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CONJUGACY CLASSES OF FINITE SOLVABLE
SUBGROUPS IN LIE GROUPS

BY ERIC M. FRIEDLANDER (1) AND GUIDO MISLIN

In Memory of Alex Zabrodsky

1. Introduction

In two recent papers ([5], [6]), we introduced the concept of a locally finite approxima-
tion FG of a compact Lie group G. The group F^, by definition a countable union of
its finite subgroups, offers a useful tool in the homotopy theoretic analysis of the
classifying space BG of the Lie group G. Our study required the establishment of
certain connections between the finite subgroups of FQ and G. In this paper, we
concentrate on the algebraic problem of comparing conjugacy classes of finite subgroups
of FQ and G.

Specializing our Main Theorem (cf. 5.2 below) to the case in which G is connected, we
have the following theorem. We adopt the following notational conventions, maintained
throughout: p is a fixed prime, F the algebraic closure of the prime field ¥p, and C the
field of complex numbers. Furthermore, for any pair of groups H and G, we denote
by Hom,,(H, G) the set of conjugacy classes of homomorphisms from H to G.

(1.1) THEOREM. — Let G be a compact, connected Lie group and let YQ=G^(V} denote
the group of ¥-valued points of the reductive integral group scheme G^ whose C'valued
points constitute a complex form GC for G. For any finite solvable group n of order
prime top (=char(F)), a choice of embedding of the the Witt vectors of¥ into C determines
a natural bijection

^: Horn, (7i, r^) -> Horn, (TI, G) ^ Horn, (71, G C).

In the special case in which G=U^, we have G^=GL^ and classical Wedderburn
theory implies the above theorem not only for solvable groups n but for any finite group
of order prime top. We conjecture that Theorem 1.1 should, regain valid whenever n
is a finite group whose order is not divisible by p, although we know only fragmentary
results suggesting this generalization.

(1) Partially supported by the N.S.F.
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180 E. M. FRIEDLANDER AND G. MISLIN

Our paper is organized as follows. Using results of [6], section 2 defines the map T
of (1.1) and proves its surjectivity in the generality of "generalized reductive groups"
and finite super-solvable groups. We find this generality necessary for the proof of
(1.1), as well as its non-connected generalization. Theorem 5.2. In section 3, we use a
comparison of cohomology rings of the classifying spaces of BG and BFo to prove
bijectivity of ^F in the special case in which n is an elementary abelian group. This
special case, together with a discussion in section 4 of centralizers in generalized reductive
groups, constitutes the basis for our inductive proof of Theorem 5.2 presented in section 5.

While this work was in progress, the first-named author enjoyed the hospitality of the
Institute for Advanced Study and E.T.H., Zurich.

2. Generalized reductive groups

In our previous papers concerning locally finite approximations ([5], [6]), we began
with a compact Lie group G and obtained a "generalized reductive group" over a suitable
ring of Witt vectors which related G to a corresponding algebraic group over a field of
finite characteristic. In order to prove Theorem 1.1 (and its non-connected generalization
Theorem 5.2), we shall consider centralizers which are generalized reductive groups over
rings of Witt vectors but which are not presented as arising from compact Lie
groups. We begin this section with the definition of an abstract generalized reductive
group Gg over a base scheme S. Using the results of [6], we exhibit a map ^
Hom^(7t, Gg(F)) -^Hom^Ti, Gg(C)) for any finite group n of order prime to p and any
generalized reductive group Gg whenever S equals the spectrum of the Witt vectors of F
(discussed immediately below). We conclude this section by proving thatl? is surjective
whenever n is super-solvable.

We recall that W, the ring of Witt vectors of F, is a complete discrete valuation ring
of characteristic 0 with residue field F. One can construct W by completing at some
prime above p the ring obtained by adjoining to Z all roots of unity of order prime
top. For our purposes, W is particularly useful. Namely, W maps to F by the
canonical quotient map, can be embedded into C using the fact that the cardinality of
the quotient field of W equals that of C, and is contractible in the etale topology. We
fix an embedding o/W into C for all that follows. Many of our constructions [e. g., that
of y in (2.3)] depend on this choice of embedding.

A group scheme Gg over a base scheme S is said to be a reductive group over S if Gg
is smooth, affine over S and satisfies the property that each of its geometric fibres is a
connected, reductive algebraic group.

(2.1) DEFINITION. — A group scheme Gg over S is said to be a generalized reductive
group over S if it fits into an extension of group schemes over S

GS°-GS-TS

in which Tg is finite etale over S and Gi? is a reductive group over S. (Thus, G^ is a
normal subgroup scheme of Gg and Tg represents the sheaf-theoretic quotient Gg/G^.)
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CONJUGACY CLASSES OF SUBGROUPS 181

In much of what follows, S will be the spectrum of F, C, or W. In these cases, any
finite etale group scheme Tg over S must be of the form T ® S for some discrete group T
(i. e., a disjoint union of copies of S indexed by r). For Gg generalized reductive over
such a scheme S, Gg/G^ ^ T 00 S, where T is the group of scheme-theoretic connected
components KQ Gg of Gg.

The following theorem, essentially proved in [6; 1.5], is a major step in proving
Theorem 1.1 and its generalization Theorem 5.2.

(2.2) THEOREM. — Let S=SpecW and let Gg be a generalized reductive group
over S. Then for any finite group n of order prime to p, the quotient map W —> F induces
a bijection

a: Horn, (TC, Gg (W)) -> Horn, (n, Gg (F»).

Proof. - Let W^ denote the ring of Witt vectors of length n of F. Then W^ is the
quotient of W by the n-th power of the maximal ideal and W ^ UmW^. As argued in

the proof of [6; 1.5], the quotient map W^ -> ̂ n-i ̂  ^Y n > 1 induces a surjection

a,: Hom(7i, Gs(WJ) ^Hom(7i, Gs(W,_i))

which immediately implies the asserted surjectivity of a. Moreover, the lifting of maps
via a^ is unique up to conjugation by an element in Gg(WJ which maps to the identity
in Gg(W^_i). This easily implies the asserted injectivity of a. D

Using the map a of (2.2), we now define (in a much more general context) the map
asserted to be a bijection in Theorem 1.1. In (2.3) below and in subsequent discussions
as well, we let GC denote the complex Lie group with underlying discrete group Gs(C).

(2.3) DEFINITION.—Let S=Spec\V and let Gg be a generalized reductive group
over S. Then for any finite group n of order prime to p, there is a natural map

x?: Horn, (7t, Gs (F)) -^ Horn, (71, G C)

defined as the composition of the inverse of a occuring in (2.2) and the map
P: Hom,(7c, Gg(W)) -> Hom^(7i, GC) induced by the inclusion W c= C. Moreover, if K
is a compact form of G C, then we also denote by ^¥ the natural function

^: Horn, (7i, Gs (F)) -> Horn, (71, K)

obtained by composing the preceding map with the inverse of the bijection
Horn, (7i, K) -> Horn, (7i, GC) induced by the inclusion K <= GC (cf. [2]).

The next proposition is a generalization of [6; 1.5], which considered only finite groups
of prime power order. We recall that a finite group TT is called super-solvable if it
admits a nested sequence of normal subgroups T .̂ c: n whose successive quotients 7t,/7C,_i
are cyclic. In particular, any finite nilpotent group is super-solvable. In Theorem 5.2,
the reader will find another proof of Proposition 2.4 applicable to any finite solvable
group of order prime to p.
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182 E. M. FRIEDLANDER AND G. MISLIN

(2.4) PROPOSITION. — Let S=SpecW and let Gg be a generalized reductive group over
S and let n c= Gg(C) be a finite, super-solvable subgroup of order prime to p. Then there
exists some element xeG^(C) such that the conjugate ofn by x, nx, is a subgroup of
Gs(W)c=Gs(C).

Proof. — By [11; II. 5.17], n normalizes a maximal torus of GC. Because all maximal
tori of GC are conjugate and because every maximal torus of Gg is split, we may assume
that 71 is a subgroup of the C-valued points of the closed S-subgroup scheme Ng of Gg
defined as the normalizer of some S-split, maximal torus T§ of Gg. Because N5 c: Gg
is a smooth, closed subgroup (cf. [6; 1.6], [10; VIII.6.5]), the smooth closed map
Gg -> Tg = Gg/Gi? is such that the image of Ng is open and closed in Tg. Since Tg is a
constant group over S, this image of N§ is a constant subgroup r|s <= ig. We recall that
Ms, the normalizer of Tg in Gi?, is generalized reductive (given as an extension of Tg by
the Weyl group over S of the reductive group G^). Consequently, N5 is likewise
generalized reductive, given as an extension of Ms by r(s.

Let/: Ti-^Ns(C) be a given homomorphism, let a=n n/'^T^C)), and consider
the resulting maps of extensions

a -> n -> K/(J
[ [ [

Ts(C)-^Ns(C)^Ws(C)
T T T

Ts(W)^Ns(W)^Ws(W)

where Wg=Ns/Ts. The homomorphism (j-^Ts(C) factors through T§(W) -^Ts(C), so
that a straight-forward cohomological argument implies that Ti-^Ns(C) factors up to
conjugation through Ng(W) -> Ng(C) (cf. [6; 1.7]). D

Interpreting Theorem 2.2 and Proposition 2.4 in terms of the map ^F of Definition 2.3,
we immediately conclude the following corollary.

(2.5) COROLLARY. — The map ^F: Hom^Ti, Gg (F)) -> Horn, (n, GC) of (2.3) is a sur-
jection whenever K is a finite, super-solvable group of order prime to p. D

3. The case of elementary abelian groups

The purpose of this section is to prove the bijectivity of the map
^ Romaic, Gs(F)) -> Hom^Ti, GC) of (2.3) in the special case in which 71 is an element-
ary abelian ^-group (i.e., 71 ̂  Z/^Z®^ some r > 0) for some prime q different
from p. Our proof is cohomological in nature, relying on a point of view first espoused
by Quillen [9] which leads to the result that conjugacy classes of maps from elementary
abelian ^-groups into a compact Lie group G are determined by the cohomology ring
H*(BG, Z/^Z) (cf. [7; 4.3.1]). Thus, our first order of business is to compare the
cohomology of BGg(F) and BGC, generalizing slightly a result in [5] that BGg(F) is a
"locally finite approximation away from p9' of BG C. We then observe that a recent
result in [4] enables one to apply Quillen9 s point of view to the locally finite group
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CONJUGACY CLASSES OF SUBGROUPS 183

Gg(F). The proof of injectivity (for n an elementary abelian q-group) is then straight
forward.

Throughout this section we set S equal SpecW. Any reductive group Gg over S is
split over S, and arises by base change from a reductive group G^ over Z. More
generally, any generalized reductive group Gg over S is defined and split over the spectrum
of some subring A c= W which is finitely generated over Z. Consequently, for any
"sufficiently large" pd (i. e., for d divisible by sufficiently high powers of sufficiently many
primes), we may by an abuse of notation use G§(Fpd) to denote the Fpd-valued points of
Gspec A? where Gg is obtained by base change from the split group G^p^ ̂  ^or A <= W
finitely generated over Z. In particular, Gg(F) is a "locally finite group", the countable
union of its finite subgroups Gs(Fpd) for sufficiently large p^.

(3.1) PROPOSITION.—Let S= SpecW and let Gg be a generalized reductive group
over S. There exists a naturally determined homotopy class of maps (a "locally finite
approximation")

0: BGs(F) -^BGC,

such that the following properties are satisfied.
(i) Tii (<!>) induces an isomorphism

^: Gs (F)/G^ (F) -> G C/G C°.

(ii) For every finite KQ(GC)-module A of order prime to /?, 0 induces an isomorphism

0*: H*(BGC,A)-^H*(BGs(F),A).

(iii) 0 is natural with respect to morphisms of group schemes over S.

Proof. - The construction of [5; 2.4] yields a map 0: BGg(F) -»BGC fitting into a
map of fibration sequences

BGs°(F)->BGs(F»->BTs(F)
(3.1.1) 1<D0 [<!> i<D,

BGC° -̂  BGC -^BTg(C)

where <3\ is a homotopy equivalence induced by the isomorphisms

Ts(F)^Ts(W)^Ts(C).

Because Gi? is a reductive group over S, the left vertical map is a locally finite approxima-
tion away from p in the sense of [5; I.I], and in particular induces an isomorphism
0°*: H*(BGC°, A)-^H*(BG|?(F), A). Thus, (ii) follows using the induced map of
Serre spectral sequences associated to (3.1.1). Moreover, (i) follows by identifying n^ (0)
with the isomorphism on fundamental groups induced by $,. Finally, (iii) follows from
the naturality of the construction of [5; 2.4]. D

The following proposition identifies the isomorphism O* of (3.1. (ii)).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



184 E. M. FRIEDLANDER AND G. MISLIN

(3.2) PROPOSITION. — Let S=SpecW and let Gg be a generalized reductive group
over S. Denote by p: Gg(W) -> Gs(F) the map induced by the quotient map W -^ F and
denote by i: Gs(W) -> GC the map induced by the chosen embedding W c: C. Then for
any prime q ̂  p, the t\vo maps f, 0 ° p: BGs(W) -> BG C induce the same map

f* = (0 o p)*: H* (BG C, Zfq Z) -. H* (BGs (W), Z/q Z).

Proof. — We employ the following homotopy commutative diagram

BGs(F) ^- BGs(W) ^ BGs(C)
I I I

Homp(SpecF, BGp) <- Horns (S, BGg) -> Honic(SpecC, BGc)
(3.2.1) I I [

Horn ((Spec F),,, (BG^) Horn ((S),,, (BGs)J Horn ((Spec C),,, (BGc)et)
i U I

(BG^, -. (BGs)et ^ (BGc)et

whose horizontal arrows are determined by base change. The middle vertical arrows of
(3.2.1) are the canonical maps from algebraic function complexes to etale topological
function complexes [3; 13.2]. The lower vertical arrows of (3.2.1) are given by evaluation
at the canonical points of the contractible pro-spaces (SpecF)^, (SpecC)^. Since (S)^ is
also contractible, the two middle lower vertical arrows are homotopic. We recall that
H^BGC, ZlqZ) may be identified with H*((BGc)et, Z/^fZ) ^ H*((BGs)et, Z/^Z).
Using this identification, O*: H*(BGC, Z / q Z ) -> H*(BG(F), Z / q Z ) is the map in coho-
mology induced by the left vertical and bottom horizontal maps of (3.2.1). Hence,
the corollary follows from the homotopy commutativity of (3.2.1), which implies the
commutativity of the induced diagram in cohomology with Z/q Z-coefficients, together
with observation that the right vertical arrow induces the same map
H* (BG C, Z / g Z) -> H* (BGs (C), Z / g Z) as the tautological map Gs (C) -> G C. D

The following proposition is an extension of a well known result of Quillen [9]
concerning conjugacy classes of elementary abelian subgroups of compact Lie groups.

(3.3) PROPOSITION. — Let S=SpecW and let Gg be a generalized reductive group
over S. Let n be an elementary abelian q-group for some prime q different from p. If
/, g : n —> G§(F) are t\vo homorphisms inducing the same map

/*=^*: H*(BGs(F), Z/^Z)-^H*(B7i, Z/qZ),

then f and g are conjugate.
Proof. — As discussed prior to (3.1), we may write Gs(F) as a union of finite

subgroups Gs(Fpd) for d sufficiently large. Moreover, for d sufficiently large, both /
and g factors as maps/, g: n -> Gg(F^). We consider the maps of cohomology algebras
associated to / and g :

H*(Gs(F), ZA?)-.H*(Gs(F^), Z/q) -^H*(Gs(F^), Z/^)->H*(^ Z/q).

These sequences for / and g, our hypothesis j*=g*, and an easy generalization of
[4; Thm l(b)] to Gg(F) (valid for any locally finite group which is a finite extension of
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CONJUGACY CLASSES OF SUBGROUPS 185

Gg°(F)) imply the equality of the associated maps H*(G(Fpde), Z/q) ->H*(n, Z/q) for e
sufficiently large. Applying Lanne's theorem [7; 4.3.1], we conclude that
/, g: n-^Gs(¥pd) are conjugate, thereby also proving that f,g:n-^Gs(F) are
conjugate. D

We now prove the bijectivity of the map ^ of (2.3) for n an elementary
abelian ^-group.

(3.4) THEOREM.—Let S=SpecW and let Gg be a generalized reductive group
over S. Let n be an elementary abelian q-group for some prime q different from p. Then
the map ^F: Hom,(7i, Gs(F)) -^ Hom,(7i, GC) of (2.3) is a bijection.

Proof. - By Corollary 2.5, it suffices to prove that ^F is an injection. For this it
suffices by Theorem 2.2 to show that the map P: Hom,(7c, Gg (W)) -^Hom,(7i, GC)
induced by the inclusion W c C is an injection. Consider two maps /, g: n -»-Gs(W)
with the property that their compositions with the inclusion i: Gg(W) c=Gs(C) are
conjugate. The conjugate maps fo/, i ^ g induce the same map in cohomology

/* o f* =g^ o f*: H* (BG C, Z/q Z) -^ H* (B 71, Z/q Z).

Applying Proposition 3.2, we conclude that

/* o p* o o* =g^ o p* o o*: H* (BG C, Z/q Z) ̂  H* (B 71, Z/q Z).

Since O* is an isomorphism by Proposition 3.1, we conclude that

/*op*=^op*: Hil6(BGs(F», Z/^Z)^H*(BTI, Z/qZ).

By Proposition 3.3, this implies that po/, p e g : Ti^Gs(F) are conjugate. Finally, this
implies by Theorem 2.2 that/, g : K -> Gg(W) are conjugate as required. D

4. Centralizers and normalizers of elementary abelian groups

In Corollary 4.3, we verify that the centralizer in a generalized reductive group G§ of
an elementary abelian subgroup A c: Gg(W) of order prime to p is again a generalized
reductive group provided that KQ Gg has order prime to p. This result sets the stage for
our inductive proof in section 5 of the bijectivity of ^ for finite solvable groups. We
apply Corollary 4.3 to obtain Theorem 4.4 which verifies that the normalizer N(E)g of
an elementary abelian ^-group E c= Gg(W) is also a generalized reductive subgroup of
the generalized reductive group Gg whenever q is a prime different from p.

We adopt the following notation of Steinberg [12] in considering an automorphism
CT : G -> G of a discrete group G. We write G^ for the subgroup of G of elements fixed
by a, I — a : G->G for the (set-theoretic) map sending an element g to go(g~1), and
(1 — o) G for the image of the map 1 — CT.

(4.1) PROPOSITION. — Let G be a complex algebraic group with reductive connected
component. Let x^G be an element of order n and let Z(x) c= G denote the centralizer

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



186 E. M. FRIEDLANDER AND G. MISLIN

of x. Then the connected component of Z (x) 15 likewise reductive and the component
group 7i;o(Z(x)) is an extension of a subgroup of KQ(G) by Ko{(G°) nZ(x)), an abelian
group of exponent dividing n.

Proof. — Let a denote conjugation by x, so that Z(x)=Gy and
(G°) OZ(x)=(G0)^. Recall that G° is a central quotient of the product R xH, where
R is the connected component of the center of G° and H is the derived group of
G°. Since a is an algebraic automorphism of R, R^ is an algebraic subgroup of R
whose connected component is a torus; as verified in [12; 9.4], H^ has reductive connected
component. Because the kernel and cokernel of (R x H)^ -> (G°)y are both finite, we
conclude that (G°)^ has reductive connected component. Moreover, the inclusion
(G\ <= Z(x) has finite quotient, so that ((G0)^)0 ^ (Z(x))°.

We observe that KQ (Z (x)) fits in an extension

1 ̂  Tio ((G°L) -^ Tio (Z (x)) -^ Z (x)/(G0), ̂  1

with Z(x)/(G°)^ a subgroup of TC()(G). We proceed to show that TCort^L) ls an

abelian group whose exponent divides n. Let Q=R x H -> G° be the (not necessarily
algebraic) universal covering group of G° with kernel the central (discrete) subgroup C,
and let a: Q -^ Q denote the unique automorphism of Q lifting o: G° -> G°. Because
(R~)o is a (connected) subspace of the complex vector group R and (H )y is connected
by [12; 8.1], Qy ^ (R~)^x(HT)^ is connected. Using the exact sequence
Q^ -> (G°)^ -> ((1 -o) Q Pi C)/(l -a) C -^ 1 of [12; 4.5] and the connectedness of Q ,̂ we
conclude the isomorphisms

^o ((G°L) ^ (G°L/im (QJ ^ ((1 - a) Q HC)/(1 - a) C.

In particular, KQ ((G°)y) is abelian.
Consider an element x=gc5(g~l)e(l—a)Q^\C. To prove that the exponent of

Uo((G°)y) divides n, it suffices to prove that x"eC is congruent to the identity modulo
(I—CT)C. Observe that x is congruent to cr(x) modulo ( l—o)C. On the other hand,
x a (x). . . a^-1 (x) e C equals g ̂ k (g~1). Thus, x" is congruent modulo (1 — cr) C to
g a" (g~1) which equals the identity. D

Remark. — We thank the referee for the following observation. Proposition 4.1
extends in sharper form to connected reductive groups G (over fields of arbitrary
characteristic) provided that x e G is chosen to be semi-simple of finite order n. In this
case, 7io(Z(x)) is isomorphic to a subgroup of F = k e r { H ~^H}. Namely, consider
q: R x HT -> G and choose y e q~1 ({x}). Then h -> [h, y\ determines a map (independent
of the choice ofy) r\ q~l(Z(x)) -> F which factors through the restriction of q,
q~1 (Z (x)) -> Z (x). Since h e q~1 (Z (x)) lies in the kernel of r if and only if h e Z (y) and
since Z(y) is connected by [11; 3.9], we conclude that the kernel of the induced map
r: Z(x) -> F is precisely Z(x)°. Since [h, y] is central, [h, y]m=[h, /"] and thus the image
of KQ (Z (x)) = Z (x)/Z (x)° —> F has exponent dividing n.

The following theorem is a scheme-theoretic version of Proposition 4.1.
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CONJUGACY CLASSES OF SUBGROUPS 187

(4.2) THEOREM. — Let S=SpecW and let Gg be a generalized reductive group over S
whose component group Tio(Gs) has order not divisible by p. J/xeGs(W) is an element
of prime order q ̂  p, then the centralizer Z (x)s of x in Gg is a generalized reductive group
over S with component group KQ (Z (x)s) of order not divisible by p.

Proof. — Once Z(x)s has been shown to be generalized reductive, the assertion
concerning the order of 7to(Z(x)s) is an immediate consequence of Proposition 4.1. Let
a dfenote conjugation by x, so that Z(x)s=(Gs)(y. The argument of the first paragraph
of (4.1) is valid for algebraic groups over arbitrary algebraically closed fields and thereby
proves that the connected component of Z (x)s is reductive.

Write Z(x)s as a disjoint union of connected components Z(x)^ indexed by
ae7io(Z(x)s), each of which is smooth over S (cf. [6; 1.6]). If there exists some element
z^eZ(x)g(W), then multiplication by z^ determines an isomorphism (Z(x)g)° ->Z(x)^.
Thus, surjectivity of Z (x)g (W) -> KQ (Z (x)s) implies that Z (x)s is generalized
reductive. The smoothness of Z(x)^ implies that if Z(x)g(F) is non-empty, then
Z(x)^(W) is also non-empty (cf. [8; 1.3.24&, 1.4.2rf])- Thus, it suffices to prove the
surjectivity of the group homomorphism Z(x)g(W) -^Tio(ZC), where ZC is the complex
Lie group with underlying discrete group Z(x)g(C). This will be achieved by showing
that every Sylow subgroup L c n^ (Z C) is conjugate to a subgroup in the image of
Z(x)s(W)-.7io(ZC).

Let L c= HQ (Z C) be an Z-Sylow subgroup. We may assume that I + p, since the order
of TI()(ZC) is prime to p by Proposition 4.1. Applying [6; 3.2], we find a finite l-
subgroup M of Z(x)s(C) mapping onto L. By Proposition 2.4, the nilpotent subgroup
<x, M ) c: Z(x)s(C) c= Gg(C) generated by x and M is conjugate via some weGs(C) to
a subgroup of Gg(W). Moreover, by Theorem 3.4, there exists some ^eGs(W) such
that xw=xy. Consequently, if t==wy~1, then teZ(x)s(C) and
Mtc:Z(x)s(C)^|Gs(W)=Z(x)s(W). Since Nf maps onto an /-Sylow subgroup of
KQ (Z C) conjugate to L, we are done. D

An easy inductive argument on the order of an elementary abelian group E implies
the following consequence of Theorem 4.2.

(4.3) COROLLARY. — Let S=SpecW and let G§ be a generalized reductive group over S
with KQ Gs of order prime to p. If E c: G§ (W) is an elementary abelian q-group for some
prime q ̂  p, then the centralizer Z(E)§ o/E in Gg (5 a generalized reductive group over S
whose component group 7Co(Z(E)s) has order not divisible by p. D

Corollary 4.3 and Theorem 3.4 provide us with the following result concerning the
normalizer of an elementary abelian ^-group.

(4.4) THEOREM. — Let S=SpecW and let Gg be a generalized reductive group over S,
with Tio(Gs) of order prime to p. IfEcz Gg(W) 15 an elementary abelian q-group for some
prime q ^ p , then the normalizer N(E)s ofE in Gg is a generalized reductive group over S.

Proof. — The quotient group N(E)g/Z(E)s is a subgroup of Aut(Eg), so that it suffices
to prove that the order of the F-valued points of this quotient equals the
order of the C-valued points. This is given by Theorems 2.2 and 3.4, which imply that
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the inclusion E c Gg(W) and this inclusion preceded by an automorphism are conjugate
as maps to Gs(W) if and only they determine conjugate maps to Gg(F) if and only if
they are conjugate as maps to Gs(C). D

5. Finite solvable subgroups

In this section, we apply Theorem 4.2 and induction to prove in Theorem 5.2 that the
natural map ^F: Hom^Ti, Gg(F)) -^Hom^Tc, GC) of (2.3) is a bijection whenever K is a
finite, solvable group of order prime to p. Theorem 5.4 gives a reformulation of
Theorem 5.2 in terms of categories of finite solvable subgroups.

We require the following lemma, the first assertion of which we have implicitly
employed in several arguments of previous sections.

(5.1) LEMMA. — Let Gs be a generalized reductive group over S. If Gg -> Kg ->• ̂  is
an extension of group schemes over S with ̂ finite etale over S, then Kg is also generalized
reductive. If rig c Gg is a closed, normal subgroup scheme mth r|s finite etale over S and
dims(r|s) invertible as a global function on 5, then Gs/r|s is representable by a generalized
reductive group over S.

Proof. — The first assertion is an easy consequence of the fact that the sheaf-theoretic
quotient Kg/G^ fits in an extension of one finite etale group scheme over S by another
and is therefore representable by a finite etale group scheme over S. To prove the
second assertion, we observe that the hypothesis on dinis(r|s) implies that Ys='HsnG^
is a subgroup of Gi? of multiplicative type, so that G^/yg is representable by a reductive
group over S ([10]; VIII.5.1; XIX. 1.7). A homogeneity argument now implies that Gg/rig
is representable by a group scheme over S containing G^/yg as an open and closed
subscheme. Since the quotient (Gs/r|s)/(G^/Ys) is isomorphic to the quotient of Gg/G^
by 'HS/YS? we conclude that it is finite etale and thus that Gg/r^ is generalized reductive. D

(5.2) THEOREM.—Let S=SpecW and let Gg be a generalized reductive group
over S. Then for any finite solvable group n of order prime to p, the natural map of (2.3)

^: Horn, (TC, Gs (F)) -̂  Horn, (TI, Gg (C)) = Horn, (TC, G C)

is a bijection.
Proof. - Let P : Hom^(7c, Gg(W)) ->Hom,(n, GC) be the natural map. By

Theorem 2.2, the injectivity (respectively, surjectivity) of ^ is equivalent to the injectivity
(resp., surjectivity) of

P: Horn, (7i, Gs (W)) -> Horn, (n, G C).

To prove the injectivity of P, we consider homomorphisms /, g: n -> G§ (W) for which
there exists some xeGg(C) with y^ and proceed to prove the existence of some
^eGg(W) with/^^. Clearly, we may assume that/and g are injective. For notational
simplicity, we shall successively replace/by Gs(W)-conjugates, the last of which shall be
equal to g. Observe that we may assume x e Gj (C) by replacing / by /w for some
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weGg(W) with the image of w equal to that of x in TC()GC. It then follows that/(7c)
and g(n) map to the same subgroup H c= TCpGC, so that we may replace G§ by the
open-closed subgroup with connected component group equal to H. Thus, we may
assume that Gg has component group of order prime to p.

We choose an elementary abelian normal subgroup A^ of n=n^ and set n^ equal to
TI^/AI. Inductively, let A, be an elementary abelian normal subgroup of TC^ and set
7^+1 =7^/A,. Since n is solvable, we have that A^=n^ for some d. Using Theorem 3.4,
we may replace/by some Gs(W)-conjugate with the property that/(Ai) =^(Ai), denoted
by BI for notational convenience. By Theorem 4.4, N(B^)s, the normalizer of B^ in
Gs, is generalized reductive over S. Moreover, our x (for which/^=^) lies in N(Bi)g(C)
because B^=f(A^)=g(A^)==fx(A.^)=(B^)x. As explained above, we may assume that
xeN(Bi)^(C) by replacing/by an N(Bi)s(W)-conjugate.

Let Mi s be ̂  open-closed subgroup of N(Bi)s with component group generated
by f(n) [or, equally, g(n)], so that TioM^g is of order prime to p. By Lemma 5.1,
G^^S=MI S/BI is also generalized reductive. Let /^, g^: ̂ z^^i^^) be the maps
induced by/and g respectively. Using Theorem 3.4 again, we may replace/^ by some
^2,5 (W)-conjugate with the property that/^ (A^)=g^(A^), also replacing/by a Gg(W)-
conjugate which induces the new f^. Continuing inductively, we obtain /., g^: n^ -> G( g;
/f(A»)=^(A,)=B,; /, g, induced by/_i , ^_i; Gf+i^^.s/^ Here, M^s is an open-
closed subgroup of the normalizer N(B;)g c= G^ g with TCoM^. g of order prime to p and
/•(7i;), gi(Ki) are both contained in M^ g(W). Moreover, the projection of x (where
y^) is contained in M^s(C).

Set W^ s=M^ s and define W^ g by descending induction on i to be the pull-back of
the quotient map M^ s ->Gf+ i s via the closed immersion W,+i s"^Gf+i s. Thus, we
obtain a tower of cartesian squares, a section of which looks as follows:

W,.-i,s - M,_,,s
i i

W,,s -> M, g -> G^s
I I

^i+l,S ~^ Gf+l.S

Hence, W, g -> W^+i s ls an ̂ ^ surjective homomorphism with kernel isomorphic to the
constant group scheme over S with component group B,. By construction, the maps
/, g: 7i->Gs(W) factor through Wis(W)c=Gg(W) and their compositions
with Wis (W)-^Wis(C) are conjugate by x€Wis(C) . Moreover, the image
groups f(n), g(n) c= Wig(W) are equal, given as the normal subgroup
ker {W^s(W) -^W^s(W)}. Since Wi s ̂  generalized reductive, we may replace/by a
conjugate/y, ^^W^ s(W), with y projecting to the image of x in TloW^ g. This permits
us to assume that fx:=g for some xeW? g(Q- Since the conjugation action of the
connected group W? s(C) on the finite normal subgroup f(n)==g (K) cz W^ s(C) is necess-
arily trivial, we conclude that our much modified/[Gs(W)-conjugate to our original/]
equals g.

We conclude the proof of (5.2) by proving the surjectivity of P. Let A c n be
some non-trivial normal elementary abelian subgroup of TT, and consider some
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monomorphism /: n -> G C. Without loss of generality, we may assume that KQ Gg has
order prime top. We proceed to verify that some Gs(C)-conjugate of /has image
contained in Gg(W). Using Theorem 3.4, we find some weGs(C) such that
/^(A) c: Gg(W). Applying Theorem 4.4 with E=fw(A.\ we may replace Gg by N(E)g
and so assume that Eg c Gg is normal. By Lemma 5.1, Hs=Gs/Eg is a generalized
reductive group over S. Let g: TC/A -^ Hg(C) denote the map induced by /w. Arguing
by induction (on the cardinality of 71), we may find some teGs(C) with the property
that g1: TC/A -> Hg(C) has image contained in Hs(W). Since /wt: n -> Gs(C) has image
contained in the pre-image of Hg(W) which is contained in Gg(W), we conclude that
/^(Ti) c= Gs(W) as required. D

Proof of Theorem 1.1. — If G is a compact connected Lie group, then the complex
form G C of G is the complex Lie group associated to the complex points of a reductive
group over SpecZ (cf. [1]). Moreover, for any finite group n the inclusion G c GC
induces a bijection Hom,(7i, G) -> Hom,(7i, GC) (cf. [2]). Thus, Theorem 1.1 follows as
a special case of Theorem 5.2. D

We conclude with a reinterpretation of Theorem 5.2 in terms of categories of solvable
subgroups, the point of view taken in [6].

t
(5.3) DEFINITION. — For any group H, let ^'(H) denote the category whose objects

are finite solvable subgroups of H of order prime to p and whose morphisms from n c= H
to T c: H are group homomorphisms from n to T which are the restrictions of inner
automorphism of H.

We leave to the reader the straight-forward verification of the following theorem from
Theorems 2.2 and 5.2.

(5.4) THEOREM.—Let S=SpecW and let Gg be a generalized reductive group
over S. Then there are natural equivalences of categories

^p'(Gs(F)) ̂  <$^(Gs(W)) ̂  ̂ (Gs(C))

induced by the homorphisms Gg(W) -> Gs(F), Gg(W) -> Gs(C). D
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