Annales scientifiques de l’é.n.S.

FELIKs PRZYTYCKI

Ergodicity of toral linked twist mappings

Annales scientifiques de l'É.N.S. 4^{e} série, tome 16, no 3 (1983), p. 345-354

http://www.numdam.org/item?id=ASENS_1983_4_16_3_345_0

Abstract

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1983, tous droits réservés. L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ERGODICITY OF TORAL LINKED TWIST MAPPINGS

By Feliks PRZYTYCKI (${ }^{1}$)

0. Introduction, notations

Let $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ be the standard torus and let P, Q be closed annuli in T^{2} defined by:

$$
\begin{array}{cc}
\mathrm{P}=\left\{(x, y) \in \mathrm{T}^{2}: y_{0} \leqq y \leqq y_{1}, x \text { arbitrary }\right\}, & \left|y_{1}-y_{0}\right| \leqq 1 \\
\mathrm{Q}=\left\{(x, y) \in \mathrm{T}^{2}: x_{0} \leqq x \leqq x_{1}, y \text { arbitrary }\right\}, & \left.\left|x_{1}-x_{0}\right| \leqq 1\right\}
\end{array}
$$

Let $f:\left[y_{0}, y_{1}\right] \rightarrow \mathbb{R}, g:\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ be C^{2}-functions such that $f\left(y_{0}\right)=g\left(x_{0}\right)=0, f\left(y_{1}\right)=k$, $g\left(x_{1}\right)=l$, for some integers k and l.

Define $\mathrm{F}=\mathrm{F}_{f}: \mathrm{P} \cup \mathrm{Q} \curvearrowright$ and $\mathrm{G}=\mathrm{G}_{g}: \mathrm{P} \cup \mathrm{Q} \ngtr$ by:

$$
\mathrm{F}_{f}(x, y)=(x+f(y), y), \quad \mathrm{G}_{g}(x, y)=(x, y+g(x)),
$$

on P and Q respectively and $\left.\mathrm{F}_{f}\right|_{\mathrm{Q} \backslash \mathrm{P}}=\mathrm{id},\left.\mathrm{G}_{g}\right|_{\mathrm{P} \backslash \mathrm{Q}}=\mathrm{id}$.
Define $\mathrm{H}=\mathrm{H}_{f, g}=\mathrm{G}_{g} \circ \mathrm{~F}_{f}$.
Observe that F, G and H preserve the Lebesgue measure μ on $\mathrm{P} \cup \mathrm{Q}$.
In the paper we shall consider f and g such that:

$$
\frac{d f}{d y}(y) \neq 0 \quad \text { and } \quad \frac{d g}{d x}(x) \neq 0
$$

for every $y \in\left[y_{0}, y_{1}\right]$ and $x \in\left[x_{0}, x_{1}\right]$.
If $k>0(k<0)$, what implies $d f / d y>0(<0)$, define the slope of F by $\alpha=\inf \{d f / d y(y)$: $\left.y \in\left[y_{0}, y_{1}\right]\right\}$ (sup). Analogously define the slope β of G.

We call then $\left.\mathrm{F}\right|_{\mathrm{P}}$ a (k, α)-twist, $\left.\mathrm{G}\right|_{\mathrm{Q}}$ an (l, β)-twist and H a toral linked twist mapping, t.1.t.m.

In the presented paper we prove the following.

[^0]ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPÉRIEURE. — 0012-9593/1983/345/\$5.00
(C) Gauthier-Villars

Proposition. - If a t.l.t.m. H is composed from $(k, \alpha)-$ and $(l, \beta)-$ twists, where k and l have opposite signs, $|k|,|l| \geqq 2$ and $|\alpha \cdot \beta| \geqq \mathrm{C}_{0} \approx 17,24445$, then H and all its powers are ergodic. In fact H satisfies Bernoulli property.

Together with facts known before we obtain:
Theorem. - Let H be a t.l. t.m. composed from ($k, \alpha)-$ and $(l, \beta)-t w i s t s$.
If $\alpha \beta>0$ (i. e. $k l>0$), then H is Bernoulli.
If $\alpha \beta<-4$, then H is almost hyperbolic.
If $\alpha \beta<-C_{0} \approx 17,24445$ and $|k|,|l| \geqq 2$, then H is Bernoulli.
We add to the paper Appendix where we explain what we mean by "almost hyperbolic" and gather some facts from Pesin theory for mappings with singularities, which make background for this paper.
T.1. t. m. were introduced by Easton [4]. It seems however that the basic phenomena were observed earlier by Oseledec, see [5], Chap. 3.8.

The case $k l>0$ has been done by Burton and Easton in [2] and by Wojtkowski in [7].
Almost hyperbolicity when $\alpha \beta<-4$ follows from Wojtkowski paper [7].
If $k l>0$, global stable and unstable manifolds intersect each other since they are very long and go, roughly speaking, in different directions. This gives ergodicity.

If $\alpha \beta<-4$, global stable and unstable manifolds, although internally very long could have a very small diameter in $P \cup Q$. On Figure 1 we show what could happen with subsequent images of a local unstable manifold γ under iterations by H .

Fig. 1.

We prove however that if $\alpha \beta<-C_{0}$, this is not so, that piecewise differentiable global stable and unstable manifolds contain pieces winding along the whole annulus $\mathrm{P}(\mathrm{Q})$. (A similar phenomenon appears in an example studied by Wojtkowski in [8].), § 1 , will be devoted to this aim.

In section 2 we briefly list some generalizations of Theorem for larger classes of linked twist mapping. The reader can find details in [11].

```
4e série - tome 16 - 1983 - No3
```


1. Proof of proposition

To simplify notation assume that the functions f and g are linear.
We may assume $|\alpha|=|\beta|$. Otherwise we may change the coordinates on T^{2}, taking the coordinates $(x, \sqrt{|\alpha / \beta|} \cdot y)$. Then we consider the torus $\mathbb{R}^{2} / \mathbb{Z} \times \sqrt{|\alpha / \beta|} . \mathbb{Z}$. We may assume that $\alpha>0$. Let us repeat according to [2] and [14] the proof of almost hyperbolicity of \mathbf{H}. The matrix:

$$
\mathrm{DG} \circ \mathrm{DF}=\left(\begin{array}{cc}
1 & 0 \\
-\alpha & 1
\end{array}\right) \circ\left(\begin{array}{cc}
1 & \alpha \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & \alpha \\
-\alpha & -\alpha^{2}+1
\end{array}\right) \quad \text { for } \quad \alpha>2,
$$

is hyperbolic. Its eigenvalues are:

$$
\lambda_{ \pm}=\frac{-\alpha^{2}+2 \pm \sqrt{\alpha^{4}-4 \alpha^{2}}}{2}
$$

and the expanding eigenvector $\left(\xi_{1}, \xi_{2}\right)$ satisfies:

$$
\xi_{1} / \xi_{2}=-\left(\frac{\alpha}{2}\right)+\sqrt{\left(\frac{\alpha}{2}\right)^{2}-1}
$$

Let us denote this number by \mathbf{L}.
In \mathbb{R}^{2} let us take the cone $\mathrm{C}=\{(x, y): \mathrm{L} \leqq x / y \leqq 0\}$.
It is easy to see that for every positive integers $s, r, \mathrm{DG}^{s} \circ \mathrm{DF}^{r}(\mathrm{C}) \subset \mathrm{C}$ and for every $v \in \mathrm{C}$, $\left\|\mathrm{D}\left(\mathrm{G}^{s} \circ \mathrm{~F}^{r}\right)(v)\right\| \geqq \lambda\|v\|$ where $\lambda=\left|\lambda_{-}\right|>1$.

Denote $\mathrm{P} \cap \mathrm{Q}=\mathrm{S}$ and denote the first return mapping, to S , under $\mathrm{F}, \mathrm{G}, \mathrm{H}$, by $\mathrm{F}_{s}, \mathrm{G}_{s}, \mathrm{H}_{s}$ respectively. It is easy to see that $H_{s}=G_{s} \circ \mathrm{~F}_{s}$.

For almost every $x \in S$ there exists $\mathrm{D}\left(\mathrm{H}_{s}\right)$ and $\mathrm{D}\left(\mathrm{H}_{s}^{-1}\right)$ and:

$$
\int_{s} \log ^{+}\left\|\mathrm{DH}_{s}^{(-1)}(x)\right\| d \mu(x) \leqq \int_{\mathrm{P} \cup \mathrm{Q}} \log ^{+}\left\|\mathrm{DH}^{(-1)}(x)\right\| d \mu(x)<+\infty .
$$

Hence for all vectors tangent to s at x there exist Lyapunov exponents for DH_{s}. One of them, corresponding to the vectors from C is positive (not less than $\log \lambda$), the other one is negative.

For almost every $x \in S$ its H -orbit returns to S with positive frequency (this is a corollary from Birkhoff Ergodic Theorem, see [2], Lemma 4.4). Moreover $\mu\left((\mathrm{P} \cup \mathrm{Q}) \backslash\left(\bigcup_{n=-\infty}^{+\infty} \mathrm{H}^{n}(\mathrm{~S})\right)\right)=0$. So Lyapunov exponents for H itself are nonzero almost everywhere and in view of Pesin Theory (see Appendix) for almost every $x \in P \cup Q$ there exist local stable and unstable manifolds $\gamma^{s}(x), \gamma^{u}(x)$ [Under the linearity assumption $\gamma^{s(u)}(x)$, are linear segments.]

To prove, ergodicity of H and all its powers it is enough to show that for almost every x, $y \in \mathrm{~S}, \mathrm{H}^{m}\left(\gamma^{u}(x)\right)$ intersects $\mathrm{H}^{-n}\left(\gamma^{s}(y)\right)$ for all m, n large enough.

[^1]For any segment γ we denote by $l_{h}(\gamma)$ and $l_{v}(\gamma)$ the lengths of the orthogonal projections of γ to the horizontal, respect. vertical axes. We shall prove that for any linear segment $\gamma \subset \mathrm{H}_{s}^{r}\left(\gamma^{u}(x)\right)$, the image $\mathrm{F}_{s}(\gamma)$, which is a union of linear segments, contains a segment γ^{\prime} such that either $l_{h}\left(\gamma^{\prime}\right)>\delta . l_{v}(\gamma)$, for a constant $\delta>1$ independent of γ, or γ^{\prime} joins the left and right sides of S. In the latter case, due to $|l| \geqq 2, G\left(\gamma^{\prime}\right)$ contains a segment joining the upper and lower sides of S (Fig. 2). (We shall call any segment in S joining the uper and lower sides of S a v-segment, and joining the left and right sides of S and h-segment.)

Fig. 2.

In the first case we act on γ^{\prime} with G_{s} and find a segment $\gamma^{\prime \prime} \subset \mathrm{G}_{s}\left(\gamma^{\prime}\right)$ such that either $l_{v}\left(\gamma^{\prime \prime}\right) \geqq \delta . l_{h}\left(\gamma^{\prime}\right)$ or $\gamma^{\prime \prime}$ is a v-segment. In the first case we continue the process.

We get a sequence of segments of exponentially growing length. So it must finish with a v segment or an h-segment. Then, if we continue iterating with F and G alternately we find an h-segment or v-segment alternately at each step (since $|k|,|l| \geqq 2$). The same happens for all sufficiently high iterations of H^{-1} on $\gamma^{s}(y)$. Concluding: $\mathrm{H}^{m}\left(\gamma^{u}(x)\right)$ contain v-segments and H^{-n} contain h-segments for all m, n sufficiently large. But the h-segments intersect v segments.

So let us fix a segment $\gamma \subset \mathrm{H}_{s}^{r}\left(\gamma^{u}(x)\right)$. Let $m_{1}>0$ be the first time when $\mathrm{F}^{m_{1}}(\gamma)$ intersects S . Then we have four possibilities:

1) $\mathrm{F}^{m_{1}}(\gamma)$ contains an h-segment. This case has just been discussed.
2) The right side $\mathrm{F}^{m_{1}}(\gamma)$ intersects S (Fig. 3).
3) The left side of $F^{m_{1}}(\gamma)$ intersects S [this case if fully analogous to the case 2)].
4) Both sides of $\mathrm{F}^{m_{1}}(\gamma)$ intersect S (Fig. 4).

We study the case 2) and make the assumption (\star) that $\mathrm{F}_{s}(\gamma)$ does not contain any h segment. We divide $\mathrm{F}^{m_{1}}(\gamma) \backslash \mathrm{S}$ into three intervals $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$. Let us denote $\mathrm{F}^{m_{1}}(\gamma) \cap \mathrm{S}=\mathrm{I}_{4}$.

Along I_{2} the rotation number $f(y)$ changes by $\alpha . l_{v}\left(\mathrm{I}_{2}\right)$. So, for any integer $n>0$ such that $1 / n<\alpha . l_{v}\left(\mathrm{I}_{2}\right)$ there exists a horizontal circle in P , intersecting I_{2} on which the rotation

```
4e SÉRIE - TOME 16 - 1983 - No3
```

number is m / n for an integer m. So there exists an F-periodic point $p \in \mathrm{I}_{2}$ with the period $\left[\left(1 / \alpha . l_{v}\left(\mathrm{I}_{2}\right)\right)+1\right]$. It divides I_{2} into I_{2}^{\prime} and $\mathrm{I}_{2}^{\prime \prime}$ (Fig. 3). The distance d between the different points of the F-orbit of $p, \operatorname{Orb}_{\mathrm{F}}(p)$, is at least:

$$
\frac{1}{\left[\left(1 / \alpha \cdot l_{v}\left(\mathrm{I}_{2}\right)\right)+1\right]}
$$

Let us denote the last (to the right) point of $\operatorname{Orb}_{\mathrm{F}}(p)$ in S by p_{1} and the next one (to the right) by p_{2} (Fig. 3). Let $m_{2}>0$ be the first time when $\mathrm{F}^{m_{2}}(p)$ is between p and RS - the right side of S . [Inclusing p and p_{1}. Observe however that $\mathrm{F}^{m_{2}}(p) \neq p$. Otherwise p would have its F-orbit disjoint with S. But $\mathrm{F}^{-m_{1}}(p) \in \gamma \subset \mathrm{S}$, a contradiction].

Fig. 3.

Fig. 4.

We denote $\mathscr{J}_{0}=\mathrm{I}_{2}^{\prime \prime} \cup \mathrm{I}_{3}$ and $\mathscr{J}_{m}=\mathrm{F}\left(\mathscr{F}_{m-1} \backslash \mathrm{~S}\right)$ for $m=1,2, \ldots, m_{2}$.
Then:

$$
l_{h}\left(\mathscr{G}_{m}\right) \geqq \min \left(d+l_{h}\left(\mathrm{I}_{2}^{\prime \prime} \cup \mathrm{I}_{3}\right), l_{h}\left(\mathbf{I}_{2}^{\prime \prime} \cup \mathrm{I}_{3}\right)+\alpha \cdot l_{v}\left(\mathrm{I}_{2}^{\prime \prime} \cup \mathrm{I}_{3}\right)\right)
$$

for $m=1,2, \ldots, m_{2}$.
If $\mathrm{F}^{m_{2}}(p)$ is between p and $\mathrm{LS}($ the left side of S$)$, then $l_{h}\left(\mathscr{q}_{m_{2}} \cap \mathrm{~S}\right) \geqq d$. If $\mathrm{F}^{m_{2}}(p) \in \mathrm{S} \backslash\left\{p_{1}\right\}$, then:

$$
\begin{equation*}
l_{h}\left(\mathscr{f}_{m_{2}} \cap \mathrm{~S}\right) \geqq \min \left(d, l_{h}\left(\mathrm{I}_{2}^{\prime \prime} \cup \mathrm{I}_{3}\right)+\alpha \cdot l_{v}\left(\mathrm{I}_{2}^{\prime \prime} \cup \mathrm{I}_{3}\right)\right) . \tag{2}
\end{equation*}
$$

Assume $\mathrm{F}^{m_{2}}(p)=p_{1}$. Let dist $\left(p_{1}, \mathrm{RS}\right)=\tau . d$.
Then dist (RS, p_{2}) $=(1-\tau) . d$. We have either (2) satisfied or $l_{h}\left(\mathscr{F}_{m_{2}} \cap \mathrm{~S}\right)=\tau . d$ and $\mathscr{F}_{m_{2}} \cap S$ touches RS with its right end.

Define $\tilde{\mathscr{J}}_{0}=\mathrm{I}_{1} \cup \mathrm{I}_{2}^{\prime}$ and $\tilde{\mathscr{F}}_{m}=\mathrm{F}\left(\tilde{\mathscr{F}}_{m-1} \backslash \mathrm{~S}\right)$ for $m=1, \ldots, m_{2}$: We have either:

$$
l_{h}\left(\tilde{\mathscr{Y}}_{m_{2}} \cap \mathrm{~S}\right) \geqq \min \left((1-\tau) d, \alpha \cdot l_{v}\left(\mathrm{I}_{1} \cup \mathrm{I}_{2}^{\prime}\right)+l_{h}\left(\mathrm{I}_{1} \cup \mathrm{I}_{2}^{\prime}\right)\right.
$$

or $\tilde{\mathscr{I}}_{m_{2}} \cap \mathrm{~S}$ touches LS with its left end [the number $(1-\tau) d$ appears because there can exist $m: 0<m<m_{2}$ for which $\mathrm{F}^{m}(p)=p_{2}$]. So due to assumption (\star):

$$
\begin{gathered}
\left.l_{h}\left(\mathscr{\mathscr { m }}_{m_{2}} \cup \tilde{\mathscr{J}}_{m_{2}}\right) \cap \mathrm{S}\right) \geqq \min \left(d, \alpha \cdot l_{v}\left(\mathrm{I}_{3}\right)+l_{h}\left(\mathrm{I}_{3}\right)\right), \\
\left.\alpha \cdot l_{v}\left(\mathrm{I}_{1}\right)+l_{h}\left(\mathrm{I}_{1}\right)\right) .
\end{gathered}
$$

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

Thus in order to have $l_{h}\left(\left(\mathscr{\mathscr { F }}_{m_{2}} \cup \check{\mathscr{F}}_{m_{2}}\right) \cap \mathrm{S}\right) \geqq \delta . l_{v}(\gamma)$ it is enough that the following inequalities hold:

$$
\begin{gather*}
d \geqq \delta . l_{v}(\gamma), \tag{3}\\
\alpha \cdot l_{v}\left(\mathrm{I}_{3}\right)+l_{h}\left(\mathrm{I}_{3}\right) \geqq \delta . l_{v}(\gamma), \tag{4}\\
\alpha \cdot l_{v}\left(\mathrm{I}_{1}\right)+l_{h}\left(\mathrm{I}_{1}\right) \geqq \delta . l_{v}(\gamma) . \tag{5}
\end{gather*}
$$

For (3) it is enough that:

$$
\frac{\alpha . l_{v}\left(\mathrm{I}_{2}\right)}{1+\alpha \cdot l_{v}\left(\mathrm{I}_{2}\right)} \geqq \delta . l_{v}(\gamma)
$$

or:

$$
\begin{equation*}
l_{v}\left(\mathrm{I}_{2}\right) \geqq \frac{\delta . l_{v}(\gamma)}{\alpha\left(1-\delta . l_{v}(\gamma)\right)} . \tag{6}
\end{equation*}
$$

We can assume here $1-\delta . l_{v}(\gamma)>0$ since the assumption (\star) implies:

$$
\begin{equation*}
l_{v}(\gamma) .(\mathrm{L}+\alpha)<2 \tag{7}
\end{equation*}
$$

and $\mathrm{L}+\alpha \geqq-1+\sqrt{17}>3$. We can replace (4), (5) by
(8) [and (9)]

$$
l_{v}\left(\mathrm{I}_{3(1)}\right) \geqq \frac{\delta \cdot l_{v}(\gamma)}{\mathrm{L}+2 \alpha} .
$$

(due to the fact that $\gamma \in \mathrm{C}$ - the cone $\mathrm{L} \leqq x / y \leqq 0$). The work would be also done if:

$$
l_{h}\left(\mathrm{I}_{4}\right) \geqq \delta . l_{v}(\gamma)
$$

which follows from:

$$
\begin{equation*}
l_{v}\left(\mathrm{I}_{4}\right) \geqq \frac{\delta . l_{v}(\gamma)}{\mathrm{L}+\alpha} . \tag{10}
\end{equation*}
$$

There exists $\delta>1$ and a partition of $\mathrm{F}^{m_{1}}(\gamma) \backslash \mathrm{S}$ into $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ satisfying (6), (8), (9), or the inequality (10) is satisfied if:

$$
\begin{equation*}
l_{v}(\gamma)=\sum_{i=1}^{4} l_{4}\left(\mathrm{I}_{i}\right)>l_{v}(\gamma)\left(\frac{1}{\alpha\left(1-l_{v}(\gamma)\right)}+\frac{2}{2 \alpha+\mathrm{L}}+\frac{1}{\alpha+\mathrm{L}}\right) . \tag{11}
\end{equation*}
$$

We divide both sides by $l_{v}(\gamma)$ and due to (7) we obtain the condition:

$$
\begin{equation*}
1>\frac{1}{\alpha(1-(2 /(\mathrm{L}+\alpha)))}+\frac{2}{2 \alpha+\mathrm{L}}+\frac{1}{\alpha+\mathrm{L}} \tag{12}
\end{equation*}
$$

[recall that $\mathrm{L}=-(\alpha / 2)+\sqrt{\left.(\alpha / 2)^{2}-1\right]}$.
In the case 4) the situation is simpler. $\mathrm{F}^{m_{i}}(\gamma)$ divides into $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ as on Figure 4. We need either $l_{h}\left(\mathrm{I}_{1}\right) \geqq \delta . l_{v}(\gamma)$, or $l_{h}\left(\mathrm{I}_{3}\right) \geqq \delta . l_{v}(\gamma)$, or $l_{h} \mathrm{~F}\left(\mathrm{I}_{2}\right)-l_{h}\left(\mathrm{I}_{2}\right) \geqq \delta . l_{v}(\gamma)$. [The sufficiency

```
    4e SÉrie - tome 16 - 1983 - No3
```

of the last inequality follows from the following: Lift everything to \mathbb{R}^{2}, denote two consecutive components of the lift of Q by Q_{1} and Q_{2}. Then, assumed $(\star), F\left(I_{2}\right)$ has a component \tilde{I} of its lift between left sides of Q_{1} and Q_{2} or between right sides of Q_{1} and Q_{2}. Otherwise I would intersect a component of the lift of I_{2}, which would imply the existence of an F-fixed point q S. But $\mathrm{F}^{-m_{1}}(q) \in \gamma \subset \mathrm{S}-\mathrm{a}$ contradiction].

For this it suffices that:

$$
(\mathrm{L}+\alpha) \cdot l_{v}\left(\mathrm{I}_{1}\right) \geqq \delta \cdot l_{v}(\gamma),
$$

or:

$$
(\mathrm{L}+\alpha) \cdot l_{v}\left(\mathrm{I}_{3}\right) \geqq \delta \cdot l_{v}(\gamma),
$$

or:

$$
\alpha \cdot l_{v}\left(\mathrm{I}_{2}\right) \geqq \delta . l_{v}(\gamma) .
$$

For that it is enough if:

$$
l_{v}(\gamma)=\sum_{i=1}^{3} l_{v}\left(\mathrm{I}_{i}\right) \geqq l_{v}(\gamma)\left(\frac{2}{\mathrm{~L}+\alpha}+\frac{1}{\alpha}\right)
$$

i.e. :

$$
\begin{equation*}
1>\frac{2}{\mathrm{~L}+\alpha}+\frac{1}{\alpha} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\text { is satisfied for } \alpha>\alpha_{0} \approx 4,152643 \text {; } \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\text { is satisfied for } \alpha>\alpha_{1} \approx 3,239 \text {. } \tag{13}
\end{equation*}
$$

This gives the constant $C_{0}=\alpha_{0}^{2} \approx 17,24445$ in the statement of Proposition.
Remark. - If $l_{v}(\gamma)$ is small, then in (13) we can write $\left(L+m_{1} \alpha\right)$ instead of $L+\alpha$, where m_{1} is large. So (13) can be replaced by:

$$
1>\frac{1}{\alpha} .
$$

Also (12) can be replaced by:

$$
\begin{equation*}
1>\frac{1}{\alpha}+\frac{2}{2 \alpha+\mathrm{L}}+\frac{1}{\alpha+\mathrm{L}} \tag{14}
\end{equation*}
$$

since we can omit $l_{v}(\gamma)$ in the denominator of the ratio $1 /\left(1-l_{v}(\gamma)\right)$ of (11):

$$
\begin{equation*}
\text { holds for } \alpha>\alpha_{2} \approx 3,183590 . \tag{14}
\end{equation*}
$$

In this case the \mathbf{H}^{m}-images of any unstable segment $\gamma^{u}(x)$, for m sufficiently large, contain segments of length larger than a constant. The same concerns H^{-n}-images of $\gamma^{s}(y)$, for n large. Does it imply that there exists a decomposition into finite number of Bernoulli components?

ANNALES SÇIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

2. Generalizations

Denote by (4) the places where we are not exact in statements.

1. P and Q can be replaced by two finite families of annuli embedded (4) into a surface, $\left\{\mathrm{P}_{i}\right\}_{i=1}^{p}$ and $\left\{\mathrm{Q}_{i}\right\}_{i=1}^{q}$, such that $\mathrm{P}_{i} \cap \mathrm{P}_{j}=\mathrm{Q}_{i} \cap \mathrm{Q}_{j}=\emptyset$ for $i \neq j$ and P_{i} intersect Q_{j} transversally ($ᄇ$). Assume that $M=\bigcup_{i=1}^{p} P_{i} \cup \bigcup_{j=1}^{q} Q_{j}$ is connected. Consider H which is a composition of two mappings: $\left(\alpha_{i}, k_{i}\right)$-twists on $\bigcup_{i=1}^{p} P_{i}$ with $\left(\beta_{j}, l_{j}\right)$-twists on $\bigcup_{j=1}^{q} Q_{j}$.

If H preserves a probability measure on M which restriction to each P_{i} and Q_{j} is equivalent to Lebesgue measure with bounded density, if $\left|\alpha_{i}\right|,\left|\beta_{j}\right|$ are large enough and $\left|k_{i}\right|,\left|l_{j}\right| \geqq 2$, then H is Bernoulli.

In particular assume that changes of coordinates on M from P_{i} to Q_{j} are only translations composed with multiplication by -1 . Then:

If for every pair i, j such that $\mathrm{P}_{i} \cap \mathrm{Q}_{j} \neq \emptyset,\left|\alpha_{i} \beta_{j}\right| \geqq 4$, then H is almost hyperbolic.
If $\left|\alpha_{i} \beta_{j}\right|>X(i) . Y(j)$ where $\mathrm{X}(i), Y(j)$ are respectively the largest solutions of the equations:

$$
\begin{aligned}
& 1=\frac{2 q(i)}{\mathrm{X}}+\frac{q(i)}{\mathrm{X}-3 q(i)}+\frac{2}{\mathrm{X}-1} \\
& 1=\frac{2 p(j)}{\mathrm{Y}}+\frac{p(j)}{\mathrm{Y}-3 p(j)}+\frac{2}{\mathrm{Y}-1}
\end{aligned}
$$

where $q(i)$, respectively $p(j)$, is the number of components of $\mathrm{P}_{i} \cap \bigcup_{s=1}^{q} \mathrm{Q}_{s}$, respectively of $\mathrm{Q}_{j} \cap \bigcup_{s=1}^{p} \mathrm{P}_{s}$, then H is Bernoulli.

For the sufficient estimates on α_{j}, β_{j}, to have almost hyperbolicity and Bernoulli property, in the general case see [11], § 2.

This generalization includes the Bowen example [1], Chap. 10, F. Devaney generalized t. 1. t. m. [3] and Thurston pseudo-Anosov examples built from Dehn twists on two thickened simple closed curves (families of curves) "filling up" a surface, see [10], §6.
2. We can consider a composition of a finite number of families of twists alternately on the annuli $\left\{\mathrm{P}_{i}\right\}$ and $\left\{\mathrm{Q}_{j}\right\}$ (rather than to compose two family only), so that every annulus is twisted at least once and all twists on it go in the same direction.

Then also as in the generalization 1, if slopes of twists are large enough, H is Bernoulli.
3. H is Bernoulli if the above annuli P_{i}, Q_{i} are sufficiently narrow collars for the circles A_{i}, B_{j} respectively, embedded into a compact orientable surface N, such that A_{i} intersect B_{j} transversally.

Indeed, then, since $\left|k_{i}\right|,\left|l_{j}\right| \neq 0(\mathrm{as} \geqq 2)$, slopes of the twists are large (if we consider linear twists, i. e. powers of Dehn twists).

```
4e}\mathrm{ SÉRIE - TOME 16 - 1983 - No 3
```

Due to this we can find in any isotopy class of orientation preserving homeomorphism on N a piecewise linear homeomorphism which is Bernoulli (for a probabilistic measure which support is N) with arbitrarily small measure entropy.
4. We can prove Bernoulli property in the generalization 1 with the assumptions $\left|k_{i}\right|$, $\left|l_{j}\right| \geqq 2$ weakened in various ways (see [11], the section "graphs of linkage").

For example this assumption can be completely dropped if for every $i, j: p(i), q(j) \geqq 3$.

APPENDIX

We refer in this paper to the so - called Pesin Theory [9] for maps with singularities, recently developped by Katok and Strelcyn [6]. For the comfort of the reader we list below the results.

Katok-Strelcyn, (K-S)-conditions

Let X be a complete metric space with a metric ρ. Let $\mathrm{N} \subset \mathrm{X}$ be an open subset which is a Riemannian manifolds with a Riemannian metric inducing $\left.\rho\right|_{\mathrm{N}}$. Assume that there exists a number $r>0$ such that for each $x \in \mathrm{~N}, \exp _{x}$ restricted to the ball $\mathbf{B}(x)=\mathbf{B}\left(x, \min \left(r, \operatorname{dist}_{\rho}\right.\right.$ $(x, \mathrm{X} \backslash \mathrm{N}))$) is injective.

Let μ be a probability measure on X and Φ be a μ-preserving, $\mathrm{C}^{2}-, 1-1$ mapping defined on an open set $V \subset N$, into N. Denote $\operatorname{sing} \Phi=X \backslash V$.
(K-S, 1) There exist positive constants a, C_{1} such that for every $\varepsilon>0$:

$$
\mu(\mathrm{B}(\operatorname{sing} \Phi, \varepsilon)) \leqq \mathrm{C}_{1} \varepsilon^{a}
$$

$(\mathrm{K}-\mathrm{S}, 2)\left\{\begin{array}{l}\int \log ^{+}\|\mathrm{D} \Phi(x)\| d \mu(x)<\infty, \\ \int \log ^{+}\left\|\mathrm{D} \Phi^{-1}(x)\right\| d \mu(x)<\infty\end{array}\right.$
$(\mathrm{K}-\mathrm{S}, 3)$ There exist positive constants b, C_{2} such that for every $x \in \mathrm{X} \backslash \operatorname{sing} \Phi$:

$$
\left\|\mathrm{D}^{2} \Phi(x)\right\| \leqq \mathrm{C}_{2}(\operatorname{dist}(x, \operatorname{sing} \Phi))^{-b}
$$

$\left[B y\left\|D^{2} \Phi(x)\right\|\right.$ we mean $\left.\sup \left\{\left\|D^{2}\left(\exp _{z}^{-1}{ }^{\circ} \Phi \circ \exp _{y}\right)\right\|: x \in \mathrm{~B}(y), \Phi(x) \in \mathrm{B}(z)\right\}\right]$.
Remark. - If $\Phi=\Phi_{n} \circ \ldots \circ \Phi_{1}$ and Φ preserves μ we can replace the $(\mathrm{K}-\mathrm{S})$-conditions for Φ by the analogous conditions for each Φ_{i} separately, with $\operatorname{Sing} \Phi_{i}$ and $\mu_{i}=\left(\Phi_{i-1} \circ \ldots \circ \Phi_{1}\right)_{*}(\mu)$ respectively.

Theorem. - (a) If Φ satisfies the $(\mathrm{K}-\mathrm{S})$-conditions then for almost every $x \in \mathrm{X}$, for all vectors tangent at x, there exist Lyapunov exponents and there exist local stable and unstable

[^2]manifolds $\gamma^{s}(x), \gamma^{u}(x)$, corresponding to negative and positive exponents respectively. Denote by $\Lambda^{s(u)}(k)$ the set of points where the number of negative (positive) Lyapunov exponents computed with multiplicities is equal to $k\left[\right.$ i.e. $\left.\operatorname{dim} \gamma^{s(u)}(x)=k\right]$. Consider $\Lambda^{s(u)}(k)$ if $\mu\left(\Lambda^{s(u)}(k)\right)>0$. Then for a sequence of sets $\Lambda^{s(u)}(k, m)$ increasing with m which exhaust almost all of $\Lambda^{s(u)}(k)$, the families $\left\{\gamma^{s(u)}(x): x \in \Lambda^{s(u)}(k, m)\right\}$ are absolutely continuous.
(b) If we assume additionally that the measure μ is equivalent to the Riemannian measure on N and all Lyapunov exponents are almost everywhere different from 0 , then X decomposes into a countable family of positive measure μ, Φ-invariant pairwise disjoint sets $X=\bigcup_{i=1}^{\infty(\text { or })} \Lambda_{i}$ such that for every $i,\left.\Phi\right|_{\Lambda_{i}}$ is ergodic and $\Lambda_{i}=\bigcup_{j=1}^{j(i)} \Lambda_{i}^{j}$ where $\Lambda_{i}^{j} \cap \Lambda_{i}^{j^{\prime}}=\emptyset$ for $j \neq j^{\prime},\left.\Phi\right|_{\Lambda_{i}}$ permutes Λ_{i}^{j} and for each $j \Phi^{j(i)} \mid \Lambda_{i}^{j}$ is Bernoulli. (In the above situation we sometimes call the system almost hyperbolic and say that it decomposes into a countable family of Bernoulli components.)
(c) If additionally for almost every $z, z^{\prime} \in \mathbf{X}$ there exist integers m, n such that $\Phi^{m}\left(\gamma^{u}(z)\right) \cap \Phi^{-n}\left(\gamma^{s}\left(z^{\prime}\right)\right) \neq \emptyset$ then in the decomposition of X we have only one set $\Lambda_{i}=\Lambda_{1}$ (i. e. $\mathrm{N}=1$). In pärticular Φ is ergodic.
(d) If additionally for almost all points $z, z^{\prime} \in \mathrm{X}$ and every pair of integers m, n large enough $\Phi^{m}\left(\gamma^{u}(z)\right) \cap \Phi^{-n}\left(\gamma^{s}\left(z^{\prime}\right)\right) \neq \emptyset$ then all powers of Φ are ergodic. This implies $j(1)=1$ so Φ is a Bernoulli system.

REFERENCES

[1] R. Bowen, On Axiom A Diffeomorphisms(Proc. C.B.M.S. Regional Conf. Ser. Math., N ${ }^{\circ}$ 35, Amer. Math. Soc., Providence R. I.).
[2] R. Burton and R. Easton, Ergodicity of Linked Twist Mappings (Global Theory of Dynamical Systems, Proc., Northwestern 1979, Lecture Notes in Math., n° 819, pp. 35-49).
[3] R. Devaney, Linked Twist Mappings are Almost Anosov (Glohal theory of Dynamical Systems, Proc. Northwestern 1979, Lecture Notes in Math., n ${ }^{\circ}$ 819, pp. 121-145).
[4] R. Easton, Chain Transitivity and the Domain of Influence of an Invariant Set (Lecture Notes in Math., n° 668, pp. 95-102).
[5] A. Katok, Ya. G. Sinai and A. M. Stepin, Theory of Dynamical Systems and General Transformation Groups with Invariant Measure (Itogi Nauki i Tekhniki, Matematicheskii Analiz, Vol. 13, 1975, pp. 129-262 (In Russian). English translation: J. of Soviet Math., Vol. 7, N0 6, 1977, pp. 974-1065).
[6] A. Katok and J.-M. Strelcyn, Invariant Manifolds for Smooth Maps with Singularities I. Existence, II. Absolute Continuity, preprint, The Pesin Entropy Formula for Smoth Maps with Singularities, preprint.
[7] M. WoJtKowski, Linked Twist Mappings Have the K-Property (Nonlinear Dynamics, International Conference, New York 1979, pp. 66-76).
[8] M. WoJtk owski, A Model Problem with the Coexistence of Stochastic and Integrable Behaviour (Comm. Math. Phys., Vol. 80, N ${ }^{\circ} 4,1981$, pp. 453-464).
$\lceil 9\rceil$ Ya. B. Pesin, Lyapunov Characteristic Exponents and Smooth Ergodic Theory (Uspehi Mat. Nauk., Vol. 32, n ${ }^{\circ} 4$ (196). 1977, pp. 55-112. English translation: Russian Math. Surveys, Vol. 32, No. 4, 1977, pp. 55-114).
[10] W. Thurston, On the Geometry and Dynamics of Diffeomorphisms of Surfaces, I, preprint.
[11] F. Przytycki, Linked Twist Mappings: Ergodicity, preprint I.H.E.S., February 1981.

F. Przytycki

Institute of Mathematics, Polish Academy of Sciences, Sniadeckich 8, 00-950 Warszawa, Poland
(Manuscrit reçu le 6 juin 1981, révisé le 26 octobre 1982)

$$
4^{e} \text { SÉRIE }- \text { TOME } 16-1983-N^{\circ} 3
$$

[^0]: $\left({ }^{1}\right)$ The author gratefully acknowledges the financial support of the Stiftung Volkswagenwerk for a visit to the Institut des Hautes Études Scientifiques, during which this paper was written.

[^1]: ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

[^2]: anNales scientifiques de l'école normale supérieure

