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AMPLITUDE INEQUALITIES FOR COMPLEXES

BY BIRGER IVERSEN

Throughout this paper we consider bounded complexes X* of modules over a local
noetherian ring A. The amplitude of X* is defined by

ampX"=sup{ i | WOC)^Q}-M[i \BiQC)^0}.

The main result is that for a bounded complex L' of finitely generated free modules and
a bounded complex X* of finitely generated modules with H'(L*) + 0 and H' (X*) ^ %

ampL'® X* ̂  ampX*

provided A is equicharacteristic. ,
(X

The case where L* is a resolution of a module P and X* is a complex of the form A —> A,
states that if a is a non zero divisor on P then a is a non zero divisor in A. This is
Auslanders "zeto divisor conjecture" proved by Peskine and Szpiro[9]incaseoflocal
rings of char. p > 0 or rings essentially of finite type over a field. The general equicha-
racteristic case is due to the existence of big Cohen Macaulay modules, Hochster [7].
For other special cases of the amplitude inequality related to the notion of "Tor-rigidity"
see the discussion at the end of paragraph 3.

In case A has a dualizing complex, the amplitude inequality has the following, dual form

dimL 00 X ^dimX —proj.ampL.

If H'(L') has finite length and X'= A this says: -

proj. amp L* ̂  dim A,

which is Peskines and Szpiro's "new intersection theorem" [10]. In return our proof
is based on this theorem. Another special case of the intersection theorem can be found
in Foxby [4], whom we also have to thank for some of the results in paragraph 1.

A dual form of the intersection theorem in case X' = A is the following "generalized
Bass conjecture": Let E* be a bounded complex ofinjective modules with finitely generated
cohomology. If H'(E*) ^ 0, then E* has length ^ dim A. '

In case A is an arbitrary regular local ring, we prove the sharper inequality

amp L" ® X* ̂  amp L'+amp X',
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548 B. IVERSEN

the dual form of this is
dim L* ® X* + dim A ̂  dim L" + dim X'

generalizing Serre's result [12] to complexes.

1. Depth of a complex

Throughout, A denotes a local noetherian ring with maximal ideal m and residue
field k. By a module is understood an A-module and by a complex is understood a
complex of A-modules.

For a power series/^) = £ a^ t1 with Z-coefficients we put v^ (f(t)) = inf { i | a^ 1=- 0 }.

DEFINITION 1.1. — Let X" be a complex with finitely generated cohomology modules.
If X' is bounded below define

H (X', t) = £. dim^ Ext1 (fe, X') t\

and if X* is bounded above define

P(X", 0 = £,dinifcTor,(fe, X')t\

If X' is bounded and H" (X') ^ 0 define the depth of X' by

depth X-=V,(P(X-,OH(X-,O).

We remark that depth X' may be negative and that this concept extends the usual notion
of depth of a module.

If moreover the series p (X', t), resp. P (X*, /) is finite we say that X* has finite infective
amplitude resp. protective amplitude and we define

inj. amp X* = - v, (n (X*, t) [i (X\ t-1)),

proj.ampX" = -v,(P(X\ QP(X\ F1)).

PROPOSITION 1.2. — Let L* be a bounded above complex with finitely generated coho-
mology modules andX' a bounded below complex ofinjective modules with finitely generated
cohomology. Then:

H(Hom(L\ X-), t) == P(L\ t)^(X\ Q.

If L' and X" are bounded, then:

P(Hom(L-, X-), t) = n(L-, t)^(X\ F1).

Proof. — For the first formula we may assume that L" is a complex of finitely generated
free modules. We have isomorphisms of complexes

Hom*(fe, Hom"(L', X^Hom*^®!/, X')-^ Horn* (fe ® L', Hom"(fe, X')),

from which the first formula follows.
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To prove the second formula choose a bounded below complex E" of injective modules
quasi-isomorphic to L'. For a finitely generated module M consider the natural map

Hom'(E', X*) ® M -> Horn'(Horn* (M, E'), X').

Choose a presentation of M by finitely generated free modules to see that it is an isomor-
phism. This has the consequence that Horn" (E', X*) is a complex of flat modules.
It is now easy to conclude by taking M = k and noting that

Horn' (Horn' (k, E*), X') = Horn* (Horn' (k, E'), Horn* (fc, X')).

Q. E. D.

PROPOSITION 1.3. — Let L' be a bounded complex of finitely generated free modules
with H'(L') ^ 0. Then:

depth L" + proj. amp L* == depth A.

Proof. - Put L^ = Horn' (L', A). As is easily seen, we have P (L^, t) = p (L', t~1).
From the first formula in 1.2 we get

[i(i:\t)=^L\t)^,t)
or applying this to L^,

H(I;,0=H(A,OP(L-,r1).

Finally multiply this with P (L*, t) and apply v^.
Q. E. D.

REMARK 1. 4. — In case H* (L*) has finite length we have

depth L' = — amp L"

and 1.3 specializes to a well known acyclicity lemma [9] (1.9).

PROPOSITION 1 . 5 . — Let E* be a bounded complex of injective modules with finitely gene-
rated cohomology modules and H* (E') ^ 0. Then:

depth E'+inj. amp E* = depth A.

Proof. — From the last formula in 1.2 we get with X* = A,

P(E-,0=H(A,OH(E',r1)

multiply this with p. (E*, t) and apply v^ to get the result.
Q. E. D.

REMARK 1. 6. — In case E' is an injective resolution of a finitely generated module M,
we get the well known fact that

inj. dim M = depth A.
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IfX' is a complex with IT(X') ^ 0 and of finite projective amplitude and finite injective
amplitude we have from the proof of 1.9 and 1.4:

and
P(X',0=H(A,f)H(X',r1)

H(x'.0=n(A,op(x',r1).

Foxby: Playing these two formulas against each other we find that ^ (A, t) has the form ^
that is A is necessarily Gorenstein. Added in proof: Foxby's results on Poincare series
has appeared in Math. Scand., Vol. 70, 1977, pp. 1-19.

PROPOSITION 1.7. - Let L' be a bounded complex of finitely generated free modules
and X' a bounded complex with finitely generated cohomology modules. If H' (L') ^ 0
and H'(X') ^ 0, then:

depth L'®X"+depth A = depth L'+depth X*.

Proof. - We have L* ® X" = Horn (L^, X') thus by the first part of 1.2:

UCL^XVO-PCL^.OHCX'.O.

In particular with X* = A:

H(L\O=P(L-^OH(A^
thus we deduce:

p(A, 0^(L'®X', 0 = H(L', On(X', 0,

combine this with the obvious

PCL^x^^p^V^x^o
and apply v^.

Q. E. D.

REMARK 1. 8. — In case X' ® L' has cohom6l6gy of finite length, we deduce from 1. 3,
1.4 and 1.7, that

amp L* 00 X' = proj. amp L' - depth X*,

which contains the last theorem in Serre's notes [11].
We shall now assume that A has a dualizing complex D". This we will represent as

a bounded complex of injective modules. For a bounded complex X' we put
X'0 = Horn' (X', D').

PROPOSITION 1.9. -^Suppose the local ring A has a dualizing complex D'. Thm for a
bounded complex X* with finitely generated cohomology and H'(X*) 7^ 0.

depth X^ depth X'0.
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If X* has finite projective amplitude

proj. amp X* = inj. amp X*0.

If X' has finite injectives amplitude.

inj. amp X* = proj .amp X'0.

Proof. — We may normalize D* such that

^(D',0=l
and the result follows from 1.2.

Q. E. D.

2. Dimension of a complex

In this section we shall generalize the notion of dimension to complexes.

LEMMA 2.1. — Let X' be a bounded below complex with finitely generated cohomology
modules. Then:

i n f { f | ExtUX^Q}^^ | RT,(X')^0},

where R* F^ denotes the local cohomology with support in m.
Proof. — Let us call a complex of injective modules E* a minimal injective complex

if E* is bounded below and for all neZ:

Ker(5")->E"

is an essential extension. Using the construction of Hartshorne [6] (1.4.6), one sees
that X* admits a quasi-isomorphism into a minimal injective complex E". Note first
that the complex Horn" (k, E") has zero differential. Whence:

inf{ i | Ext^fe, E*) + 0} = inf{ i \ Hom(fe, E1) ̂  0}.

Let j denote the above integer. By decomposing E1 into indecomposable injectives,
one sees that F^(E1) = 0 for i <j. On the other hand Hom(fc, E-7) is a non trivial
submodule of the kernel of

r,(ao: r^E^r^1).
Q. E. D.

DEFINITION 2.2. — Let X' be a bounded complex with finitely generated cohomology
and H" (X') + 0. Define the dimension of X*:

dimX'=sup{i | RT^(X')^0}-sup{i | H^X'^O}.

In case amp X" = 0 this coincides with the dimension concept for modules, see [5] (6.4).
It is proved in 2.5 that dim X" ^ 0 in general.
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552 B. IVERSEN

The following theorem expresses the basic duality between the concepts of dimension
and amplitude.

THEOREM 2 . 3 . — Suppose A has a dualizing complex D*. For a bounded X* with finitely
generated cohomology modules and H" (X') i=- 0,

dim X* == depth X* + amp X'0.

Proof. — From the definitions and 2.1 follows, that

dim X" - depth X* = amp R* 1̂  (X').

Grothendieck's local duality theorem [6] (V.6.2) states that (ieZ):

Ri^^(X9)=Hom(H-i(X'D),l)

when I denotes an injective envelope of k. From this follows:

ampRT^X^ampX^.
Q. E. D.

PROPOSITION 2.4. — Suppose A has a dualizing complex D*. Let X* be a bounded
complex -with finitely generated cohomology modules and H" (X*) ^ 0. Put

c = i n f { f | H^X^O}.
Then:

dimX^in^dimA/^ j ^eAssH^X*)}.

Moreover dim X'0 = 0 if and only if me Ass (W (X')).

Proof. — By 2.3 and 1.9 it will suffice to prove that

amp X* + depth X'^ inf{ dim Alq \ ̂ eAssH^X')}.

So let q e Ass W (X). We have

Hom^(fe^), H^X;)) = Ext^(fe(^), X;).

So by lemma 2.6 below we have

Ext^Cfe, X) ^ 0, d=dimA/^.
From this follows:

amp X*+depth X'^rf .

For the last statement note that amp X"+depth X" = 0 if and only if Exffc, X') ^ 0.
Q. E. D.

COROLLARY 2.5. — Let X" ̂  a bounded complex with finitely generated cohomology
WH'(X')^0. Then:

0 ̂  dim X' ̂  dim Supp X',

where Supp X* == u, Supp H1 (X*).
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Proof. — Passing to the completion of A does not change the three integers above.
Thus we may assume that A has a dualizing complex D*. To prove the first inequality
note by 2.3 and 1.9:

dimX" = depth X^+ amp X90

which is easily seen to be positive. The second follows from 2.4 and the fact that
Supp X' = Supp X'0.

Q.E.D.

LEMMA 2.6. — Let X* be a bounded below complex with finitely generated cohomology
modules. For prime ideals p $ q with no prime ideal lying properly between p and q,
we have for ie Z;

Ext^(k(p),X;)^0 ^ Ext^^.X^O.

Proof. — This is a generalization of a well known lemma of Bass [2] (3.1). The proof
given there extends immediately to the general case.

Q. E. D.

3. The amplitude inequality

In this section we shall prove the amplitude inequality for equicharacteristic local rings.
It will be proved by means of the "new intersection theorem" of Peskine and Szpiro [10]
and Roberts [11]. In the simplest case it says:

let P' be a bounded complex of finitely generated free modules over an equicharac-
teristic local noetherian ring A. If H* (P') ^ 0 and consists of modules of finite length,
then:
3.1 proj. amp P' ̂  dim A.

Concerning the attribution of the "new intersection theorem", the same reservation as
made in the introduction concerning "Auslanders zero-divisor conjecture" is in order
here.

THEOREM 3.2. — Let A be equicharacteristic. For a bounded complex L' of finitely
generated free modules and a bounded complex X* with finitely generated cohomology with
H'(L') ^ 0 WH'(X') + 0:

amp L" ® X* ̂  amp X".

proof. — Passing to the completion of A we may assume that A has a dualizing
complex D*. Let L* be normalized such that

H°(L')^0, V=0 for f > 0

and X* normalized such that

H°(X')^0, X^O, f < 0 .
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We shall proceed by induction on dim A. Consider the Ei-term of the spectral sequence
of the double complex (underlying) L" ® X':

... -> L^® W -> Li ® H^ -> LO 0 H",

. . . -> L^ ® H1 -> Li ® H1 -̂  Lo ® H1;

...^L^H^L^H^Lo®^.

CASE 1. — dim Supp L' ® H° ^ 0. We have to prove that H1 (L9 (g) X') ^ 0 for
spine i ^ 0. Choose /? e Supp L'® H° with p ^ m. Localize A at p and apply the
induction hypothesis to L*, ® X*.

CASE 2. — dim Supp V ® H° =0. Put I =AnnH0 and consider L'® A/I. As
it is easily seen, this complex has comology of finite length thus by 3.1:

proj. amp L* ̂  dim H° (X'),

on the other hand by 2.4 we have

dimH^X^dimX'0.

We can now conclude by the following inequalities (L^ = Horn'(L*, A)):

amp L* ® X'— amp X*
= dim L"v ® X*0 - depth L' ® X* - amp X*

i ^ - depth L* ®X—amp X*
= - depth L" - depth X' + depth A - amp X*
= proj. amp L* — dim X'0

Q.E. D.

We shall end this paragraph by showing that if P ̂  0 has a finite resolution by finitely
generated free modules L" and P is rigid, that is for any finitely generated module M and
? e N

Tor,(P,M)=0 => Tor^i(P,M)=0,

then for any bounded complex X* as above

amp L' ® X' ̂  amp X".

To see this choose a bounded above complex F' of finitely generated free modules and
a quasi-isomorphism F'—^X', then we have a quasi-isomorphism P ® F* —> L" ® X*.
We shall now prove that H" (P ® F") = 0 implies H" (F*) = 0. To see this we simply
have to apply Lemma 3.3 below to the cononical map Cok. (5""1) —> F"4'1.

The special case where ampX* ® L' = 0 I have learned from Fulton, the still more
special case where X" is a complex of free modules is due to Auslander [1] (4.1). Let us
finally recall [I], [8], that a finitely generated module over a regular local ring is rigid.
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LEMMA 3.3. — Let P 7^ 0 be a finitely generated rigid module and f: N —» F a linear
map where N is finitely generated and F is a finitely generated free module. Iff® Ip is
a monomorphism, then f is a monomorphism.

Proof. — Factor/= ig where its a monomorphism and g anepimorphism. It follows
that g ® Ip is an isomorphism and that i ® Ip is a monomorphism. This implies
Tori (Cok (0, P) = 0 and therefore Tor^ (Cok (i), P) = 0 by rigidity. From this we
conclude Tor^ (Im (/), P) = 0. From this and the exact sequence

0 ->Ker(/) -^ N -^ Im(/) -^ 0,

we conclude P ® Ker (/) = 0 and whence Ker (/) =0.
Q. E. D.

4. The intersection theorem

The following theorem is the dual form of the amplitude inequality.

THEOREM 4.1. — Let A be equicharacteristic. For a bounded complex L*offinitely
generated free modules and a bounded complex X* with finitely generated cohomology
modules with H* (L*) + 0 and H* (X') ^ 0, we have

dimX ®L ^ dimX—proj.ampL.

Proof. — Passing to the completion we may assume A has a dualizing complex D*.
We have

dim X" ® L* = amp X'0 ® L'v + depth X' (g) L'
= amp X'0 ® L'v + depth X* + depth L* - depth A
= amp X'0 ® L'v + depth X'— proj. amp L*
^ amp X*0 + depth X* —proj. amp L*
= dim X'— proj. amp L*.

Q. E. D.
The special case of 4.1 with K* = A has the following dual form.

COROLLARY 4.2 (Generalized Bass conjecture). — Let A be equicharacteristic. Then
for any bounded complex

O-.E0-^1-^...-^-^

of injective modules with finitely generated cohomology and H* (E*) ^ 0 we have
d ^ dim A.

/\
Proof. — Passing to the completion of A and replacing E* ® A with an injective reso-

lution we may assume that A has a dualizing complex D*. We have

dimE^+proj.ampE^^dimA
on the other hand:

dim E"0 + proj. amp E*°
= amp E* + depth E* + inj. amp E* ̂  d.

Q. E. D.
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REMARK 4. 3. — The "Generalized Bass conjecture" is easily verified by means of
Hochster's big Cohen Macaulay modules [7]. One proceeds as in [3] (1.4).

REMARK 4. 4. — Theorem 4. 1 is trivially true if proj. amp. L* ^ dim A. By duality,
3.2 is true in case proj. amp L' ^ dim A. One checks easily that 3.2 is valid in case
proj. amp L' ^ 1, Thus the amplitude inequality is valid in case dim A ^ 2. Note
also, if dim Supp X* = 0, then:

ampL* ® X*—ampX" = proj.amp L' ̂  0
as it follows from 1.8.

REMARK 4. 5. — Consider a class of local rings, stable under completion, localization
and formation of quotient rings. Then the following three "conjectures" are equivalent:

Peskine-Szpiro's intersection property 3.1;
the amplitude inequality 3.2;
the Generalized Bass conjecture 4.2.;
This follows by "reversing" the proof of 4.2.

REMARK 4. 6. — For a bounded complex L* of finitely generated free modules with
H'(L*) ^ 0 put:

g rL '= in f{ f | ?(1^) ̂  0}+sup{f | H^L'^O}.

From the fact that proj. amp L^ = proj. amp L* follows:

grL" = proj. amp L*—amp L^.

In case A is Gorenstein it follows from 2.3 that

dim A = dim L* + gr L'.
Note, however that

dim L' ® X' ̂  dim X* — gr L*

is not generally valid since its dual form is (as the reader easily varifies):

ampL*®X" ̂  ampX'+ampL"

which is not generally valid: take for L* a complex of the form A —> A and for X* a single
module.

5. Regular local rings

In this section we use Serre's intersection theorem to prove a sharper amplitude inequa-
lity for complexes over an arbitrary regular local ring.

THEOREM 5 . 1 . — Let Abe a regular local ring, X* and Y" bounded complexes of finitely
generated free modules. If H" (X') ^ 0 and H' (Y*) ^ 0, then:

amp X* ® Y' ̂  amp X* + amp Y*.
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Proof. — Let X* and Y* be normalized such that

H^X^O.H^X^O for i<0 ,

H° (Y') + 0, H1 (Y*) = 0 for i < 0.
Note that we have

sup{f | H^X^Y'^C^sup^ | Hi(X9)^Q}+sup{i | H^Y'^O}.

Thus the amplitude inequality is equivalent to H1 (X* ® Y') 7^ 0 for some i ^ 0.
We shall now precede by induction on dim A. The case dim A = 0 follows from the

Kunneth formula.

CASE 1. - Supp H° (X*) n Supp H° (Y") ^ { m }. Choose

p e Supp H° (X*) n Supp H° (Y") with p + m.

Localize at p and notice that the normalization of X* and Y' has not been destroyed.
By the induction hypothesis

H^Xp^Y^^O for some i ̂  0.

CASE 2. — Supp H° (X') n Supp H° (Y*) = { m }. By Serre's intersection theorem
([12], V, Th. 3):

dim H° (X') + dim H° (Y') ̂  dim A.
By 2.4 we have

dim X*v ^ dim H° (X') and dim Y'v ^ dim H° (Y')

and consequently
dim X'v + dim Y'v ^ dim A.

Using 2.3 and 1.7 we get

amp X" ® Y' — amp X* — amp Y'
= dimX^ ® Y^ -dimX^ -dimY^
- depth X' ® Y* + depth X' + depth Y*

= dimX^ ® Y^ -dimX^ -dimY^ +dimA
> dimA-dimX^ -dimY^ > 0.

Q. E. D.

COROLLARY 5.2. — With the notation above

dim A + dim X' ® Y' ̂  dim X' + dim Y'.
Proof:

dimX' ® Y' = ampX^ ® Y^ +depthX* ® Y'
^ amp X"v + depth X" + amp Y'v + depth Y* - depth A
= dim X" + dim Y' — dim A.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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