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A FEW REMARKS ABOUT THE VARIETY
OF IRREDUCIBLE PLANE CURVES
OF GIVEN DEGREE AND GENUS

BY ENRICO ARBARELLO C)(3) AND MAURIZIO CORNALBA (^C3)

1. It was stated by Seven [12] that the variety of irreducible plane curves of degree ^with §
nodes is irreducible. To this day, Severi's statement remains unproved; however proofs of
various special cases have been provided by Several authors [10], [1]. The goal of this paper
is to widen the range of values of d and § for which Severi's assertion is known to hold true.

Throughout this paper we shall always work, without further notice, over the complex
field.

Let 2^ g be the variety of irreducible plane curves of degree d and genus g. It is known
(c/. [2], for example) that a general point of any component of 2^ g corresponds to a curve
which has only nodal singularities. Thus, to say that the variety of irreducible plane curves
of degree d with 5 nodes is irreducible is the same as saying that 1̂  g is irreducible, with:

(d-\\ .
.-( , )-5.

The main result of this paper is that £^ is irreducible whenever J^(2/3)g+7/3. To
understand what the bound means we consider the Brill-Noether number:

p=p(r,^,g)=g-(r+l)fe-^+r).

The integer p(r, d, g), when non-negative, is the dimension of the variety of linear series of
degree d and dimension r (g^s, for short) on a general curve of genus g; when p<0, this
variety is empty [7]. This being understood, we can state our main result in the following,
more striking, form.
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468 E. ARBARELLO AND M. CORNALBA

(1 .1) THEOREM. — The variety £^ g is irreducible whenever

p(2,d,g)^l

or, which is the same, when:

^(2/3)g+7/3.

Put otherwise, our theorem states that, denoting by:

m: ^d,g~" --^g

the natural morphism of 5^ g to the moduli space of genus g curves, £^ g is irreducible as
soon as a general fiber of £^ g has dimension at least equal to 1 + dim PGL(2) = 9 (provided
of course, that g> 1).

To our knowledge, the best previously known bound of this type is due to Alibert and
Maltsiniotis [I], who showed that 2^ g is irreducible when:

^(4/3)^,
that is, when:

p(2,d,g)^2g-6.

One of the main reasons for the appearance of the bound p ̂  1 in Theorem (1.1) lies in the
essential use we shall make of a beautiful result of Fulton and Lazarsfeld [5]. In the
statement G;(C) will denote the variety of g^s on the curve C (cf. [3] for a precise definition).

(1.2) THEOREM (Fulton-Lazarsfeld). - Let C be a smooth genus g curve. Suppose
P (r, d, g) ̂  1. Then G; (C) is connected.

Combining this with Gieseker's result that G^(C) is smooth of dimension p if C is
general [6], we get:

( 1 . 3 ) COROLLARY (Fulton-Lazarsfeld). - Let C be a general smooth curve of genus g. If
p(r, d, g)^l, G^(C) is irreducible (and smooth).

The other essential ingredient of our proof will be the irreducibility of-J^
(c/1 [13]). Thus, in a way, we shall be deducing the irreducibility of 2^ from the one
of My Incidentally, this is how Severi handles the case d^g-\- 2 in [12], Anhang F, n° 10,
although his argument cannot be considered complete.

2. The irreducibility of 2^ g is known for any d when g is small (for example, Alibert and
Maltsiniotis'result already disposes of the cases ̂ 3). Therefore it will do no harm, and
save a lot of time, if we state most of our auxiliary results under the additional assumption
that g> 1, without bothering to say how they ought to be modified when g=0, 1.

We shall prove Theorem (1.1) by showing, more exactly, that every point of J^g has
arbitrarily small neighbourhoods U such that m'^U) is irreducible.

The irreducibility of 2^ g then follows from the one of My We shall find it convenient to
translate our problem about plane curves into one about g^s on smooth genus ^curves, as
we now explain.
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PLANE CURVES OF GIVEN DEGREE AND GENUS 469

A g^ Q) on a smooth curve C corresponds to an (r+l)-dimensional vector subspace
V c= H° (C, L), for a suitable degree d line bundle L. By a framefor 2 we shall mean a frame
in V up to homothethy. There is a 1 -1 correspondence between couples (^, ^), where Q)
is a base-point-free g\ on C and ^ is a frame for ^, and non-degenerate degree at maps:

(p: C-^P'.

We shall use the symbol [ 2 \ to denote the complete linear series corresponding to the linear
series ^. Also, i f7?i , . . . , ph are points of C, we shall denote by S>-^pi the linear series
consisting of those effective divisors E such that E+][^e^. As is customary, we shall
denote by r(Qi) and i(2) the dimension and index of speciality of Q)\ in other words:

r(^)=dimV-l; i(2)=h^{C, L).

We shall also use the symbol K^ (or K) to designate the canonical sheaf on the curve C.
We next recall (cf. [3]) that, given non-negative integers r, rf, for every point p of -My and

any sufficiently small connected neighbourhood \J of p (either in the complex or the Zariski
topology), there are a smooth connected variety .̂ , a finite ramified covering:

h: M -> U
and two varieties, proper over M\

^: ^-^.jr, 7i: ^-^M
with the following properties:

(a) ^ is a universal curve over -J^, i. e. for every p e M, ̂ ~1 (/?) is a smooth genus g curve
whose isomorphism class is h(p).

(b) ̂  parametrizes couples (p , ̂ ), where p ^ M and ^ is a g^ on ^(/O.
Now suppose r=2 and let ^ be the open subset of^ consisting of all points which

correspond to couples (/?, 2) where p e .Ĵ  and ^ is a^ on ^"1 (p) which has no base points
and is not composed with an involution. We denote by ̂  the variety whose points are the
couples (y, ̂ ) where ye^ and ^ is a frame for the corresponding^. Clearly^
parametrizes couples (/?, (p), where p^:M and:

(p: ^-i(^)->P2

is a non-degenerate degree ^ map which is not composed with an involution; moreover V
maps onto m'^U)^^^ g via:

(^(p)-^-^)).

In view of our previous remarks. Theorem (1.1) will be proved if we can prove that ^, and
hence ̂ , is irreducible. We denote by ^ the closure of % in ̂ .

Clearly, ̂  is the union of all the components of ̂  whose general points correspond to
base-point free g^'s which are not composed with an involution. This being understood,
what has to be proved is:

(2.1) PROPOSITION. — Under the assumption of Theorem (1.1), ^ is irreducible.
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470 E. ARBARELLO AND M. CORNALBA

In order to be able to deal effectively with the variety ^, we first need to recast, in a form
suitable for our needs, some basic results of [3].

To begin with, let / be a point of^; the point / corresponds to the datum of a degree d\me
bundle L on the curve ^ ~1 (n (/)) = C, plus an (r + l)-dimensional subspace
Vc=H°(C, L). Recall that a differential operator V of order at most one on L (over an open
subset U of C) is a C-linear endomorphism of L |y which locally looks as follows:

Vs=a(z)^+b(z)s,

where z is a local coordinate on C and a and b are holomorphic. The differential operators
of order at most one on L make up a locally free rank two d^c-module, henceforth
denoted S^. The subsheafof ZL consisting of algebraic operators is isomorphic to (9c, while
the quotient S^/^c is easily seen to be isomorphic to 6c, the tangent sheaf to C. The vector
space H^C,!^) parametrizes first order one-parameter deformations ofC along
with L. Secondly there is a mapping:

H* : H1 (C, 2:J -^ Hom(V, H1 (C, L))

induced by the natural sheaf homomorphism:

?i: SL -> Hom(V, L)^V*(g)L.

Fix an element oeH^C, Z^), that is, fix a deformation:

C -> Spec C [e]

of C together with a line bundle ^ on C which restricts to L on the central fibre. Then an
element s of V extends to a section of J^f if and only if a.s=0. Further, given an open
covering { U^} on C and a cocycle { V^p} representing a, any way of writing { V ^ p s} as a
coboundary:

Vap^p-^a

yields a well defined extension of>s". This extension, in a sense which is easy to make precise,
"is" the collection [s-^-Gt^].

The tangent space T^y fits into an exact sequence:

(2.2) 0 -^ Hom(V, H°(L)/V) -^ T^) -^ ker^i* -> 0

To better understand this, at least when g > 1, we need to study the cokernel of the basic sheaf
homomorphism ^, which we denote by J^. We shall do this under the additional
assumption that r >0, in which case X is injective.

Clearly, if { s^ }^o .., r is a basis for V, { ̂ } is the dual basis, and V is a local section of ZL.
we have:

HV)=^(X)V^,

4eSERIE - TOME 16 - 1983 - ?3



PLANE CURVES OF GIVEN DEGREE AND GENUS 471

Thus a section ofJ^ is determined by a collection { ̂  ̂ (x) t^ }, where r^ is a section of L over
i

an open subset U^ of C, subject to the conditions:

S^®(^p-^)=E^®v,p.,
or, which is the same:

Vap^=^P-^a

for suitable sections V^p ofE^ over U^ n Up. Therefore a global section of J^ yields both a
class aeH^C, 2^) (the class of the cocycle { V ^ p } ) and a way of writing {V^J as a
cohoundary, for each L Put otherwise, a global section of J^ corresponds to the datum of a
deformation:

C->SpecC[e]

of C, an extension ^f of L, an extension of the g^ determined by Vc=H°(C, L), and an
extension of the frame { ̂  } (up to homothethy, since a change of scale in the ^ modifies
the t^s by the same factor). Two such extensions:

^•+£^, Si+et^ ;=0 , . . . , r

determine the same section of ̂ , if and only if there is a global section V of S^ such that:

4-^a=V^ ;=0,...,r.

In case g > 1, H° (C, 2^) = H° (C, (9c)^ hence V is a constant and the two given extensions are
proportional (by the factor 1 + eV). In conclusion, when g > 1, if I is a point of ̂  and ^ a
frame for the corresponding g\, H°(C, J^) is the tangent space at (/, ^r) to the variety whose
points are the couples (point of^, frame for the corresponding g^). The exact cohomology
sequency of:

0 -> EL -^ V*®L -> ̂  -> 0

gives an exact sequence:

0 -> Hom(V, H°(C, L))/C ̂  H°(C, JQ -> ker^i* ̂  0

Dividing H° (C, JQ by Hom(V, V)/C, one gets the tangent space to ̂  at /, whence the exact
sequence (2.2), considering that:

Hom(V, H°(C, L)/V)^Hom(V, H°(C, L))/Hom(V, V).

To get a hold on ker n* it now remains to analyze J^ in terms of other, better known,
sheaves. We shall do this under the assumption that r>0, as before. Let F be the base
locus of Vc:H°(C, L). Choose a basis for V and let:

(p: C -̂  P'

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



472 E. ARBARELLO AND M. CORNALBA

be the corresponding mapping: the hyperplane bundle on Pr pulls back, via (p,
to L(—F). We then have a commutative diagram with exact rows and columns:

0 0 0

0 ——————^ (Pc —————^ ^c(F) ————*- ^p(F)—————^ 0

0 ——————- ZL —————^V*®L —————^^ ——————- 0

0—————^9(C)—————*-9(F)—————>-2 ——————i-O

0 0 0

Here 6 is the pullback via (p of the tangent bundle to P1', while the middle column is obtained
by tensoring with (9 (F) the pullback of the Euler sequence of P1'. As for ^, recalling that the
normal sheaf to (p, denoted by N<p, is the quotient 9/9^, it fits into an exact sequence:

(2.4) 0 -> 9c(F)®^ ̂  ̂  -> N^(F) -^ 0

Since ^p(F) and 9c(F)(x)^p are concentrated on F, we deduce from (2.3) and (2.4) that:

Coker ^H^C, JQ^^C, J^H^C, N<p(F)).

As a special case, we recover the identification, given in [3], between coker n* and H1 (C, N^,)
when V has no base points. Returning to (2.2) we can now compute the dimension of the
tangent space to ̂  at /:

dimT^(^)=(r+l)(A°(C, L)-r-l)+dimker^*

=(r+l)(/z°(C, y-r-^+A^C, ZiJ-^+l^C, L) + dim (Coker u*)

=(r+l)x(L)-(r+l)2+/^ l(C,^)+^(C,9c)+^ l(C,N^(F))
=dim-J^+p(r, d, g)^^^ N^(F))

Since it is well-known (see [3], for example), that every component of ̂  has dimension equal
at least to dim-^+p, the above formula implies.

(2.5) LEMMA. — If r>0, ^ is smooth of dimension p+dim.^ at I if and only if
^(C,N^(F))=0.

(2.6) Remark. — When L is non-special, the condition of the above lemma is always
satisfied. Infact/^C, N<p) is just the dimension of the cokernel of the map ^*, whose target
isHomC^H^C.L))^}.
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In case r=l, the sheaf N<p is concentrated on a zero-dimensional subset ofC, hence
Lemma (2.5) implies the well-known.

(2.7) PROPOSITION. — The variety ^\ is smooth of dimension:

p(l, d,g)-{-dimJfg.

In other words, when g> 1, ̂ \ is smooth of dimension:

2d+2g-5.

In general the dimension of a component of ̂ ; may well exceed dim My + p. When r = 2,
however, the components of ^ which are of interest to us have the "correct"
dimension. The precise result, whose proof is to be found in [2] or [3] is:

(2.8) PROPOSITION. — Suppose g> 1. Let X be a component of^ whose general point
corresponds to a g\ (necessarily base-point-free) which is not composed with an
involution. Then the dimension ofX is:

dimX=3^-3+p=3^-hg-9.

The singular locus of ̂  is known to be relatively "small". The following result, which is
implicit in [3], makes this precise.

(2.9) PROPOSITION. - Let % be the open subset of^\ consisting of all points (p, Q>), where
peM and 3) is a g\ (possibly with base points) on ^~l(p) which is not composed with an
involution. Then the dimension of the singular locus of% does not exceed g-S.

Proof. - The cases g = 0, 1 are taken care of by Remark (2.6). Therefore we assume g > 1
throughout. Let ̂  be a component of the singular locus of ̂  and let/be the degree of the
fixed divisor of a general point of^. Let ^ ' be the subvariety of^_y consisting of all points
(p, Q - F) where(/?, 0} e X has fixed divisor F and deg(F) = /. Write:

dimr==dim^-f

Let l=(p, Q') be a general point ofT and set C = ̂ ~1 (p). Choose a frame ̂  for 3)' and let:

(p : C -> P2

be the corresponding morphism. Denote by S the variety whose points are the couples
,/', ^ ' ) where /' is a point ofX' and ^ ' is a frame for the corresponding g}. ̂ . If we assume
that:

(iimSr>g-S

the tangent space to St at (/, ̂ ) is a vector subspace of H°(C, N<p) of dimension at least:

^-7-/'+dimPGL(2)=^-/'+l.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERJEURE



474 E. ARBARELLO AND M. CORNALBA

To reach a contradiction we now make use of what we might call the "ramification
trick". Let Z be the ramification divisor of (p, and set:

^<p=9c(Z)/9c, N,=(p*9p./9c(Z)

so that we have an exact sequence:

0-^Jf^N^N^O

Clearly N^ is a line bundle, while Jf<p is concentrated on Z, hence
/^(C, 1^^)=hl(C, N;p). Furthermore, since (/, ̂ ) is a general point of 31, if follows
from [4], Lemma (1.4), that:

T(,^(^)nH°(C,^)={0},
an hence that'

r^^g-f.

Now either Ny is non-special, or else, by Clifford's theorem:

^(N„)=r(N^)+^-deg(N^)^^-r(N,)^//.

Since dim^'=dimJ''+/', there is an/'-dimensional algebraic system of degree/divisors F
such that (/?, 0)' + F) e 3£. In particular, given /' general points p^, . . . , pf, we may choose
an F that contains all of them and therefore:

^(C.N^F^/^C.N^F^O.

Thus by Lemma (2.5) (/?, W + F) is a smooth point of ̂ , a contradiction.

Q.ED.

We now turn to the variety ofg^ 's on a fixed smooth curve C, which we denote by G^(C)
(cf. [3] for more details). Associating to each g^ Q) the corresponding complete linear
series 13) \, maps G;(C) into Pic^C); the image is W^(C), the variety of complete linear series
of degree d and dimension at least r on C. The description of the tangent spaces to ̂  which
we have just given has an exact analogue for the variety G^(C). Fix a point / on G^(C),
corresponding to VcH°(C, L). The role of \ and ^* is now played by the sheaf
homomorphism:

Xo : ^c-^HomCV.L^V^L

and by the corresponding homomorphism in cohomology:

H$ : H1 (C, <Pc) -^ Hom(V, H1 (C, L).

Thus T,(G^(C)) fits into an exact sequence:

0 -> Hom(V, H°(C, L)/V) -. T,(G;(C)) -^ ker^ig -. 0
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PLANE CURVES OF GIVEN DEGREE AND GENUS 475

and we have:
dimT,(G^(C))=p(r, d, ̂ -hdimker^o

where Ho, the transpose of ^o? l s ^e cup-product mapping:

H o : V^H^C.KcL-^H^C.Kc)

Since G^(C), when non-empty, is known to have dimension at least p, we have:

(2.10) LEMMA. - The variety G;(C) is smooth of dimension pat I if and only ifker [IQ = { 0 }.
(2.11) Remark. — The condition of the above lemma is obviously satisfied when /

corresponds to a non-special g^, i. e. when ; (L)=0.
The kernel of p.o ls easily computable when r== 1. In this case:

ker^H^C.KcL-^A)),

where A is the base locus of the g\ corresponding to l(cf. [3], for example). This simple fact
can be put to work to gather information about G^(C).

The following result has been obtained also by Accola, Griffiths, Harris. Their proof will
appear in [8].

(2.12) PROPOSITION. — Let C be a smooth curve of genus g. Let G be an irreducible
subvariety ofGj (C). Let Qi be a general point of G, Suppose \ 2 \ is base-point-free and not
composed with an involution. Let D be a divisor belonging to 2. Then:

(i) if | Q) | is non-special:

dimG^p(2,d,g)

(ii) if | Q) | is special:

dimG^2d-g-5+i(2D)==p(2,d,g)+g-d+l+i(2D).

Statement i) follows at once from Remark (2.11). The proof of ii) makes use of the
following standard:

(2.13) LEMMA. — Let 2 be a linear series of degree d and dimensions on a smooth
curve C. Then:

(a) ifp is a general point ofC and 1 ̂  t^r, r(Q>- tp)=r-t, i. e. i (2-tp)=i(2). '
(b) If, moreover, Q) is base-point-free andnot composedwith an involution, andp^, . . . ,pr-i

are general points of C, 2 — ̂ p^ is a base-point-free g^-r+r
We now prove part (ii) of Proposition (2.12). Set r = r (Of). Let G' be the open subset of

G consisting of all linear series W such that r( |^|)=rand such that 1 2 ' \ is base-point-free
and not composed with an involution. Associating to each ^'eG' the complete linear
series | W \, maps G' into G^(C); let S be the image of G'. The fibre ofG' -^ S over | D' | e S is
contained in the grassmannian of projective 2-planes in the r-dimensional projective space
|D'|. Thus:

(2.14) dimG^dimS+3r-6

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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By Lemma (2.13), part (&), there are open subsets U of the (r- l)-fold symmetric product
C,_ i and V of S such that if | D' | € S and ̂ . e U, the series | D' - ̂ p, \ is base-point-free of
dimension one. Hence there is a well defined map:

v|/: UxV-Gi_^(C)

vKI>.JD'|)=|D/-][>J.

We fix ̂ pi and D'. In case:

YKZ^JD/|)=vKE^|D'/|)

the linear series | D' - ̂ p, + ̂  q,\ has dimension r. Since | D' - ̂ p, \ is one-dimensional,
we must have:

?/-EA•+E^)=<(D'-^)=f(D/)^0.

Thus ifF is the base locus of |K(-D+^/^)|, we must have:

E^F

and there are only a finite number of possibilities for ̂ q, (and hence for ID"]) . In
conclusion \|/ is finite-to-one. Hence if ̂  e U is general and 8 = [ D - ̂ p,\, we have:

(2.15) dimS^dimT^(Gi_^(C))-r+l

=p(l,^-r+l,^)+,(2D-2^,)-r+l

=2<(/-^-3r+l+<(2D-2^,).
Now, if p is a general point of C:

i(2D)^i(2D-2^p,)^i(2D-(2r-2)pY

Since r(2D)^2r-H, part (a) of Lemma 1 applies and gives:

;(2D-(2r-2)^)=/(2D)=/(2D-2^,).

Combining this with (2.14) and (2.15) we find:

dimG^2rf-^-5+f(2D),
as desired.

The bound in part (ii) of Proposition (2.12) has various consequences, among which we
single out the following.

(2.16) COROLLARY. — Let Cbea smooth genus g curve. Let Xbea component ofGj (C)
whose general point Q) is such ihat\Q)\ is base-point-free and not composed with an
involution. Then, when d^g+1 :

dimX=p(2,^)

Moreover ifd>g-}-l, \Q)\ is not special.

4'SERIE - TOME 16 - 1983 - ?3
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In fact, if I Q) \ is special, part (ii) of Proposition (2.12) gives us the bound:

dimX^2d-g-5=p(2,d,g)-(d-g-l)

which is compatible with the known bound:

dimX^p

only when d=g-{-1. Otherwise | Q) \ is not special, and part(i) of Proposition (2.12) applies.
3. We are now ready to proceed with the proof of (2.1), and hence of Theorem (1.1). As

we already observed, we may, and will, assume that g > 1. We also fix an integer d such that:

(3.1) ^(2/3)g+(7/3).
i.e., such that:

p(2,^)^l.

We shall keep the notation of the preceding section. In particular M will be a suitable
ramified covering of an open subset of Mg :

^ : ^ -^ M\ K : ^ -^ M

will be a universal curve on M and the variety parametrizing g^ 's on the fibres of'^,
respectively, while:

<^r-^2
v <y d

will stand for the union of all the components of ̂  whose general point corresponds to a
(necessarily base-point-free) g^ which is not composed with an involution. We recall that ̂
is of pure dimension 3d+g—9 [Proposition (2.8)]. If G is a subvariety of ̂ , we shall
denote by KQ the restriction of n to G. The first step in the proof is:

(3.2) LEMMA. — Let Xbea component of^. Suppose d^g-{-1. Let a general point on X
correspond to a g^, Q> on the curve C. Then Q) is complete.

Proof. - Suppose r(^)=r>2: in particular Q) is special. Let ^_2 be the (r-2)-fold
symmetric product over M of ^. Then, by Lemma (2.13):

vKI> '̂)=m-l>i
yields a well-defined morphism:

v|/: A->^_^

whereA is an open subset of ̂ C^-ix M X; moreover, \|/ mapsA into a component Y of ̂ -^4-2
whose general member is not composed with an involution. Fix ̂ p, and Q ) ' , and suppose:

vKD^')=YKZ^^)
If D' e Q)\ D" e ̂ //, this implies that:

D-elD'-^.+^l

r(Dff)=r.
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Since r(D/-^^.)=2, the q^s must be base points for |K(-D'+^j9,)|. But
;(D' - ̂ ^.) = ;(D') ̂  0, hence there are finitely many possibilities for ̂  q,. Moreover, for
any choice of]^., Q ) ' 1 belongs to the grassmannian ofprojective 2-planes in the projective r-
space | D' - ̂ p, + ̂  q,\. Thus the dimension of the fibres of \|/ does not exceed 3 (r - 2) and
we conclude:

3^+^-9-3(r-2)=dim Y ^dimA-3(r-2)=3^+^-9+(r-2)-3(r-2)

a contradiction.
Q.E.D.

Next, we notice that, since p(2, d, g)^Q, by the existence theorem for special divisors
(cf. [9], for example) ̂  maps onto -M. Actually, even more is true. Since it is known
(c/. [3], Proposizione (5.8) and the following remark) that a general g\ on a general curve is
not composed with an involution, ^ also surjects onto M. Furthermore, since
p (2, d. j?) ̂  1, by Corollary (1.3) we conclude:

(3.3) LEMMA. — There is one and only one component of^ which surjects onto M.
This Lemma, coupled with the results of the previous section, is already sufficient to

conclude when d ̂  g +1.

(3.4) LEMMA. - The conclusion of Proposition (2.1) is valid under the additional
assumption that d^g^-\.

Proof. — Every component of ^ has dimension 3^-3+p. On the other hand, by
Corollary (2.16), every fibre of ̂  : ̂  -> M has pure dimension p. Thus every component
of ^ surjects onto M, and, by Lemma (3.3), ^ is irreducible.

Q.E.D.

From now on we shall assume that:

d^g.

To complete the proof, we shall argue by contradiction, assuming that ̂  is reducible. We'
shall denote by X the unique component of ^ that maps onto M. Let Y be any other
component of ^, and set:

Also, let:
TC(Y)=ZC:^.

(^|D|)

be a general point of Y, and set

c=r1^)
We now begin an analysis of the irreducible variety Z.

(3.5) LEMMA. - dimZ^+2^-4-;(2D).
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Proof. — It suffices to apply part (ii) of Proposition (2.12) to a general fibre of Tiy. We
find:

dim(Z)^dim(Y)-(2rf-^-5+f(2D))

=3rf+^-9-2rf+^-h5-;(2D)=rf+2^-4-;(2D)

Q.E.D.

We next recall the well-known "base-point-free pencil trick" (cf. [II], p. 162).

(3.6) LEMMA. — Let r be a smoo th curve. Let A be an effective divisor on F, and let V be a
vector subspace of H° (T, (9 (A)). Suppose V has no base points. Let L be a line bundle on Y
and let:

(p: V^H^r.L^H^r^A))

be the cup-product mapping. Then:

h°(r, L(A))^2/i°(r, L)-^°(r, L(-A)).
The next three lemmas are aimed at sharpening the lower bound on the dimension of Z

given by (3.5), while at the same time describing the involutions, both rational and
irrational, that a general member of Z might have. For this reason, in the statement of the
next lemma and in the sequel of this section, °£\ ^ will stand for the closure of the subvariety
of M consisting of all points corresponding to curves which are n-fo\d ramified coverings of
smooth genus y curves. By Hurwitz' formula, the degree of the ramification divisor of such
a covering is:

w=2^+2yz(l-y)-2

and Riemann's moduli count yields:

dim^^3Y-3+w=2^+(2/2-3)(l-y)-2.

(3.7) LEMMA. — Assume Z c= 3['^ Then:

y=0; ^(3/8)fif+(7/8).

Proof. — By Lemma (3.5) we have:

2^+(2^-3)(l-y)-2^J+2g-4-;(2D).

In order to estimate ;'(2D) we shall apply Lemma (3.6) with A=D, L=K(-2D). The
result is:

;(D)=A°(C, K(-2D)(D))^2/!°(C, K(-2D))-A°(C, K(-3D)).

Now, the degree of 3 D, by our assumption, is larger than 2 g, hence ;(3 D) = 0 and the above
inequality yields:

;(D)^2;(2D).
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On the other hand, by Lemma (3.2), r(D) = 2, hence:

;(2D)^^+1.

Substituting into the first inequality we find:

(4^-6)(l-y)^3^-6;

By our assumptions, the right-hand side is always positive, hence y=0, and the above
inequality reduces to

4n^3d-g.

Since, by our assumptions:

^(3/2) ̂ -(7/2)

the conclusion of the lemma follows.
Q.E.D.

(3.8) LEMMA. - ;(2D)^2.

Proof. — We argue by contradiction, and assume f(2D)^3. We set i(2D)=s,
e == deg K( — 2 D). Notice that, by our basic assumption (3.1):

(3.9) e<d.

Next, we denote by Y' the variety of couples (r|, ̂ ), where r\ =(q, | D' |) e Y, i(2 D') = s, and €
is a g^ contained in | K(—2D') |. The variety Y' has two projections:

clearly,

v|/: Y'-^

(p: Y'^^

dimY^dimY+3^-3)

On the other hand, since ^ determines 12 D' |, it determines | D' |, up to points of order two
in the Jacobian of ^~1 (q). Hence (p is finite-to-one. Thus if we set Y" = (p(Y'), we have:

dim Y"=dim Y+3(^-3)=3^+g-9+3(^-3).

Two cases are possible. If |K(—2D) | is not composed with an involution, by
Proposition (2.8):

3^+^-9^dimY"^3rf+^-9+3(^-3)

contradicting (3.9). Otherwise, let ^ be a general g^ inside | K ( - 2 D) |, and denote by F its
fixed divisor. Set:

/=degF, e=f-^e\
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Thus € — F is base-point-free and the corresponding morphism represents C as a ramified n-
sheeted covering of a plane curve of degree m. By Lemma (3.7) this curve has to be
rational, and we have:

d/m>ef/m=n^(3/S)d.

In particular m= 2. Thus to a general point (q, ̂ ) of Y" and each frame ^ in 6° we may
associate a smooth conic F plus a ramified degree n covering:

h: C-^F

Moreover, r and h determine both ^F and <^—F, where F stands for the fixed divisor
of 6\ Since the dimension of the space of degree n morphismsfrom genus g curves to P1 is:

this implies that:
2n+2g-2,

dimY"+8^2n+2g-2+5+f.

In other terms, since:

2n+f=e=2g-2-2d,

we find that:

3rf+g+3^-10^4g-2rf+l.

Combining this with our basic assumption:

^(2/3)^+(7/3)

we conclude that:

10g^9g-9s-2,
a contradiction.

(3.10) LEMMA. - Assume Zc^^. Then:

y=o. ^^.

Proof. — We already known that y=0. Also:

2^+(2^-3)-2^dimJ^o^dimZ^^2^-4-;(2D)^+2^-6,
hence:

2n^d-l.
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Let us now go back to ^ and ̂ . We set:

^=Xu(UY,)u(UT,),
i J

where X and the Y/s are the components of^j whose general point is not composed, and the
T^s are the components whose general point is composed. In particular

^=Xu(UY,).
i

By Fulton and LazarsfekTs connectedness Theorem (1.2), we must have:

U 7r(Y, n X) u U 7t(T, n X)=7i(U Y, u U T,) =(U 7i(Y,)) u(U 7i(T,)).
i J i J i J

Let i be such that Ti(Y^) has maximal dimension. Since 7c(Yf) is irreducible, two cases are,
a priori, possible:

(a) There is an h such that:

7i(Y,)c7i(Y,nX).

Then, by the maximality of 7i(Y^), we get:

7i(Y,)=7i(Y,nX).
(P) There is j such that:

7i(Y,)c7r(T,nX).

We want to show that case (?) cannot occur. We set:

Y=Y, T=T,; Z=TI(Y).

Let (C, 2) be a general point of T. By the very definition of T, the series Q) is composed with
an involution:

(p : C ̂  r.

We denote by n the degree of (p and by y the genus of F. We know that:

7c(TnX)=3Z.

We may then apply Lemma (3.10), concluding that y=0 and that n equals either d / 2 or
(d—1)/2, depending on the parity of d. In the first case 2 is base-point-free, while in the
second one it has a single base point. Thus:

if d is even, or:
dimT=dim^

dimT=dim^ l+l
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if d is odd. In both cases:

dimJ^2n-}-2g-4^d^2g-4<3d+g-9,

by our basic assumption:
^(3/2)^-7/2.

Since, as we already recalled, every component of ̂  has dimension at least equal to
3d+g—9, we have reached a contradiction.

We are thus reduced to case (a). We first introduce a few pieces of notation, which will be
used thoughout this section. Looking back at the statement of case (a), we set
Y = Yfc. The basic property of Y is:

7t(YnX)=7i(Y).
We also set:

Z=TC(Y)

and denote by W a fixed component of X n Y such that:

We shall also denote by:
TC(W)=Z.

(^|D|)eY.
(^)eW

general members of Y and W, respectively, and set, as usual:

C^-^p).

(3.11) LEMMA. — 2 is composed with an involution.
Proof. - By Proposition (2.9), it suffices to show that the dimension of W is strictly larger

than ̂ -8. We can do much better. By Clifford's theorem (which applies to series of
degree not exceeding 2g, such as 12 D |):

f(2D)=r(2D)-h^-2rf^-rf.
By Lemma (3.5), we have:

dimW^dimZ^2rf-hg-4^-8

Q.E.D.

Now (3.10) applies and the morphism of C into P2 induced by Q> factors through an w-fold
covering of a conic; moreover, if/stands for the degree of the fixed divisor of 2, two cases are,
a priori^ possible.

Case A: d=2n,f=0.

Case B: d^2n+ !,/=!.
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The inequality used in the proof of Lemma (3.10) yields:

J+2^-5^dimZ^+2^-6
in case A, and:

dimZ=d+2g-6
in case B.

Before going on with the proof of Proposition (2.1) we state and prove two general
deformation-theoretic lemmas.

(3.12) LEMMA. — Let Q be a smooth quadric surface. Denote by L^ and L^ lines in the
two rulings o/Q, and fix integers n^ ^2, n^2. Then the variety of morphisms:

(P: r ^Q
such that r is a smooth genus g curve, (p is birational onto its image and:

deg(p*(L^)=^, ?=1, 2,
has dimension:

^+2^+2^-1.

(3.13) LEMMA. — Let Q be the blow-up at the vertex of a quadric cone in P3. Denote by L
and E a line of the ruling ofQ and the exceptional divisor on Q, respectively. Fix an
integer n'^2 and a non-negative integer f. Then the variety of morphisms:

cp: r-^Q
such that r is a smooth genus g curve, (p is birational onto its image and:

deg(p*(L)=^,
deg(p*(E)=/.

has dimension:
g+4n+2f-l,

We prove both lemmas at the same time. Let ^ be the variety of morphisms in
question. The proof is based on two principles. The first is that the tangent space to V
at (p is H° (r, N(p) where N<p = cp* (6Q)/6r, and moreover, by general deformation theory non-
sense:

dim^/^o(^,N,)-/^ l(^,N^).

A straightforward computation shows that the right-hand side is precisely the postulated
dimension of Y ' . The second point is the "ramification trick" we already used in the proof
of (2.9). Namely we set:

N,=(p*(9Q)/6r(Z), Jf,=er(Z)/6r,

where Z is the ramification divisor of (p, so that there is an exact sequence:

0-^JT^N^N^O.
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Clearly N' is a line bundle, Jf^p is concentrated on Z and hence
h1 (F, N<p) = h1 (F, N;p). Also let T<p (^)c H° (F, N<p) be the tangent space to T^ at the
point corresponding to (p. The point is that if (p is general:

T<p(^ed)nH°(r,^)={0},

[c/. [4], Lemma (1.4)]. Thus:

W.N^dim^^+l

in either case. Therefore /^(F, N<p)=0, which proves our contention.
We now rejoin the main course of the proof of Proposition (2.1) with a final series of

lemmas. From now on n and/will be as defined before Lemma (3.12).

(3.14) LEMMA. - On C there is only one g\.
Proof. - By Lemma (3.10) every g^ on C is base point free and is not composed. If there

were two of them, they would provide a morphism of C into a smooth quadric Q which is
birational onto its image. By Lemma 3 .12 this would show that:

which implies:
dimZ^+4^-l-dimAut(Q)=^+4^-7

dimZ^g+2^-7

both in caseA and case B. Because of our assumption that d^g, this is not compatible with
the known inequality:

dimZ^+2^-6.
Q.E.D.

(3.15) LEMMA. — Q) is complete.
Proof. - We argue by contradiction. Suppose Q) is not complete. Choose a general g\

in | Q) | and let:

(p: C-^P3

be the corresponding morphism; (p cannot be composed with an involution, for otherwise,
since the moving part of | Q) \ is the double ofa^, its image would be a conic. On the other
hand (p(C) is contained in a quadric cone Q, cuts every line of its ruling n times and passes
through the vertex of Q at most once. In any case Lemma (3.13) gives:

dimZ^+4w+2/-l-dimAut(Q)=^+4^+2/-8=g+2^-8.

This again contradicts the bound:

dimZ^+2g-6,
since d^g.

Q.E.D.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



486 E. ARBARELLO AND M. CORNALBA

(3.16) LEMMA. - dim(W)^4rf~ll.
Proof. — We denote by ^' the open subset of ^ consisting of complete ̂ 's. By the

preceding lemma ^ S ' n W^ 0. We also consider the incidence correspondence:

consisting of couples:

There are two projections:

<sr<=<rx^

(^, ̂  contained in the g}).

(p: ^'-^^c:^

^: ^"- î.

The fibers of <p are projective 2-spaces, while ̂  is injective by the very definition of ^'. Thus
(p'^W) is a component of <p"" l(X)n<p~ l(Y) and xJKp'^W) is a component of
xlnp-^nxiKp-W

Since ̂  is smooth:

dimW=dimx|^p- l(W)-2 SdimxI^^XHdim^-^Y^dim^-^
=2(3</-h^-7)-(2rf-h2g-5)-2=4</-ll

Q.E.D.

With this lemma we have finally reached a contradiction. In fact Lemma (3.15) tells us,
in particular, that the projection from W to Z is generically 1 -1 or, at worst, could have
one-dimensional fibres when 2n=d-1. At any rate, contrasting the inequality:

with:

we find, in any case:

that is,

or

dimW^4(/-ll

dimZ^-h2g-5 if 2n=d
dimZ=rf+2j?-6 if 2w=rf- l

d+2g-5^4d-ll,

3d^2g+6

p^O.

4. In the course of the proof of Theorem (1.1), we made a systematic use of the variety
ofg^s instead of working directly with the variety of plane curves of degree d and
genus g. Here we would like to explain, by means of examples, why one should except this
to be technically more convenient. First of all, let us look at the irreducible plane curves of
degree rfand genus g. Let F be one such curve. It is easy to show that F is a smooth point
of £^ y when all of its singular points are union of smooth branches. In fact let /== 0 be an
equation for r, and denote by:

q>: c-^rcp2

4eSERIE - TOME 16 ~ 1983 - ?3



PLANE CURVES OF GIVEN DEGREE AND GENUS 487

the normalization map. The important point is that N<p has no torsion. To compute the
tangent space to E^, g at r we have to look for degree d forms h and infinitesimal
deformations (pg of (p such that:

(4.1) (y+e^^^O (mode2).
Write:

(p,=cp+ev|/,

where v|/(mod (p) is a section of N<p. Then (4.1) reads:

/(cp)=0

(4.2) /,((p)+E^^.=o.

If /?=0 (mod/) we find that \|/ is proportional to (p at smooth points of F. Thus \|/, as a
section of N<p, vanishes almost everywhere and hence everywhere. Therefore the natural
map:

H°(C,N,)-^Tr (£,J
sending:

\|/(mod(p) \->h(modf)
is injective. On the other hand H° (C, N,p) is the tangent space to the universal deformation
space B of(p, which is smooth since H^C,!^) vanishes, by a trivial degree
computation. Moreover B maps in 1 -1 fashion onto a neighborhood of F in 5^ g ,
showing that 2^ g is smooth at F.

In the previous case nothing is to be gained by working on ^2 instead of 2^ g. Things are
different if F has singular branches. The same degree computation as above shows that
H^C.N )=0 if there are no more then 3d such singular branches (counted with
appropriate multiplicity), showing that B is smooth, and hence ^2 is smooth at the point
corresponding to (p. By contrast such a F is never a smooth point of S^ g. To prove this,
since B maps in 1 -1 fashion onto a neighborhood of F in 2^ ^ it suffices to show that, in
third case:

a: H°(C,N,)->Tr(S^)
is not injective. Here again the torsion subsheaf t\ of N^, already used in the proofs
of (2.9), (3.12), (3.13), comes to our help, for (4.2) shows that the kernel of the differential a
isjustH^C,^).

A second instance in which one can observe a real difference between ^2 and 1̂  g is the
one of linear series with base points. These do not correspond to points of E^. <p rather, their
counterpart is represented by those reducible degree d plane curves in the closure of E^ g
which are made up of an irreducible genus g curve of degree ^-/plus/lines. Any direct
proof of the irreducibility of £^ g is likely to involve at least the consideration of these
degenerate curves.

Now if Q> is a g\ on a curve C which is not composed with an involution, F its base locus,
/=degF and:

(p: C-^IP2
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is the corresponding map, there are very weak conditions which insure the smoothness of ̂
at Q). For example it suffices to know that the degree of the ramification divisor of (p does
not exceed 3 (d—f). By contrast, even if we limit ourself to the simplest case, namely/= 1,
the couterpart of this situation from the plane curve point of view is provided by an
irreducible genus g plane curve F of degree d-1 plus a line /. This is a singular point of
2^ g; in fact there are d— 1 distinct ways of "approximating" r+/ by means of irreducible
curves in 2^ g , namely we can smooth any one of the d— 1 intersection points of F
and /. This shows, indeed, that in the neighborhood of a general curve of the type F+/,
Z ̂  g l s made up of d— 1 smooth branches. The situation becomes much more entagled for
curves r+ / i+ . . .+ /y , especially when the lines / i , . . . , / ^ are not in general
position. Nothing of this is visible in ̂ .
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