ANNALES SCIENTIFIQUES DE L'É.N.S.

DAVID GIESEKER Stable vector bundles and the frobenius morphism

Annales scientifiques de l'É.N.S. 4^e série, tome 6, nº 1 (1973), p. 95-101 http://www.numdam.org/item?id=ASENS_1973_4_6_1_95_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1973, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www. elsevier.com/locate/ansens) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. scient. Éc. Norm. Sup., 4^e série, t. 6, 1973, p. 95 à 101.

STABLE VECTOR BUNDLES AND THE FROBENIUS MORPHISM

BY DAVID GIESEKER

1. Let X be a curve of genus g, proper and smooth over an algebraically closed field, and let E be a vector bundle over X. Mumford defines E to be semi-stable if whenever F is a quotient bundle of E, then

$$\frac{\deg F}{\operatorname{rank} F} \ge \frac{\deg E}{\operatorname{rank} E},$$

where deg E is the degree of the line bundle $\bigwedge E$, r the rank of E. If the characteristic of X is p > 0, $E^{(p)}$ will denote Frobenius pullback of E.

THEOREM 1. — For each prime p and integer g > 1, there is a curve X of genus g in characteristic p and a semi-stable bundle E of rank two on X so that $E^{(p)}$ is not semi-stable.

Examples of non-ample semi-stable bundles of positive degree constructed by Serre for p = g = 3 and later by Tango for p (p - 1) = 2g incidentally proved Theorem 1 when p (p - 1) = 2g.

We prove Theorem 1 by constructing a sequence of bundles E_n so that $E_n^{(p)}$ is isomorphic to E_{n-1} , and E_1 is not semi-stable. In such a sequence, we must have E_n semi-stable for $n \ge 0$, and then we obtain the E of Theorem 1 as the first semi-stable E_n .

The bundles E_n will be constructed in the following situation : Let A = k[[t]], where k is a field of characteristic p > 0, and let X be a stable curve over A with k-split degenerate fiber in the sense of Mumford [5]. Thus by definition X is proper and flat over A, and its geometric fibers are reduced, connected and one dimensional. Further, all the normalizations of the components of the special fiber X_0 of X are isomorphic to \mathbf{P}_k^1 , and the singularities of X_0 are double points with 2 k-rational branches. Further each component X_0 meets at least three other

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

components counting itself. We also assume the generic fiber is smooth over K, the quotient field of A.

Let Y_0 be the universal covering scheme of X_0 , i. e. there is an etale map p_0 from Y_0 to X_0 with the usual universal mapping property. Y_0 is not of finite type over A. Mumford shows that the group G of covering transformations of Y_0 over X_0 is a free group on g generators, g the genus of X_{κ} . G operates freely and discontinuously in the Zariski topology of Y_0 .

Section two is devoted to associating to each representation ρ of G on K^m a sequence of bundles E_n on $X_K^{(\mu^n)}$ so that $F^* E_n$ is isomorphic to E_{n-1} , where $X^{(\mu^n)}$ is the fiber product of X with the n^{th} iterate of the Frobenius map on Spec K, and F is relative Frobenius. The construction of E_n from ρ is analogous to the construction of a bundle E' on a smooth, compact complex variety X' from a representation ρ' of the fundamental group of X' on \mathbf{C}^m . Further, the sequence $\{E_n\}$ defines a stratification on E_1 , which is analogous to the stratification on E' whose monodromy is ρ' [2].

Section three is devoted to the study of the bundle associated to a particular representation φ of G on K² which arises in Mumford's work. We show that the E₁ associated to φ is not semi-stable. This φ is analogous to the following φ' associated to a compact Riemann surface X'. Let $a_1, \ldots, a_g, b_1, \ldots, b_g$ be the usual generators of π_1 (X'), and let U be an open subset of $\mathbf{P}_{\mathbf{G}}^1$, and let π be a covering map from U to X'. Assume that the group G of covering transformations acts on U by linear fractional transformations, and that G is freely generated by the images of b_1, \ldots, b_g . Such a π is called a Schottky uniformization. Thus we have a homomorphism from G to PGL (2, **C**), and this lifts to a homomorphism φ' of π_1 (X) to SL (2, **C**). Following Gunning, one may show the bundle E associated to φ' is an extension

$$0 \rightarrow L \rightarrow E \rightarrow L^{-1} \rightarrow 0$$

where $L^{\otimes 2}$ is isomorphic to $\Omega^1_{X/\mathbb{C}}$. In particular, E is not semi-stable. The representation ρ of G on K^2 is the rigid analytic analogue of ρ' , and the bundle E_1 associated to ρ is an extension of the above type.

We conclude by noting that semi-stable bundles are not closed under symmetric product and with some examples of semi-stable bundles of positive degree which are not ample.

2. X will continue to denote a stable curve over A with smooth generic fiber and k-split degenerate fiber, Y_0 the universal covering space of X_0 , and G the group of covering transformations of Y_0 . There is a unique structure of a formal scheme Y with underlying space Y_0 and an etale

^{4°} série — tome 6 — 1973 — N° 1

map p of Y to \hat{X} which reduces to p_0 , \hat{X} being the completion of X along X_0 .

DEFINITION. — Meromorphic descent data on a coherent sheaf F over Y is a collection of elements $h_g \in \Gamma(Y, \underline{\operatorname{Hom}}_{\mathcal{O}_Y}(F, g^* f) \otimes_A K)$ for each $g \in G$ so that

$$h_g \circ g^* (h_{g'}) = h_{gg'}$$

and h_e is the identity. If $\{h_g\}$ and $\{k_g\}$ are sets of meromorphic descent data on F and G respectively, a map from $\{h_g\}$ to $\{k_g\}$ is an element $f \in \Gamma(Y, \operatorname{Hom}_{\mathcal{O}_{\mathbf{Y}}}(F, G) \bigotimes_{\mathbf{A}} K)$ so that

$$k_g \circ f = g^*(f) \circ h_g.$$

We will show the category of coherent sheaves on Y with meromorphic descent data is equivalent to the category of coherent sheaves on X_{κ} .

LEMMA 1. — Given meromorphic descent data on a coherent sheaf F on Y, there is a coherent F' with descent data $h'_g \in \operatorname{Hom}_{\mathcal{O}_Y}(F', g^* F')$ so that $\{h_g\}$ and $\{h'_g\}$ are isomorphic. F' may be taken to have no A torsion.

Proof. — We may assume F has no A torsion by replacing it by its image in $F \bigotimes_{\Lambda} K$. We will construct a coherent subsheaf F' of $F \bigotimes_{\Lambda} K$ so that the map of $F' \bigotimes_{\Lambda} K$ to $F \bigotimes_{\Lambda} K$ is an isomorphism and so that

$$h_g(\mathbf{F}') = g^* \mathbf{F}'$$

where we are regarding h_g as a map of $F \bigotimes_{\Lambda} K$ to $g^* (F \bigotimes_{\Lambda} K)$. Suppose such an F' has been constructed over a G invariant open set U of Y, and let V be a quasi compact open not contained in U so that $V \cap g V \subseteq U$ if $g \neq e$. V exists, since G acts discontinuously and has no torsion.

F' may be extended to a coherent subsheaf of $F \bigotimes_A K$ over $V \cup U$ using the following idea of Raynaud. On $V \cap U$, we may find an N so that

$$^{N} F \subset F' \subset t^{-N} F,$$

where t is a uniformizing parameter of A. Let \overline{F}' be the image of \overline{F}' in $t^{-N} F/t^N F$. \overline{F}' is a coherent sheaf on a scheme whose sheaf of local rings is $\mathcal{O}_Y/t^{-2N} \mathcal{O}_Y$. Thus \overline{F}' extends to a coherent subsheaf \overline{F}'' of $t^{-N} F/t^N F$ over $V \cup U$. The inverse image F'' of \overline{F}'' in $t^{-N} F$ extends F'. Finally, F' may be extended to the G invariant open set consisting of the union of the translates of $V \cup U$ by taking the subsheaf of $F \bigotimes_A K$ generated by $h_{x}^{-1} (g^* F'')$ over $U \cap g^{-4} V$.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

D. GIESEKER

Given a coherent F on X, the natural map

$$h_{g}^{\mathrm{F}}: p^{*} \mathrm{F} \rightarrow g^{*} p^{*} \mathrm{F}$$

gives meromorphic descent data on p^* F.

LEMMA 2. — Let $\{h_g\}$ be meromorphic descent data on a coherent F. There is a coherent H on \hat{X} so that $\{h_g\}$ is isomorphic to $\{h_g^{\Pi}\}$. Further the natural map α ,

$$\operatorname{Hom}_{\mathcal{O}_{\widehat{\mathbf{X}}}}(\mathbf{H}, \mathbf{H'}) \bigotimes_{\mathbf{A}} \mathbf{K} \xrightarrow{\alpha} \operatorname{Hom}\left(\{h_g^{\mathbf{H}}\}, \{h_g^{\mathbf{H'}}\}\right)$$

is an isomorphism.

Proof. — By Lemma 1, we may assume h_g maps F to g^* (F). There is a quasi-compact open U of Y so that the translates of U by G cover Y. $\{h_g\}$ gives descent data for the morphism $U \rightarrow \hat{X}$ and so F descends to a coherent H on \hat{X} , and $\{h_g\}$ is isomorphic to $\{h_g^{\text{H}}\}$.

If $f \in \text{Hom}(\{h_s^n\}, \{h_s^{n'}\})$, then $t^N f$ gives a morphism from p^* H to p^* H' compatible with descent data, and so a morphism from H to H'. Thus α is surjective. On the other hand, if $f \in \text{Hom}_{\mathcal{O}_{\widehat{X}}}(H, H')$ and if $\alpha(f) = 0$, then $t^N p^*(f) = 0$, and so $t^N f = 0$ for some integer N. So f is zero in $\text{Hom}_{\mathcal{O}_{\widehat{X}}}(H, H') \otimes_A K$, and α is injective.

PROPOSITION 1. — There is an equivalence of categories α from the category of coherent sheaves on X_{κ} to the category of coherent sheaves on Y with meromorphic descent data. If F is a coherent sheaf on X, α (F_{κ}) is the descent data { $h_{\alpha}^{\hat{F}}$ } on p^* (\hat{F}).

Proof. — Consider the category C whose objects are coherent sheaves on X, with Hom' (F, G) = $\operatorname{Hom}_{\mathcal{O}_X}(F, G) \bigotimes_{\Lambda} K$. C maps isomorphically to the category of coherent sheaves on X_{κ} . On the other hand, Grothendieck's existence theorem and lemma 2 show that it maps isomorphically to the category of coherent sheaves with descent data on Y.

Any representation ρ of G on K^n gives meromorphic descent data $\{h_g\}$ on $\mathcal{O}_{\mathbf{x}}^n$, and so a bundle $\mathbf{F}_{\rho,\mathbf{x}} = \alpha^{-1} \{h_g\}$. When char k = p > 0, we let $\mathbf{F} : \mathbf{X} \to \mathbf{X}^{(p)}$ be the relative Frobenius morphism. $\mathbf{X}^{(p)}$ is a stable curve with k split degenerate fiber, and the fundamental group of its special fiber is G. Further we have

$$\mathbf{F}_{\rho, \mathbf{X}} = \mathbf{F}^* (\mathbf{F}_{\rho, \mathbf{X}^{(p)}}).$$

4° série — томе 6 — 1973 — Nº 1

Thus we have proven :

PROPOSITION 2. — If ρ is a representation of G on \mathbf{K}^n and \mathbf{F}_1 is pullback of \mathbf{F}_{ρ} to $\mathbf{X}_{\mathbf{K}}$, then there is a sequence of bundles $\mathbf{F}_1, \mathbf{F}_2, \ldots$ so that $\mathbf{F}_{k+1}^{(p)}$ is isomorphic to \mathbf{F}_k .

Remark. — There is in fact a unique stratification on F_i associated to the sequence $\{F_i\}$ [2]. This stratification may be defined directly, and exists even when char K = 0.

3. Mumford's theory [5] gives us a natural representation of G on K^2 in the following way: Let D be a positive Cartier divisor on Y so that D meets only one component of Y_0 , and let L be the quotient field of

$$\bigcup_{n=0}^{\infty} \Gamma (\mathbf{Y}, \mathcal{O}_{\mathbf{Y}} (n \mathbf{D})).$$

L does not depend on D, and since G acts on Y, we get a homomorphism from G to the K-linear automorphisms PGL (2, K) of L. This homomorphism may be lifted to a homomorphism ρ of G to SL (2, K) since G is free. We will show that $F_{\rho,x}$ is not semi-stable.

LEMMA 3. — There is a transcendance basis $\{z\}$ of L over K so that zand $\frac{1}{z}$ are sections of $\mathcal{O}_{Y} \bigotimes_{A} K$. Further, multiplication by dz gives an isomorphism of $\mathcal{O}_{Y} \bigotimes_{A} K$ with $\Omega_{Y/A}^{\perp} \bigotimes_{A} K$.

Proof. — Let $\gamma \in PGL(2, K)$ be a non-identity element in the image of G. γ is known to be hyperbolic, so let P_1 and P_2 be its two fixed points in \mathbf{P}_{κ}^{1} , and let z be a function on \mathbf{P}_{κ}^{1} having a pole at P_1 , a zero at P_2 and no other poles or zeros Identifying L with the functions on \mathbf{P}_{κ}^{1} , we get an element z of L. Any quasi-compact open V of Y may be embedded via an open immersion in the formal completion of an A-scheme whose generic fiber is \mathbf{P}_{κ}^{1} so that L is identified with the rational functions on \mathbf{P}_{κ}^{1} as above and so that the closures of P_1 and P_2 do not meet $V \cap Y_0$ ([5], Prop. 2.5, 4.20). The lemma follows using this z.

LEMMA 4. — There is an exact sequence

$$0 \rightarrow L \rightarrow F_{o,x} \rightarrow L^{-1} \rightarrow 0$$

where $F_{\rho,x}$ is the bundle associated to the representation ρ of G on K^2 considered above, and $L^{\otimes 2} \cong \Omega^1_{x_{\pi}/\kappa}$.

Proof. — Let $\{h_g\}$ be the meromorphic descent data on $\mathcal{O}_{\mathbf{x}}^2$ defined by ρ . If

Ps	=	(a	$b \setminus$
		\ c	d)

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

as a matrix, define descent data $\{h'_s\}$ on $\mathcal{O}_{\mathbf{x}}$,

$$h'_g: \mathcal{O}_Y \to \mathcal{O}_Y \bigotimes_A K$$

by

$$h_{g}^{\prime}\left(f\right)=\frac{f}{cz+d}\cdot$$

Let φ be the section of <u>Hom</u> $(\mathcal{O}_{Y}, \mathcal{O}_{Y}^{2}) \bigotimes_{\Lambda} K$ defined by sending f to the vector (zf, f). φ is a map of the descent data $\{h'_{g}\}$ to $\{h_{g}\}$ since

$$g^{*}(z) = rac{az+b}{cz+d}$$
.

The cokernel of φ is $\mathcal{O}_{\mathbf{Y}}$ with descent data $\{h'_{\varepsilon}\},\$

$$h''_{g}(f) = (cz + d) f.$$

Letting L denote the line bundle on X_{κ} obtained from $\{h'_{s}\}$, we have an exact sequence

$$0 \rightarrow L \rightarrow F_{\circ} \rightarrow L^{-\iota} \rightarrow 0.$$

It remains to identify $L^{\otimes 2}$ with $\Omega^1_{X_{K/K}}$. $L^{\otimes 2}$ is the bundle associated to the meromorphic descent data

$$h_g'''=\frac{1}{(cz+d)^2}\cdot$$

Since $g^*(dz) = \frac{dz}{(cz+d)^2}$ and since multiplication by dz gives an isomorphism of $\Omega^1_{X/A} \bigotimes_A K$ with $\mathcal{O}_Y \bigotimes_A K$, we see L^{\otimes^2} is $\Omega^1_{X_x/K}$.

Let F_i denote the pullback of $F_{\rho,x}$ to $X_{\overline{k}}$. Proposition 2 shows there is a sequence of bundles F_k on $X_{\overline{k}}$ so that $F_k^{(p)} \cong F_{k-1}$.

LEMMA 5. – If $g \leq p^{k-1}$, then the F_k above is semi-stable.

Proof. — Suppose F_k were not semi-stable. Then F_k would have a quotient bundle of negative degree. Thus $F_1 = F_k^{(p^{k-1})}$ would have a quotient bundle L' of degree at most $-p^{k-1}$. Then there is a non-zero map φ from either L or L⁻¹ to L'. The degree of L is g-1, and so φ cannot exist if $g-1 < p^{k-1}$.

Proof of Theorem 1. — It suffices to show that for each g > 1 and each algebraically closed field k of characteristic p, there is a stable curve of genus g over k[[t]] whose generic fiber is smooth and geometrically connected, and whose special fiber is k-split degenerate. Let X_0 be a rational curve over k with g nodes. There is a complete regular local ring B of characteristic p with residue field k and a lifting X of X_0 to Spec B

^{4°} série — томе 6 — 1973 — Nº 1

so that the generic fiber of X is smooth and connected [1]. Pulling back by a suitably generic map of Spec k[[t]] to Spec B gives the desired curve.

Finally, we give two consequences of Theorem 1.

COROLLARY 1. — For each prime p > 0 and integer g > 1, there is a smooth curve X of genus g over an algebraically closed field k of characteristic p and a semi-stable bundle E so that $S^{p}(E)$ is not semi-stable.

Proof. — $E^{(p)}$ is a subbundle of $S^{p}(E)$, and the degree of $S^{p}(E)$ is zero, where E is the bundle of Theorem 1.

Remark. — Hartshorne has shown that in characteristic zero, every symmetric power of a semi-stable bundle is semi-stable [3].

COROLLARY 2. — For each prime p > 0 and integer g > 1, and each positive integer $n < \frac{g-1}{p}$, there is a semi-stable bundle of rank 2 and degree 2n on a curve of genus g which is not ample.

Proof. — If E is the bundle of Theorem 1, consider $E \otimes L$, where L is a line bundle of degree *n*. $(E \otimes L)^{(p)}$ has a quotient of non-positive degree, so $E \otimes L$ is not ample.

It is known that if deg $E > \frac{2g-2}{p}$, and E is semi-stable of rank two, then E is ample [4].

REFERENCES

- P. DELIGNE and D. MUMFORD, The Irreducibility of the Space of Curves of Given Genus (Publ. Math. I. H. E. S., No. 36, 1969).
- [2] D. GIESEKER, Flat Vector Bundles and the Fundamental Group in Non-zero Characteristics.
- [3] R. HARTSHORNE, Ample Vector Bundles on Curves (Nagoya Math. J., vol. 43, p. 73-90).
- [4] R. HARTSHORNE, Ample Vector Bundles (Publ. Math. I. H. E. S., No. 29, 1966).
- [5] D. MUMFORD, An Analytic Construction of Degenerating Cuvves over Complete Local Rings (Math. Notes, University of Warwick).
- [6] H. TANGO, On the Behavior of Extensions of Vector Bundles under Frobenius Map (Nagoya Math. J., vol. 48, 1972).

(Manuscrit reçu le 6 novembre 1972.)

D. GIESEKER, Columbia University, Department of Mathematics, New York, N. Y. 10027, U. S. A.