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WEYL GROUP OF A CUSPIDAL PARABOLIC

BY A. W. KNAPP (*)

1. Introduction

A subalgebra $ of a real semisimple Lie algebra 9 is parabolic if 5° contains a maximal
solvable subalgebra of c^. With respect to any Cartan decomposition 9 = I © p, a
parabolic subalgebra $ has a Langlands decomposition 5 = m © a © n defined as follows:
Let 9 be the Cartan involution (+1 on t and — 1 on p), let Bg (x, y) = —B(^, Qy), where B
is the Killing form, and require that the Langlands decomposition be orthogonal with
respect to Bg. The algebra n is defined by the identity m © a = 5 n 9 $ , and a is taken
as the intersection ofp and the center of m © a. Then m is reductive, a is abelian and
commutes with m, n is nilpotent, and m © a normalizes n.

Following Harish-Chandra ([4], [5]), we say that the parabolic subalgebra s is cuspidal
if the rank of f n m equals the rank of m. In this case the sum of a and a maximal
abelian subalgebra of I n m is a Cartan subalgebra of 9; conversely every Cartan subalgebra
of g, up to conjugacy, can be obtained by this construction from a cuspidal parabolic
subalgebra. The cuspidal parabolics are distinguished among the general parabolics
by the important role they play in the Plancherel formula for semisimple groups [4].

The finitely many distinct cuspidal parabolics with a given m © a are not all conjugate,
in general. This phenomenon is a reflection of the fact that a suitably defined "Weyl group"
is not necessarily transitive on the Weyl chambers, as is seen already in $1 (3, R). The
point of this paper is to expose the structure of this "Weyl group" completely, showing,
among other things, that it is a Weyl group in the traditional sense.

The Weyl group W (a) in question is defined in terms of any analytic group G having
Lie algebra 9. Let K be the analytic subgroup corresponding to I. Then W (a) is the
quotient of the normalizer N^ (a) of a in K by the centralizer ZK (a) of a in K.

The roots of a are defined in the standard way: For each linear functional P on a,
we let

9 p = = { X e 9 | [H,X]=P(H)XforallHea}.

(*) Supported by NSF Grant GP-42459.
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276 ^ ̂  KNAPP

The non-zero functionals |3 for which 9? is not 0 are the roots. Then the negative of a
root is a root, n is the direct sum of the root spaces for the positive roots, 9 n is the direct
sum for the negative roots, and g = = = m © a © n © 9 n . The set of roots need not form
a root system, as one can see in simple examples (e. g., [13], p. 71). Exceptf or the defi-
nition of useful root, which is deferred to Paragraph 4, we can now state our main theorem.

MAIN THEOREM. — The useful roots of a form a (possibly non-reduced) root system Ao
in a subspace of a. A reflection pa of a root of a is in W (a) if and only if t P is useful
for some t > 0; if and only if^ itself is useful in case Q has no split G^ factors. Moreover,
W (a) coincides with the Weyl group of Ao.

This result will be used in joint work, based on [9], with E. M. Stein. It is a key alge-
braic step in establishing a necessary and sufficient condition for the irreducibility of the
representations occurring in the Plancherel formula of G.

The whole paper is built around the proof of the Main Theorem. In Paragraph 2
we derive and recall some results about the more familiar situation in which a is a maximal
abelian subspace of p. In Paragraph 3, we introduce a notion of conjugation that connects
this special case with the general case and allows us to define useful roots in Paragraph 4.
The main ideas of the proof are contained in two reduction lemmas in Paragraph 5, and
from there the proof splinters into several cases. The generic cases are handled in
Paragraph 6, and the exceptional cases are handled in Paragraph 7.

2. Essential and inessential roots of dp

Let Op be any maximal abelian subspace of p, and let m? = Z((dp). Forming roots
with respect to dp , introducing an ordering, and letting Up be the sum of the root spaces
for the positive roots, we obtain a minimal parabolic subalgebra m? © dp © Up. It
is well known that this subalgebra is cuspidal and that the roots of Op do form a root
system, possibly non-reduced (twice a root may be a root).

The roots of a? have been studied extensively and lead, for example, to the classification
of real semisimple Lie algebras. See [1] and [12], for example. In this section we shall
obtain some limitations on the interactions among such roots. These limitations, con-
tained in Propositions 5 and 7 below, seem to have a general usefulness in allowing one
to pin-point the central problem quickly in various questions about roots. They are
the starting point not only for this paper but also for the proofs of the results of [7], whose
details will be given on a subsequent occasion.

For this section only, it will be useful to deal with a Cartan subalgebra of g obtained
from Op. Let X be the conjugate of X in 9° with respect to g. Fix a maximal abelian
subspace t)o of m? ; then t) = a? © t)o is a Cartan subalgebra of 9. Form roots relative
to 1) (i. e., roots of 9° relative to I)6); roots are real on dp and imaginary on t)o and so belong
to a' + / l)o. The restrictions to a? of the roots of I) are (0 and) the roots of dp. Frequently
we shall decompose a root of I) as a = a^ + a^, where a^ is 0 or the root of dp (the projection
on ap and ai is the projection on i I)o. The inner product on a'+f % is denoted < •, • ),
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WEYL GROUP OF A CUSPIDAL PARABOLIC 277

and a' and i % are orthogonal. A compatible ordering on the roots of t) is chosen so
that Op comes before ft)o; then the restriction to dp of a positive a is ^ 0.

We recall the following three ways of constructing roots of t) from other roots:

1. CONJUGATION. — Define a (H) == a(H). If a is a root of t), then a is a root
and X, can be taken as X,. If a = a^+ai, then a = a^—ai.

2. CARTAN INVOLUTION. — Extend 9 to be complex linear on 9^ If a is a root of I),
so is 9a; and X^ can be taken as X_,.

3. ROOT STRING. — If a and y are roots of 1), the a string containing y is
y-/?a, . . . , y + ^ a with p-q = 2 < y, a >/< a, a >.

If < y, a > < 0, then y+a is a root. If y — a is not a root, then y+a is a root if
and only if y is not orthogonal to a.

LEMMA 1 (cf. [I], p. 4). — Let aR±ai be roots oft) with a^ + 0 and ai ^ 0. Then
2 ai is not a root of I).

Proof. — Let a = a^+ai. If 2 ai is a root, then

2a, == (aR+ai)-(aR-ai) = a+Ca

says [X^, 6 X,] 7^ O and is a vector of m0 On the other hand,

e[x, ex] = [ex, x] = -[x, ex],
so that [X,, 0 XJ is in pc n mc =0.

LEMMA 2 (cf. [I], p. 9-10). — 7/'aR±ai are roots off) with a^ ^ 0, aj ^ 0, and 2 a^ not
a root of dp , then < a^+ai, ocR—ai > = 0 and so \ OR |2 = [ aj 2.

Proof. — Combine root construction (3) with Lemma 1.

LEMMA 3. — 7/*aR±ai are roots off) with a^ 7^ 0 and if 2 a^ is a root of a? , then 2 OR
is a root off) when extended by 0 on t)o.

Proof. — This follows from Propositions 2.2 and 2.4 of [I], or it can be proved directly
from Lemma 2.

We say that a root oco of dp is essential if neither OQ nor 2 ao is a root of t). Otherwise
OQ is inessential. See p. 266 of [7] for the etymology of these terms. From root construc-
tion 1 and Lemma 3, ao is essential if and only if the root space 9^ is even-dimensional
and 2 oco is not a root of dp. [From the classification, one then sees that (XQ is essential
if and only if the real-rank-one subalgebra c^01^ generated by 9^ and g.,^ is isomorphic
with so (2 k+1, 1).] If w is in W (dp), then w exhibits ^ao) as conjugate to e^" ,̂ and it
follows that w oco and ao are both essential or both inessential.

The "cuspidal" hypothesis will enter our considerations through the following lemma
(applied to m instead of 9), which is a sharp form of a result that is widely known ([II],
Prop. 11). For convenience we shall state it for 9 reductive, and we adopt the convention
that the center of 9 is incorporated into I in the Cartan decomposition.
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278 A. W. KNAPP

LEMMA 4. — Let 9 be reductive, and let G be an analytic group with Lie algebra 9. If
the rank of I equals the rank of 9, then there exists an element w in K such that Ad (w)
is +1 on I and — 1 on p. This element w exhibits — 1 as an element of the Weyl group
W (dp), and in fact — 1 is the product of commuting reflections relative to inessential roots
ofdp-

Proof. — The assumption is that there is a Cartan subalgebra b of 9 contained in I.
Roots of b are compact or non-compact according as the root space is in ^ or p0. If
i K H is in b and X, is in 9,, then

Ad (exp i n H) X, = e^1^ X^ == e^(H) X,.

Let Oi, ..., a; be the simple roots of b, and define Ho by the condition

a,(Ho)=J1 if ^non-compact,
[ 0 if a, compact,

taking the component of Ho in the center of 9 as 0. Then

a(Ho)^

and w = exp i n H has the property

Ad(w)X,=

1 mod 2 if a non-compact,
0 mod 2 if a compact,

—X, if a non-compact,
X, if a compact.

Moreover Ad (w) is the identity on b. Hence Ad (w) is +1 on I and — 1 on p. Since w
is in K and dp is contained in p, w exhibits — 1 as in W (dp). Also m? is contained in I,
and therefore w exhibits the existence of a member of W (I)) that is — 1 on a? and +1 on
I)o. Applying Lemma 63 of [8], we see that this member ofW (t)) is the commuting product
of reflections relative to roots of t) that vanish on t)o. The restrictions of these roots
to a? provide the required inessential roots of a? to complete the proof.

Returning to the case that 9 is semi-simple, again let G be a connected group with Lie
algebra 9. Define Mp = Z^ (dp). The first proposition has been known by case-by-case
inspection for some time, but a direct proof has never been given.

PROPOSITION 5. — IfQ is simple and dim dp = 1, then Mp is connected unless 9 ^ $1 (2, R).

Proof. - Let Ap , Np , 9 Np be the analytic subgroups of G with Lie algebras a? , Up ,
9 Up. The map that takes v in 9 Np into the coset x (v) M of K/M, where x (i;) is the K
component of the Iwasawa decomposition G = KAp Np, is known to be a homeomor-
phism onto an open dense set. Since dim dp = 1, the Bruhat decomposition shows
that the image of 6 Np is all but one point of K/Mp. Therefore K/Mp is the one-point
compactification of a Euclidean space and is a sphere. Since K is connected, Mp cannot
be disconnected unless n^ (K/Mp) ^ { 1 }, i. e., unless the sphere K/Mp is one-dimensional.
In this case 9 is isomorphic with sl (2, R).
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WEYL GROUP OF A CUSPIDAL PARABOLIC 279

Now suppose that the group G has a faithful matrix representation, so that its complexi-
fication Gc is well defined. To each root ao of a? we associate the corresponding member
H^ of dp by means of the inner product on Op. Let y^ be the element of G€ defined by

y^ = exp (2 n i < ao, (Xo > ~ H^),

and let g^ be the real-rank-one simple Lie algebra generated by the root spaces 9^
and g_^ . The next lemma gives some properties of the elements y^ that limit the
possibilities for the algebras ^°\ See also [3] (p. 121) and [8] (p. 549).

LEMMA 6. - (a) Each y^ is in the center ofMp and satisfies y^ = 1. Also y^ is in Mo,
the identity component of Mp, unless c^0^ ^ $1(2, R).

(b) Mp = Mo F, where F is the finite abelian group generated by the y^. Also Mp
is connected unless 9^ ^ sl (2, R) for some (Xo such that (Xo/2 is not a root of dp.

(c) Let ao and a^ be roots of a? , and let p^ be the root reflection for a^ in W (<Xp). If
w is any representative ofp^ in K, then w y^ w~1 = y^ y^, where I = 2 < ao, a^ >/< ao, ao >.

(6?) 7/' ao ^ inessential and 2 ao ̂  not a root of a? and Gc is simply-connected, then y ̂  ^ 1.

proo/. _ The first halves of (a) and (6) are well known. [See [10] (p. 93) for (6).]
The second half of (a) follows from Proposition 5, and the second half of (b) follows from
the second half of (a) since then F c Mo. For (c) we have

^Yao^'^Yp^o'

and (c) follows by direct calculation from the definition since y^ = 1. In (d) the assumption
is that ao is a root when extended to be 0 on t)o. Changing the ordering, we may assume
that ao is a simple root of I) in the new ordering, say ao = a,. Let A, be the basic domi-
nant weight with 2 < A,, ay >/< ay, ay > = 8,y. Since Gc is simply-connected, A, is integral.
Form the associated finite-dimensional representation of G€. Its value on

y^=exp(27u<a, ,a(> 'H^)

(2^ f<A. , a.>\ . .exp ——x l l / ] = exp n i = -1.
<^,a ,> /

is

<ai ,a ,>
So y,, + 1.

In the next proposition, the Dynkin diagram means the Dynkin diagram of the simple
roots of a?. Parts of the proposition are due to Araki [1] (p. 10-11).

PROPOSITION 7. — Let a^ and a^ be distinct simple roots of dp.
(a) If^ and ̂  are connected by a single line in the Dynkin diagram, then ^(al) and (^a2)

are isomorphic. Moreover, either both a^ and^ are essential or else g^0 ^ ̂ 2) ̂  sl (2, R).
(b) If < a^, a^ > ^ 0 and 2 a^ is a root of a?, then a^ is essential.

(c) IfoLi is essential and a^ is inessential and if 2 ̂  is not a root °f ^p » ̂ n ̂  mteger
2 < ai, a^ >/< ai, ai > is even.
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280 A. W. KNAPP

(d) If^ is simple and if^ ^ sl (2, R)for every simple root of d p , then g is split over R,
L e., a? is a Carton subalgebra.

(e) (Wallach) If every root of dp is essential, then 9 has just one conjugacy class of Car tan
subalgebras. Consequently if dp 1=- 0, then rank f ^ rank 9.

(/) V 9 ^•y Cr2 as Dynkin diagram, then 9 is split over R or else every root of dp
is essential.

Proof. — In (a), p^P^(^i) == o^. If w is a representative of p^p^ in K, then
g(a2) =: ̂  ̂  g (ai) exhibits the isomorphism. For the second statement we may therefore
assume 04 and a^ are both inessential. Since they are connected by a single line, neither
2 04 nor 2 o^ is a root of dp. By Lemma 6 d, we may assume that y^ ^ 1 and j^ =^1 .
Now 04, being inessential, is a root of t), and we let X^ and X_^ lie in the root spaces
relative to 1) of 04 and —04. Then { H^, X^, X_^ } spans a subalgebra of 9° isomorphic
to $1 (2, C). Since 04 = 04, H^ is in a? and C X^ and C X_^ are closed under conju-
gation. Thus the intersection of this subalgebra with 9 is isomorphic with sl (2, R).
Find the corresponding homomorphism of SL (2, R) into G, and let s be the image of

( _. ). Then s is an element of K such that Ad (s) = -1 on R H^ and Ad (s) == +1

on the orthogonal complement in t). By Lemma 6 c, s y ^ s ~ 1 = Y^Yai* Choose an
irreducible representation CT of the compact group Mp that is 7^ 1 on y^. Then

s'^Yo^) = ^Yo^5"1) = ^YalYcxi) == -^Yo^)-
On I)o, however,

S-^CH) == a(Ad(s)H) = o(H).

Thus Yo^ ls not m ^P ^o» which contains the center of Mo. Then y^ cannot be in Mo,
and Lemma 6 a shows that ̂  ^ sl (2, R). Since g^ ^ Q^^, ^^^ ^ sl (2, R).

For (b) we run through the above argument again. We may assume 04 is inessential.
Since 2a^ is a root of a?, 204 cannot be. Thus Lemma 6d shows we may assume
Ya^ T^ 1, and the argument applies. The conclusion is that g^^ ^ $1 (2, R), contradicting
the fact that 2 oc^ is a root of dp. Hence 04 must be essential.

For (c), oc2 is a root oft) and so is some 04+0x1. By Lemma 2, a^+oci |2 = 2 I 04 [2.
Therefore

2<04+ai ,a2>l /2<04 ,a ,> \
2\ <04 ,04> / <04+ai, 04+ai>

is an integer.
For (d\ the assumption c^ ̂  $1 (2, R) for every simple root OQ of a? says that every simple

root of I) with a non-zero restriction to dp vanishes on i I)o. Thus every root of t) vanishes
on all of a? or all of zt)o. Since 9 is simple and the roots span cip+ft)o, we conclude
that t)o == 0 and dp is a Cartan subalgebra.

For (e\ let t)i be a Cartan subalgebra not conjugate to t). We may assume that ^
is 0-stable and that 04 = p n I) is contained in dp with positive codimension. Let 61
be the orthogonal complement (with respect to Bg) of 04 in t)i, and let do be the orthogonal
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WEYL GROUP OF A CUSPIDAL PARABOLIC 281

complement of ai in dp. Denoting by a a typical root of dp, we see that the
centralizer of a i is

<^+mp+ E 9,.
a | ai=0

Then 61 and cio+I)o are Cartan subalgebras of the reductive subalgebra

Oo+ntp+ E 9a.
a | a i = 0

We shall apply Lemma 4 to this subalgebra. We can do so since bi is contained in the
I-part of the algebra and do is a maximal abelian subspace of the p-part of the algebra.
The lemma shows that there exists an inessential root of do for the subalgebra. That is,
some a whose restriction to a^ is = 0 is also 0 on l)o. Then a is an inessential root of dp.

Finally for (/), let o^ and a^ be the simple roots of dp. Results (c) and (d) show that
the only possibility not covered by (/) is that both o^ and ̂  are inessential and ^(vl)

or g^ is different from sl (2, R). Once again we run through the argument of (a) and
we find that this possibility is ruled out.

3. Properties of conjugation

Let 9 be semi-simple, and let s == m © a © n be the Langlands decomposition of a
cuspidal parabolic subalgebra of g. Let OM be a maximal abelian subspace of m n p,
and let dp = a © OM. Then dp is a maximal abelian subspace of p, and the theory of
paragraph 2 applies. The roots of a are the non-zero restrictions to a of the roots of dp,
and the roots of (m, a^) are the roots of (9, dp) that vanish on a. Introduce a compatible
ordering on the roots of a? so that a comes before OM. Then the restriction to a of a posi-
tive a is ^ 0, and a simple root of (9, a?) that vanishes on a is a simple root of (m, d^),
and conversely.

We define a conjugation on linear functionals on dp, denoted by bar, as +1 on the a
part and — 1 on the OM part. This will be the only notion of conjugation used in the
rest of the paper; the different one used in Paragraph 2 will not reappear. If a is a linear
functional on dp, let a = a^+ai be its decomposition relative to dp = a © a^.

The next lemma is an unpublished result of Harish-Chandra. A result with an analo-
gous proof appears on page 117 of [13].

LEMMA 8. — Every element O/NK (a) decomposes as the product zn, where n is in N^ (dp)
and z is in Z^ (a). Consequently every element of W (a) can be extended to an element
ofW (dp). The extension in W (dp) normalizes d and d^ and can be Chosen so as to preserve
the positive roots of (m, d^); in this case the extension is unique. Conversely an element
o/W (dp) is an extension of an element o/W (a) if and only if it normalizes a and (XM.
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Proof, — Let x be in N^ (a) and consider Ad (x) OM. Since x is in K and OM is in p,
Ad (;c) OM is in p. On the other hand, let X be in m £ Z (a). Then for H e a we have

[Ad (x) X, H] = Ad (x) [X, Ad (x ~') H] c Ad (x) [X, a] = 0,

and Ad (x) X is in Zg (a) = m © a. Since Ad (x) acts orthogonally and normalizes a,
Ad (x) X is in m. Thus Ad (x) a^ is in m n p and is a maximal abelian subspace of
m n p. Hence we can find z in K n Mg (where Mg is the analytic subgroup correspond-
ing to m) such that Ad (z~1) Ad (x) a^ = OM. If x = zn, then z is in Mg c z (a) and
Ad (n) OM = OM. Since x and z normalize a, so does n. Thus x = zn is the required
decomposition. By composing with an element of W (m, c^), we can assume that the
positive roots of (m, a^) are preserved by the composition, and then the extension is cer-
tainly unique. The converse is obvious.

Now we use the "cuspidal" hypothesis. TheaM Dynkin diagram of m is a subset of
the dp Dynkin diagram of 9.

LEMMA 9. — The parabolic subalgebra being cuspidal, the following statements are true:
(a) The roots of a? are closed under conjugation.
(b) The (XM Dynkin diagram of m has no simple component of type An for some n > 1

or of type D^+i for some n > 1 or of type E^.

Proof. — For (a) let M^ be the analytic subgroup corresponding to m. Since
rank (f n m) = rank m, we can apply Lemma 4 to m. Then there exists an element w in
K n M so that Ad (w) is — 1 on OM. Since M centralizes a. Ad (w) is +1 on a. There-
fore conjugation is implemented by Ad (w), and the roots of dp are preserved. For (b)
An, D^+i, and E^ are all single-line diagrams. Proposition 7, parts (a, d, e), says the
corresponding simple component of m is split over R. In view of Lemma 4, the lemma
follows from the observation that — 1 is not in the Weyl group for a complex simple Lie
algebra of types A^ (n > 1), D^+i (n > 1), or E^. (Lemma 63 of [8] is handy in the
verification for Eg.)

4. Useful roots of a

In the notation of Paragraph 3, let a be a root of dp, so that a is again a root of dp.
Clearly | a | = a |, and thus there are the following possibilities:

(i) 2 < a, a >/] a |2 = —2, in which case a = —a and hence a is a root of (m, a^).
(ii) 2 < a, a >/[ a |2 = — 1, in which case a + a is a root of a? that is its own conjugate

(and so vanishes on a^).
(iii) 2 < a, a >/[ a |2 == 0, in which case a is orthogonal to a.
(iv) 2 < a, a >/| a 2 = 2, in which case a = a and a vanishes on OM.
(v) 2 < a, a > / j a j2 = 1, in which case a—a = 8^ is a root of (m, a^).

In cases (i)-(iv) we say that a is useful. A root of a is useful if it is the restriction to a
of some useful root of dp.
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WEYL GROUP OF A CUSPIDAL PARABOLIC 283

The prototype for case (v) is g = sl (3, R) with a one-dimensional and m == $1 (2, R).
The six dp roots are ±a, ±a and ±8^. The Weyl group W (a?) is the obvious 6-element
group, and Lemma 8 shows that W (a) is trivial. Hence although the a-roots form a
one-dimensional root system { P, -P }, W (a) falls short of being the Weyl group of a
one-dimensional root system.

PROPOSITION 10. — (a) 7/*a is a root of dp that is not useful, then 8^ defines a simple ideal
ofm of type A^ (relative to its a^ roots), and one of ± 8, is a simple root of a?.

(b) If^ has no ideal of type G^ (relative to its dp roots) and ;/a = a^+ai is a useful root
of dp ? then every root of dp whose restriction to a is OR is useful,

(c) IfQ has no ideal of type G^ (relative to its a? roots) and ; / a=aR+ai is a root of a?
not useful, then the only multiples of OR that are roots of a are ± OR.

(d) IfQ is simple and dim a = 1, then either every root of a? is useful or 9 is of type A^
or G^ (relative to its a? roots).

Proof. — Suppose that a == OR +6J 2 is not useful. We begin by proving (b) and

(a') laM^li^l2.

For the proof of (a'), we have
2<« ,a>_^

|a|2
or

,(K|.-M)-|,|̂  l.,l.-̂ -|..|.Ĵ
4 7 ' • 4

whence
I ^ |2
PR

or

laM îb1!2

as asserted. For (b) let P = <XR+Y be a root of dp. Then

ipMo^+H^^+iYr
4

by (a'). The assumption excluding G^ implies that | P |2 = c \ a |2 with c = 1/4, 1/2,
1,2, or 4. But the condition ] y |2 ^ 0 rules out c = 1/4 and c = 1/2. Then | y |2 = | a \2^,
5 | a j2/^ or 13 | a \2^ in the three cases c = 1, 2, or 4. To see that P is not useful, we
compute

2<p.p>_2(|^|2-|Y|2)_2((3/4)|a|2-|Y|2)
iP|2 M+\y\2 OWla^+lvl2
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284 A. W. KNAPP

in the three cases and find that it is 1, -1/2, or - 5/4. The last two are not integers, and
only the first remains. Thus p is not useful, and (6) is proved.

For (a), we may clearly assume that 9 has no factor of type G^. If y is a root (m, a^)
not ±8,, we are to show that y is orthogonal to 8 .̂ If y is not orthogonal, we may
assume there is a root P + a or a, say P = OC+Y without loss of generality, with a-compo-
nent OR. Then (b) shows that P is not useful and (a') shows that | P | = [ a |. Then

2<«R, PR> „ (l/2)<a+a, P+P> _ <a, P+?> _ l / 2<a , p> 2<a, p/+ P > _ 1 ^ 2 < ( x , P > ^ 2 < o c , P > \
I2 A H2 H 2 /H2 |a|2 |a|2 2\ |a|2 |a|

Here a is not ± P or ± P and so each term in the parentheses on the right is 0, +1, or — 1.
Therefore

2 < a R , P R > 1 1 . 1 i——i—12—= ^ ^ °' --, or -1.H 2 2

However, (a') shows that
2<«R,PR>_2|ocR| 2^ 3 ^ 3

H2 |a|2 4 2'

which is not in the list. Hence we have a contradiction, and we conclude P is a and y
is -8,.

In (c), let a = OR+Y be not useful and let P be a root of Op whose a-component is a
non-zero multiple of OR. We may assume that P is of type (iii), (iv), or (v) in the list at
the start of this section, since existence of roots of type (ii) implies existence of roots of
type (iv).

If p is of type (iii), then p is orthogonal to p. We may assume that P = cap+y'
with c > 0. Then (a') implies

IPI2^2!^)2^2^!2.

Now | P |2 = c' a |2 with c' = 1/4, 1/2, 1, 2, or 4, and thus

1 1 2 4 8
6' 3' 3' 3' or 3

But
2<a+oc,P> 2<2aR,caR+Y'> =3c

|a|2 4|aJ2/3

must be an integer, and we have a contradiction. Thus no such p exists.
If p is of type (iv), we may assume that P = c a^ with c > 0. Then

2<P .c t>_2<co tR ,«R+Y>_3c
|a|2 4|^|2/3 2
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and
2<P,a>^2c<aR,aR+Y>^2

|p|2 c2!^2 12 c2!^!2

and their product is 3. Since 9 is not of type G^, no such P exists.
Finally if P is of type (v), then we may assume P is not useful and P = c o^-hy' with

c > 0. Then | ? )2 = c2 \ a ;2 by (a'\ and c2 == 1/4, 1/2, 1, 2, or 4. Also

2<a+a, P> _ 2<2aR, c^^' >_ ̂
|a|2 4|a„|2/3

is an integer, and c = 1 or 2. But

2<a+a, P> _ 2<2aR, cocR-h/> _ 3
|P|2 4c2|a,|2/3

is an integer and thus c + 2. Hence c = 1 and result (c) is proved.
For (d) suppose 9 is simple and not of type G^. If 9 has a not useful root of d p , say

a = aR+8,/2, then (c) and the one-dimensionality of a imply that ±(XR are the only roots
of a. By (&), there are no useful roots of dp other than the roots of a^. Let P = ap 4- §p/2
be a not useful root of a? different from a and a. The proof of (c) when P is of type (v)
shows that P = | a and 2 < a+a, P > / 1 a I 2 = 3. Since 9 is not of type G^ the only
possibilities are _

^-2 and 1^-1
or vice-versa. In the first case, a | = | P j implies P = a, and in the second case, we
obtain P = a. We conclude that the only roots of dp with non-zero a-component are
±a and ±a. Result (a) and the simplicity of 9 imply that ±5, are the only other roots
of dp. Hence 9 is of type A^

Remarks. — We mentioned that sl (3, R) provides the prototype of a root that is not
useful. If dim a = 1, Propositions 10 d and 7 show how close $1 (3, R) is to providing
the only example. It is instructive to examine split G^ to see how (b), (c), and (d) in
Proposition 10 fail for this Lie algebra.

The sense in which useful roots of a? are useful is that they provide elements of the
Weyl group W (a).

LEMMA 11. - Let a = (XR+Y be a useful root of a? with a^ ^ 0. Then there exists a
member of the Weyl group W (a?) that leaves a and OM stable and equals the reflection p^
on a.

Proof. - The element is, in the various cases: (ii) p^, (iii) p^p-^ and (iv) p^

Remark. — If s is an element of W (dp) that leaves a stable and if a is a useful root
of a-, then .y a will be useful also, since SGH. = 5-a.
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PROPOSITION 12. — The useful roots of a form a root system in a subspace of a.
Proof. — Lemma 11 and the remark show that the set of useful roots of a is left stable

by its own reflections. In view of [2] (p. 142), the proof will be complete if we show that
whenever a = a^+ai and P = Pp+Pi are useful, then 2 < OR , PR >/ | OR |2 is an integer.
We proceed according to the type of a, assuming as we may that o^ ^ 0.

If a is of type (ii), then a+a = 2 (XR is a root of dp and

2 < 2 a R , P > _ l 2<ocR,pR>
|2a,|2 2 |o^|2

is an integer; hence 2 < a^, PR > / 1 O(R 2 is an integer.
If a is of type (iii), then

I |2 |"|2OR =-1—L
I R l ^

and
2<«R,Pp> ̂  2<oc.pR> 2<a,PR>

|aJ2 |a|2 |a|2

<«,P> , <«.P> ,<« .P> , <«,P>
ja | 2 |a|2 |a|2 - |a|2

2<a ,p>^2<a ,p>
;~Ta^- M7"'

which is an integer.
If a is of type (iv), then ap = a and

2<ap,pR> 2<a,P>

M2 H2

which is an integer.

COROLLARY. — Let P be a root of a such that t P is not a root of a for 0 < t < 1. Then
the only possibilities for the set of positive t such that t P is a root of a are { 1 }, { 1, 2 },
and { 1, 2, 3 }.

Proof. — We may assume 9 is simple. Suppose 9 is not of type G^. Propositions
10 c and 12 then show the only possibilities are { 1 } and { 1 , 2 } . In 9 of type G^, the
only new possibilities that can occur are when dim a = 1, and there are two cases accord-
ing as a short or long root of dp is taken as a root of m. Easy computation gives the
sets { 1, 2 } and { 1, 2, 3 } in the two cases, respectively.

5. Reduction lemmas

We retain the notation of Paragraph 3 and come to a consideration of the Main Theorem,
stated in Paragraph 1. Proposition 12 shows that the useful roots of a form a root system
AO. Let Wo be the Weyl group of Ao. Lemma 11 shows that Wg c W (a). The point
of the Main Theorem is that equality holds in this inclusion.
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Once the equality is established, the rest follows easily. In fact, we may assume that 9
is simple. The only reflections in a Weyl group (involutions with one-dimensional
eigenspace for — 1) are those relative to roots of the system, by Lemma 63 of [8]. Hence
if p Is a root of a and p^ is in W (a), then t P is useful for some t ^ 0. If 9 is not split
G^, Proposition 7/and the cuspidal hypothesis show that either 9 is not of any type
G^ or m = 0. In the first case, Proposition 10 c shows we may take t = 1. In the second
case, our cuspidal parabolic subalgebra is minimal and every root is useful; thus we may
take t = \.

Thus the Main Theorem is proved as soon as it is shown that equality holds in the inclu-
sion Wo £ W (a). In demonstrating this equality, we shall make extensive use of the
following lemma due to Chevalley [6] (p. 249).

LEMMA 13 (Chevalley). — If an element p of a Weyl group leaves a set E pointwise fixed,
then p is the product of root reflections each leaving E pointmse fixed.

With the aid of Lemma 13, the reverse inclusion W (a) c Wo will be handled by the
following considerations : Each element of W(a) has a representative in W(cip) by
Lemma 8, and two such representatives differ by an element of the Weyl group of (m, a^)
by Lemma 13. Therefore each element of W(a+) uniquely determines an outer auto-
morphism of the root system of (m, a^). We study W (a) by studying these outer auto-
morphisms. For purposes of computation, we may assume that the restriction to a^
of the member of W (a) leaves stable the positive roots of m. The proof will splinter
into a number of cases, all of which will be handled by one or the other of the two reduction
lemmas below.

LEMMA 14. — If each outer automorphism of (m, a^) achievable by means o/W(a) is
achievable by means of Wo, then W (a) = Wo.

Proof. — Let p be the representative in W (Op) of an element of W (a), so chosen that
p preserves the positive roots of m. The assumption is that there exists s in W (dp) so
that S L is in Wo and s \^ = p |, . Then s " 1 p is in W (dp) and leaves a^ pointwise
fixed. By Lemma 13, s~1 p is the product of reflections in roots of a?, each leaving a^
pointwise fixed. All such roots are roots of type (iv), hence useful. Thus s ~l p = r
with r ^ in Wo, and/? ^ = sr \ is in Wo.

LEMMA 15. — If every root of a? is useful, in particular ifm has no ideals of type A^,
then W(a) == Wo.

Proof. — Let w in W (Op) leave a and a^ stable. To see that w L is in Wo, choose a
member SQ of Wo so that s^1 (w |̂ ) leaves the set of positive roots of a stable; this choice
is possible because the usefulness of every root makes Wo transitive on the set of Weyl
chambers of a. Let s be a member of W (a?) with s ^ = SQ. Next choose t in the Weyl
group of m so that t " 1 s~1 w leaves stable the positive roots of m. The compatibility
of the orderings imply that t ~1 s ~l w leaves stable the set of positive roots of dp. Thus
t -1 s " 1 w = 1. Hence w = st and w \^ = s |^ = SQ is in Wo.
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6. Proof of Main Theorem

In proving that W (a) = Wo, we shall think in terms of using Lemma 14 as often as
convenient. To expedite matters we shall use Dynkin diagrams of the roots of a^. Clearly
we may assume g is simple, so that the diagram is connected. In the diagram, dots, of
course, represent simple roots. Shaded dots are the simple roots of m, and white dots
are the other simple roots. The expression <(. . ." in a diagram means "any permissible
Dynkin diagram, possibly empty."

First there are some general considerations concerning the automorphisms of the root
system of m. By Lemma 9 b, m has no ideals of type A,, with n > 1 or D, with n odd
and ^ 3 or E^, and the diagram of 9, being connected, cannot have more than one sub-
system with a multiple line or triple point. Hence the only possible sources of automor-
phisms of the roots of m are: (1) permutations of the factors A^ among the shaded dots;
(2) automorphisms of a single factor D,, with n even and ^4; (3) combinations of (1)
and (2).

We shall see that phenomena (1) and (2) can always be isolated from each other. Note
that in any permutation (1) the length of each shaded root equals the length of its image
under the permutation.

Our procedure will be to consider various configurations that might occur within the
Dynkin diagram and then to prove the theorem by showing that the list of configurations
is exhaustive. For each configuration we give a Roman-numeral label, the diagram,
the constraints, the conclusions about the configuration, and the proof of the the conclu-
sions.
y) _ Y__ai__ __o^__j}

We assume that k ^ 1, { o^, . . . , o^ } is connected by single lines, y and T| are isolated
in m, none of o^, .... o^ is connected to any roots of m other than y and T| ; we allow one
of (Xi, ..,, a^ to be a triple point. Then there exists an element of Wo whose outer auto-
morphism of m transposes y and T| and leaves the other simple roots of m fixed.

Proof. - By [2] (p. 160), a = y+a^ + . . . 4-a^ is a root of dp. Also a is o^ + ... +0^+1]
because a—pc = y—r| is spanned by y and T| and oc+a == y+2(a i+ . . . +a^)+r| is
orthogonal to y and T| and all the other simple roots of m. Computation shows that a
and a are orthogonal. We claim that/?,/?,, which is then in Wo, is the required element.
In fact,

PaP«(Y) == Pa(a+y) = a+(Y-a) = r\

and similarly p^py(v\) = y. Since a and a are orthogonal to the other simple roots
of m, p^p^ leaves them fixed. Hence it has the required properties (1).

n•

(II) •——1——...——,——o....
—————————— Y Pi Pr
0 This argument becomes more transparent if one thinks of the case that Q is s\(n^ R) and uses the

known form of the roots.
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We assume that / ^ 0 and that Pi, . . . , Pj are all shaded dots connected by single lines.
We conclude that if y and T| are moved at all by the outer automorphism of m associated
to an element of W (a), then they are transposed, and there exists an element transposing
them if and only if the diagram is not

Y Pi Pf 81 Yi Sfc Yfc

with k ^ 1; when the element exists, the transposition itself (leaving the other simple
roots of m fixed) is achievable by Wo.

Proof. - The diagram in question is of type D», and we may take y = ^,- i—^n,
i1 == ^,-i+^, in the usual notation for roots of D^. The Weyl group of D^ contains
only permutations and certain sign changes; so if y and r\ are mapped to simple roots,
{ Y» n ] is mapped to itself. Next, assume the diagram is not the exceptional one. Choose
j as large as possible so that e^—e^^ is a white dot and also ej^^—ej is a white dot or
does not exist. Take a = ej—e^ Easy computation shows that a = ej+Cn, and
clearly a is orthogonal to a. Then /?„ p,, which is in Wo, interchanges y and T| and leaves
the other simple roots of m fixed. Hence p y p y has the required properties.

Conversely assume the diagram is the exceptional one. We are to show that the trans-
position of Y and T| cannot occur. Composing the situation with (I), we see that it is
enough to show that there is no element of W (dp) that fixes

^1-^2» ^3-^4» • • • » ^2k-3^~e2k-29

fixes
e2k-l~~~e2k9 e2k~^e2k+lf • • • » en-2~en-l9

and interchanges e^^—e^ and ^_i+^. By Lemma 13, such an element must be a pro-
duct of reflections that fix the two fixed sets, i. e.,

Pei+ei9 Pe3+e49 • • • » .P<?2k-3+«?2k-2*

Thus such an element cannot perform the interchange. Hence (II) is proved.

Proof of Main Theorem when 9 is not of type Ee, E 7, or Eg. - If the diagram of 9 has
no triple point, the only possible outer automorphisms of m are permutations of the fac-
tors AI. The lengths must be preserved in any permutation, and (I) says all permutations
preserving length are achieved by Wo. Lemma 14 then disposes of these cases.

Suppose 9 is of type D^, n ^ 4. We describe the outer automorphisms achievable
by W (a). All such are achievable by Wo, by (I) or (II). Namely if m contains some
Dj^ with k ^ 3, the automorphism group in question is all permutations of factors Ai
[handled by (I)], together with a transposition of the Dj^ if we are not in the exceptional
case [handled by (II)]. (Even if the Dj^ is 04, no other automorphism of D4 is allowed.)
If m contains no D^, the group is either the full permutation group on the factors A^
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or, in case (II) when / = 0, the permutation group on the factors other than y and TI,
possibly direct sum with the transposition of y and T|.

From the classification of Dynkin diagrams, we are done unless the diagram of 9 is
of type E(,, £7, or Eg.

7. Exceptional cases

To handle the cases that the Dynkin diagram of roots of Op for 9 is of type Eg, E-j, Eg,
we shall first list some additional configurations and the conclusions for each, then show
that they are exhaustive, and finally prove the conclusions for each configuration. Fol-
lowing Bourbaki [2] (p. 260-268), we label the Dynkin diagram of 9 as

0^2

«i

0—

«1

^3 ^4.

r—«——o—
OC3 04

a,
=a,

T|=

^6

(IIIA)
Xi a3 04 r| = 05

- T| can always be achieved by Wo.

•a2

Then the transposition y -

(IHB) o- -o- • •-
05a^ Y = = a 3 04 a5 TI

^ T| can always be achieved by Wo.

^r |==a2

Then the transposition y

(inc)
ai 7 = ^ 3 ^4 »5

T| can be achieved by Wo except in E-j with diagram

n
Then the transposition y ^

in which case no automorphism defined by W (a) moves y.

•a2

(HID) ,__o
- 7=a i as 04 ^=05
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Then the transposition 7 -<->• T| can be achieved in Wo except in £7 with diagram

•

- . - Y

in which oase no automorphism defined by W (a) moves y.

•Y

(IV A) o——.—— i——e——o——••
T) 0x7

Then the transposition y <-^ T| can be achieved by Wo, but no other automorphism of the
roots of m can be achieved by W(a).

(IVB) o——•——•——•——o——•——o.
Og

Then the full 6-element automorphism group of 04 can be achieved by Wo.

•

(IV C) o——•——•——•——o——o

Then the full 6-element automorphism group of D^ can be achieved by Wo.

Proof of Main Theorem in Eg, E7, Eg. — Lemma 9 shows that all the components in
the diagram for m are of type A^, D^., or Dg. Lemma 15 shows that we may assume there
is at least one factor A^, and this condition then excludes Dg. If the factor D4 occurs,
Lemma 15 shows we may assume there is a factor A^ as well, and then the only possible
configurations are (IV A), (IV B), (IV C). Each conclusion for these configurations
is that all the automorphisms achievable by W (a) are achievable by Wo. Thus the theorem
in this case follows from Lemma 14.

We are left with the case that m has only factors of type A^. By (I) we may assume that
o^ is shaded, hence that 04 is white. Suppose o^ is white. If also 03 is white, (I) finishes
the argument; thus assume 03 is shaded. If 05 is white, then o^ <->• 03 can be achieved
by Wo, by (I); then (III B) and possibly (I) again show that all permutations are in the
group of automorphisms achievable by Mo, and we can apply Lemma 14. If 05 is shaded,
o^ <->• 05 can be achieved by Wo, by (III A); then (III C) and possibly (I) show that the
permutations achievable by W (a) are achievable by Wo.

Finally suppose o^ is shaded. Then 03 is white, and o^ may be transposed with 05
or larger o by means of Wo, by (I). If 05 is white, then o^ <-> 02 can be achieved by Wo,
by (I), and so the full permutation group can be achieved by Wo. If 05 instead is shaded,
matters are settled by (III D). Thus the theorem follows in all these cases from Lemma 14.
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In the proofs of the assertions about each configuration, we shall omit a number of
routine computations.

Proof for (III A) and for (IV A) existence. - Let a == 01+02+03+04. Then
a = 01+03+04+05, a and a are orthogonal, and p^p^ is the element of Wo yielding
the transposition y +-> T| and leaving the other simple roots of m fixed.

Proof for (III B). — Whatever T| is, we use/?,;?, for a suitable a such that a is orthogonal
to a as the required element of Wo. If T| = o^, take

a= 01+02+03+204+05+06

in the notation at the beginning of this section, so that

a = 01+02+203+204+05.
If ri = 07, take

a = 01+02+03+204+05+06+07
and

0=01+02+203+204+05+06,
while if TI = Og, take

0=01+02+03+204+05+06+07+03
and

o = 01+02+203+204+05+06+07.

Proof for (III C) existence. — Assuming we are not in the exceptional case, let k be
the least index > 5 such that Oj^ is white and o^i either is white or does not exist. We
imitate abstractly the argument for (II) when / = 0. Let

0= 03+04+05+ . . . +0fc,

so that
0= 02+04+05+ . . . +0fc.

Then o is orthogonal to o, and p y p y is the required element of Wo.

Proof for (III D) existence. — Assuming we are not in the exceptional case, let k be
the least index > 5 such that o^ is white and o^ i either is white or does not exist. Let

so that
o = o^+ . . . +05+204+03+02+01,

o == Ofc+ ... +205+204+03+02.

Then o is orthogonal to o, and py^py is the required element of Wo.

Proof for (IV B). — The transposition 02 <^ 05 is handled as in (IV A), and the trans-
position 02 ̂  03 is handled as in (III C) with k = 8. Hence the full 6-element group
is achieved by Wo.
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Proof for (IV C). - The transposition o^ ̂  05 is handled as in (IV A), and the trans-
position 02 <->• 03 is handled as in (III C) with k == 6. Hence the full 6-element group
is achieved by Wo.

Proof for non-existence in (III C) and (IV A). — We assume we are in the exceptional
case of £7 with 02, 0x3, 05, 07, and possibly 04 shaded. We are to show that 03 remains
fixed under each automorphism achieved by W (a). From the existence in (IV A) or
(III A), according as 04 is shaded or not, together with (I), it is enough to show that the
transposition 02 <-> 03 cannot be achieved by a member of W (Op) that leaves the other
simple roots of m fixed, particularly 05 and 07. From [2] (p. 264), such a Weyl group
element must map

Si+Si^^--8!? ^—Cs^^—^ ^ --es^^-^s

and hence also 2 e^ ̂  2 £2- BY Lemma 13, the element is a product of reflections in
roots orthogonal to £2, £4—£3, and £e— £5. The £3 says that the complicated roots do
not enter. Hence the only eligible reflections are with respect to £4+£3, £e+£5, and
£3—£7. These all fix £i+£2» contradiction.

Proof of non-existence in (III D). — We assume we are in the exceptional case of £7
with Oi, 02, 05, and 07 shaded. By (I) the simple roots of m other than o^ are permuted
transitively by means of Wo. To prove that o^ is fixed by any automorphism achieved
by W (a), it is enough to show that the transposition o^ <-> 02, with 05 and 07 fixed, cannot
be achieved by W (a). From [2] (p. 264), such a Weyl group element must map

"^s-^^e-^-^-^-^+fil)4^8!-^8^ ^-^^^-^
2

e6'~'e5f^f6~e5'

By Lemma 13, the element is a product of reflections in roots orthogonal to

£3-£7-£6-£5-£4-£3+£2+3£i, £4-83 an(l e6^K59

The only positive such roots are

^(£8-£7±(86-85)±(84-83)l±(82-8l))>

and reflection in each of these leaves 02 fixed, contradiction.

REFERENCES

[1] S. ARAKI, On Root Systems and an Infinitesimal Classification of Irreducible Symmetric Spaces (J. of
Math. of Osaka City Univ. vol. 13, 1962, p. 1-34).

[2] N. BOURBAKI, Groupes et Algebres de Lie^ chapter 4-6, Elements de mathematique, vol. 34, Hermann,
Paris, 1968.

[3] HARISH-CHANDRA, Two Theorems on Semi-Simple Lie Groups (Ann. of Math., vol. 83, 1966, p. 74-128).

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPEBIEUBE



294 A. W. KNAPP

[4] HARISH-CHANDRA, Harmonic Analysis on Semi-Simple Lie Groups (Bull. Amer. Math. Soc., vol. 76,
1970. p. 529-551-). , ,

[5] HARISH-CHANDRA, On the theory of the Eisenstein Integral, in Conference on Harmonic Analysis
(Lectures Notes in Mathematics, n° 266, Springer-Verlag, New York, 1972, p. 123-149).

[6] S. HELGASON, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
[7] A. W. KNAPP, Determination of Intertwining Operators, in Harmonic Analysis on Homogeneous Spaces

(Proc. Symp. in Pure Math., vol. 26, Amer. Math. Soc., Providence, R. I., 1973, p. 263-268).
[8] A. W. KNAPP and E. M. STEIN, Intertwining Operators for Semi-Simple Groups (Ann. of Math., vol. 93.

1971. p. 489-578).
[9] A. W. KNAPP and E. M. STEIN, Singular Integrals and the Principal Series HI (Proc. Nat. Acad. Sc.

U.S. A., vol. 71, 1974, p. 4622-4624).
[10] I. SATAKE, On Representations and Compactifications of Symmetric Riemannian Spaces (Ann. ofMath.,

vol. 71, 1960, p. 77-110).
[11] M. SUGIURA, Conjugate Classes of Carton Subalgebras in Real Semi-Simple Lie Algebras (J. Math.

Soc. Japan, vol. 11, 1959, p. 374-434).
[12] J. TITS, Classification of Algebraic Semi-Simple Groups, in Algebraic Groups and Discontinuous Subgroups

(Proc. Symp. in Pure Math., vol. 9, Amer. Math. Soc., Providence, R. I., 1966, p. 33-62).
[13] G. WARNER, Harmonic Analysis on Semi-Simple Lie Groups, vol. 1, Springer-Verlag, New York, 1972.

(Manuscrit recu Ie 14 decembre 1974.)

A. W. KNAPP,
Department of Mathematics,

Cornel! University,
Ithaca, New York 14853

U. S. A.

4® SERIE — TOME 8 — 1975 — ?2


