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HILBERT SCHEME OF SMOOTH SPACE CURVES

LAWRENCE EIN

Denote by H^ ^ „ the open subscheme of the Hilbert Scheme parametrizing the smooth
irreducible curves of degree d and genus g in P". The purpose of this paper is to prove
that H^ 3 is irreducible when d^g-\-3. We also prove that every irreducible reduced
curve in P3 with r f^P^+2 is smoothable in P3. These results answer two questions
proposed by Hartshorne and Hirschowitz ([5], 1.4). I would also like to remark that
these results were asserted by Severi with an incomplete proof ([8], p. 370).

Let ^ -> M^ „ be the universal family of smooth curves over the fine moduli space of
genus g curves with level m structure. Suppose ^ ic^ is the relative Heard scheme. Set
^r;={(^f, C)£^ic^|j^ is a degree d line bundle on a curve C and
h°(^) ̂ r+1}. Now suppose that J^f is a degree d very ample line bundle with

h°(J2f)=r+l and /^1(^)=§>0.

We show that if Y is an irreducible component of 'W\ containing the point corresponding
to (J^f, C), then dimY^5^— 1—48—d. We also show that the above inequality implies
that H^ ^ 3 is irreducible when d^g-\- 3. More generally we prove that H^ g „ is irreduci-
ble when

(2n-3)g+n+3
d>————-^———^

I should also point out that Joe Harris has found an example where H^ g „ is reducible
when d^^+n. Throughout the paper we shall work over the complex numbers.

I would like to thank Mark Green and Rob Lazarsfeld for many helpful discussions.

LEMMA 1. — Let E be a rank m locally free sheaf on a smooth irreducible curve C. Let
X = P (E) and n: X -> C be the projection map. We denote by U the tautological line
bundle o/P(E). Suppose V^H°(U) is ar-\- 1-dimensional subspace. Then,

(a) The natural map V(8^x~^U is surjective, if and only if \®(9^->n^\3=^E is
surjective.
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470 L. EIN

(b) Assume that | V | gives a birational morphism

f: X-./(X)=Ycp»-. 5^F=ker(V®^c-^B).

Then there is an exact sequence,

/r -m ^ r-m

O^A-E)*®^) ^)^F^ ^ ^(-p^Q
\ i / i

where pj s9 are general points on C.

Proof. - (a) Suppose that V®^x-^U is surjective. Let M=ker(V®^x^U). If
R=7t- l(x)then

M|R^Opm-i(l)e(r-hl-m)^p>m-i.

Hence, R^N^O. It follows that V®^c^7 l*U=E is surjective. Conversely, if
V®^c -)> E is surjective, then the composition V®^x -^ 7t* E ̂  U is also surjective.

(b) Set Y=/(X). Choose r-m general points y^ y^ ' ' ' . Yr-m m Y- we may
assume that {y^ y^ . . ., y^-m] spans a (r-m-l)-plane L in P^

By the uniform position lemma [2], we may assume that

LnY={^,^ , . . . ,^_} .

Furthermore we shall assume that f~l(yi)=qi and / is an isomorphism in a
neighborhood of q,. Set

Q={^1» ̂  " •. ^r-m}-

Consider the exact sequence

O-^IQ®U-^U-^U|Q^O,

where IQ is the ideal sheaf of Q in X. Set pi=n(q^ and P=TC(Q). Observe that the
restriction map V -> H°(U [p) is surjective.

Let W = ker (V -^ H° (U [p)). Observe that the natural map

r-m

7^U=E-^(U|Q)=^ ^,=^p
1=1

is surjective. Set E^TC^IQOU). Observe that E' is a rank w locally free sheaf and
R^dQ^L^O.
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HILBERT SCHEMES 471

Consider the following diagram:

0 0 0
i i ia

0-^ M' -^ W(g)^x ^IQ®U-^O
i i i

0-^ M -^ V(x)6?x -^ U -^0
IP i 1r—m

O^EI^H^UIQ)®^^ U]Q ^0
i=i

i i i
0 0 0

where

M=ker(V®^x -* U) and M'=ker(W(g)^x -^ IQ®U).

Observe that a is surjective because /-1 (L n Y) = Q.
It follows from the snake lemma P is also surjective.
Let fi=n~l(pi)^Pm~l. Consider the exact sequences,

0 -^ Tori (IQ®U, (9^) -> M'®^ -> W®^. -^ IQ^U®^. -^ 0,

and
0 ̂  fe (q,) -^ IQ®U®^. ̂  1 (̂1) ̂  0,

where fe (g,) is the residue field of q, in 1,̂  is the ideal sheaf of q, in /,. It follows from
a local computation that the map

H°(W®^) -^ H°(lQg)U®^)

is surjective.
Also observe that Supp (Tor^ (IQ®U, (9^) c: q^.
Hence H^M'O^-^O. M' is torsion free and it is flat over C. It follows from the

theorem of base changes that R1 n+M^O.
There is the following diagram:

0 0 0
i I I

0-> TI+M' -̂  W(g)^c ^ E' -^0
i I I

Q-> F -^ V(x)^c ^ E -^0
i i 1r—m r—m

o^ E ^(-P.)^H°(U|Q)®(PC^ E <^o
1=1 i= l

i i I
0 0 0
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472 L. EIN

This showed that F-^ ^ ^(~Pi) is surjective.

Now

ran^M^l and T^M^ A^)*^ A^)*®^?).

Remark. — The above construction is inspired by the techniques of Gruson and et.
al. [6].

The fine moduli space of smooth irreducible genus g curves with level m structure is
denoted by M^ ^. Suppose that ^ -> M^ ^ is the universal family of curves. Let ^ ic ̂
be the relative Picard scheme. Set,

^={(^, C)£^ic^|deg^=d and /i°(^)^r+l}.

For the rest of the paper we shall use the following notations. We shall denote by C, a
smooth irreducible genus g curve. ^ is a degree d line bundle on C. We shall assume
^°(J^)=r+l, hl(^)=6>0, and \^\ has no base points. We denote by/the natural
map:

/: C ->f(C) = C ̂  P (H° (J^f)) = IP'.
def

Suppose that ^P(l) is the tautological line bundle of P(H°(J^)). P^^l)), the first
principal part of ^(1), is isomorphic to H°(^)®^ipr. Set M=/* (0(^(1)) and
P1 (J^f) = first principal part of o^f. There is the following diagram:

0 -^ M -^ H°(J^)(x)^ -^ ̂  ̂  0
df i i ||

0 ^ K(g)JSf ^ P1 (J^f) -^ JSf -^ 0,

where K is the canonical sheaf of C. Observe that P1 (J^)(x)K®J^~1 ̂ P1 (K). Hence
there is the following diagram:

0 -^ M®K®J^-1 ̂  H°(^)®K®^-1 ̂  K ̂  0
( l .A) 1 i ||

0-^ K2 -^P^^^K®^7-1 -.K-^0.

Consider the map:

(l.B) [i: H^^XSH^K^J^-^^H^P^^^K®^-1).

^o^pi^^^^^-i^ ^ naturally isomorphic to the cotangent space of ^ic^ at the
point (J^, C). The image of [i is the annihilator of the Zariski tangent space of ̂  at
the point (J^f, C). See [1] for more details.

THEOREM 2. — Suppose that ^ is a very ample degree d line bundle on a smooth
irreducible curve C such that h° (J^f) = r + 1 and h1 (J^f) = 8 > 0, \vhere r ̂  3. Then,

(a)rank([i)^36-2+r=46+d-g-2. (l.B).
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HILBERT SCHEMES 473

(b) If Y is an irreducible component of 1^\ containing the point (J^f, C), then
dimY^5g-4S-d-l.

(c) Let N be the normal sheaf of C in P (H° (^)). Then h1 (N) ̂  (r - 2) (8 -1).
Proo/. — Consider the natural embedding,
Let N* be the conormal sheaf of C in P^ There is the following exact sequence:

0 -> N*(x)j^ -. H° (J^)®^c -^ P1 W -^ 0.

Consider the natural map

F: IP (P^))-^ TCP'.

T is the tangent surface of C, and F is a birational morphism. By Lemma 1,
r-2 / /r-2 \ \

hlW=ho(^®K)^^ho(K(S)^~l(-pi))^ho^^-3^ ̂  p,} =(r-2)(5-l).
f = l \ \i=l ) )

But H°N*(x)K) =ker H. Thus

rank(H)^(r+l)8-(r-2)(8-l)=38-2+r=48+d-^-2.

Since the image of n is the annihilator of the Zariski tangent space of ̂  at (J^f, C),
it follows that,

dimY^(4^-3)-(48+rf-^-2)=5^-48-d-l.

COROLLARY 3. — Assume that r^3 and

f: C^/(C)=C /cp(HO(^))

is a birational map. Furthermore assume either f is unramified or
P^C^K^rf-^^). Then,

(a) rank (n) ̂ 48+^-^-2.
(b) If Y is an irreducible component of ̂  containing the point (o^f, C), then

dim\^5g-l-46-d.
Proof. — Consider the natural map

(p: H0^)®^-^?1^).

Set

E=Im((p), N*(x)J^=ker((p) and D=cok((p).

Observe that cok (p is equal to cok (df. /* Qpr®j$f-^ 0^®j^).
It follows that cokcp is isomorphic to ^(x)JSf(x)^, where R is the ramification divisor.
Let X = P (E). Consider the natural map

F: X -^ F (X) = T <= P (H° W).

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



474 L. EIN

T is the closure of the tangent surface of the smooth part of C. F: X -»• T is
birational. Now

W)-g= E length (^c/^c')-
peC

Observe that

degR= ^ length (Ip, c/<pp c.i/ (P) c')'
p e c

It follows that deg R ̂  PJCV) -g. By Lemma 1, we can

LEMMA 1. — We can construct the following exact sequence:

r2 \ r'2
O^^-3®^^®^ ZA- -^N^K^ ^Kg^-^-p^O.

\i=i / 1=1

Since deg(R)^Pa—g, it follows from our assumption

/ / r-2 \\
h° (^-3 R + E A - =0.

\ \ 1=1 //

Thus dim ker ^=/i°(N*(8)K)^(r-2) (5-1). As in Theorem 2, we conclude that
rank n^48+d-g-2 and dim Y^5g-l-45-d.

The open set of the Hilbert scheme corresponding to smooth irreducible degree d
genus g curves in P3 is denoted by H^ g 3. If XeH^3, then
X (Nx/pa) = h° (N^3) - h1 (N^3) = 4 d.

As in [7], one can show that each irreducible component of H,, ^ 3 has dimension
greater or equal to 4 d.

THEOREM 4. — J/d^+3, then H^.a is irreducible.

Proof. — There is an irreducible open set of H^, ̂  3 corresponding to nonspecial curves
(/^(^(l))^) ([5], 6.2). Suppose for contradiction that N^3 is reducible. Then
there is an irreducible component W of H^g,3 such that the general curve C in the
family W satisfies

h°(G)cW)=r^l and ^(^(l^S^.

We denote by H^ ^ 3 the Hilbert scheme of degree d genus g smooth irreducible curves
in P3 with level m structure. Let W^ be an irreducible component of H^3 which
maps onto W. Then dim W = dim W^.

There is a natural map from

h: W^-^c^fc^.
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HILBERT SCHEMES 475

Let Y be an irreducible component of ̂  containing /i(W^). Let x be a general
point of W^, then

dmh~lh(x)^dimG(^d+\+&-g)+dim^uiP3

where G(4, d-hl-t-8—^) is the Grassman variety of 4 dimensional subspaces in a
d +14- 8 —^-dimensional vector space. Then

dimW=dimW^dimh- l/l(;c)+dimY^4d-l

by Theorem 2. This is a contradiction. Hence, H^ ^ 3 is irreducible.
Remark. — In [4], Harris has proved that H^ 3 is irreducible while rf>5/4g+ 1.
Suppose that C" is an irreducible reduced degree d curve in P3. Let

N^3=^om^p3(Ic-, ^c')==^om^c'(Ic'/i^ ^c')

be the normal sheaf of C'.

LEMMA 5. - % (Nc',ps) = h° (Nc',p3) - h1 (Nc',p3) = 4 d. Hence every irreducible compo-
nent of the Hilbert scheme containing C' has dimension greater or equal to 4 d.

Proof. — CV is locally Cohen Macaulay. We can construct an exact sequence:

0 -, E2 -^ EI -^ lc' -^ 0

where E^ and E^ are locally free sheaves on P3.
Consider the following exact sequences:

«PI
0 -> ̂  om (Ic-, (Pp3) -^ E? -> E^ G)c' (4) -)- 0,

<P2

0 ̂  ̂ f om (Ic. ^c') -^ E? |c' -^ H?|c- ̂  <T xt1 (Ic. ^c').

Observe that (p2=(pi®^c- Thus

Cok q>2 = Cok (pi ® d)^ = o)c' (4).

Observe that
Ci (Ef) = Ci (E^) and rank Ef = 1 + rank E^.

It follows from the Rieman-Roch theorem,

%(Nc,p3)=x(E?|c')+X(»c'(4))-x(E?|cO=l-P,+x(o)cO+4rf=4^.

C" is codimension two Cohen-Macaulay. It follows that there is no local obstructions
to the deformations of C ([3], 5.1). Hence the obstructions to the deformations of C'
in P3 is given by H^N^/ps). As in [7], one can show that this implies the inequality of
dimension as claimed.

THEOREM 6. — Suppose that X is an irreducible reduced degree d curve in p3. If
d^PJX)+2, then X is smoothable.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



476 L. E1N

Proof. - Let W be an irreducible component of the Hilbert scheme containing
the point corresponding to X. If the general member of W is smooth, then X is
smoothable. Assume for contradiction that a general curve C in W is singular. Let
S -> W be the universal family of curves. Let p : § -> S -> W be the normalization of
S. Let U^W be the open set where p is smooth. Suppose the normalization of C' is a
smooth curve of genus g. We can construct a variety U^ etale over U such that there
is a map h: \J^->^icd^. We shall divide the proof into five cases. Consider the
normalization map n C -» C'. Set n* (9^ (1) = (9^ (1).

Since ^<P,(C), deg^c(l)^+3.
Case 1. — Assume that^=0.
Then ^(1) =^pi (d). C' is obtained by projecting the rf-uple embedding of P1. The

generic projection gives a smooth curve. Thus,

dimW<dimG(4, d+l)+dimAutP 3 -dimAutP l=4rf .

Case 2. — Assume that g==l.
As in Case 1, we can prove that

dimW<dimG(4, rft+dimAutP^dimAutC+dim^fc^^d.

Case 3. - Assume that ̂ 2, dim/i(UJ=dim ^fc^=4^-3, and /^(^(l))^.
The generic line bundle of degree rf^+3 is very ample. Let x be a general point of

U^. Then dim h ~1 h (x) < dim G (4, d +1 -g) + dim Aut P3.
Hence, dimW=4^+3+dim/l - lA(x)<4rf .
Case 4. - Assume that ^(^(l))^, ̂ 2, and dimft(UJ<4^-3, in this case

dimW=dimU„=dim^~ lA(x)+dimA(UJ<dimG(4, rf+l-g)

+dimAutP3+(4g-3)^4d.

Case 5. - Assume that ̂ 2, and ̂ (^(l^S^.
Using Corollary 3, we can show that

dimW=dimU^4rf-l,

as in Theorem 2.
In each of the five cases, we show that dim W<4d.
This is impossible. Thus a general curve in W is smooth.

LEMMA 7. - Assume f: C -> C c p (H° (J^f) = Pr 15 a birational map. Also assume that
d^g.

(a) Consider the multiplication map:

Ho: H^^^H^K^^-^^H^K).

Then rank (Uo)^25+r-l =38+rf-^-l.

4° SERIE - TOME 19 - 1986 - N° 4



HILBERT SCHEMES 477

(b) ^2g^d.

Proof. — Consider the exact sequence:

O^M-^H°(J^)(x)^c-^-^0 when M=f^^r(l).

By Lemma 1, we can construct an exact sequence:

.r-l . r-1

O^^-1®^ EA- -^M^ ^(-p,)^0.
\i=l J i= l

Observe that,

hl(^®^-l®(()(^p^\\=ho(^2®o(- EA-V)
\ \i=i // \ \ 1 = 1 //

=2d+\-g-(r-l)=-^(K®^-2(S)o( - ZP^\
\ \ » = i //

Thus

h^K^-^fftT.P^}^
\ \i=l //

Hence,

^(M^K^-^dimkeruo^-lKS-l).

Thus rank Ho^38+d-g-1. Since g^rank^o), it follows that 5^(2^+ 1 -d)/3.

THEOREM 8. — Let H^ ^ „ fc^ the open set of the Hilbert scheme of smooth irreducible
degree d genus g curves in P" (n ̂  3). If d > ((2 n - 3) g + n + 3)/n, t^n H^ ^ „ is irreducible.

Proof. — Let C be a smooth irreducible degree d genus curve in P". Then
X(Nc/pn)=(n+l)d+(n-3)(l-^).

It follows that the dimension of each irreducible component of H^, „ is at least
(n+l)d+(n-3)(l-^). Assume that H^ ̂  has an irreducible component W such that
the general curve in the family satisfies the property h° (^) =r+1 and h1 (J^f) =8>0.

Then,

dimW^5^-l-48-d+dimG(n+l, r-hl)

+dimAutPn=5g-2-48-d+(n+l)(8+d-^+l),
Since

^^-d and ^>(2»-3)g+n+3
3 n
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478 L. EIN

it follows that dim W<(n-h l )d+(n—3)( l—g) which is a contradiction.
Remark. — The above result is an improvement of a theorem of Joe Harris. In ([4],

p. 72), Harris proved that H^ is irreducible while d>————-(-1.
n+1
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