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Introduction

In this article we generalize to kahlerian K-3 surfaces the recent beautiful solution of the
Torelli problem for algebraic K-3 surfaces due to Piatetskii-Shapiro and Shafarevitch [0].
The result has been conjectured in [0].

Our version is:

THEOREM 1. — Let X and X' be two kahlerian K-3 surfaces. Let

(p* : H^Z^H^X^Z)

be an isomorphism between the (lattices of) 2nd cohomology groups which
(i) preserves the Hodge structures,
(ii) sends the cone V+ (X) to V'1' (X'), and

(iii) sends (the class of) an effective divisor of self-intersection —2 to an effective cycle.
Then (p* is induced by a unique isomorphism q>: X7 -^ X.

(*) Partially supported by N. S. F.
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236 D. BURNS AND M. RAPOPORT

Here V4 '(X) is the connected component of

V(X)={x€Hlfl(X)^Hl(X,R)\x2>Q}

containing a Kahler class of X (cf. § 2).
The main difficulty in extending the proof of the Torelli theorem in [0] to kahlerian

K-3 surfaces, is caused by the fact that the moduli space of K-3 surfaces of kahlerian
type is not a Hausdorff space.

The proof in [0] of the corresponding result for algebraic K-3 surfaces proceeds roughly
as follows:

(a) One first proves the Special Torelli theorem. To formulate it, call an algebraic
K-3 surface a special Kummer surface if it is the Kummer surface associated to an abelian
surface containing an elliptic curve.

SPECIAL TORELLI THEOREM. — Let X be a special Kummer surface and let X' be an alge-
braic K-3 surface. Let (p* be an isomorphism between H2 (X, Z) and H2 (X', Z) pr ob-
serving Hodge structures and effective cycles. Then (p* is induced by a unique isomorphism
between X and X'.

(6) One considers the period mapping from the moduli space M of polarized algebraic
K-3 surfaces to the corresponding moduli space of polarized Hodge structures Q:

T : M->Q.
The Torelli theorem in [0] is equivalent to the assertion that the morphism T is injective.

The local Torelli theorem ensures that T is etale, and the Special Torelli theorem implies
that T is one-to-one on the subset of M corresponding to special Kummer surfaces.

Now one shows that this subset of M is dense. This implies that T is an open embedding
Our proof of theorem 1 proceeds quite analogously and the idea that this could be done

is due to P. Deligne.
Here is the outline of the proof.
First we observe that we can modify the hypothesis in the Special Torelli theorem

(this strengthened version will still be called by the same name):
We need only assume that X7 is kahlerian and that (p*, instead of preserving all effective

cycles, only preserves the effective cycles of self-intersection —2, but also sends the
cone V4' (X) into the cone V4' (X').

Next, let M be the moduli space of kahlerian K-3 surfaces with trivialized cohomology.
Let Q be the moduli space of corresponding Hodge structures. By the local Torelli
theorem (c/. e.g. [10]) the period mapping

T : M-^n
4® S^RIE —— TOME 8 — 1975 — ?2



TORELLI PROBLEM 237

is etale. Now we construct a moduli space Q of Hodge stmctures of the previous type
equipped with additional data such that we get a commutative diagram

^Q

where the "forgetful morphism" n is etale. The space 0 is so constructed that

T^^S))^}, seM,

if and only if theorem 1 holds for X = X, (and arbitrary X').
A point of Q corresponds to
—a Hodge structure H = H^+H^+H2 '0 of type (1, 20, 1) on an even, unimodular

lattice L of rank 22 and signature (3, 19);
—a choice V'1' of one of the two connected components of the set

\ ={xeHl11nL(SR\x2>Q};

—a partition P = A4' u—A 4 ' of the set

A^SeH^nLla^ -2}
such that, if

k
5i, ..., S^eA'1' and 5 == ^ n^eA,

1=1
each Hi ^ 0, then 8 e A'1'.

One shows, in the same way as in [O], that the subset of M corresponding to special
Kummer surfaces is everywhere dense. The following result allows us to conclude from
the fact that ? is injective on a dense subset of M that ? is injective and thus conclude the
proof of theorem 1:

MAIN LEMMA. — Let Sbea (contractible) analytic manifold. Letp : X—^ S and p : X7 —> S
be two families of kdhlerian K-3 surfaces. Let

(p* : R^CZ^R^Z)

be an isomorphism of the relative second cohomology lattices which respects the Hodge
structures and which for every point s e S sends effective cycles of self-intersection —2 on X,
into effective cycles on X,. If (p* is induced by an isomorphism

<P< : X;^X,

for all points t in a dense subset T <= S, there exists a unique isomorphism

(p : X'————>X

inducing (p* and (p^ (t e T).

ANNALES SCIENTIFIQUES DE I/ECOLE NOBMALE SUPEBIEURE 31



238 D. BURNS AND M. RAPOPORT

Actually, this Main Lemma together with the results in paragraph 2 (esp. lemma 2.4)
yields the following generalization to families of K-3 surfaces of theorem 1. (It is for
this version of theorem 1 that the construction of the moduli varieties is essential.)

THEOREM V .—Lei S be a connected analytic space. Let p: X —> S and p ' : X' —^ S be two
families of kdhlerian K-3 surfaces. Let

(p* : R^Z)-^2^)

be an isomorphism of the relative second cohomology lattices which
(i) respects Hodge structures^

(ii) sends V4' (X,) to V4' (X,) for one (and hence, every) s e S, and
(iii) for every s e S, ^/^A effective cycles of self-intersection — 2 fw/o effective cycles.

Then (p* ^ induced by a unique isomorphism

(p : X'—————>X\/
S

As mentioned above, the moduli space M is non-separated (i. e. non-Hausdorff).
The Main lemma essentially asserts that the morphism

^ : M->Q
is separated.

The basic reason for the non-separatedness of M is the existence of different simul-
taneous resolutions of double points in a family (cf. [I], [3], [6]). The basic example
(due to Atiyah [3]) is the following: Letp: X —> D be a family of smooth quartic surfaces
over the punctured unit disc which acquires an ordinary double point over the origin.
After making the base change

D'->D

by extracting the square root of the local parameter on D we get a threefold X' with a
unique singular point P' in the special fibre XQ:

P'eXo^X'-^X
I I I
0 eD'-^D

fW

Atiyah shows that there exist modifications X of X' which replace the point P' by a
curve C. The 3-fold X fibres in a smooth way over D':

Cc:Xo<=X.
\ 'X'
1 I
0 ———>D'

4® SERIE —— TOME 8 —— 1975 —— ?2



TORELLI PROBLEM 239

But this process can be done in two different ways, hence we obtain two different families
of smooth surfaces, X^ and X^, which coincide outside OeD'. This means that Xi
and X^ define two different morphisms from D' into the moduli space M (fix some trivia-
lization of the relative cohomology of X^ and X2) which coincide over D' — { 0 }: this is
only possible if M is non-separated.

We refer to paragraph 7 where we prove a theorem which shows that this example is
indeed the main reason for the phenomenon of non-separatedness in the moduli of
unpolarized non-ruled algebraic surfaces over C.

It need hardly be pointed out that the present article is an afterthought about [0].
We wish to thank M. Artin, P. Deligne, R. P. Langlands, and T. Zink for their help.

1. Uniqueness Assertion of the Main Theorem

PROPOSITION 1.1. - Let (p be an automorphism of a K-3 surface X. If the induced
automorphism (p* on H2 (X, Z) is trivial, (p is the identity.

proof. - The Kuranishi family of X exists; denote by p : ̂  —>^ a representative.
Then (p induces an automorphism (p of p ' . °K —> ̂ .

Let Q. be the space of Hodge-structures of type (1, 20, 1) on an even 22-dimensional
unimodular lattice L of signature (3, 19) (cf. § 2 below). By the local Torelli theorem,
the period map, determined by the choice of an isomorphism of lattices between
H2(Xo,Z) and L,

T : ^-^Q

is etale. The assumption that (p* = id implies that

T o (p = T.

We may thus choose a representative p : 3C —^ ̂  such that the induced morphism

T : ^->Q

is an open embedding; (p acts on ^ such that T o (p == T.
Now we make use of the fact that the proposition is true if Xo is an algebraic K-3

surface (cf. [0]). The Hodge structures corresponding to algebraic surfaces form a set
of points in Q which is everywhere dense (Kodaira [9] and Tjurina [15], ch. IX, cf. also § 4
below). So (p induces the identity morphism on X^ for a dense set of points t e %. Since X
is separated, this implies that (p is the identity morphism.

Q. E. D.

2. Construction of the Relevant Moduli Spaces

All unimodular even lattices of rank 22 and signature (3, 19) are isomorphic; we fix
one of them and call it L.

Let
Q = S0(2)x0(l, 19)\0(3,19) = SO(2)xSO(l, 19)\SO(3,19)

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPEBIEURE



240 D. BURNS AND M. RAPOPORT

ft is a 20-dimensional smooth complex-analytic manifold which parametrizes the Hodge-
structures H of type (1, 20, 1) on L such that the Hodge-filtration

F : H^crH^+H^czL^C

verifies (H°'2)1 ̂ H092^1-1 and such that co.o^OforcoeH2 '0 . Such H. S. 's will
be called admissible.

This the first moduli space we require. The next one is given by the following theorem.
In its statement, we call a proper and smooth morphism p: X --»S a K-3 surface (resp.
a K-3 surface ofkahlerian type) over S if all its fibres are K-3 surfaces (resp. K-3 surfaces
of kahlerian type).

THEOREM 2.1. — The functor which to an analytic space S associates the set of isomorphism
classes of K-3 surfaces ofkahlerian type p : X — ^ S over S together with a trivialization
as quadratic lattice of the (relative) second cohomology group a : R2 p^ (Z) -^ L, is repre-
sentable by a smooth 20-dimensional analytic space M.

Proof. — Let Xo be a K-3 surface, and let p : X —> U be the Kuranishi family of Xo.
By taking U sufficiently small, we may assume that X, is kahlerian for every s e U [12].
Fix a trivialization a : R2 p^ Z^» L of the relative second cohomology lattice, and let
T : U —> ft be the period mapping so determined. By the local Torelli theorem, T is a
local isomorphism. For every point t e ft sufficiently close to T (0), the space 0 is iso-
morphic to the Kuranishi space of the K-3 surface, corresponding to the Hodge structure H^
on L. So, if U is small enough, for every s e U, U is the Kuranishi space of X,. By the
uniqueness result of paragraph 1, for s and s ' in U, X, and X,. are not isomorphic (as
varieties with trivialized cohomology). We now obtain M by glueing all the ITs obtained
as above identifying points corresponding to K-3 surfaces isomorphic as varieties with
trivialized cohomology.

Q. E. D.

VARIANT 2.2. — The functor which to an analytic space S associates the set of isomor-
phism classes of K-3 surfaces over S together with a trivialization (as a lattice) of the (relative)
second cohomology group

a : R2?^)^!.

is representable by a smooth 20-dimensional analytic space M.
Indeed, this is shown by the previous discussion.

Q. E. D.
(It is still unknown whether there are any non-kahlerian K-3 surfaces.)
From now on we retain the notation T : M—> ft for the period mapping. T associates

to a pair (X, a: H2 (X, Z) -^ L) the (admissable) Hodge structure on L induced by the
Hodge structure on H2 (X, Z) via a.

Before defining the third moduli space ft, we have to insert a few preliminary remarks.
We refer to [5] (esp. exercises to Chapt. V, § 4, and [16]).

4® S^RIE —— TOME 8 —— 1975 —— N° 2



TORELLI PROBLEM 241

Let H be an admissible Hodge structure on L. We denote by H,*1 the elements in H1'l
fixed under complex conjugation in L ® C, and set H^'1 = H14 n L. Set

^={xeH^l\x2>0}.

Since the form on Hg*1 has signature (1, 19), V is the disjoint union of two cones, V4'
and -V4'. Let

A^xeHz^ lx 2 ^ -2}.

For 5 e A, let s^ be the reflection of the vector space Hg*1:

5g : ;?c-+jc+(x.8)8.

These reflections generate a group W operating properly discontinuously on V4'.
A fundamental domain for the action of W on V4' is given by a convex polyhedron V^
bounded by the (possibly infinitely many) hyperplanes

H^xeH^Ka.^O} (8eA).

Such a convex polyhedron V4' defines a system of generators o f W — namely those 5^,
for 8 e A such that V,4' lies on the positive side of H§ — and a partition

+ . . A +P: A=A' ' 'u-A
where

A4" ={8eA[(8 .x )>0 ,VjceV 4 ' } .

This partition has the property that

(^) If 81, ..., 8^ e A4', and 8 == ^ r. 8( e A (^ > 0, integers), then 8 e A"1'.
1=1

Conversely, any such partition P of A verifying (^) defines a fundamental domain V4'*
where

Vp" == {xeV4- |(jc.8) > 0, V86A-' };

indeed, Vp" is contained in a fundamental domain, is bounded by hyperplanes, and is
non-empty. (Of course, if A == 0, then Vp~= V4'.)

Let H, (s e S) be a holomorphic family of admissible Hodge structures parametrized
by an analytic space S, together with a continuously varying choice of a connected
component V,4" of V,.

PROPOSITION 2.3. — Let XQeV^ Then there exists an open neighborhood K of XQ
in L ® R and an neighborhood U of SQ in S such that for all s e U, the only hyperplanes
H8(8eA,) going through K are those for which 8eA,Q.

Proof.—The orthogonal complement x^ n H^;1 is negative-definite (of dimension 19)
We extend -( , ) from x^ n H^_ into a euclidean norm [( |[o on L ® R.

ANNALES SCIENTIFIQUES DE L'fiCOLE NORMALE SUP^RIEURE



242 D. BURNS AND M. RAPOPORT

For r an arbitrary positive real number we can find a neighborhood U of SQ such that
all 8 e A, (s e U) which do not lie in A, verify

II 8 lie >r.
Indeed, the set

A(r)={§eLj8 2=-2; | |S| |o^r }

is finite. On the other hand, for a given 8 e A (r), 5 ̂  A^, the subset of S:

{seS|8eH,1'1}

is a closed subset not containing SQ.
For s e S and x e L ® R, we define L^ (x,.?) c: L ® R by

L^x^^eH^I^^O}

and set L^(x, s) == L^ (-v, •s1)1 = orthogonal complement of L^ (x, s) in L ® R.
Let K c: L ® R be an open neighborhood of^o and let U c: S be an open neighborhood

of SQ such that

(i) for all x e K and for all s e U, we have a decomposition

L ® R = L^OC, 5) ® L^(x, s)

of L 00 R into a 3-dimensional positive-definite vectorspace L^ (x, s) and a 19-dimensional
negative-definite vectorspace ^(x,^);

(ii) the restriction of the bilinear form on L® R to L^ (x, s) is arbitrarily close
to -If ||o P- e., (1/c) (v.v) ^ - [ I y ||g ^ c (v.v), for all y e L^ (x,s) with c arbitrarily
close to 1].

To see that such K and U exist, notice first that, since H,1;1 has signature (1, 19)
and x^ > 0, we see that L^ (XQ, s^) is negative-definite of dimension 19 ; since L ® R
has signature (3, 19), L^ (XQ, So) is positive-definite of dimension 3; finally the condition
(ii) for L^ (XQ , So) is obviously verified by construction of |[ (|o. But L^ (x, s) (togetherwith
the induced bilinear form) varies continuously with x and s (in a Grassmanian).
Thus the existence of K and U is clear.

Now let x e K and assume that x lies on a hyperplane Hg with 5eA,, seV. Then
6 = 5^ e L^ (x, s) and

||8||o2=||S2||o2<-l(82,5,)=2.
c c

If now 6 f A^, then by the initial remarks we can make U so small that || 8 |(o > r, r e R+.
By making r very large, we see that such 5 cannot exist.

^ :- - . ' . , . . . . . ' • • .. ;- " • . - • . - ' . ' • ; :•;. ', . . - ' • • : . - . : . . . • . • . Q....E.-D.--

4® SERIE —— TOME 8 —— 1975 —— ?2 . . -



TORELLI PROBLEM 243

COROLLARY 2.4. — Let SQ e S and let XQ, x'o eV^. Then there exists an open neigh-
borhood U of SQ such that for all hyperplanes Hg, 5 e A,, s e U which separate XQ and XQ
(i. e. XQ and x'o lie on different sides of H§) one has

8eA^

Proof.— Join XQ to XQ by a line segment contained in V^. For every point x on this
segment, we choose K^ and U^ according to the previous proposition. A finite number

n

of the K^, K^, . . . , K^ will cover the line segment, and U = Q U^ is the required U.
1=1

tW

We can now construct the third moduli space. Let Q be the functor which to an ana-
lytic space S associates :

(1) A holomorphically varying Hodge structure H parametrized by S.
(2) A continuously varying choice of one (of the two) connected components.

V;c=V,<=H^1.

(3) For every point s e S, a partition

P, : A^A^u-A; verifying (*).

Data (3) are required to verify the following continuity condition :
For every point SQ e S and every CQ e V^ there exists an open neighborhood K of CQ

in L ® R and an open neighborhood U of SQ in S such that for every s e U we have

A^ = { § e A , | (5.c)>0 for all ceK}.

THEOREM 2.5. -The "forgetful morphism" of functors

n : 5-^0

is relatively representable by an etale morphism of analytic spaces (the fibres of n are not
necessarily finite).

In particular, Q is representable by a smooth IQ-dimensional complex-analytic space.
Before proving this theorem, we indicate how to obtain the commutative diagram

(mentioned in the introduction)

M——>S1

Namely, ? associates to (p : X—> S, a : R2/?^ (Z)-^> L), a family of kahlerian surfaces
with trivialized cohomology :

(1) The family of Hodge structures on L obtained by pulling back via a the Hodge
structures on H2 (X,, Z) (s e S).

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



244 D. BURNS AND M. RAPOPORT

(2) The connected component V,4' of V, <= H,1'1 which contains a Kahler class.
(3) For every point s e S, the partition P, where A^ = effective cycles of self-intersection

-2.

We check the continuity condition imposed on data (3): Given SQ cz S and a Kahler
class CQ on K, there exists a neighborhood K c: L ® R of CQ and a neighborhood U
of so such that if c eK nH1^1 (s eV), then c is a Kahler class of X, (Kodaira-
Spencer). Furthermore, the effective cycles A^ are given by

A;=={8eA, | (8.c)>0}.

If now XQ eV^, then, since Co eVp"^, by corollary 2.4 there exists an open neighbor-
hood U of 5-0 such that for all s e U:

{8eAj(8.Xo)>0}={8eAj(8.Co)>0}=A;.

Proof of theorem 2.5. - We first show that the functor 0' which to an analytic space S
associates data (1) and (2) is representable. Indeed, we have

LEMMA 2.5. - Q' ^ SO(2)xSO(l, 19)°\SO(3, 19). In particular, ^ is a trivial
2-sheeted covering of Q, (i.e., Q7 has 2 connected components).

Proof. - ^' is clearly representable by a 2-sheeted etale covering of Q.
The group S0(l, 19) has 2 connected components; an easy calculation shows that

the elements not contained in the connected component of the identity interchange the
connected components of V, c H^1, sefi. SO (3, 19) has 2 connected components
such that

SO (3, 19)°nSO(l, 19) = S0(l, 19)°.

Hence SO (3, 19) acts transitively on Q' and the assertion follows.
Q. E. D.

For any point s e D' and any element c e V,4' we choose an open neighborhood K of c
inside L ® R and an open neighborhood U of s in Q' with the properties given by propo-
sition 2.3. We glue U (arising in connection with SQ , Co, Ko) and U' (arising in connection
with .s-i, Ci, Ki) along the sublocus consisting of points s where CQ and c^ are not separated
by a hyperplane Hg for 8 e A,. It follows from corollary 2.3 that this sublocus is open
both in U and U'. In particular the resulting space 0 is an analytic space which is etale
over ft. It is clear that this analytic space indeed represents the functor 0. Let ? e Q.
Then to ? we can associate SGQ., V, c, K as above.

This defines:

(1) H^ — H, = an admissible Hodge structure on L.

(2) V^ c= V, is the connected component of V, containing c.

(3) A;: = {8 | (8 .c )>0} .

4® S^RIE —— TOME 8 —— 1975 — ?2



TORELLI PROBLEM 245

The continuity condition imposed on data (3) is clear by construction. Also, the set
of points ? above s corresponds to the different choices of V-i" c: C, and of partitions
P^ of A, into A^ and —A^ verifying (^).

Q. E. D.

We conclude this paragraph with the following lemma which shows the relevance of
the moduli space Q to our Torelli theorem:

LEMMA 2.7. — LetseCl. If^1 (s) consists of exactly one point teM the Torelli
theorem is true for the K-3 surface X = X^.

Proof. - Let X' = X,. be a kahlerian K-3 surface and let (p* : H2 (X, Z) -^ H2 (X7, Z)
be an isomorphism which verifies the hypotheses of theorem 1 of the introduction.
Since X and X' have trivialized cohomology groups, (p* induces an isomorphism, still
denoted (p*, between admissible H.S'.s Hx and H^' on L.

We know that (p* maps Vx into V^', and induces a bijection between A^ and A^.
In other words we have that ? ( t ) = ? (Q, implying by assumption that t = ?', i.e. the
Torelli theorem for X.

Q. E. D.

3. The Special Torelli Theorem

The purpose of this paragraph is to show that, in the case of algebraic K-3 surfaces,
our theorem 1 was already proved in [0] and to elucidate the hypotheses of that theorem.

LEMMA 3.1. - Let X be an algebraic K-3 surface. Then any element c e Vp" (X) n H^1 (X)
is the class of an ample divisor.

Proof. — By the Riemann-Roch formula, c or —c is the class of an effective divisor;
since c e Vp" (X), c must be effective. By the Nakai-Moisezon criterion for ampleness,
it suffices to show that for a = the class of an irreducible effective divisor on X, we
have a.c > 0.

If a2 < 0, we have a2 = -2, and a.c > 0, by the definition of Vp" (X).
If a2 ^ 0, then a.c ^ 0. By the Hodge Index Theorem, we may take a rational

basis(^,..., ̂ )ofH^ (X) ® Qwithrfi = c,d2 < 0(f = 2,...,/?), and rf,.rf, = 0(f ^ j).
Write

a =aidi+...+a^ (a,eQ).

If a.c = 0, then a^ = 0, and a2 < 0. This contradiction proves the lemma.

COROLLARY 3.2. - Let X and X' be algebraic K-3 surfaces. Let

<p* : H^Z^H^X^Z)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE 32
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be an isomorphism of lattices preserving Hodge structures. The following three statements
are equivalent :

(i) The isomorphism (p* preserves the classes of effective divisors.
(ii) The isomorphism (p* takes the class of an ample divisor on X into the class of an

ample divisor on X\
(iii) The isomorphism (p* maps Vp" (X) into Vp" (X').

Proof. — (i) => (iii) : the assumption (i) on (p* implies that (p* takes V^" (X) into
V^ (X') or —Vp' (X'). Applying (p* to the class of an ample divisor on X, we see that
(p* (Vp' (X)) c: Vp" (X7). The implication (iii) ==> (ii) follows from the previous lemma;
the direction (ii) ==> (i) is equally easy, and is proved on [0] (§ 5).

This corollary, joined with the results of paragraph 5 in [0] imply the following result:

SPECIAL TORELLI THEOREM. — Let X be a special Kummer surface and let X' be a K-3
surface. If there exists an isomorphism of lattices (p* : H2 (X, Z) —^ H2 (X', Z) which
preserves Hodge structures and transforms Vp" (X) into Vp" (X7), then (p* is induced by
a unique isomorphism between X and X\

Proof. — Since there exists an element ceH^'^X') with c2 > 0, X' is algebraic.
Hence, we can apply the previous corollary and the results of [0] (§5).

4. The Density Theorem

In this paragraph we show that the proof of the density theorem in [0] works in our
context. (Another proof is obtained by taking the conjunction of the density theorem
proved in [0] with the fact that the algebraic surfaces are dense in M (cf. [9], [15]).
Since the argument which follows reproves this last fact we give it in full.)

We call a kahlerian K-3 surface X exceptional if X has (the maximum possible number)
20 linearly independent algebraic cycles. Then, of course, X is algebraic. If, furthermore
X is a Kummer surface, then it is special Kummer surface. For a K-3 surface we denote
by Lx the orthogonal complement in H2 (X, Z) of the Neron-Severi group NS (X).
(The elements in L^ are the "transcendental cycles".)

PROPOSITION 4.1.- Let B be a positive-definite lattice of rank 2 such that b2 = 0 (4),
for all beB. Then there exists a unique exceptional K-3 surface Xfor which Lx ^ B.
This surface X is a special Kummer surface.

For the proof see [0] (§ 6).
For a point 5'eQ, we denote by L, the orthogonal complement in L of H^1 c: L.

The following theorem is the required density theorem: together with the previous propo-
sition (and the special Torelli theorem) it implies that there is a dense subset S <= Q such
that for any Is e n~1 (S) c: 0 the set ?~1 (?) c: M consists of exactly one point [of course,
7i~1 (S) will then be dense in Q and T~ 1 (S) will be dense in M].
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THEOREM 4.2. -- The set S of all points seSlfor which
(1) rg L, = 2 (in particular L, is definite), and
(2) b2 == 0 (4) for all b e L,

f5' fife/z^ m Q.
Proof, — By the previous proposition the set S is non-empty.
Let G be the group of linear transformations of the vector space L ® R which preserve

the bilinear form on L ® R up to a positive factor. Inside G, let F be the group of linear
transformations of L ® Q which, together with their inverses, can be written in a basis
of L such that the denominators of the matrix entries are relatively prime to 2. Then,
as is known from the theory of algebraic groups, F <= G is everywhere dense (1). G acts
transitively on Q.

To complete the proof of the theorem it remains to show that S is stable under F.
Let s e S, y eF, and take b e L^y There is an odd integer q such that

qb=j(a)

for some aeLy. Further, there are odd integers m, n such that

m(qb.qb) = m(y(fl).Y(a)) == n(a.a).

Since a e L,, and m, n, q are odd, we get

fo 2 ==0mod4 .

Q. E. D.

5. Proof of the Main Lemma

We retain the notation introduced in the statement of this lemma (cf. the introduction).
The uniqueness assertion was proved in paragraph 1: therefore the problem is local
on S.

(1) This may be seen, for instance, as follows : We write G == R1",.. SO (L ® R). Clearly, the positive
real numbers with odd denominator and odd numerator are dense in the first factor. To treat the second
factor, note that it is the set of real points of an algebraic group ^ defined over Q and that it suffices to
show that ^ (Q) lies dense in ^ (R) x ̂  (Qa) w. r. t. the product of the real and 2-adic topologies: it will
then follow that the inverse image in ^ (Q) of the open subgroup ^ (Zz) c ^ (02) via the second projec-
tion has dense image in ^ (R), which is what we needed.

To see the required density, use the fact (cf. J. DIEUDONNE, Sur les groupes classiques, Hermann, Paris,
1963) that every element g^, resp. ̂ 2), in ^ (R), resp. ^ (02), may be written as a product of (an even
number of) reflections about non-isotropic hyperplanes. We may arrange that ^(00) and ^> are product
of the same number of reflections

/y(oo) _ (oo) (oo) (2) _ (2) (2)
g — Si . . . S,, , g — 5^ . . . Sn ,

where ̂ 00), resp. s^\ is a reflection about a non-isotropic hyperplane H^ of L ® R, resp. H^ of L <8> 02.
Now simultaneously approximate by a rational non-isotropic hyperplane H( the z-th real, resp. 2-adic,
hyperplane H^, resp. H^2) : the product g = Si ... Sn of the corresponding reflections is arbitrarily close
to ^°°> and ̂

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE



248 D. BURNS AND M. RAPOPORT

Let 0 e S, and assume that S is contractible. Assume also that X x gX' has a hermitian
metric which induces a Kahler metric on X,xX, for each s e S; this is justified by [12].

LEMMA 5.1. — Let t^, t ^ , . . . be a sequence of points in T c: S, converging to 0. Let
r\ c X^ X X^ denote the graph of the isomorphism (p^. Then, passing to a subsequence if
necessary, we may assume that the T^ converge to a purely two-dimensional limit cycle
1 0 C: XQ X XQ.

REMARK 5 . 2 . — The r^ 's define closed, positive, integral currents in X x 5 X', and the
limit above can be taken in the distributional sense. The limit YQ will be a current of the
same type, i. e. To = ̂ o, Zy, with the fly 's positive integers, and the Z, 's are (the currents
of integration over) irreducible analytic subvarieties of Xo x X'o.

Proof. - We wish to appeal to a result of E. Bishop [4] (c/. also [8] since we want to
consider Fo as a current, i. e. with appropriate multiplicities, not just as a limit set).
The metric on XxgX' gives a continuously varying Kahler class

o, e H2 (X, x X;, R) ̂  H2 (X x s X', R)

By the quoted references, it suffices to show that the 4-volumes (computed in the metric
on X x sX') of the analytic cycles F^ are bounded.
But

voi(r^) = [rj u^eH^x x^r, R) ̂  R
and this last expression equals

O),2[(p^u-^eH^XxsX'.R)^^

where [q>*] e H4 (XxgX', Z) is the cohomology class of the isomorphism q>* on coho-
mology. The function

5-.[(p*]u<=R

is a real-valued continuous function on S, hence vol (F^) is bounded for all ^.
Q. E. D.

REMARK 5.3. — The cohomology class [Fo] of the limit cycle FQ equals

[(p*] e H4 (X x s X', Z) ̂  H4 (Xo x Xo, Z).

LEMMA 5.4. — In the notation of the previous lemma, the limit cycle FQ has the following
form:

Fo = Ao+S^yC, x C;.; ^,eZ, ^ 0,

where Ao is the graph of an isomorphism between Xo and XQ and C,, resp. Cy, are irredu-
cible curves on Xo resp. Xo.

Proof. - Since Fo is purely 2-dimensional, we may write

ro==Zo+Zi+Z2+Z3+Z4+Z5,
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where
— each irreducible component of ZQ projects onto Xo as well as XQ;
— each irreducible component of Z^ projects onto a curve in Xo and Xo;
— each irreducible component of Z^ projects onto XQ and to a point in Xo;
— each irreducible component of 2.^ projects onto Xo and to a point in Xo;
— each irreducible component of 24 projects onto Xo and onto a c^rv^ in Xo;
— each irreducible component of Z^ projects onto XQ and onto a curve in Xo.

A purely 2-dimensional cycle Z on Xo x Xo determines a cohomology class
[ZjeH^XoXXo, Z). A class zeH^XoXXo, Z), in its turn, defines a linear map

z^ : H^XO.Z^H^XO.Z)

according to the following rule:
Let x e H1 (Xo, Z) be a cohomology class. Then p* (x) e H1 (Xo x Xo, Z), and cupping

with the cohomology class z e H4 (Xo x Xo, Z) gives

^MuzeH^^XoXXo.Z).

Now applying the Gysin morphism

;/* : H^^Xo x Xo, Z) -^ H^Xo, Z)

gives the desired image z^ (x).

Letx = S^eH^Xo, Z) = C H^Xo, Z).
0 0

Then:
(a) If Z = P x Xo, where p e Xo is a point, then

[Z]^(x) == deg^^.a'eH^Xo, Z).

[a', resp. a, is the positive generator of H^XQ. Z), resp. H^Xo, Z).]
(b) If Z = Xo x P', where P' e Xo is a point, then [Z]^ (x) = dego (x). 1' e H° (Xo, Z).
(c) If Z = C x C', where C, resp. C7, is a curve on Xo, resp. Xo, then

[Z]^ (x) = ([C]. x,). [C] G H2 (Xo, Z)

(here ([C].^) denotes the cup product on H2).
(d) If Z c: Xo x Xo is an irreducible purely 2-dimensional analytic cycle projecting

onto Xo and Xo by generically finite maps of degree d, resp. d ' , then

[Zj^-d'.l'eH^Xo.Z),
and

IZj^oO^.a'eH^Xo.Z).
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(e) If Z c: Xo x X'o is an irreducible purely 2-dimensional analytic cycle projecting
onto Xo by a generically finite map of degree d and onto a curve C c: Xo, then

[Z]^(l)=OeH°(Xo,Z),
[Zj^eZ.EC^czH^Xo.Z),
[Zj^oO^.a'crH^X^Z).

(/) If Z c: Xo x Xo is an irreducible purely 2-dimensional analytic cycle projecting
onto a curve C c: Xo and by a generically finite map of degree d ' to XQ, then

[Zj^^.leH^Xo.Z),

[Z],(^)=([C].^).^,

^2 e H2 (XQ, Z) depending on x^.

[Z^oO^eH^Z).

Referring to the decomposition of I"o, this shows that Z^, Z^, Z^, Z^, Z5 annihilate
H2'0 (Xo) c: H^Xo, C). Since this subspace is non-trivial, ZQ is non-empty. Write

^0 = Z^r^Op
i

where Zoi are the irreducible components of ZQ of degrees d^ resp. rf;, overXo, resp. Xo.
By (d) above,

[Zo]^(l)=(E^.^).l'eH°(Xo,Z);

by (&) and (/) we conclude that
- Z^ = 0 and Zs = 0;
- ZQ = Zo,i , say
-- Zo, i projects birationally to XQ.

Similarly, ZQ i projects birationally to Xo and Z^ = 0 and Z4 = 0 (consider the
action of To on H4).

But Xo and Xo are absolutely minimal models; this implies that a birational map whose
graph is contained in Xo x XQ is an isomorphism.

Q. E. D.
We continue in the proof of the main lemma by showing that

[ro^tAojeH^XoXX^Z).

Since Xo xXo is kahlerian this will imply that all coefficients a^ vanish so that Fo = Ao.
To this end, we distinguish three cases according to the transcendence degree of Xo
(or, what amounts to the same, of Xo).

Case 1; tr.deg. (Xo) = 2. - In this case Xo and Xo are algebraic surfaces. Let
T| e H2 (Xo, Z) be the class of an ample divisor L on Xo.
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Using the hypotheses on [Fo]^ : H2 (Xo, Z) -» H2 (Xo, Z) we conclude by the results
of paragraph 3 that TI' = [Fo]^ (ri) is the class of an ample divisor I/ on XQ. We have,
for any n ^> 0,

(i) [roLO^L-;
(ii) dim H° (Xo, L") = dim H° (Xo, L/").

Here (i) follows from the fact that numerical, homological, and rational equivalence
all coincide on a K-3 surface; and (ii) results from the Riemann-Roch theorem.

Once these two facts are granted, the proof of theorem 2 in [13] shows that Fo = Ao.
Before treating the remaining two cases, we prove a lemma. Identify Xo and Xo via Ao.

Then TQ becomes a cycle

Fo = Ao + S aij (c!x c./) (=zxox ̂

where Ao is the diagonal on XoXXo and C, and Cj [which is an abuse of notation for
Ao 1 (Cy)] are curves on Xo.

Form the collection of curves on Xo:

E=UQulJC,.
1 J

Decompose E into connected components

E = EI u E2 u . . . u Efc.

Then, if we denote by E^ (resp. E^) the subgroup of H^Xo, Z) spanned by the
irreducible components of E (resp. E,) we obtain a (not necessarily direct sum)
decomposition

EZ = EIZ+ • • • +Efcz-

LEMMA 5.5. - With the above notations, ^.^0=>C, and Cj lie in the same
connected component E^ of E.

In particular
[ro^E^-Efez.

Proof. - The last statement follows from the first one. Indeed, let C e Ej^. Then
C.C. = 0, if C.^Efc.

Thus
[ro],(C)=C+Ea,,(C.C,).C,

=C+E^(C.Q.C,eE,z,
i.J

QeEk

since we assumed the first contention of the lemma.
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Hence [Fo]^ (E,z) c: E^. The same argument shows

[ro]^(E,z)=[ro]^(E,z)c=E^
Hence we are left to show the first statement.

Since TQ = lim F^, and each F^ is connected, it is easy to see that the support of FQ
is connected. (This is a trivial analogue of Zariski's connectedness theorem.)

Let C, x Cj be contained in the support of FQ. The condition that a point on C, x Cy
can be joined to A by a path lying in Fo is expressed as follows: There exists a sequence
of pairs of indices (i,j) = (Wo), O'i,7i)»- • •, Or,7r) such that

- ^^^'k c ^PP^o);
- (C^xC,,)n(C^xC,^) ̂ 0 for k=0 , . . . , r - l and (C,, x C,,) n Ao ^ 0.

This implies that there exists a path in E from a point on C, to a point on Cj.
We have thus obtained: a^j + 0 => C; and Cj lie in the same connected component

ofE.
Q. E. D.

REMARK 5 .6 .— Let F, be a collection of curves containing E. and disjoint from Ey (j + i);
and let F,^ be the subgroup of H2 (Xo, Z) generated by the irreducible components of F,.
The preceding proof shows that

[lU(F,z)=F,z.

Case 2; tr. deg. (Xo) = 1. — In this case Xo possesses an elliptic fibering

/ : Xo^B

inducing an isomorphism between the field ofmeromorphic functions on Xo and the function
field of the non-singular algebraic curve B. Every irreducible, effective divisor on Xo
lies in a fiber of/. The intersection product in the Neron-Severi group of Xo is negative
semi-definite. The images a, of the irreducible components of a reducible fiber of/
form an "extended Dynkin diagram" in the sense of [5] (see also § 6 below). The vertices
of the diagram are in one-to-one correspondence with the a;, and a, is joined to ay by a,. a,
edges (for i + y). For all these facts see [9].

In our case, a connected component E» of E must lie in a fiber F; of/. The isomorphism
[Fo]^ preserves the cohomology class of the fibering peH^Xo.Z), and hence, by
lemma 5.5 and remark 5.6, [Fo]^ induces an automorphism of the subgroup
F(Z <= H2 (Xo, Z) generated by the classes of irreducible components of F(. Thus,
[Fo]^ induces an automorphism of this lattice which verifies all the hypotheses of lemma 2
of the next paragraph. Hence [Fo]^ acts trivially on the lattice in H2 (Xo, Z) generated
by any of the fibers of/, i. e. on the entire Neron-Severi group. Since P is the generator
of the radical of the intersection form on the Neron-Severi group, [To] = [Ao]+w (P x p).

The following lemma implies that n = 0:
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LEMMA 5.7. — Let Xo be a surface of kdhlerian type and let

peH^Xo.Z)

be the cohomology class of an effective divisor with P2 = 0.
Let TQ c XQ x Xo be a cycle such that

[Fo^ : H^XO.Z^H^XO.Z)

is an automorphism of the cohomology lattice. If

[ro]=[Ao]+n.(pxp), n^O,
then [Fo] = [Ao].

Proof, — By the formulae for [Fo]^ previously employed,

[Fo]^ (x)=x+n.(P.x).P, xeH^Z),
and

[ro]^M=^+n. (P. }Q.P, ^eH^Xo.Z).
This shows

^ == [To];1 ([rUW) = [ro];1 (x+n(x.p)p)
=x+n.(xp) .P+n(x.P) .P.

This being valid for all x e H2 (Xo, Z), this shows that 2 w P = 0, i. e. n = 0.
Q. E. D.

Case 3: tr. deg. (Xo) = 0. — In this case, Xo contains only finitely many irreducible
curves [9]; they are non-singular rational curves of self-intersection —2 (this follows
from the genus formula). The intersection form on the Neron-Severi group is negative-
definite.

We infer that the irreducible effective divisors on Xo form the direct sum of Dynkin
diagrams with roots of equal lengths (cf. [2]). [Again 04 is joined to o^ by (o^. a,) edges,
i ^ y.] Let Fi,. . . , F^ denote the connected components of the collection F of all curves
on Xo.

Lemma 5.5 and remark 5.6 imply [Fo]^ (F)<z == ^z- Lemma 1 of the next para-
graph applied to the map [Fo]^ : F^—^F^, shows that [Fo]^ is the identity on F^.
Since the intersection form is definite on the Neron-Severi group, (To] = [Ao], as
desired.

Conclusion of the Proof of the Main Lemma. — We have shown that Fo = Ao, so that
Xo and XQ are isomorphic by an isomorphism which induces the given isomorphim (p*
on cohomology. By the local Torelli theorem, there is an open neighborhood U of 0
in S and an isomorphism

(pu : X 'XgU-^XxsU

inducing the given isomorphism (p*, and whose fiber at OisAo. The uniqueness assertion
of paragraph 1 shows that the fiber of (pu over t e T n U is the original <P( : X '̂ -^ X^.

ANNALES SCIENTIFIQUES DE I/ECOLE NORMALE SUPERIEURE 33



254 D. BURNS AND M.RAPOPORT

As remarked in the beginning of this paragraph, the assertion is local on S around 0;
hence the Main Lemma is proved.

REMARK 5.8. — We conclude this paragraph with an example showing that conditions
(ii) and (iii) of Theorem 1 are independent of one another. We use the terminology of
paragraph 7.

Let X be a K-3 surface which contains a collection E of nodal curves arising from the
resolution of a rational double point. The Weyl group of the associated root system
acts on H2 (X, Z) and preserves the Hodge structures and the cone V4' (X). In particular,
the "opposite involution" WQ in this Weyl group acts on H2 (X, Z). But WQ sends the
class of an effective cycle of self-intersection - 2 supported on E into an anti-effective
cycle. Hence, if all effective cycles of self-intersection —2 in X are supported on E,
then —WQ is an automorphism of H2 (X, Z) which satisfies conditions (i) and (iii) of
Theorem 1, but not (ii).

6. The Lemmas on Dynkin Diagrams

The purpose of this paragraph is to supply the lemmas necessary to complete the proof
of the main lemma for non-algebraic surfaces: lemma 1 deals with the case arising from
surfaces whose field of meromorphic functions has transcendence degree 0, and lemma 2
deals with the case of transcendence degree 1.

It should be noted that lemma 1 is a special case of lemma 2. We present lemma 1
because its proof, suggested to us by R. P. Langlands, avoids case-by-case checking (the
proof actually applies to all reduced, irreducible root systems and not just the ones with
symmetric Cartan matrix). We were unable, however, to find a proof of the more general
lemma 2 which doesn't use the classification of root systems. The general reference for
this paragraph is [5].

In this paragraph we adopt the conventions of [5]; in particular, the Cartan matrices
of this paragraph are the negatives of the intersection matrices used elsewhere in the paper.

Let R be a reduced, irreducible root system in a real vector space V. We suppose
that all roots have the same length (i. e. that R is of type A, D or E). Let B = { o^,..., a,, }
be a fundamental system of simple roots, with Cartan matrix N = (/z,y), which is then
symmetric. The corresponding dual roots { oc^, . . . , a^ } c= V" satisfy the conditions

<a»,aJ>=n»,,

and the system of fundamental weights is given by { 0)1, ..., co^ } c: V such that

<(o,,oJ>=8^.

Thus (X( = ̂  Hij (D,. The fundamental chamber C c: V is defined by
j

C = { x e V | <x,o0>0, f==l , ...,n},
so that we have

C= {xeV [ x=^co», r i>0,f= 1, ..., n}.
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Put on V the positive-definite inner product given by

(o^, a , ) = = < a ^ o , > .

The dual cone C* to C is given by

C * = = { x e V | (x,xf)>Q^xfeC},
i.e.:

f n 1
C*=^eV | x= Er(a,,r,>0^.

I 1=1 J

We can now state the first lemma.

LEMMA 6.1. -- Let (p be a non-singular orthogonal transformation o/V preserving the
lattice M generated by the o^, and preserving the cone C*. If (p can be written in terms
of the basis (o^) o/V ay a matrix of the form I-AN, m^ A a matrix of non-negative integers,
then (p is the identity.

Proof. — Since (p preserves a lattice and is orthogonal, it is of finite order. Therefore,
(p (C*) c: C* and (p (M) c= M imply

(pCC^C* and (p(M)=M.

Since the a, are externals of C* and primitive elements of M, (p permutes the o^
among themselves. Let

H=I - (P»

i. e. the transformation p, is given by the matrix A.N with respect to the basis (a,) ofV.
From the expression of the co/s in terms of the a;

o^N-^a,),
we see

(o)fc, HCco;)) = (cofc, A (a.)) = E^j^ a/) ̂  ̂
j

for each /, k, since each fly ^ 0. Hence

H(C)c=C*,

where C'" = closure of C*. But (p preserves lengths. This implies

(x, x) = (<p(x), (p(x)) = (x, x)-(x, n(x))~(n(x), (p(x)).

Let ^ e C. Then (p (;c) e C and the last two terms are non-positive. This implies that

(x,n(x)) =0

(H(x),(p(x))-0,

so that (n 00, ^ (^)) == 0, i. e. yi(x) = 0.
Q. E. D.
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To state the second lemma, we form the vector space V generated by o^,..., a^ (as above)
and a new basis vector P. We extend the previous bilinear form on V to V via

(af,o^)==ny,

(a,,?) =(p,p)=0.
n

This form is semi-definite, with radical spanned by P. Let a == ^ ni ̂  ^e ^le

highest positive root with respect to (a^,..., a,,), and set ao = P—a.
/w

It is known that each n^ is > 0. The matrix N = (wy), n^ == (a», aj), i,j = 0, 1,..., n,
(which describes the above inner product) is called the extended Cartan matrix. Let

C*={jceV | x= i>^,r<>ol.
I »=o J

LEMMA 6.2. — Let (p A^ a/! invertible linear transformation ofN which preserves the
bilinear form, the lattice generated by 0£o» a l»• • • » a w » ^^ the cone C*. If (p w^ 6^
written in matrix form

I-A.N

H^A respect to the basis (ao,.,., a^), wA^r^ A has non-negative coefficients, then 9 is the
identity.

Proof. — We first prove that (p is of finite order. Since N (P) = 0, we get that (p (P) = P.
Let JceV. Then

(p(x)= ̂ (x)+ J(x).P,

where (p : V—^ V is the linear transformation induced by (p on the quotient V = V/R.P
by (p and / : V —> R is a linear form on V. Since (p preserves the lattice generated by the a;
in V and is orthogonal, it is of finite order. So there exists an n such that

(p-Oc^x+roc).?
for some linear form /' on V which takes non-negative values on C*. Let (p' = (p" and
let Pi be the element which is mapped by <p' to (Xi. Then there exist integers k^ such
that

a.-P,+k,P,
i. e.:

P,=a,-^P.
Thus, ki == l'{^ ^ 0.

Kki were non-zero, we would have that P( e —C* so that (p' (P,) e — C*. But (p' (P() = a,,
so all ki vanish and (p' = id. Hence (p is of finite order. Consequently (p preserves the
cone C*. Since the a, are extremals of this cone and primitive they are permuted among
themselves.
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Now the a, form an "extended Dynkin diagram''D, and we have to see that q> induces
the trivial automorphism of D. [The vertices of D are the a,, and for i ̂  j, a; is joined
to a, by -(a;.a^) edges.]

At this point we must rely on the classification of the possible D's (types A,? D^, £5,
£7, Eg of [5]), and check each type. Our result follows in each case from a consideration
of congruences modulo the index of connectivity of the Dynkin diagram D associated
to D (gotten from D by deleting ao and all edges abutting at ao; equivalently, the Dynkin
diagram associated to the root system o^,..., a^. Eg admits no non-trivial automorphism,
which is fortunate since the index of connectivity of Eg is I!

Let (Sij) be the entries of the matrix A.N: since (p permutes the a/s, each e,j can be
only 0, or -1, and in any row, either all entries are 0, or two of them are non-zero and
of opposite sign.

Case ^{n1^2)\ . . . . . . . . .. ... - . , . ,.. - , . .. . .

ai? pan

o^ °an-i

If the i'th row of A. N is non-trivial, we get

- a;, „ +2 :a^ o - di^ = e^ o»

-a^Q +2.^1-0^2 = ^ . i >

--^.n-l+^f.n-^.O = e* ,n•

From this we get

E O'+l).e^= -(M+l).a,^_i+(n+l).a,^.
7==0

But the left hand side is a non-zero integer of absolute value < n\ it cannot be divisible
by TZ+I .

We leave it to the reader to treat the case Ai (consider divisibility by 2).

Case D,, (n ^ 4):

ao a..
°< rv N >0
\^2 ^n-1/

.0—0—0———0

N ° 0/Va! ^n-1
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If (p induces a non-trivialautomorphism of D^ it has to move one of the vertices oco,
ai, a^i, a^. By symmetry we may suppose that (p(ao) ^ ao. Then we get

+2•a0.0-^0,2 ^SO.G ==-1»

'^•^.l'""^ =6o.l>

-^o.o-^o.i+^-^o^-^o.s =£0,2 =0,

-flo^+^-^o.s-flo^ =€0,3 =0,

-^O.n-^+^O.n-a—^O.n-^ =^0.n-3 = 0>

--^O.n-S+l.ao^-^-flo.n =6o,n-2=0,

-~ f l0.n-2+2•^0,n-l =£0,n-l»

- f l0.n-2+2•^0,n =6o,n-

Now (p(ao) has to be ^: otherwise 80,1 = 0; adding the first two equations we get

2.ao.o+2.^o,i-2ao,2 = -1.

This is impossible (divisilibity by 2).
If (p(ao) = a^, i.e. £0,1 = 1, then So^-i = £o,n ^ 0. So ^o.n-2 is even. Add the

last two equations to get

-^O.n-^^^.flo.n-l-^.flo.n == 0,

i. e. :

^.w-^ = ̂ O.n-l+^O.n-

The equation for £0,^-2 now implies

^O.n-S = fl0.n-2•

The equation for £o.n-3 implies

fl0,n-4 = ^0,n-3»

etc., until

^0,2 =^0,n-2-

But the first equation shows that a^ is odd - a contradiction.

Case Eg:
ai 03 a4 05 ae
0———0———0———0———0

°^2

°ao
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If non-trivial, (p has to move one of OQ, o^, 05; by symmetry (and after renumbering)
we may assume that (p (oo) = Oi. We get

+2.0o ,o— a o,2 = ^.o = — 1?
2.^0.1-^0.3 = ̂ .l = 1»

-00.0+2.^0,2-^0.4 ^^^ = °-

From these equations we get

— 1 = £o.0+2.eo,2== 3.0o,2-2.0o,4,

0= £o,6+2.£o,5 = 3.0o.5-2.^o,4-

Hence 1 = 3.0o.5-3• f lo,2 : a contradiction (divisibility by 3).

Case £7:
OCo OCi 03 04 05 a^ 07

o——o——o——o——o——o——o

°^2

If (p were non-trivial, it must interchange OQ and 07. This gives us the following system
of equations :

+200.0—^0,1 == ^.o = —1»
-00,0+2^0,1-^0,3 = So.l == °»

20o,2-^0,4= e0,2 = °»

-Oo,i+20o,3-0o,4 = So.3 == ^

—0o,2-a0.3+20o,4—0o,5=£o,4= ^

-00,4+200,5—^0.6 == e0.5 = 0»

-Oo,5+20o,6—^0,7 = ̂ ^ = °»

-Oo,6+20o,7 =£0 ,7= L

Hence
£o,o+2£o,i+3£o,3 =-1 =4oo,3-3oo,4,
£o,7+2£o,6+3£o,5 = 1 =4oo,5-3oo,4.

So 2 = 400,5 = 400,3: a contradiction (divisibility by 2).

Case Eg:
Oi 03 04 05 Oe 07 Og Oo

o——o——o——o——o——o——o—•—o

°^02

This diagram has no non-trivial automorphism.
Q. E. D.
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7. Degeneration of Isomorphisms

In this paragraph we analyze non-separatedness of the moduli ofunpolarized surfaces;
recall that the moduli space M previously introduced is not a Hausdorff space (cf. the
introduction).

We introduce the concept of an elementary operation. For the sake of definiteness
we consider families of surfaces over the disc D c: C : Let

p : X-^D

be a smooth family of complex-analytic surfaces (i. e. p is smooth of relative dimension 2).
Let Co <= Xo be an irreducible, complete, non-singular rational curve of self-

intersection —2; in what follows, we'll call such curves nodal curves. The curve Co
can be blown down in the family X, i. e. there exists a commutative diagram

where
— p is a flat morphism;
— n is a proper morphism which induces the minimal desingularization of X<, for

all r e D ;
— Xo is the surface obtained from Xo by contracting Co to a point.

Furthermore, this diagram is unique, locally around OeD.
Indeed, the situation is local around Co inside X and is then unique. The above

assertions follow thus by appealing to [2] and [6].
There are two possibilities: either X, is singular for all t e D (in which case we say

that Co extends to X), or X^ is non-singular for / ^ 0. By [6], if Co doesn't extend,
we may resolve the family p : X —> D in a different way: there exists a smooth morphism
p ' : X' —> D whose fiber Xo is the minimal desingularization of Xo. Hence Xo and Xo,
as minimal desingularizations of Xo, are canonically isomorphic even though the fami-
lies X and X' over D are distinct. The morphism p ' is uniquely determined by these pro-
perties, locally around 0 e D.

The process which leads from X to X' will be called the elementary operation corres-
ponding to the (non-extending) nodal curve Co <=• Xo (or just an elementary operation).

Note that, if Co <= Xo is the inverse image of the singular point on Xo, then X is obtained
from X' by the elementary operation corresponding to Co <= Xo. Hence the relation

"X7 is obtained from X by a finite number of elementary operations"
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defines an equivalence relation between families of smooth surfaces over D, always taken
locally around 0 e D. Note that elementary operations can be defined in a similar way
for a family of smooth complex-analytic surfaces over an arbitrary base space and for
a family of smooth algebraic surfaces over an arbitrary base scheme (cf. [1]).

After these preliminary considerations we can state a conjecture:

CONJECTURE 7.1. — Let k be an algebraically closed field and let S == Spec(k[[t]]);
let 0, resp. T|, denote the special, resp. generic, point of S.

Let
p : X-^S and p ' : X ' ^ S

be two proper and smooth morphisms of relative dimension 2 whose fibres are absolutely
minimal models [in particular, no fibre is (birationally equivalent to) a ruled surface}.
V

x^ ̂  x^

then X' is obtained from Xbya successive application of finitely many elementary operations.
The statement of this conjecture may be modified: one may allow S to be a base scheme

of higher dimension or one may formulate analogues for families of complex-analytic
surfaces (cf., however, remark 7.9).

We can't prove this conjecture. However, if char (k) = 0, an affirmative answer to 7.1,
is provided, via the Lefschetz principle, by theorem 2 below.

REMARK 7.2. — It is possible to formulate a conjecture similar to 7.1 without assuming
that all fibers of p, resp. p ' , are absolutely minimal models, but retaining the assumption
that none of the fibers is ruled. However, as simple examples show, the formulation 7.1
becomes wrong if Xo is not assumed to be absolutely minimal.

The assumption that the fibers be absolutely minimal models is stable under defor-
mations (the proof in [10] also covers the case of hyperelliptic surfaces).

REMARK 7.3. — A statement similar to conjecture 7.1 is wrong in the case of ruled
surfaces. Indeed, it may happen (cf., e. g., [14], ch. 1) that the trivial family of rational
ruled surfaces F,, over D* jumps over the origin to F^ (0 ^ n <m'.n s= m (mod 2)).
Since only F^ contains nodal curves, such a family cannot be obtained from the trivial
family F^xD by elementary operations.

In this example the two families under consideration don't have isomorphic fibres
over the origin. There exist, however, families of ruled surfaces over D which are fiber
by fiber isomorphic but which are not isomorphic. This is related to the fact that the
see-saw lemma for line bundles fails for vector bundles of higher rank.

Sometimes rational singularities can be resolved in a family (cf. [1]) and one may ask
whether this can be done in several ways. Hence conjecture 7.1 is related to the following
conjecture. In its statement we adhere to the terminology of [1].

CONJECTURE 7.4. — Let Res,, resp. Def,, be the henselization at the origin of the reso-
lution space, resp. the deformation space, of a rational singularity. Then the local morphism

Res,->Def,
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is a Galois covering and its group of automorphisms is the finite Coxeter group generated
by the reflections corresponding to the nodal curves in the minimal resolution of the singularity
operating on the vector space having as base all irreducible components of the minimal
resolution of the singularity (the definition of those reflections may be found in 7.7) (2).
This conjecture is true for rational double points (cf. [6]) and for the rational singularity
defined by a cone over a rational space curve of degree r in P" (r ^ 2), cf. [1]. Closely
related to conjecture 7.1 is theorem 1 in [13]. Since we'll need it later we give a (slightly
simplified) statement and proof in the complex-analytic context:

LEMMA 7.5. — Let p : X-+ D and p ' : X'—^ D be two proper and smooth morphisms
of complex-analytic varieties. Let

(p : X XDD*^X ' x^D*

be an isomorphism whose graph F* c= (X x ̂  X') x p D* extends to an analytic cycle
r <= X x ^ X'. IfXo is not ruled (i. e., is not bimeromorphic to a P^bundle over a variety
of lower dimension), there is a unique component of multiplicity one of To inducing a bime-
romorphism between Xo and XQ.

The following corollary is an immediate consequence of this lemma.

COROLLARY 7 . 6 . — With the notations of the above lemma, assume in addition that all
fibres of p, resp. p\ are absolutely minimal models of surfaces. Then FQ is of the form

rQ=AQ+^a,jC,xCj, ^°.

where Ao defines an isomorphism between XQ and XQ and where C^, resp. C., are curves
on XQ, resp. XQ.

Proofoflemma 7.4. — The proof of lemma 5.4, shows that there is a unique irreducible
component ZQ of FQ which projects onto Xo by a morphism of degree 1.

It suffices to show that ZQ projects onto XQ since, by the same argument as the one
used in 5.4, the projection of Zo onto XQ will then be of degree 1 and the assertion will
follow. Assume the contrary.

By Hironaka, there exists a blow-up (successively along non-singular centers over
the origin) X of X and a commutative diagram

Let XQ = proper transform of Xo in X.

(2) This has been independently conjectured by J. Wahl.
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Then
7i(Xo)=Zo.

We may blow-up X' to obtain X' and the following commutative diagram :

X ^ — — X '
j \ / \ . . . . . . . .r p\/ \ix x'

Let Wo = proper transform of Xo in X'.
Then Wo c: p~1 (Xo) and Wo maps bimeromorphically to Xo. The morphism p | Wo

factors through Zo <= To. Hence, by assumption,

p(Wo)c:Xo.
^

Decompose Xo into irreducible components :

Xo=.YiU...uY,.

One of them, say YI, is the proper transform of XQ in X'. The other oties, being bime-
romorphic to the total transform of a non-singular center of a blow-up of a smooth variety,
are ruled. Since Wo doesn't project onto Xo, it cannot be Y^. Hence Wo is ruled.
This contradicts the hypothesis made on Xo.

REMARK 7.7. — In the notation of corollary 7.5, we will always identify Xo with XQ via
the isomorphism defined by Ao.

REMARK 7.8. — Assume that X' is obtained from X by an elementary operation cor-
responding to Co c: Xo. Let

F c X XpX'

be the correspondence between X and X'; it is the graph of an isomorphism outside 0.
Identifying Xo with Xo (both being the minimal resolution of the singular surface Xo),

To = Ao + Co x Co, Ao = diagonal.
In particular

[Fo]^: H^XO.Z^H^XO.Z)

is the reflection defined by Co,
x-^+(x.Co).Co.

Indeed, since X and X' are naturally isomorphic outside Co, Fo has to be of the form

To=Ao+n(CoXCo), n ^ O
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and, since [To]* : H2 (X, Z) -^ H2 (X', Z) is an isomorphism of lattices we conclude
that n = 0 or n == 1. Since Co doesn't extend, F is not the graph of an isomorphism
between X and X', i. e. n = 1.

A similar argument shows that the identification ofXo with XQ given by 7.6, coincides
with the one obtained by regarding Xo and XQ as minimal desingularizations ofXo.

The main result of this paragraph is the following theorem :

THEOREM 2. - Let
p : X-^D and p ' \ X'-^D

be two families of compact smooth surfaces of kdhlerian type whose fibres are absolutely
minimal surfaces [in particular, no fibre is (birationally equivalent to) a ruled surface^.

Assume that an isomorphism

(p : XX^D^X'XDD*
is given, whose graph

r'c^XxDX^XDD* , .
extends to an analytic cycle

r cXxoX' .
Then, locally around Oe D, the family X' is obtained from X by a successive application

of finitely many elementary operations.

REMARK 7.9. — The assumption that F* extend to F is verified ifp, p ' and (p come from
a global algebraic situation, i. e. p, p ' and q> come by restriction to a small neighborhood D
(in the classical topology) of a point of a smooth algebraic curve C of
- proper smooth algebraic morphisms p : X — ^ C , p ' : X '—>C;
- an isomorphism (p :X x c(C\{ 0 })-^ X7 x c (C\{0 }).

This is the main case of interest.

On the other hand, this extension condition is indeed a non-trivial assumption : Let

X=C2|L, X^C^L

be two trivial families of tori and let

(p,: X^X/
(x, y) mod L -» (x+e1^, y) mod L

define an isomorphism between X x ^ D * and X'x^D*. Its graph

r^XxoX^XDD*

doesn't extend to an analytic cycle in Xx^X' .

Proof of theorem 2.-It suffices to show that there exists a finite succession of elemen-
tary operations leading from X to a family p " : X"-> D such that, i f F c X ' XpX" denotes
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the natural correspondence obtained,

[ro^Ao^H^XoXXo/Z).

Indeed, by corollary 7.5, TQ is of the form

ro=Ao+]L^C;xC,, Oij^O.

Since Xo x Xo is of kahlerian type, we infer that Fo = Ao.
Hence the projections F —» X, resp. F —> X', are isomorphisms fiberwise over D; since X

and X' are smooth, in particular normal, they are isomorphisms.
The proof of theorem 2 will proceed by checking each case in the classification of

surfaces. We thus have to treat tori, hyperelliptic surfaces, K-3 surfaces, Enriques surfaces,
elliptic surfaces and surfaces of general type (note that these classes are stable under defor-
mations, cf. [10]). We note that the isomorphism

9 : X X D D * ^ X ' X D D *

induces isomorphisms over D

(p* : RV^Z^R^Z), i = 0, . . . , 4,

between the (trivial) local systems of cohomology.

First case: tori.—This case is trivial: We may trivialize the universal covering space X
of X:

Then
X-^xS.

X^C^H^.Z).

Proceeding in the same way with X' we see that the isomorphism

(p* : R^Z^R^Z)

defines an isomorphism over D (extending the given one over D*) between X and X'.
[This conforms with the fact that the moduli space of tori (with trivialized cohomology)

is an open subset of the vector space of 2x2—matrices—which is separated. Also note
that a torus doesn't contain any curves with negative self-intersection,]

Second case: hyperelliptic surfaces.—These sire the algebraic surfaces with b^ = 2 and
pg == 0. They are of the form

X=ExE' /G,
where

— E and E' are smooth curves of genus one;
— G is a finite group of automorphisms of E x E'. Let t e D* and let

X,=E,xE;/G.
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The coverings X, resp. X', of X, resp. X', corresponding to the factor group G
of 71:1 (X) = jii (X') are two families of compact surfaces whose fibres over t e D* are
tori. Hence they both are families of tori. Since they are isomorphic over D*, they
are isomorphic (cf. first case). This implies that X and X' are isomorphic. (Note that
on a hyperelliptic surface there are no curves with negative self-intersection.)

Before proceeding in the proof of theorem 2, we insert the following remark.

REMARK7.10.-Let

^^{xeH^l(Xo)\x2>Q}
and let

V4' = connected component of V containing a Kahler class I
(cf. §2).

Let
<^= { 8 1 , . •.,§,}

be a finite set of nodal curves on Xo. Let W be the group generated by the reflections
^(SeO) operating on V^. Then

V^ == {xeV jOc.8,) > 0, 8e<D}

is a fundamental domain for the properly discontinuous action of W on V4^. The Kahler
class I lies in V^.

Let
(p : H^XO.Z^H^XO.Z)

be an automorphism of lattices which preserves Hodge structures and such
that (p(V4-) =V + .

Assume that (p (I) doesn't lie on any hyperplane corresponding to a reflection in W. Then

(p(I)eu;(V^)

for a uniquely determined element w e W and we claim that w may be written as

u?==s^o . . .o^ , 5,e0,

where s^ o . . .0 ̂  (q> (()) lies on the negative side of the hyperplane

H^^eHi4 | (x.8,^)=0}a = i , . . . , r ) .
The proof of this assertion is immediate by induction on the length of the representation

of w as a product of reflections about hyperplanes H^ bordering V^. In particular, let

(p=|ToL: H^Z^H^Z).

Then every reflection s^(i = 1, . . . v) in the presentation of w above may be realized
by an elementary operation (recall, cf. remark 7.8, that an elementary operation defines
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a reflection on the cohomology). Indeed, assume the contrary and let i, 1 ̂  i ^ r, be
the smallest index for which 8^ corresponds to a nodal curve C^ w/M'cA extends to

p(-D : X^^D,

the result of a successive application of elementary operations realizing ^, . . . , ^_^ .
Let co be a hermitian metric on X inducing a kahlerian metric in every fiber of p:X—>D,
and such that [coo] = I e Hg'1 (Xo). Then, denoting by 6^ (r e D*) an extension of S,,

0 < ([I^ [co,]. §^)x{<-1) = (^,., ° . . . ° ̂  ((p (I)). 8,)xo < 0.

This contradiction proves the contention.
The difficulty in applying the remark 7.10 in what follows is to verify the assumption

above that (p (I) doesn't lie on any hyperplane corresponding to a reflection in W. We now
return to the proof of theorem 2.

Third case: K-3 surfaces.—An analytic cycle C with C2 = — 2 is either effective or anti-
effective. Hence the image [To]* (I) of a Kahler class I doesn't lie on any hyperplane He.
By remark 7.10, we may perform a finite number of elementary operations until [Fo]^ (I)
lies in the fundamental domain V^ for the action of the group W generated by the reflec-
tions corresponding to the set 0 of nodal curves C, appearing in the factor on the left
in the expression for To,

ro=Ao+E^.(Qxc,).
(Note that, after applying an elementary transformation to X and replacing TQ by the
new correspondence, the set 0 cannot increase.)

So assume that [To]^ (I) eV^. Then Fo preserves effectivity of irreducible curves
of self-intersection —2: This is clear for those C(^<D, and has been so arranged for
the C,e€>. By the Torelli theorem (theorem 1), Fo = Ao.

Fourth case: Enriques surfaces.—^We will eventually use the Torelli theorem for K-3
surfaces. Let

X X\ \\ \
. Y Y',' w, rp<;n tw y-p , ics>p. p ' ,

../p ..^p'
D D

denote the universal covering space of X, resp. X7; then p, resp. p\ is a family of K-3
surfaces. Let o, resp. CT', be the non-trivial covering involution on X, resp. X'.

We fix one of the (two) components

r c X x o X '
Of (TIXTT')-1^).

We need the following
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Addendum to remark 7.10.-We retain the notation of that remark except that, what
was called Xo there, will here be called Xo.

Assume that an orthogonal involution a acts on Hg*1 (Xo), preserving V4' and commu-
ting with (p. We assume that, if 8 e 0 then also a (8) e 0, and that a (I) = I and
<j (8). 8 = 0 for 8 e 0. Then, in the presentation of w e W,

W = S ^ ° . . . ° 5 5 , , 8fGO,
we may choose

82 =<^(8i),

84 ==0(83),

8,=a(8,_i).

Indeed, proceeding by induction, assume that 83 = a (81), .. . , 8 2 ^ = o- (83 ). Then
as is easily checked, the fact that (p (I) is invariant under <r implies that

I»D7S^O•••O S6,(<P(0)

is invariant under a. Hence from (Ii.8^+i) < 0 one obtains

(5^^a).c^(82,+l))=(I,+(I,8^+l)§2f+l.cT(82,+l))
=a^(52i+i))=(o(I,).8,,^)<0.

Here we used the facts that (<7 (621+1)^21+1) = 0 and that a is an orthogonal involution.
This proves our contention.

In particular, assume that Xo is a double covering of Xo with covering involution a
and that

(p = [Fo]^ : H2 (Xo, Z) ̂  H2 (Xo, Z).

Then for every pair of reflections as above, s^ ° Sy^ is induced in the following way from
an elementary operation corresponding to a nodal curve C c: Xo: If

F^Ao+CxCcXoXXo 0

is the graph of the correspondence, then the connected component

r^cixx^0

of^xn^)'1 (F0^ which, over Z)*, is the graph of the identity automorphism has as its
special fibre

r^=Ao+CxC+a(C)xa(C).
Here

^((^C+c^C) with Cna(C)=0.

This is proved in the same way as the similar remark in 7.10.

Let <& be the set of nodal curves C; which appear in the expression for Fo:

ro=Ao+E^Qxc,
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and which, in addition, verify

Since
C,na(C.)=0.

^ ° l?oL = [Fo], ° o* : H2 (Xo, Z) -^ H2 (Xo, Z)

we infer that if C, e €>, then a (C;) e 0.
Let I be a Kahler class invariant under a. As remarked in the previous case with K-3

surfaces, [Fo]^ (I) cannot lie on a hyperplane Hg, 82 = —2. By the addendum to
remark 7.10 we may perform elementary operations to X until

[ro]*(D<=v^.
But then we claim that, for any nodal curve C on Xo, [To]* (C) is effective.

This is clear if C isn't one of the C, appearing in the above expression for Fo and has
been so arranged for those C, which lie in O.

Hence, for any curve C on the Enriques surface Xo one has

(7i*([ro]^c)).i)<o.
Let C c: Xo be a curve with C2 = -2 and let C = 71 (C) <= Xo. Then, by the
commutativity of the following diagram

H^XO.Z^H^XO.Z)
T tq |"'

H^XO.Z^H^XO.Z),
we infer that

0 < (7C*([ro],(C)).I) = ([ro]^(C+a(C)).l) = 2([fo],(C).I).

Here we used that a is orthogonal and that I is invariant under a.
By the Torelli theorem for K-3 surfaces, F induces an isomorphism between X and X'.

Since this isomorphism commutes with the Z/2-action on X, resp. X', it induces an iso-
morphism between X and X', coinciding over D* with

(p : XXDD^X'XDD*.

Fifth case: elliptic surfaces,—Lei
[KxJeH^Xo.Z)

be the cohomology class of the canonical bundle of X^ (t e D). Then

[KxJ=-c,(X,);
hence

LEMMA 7.11:
[roL([Kxo])=[Kxo].
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On the elliptic surface Xo, some positive multiple of the canonical bundle Kx is coho-
mologous to w.p (m > 0), where P is the class of the general fibre of the elliptic0 fibration

/: Xo->B

over the non-singular complete algebraic curve B. Therefore, if C is an irreducible
curve on Xo,

(Kx,.C)^0

and inequality holds if and only if C is contained in a fibre of /.
From the equality

[KxJ = [Fo]*([KxJ) = [Kxo]+Ea,,(Kx,.C,).[C,];

we conclude that
dij ^ 0 ==> C; lies in a fibre of /.

Analogously,

Let

and let

a,j ^ 0 ==> C, lies in a fibre of /.

E = union of the irreducible components of reducible fibres of J

E = EI u . . . u E,.

be the decomposition of E into connected components. We denote by

E.z O '==l , . . . , r )

the subgroup ofH2 (Xo, Z) generated by the irreducible components 5;y o f E , ( f = l , . . . , r ) .
By remark 5.6,

ITo]*(E,z)=E.z.

Let <I> be the set of irreducible components 8,y of E and let V^ be the usual (cf. 7.10)
fundamental domain for the action of the group W generated by the reflections about
the hyperplanes H^ .

Note, as in paragraph 5, that the irreducible components S^, . . . ,8^ of E, define,
by the usual receipe, an extended Dynkin diagram.

We need the following lemma whose proof is given at the end of the proof of theorem 2.

LEMMA 7.12.— With the notation introduced in paragraph 6, let V^ be the lattice in V
generated by (Xo, ..., a^.

Let

SeVz with S^+2.
Then § can be written as

S= £ Cj^pj=o
where either all Cj ^ 0 or all Cj ^ 0.
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This lemma ensures that the image [To]* (I) of a Kahler class / doesn't lie on any hyper-
plane Hg, 8e^E^, 82 = -2. By remark 7.10, we may perform a finite number of
elementary operations until

ITo],(Vo )c=v,;.
But then [To]* | E^ verifies all hypotheses of lemma 6.2. Hence

[ro]=[Ao]+m.(pxp).

Lemma 5.7 shows that m = 0.

Sixth case: surfaces of general type,—Let XQ be a surface of general type. For any
irreducible curve C on Xo:

(Kxo.C)^O,

and equality holds if and only ifCis one of the finitely many nodal curves which are contract-
ed to a point by all pluricanonical systems on Xo. Let E be the union of those curves.

We proceed as in the fifth case. By lemma 7.11,

[KxJ = [ro]*([Kxo]) = [Kxo]+Z^,(C,.Kx,).[C,];

hence, since a^ ^ 0 and (Kxo.C.) ^ 0, we infer that (Kxo.C,) = 0
and thus

Oij^O => C,eE.
Analogously,

f l y ^ O => C,eE.
Let

E = EI u E^ u. . . u E,

be the decomposition of E into connected components. Let E,^ be the subgroup
of H2 (Xo, Z) generated by the irreducible components of E, (i = 1, ..., r). The irre-
ducible components ofE, form, by the usual recipe (cf. § 5), a Dynkin diagram (cf. [11]).

The proof of the following lemma is postponed until the end of the proof of
theorem 2.

LEMMA 7.13. — Let R be a root system in a real vector space V with symmetric Carton
matrix; put on V the euclidean metric defined by the Carton matrix (cf. § 6) so that 82 = +2
for all 8 e R. Let V^ be the lattice in V generated by R. Then every 8 e V^ with 82 = 2
is an element of R.

In particular, if R is irreducible and {81, ..., 8^ } is a fundamental system of simple
roots, every 8 e V^ with 82 = 2 may be written as

8= fr,8,
»=i

with all r, ̂  0 or all r, ̂  0.
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This lemma implies that the image [To]* (I) of a Kahler class I doesn't lie on a hyper-
plane Hg, 8 e ̂  E;z, 82 = —2. By remark 7.10, we ma\ thus perform a finite succession
of elementary operations until

[roL(Vo) ̂ Vi= { x e V + |0c.8) > 0 for Se^E.z with 82 = -2}.

But then [Fo]^ E,^ verifies the hypotheses of lemma 6.1, hence [To] = [Ao].

Proof of lemma 7.13.—We may assume that R is irreducible. Let

R'=={8eVz|5 2=2} .

Then R' is a root system. Indeed, R' is finite, doesn't contain 0 and generates the vector
space V; R' is stable under the reflections s^ (§ e R') and for all 8,8' 6 R' the product (8.8')
is integral.

The first part of the lemma which, by standard facts about roots implies the second
statement, is now a consequence of the following fact.

LEMMA 7.14. —Let R and R' be two irreducible root systems in a euclidean vector space V,
all of whose roots have equal length. Assume that

R c R '

and that R and R' generate the same lattice V^ in V. Then

R==R' .

Proof.—The assumptions imply that index of connectivity (R) = discriminant (V^)
= index of connectivity (R'). Now a glance at the tables shows that R = R'.

Q. E. D.
Proof of lemma 7.12.—In the notation of paragraph 6, write 8 as

n

8 == m,P+ ^ fe,.0y.
j=i

/n \2 n
Then ( ̂  kj.^j ] == +2. By lemma 7.13 we infer that ̂  kj.^ lies in the root system R

\i / 1
corresponding to { Ai, .... o^ } c: V. In particular, either kj ^ 0(j == 1, ..., n) or

.. ' • . . . " n. • •
kj ^ 0 (j == 1, ..., n). If m =0, we are finished. But a = ̂  n^. a; is the highest positive

i
root in R and p = <Xo+5c, Hence, if m + 0, writting

6= E ^j^p
j=o

we infer that sign (c,) = sign (w).
Q. E. D.
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REMARK 7.15.—In the case of surfaces of general type we may blow down in the
family p: X—>D all nodal curves on Xo. We obtain pf: X' —> D by blowing up in a
different way the singularities of the family thus obtained. A similar statement is
wrong in the case of K-3 surfaces.
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