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INDUCED AND AMENABLE ERGODIC ACTIONS
OF LIE GROUPS

By Rosert J. ZIMMER

SuMMARY. — As with unitary representations, one can induce an ergodic action of a closed subgroup
of a locally compact group G to obtain an ergodic action of G. We show that every amenable ergodic
action of a real algebraic group or a connected semi-simple Lie group with finite center is induced from
an action of an amenable subgroup (which is not true for amenable actions of general locally compact
groups). The proof depends on the result, of independent interest, that the orbit of any probability
measure on real projective space under the action of the general linear group is locally closed in the
weak-k-topology. Combined with recent results on the group-measure space construction of von Neumann
algebras, this enables us to deduce that any free ergodic action of a real algebraic group or connected
semi-simple Lie group with finite center determines a hyperfinite von Neumann algebra via this construc-
tion if and only if it is induced from a free ergodic action of an amenable subgroup. Another implication
of this result is that a cocycle of an ergodic amenable group action with values in a real algebraic group
or connected semi-simple Lie group with finite center is cohomologous to a cocycle taking values in an
amenable subgroup.

I. — Introduction

One of the most important methods of constructing unitary representations of groups
is that of inducing: to each unitary representation of a closed subgroup of a locally
compact group G, there is a naturally associated “induced’’ unitary representation of G.
As pointed out by G. W. Mackey ([12], [13]), one can define induced ergodic actions
in an analogous manner. Thus, if G is a locally compact second countable group and H
is a closed subgroup, then to each ergodic action of H there is a naturally associated
«“induced” ergodic action of G. As with unitary representations, the construction is of
a very concrete and explicit nature, and one can thus hope to answer many questions
about the induced action by examining the action of the smaller and hopefully simpler
group H. For a given ergodic action, it is therefore of considerable interest to know
when it can be expressed as an action induced from some (perhaps given) subgroup.
This is, of course, parallel to a basic theme in the theory of unitary representations. This
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408 R. J. ZIMMER

point of view turns out to be quite relevant to the study of a broad class of ergodic actions
recently introduced by the author in [20], namely amenable ergodic actions.

Amenable ergodic actions play a role in ergodic theory parallel in many respects to
the role played by amenable groups in group theory and arise naturally in a variety of
situations. For example, with each ergodic group action there is a naturally associated
von Neumann algebra first introduced by Murray and von Neumann and subsequently
generalized by a variety of authors, by the group-measure space construction. For
free ergodic actions, this von Neumann algebra will be approximately finite dimensional
(i. e., hyperfinite) if and only if the action is amenable. This was shown by the author
for actions of countable discrete groups in [22] and for actions of general locally compact
groups by J. Feldman, P. Hahn, and C. C. Moore in [6], Th. 8.10, using a reduction to
the countable case. Other results concerning amenable ergodic actions with applications
to problems in ergodic theory and its relation to probability and von Neumann algebras
can be found in the author’s papers [19]-[23], and the paper of P. Hahn [25].

It follows from the results of [20] that every ergodic action of a group that is induced
from an action of an amenable subgroup is an amenable action. Not surprisingly, the
converse assertion is false in general as we show by example in section 6 below. However,
one of the main points of this paper is to prove the converse for ergodic actions of a suitable
class of groups, thus for many purposes reducing the study of amenable actions of such
groups to the study of the ergodic actions of amenable subgroups. Specifically, we
have:

THEOREMS 5.7, 5.10. — If G is a real algebraic group or a connected semi-simple Lie
group with finite center, then every amenable ergodic action of G is induced from an ergodic
action of an amenable subgroup.

This theorem has immediate applications to von Neumann algebras and to the coho-
mology theory of ergodic actions. We also present theorems concerning the structure
of amenable ergodic actions of more general Lie groups.

The outline of this paper is a follows. In section 2 we discuss the inducing process
for ergodic actions and some of its general properties. In section 3 we recall the definition
of amenability for ergodic actions and make some further observations of a general nature
concerning these actions. Section 4 is devoted to an examination of the orbits of proba-
bility measures on a real projective space under the action of the general linear group.
Specifically, we show that every orbit is locally closed in the weak-*-topology. This
result is an important step in proving Theorems 5.7 and 5.10, and seems to be of inde-
pendent interest as well. The proof of this result in turn depends upon a technique of
H. Furstenberg for examining the asymptotic behavior of measures on projective space under
the general linear group action. Section 5 contains the remainder of the proof of the
main theorems, applications of the theorem, and theorems concerning the amenable
ergodic actions of more general groups. In section 6 we present an example of an ame-
nable ergodic action that is not induced from an action of an amenable subgroup. Speci-
fically, the action of a lattice subgroup of SL (2, C) on the projective space of a 2-dimen-
sional complex vector space has this property.
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ERGODIC ACTIONS OF LIE GROUPS 409

II. — Induced ergodic actions

In this section we develop the material we shall need concerning induced ergodic actions.
A good deal of this material is implicit in the discussions of Mackey ([12], [13]), but
we shall here formulate the notion so as to emphasize the similarity with inducing for
unitary representations.

Let G be a locally compact group. Throughout this paper, all locally compact groups
will be assumed to be second countable. By a Borel G-space we mean a standard Borel
space S together with a jointly Borel action Sx G — Sof Gon S. If pis a o-finite measure
on S, quasi-invariant under the action of G, then p is called ergodic if A = S is a measu-
rable set with n (A g A A) = 0 for all ge G implies A is null or conull. We shall then
call (S, ), or sometimes just S, an ergodic G-space. If (S, p) and (T, v) are ergodic
G-spaces, they are called equivalent, or isomorphic, if there is a G-isomorphism
B (T, v) = B (S, w) of the associated Boolean c-algebras of Borel sets modulo null sets.
Equivalently [11], there is a conull G-invariant Borel set S, = S and a measure class
preserving G-map (Sy, p) — (T, v). In particular, changing the measure p to a measure
in the same measure class (i. e., same null sets) does not change the equivalence class of
the action. We may thus assume the measures at hand to be probability measures if
we wish. An ergodic G-space is called essentially transitive if there is a conull orbit,
or equivalently, if it is isomorphic to the action on a homogeneous space G/H. (We
write G H to be cosets of the form Hg, and H\ G to be cosets of the form gH). An
ergodic G-space is called properly ergodic if every orbit is a null set. By ergodicity
every ergodic action is either essentially transitive or properly ergodic.

Suppose now that H < G is a closed subgroup and that (S, p) is an ergodic H-space.
We wish to construct in a natural fashion an associated ergodic G-space. We present
two different constructions of this action, both originally described by Mackey. These
are in fact analogues of two ways of constructing induced representations: the first as
translations on a space of functions on G that transform according to the H-representation
(Mackey’s original description of induced representations [10]); the second as functions
on the quotient G, H where the representation is then defined via a cocycle that corres-
ponds to the representation of H (See [17] for a discussion of induced representations
from the latter point of view.)

The first construction of the induced ergodic action is as follows. Let (S, p) be an
ergodic H-space. Then H acts on Sx G by (s, g) & = (sh, gh) and the product of p with
(a probability measure in the class of) Haar measure is quasi-invariant. Let (X, v) be
the space of H-orbits with the quotient Borel structure and quotient measure. As we
shall see in a moment, X is a standard Borel space. There is also a G-action on Sx G
given by (s, g).80 = (s, g5 * g) and this commutes with the H-action. There is thus an
action of G induced on the orbit space X which clearly leaves v quasi-invariant. Any
G-invariant set in X corresponds to a set S; x G where S, = S is H-invariant, and so
the action of G on X is clearly ergodic.
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410 R. J. ZIMMER

DerFNiTION 2.1. — The space (X, v) constructed above is called the ergodic G-space
induced from the ergodic H-space (S, p).

To see that X is actually a standard Borel space, it suffices to show that there is a Borel
subset of Sx G that meets each H-orbit exactly once. Let 6 : H\G — G be a Borel
section of the natural projection and let W = 0 (H\ G), which is a Borel set. Then it
is straightforward that Sx W meets each orbit exactly once.

The second construction we present depends on the notion of a cocycle, which the
above definition does not require. However, this second approach is also geometrically
appealing and often of considerable technical use. Suppose Y is an ergodic G-space
and M is a standard Borel group. A Borel function o : Y X G — M is called a cocycle
if for all g4, 2,€G, a(y, g, 82) = 2 (), g1) o (yg4, g,) for almost all ye Y. The cocycle
is called strict if this identity holds for all (y, g, g,). Two cocycles a, B : YXG— M
are called equivalent or cohomologous if there is a Borel function ¢ : Y — M such that
foreachg, @ () & (3, g) ¢ (vg)~* = B (, g) for almost all y. If o« and B are strict cocycles,
they are called strictly equivalent if there exists ¢ so that this last identity holds for all
(y, g). If Gis transitive on Y, so that we can write Y = G, /G, for some closed subgroup
G, < G, then the strict equivalence classes of strict cocycles G,/ Gy x G — M correspond
to the conjugacy classes of homomorphisms G, — M. This correspondence is defined
by taking a strict cocycle a and observing that the restriction to { [e] } x G, is a homomor-
phism. Full details of the correspondence can be found in [17]. If H = G is a closed
subgroup, one has the identity homomorphism H — H and this will correspond to (an
equivalence class of) a strict cocycle a : G/Hx G — H. This cocycle can be defined
explicitly as follows: Choose a Borel section 8 : G, H — G of the natural projection with
0 ([e]) = e, and define o (x, g) = 0 (x) g0 (xg) ™"

If « : YXG— M is a strict cocycle and Z is a Borel M-space, then one can define an
action of G on YXZ by (3, 2).g = (g, za (), g)). It is exactly the cocycle identity of o
that implies that this in fact defines an action. We shall sometimes denote this G-space
by Y x,Z. If o and B are strictly equivalent strict cocycles, then the corresponding actions
are easily seen to be equivalent. Applying this procedure to the cocycle defined at the
end of the preceding paragraph, we obtain our second description of an induced ergodic
action. More precisely, suppose S is an ergodic H-space, where H is a closed subgroup
of G. Let a:G,/HxG— H be a strict cocycle corresponding to the identity homo-
morphism. Form the G-action G/Hx,S, i.e, ([gi].9)g = ([g.]g sa((gL] 2)»
which preserves the product measure class. One can easily check that this action is ergodic,
but this also follows from the following.

ProrosiTION 2.2. — G/ H xS is equivalent to the ergodic action of G induced from
the ergodic H-space S.

Proof. — Let 6 : G/H — G be a Borel section of the natural projection and define
®:G/HxS—X by ®(,s)=p(s,0()" ") where p:SxG—-(SxG)/H=X is
the natural map. One can readily check that @ is a measure class preserving Borel isomor-
phism. To see that ® is a G-map, it suffices to see that

D(yg, s6(»g0(yg) N =p(s, g7 0(MN™Y,
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ERGODIC ACTIONS OF LIE GROUPS 411

i.e. that (s0(») g0(g) % 0(yg)~") and (s, g~* 0 (»)™!) are in the same H-orbit. But
acting upon the latter by 0(y)g0(yg)~' € H we obtain the former.

There is of course a great similarity between the construction of G H xS and the
construction via cocycles of the unitary representations of G induced from S (See [17]).
We also remark that the first construction we have given of induced ergodic actions is
a special case of Mackey’s “range-closure’’ (or Poincaré flow [5]) construction for arbi-
trary cocycles into locally compact groups, which generalizes the flow built under a func-
tion [12]. The inducing process is exactly the Poincaré flow construction applied to
the cocycle o : SXxH — G defined by a (s, /) = A. We shall on occasion make further
mention of the range-closure construction and some of its properties, and we refer the
reader to [12] and [15] as general references for this material.

Example 2.3. — (a) If S is the H-space H /K where K is a closed subgroup, then the
induced G-space is G”K. One can see this immediately from Proposition 2.2, since G
will clearly be transitive on G,/Hx H_ 7K and K is a stability group. In particular,
the action induced from the trivial action of H (on a point) is just the action of G on G /H,
and the action induced from translation of H on H is translation of G on G. We note
that this is analogous to facts in representacion theory concerning the induced representa-
tion of a trivial or regular representation.

() If G = R and H = Z, then for a Z-space S the induced R-action is just the flow
built under the constant function 1([1], [12]). If H = Z¢ for some fixed ¢ € R, then
the induced action is just the flow built under the constant function c.

We now present two useful facts concerning induced actions that are direct parallels
of results in the theory of unitary representations, namely “inducing in stages’’ and a
parallel of the imprimitivity theorem.

PROPOSITION 2.4. — Suppose K <« H = G are closed subgroups of G, and that S is ae
ergodic K-space. Let T be the ergodic H-space induced from S. Then the G-spaces
obtained by inducing the H-action on T to G and inducing the K-action on S to G aru
isomorphic.

Proof. — Let a :G/HxG—H and B:H KxH— K be strict cocycles corres-
ponding to the identity homomorphism. Then the action of G induced from T is
G/Hx,T =G/Hx,(H/KxgS). The G-action on G/”HxH KxS8 is given by
x,7,8g=(xg ya(xg),sBy a(x g)). Wecanidentify G/Hx,H K with G K
in such a way that ([e], [e]) corresponds to [e]. Then we can consider

v: (G/Hx H/K)xG—->K

defined by v ((x, ¥), g) = B (¥, a (x, g)) to be a strict cocycle G, K x G — K, and this
will correspond to the identity homomorphism K — K. It follows that G/ Hx,T
is equivalent to G, /K xS, with proves the proposition.

To describe the analogue of the imprimitivity theorem, we must first recall the notions
of extensions and factors of ergodic actions. If (X, p) and (Y, v) are ergodic G-spaces,
then X is called an extension of Y, and Y a factor of X, if there is a conull G-invariant
Borel set X, < X and a measure-class preserving G-map X, — Y. Equivalently
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([18], Prop. 2.1), there is a G-embedding of Boolean c-algebras B (Y, v) — B (X, p).
The following analogue of the imprimitivity theorem provides a criterion for deter-
mining when a given action is induced.

THEOREM 2.5. — If X is an ergodic G-space and H < G is a closed subgroup, then X
is induced from an ergodic action of H if and only if G,/H is a factor of X.

Proof. — We provide an indication of the proof, leaving some measure theoretic details
to the reader. One of the implications in the theorem is taken care of by Proposition 2.2,
so we assume G_H is a factor of X. Passing to a G-invariant conull Borel set if neces-
sary, we have a measure class preserving G-map ¢ : X — G H. Let p be the given
probability measure on X and v the probability measure on G/ H. By the transitivity
of G on G/H, we can assume X = G /H x I, p = v xm, where (I, m) is the unit interval
with some probability measure. For each g and almost all x, the map { x } xI— { xg } xI
defined by the G-action will be measure class preserving and letting o (x, g) be the induced
transformation on the Boolean algebra, o (x,g) :B({xg}xL m)—B ({ x }xI, m),
one readily verifies that o is a cocycle on G,/ H x G with values in Aut (B (I, m)), the
group of automorphisms of the Boolean c-algebra B (I, m). It is not difficult to see
that Aut (B (I, m)) is a standard Borel group (in fact, it is a weakly closed subgroup of
the unitary group on L2 (I, m)) and that a is Borel. It follows from the discussion of
cocycles on transitive G-spaces in [17] that o is equivalent to a strict cocycle into
Aut (B (I, m)) which is in turn equivalent to a strict cocycle B with

B(G/H xG) = B([e]x H).

Each cocycle G,/H x G — Aut (B (I, m)) defines a Boolean action of G on B (G/H xI)
and hence an action of G that is equivalent to the action on X since « and B are cohomo-
logous. But using Proposition 2.2, this action defined by B is equivalent to the action
induced from the H-action defined by the Boolean H-action on B (I, m) given by
B |[e]xH.

Next we present another useful criterion that an action be induced.

COROLLARY 2.6. — If X is an ergodic G-space, let a.(x, g) = g so that & : Xx G — G
is a cocycle. Then X is induced from an ergodic H-space if and only if o is equivalent to
a cocycle taking values in H.

Proof. — Since the range of the cocycle a is the G-space X, the corollary follows from
Theorem 2.5 and the fact that G /H is a factor of the range-closure of a if and only if o
is equivalent to a cocycle into H ([18], Th. 3.5).

We now present some other results of a general nature concerning induced actions.
We suppose throughout the remainder of this section that H < G is a closed subgroup.

ProposiTION 2.7. — If S is an ergodic H-space, then:
() S is properly ergodic if and only if the induced action of G is properly ergodic;

(ii) S is essentially free (i. e. almost all stability groups are trivial) if and only if the
induced action of G is essentially free.
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ERGODIC ACTIONS OF LIE GROUPS 413

Proof. — Straightforward.

PROPOSITION 2.8. — Suppose S and T are ergodic H-spaces and that X and Y are the
corresponding induced G-actions. If S is an extension of T, then X is an extension of Y.

Proof. — Let o : G/Hx G — H correspond to the identity homomorphism H — H.
If :S— T is a measure class preserving H-map, then ¢ : G/H%x,S— G Hx,T
defined by V¥ (x, s) = (x, ¢ (s)) is a measure class preserving G-map and the result follows
by Proposition 2.2.

It follows from Theorem 2.5 that any extension of an ergodic G-space which is induced
from an H-action is also induced from an H-action. The following statement is somewhat
sharper. However, as we shall make no use of it below, we omit the proof.

PROPOSITION 2.9. — Suppose Y is an ergodic G-space induced from the H-space T.
If X is an extension of Y, then X is induced from an extension of T.

PROPOSITION 2.10. — Suppose that X is an ergodic G-space, and let Xy be the H-space
which has X as the underlying set and the restriction of the G-action to H as the H-action.
Suppose H is ergodic on Xy. Then the action of G induced from the H-action on Xy is
the product G-space G,/ HxX.

Proof. — LetB:G/HxG— GbeB(y,g) =g Then the product G-space G,/ H x X
is just the action defined by B, i.e., G Hx 3 X. But B is strictly equivalent to a strict
cocycle o with o (G, H x G) = H corresponding to the identity homomorphism H — H,
and so G/Hxy;X =2 G/Hx,X. But the latter is just the action induced from Xj.

We conclude this section with a remark on the ergodic equivalence relation of induced
actions. We refer the reader to [5], [6], [16] for the notion of an approximately finite
(i. e., hyperfinite) ergodic equivalence relation.

PropoSITION 2.11. — If (X, G) is induced from (S, H), then the ergodic equivalence
relation on X defined by G is approximately finite if and only if the ergodic equivalence
relation on S defined by H is approximately finite.

Proof. — Writing X = G/Hx,S, the result is clear once we observe that for
x; = V1, 81), x5 = (3, 5,), we have x; ~ x, if and only if s, ~ s,.

III. — Amepable actions

In this section we recall the definition and some properties of amenable ergodic actions
and present some further results we shall subsequently require. We refer the reader
to [20] for a more detailed and motivated account of amenable actions.

Let E be a separable Banach space, E* the dual Banach space, and E} the unit ball
in E*, which is a compact convex set with the o (E*, E) topology. The group of isometric
isomorphisms of E, which we denote by Iso (E), is a separable metrizable group in the
strong operator topology, and the associated Borel structure is standard ([20], Lemma 1.1]).
If S is a Borel space, by a Borel field of compact convex sets in Ef we mean an assignment
s— A,, where A; < Ef is compact and convex such that {(s, A,) } = SxE} is Borel.
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If S is an ergodic G-space and a : Sx G — Iso (E) is a cocycle, A, is called a-invariant
if for all g, a*(s, g) A, = A, for almost all s, where a* is the adjoint cocycle
a* (s, g) = [a(s, g " ']*. The following “fixed point property’’ then defines amena-
bility. We call S an amenable ergodic G-space if for all such (E, a, { A, }), there is a
Borel function ¢ : S — E} such that ¢ (s) € A; a. e. and a* (s, g) ¢ (sg) = ¢ (s) a.e. for
each ge G. Then ¢ is called an o-invariant section. The reader should find drawing
a sketch in SxEF helpful in understanding the definition. We record the following
for later reference.

ProPOSITION 3.1. — (1) Anmy ergodic action of an amenable group is amenable
([20], Th. 2.1);

(2) if S is an amenable G-space and there is a G-invariant mean on L™ (S), then G is
amenable ([20], Prop. 4.3, 4.4);

(3) an extension of an amenable action is amenable ([20], Th. 2.4);

(4) a transitive action is amenable if and only if the stability groups are amenable
([20], Th. 1.9).

The following relates amenability to inducing.

ProposITION 3.2. — If (X, G) is induced from (S, H), then X is an amenable G-space
if and only if S is an amenable H-space.

Proof. — Since X is the range of a cocycle Sx H — G, ([20], Th. 3.3) shows that S
amenable implies X amenable. Suppose conversely that X = G, H x, S is an amenable
G-space where o :G,/HxG — H corresponds to the identity H— H. Suppose
vy :SxH—Iso (E) is a cocycle and A, is a y-invariant field. As in the proof of [20],
Th. 2.1, we can define a representation T : H— Iso (L! (S, E)) by

[T f1(s)=7(s, V(s 8) f (58)
where r is the Radon-Nikodym cocycle of the action, and
B={feL®(S,E* | f(s)eA a.e.}

will be a compact convex subset of the unit ball LY (S, E*) that is invariant under the
adjoint representation T*. It suffices to show that there is a fixed point in B under T*.
Let F = L (S, E). With o as above, we can define a strict cocycle B : G,/H x G — Iso (F)
by B(», g = T(x(», g)). By the argument in part (ii) of the proof of ([20], Th. 1.9),
it suffices to show that there is a P-invariant section G,H — B < Ff. There is a
natural isomorphism L* (G/HxS, E¥f) — L* (G/H,L* (S, E¥)). Suppose
¢:G/H—L*(S,E*) and { : G/HxS — Ef correspond under the isomorphism.
Then it is straightforward that ¢ is a B-invariant section if and only if \ is a 8-invariant
section, where & : G/Hx S — Iso (E) is the cocycle & ((y,s),g) =7, a(y, 2).
Furthermore ¢ (y)eB a.e. if and only if V(y,s)eA, ;= A; a.e. Amenability of
G, H x,S ensures the existence of such a function { which completes the proof.
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ERGODIC ACTIONS OF LIE GROUPS 415

Suppose S is an ergodic G-space and H < G is a closed subgroup such that H is ergodic
on S. We wish to examine the relation between amenability of the H-action and amena-
bility of the G-action. We begin with the following.

LEMMA 3.3. — S is an amenable H-space if and only if the product action of G on S x G /H
is amenable.

Proof. — This follows from Propositions 3.2 and 2.10.

PROPOSITION 3.4. — Suppose S is an ergodic G-space and H < G is a closed subgroup
such that H is also ergodic on S :

(1) if S is an amenable G-space, it is also an amenable H-space;

(ii) if'S is an amenable H-space and G /H has a G-invariant probability measure, then S
is an amenable G-space.

Proof. — (i) follows from Lemma 3.3 and Proposition 3.1 (3). On the other hand,
if Sx G /H is an amenable G-space and G ~H has a finite invariant measure, [(ii) follows
from the proof of [20], Prop. 2.6.

We now demonstrate the existence of “minimal’’> amenable ergodic actions.

DEFINITIONS 3.5. — An amenable ergodic action is called minimal amenable if every
factor action is non-amenable (other than considering the action as a factor of itself by
the identity map).

A transitive G-space GG, has only transitive factors and so will be minimal ame-
nable if and only if G, is a maximal amenable subgroup. Every subgroup of G is contained
in a maximal amenable subgroup ([9], Th. IV.1) and the next result is a generalization
of this fact.

PROPOSITION 3.6. — Suppose X is an amenable ergodic G-space. Then X has a minimal
amenable factor.

Proof. — We use Zorn’s lemma. Suppose X, is a totally ordered set of factors of X
with corresponding G-invariant Boolean c-algebras B (X;) = B (X). Then () B(X;) = B
is a Boolean G-space and hence corresponds to an ergodic G-space Y which is a factor
of each X,. It suffices to show that Y is an amenable G-space. Lety : Y xG — Iso (E).
Let p : X— Y be the factor map and define a(x, g) = v(p(x), g). Suppose A, is a
y-invariant field in Ef, so that A, = A, ,, is an o-invariant field. There is an induced
representation T* of G on L® (X, E*) defined by (T* (g)f) (x) = o* (x, g)f(xg), and
A= {feL®(X,E¥) |f(x)eA,a.e. } is a compact convex G-invariant subset. For
each &, we can identify L*® (X, E*) as a subspace of L* (X, E*) and similarly we can so
identify L® (Y, E*). For each &, let A, = {fe L® (X;, E¥) n A | T* (g) f = fforall g }.
Then A is a decreasing sequence of compact convex sets, and amenability of X, ensures
that A, is non-empty. Choose ¢ € () A;. Then ¢ is measurable with respect to each
B (X;) and hence is measurable with respect to B. Hence ¢ is the required y-invariant
section.

In section 5 we will explicitly identify all minimal amenable ergodic actions of real
algebraic groups and connected semi-simple Lie groups with finite center.
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IV. — Orbits of measures on projective space

Let P, be the real projective space of lines in R**1. Let M (P") be the space of proba-
bility measures on P* with the weak-* -topology. The general linear group GL (n+1, R)
(we shall suppress the R hereafter in this section) acts continuously in a natural fashion
on P” and hence on M (P"). The aim of this section is to prove the following theorem.

THEOREM 4.1. — For every pe M (P") the orbit of p under GL (n+1) is locally closed.

The approach we take in proving this theorem is to employ a technique of H. Furstenberg.
If pe M(P") and v is a limit point of the orbit of p not contained in the orbit, then
Furstenberg has shown in [7], Lemma 1.5, that v is supported on a union of two proper
projective subspaces. Since the space of probability measures supported on a union of
two proper projective subspaces is closed, one can deduce immediately that the orbit
of any p which is not so supported must be locally closed. The idea of the proof of
Theorem 4.1 is to expand upon these remarks to obtain the theorem for an arbitrary p.

We begin with notation and some basic facts. P” is a compact metrizable space and
hence the set € of closed subsets of P" is a compact metric space with the Hausdorf metric.
If A€, let M (A) denote the set of probability measures on P" supported in A. Then
M(A) =« M(P") is a closed subset. If & =@, let M, = () M(A).

Aed
LeMMA 4.2. — IfA, €%, A,— A, and p, e M (A,) with p, — ne M (P"), then pn € M (A).
Proof. — Let f'be a continuous function on P” with supp (f) n A = @. Since A, — A,
for sufficiently large n, supp (f) n A, = @. Thus J fdy, = 0 for sufficiently large »,

so deu=0.

COROLLARY 4.3. — If o = ¥ is closed, then M, is closed.

There is a natural map R"*'—{0} > P" and if V< R""' is a non-trivial subspace
we will denote the image of V in P" by [V]. We call [V] a projective subspace of P".

k
Define o/ to be the subset of ¢ consisting of elements Ae% of the form A=) [V/]
i=1

where [V,] are (non-empty) projective subspaces such that V;¢V; for i#j, and
Y dimV;<n+1. Then define n(A)=k, d(A)=).dimV;, and D(A)=dim),V;.
These numbers are uniquely determined by the set A. We note that 1 < n(A), d(A),
DA)Zn+l.

The proofs of the following facts are straightforward.

Lemva 4.4. — (a) Let o/, = {Aesd|n(A) £ k}, &= {Aed|d(A)Ld}
and o (D)= {Aes/ |D(A) S D}. Then these sets are all closed subsets of .

() Let B} ={Aeod|n(A)=k and d(A)=d}. If A;eB} and A,—>A€c%,
then A e Biu o#*"'. Hence B L A°~ " is closed in €.
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Now let peM(P"). Define d(p) =min{d(A)|Aes and peM(A)} and
n(w =max {n(A) |Aes, peM(A), and d(A) =d(p)}. Fix an clement Ae o/
with pe M(A) and d(A) =d(), n(A) =n(), and let D(u) = D(A). We note
that we actually have d(A) = D (A) for D (A) < d(A) would contradict the definition
of d(p) since we have pe M ([Y. V;]). Let o (n) = % be the closed (by Lemma 4.4)
set

H (W) =B 0L VT O L (DW-1).

Let % (u) be the complement in M (P") of M, ). Then by the choice of d(n), n (W),
D (w), % () is an open neighborhood of u in M (P"). Furthermore, the orbit of p under
GL (n+1) is also contained in % (u). Therefore the proof of Theorem 4.1 is reduced
to the following.

LemMA 4.5. — If g;€ GL(n+1) and p.g;— v where ve U (W), then v is in the orbit
of p.

The proof of Lemma 4.5 depends in turn upon the following formulation of
Furstenberg’s technique. Let V < R"*! be a subspace and suppose g;:V— R"*!
are linear maps of determinant 1. Suppose [V g;]— [W] where W is a subspace (neces-
sarily of the same dimension as V). Let p be the probability measure on [V] < P* and
suppose that p.g, — v, so that by Lemma 4.2, v is a measure on [W].

LEMMA 4.6. — Either {g; } is bounded, or v is supported on a union [Y] U [Z] where
LY1, [Z] are projective subspaces with dimY, dim Z 2 1 and dim Y +dim Z = dim W.

Proof. — The proof is essentially just that of Furstenberg ([7], Lemma 1.5), but we
include this minor variation for the reader’s convenience. If g; is not bounded, let
h; = gi/||g:||- Then, perhaps by passing to a subsequence, we have h;— h for some
linear function k:V— R™! with ||| =1 and det(h) =0. Let N =ker(h) =V,
Z = range (h) =« W, so dim N+dim Z = dim V(= dim W). Again by passing to a
subsequence we can assume [N g;] —[Y] =« [W]. We claim v = lim p.g; is supported
on [Y]U[Z]. Write p = p,+n, where p, is supported on [N] and p, is supported
on [V]—[N]. Passing to a subsequence, we have v = lim (p,.g;)+lim (p,.g;). Clearly
lim (u,.g;) is supported on [Y] so it suffices to see that v, = lim (p,.g;) is supported
on [Z]. Each g; can be extended to a linear map R"*! — R"*! and then for f continuous
on P" with f =0 on [Z] we have

j fdv, = limJ fdp,g)
Pn Pﬂ

= limf f(xgdp, (x) = limj

S (xgy) dp, (x).
[V]—-[N]

But f(xg;) — 0 pointwise for x e [V]—[N], so I fdv, = 0 by the dominated convergence

theorem, completing the proof of Lemma 4.6.

We now return to the proof of Lemma 4.5 and hence Theorem 4.1.
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Proof (of Lemma 4.5). — Let A = (J[V;] be chosen as above. As we remarked
previously, since p is supported on [y V;], we have dim) V; =) dimV, In other
words, the subspaces Vy, ..., V,,, are independent. By passing to a subsequence,
we can assume [V;]g;—[W;] for each j, where dim W; = dimV;, and since
veM (|J[W,]) and ve % (n), Wy, ..., W, 4, will also be independent subspaces. For
each j let p; = p|[V;], v; = v|[[W,] and A = (g;| V) [det (g;| V,])~ /4" V4. Thus
hiy:V;—>R", det hy; =1, h; |[V;] =g;|[V,;], and lim p;h; = v;, We claim that
for each j, the sequence h;; is bounded as i— co. This is clear if dimV; =1. If
dim V; = 2 and A;; is not bounded, then Lemma 4.6 implies that p; is supported on
[Y;Jul[Z;] where Y;, Z; # 0 and dimY;+dimZ; = dim W;. If Y; nZ; # 0, this
would imply that v is supported on an element of & (D (1) — 1) which contradicts the fact
that ve % (). On the other hand, if Y; nZ; = 0, then v is supported on an element
of #3® ., which again contradicts ve % (u). Thus k;; is bounded for each j and it
follows that by passing to a subsequence, as i— oo h;; converges to an isomorphism
h; : V;— W, such that p; h; = v;. Finally, let 2 : R*** — R**! be an invertible linear
opertor which agrees with 4; on V;. Then he GL (n+1) and ph = v. This completes
the proof.

V. — Actions of algebraic and semi-simple Lie groups

In this section we prove that amenable ergodic actions of real algebraic groups and
connected semi-simple Lie groups with finite center are induced from actions of amenable
subgroups, as well as other less precise results for more general groups, and applications.
We begin with an analysis of the amenable ergodic actions of GL (rn). The essential
step involving Theorem 4.1 is Lemma 5.3.

If S is any ergodic G-space, where G is a locally compact group, by a finite ergodic
extension of S we mean an ergodic extension p : T — S such that T is isomorphic as an
extension of S to a space of the form (S X F, pu x m) where F is a finite set and m a measure
on F. (By ergodicity one can see that this is in fact equivalent to only requiring that
under a direct integral decomposition of the measure on T over (S, p) that almost all
fiber measures have finite support). Clearly, a finite extension of a finite extension is
again finite. If T is any ergodic extension of S and « (s, g) is a cocycle defined on S x G,
then the restriction of o to Tx G is the cocycle a(t, g) = a(p (1), g).

LemMA 5.1. — Let M be a locally compact group and o. : Sx G — M a cocycle. Suppose
M, = M is a normal subgroup of finite index. Then S has a finite ergodic extension T
such that the restriction of o to T is equivalent to a cocycle into M.

Proof. — Let q: M — M _ M, be the natural projection. Then goa is a cocycle
into the finite group M _/M,. It follows that there is a subgroup F =« M /M, such that qa
is equivalent to a cocycle B with B (Sx G) = F and S x gF = T is ergodic ([18], section 3).
Suppose ¢ : S — M_”M, such that ¢ (s) g (¢ (s, &) ¢ (sg)~* = B (s, g) for each g, almost
all s. Let 6:M/M;—M be a section of g and define Y :Sxz;F— M by
Y(s,x) =0(xq@(s). To prove the lemma it suffices to show that for each g,
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V(@) a, g v(tg) teM, a.e. But
g (s, x)a(s, @ W(sg, xB(s, &)™) =x0()q(a(s, )[xB(s, g)o(sg)] ™"
=xB(s, g)B(s, g) 'x " =e
for each x, g and almost all s, and so the result follows.

LEMMA 5.2. — Suppose o : Sx G — M is a cocycle and q : M — N a surjective homo-
morphism. If q oo is equivalent to a cocycle into a closed subgroup N' <= N, then o is
equivalent to a cocycle into M’ = q~* (N).

Proof. — If ¢ : S— Nwith ¢ (s) g (c(5,8)) 9 (sg) ' € N, then 0 (¢ (5)) & (5, 8) 6 (¢ (sg)) ™"
is the required cocycle where 6 is a section of g.

The basic application of Theorem 4.1 in proving the main theorems is the following.

LEMMA 5.3. — Suppose o : Sx G — GL (n) and that S is an amenable G-space. Then S
has a finite ergodic extension T such that the restriction of o to T is equivalent to a cocycle
into a subgroup M < GL (n) that either projects to a compact group in SL (n) or leaves
a proper subspace invariant.

Proof. — Let E = C (P"™!) be the Banach space of continuous complex-valued functions
on P""! and let & : GL (n) — Iso (E) be the representation induced by the action of GL ()
on P""!, Let n* denote the adjoint representation on E*. Then oo : Sx G — Iso (E)
is a cocycle and M (P""!) is compact convex and (= o o)-invariant. By amenability,
there is a Borel function ¢ : S — M (P""!) such that for each g and almost all s.

(*) n* (o (s, 8)) 9 (sg) = 9 (s).

Let M (P""1) = M (P"~!)/GL (n) be the space of orbits in M (P" ') under the general
linear group. It is a consequence of Theorem 4.1 and [4] that M (P"" 1) is a standard
Borel space with the quotient Borel structure. Equation (*) implies that for each g
and almost all s, ¢ (s) = ¢ (sg) in M P""1). Since M (P" 1) is standard and G is ergodic
on S, it follows that by changing ¢ on a null Borel set, ¢ (S) will be contained in a single
orbit in M (P"~!). Choose a point , in this orbit and let M = GL (n) be the stabilizer
of o, so that the orbit can be identified with GL (n) M. Via a Borel section
GL(n) /M — GL (n) we can find a Borel map 0 :Orbit (u,) — GL (#) such that
n* (0 (W) po = p for all p in the orbit. Define a cocycle B ~ a by

B(s, &) =0(@(s) ™" als, 2)0(0(s8)).

We claim that for each g, B (s, g) € M a. e. It suffices to show that n* (B (s, g)) Ho = Ho-
We can write ¢ (s) = n* (0 (¢ (s))) uo for each s, and hence equation () becomes
¥ (o (s, ) 0 (0 (52))) po = ©* (0 (0 (5))) Bo from which the required identity follows
immediately. Since for each g, B (s, g) € M a. e., changing B on a null set we can assume f8
is a cocycle into M. Since M is the subgroup of GL (n) leaving p, fixed, it follows from
the proof of [7], Lemma 1.5, that either M is compact when projected to SL (n) or has
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a normal subgroup M, of finite index such that M, leaves a proper subspace invariant.
In the former case there is nothing further to show and in the latter case the lemma follows
from Lemma 5.2.

We now use an inductive argument to obtain the following result.

LEMMA 5.4. — Suppose o : Sx G — GL (n) and that S is an amenable G-space. Then S
has a finite ergodic extension T such that the restriction of o to T is equivalent to a cocycle
taking values in a subgroup M < GL (n) which can be described as follows. There is
a sequence of subspaces 0 =V, cV; < ... €V, =R" and inner products B; on
Vi/Viey, i=1, ..., k, such that M = {geGL (n) | V;g =V, for all i, and g induces
a similarity on V;/V;_, with respect to B;; i.e., B;.g is a scalar multiple of B, }.

Proof. — The proof is by induction on n. If n=1, the lemma is clear. For n>1,
suppose the theorem is true for all integers strictly less than n. If S has a finite ergodic
extension T such that the restriction of o to T is equivalent to a cocycle with values in
R K, where K = SL (n) is compact, we are clearly done. If not, then by Lemma 5.3
we can choose a finite ergodic extension T such that o restricted to T is equivalent to a
cocycle B into the group M, of all invertible transformations leaving a proper subspace V,
invariant, and so that V, is of minimal dimension among all such choices of T and M;.
There is a natural surjective homomorphism p : M; — GL (V,). Since T is an ame-
nable G-space, we can apply Lemmas 5.3 and 5.2 to p o B and conclude from the mini-
mality property of V, that B is equivalent to a cocycle, which we still denote by B, taking
values in the group M, consisting of all invertible transformations leaving V, invariant
and inducing a similarity on (V,, B;) for some inner product B, on V,. We can now
take the surjective homomorphism ¢ : My — GL (R" /V,) and apply the inductive hypo-
thesis to g° B : TxG — GL (R*”V,). An application of Lemma 5.2 then completes
the proof.

Let us pause to summarize our situation. The group M in the statement of Lemma 5.4
is a compact extension of a solvable group and is therefore amenable. If we take
G = GL (n) and a : Sx GL (n) — GL (n) to be projection on GL (n), then Lemma 5.4
and Corollary 2.6 imply that any amenable ergodic GL (n) space has a finite ergodic
extension that is induced from an ergodic action of an amenable subgroup M. We now
wish to dispose of the need for taking a finite extension (perhaps changing M to another
amenable subgroup in the process, of course). In order to do this, we need to recall
one important fact about algebraic transformation groups which will be of use to us
in another situation below as well.

If a locally compact group G acts in a Borel fashion on a standard Borel space X, the
action is called smooth if the orbit space is a standard Borel space with the quotient Borel
structure. If X is metrizable by a complete metric and the G-action is continuous, this
is equivalent to all orbits being locally closed [4]. (We have used this fact in Lemma 5.3.)
The result we will need is that algebraic actions are smooth. More precisely, if G is
a real algebraic group acting algebraically on a real algebraic variety, then the action is
smooth. For a proof, see the remarks in [3], p. 183-184.

We are now in a position to prove the main theorem for ergodic actions of GL (n).
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THEOREM 5.5. — Every amenable ergodic action of GL (n) is induced from an action
of a closed amenable subgroup.

Proof. — Let a:SxGL (n)— GL(n) be a(s,g) = g, and construct the extension
T — S and the sequence of subspaces 0 = Vo, = V; = ... =« V¥ = R" as in Lemma 5.4.
Let the cardinality of the fibers of T — S be the integer p (a. e.). If Zis a finite-dimensional
real vector space, let B (Z) be the space of inner products on Z with two inner products
identified if they differ by a scalar multiple. Thus B (Z) is a subset of the projective space
of the linear space of bilinear maps ZxZ — R and the stability group in GL (Z) of an
element in B (Z) is just the group of similarities of the inner product.

Let F be the set of all 2 k-tuples, F = {(Wy, ..., W, Dy, ..., D) | W, cR"is a
subspace with dim W, =dimV,, W,_, <« W, and D;eB(W,/W;_,)}. Then F
has a natural Borel structure, GL (n) acts naturally on F and it is not difficult to see that
this action is transitive. Thus we can identify F with GL (rn) /M where M is the subgroup
given in Lemma 5.4. Since M is an algebraic group and algebraic actions are smooth,
it follows that GL (n) is smooth on the product space F?. Let S, be the symmetric group
on p letters which acts naturally on F? and commutes with the GL () action. It follows
that GL (n) is smooth on the quotient F? /S, as well.

Let & be the restriction of o to T and B : T x GL (n) — M the cocycle equivalent to &
given by Lemma 5.4, We can write T = SxI where I is some finite set. Let
¢ : T— GL (n) implement the equivalence of & and B, i.e., for each g,

o (s, y)ols, 8)o((s, »)g) ' =B(s y, 8

for almost all (s, y) e T. Let VeF be the element V = (V,, ..., V,, B, ..., B)) given
by Lemma 5.4, and V (s, yY) e Fbe V. (s, y). We then can define a map V:.:S— F? /S,
by \~/'(s) ={V(s,»)|yel}, and it is easy to check that V is Borel. Furthermore,
since V.p (¢, g) = V, we have for each g, y, and almost all s, V (s, y).a (s, g =V (sg, y)
for some y’. In other words, V(s)oc(s g) = V(sg) This says that V(s) and V(sg)
are in the same GL (n) orbit in F? /S, and since the action of GL (n) on F? /S, is smooth,
ergodicity of GL (n) on S implies that there is a single orbit in F? /S, such that v (s) is
in that orbit for almost all s. Arguing exactly as in the proof of Lemma 5.3, we see
that o is equ1valent to a cocycle y taking values in the group G, = {ge GL (n) | Vog = Vo }
where Vo e F? /S, is some point in the orbit singled out above. We can write VO as
a set {VL, V% ..., V?} where VIeF. Let G, = {geG,|Vig=V/ for all j}.
Then G, isa normal subgroup of G, with finite index and G, is of course a closed subgroup
of {geGL(n)|V'g=V'}. The latter is a compact extension of a solvable group
and hence amenable, and so G, and therefore G, is amenable. The theorem now follows
from Corollary 2.6.

For the analysis of amenable actions of other groups, we will need the following lemma.

LEMMA 5.6. — Suppose X is a standard Borel G-space and that H < G is a subgroup
of finite index. Then G acts smoothly on X if and only if H acts smoothly on X.
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Proof. — We first observe that it suffices to consider the case where H is normal,
since () g H g™ ! will be normal in G and of finite index in both G andH. If H is normal

and sﬁglooth on X, then G will be smooth since X /G = (X “H), /G, H and finite group
actions are smooth. Conversely, if G acts smoothly, then to see that H does as well
it suffices to remark that if p is a properly ergodic quasi-invariant measure under H, then
Y p.g; will be properly ergodic and quasi-invariant under G, where { g, } are a set of
representatives of G,/H.

We now extend Theorem 5.5 to algebraic groups.

THEOREM 5.7. — Every amenable ergodic action of a real algebraic group is induced
from an action of an amenable subgroup.

Proof. — Let G be a real algebraic group and (S, 1) an amenable ergodic G-space.
Let X be the induced ergodic GL (n) action, and represent X = GL (n),/G % ,S where
a:GL (n)/GxGL (n) — G corresponds to the identity as in Proposition 2.2. By
Proposition 3.2 and Theorem 5.5, there is a closed amenable subgroup M < GL (n)
such that GL (n) /M is a factor GL (n)-space of X. We can clearly assume that M is
a maximal closed amenable subgroup. One can readily check that a conull GL (n)-inva-
riant Borel subset of X is of the form GL (n),”G x,S, where S, = S is conull, Borel,
and G-invariant. Thus we can assume that we have a GL (n)-map

GL (1)/G x ,S —» GL (n)/M.

Restricting this map to [e] xS gives a (not necessarily measure-class preserving) G-map
¢ :S— GL (n) /M. Let v = ¢*(u), so that v is quasi-invariant and ergodic under G.
Suppose for the moment that v is supported on a G-orbit. Then S has a G-space factor
of the foom G,/gMg~! n G for some ge GL (), and since gM g™ ! n G is a closed
amenable subgroup of G, the result follows from Theorem 2.5. Thus to prove the
theorem, it suffices to show that every G-ergodic measure on GL (n)/M is supported
on an orbit, i. e. that G is smooth on GL (n) M. This will be the case if and only if M
is smooth on GL (n)/G. By [9], Th. IV.2, M has a normal subgroup M, of finite
index which is a real algebraic group. Since G is algebraic and algebraic actions are
smooth, M, is smooth on GL (n),/G and by Lemma 5.6, M is as well, completing the
proof.

To obtain the corresponding result for connected semi-simple Lie groups with finite
center we use the following two lemmas.

LeMMA 5.8. — Suppose H = G is a normal subgroup of finite index and that every ergodic
amenable G-action is induced from an action of an amenable subgroup. Then the same
is true for H.

Proof. — If S is an amenable ergodic H-space, form the induced G-space G, H xS
and suppose that this has a factor G-space GG, where G, < G is amenable. Arguing
as in the proof of Theorem 5.7, it suffices to show that H is smooth on G/G,. But
this is clear since G, is obviously smooth on G /H.
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LEMMA 5.9. — Suppose p : G — H is a surjective homomorphism with a compact kernel K.
If every amenable ergodic H-action is induced from the action of an amenable subgroup,
the same is true for G.

Proof. — Let S be an amenable ergodic G-space. Let S=s§ /K, i.e., the space of
K-orbits in S. Since K is normal, there is a naturally defined ergodic action of G on S
which is amenable by [20], Prop. 2.6. This action factors to an action of H which will
clearly be amenable, and so there is an amenable subgroup H, = H and a map of H-spaces
S—H,/H, Thus there is a map of G-spaces S— GG, where G, = p~ ! (H,).
Since G, satisfies the exact sequence 0 > K — G, — H, — 0 with K, H, amenable,
it follows that G, is amenable. The lemma now follows from Theorem 2.5.

THEOREM 5.10. — Let G be a connected semi-simple Lie group with finite center. Then
every amenable ergodic action of G is induced from an ergodic action of an amenable
subgroup.

Proof. — This follows from Theorem 5.7, Lemmas 5.8 and 5.9, and the fact that
G/Z(G) = Ad(G) is the connected component of a real algebraic group.

In the proof of Theorem 5.7, the only point at which the condition that G be algebraic
was used was in deducing smoothness of the action of G on GL (n) M. Thus for general
closed subgroups of GL (n) one obtains the following by the same proof.

THEOREM 5.11. — Let G be a closed subgroup of GL (n) and S an amenable ergodic
action of G. Then there is an amenable subgroup M < GL (n) and a probability measure v
on GL (n) /M quasi-invariant and ergodic under G such that (GL (n),/M, v) is a factor
of S.

One can also regard the theorems above as identifying the minimal amenable actions
of Lie groups.

COROLLARY 5.12. — (i) If S is a minimal amenable ergodic action of a closed subgroup
G < GL (n), then S is of the form (GL (n) /M, v) where M is maximal amenable in G
and v is quasi-invariant and ergodic under G.

(i) The minimal amenable ergodic actions of a real algebraic group or a connected semi-
simple Lie group with finite center are of the form G /M where M is a maximal amenable
subgroup of G.

It would be interesting to obtain some sort of description and classification of those
measures v appearing in the above corollary, in general or in some specific cases. For
example, a case of interest would be to take M to be the triangular matrices and G to be
a lattice subgroup of SL (n). Another general case of interest would be that of Poisson
boundaries. In [20] we showed that the Poisson boundary of an étalée random walk
on G is an amenable ergodic G-space. It follows that if G is a closed subgroup of GL (r)
the Poisson boundary has a factor of the form described by Corollary 5.12. It would be
interesting to determine which M and v can arise in this situation. Furstenberg, of course,
has very precise results if G is a semi-simple Lie group ([8], Th. 13.4).

Every closed amenable subgroup of GL (n) is a compact extension of a solvable normal
subgroup ([9], Th. IV.3). From the above theorems, one can in a certain sense reduce

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



424 R. J. ZIMMER

amenable actions to compact extensions and actions of solvable subgroups. If X —Y
is an extension of ergodic G-spaces, we call X a compact group extension of Y if X is
isomorphic as an extension of Y to Yx,K where K is a compact group and
a:YxG— K is a cocycle. These extensions have been studied in [18] for example.

COROLLARY 5.13. — If'S is amenable ergodic G-space where G is a real algebraic group
or a connected semi-simple Lie group with finite center, then S has a compact group exten-
sion T which is induced from an ergodic action of a solvable subgroup of G.

Proof. — Let a :Sx G — G be projection on G. Then by Theorems 5.7, 5.10 and
Corollary 2.6, a is equivalent to a cocycle into an amenable subgroup M. Let M, ¢ M
be a normal solvable subgroup such that MM, is compact ([9], Th. IV.3). Using the
argument of Lemma 5.1, we see that there is a compact group extension T — S such that
the restriction of o to T is equivalent to a cocycle into My. An application of Corollary 2.6
then completes the proof.

Using Theorems 5.7, 5.10, and the results of [22] and [6], Th. 8.10, we obtain the
following corollary.

THEOREM 5.14. — Suppose G is a real algebraic group or a connected semi-simple Lie
group with finite center, and that S is a free ergodic G-space. Then the von Neumann
algebra associated to the action by the group-measure space construction is approximately
finite dimensional (i. e., hyperfinite) if and only if the action is induced from a(free) ergodic
action of an amenable subgroup of G.

We note that the statement of Theorem 5.14 involves no concept that depends upon
cohomology for its definition. The proof, however, depends from almost beginning
to end upon cohomological considerations. One can, of course, formulate similar theorems
based on other results above.

Another interesting consequence of Theorems 5.7 and 5.10 concerning cohomology
is the following.

THEOREM 5.15. — Suppose S is an amenable G-space and o : Sx G — H where H is
a real algebraic group or a connected semi-simple Lie group with finite center. Then o is
equivalent to a cocycle into an amenable subgroup of H.

Proof. — By [18], Th. 3.5, a is equivalent to a cocycle into an amenable subgroup
M < Hif and only if H,”M is a factor of the Poincare flow (range-closure) of «. But the
Poincaré flow of o is amenable ([20], Th. 3.3) and so the result follows from Theorems 5.7,
5.10, 2.5.

VI. — A counterexample
In this section we present an amenable ergodic action of a discrete group that is not

induced from an ergodic action of any amenable subgroup. In fact, we have the following
result.

THEOREM 6.1. — Let M < SL (2, C) be the subgroup of all upper triangular matrices,
and suppose T is a lattice subgroup of SL (2, C), i. e., I is discrete and SL (2, C) /T has
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finite volume. Then SL (2, C) /M is an amenable ergodic T-space that is not induced
from an action of any amenable subgroup of T'.

Proof. — We remark first that I' is ergodic on G,”M by Moore’s theorem [14] and
since M is amenable, the I' action is amenable by Proposition 3.4. To begin the
remainder of the proof, we need notation for some subgroups of M. Each element of M

is of the form
a b
0 at

where a, beC, a #0. Let N c¢ M be the set of elements with @ = 1, so in fact
N = [M, M]. Let A be the elements with b = 0, so that M is a semi-direct product AN.
The group A is isomorphic to K x R where K is the unit circle and we shall identify K

and R as the corresponding subgroups of M. For brevity, we denote SL (2, C) by G for
the remainder of the proof.

Suppose that the I'-action on G M is induced from an action of an amenable subgroup
I'y = T. Then inducing both I'-actions to G we see by Example 2.3, Theorem 2.5,
and Proposition 2.8 that we have an extension of ergodic G-spaces G,/ M x G, /T — G _/T,.
By [9], Th. IV.3 and [2], Corol., p. 243, Ty, has a normal subgroup I'; of finite index
which is triangulable. Since G/T, =~ G/g I, g~! as G-spaces for any g€ G, we can
assume that ', « M. We can identify G,”M with the complex projective space of C2.
There are two M-orbits in G,/M (i. e., two double cosets M\ G, M), namely { [e] }
and its complement. We shall call the latter the non-trivial M-orbit, and we note that
as an M-space this orbit is equivalent to M_~A. In particular, N is also transitive on
the non-trivial M-orbit.

We claim that {a €A | (g al_71> eI'; for some b} is a discrete set in A. Suppose

first that I';, is abelian and that B = (a

0 alL)er, with a® # 1. Suppose

B, = Cn ‘i"l eI’y with ¢,, ¢! bounded and ¢, distinct. From multiplying out the
0 ¢ n

equation BB,B~! = B,, it follows that d, = ab(c,—c; ") (a*—1)"*. Therefore d,
is bounded which implies that B, has a convergent subsequence, contradicting the dis-
creteness of I';.  Thus, we need only consider the case in which I'; is not abelian. Then

[Ty, Ty] # {e}, so there is some (1) (li)el“1 with d # 0. Conjugating this matrix

2
by (g alzl> we obtain ((1) ald). Thus if (g" ali"l)el"l with a, bounded and

a2

distinct, then 0 'i eI'; and since d # 0, this again contradicts the discreteness

of I',. This verifies our assertion.
We can now observe that I';y N =« M is a closed subgroup. If

(%" ab_"l)el“l and <(1) xl")eN,
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a, a,x,+b,
0 a;?! )

b
a‘l) we can assume by the above remarks that a, = a for all n

then the product is

0

(5 42)=(5 )G e )eran

and the latter is closed. Since I'; N is normal in M, the action of T'; on M_/T, N is
trivial. 'We claim that this implies that the action of I'; on G /T'; N has infinitely many
ergodic components. To see this, observe that we can consider G,/T'; N as the G-action
induced from the M-action on M _T; N. Thus we can write the G-space G/T; N as
G,/Mx,M /T, Nwhere a : G/”M x G — M is the strict cocycle a (x, g) = s (x) gs (xg)~*
where s : G,/M — G is a Borel section with s([e]) = e. Recall that there is a point,
say ¢, in the non-trivial M-orbit in G,”M so that the stabilizer in M of g is A. One can

If this converges to (a

and so

. 0 .. .
readily check that J = ; is in the coset g. We can also choose the section s above

i
0
so that s(q) = J. Since I'; N is transitive on the non-trivial M-orbit, I';y N will have
infinitely many ergodic components on G,/M x M /T, N (which will certainly imply
that I'; has infinitely many as well) if and only if the action of the stabilizer of g in I'; N
has infinitely many ergodic components on { g } x M /Ty N. To see this, one can argue
asin [24], Th. 4.2, for example. The stabilizer of ginT'; NisI'; N n AsinceI'; N =« M.
Furthermore, the action of s.e I’y Nn A on { ¢ } x M /T N is translation of the conju-
gate s (q) hs(q)~* on M/T; N. This just follows from the definition of the action of G
on G/Mx M, T, N. But s(qg) =J and on A, conjugation by J is just the map
h— h™'. Therefore I';y N n A acts trivially on { ¢ } x M /T; N, and so the verification
that I'; has infinitely many ergodic components on G, T'; N is complete. Since I';
is of finite index in I'y, it is easy to see that this implies that I', cannot be ergodic on G /T';N.
Equivalently ([24], Th. 4.2), the product action of G on G,/T; N x G /T is not ergodic,

We now consider two cases. Suppose first that I';, ¢ KN. We have an extension
G/MxG/T—G/T, and hence a measure-class preserving G-map

G/T NxG,/MxG,/T>G/T;NxG/T,.

We have shown that G /Ty Nx G /T, is not ergodic, so to derive a contradiction, it
suffices to show that G/T; NxG, "M xG_ T is ergodic. Recall that the stabilizer
in I'; N of a point in the non-trivial M-orbit is a conjugate of I'; N n A. We claim
that this is not compact. For any yeI'; there is ne N with yne A. Since I';, ¢ KN
we can find such a product yn¢ K. But any compact subgroup of A is actually
contained in K, so I'; N n A is not compact. Since the stabilizer in I'; N on the conull
orbit is not compact, it follows that the product G-action G,/T; Nx G_M has a conull
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orbit with a non-compact stabilizer. By Moore’s theorem [14], it follows that
G/TNxG/MxG/T is ergodic, providing the desired contradiction.

It remains to consider the case in which I'y < KN. The group KN is transitive on the
non-trivial M-orbit M_~A, and as a KN-space this is isomorphic to

KN,/KNnA = KN/K.

Since K is compact and I'; is discrete, I'; has infinitely many ergodic components on M_~A
and hence infinitely many ergodic components on G, M. As above, it follows that T',
is not ergodic on G/M and so G/Mx G T, is not ergodic. However, reasoning
as above, G/Mx G, /MxG_ T is ergodic, and so the existence of a measure-class
preserving G-map G,/ MxG,/ " MxG, /T -G/ MxG,/T, is a contradiction. This
completes the proof of the theorem.
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