: ¥ l y ^->G^ is the projection and /: D^—D^_i -^X" is the injection. It is easy
to see that a(c,(E))=c,(E^-D,-i). Thus the above A (X)-structure on A.(D,.-D,_i) is
the same as the one defined as follows: for xeA(X), r ieA(Dy—D^_i) the effect of the
action of x on d is a(x)'rf. Since the last A (X)-homomorphism (Q* is surjective, it
suffices to prove that A(X') as the A(X)-module is generated by ^[((y'^x'], where
I c= (ry^. But A(F^ „) as the A(GJ-module is generated by ^((y^) with the same I,
by Schubert Calculus. This implies the desired assertion. •
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This completes the proof of Proposition 7.3 and thus also the proof of the inclusion
<^s as^ r — ^ r

Remark 7.7. — By a similar method one can prove the inclusions ^ c= ̂  and
(^as — aas /y.pver^<L^ y ^— * - r \ t/vcii^.

CHERN NUMBERS

Let (p: E" -^ E be a symmetric morphism (resp. antisymmetric) of C00 complex vector
bundles on a complex manifold X. Assume that D^_i (q>) =0. Then the kernel K and
the cokernel C of the morphism (p restricted to D^((p) are vector bundles of rank n—r.
It is easy to see that K" ^C. Assume that (p is general (see Section 5) and write
dimD^((p)=ri.

PROPOSITION 7.8. — (i) Assume that (p: E" ->• E is symmetric. Then

codimx D, ((p) = (n - r) (n - r +1)/2 = Vs,

say. Let I be a partition such that 1(1) ^ n—r, 11 [ ^ d. Then for any aeH^"' ' ' (X, Z)

(^[5i(C)-f*a]=Q^_^i(E).a.

(ii) Assume that ^>: E^ ->E is antisymmetric. Then

coding D, ((p) = (n - r -1) (n - r)/2 = y^,

say (r is even). Let I be a partition such that 1(1) ^n—r, |l| ̂  d. Then for any
aetf-^^X, Z)

(a^(C)'f*a]=P^^_^i(E)-a.

The proof is the same as the one of Lemma 5.1. We use the construction (14) instead
of (11) and Proposition 2.8 instead of Proposition 3.1.

Let us fix integers 04, a^, . . ., a^_^ ^ 0. Define nonnegative integers ̂  by the identity

n^Q^s^c)i i
(compare the discussion before Proposition 5.3).

PROPOSITION 7.9. — Assume that ^ia,=d. With the notation as above,
(i) if (p is symmetric, then

^c,(C)a'n[D,(cp)]=^nIQ^_^I(E),.
i

(ii) if (p is antisymmetric, then

^c,(C)a.n[D,((p)]=i:n,P^^_^^(E).

The proof is analogous to the one of Proposition 5.2.
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Example 7.10. - d=2, (p is symmetric.

C2(C)n[D,(<p)]=Q^_^ ,,(E)

c\ (C) 0 [D, ((p)] = Q^_^ (E) + Q^^, „ (E).

For every sequence 0\,7'2, • • •,7'a) where ;i >jz> ...j,^0 define the number
(C/'r J i ' • • •. 7o)) inductively as follows:

1) ((1,0)) =1

2) fl(0'i,7'2, . . •,7«))-2^((/i, . . .,A-1, • • - , ] , ) )
k

f 0 if 7.>0
l((/i-l, . . . ,7a-i-l)) if 7a=0.

We assume the terms with 7^-1 =/^ in the above summation to be zero.
Moreover, for every sequence (/\, j^ . . ., j^) where a = 2 fc is even and

h >h> ' " >Ja ^ 0 define [/\, . . ., 7'J inductively as follows

(28)

1) [1,0]= 1

2) fc[/i, ...,72b]-E[/i, . . . ,7k- l , . . . , j 2b]I? • • • 9 J 2 b J ^ L L/l» • •
k

J ° it (Jib-1,72.) ^(1,0)
I [/I, . . - , 72 f t -2 ] it 0'2b-l,72fc)=(l, 0).

We assume the terms with 7^1 =^-1 in the above summation to be zero. If a is odd,
we put

r, n-J^19 • • •^- i^ it ^=°
l/l? • • - 9 Jal—\ „

[ 0, if j^Q.

The following fact was communicated to me by A. Lascoux.

PROPOSITION 7.11 ([L-L-T]). — Let A be a vector bundle of rank a.
(i) The total Segre class of 83 A is given by

s.(S2A)=^(0\+a-l, 12+0-2, . . ., f,))5i(A)
i

where the summation ranges over all partitions I=0'i, . . ., fj.
(ii) The total Segre class q/^A is given by

^(A^^^+a-l^+a-^ . . . , f j 5 i (A)
i

where the summation ranges over all partitions I=0'i, . . . . Q.
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By combining the above Proposition with computations due to Schubert (see [S]) one
can obtain the following closed form expression for the coefficients (0\, . . ., j^)) and
[A, • • •,7'J.

PROPOSITION 7.12. — (i) The coefficients ((/i, . . ., 7^) are given by

(0. ...,^)=P/^f7p+^)+f7p+^)+...+^+^^^ (l^<^a)
L\ Jp ) \7p-l/ \ 7, /J

i/a f5 even, and
a

((/i, • • .,7a))= £ (-l)^^, . . .,7p, . . .,7a))
P=I

i/a is odd.
(ii) The coefficients [/\, . . ., 7'J, where a fs ^i^n, ar^ given by

[/•i, • . .,7J=P/[ap+7,-l) tOp-7,)//p^f] (1 ̂  < ^ ^ a).

Proo/ - Since (i) is essentially proved in [S] p. 180, we will only prove (ii). The
arguments are, however, inspired by those of [S]. Define

[/i, . . ..7j=P/[Op+7,-l)!Op-^)//p!7,!] (1 ^P < q ̂  a).

One checks readily that [l,0r=l and V.J^^Vi-^ JiY+ViJi-^' Therefore
[/i? 72]== [/i» JiY f01" every 71,72. To perform an induction step it is convenient to put
ViJi. ' " J i b - 2 . ^ - l]=l7l»72. " ' J i b - i ] and [/i,^, . . .Jib-iJib-i. -1]=0 if
7*2 b-i ^ 1. Then (28) reads

(29) b[j^ ...,72.]=£[/'i, ...,A-1, ...,72.].
k

By Laplace-type expansion for Pfaffians we have
2b

(30) [/r • • - ̂ J' = £ l/i, yfc]' lj2, • • •, 7k-1,7fc+1, . • •, 7*2 J-
k=2

We use double induction on b and £^. By applying the relation (30) to each term of
a

the right hand side of (29) we get by induction hypothesis
2b

b\Ji, . . . , 7 2 J = E (D\-L7fcr+^7k-in[/2. • • • J f c , . . . ,72^
k=2

+ZZ[/i,7!r[/2, •".fi, . . . ,7k- l , . . . ,72J
fc {

2b a

= £ L/i,7jl72, . . .,7k, . . . ,72J+(fc-l) £ D'l.yfr^, . . .,7;, . . .,72.] (by (29))
k=2 1=2
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2b

=D'i,.. .,7'2j+(fr-1) Z [/i../j[/2. •••Ji. • • •» j ' 2b r
1=2

(by (30) and induction hypothesis)

=b D'i, • • • , J'2 J (by (31) again).

This implies [/\, . . ., 72 J = [/i, • • • , 7'2 hF' as desired. •
Propositions 7.8 and 7.12 yield an algorithm for a calculation of the Chern numbers

of smooth degeneracy loci D^((p) analogous to the one described in Section 5. In
particular we obtain

PROPOSITION 7.13:
(i) The Euler-Poincare characteristic of a smooth degeneracy locus D^((p) (ofcodimension

7s) associated mth a symmetric morphism (p is given by the expression

Z(-l)III(Ol+^-U2+^-2, ...,^-r))Qp^l(E)Q_|i|(X),

where the summation ranges over all partitions I=0'i, . . ., in-r)'
(ii) The Euler-Poincare characteristic of a smooth degeneracy locus Dy (q>) (of codimen-

sion y05, r-even) associated mth an antisymmetric morphism (p equals

^(_l)li|^+^-,_l^+n-,-2, ...,^-JPp^,_^i(E)c,_|,i(X),
i

where the summation ranges over all partitions I=(i'i, . . ., in-r)'
The proof is the same as the one of Proposition 5.7. We use Proposition 7.8 instead

of Lemma 5.1 and Proposition 7.12 instead of Lemma 5.6.

Example 7.14. — If d=l then the Euler-Poincare characteristic of D^((p) is
(i) Qp«_, (E) Ci (X) -(n-r+1) Qp^^(i) (E), if (p is symmetric

(ii) Pp«-,-i (E) Ci (X) -(n-r-1) P^_,_^^ (E), if (p is antisymmetric (and r is even).
Let us notice the following analogs of Lemma 4.1 and Proposition 4.3. Let M;(K)

(resp. M^(K)) be the affine space of all nxn symmetric (resp. antisymmetric) matrices
over a field K. Let D^ (resp. D^5, r-even) be the determinantal subscheme in M^(K)
(resp. M^(K)) defined by the vanishing of all (r+l)-order minors (resp. (r+2)-order
subpfaffians).

PROPOSITION 7.15:
(i) A-(D?-D^) ^ A'(G,(K"))/(Qi(R), |l| ̂  1)

(ii) AW-D-.O ^A-(G,(K"))/(P,(R), |l| ̂  1)
R denotes here the tautological subbundle on the corresponding Grassmannians.

The proof is the same as the one of Lemma 4.1.
One can generalize this fact to the case of universal (tautological) degeneracy loci of

rank r in 83 E (resp. A2 E) where E is a vector bundle on X. Let D^ c S^ E and
D^ c= A2 E be the corresponding universal (tautological) degeneracy loci.
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PROPOSITION 7.16:

(i) A'(D^D^i)^A'(G,(E))/Q(R),[l[^l)
(ii) A-CD^-D-.O ^A'(G,(E))/(Pi(R), |I| ̂  1)

R is the tautological subbundle on G^(E).
Finally, notice that by methods analogous to those which allowed us to prove

Proposition 6.1 one can obtain the following finite sets of generators of the ideals
<fs aas
r r » Jrr •

PROPOSITION 7.17. —(i) The ideal ̂  is generated by all Schur (^polynomials of the
form Qp^,(A), where I c= (r)"--.

(ii) The ideal ^s (r-even) is generated by all Schur P-polynomials of the form
Pp^-^A^w^IcO-y1-

8. Comments and open problems

(8.1). The main theorems in Section 3 and 7 were proved in the context of Chow
groups. However, one can consider an anologue of the ideal ̂ , in other cohomology
theories. The proof of the inclusion ̂  c ̂  remains valid (see Remark 2.9).

PROBLEM. — Is it true that ̂ =^, for other cohomology theories?
(8.2). The Giambelli-Thom-Porteous formula is valid if X is a Cohen-Macaulay scheme
and codimxD,.((p)=(m—r)(M—r) (cf. [F] 14.4). The following example shows that the
equality Im(^=^(E, F) can fail, if these assumptions are satisfied. Consider the
construction (13) with m = n ^ 2 . Then D^_i((p) is equal to Do((p), where
$ = A1015 (p: F = A1015 F -> E = A^ E. But the ideal J^o (E, P) generated by
Si(E-F)=5i(E-F) is not equal to the ideal ^-i(E, F) generated by all Si(E-F),
[ I | ^ l .

It would be interesting to characterize a class of morphisms (p for which
Im(^=J^(E,F).
(8.3). Let (p: F->E be a morphism of vector bundles on X. Assume that the both
vector bundles E and F are filtred

F ^ c F ^ c . . . c=F,=F

E=Ei —^ E^ —^ . . . —^ E,..

Consider the locus

0 = {x e X, dim Ker (F, (x) c, F (x) ̂  E (x) -^ E, (x)) ^ f, for every Q.

By generalizing the formulas in [Po], [K-L] and [L] one can prove that for "sufficiently
general" (p (n,=rank E,, my = rank Fj)

["]=Det[^^^,(E,-F,)] 1 ̂  ij ^ r.
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We plan to study these loci from the point of view of the present paper elsewhere.
(8.4). Arguing as in Section 4 one can prove the chains of surjections:

(i) A (G,(K")) -^ A (D^) -^ A (G,(K"))/(Q,(R), 111 ^ 1)
(ii) A (G^K-)) -^ A (D-) -^ A (G^K^AP^R), 111 ^ 1)

where R is the tautological bundle on G^(K"). This gives us certain insight in A(D^),
A(D^) but does not describe these groups explicitly. On the other hand, from the
sequences

A(D^)-^A(D^A(D;-D^),

A (D-_,) ̂  A (D;5) -^ A (D- - D;5. ,)

it follows, that if fe < dimD^-dimD^ (resp. k < dimD^-dimD^.i) then
A^D^) c± A^D^-D^.O (resp. A^D;5) ^ A^D^-D^O). In particular
A1(D^)=Z/2Z, A1(D^)=0. As in Section 4, it is possible to generalize these consider-
ations to the case of universal degeneracy loci D,. c S^ E (resp. D^ c: A2 E, r-even), where
E is a vector bundle on X. For example if E is trivial we get

A1 (X x D^)=A1 (X) © Z/2Z and A1 (X x D^)=A1 (X).

PROBLEM. - Describe the Chow groups of D^, D^, D;5, D;5 explicitly.
(8.5). Notice that Proposition 5.7 allows us to calculate the Euler-Poincare characteristic
of varieties W^ parametrizing the linear systems of degree d and dimension ^ r in the
Jacobian of a curve, provided W^ is smooth. We plan to discuss this subject in more
details elsewhere.
(8.6). It is known that the formula for the Euler-Poincare characteristic of degeneracy
loci (see Proposition 5.7) can fail if D^((p) is not smooth. For, in the case when
(p: lx -^ L is a section of line bundle, and the hypersurface Do((p) has only one isolated
singularity in the point x, then the difference between the Euler-Poincare characteristic
and formula (5.7) is measured by the Milnor number of x. It would be interesting to
generalize the formula (5.7) to possibly singular degeneracy loci.

(8.7). Consider the homogenous space S^/U^. The Schubert varieties Qj in this space
are parametrized by strict partitions I=(i'i, . . ., Q where I c ?„ (see [B-H]). The Schu-
bert varieties 0^=0^ o,.. . , o) (1 ^ P ^ n) are called special. The authors of [B-H] raised
the following question: Is there a "Giambelli-formula" that expresses each Schubert class
as a polynomial in the special Schubert classes? It turns out that by combining results
of [Mo] and of [B-H] one can prove that the formula in question is given by the Schur
Q-polynomial Qi(A), where the role of the ^p(A) is played by Sip (recall that this
polynomial is given explicitly in (7)). More precisely, in [Mo] the following "Pieri-
formula" for the multiplication of Schur Q-polynomials was established. Let
I=(i\, . . ., i^) be a strict partition of length fe. Then

Q^A^A)^^^)
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where the summation ranges over all strict partitions J of length k or k +1 such that
ip-i ^ J p ^ ip Oo=°°» ^+i=0)» l-ll^+l1!- Moreover,

m(J)=card{l ^p ̂  fe,^ < ip <^}.

Comparing it with the "Heri-formula" for the Chow ring of SpJV^ proved in [B-H],
one obtains that the assignment: Qi(A)i—^Oi, defines a ring homomorphism

Ring of Schur Q-polynomials in n-variables -^ A* (SpJV^).

This map allows us to identify A*(S/^/UJ with the quotient ring of the ring of Q-
polynomials by the ideal generated by all Qj (A), where I 4: ?„. The same observation
applies to the Chow ring of SO^+i/U,, (see loc. cit.) but instead of the polynomials
Qi(A) one should use the Pi (A).

For more details see a forthcoming paper [P^].
(8.8). In Propositions 6.1 and 7.17 we have described some finite sets of generators of
the ideals J ,̂, ̂  and J^5.

CONJECTURE. — (i) If m ^ n then the elements 5^_^n-r+^A) where I ranges over all
partitions I c: (r)""'', form a minimal set of generators of ̂ .

(ii) The elements Qp^_^+i(A) (resp. Pp^_^_^+i (A)) where I c: (r)""^ form a minimal
set of generators of ̂  (resp. ^f}.

(iii) If m ^ n, then the minimal number of generators of each of the ideals ^^ ^

and ê ;" is equal to ( ).
W

This Conjecture was checked by the author for n ^ 6.

9. Appendix: a result of Schur

We provide here a sketch of the proof of Proposition 1.7 (refering for details to [Sch],
if necessary).

It is proved in ([M] III 2.3) that the Hall-Littlewood polynomial P(,)(A; t) satisfies:
i

P(.)(A;O=E (-I)-S(.-,,^(A).
r=0

where A=(fli, . . ., a^) is a sequence of independent variables. Thus, by Example 1.6
and Corollary 1.8, the Proposition is true for fe=l . Then the relation

Q,,(A)=^,(A)^,(A)-^^(A)g,_,(A)-Q,^,,_i(A)

allows us to prove the Proposition for k=2 by induction o n j = = l , . . ., f — 1 . Taking
into account definition (7) and Laplace-type expansion for Pfaffians, it suffices to show
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that the polynomials (I=(fi, . . ., i\), I-strict, l(T)=k):

QKai, . . ., 0^=2^ ^ wKi. . .aj^ [I (^+^)(^-^)~1]
w 6 S^Si)^ x Sn-fc 1 ̂  i < 7 ^ w

l ^ fc

satisfy the relations
/c

Qi(A)= E (-l)PQ4.^(A)Q^....r„..,i,(A),
p=2

if k is even and
fc

Qi(A)== E (-1)P-1^(A)Q^..,^.,,„(A),
p=i

if k is odd.
Consider the following elements in (Z [A])o:

^ Ft (^r+^X^-^'^ r= l. . • • » ^
s ^ r

and for u^, . . ., i^eZ[A],

w(Mi, . . ., M^= ]"[ 0^-^)(Mp+^)~1.
1 ^ p < 4 ^ k

Then the above definition of Qi (A) can be rewritten as
n a11 a12 a^

Q'(A) =2t S ———2———w(a„ a^ . . . , a^.
ri, ..., r fc=l Iri 1 r2 • • • A rfc

Thus, it suffices to prove the following relations
k

VV(Ui, . . ., Mfc)= ^ (-l^W^i, Mp)w(M2, . . ., Uy . . ., Mfc),
p=2

if k is even
k

W(MI, . . ., Mfc)= ^ (-l^W^i, . . ., Up, . . ., Mfc),
p=l

if fe is odd.
The second equality follows from the first one, by letting one of variables involved to

be zero. To prove the first equality it remains to show that for even k

w(Mi, . . ., u,)=Pf[(Up-u,)(Up+u,)-1], (1 ^p < q ̂  fe),
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and apply some well-known property of Pfaffians. Finally, for this last claim, notice
that Pf[(Up—Uq)(Up-^-Uq)~1] Y[ (Up+Uq) vanishes if Up=Uq for some p+ q and has the

p < q

same degree as ]~[ (Up—Uq). Being rational functions with integral coefficients, the
p < q

above polynomials must differ by certain constant factor. Using Laplace-type expansion
for Pfaffians and induction assumption one shows easily that for even k this factor is
equal to 1.

This finishes the proof of Proposition 1.7. •
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Note added in proof. — (1) Since submitting this paper I have learned that the following special case of our
Proposition 5.7: X=P^, ¥=0^(—d^) +. . . +^x(—^p)» E=(()x^ r=o' was established by other methods in the
paper: V. NAVARRO AZNAR, On the Chern classes and the Euler characteristic for nonsingular complete
intersections, Proc. of the Amer. Math. Soc., Vol. 78, pp. 143-148, 1980.

(2) The assumption 1(1)^—1 in Proposition 2.8 can be dropped-see [P^\.
(3) Methods similar to those used in Section 4. allow one to study the Chow groups of project! ve determinan-

tal varieties. We plane to treat this subject in some future article.
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