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Abstract. We prove that, on Z
d , random walks in i.i.d. Dirichlet environment – or equivalently oriented-edge reinforced random

walks – have almost surely an asymptotic direction equal to the direction of the initial drift, i.e. Xn‖Xn‖ converges to Eo[X1]‖Eo[X1]‖
as n → ∞, unless this drift is zero. This is obtained by generalizing the result of directional transience from (Ann. Inst. Henri
Poincaré Probab. Stat. 47 (2011) 1–8). In addition, we identify the exact value or distribution of certain probabilities, answering
and generalizing a conjecture of that paper.

Résumé. On démontre que, dans Zd , les marches aléatoires en milieu aléatoire i.i.d. de Dirichlet – ou, de façon équivalente, les
marches renforcées par arêtes orientées – ont presque sûrement une direction asymptotique égale à la direction de la dérive initiale,
c’est-à-dire que Xn‖Xn‖ converge vers Eo[X1]‖Eo[X1]‖ quand n → ∞, à moins que cette dérive soit nulle. Ceci est obtenu en généralisant
le résultat de transience directionnelle de (Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011) 1–8). De plus, on explicite la valeur
ou la loi de certaines probabilités, ce qui démontre et généralise une conjecture de ce dernier article.
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1. Introduction

Presentation of the model. Let d ≥ 1, and denote by (�e1, . . . , �ed) the canonical basis of Rd . Define the set

V := {�e1,−�e1, . . . , �ed,−�ed} ⊂ Z
d,

which will be used as possible steps, and assume we are given weights α�e > 0, for �e ∈ V .
Consider now the directed graph Z

d whose oriented edges are the pairs e = (x, y) such that �e := y −x is an element
of V , endowed with (initial) weight

αe := α�e

and, for x ∈ Zd , define the law P
(α)
x of a random walk (Xn)n≥0 on this graph in the following way: P

(α)
x -a.s., X0 = x,

and for every time n ∈N and every edge e starting at Xn,

P (α)
x

(
(Xn,Xn+1) = e|X0, . . . ,Xn

) = αe + Nn(e)∑
f :f =Xn

αf + Nn(f )
, (1.1)

where for every edge e we let e =: (e, e) and

Nn(e) := #
{
0 ≤ i < n: (Xi,Xi+1) = e

}
.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
http://dx.doi.org/10.1214/13-AIHP582
mailto:tournier@math.univ-paris13.fr


Asymptotic direction of random walks in Dirichlet environment 717

Under P
(α)
x , (Xn)n≥0 is called the oriented-edge reinforced random walk (or more specifically the oriented-edge

linearly reinforced random walk) with initial weights (αe)e , started at x.
Due to the embedding of an independent Polya urn at each vertex and to a de Finetti property, this model admits

an equivalent representation as a random walk in an i.i.d. random environment given by Dirichlet random variables.
Let us give a more precise statement. An environment is an element ω = (ωx(·))x∈Zd of Ω := PZ

d
where P is the

simplex of probabilities on V :

P :=
{(

ω(�e))�e∈V : ω(�e) ≥ 0,
∑
�e∈V

ω(�e) = 1

}
.

Given a starting point x ∈ Z
d and such an environment ω, we may view ω as a set of transition probabilities (where

ωz(�e) is the transition probability from z to z + �e) and define P ω
x to be the law of the Markov chain starting at x with

transition probabilities given by ω: for all n ∈ N and �e ∈ V ,

P ω
x (Xn+1 = Xn + �e|X0, . . . ,Xn) = ωXn(�e).

Finally, recall that the Dirichlet distribution D(α) on P with parameters α = (α�e)�e∈V is the continuous probability
distribution on P given by

D(α) := �(
∑

�e∈V α�e)∏
�e∈V �(α�e)

∏
�e∈V

p
α�e−1
�e dλ(p),

where λ is the Lebesgue measure on the simplex P , and denote by P
(α) = (D(α))⊗Z

d
the law of an environment made

of i.i.d. Dirichlet marginals. Then we have the following identity (cf. [4] for instance):

P (α)
x (·) =

∫
P ω

x (·)dP(α)(ω).

This representation constitutes the specificity of oriented-edge linear reinforcement and has been the starting point
to prove several sharp results, in contrast to the still very partial understanding of either random walks in random
environment or reinforced random walks in two and more dimensions.

Context. Let us give a very brief account of the known results regarding transience before stating our result. We
focus on the non-symmetric case, i.e. when the weights are such that the mean drift

�Δ := E(α)
o [X1] = 1

Σ

∑
�e∈V

α�e�e

is non-zero, where Σ = ∑
�e∈V α�e .

In any dimension, Enriquez and Sabot [5] gave the first result that was specific to Dirichlet environments, namely a
sufficient ballisticity condition and bounds on the speed, later improved in [12]. On the other hand, non-ballistic cases
are known to occur when weights are sufficiently small, due to the non-uniform ellipticity of the Dirichlet law (cf.
[12]). Yet, under the only assumption of non-symmetry ( �Δ �= �0) – and thus for both ballistic and zero-speed cases –,
Sabot and the author [10] showed that the random walk is transient in the direction of a basis vector with positive
probability.

In dimension at least 3, Sabot [8] proved the transience of these random walks (including in the symmetric case)
and (in [9]) gave a characterization of the ballistic regime (viz., ballisticity occurs when �Δ �= �0 and the exit time
from any edge is integrable, i.e. ∀�e ∈ V , 2Σ − α�e − α−�e > 1). Finally, Bouchet [1] recently proved that the meth-
ods of [9] extend to non-ballistic cases up to an acceleration of the walk, which implies a 0–1 law for directional
transience.
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1.1. Results on directional transience and asymptotic direction

Theorem 1. Assume �Δ �= �0. For any �u ∈ R
d with rational slopes such that �u · �Δ > 0,

P (α)
o (Xn · �u−→

n
+∞) > 0.

This theorem was proved in [10] in the case when �u = �ei . The interest in the present refinement lies in the corollary
below, obtained by combining the theorem with the 0–1 laws of [6] (d = 2) and of the recent [1] (d ≥ 3) together with
the main result of [11]. (Details follow.)

Corollary 1. Assume �Δ �= �0. Then, P
(α)
o -a.s., the walk has an asymptotic direction that is given by the direction of

the mean drift:

Xn

‖Xn‖ −→
n

�Δ
‖ �Δ‖ , P (α)

o -a.s.

Remarks.

– In [5], Enriquez and Sabot gave an expansion of the speed as γ → ∞ when the parameters are α
(γ )

i := γ αi , and
noticed that the second order was surprisingly colinear to the first one, i.e. to �Δ. This is not anymore a surprise
given the above corollary; but this highlights the fact that the simplicity of the corollary comes as a surprise itself.
Correlations between the transition probabilities at one site indeed affect the speed (cf. for instance [7]), and thus
the speed of a random walk in random environment is typically not expected to be colinear with the mean drift, if
not for symmetry reasons.

– The theorem does actually not depend on the graph structure of Zd besides translation invariance, meaning that
the result also holds for non-nearest neighbour models: we may enable V to be any finite subset of Zd , and the
proof is written in such a way that it covers this case. The same is true for the main results of [1] and [11] with
little modification, hence the corollary also generalizes in this way in dimension ≥ 3. The intersection property for
planar walks used in [6] may however fail if jumps are allowed in such a way that the graph is not anymore planar.
But if it is planar, then the proof carries closely. This includes in particular the case of the triangular lattice (by
taking V = {±�e1,±�e2,±(�e1 + �e2)}).

– Using the above-mentioned 0–1 laws, the probability in the theorem equals 1 and the rationality assumption is
readily waived; the theorem was stated this way in order to keep its proof essentially contained in the present paper,
in contrast to its corollary.

– As a complement to the theorem, note that Statement (d) of Theorem 1.8 of [3] (together with Lemma 4 of [6])
implies that in any dimension, when �u · �Δ = 0, P

(α)
o -a.s., lim supn Xn · �u = +∞ and lim infn Xn · �u = −∞. In

dimension at least 3, this is showed in [1] as well.
– Theorem 2 of [1] also implies the existence of a deterministic yet unspecified asymptotic direction in dimension at

least 3. Further remarks regarding the derivation of the corollary from the theorem are deferred to the end of the
proof.

1.2. New identities

The proof of Theorem 1 goes through proving a lower bound on the probability that the walk never leaves the half-
space {x: x · �u ≥ 0}. In the next theorem, this lower bound is proved to be an equality.

Although the result admits a simple statement in some interesting cases (cf. (1.5) on page 720), we need to introduce
further notation to deal with general directions.

Let �u ∈ Rd be a vector with rational slopes such that �u · �Δ > 0. Due to periodicity, the “discrete half-space”
{x ∈ Z

d : x · �u ≥ 0} only has finitely many different entry points modulo translation. We shall denote by H0 an
arbitrary set of representative entry points and by μ (= μ(α,�u)) the probability measure on H0 which makes μ(x)

proportional to the total weight that enters vertex x from outside of the previous half-space. Let us alternatively give
more formal definitions now.
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Up to multiplication by a positive number, we may assume �u ∈ Zd . We extend �u into a basis (�u, �u2, . . . , �ud) chosen
in such a way that �ui ⊥ �u and �ui ∈ Z

d for all i. Since the “discrete half-spaces”

Ax := {
y ∈ Z

d : y · �u ≥ x · �u}
satisfy Ax = Ax±�ui

for all i ≥ 2, Ax takes only finitely many different values when x is in the “discrete hyperplane”

H := {
x ∈ Z

d : ∃�e ∈ V, (x − �e) · �u < 0 ≤ x · �u}
,

namely for instance each of the values obtained when x belongs to the finite set

H0 := H ∩ (
R+�u + [0, �u2) + · · · + [0, �ud)

)
.

We then define the probability measure μ (= μ(α,�u)) on H0 as follows: for all x ∈H0,

μ(x) := 1

Z

∑
�e∈V :

(x−�e)·�u<0

α�e, (1.2)

where Z is a normalizing constant (we have Z > 0 because �Δ · �u > 0).
Let us also define a quenched analogue to μ. We enlarge Ω by adding a component ω(∂, ·) to each environment

ω, where ω(∂, ·) is a probability distribution on H0. And we extend P(α) so that ω(∂, ·) is independent of (ωx(·))x∈Zd

and follows a Dirichlet distribution of parameters( ∑
�e∈V :

(x−�e)·�u<0

α�e
)

x∈H0

.

Note that, for x ∈H0,

μ(x) =
∫

ω(∂, x)dP(α)(ω).

Theorem 2. Assume that �Δ �= �0 and �u is a vector of Rd with rational slopes such that �u · �Δ > 0. Then the following
identity holds:

P (α)
μ (∀n ≥ 0,Xn · �u ≥ 0) = 1 − E

(α)
o [(X1 · �u)−]

E
(α)
o [(X1 · �u)+]

. (1.3)

For the walk inside the cylinder

C := Z
d/(Z�u2 + · · · +Z�ud),

the previous identity also holds, as well as the following one involving distributions:

L
P(α)

(
P ω

ω(∂,·)(∀n ≥ 0,Xn · �u ≥ 0)
) = Beta

( ∑
x∈H0,�e∈V :
(x±�e)·�u<0

∓α�e,
∑

x∈H0,�e∈V :
(x+�e)·�u<0

α�e
)

, (1.4)

where LP(X) denotes the law under probability P of a random variable X and Beta(·, ·) is the usual Beta distribu-
tion.
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Remarks.

– The distribution of X1 under P
(α)
o is simply given by the initial weights, normalized, hence (1.3) is fully explicit.

This also follows from taking the expectation of the law in (1.4) (the expectation of Beta(a, b) is a
a+b

).
– The case �u = �e1 with nearest-neighbour jumps admits a simple expression. Indeed, H0 = {0} hence the results read

as follows: if α1 > α−1,

P (α)
o (∀n ≥ 0,Xn · �e1 ≥ 0) = 1 − α−1

α1
(1.5)

(as conjectured in [10]), and on the cylinder Z× T with T = Z
d−1/(Z�v2 + · · · + Z�vd) for some basis (�v2, . . . , �vd)

of Rd−1 with integer coordinates,

L
P(α)

(
P ω

ω(∂,·)(∀n ≥ 0,Xn · �e1 ≥ 0)
) = Beta

(
(α1 − α−1)#T, α1#T

)
,

where, under P(α), ω(∂, ·) follows a Dirichlet distribution on {0} ×T with all parameters equal to α1.
– In dimension 1, the identities already follow from [10] in a simple way. Note that they are not trivial even in this

case: the quenched identity actually dates back to [2] where it was proved in a completely different way.
– Mild variations of the proof also provide other identities, as for instance

E(α)
μ

[
T̃ �u

0 |T̃ �u
0 < ∞] = E(α)

μ

[
T �u

0

] + 1 − E
(α)
o [(X1 · �u)+]

E
(α)
o [(X1 · �u)−]

or, for all L ∈N such that L‖�u‖ > ‖�e‖ for all �e ∈ V ,

P
(α)
μ (T̃ �u

0 < T �u
L )

P
(α)
μ (T �u

0 < T̃ �u−L)
= E

(α)
o [(X1 · �u)−]

E
(α)
o [(X1 · �u)+]

, (1.6)

where, for L ∈ Z, we defined the projected hitting times

T �u
L := inf

{
n: Xn · �u > L‖�u‖2} and T̃ �u

L := inf
{
n: Xn · �u < L‖�u‖2}.

2. Proof of Theorem 1: Directional transience

The proof, like [10], uses a time reversal property from [8] (re-proved in a more probabilistic way in [10]). To keep
the present proof more self-contained, and for the sake of introducing some notation, we recall the following very
elementary (yet powerful) lemma that sums up the only aspect of this property that we will use later. This is Lemma 1
of [10].

Lemma 1. Let G = (V ,E) be a directed graph, endowed with positive weights (αe)e∈E . We denote by Ǧ = (V , Ě) its
reversed graph, i.e. Ě := {ě := (e, e): e = (e, e) ∈ E}, endowed with the weights α̌ě := αe. Assume that div(α) = 0,
i.e., for every x ∈ V ,

αx :=
∑

e:e=x

αe =
∑

e:e=x

αe =: α̌x .

Then, for any closed path σ = (x0, x1, . . . , xn−1, x0) in G, letting σ̌ := (x0, xn−1, . . . , x1, x0) denote its reverse (in
Ǧ), we have

P (α)
x0

(
(X0, . . . ,Xn) = σ

) = P (α̌)
x0

(
(X0, . . . ,Xn) = σ̌

)
,

where the laws of oriented-edge reinforced random walks on G or Ǧ are defined as in (1.1).
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Proof. From the definition of P
(α)
x0 we get

P (α)
x0

(
(X0, . . . ,Xn) = σ

) =
∏

e∈E αe(αe + 1) · · · (αe + ne(σ ) − 1)∏
x∈V αx(αx + 1) · · · (αx + nx(σ ) − 1)

,

where ne(σ ) (resp. nx(σ )) is the number of crossings of the oriented edge e (resp. the number of visits of the vertex x)
in the path σ . Cyclicity gives ne(σ ) = ně(σ̌ ) and nx(σ ) = nx(σ̌ ) for all e ∈ E,x ∈ V . Furthermore we have by
assumption α̌x = αx for every vertex x, and by definition αe = α̌ě for every edge e. This shows that the previous
product matches the similar product with Ě, α̌ and σ̌ instead of E, α and σ , hence the lemma. �

Let us turn to the proof of Theorem 1. Assume �Δ �= �0, and let �u be a vector with rational slopes such that �Δ · �u > 0.
We make use of the notations introduced before Theorem 2. As in the Introduction, up to multiplication by a

constant, we may assume that �u ∈ Z
d , and also that ‖�u‖ ≥ ‖�e‖, ∀�e ∈ V (we may have ‖�e‖ > 1, cf. the second remark

after the corollary). Remember that (�u, �u2, . . . , �ud) is a basis such that �ui ∈ Z
d and �ui ⊥ �u for all i.

Let us consider the event D := {∀n ≥ 0,Xn · �u ≥ 0}, and define a finite graph that will enable us to bound
P

(α)
μ (D) := ∑

x∈H0
μ(x)P

(α)
x (D) from below.

Let N,L ∈ N
∗. We first consider the cylinder

CN,L := {
x ∈ Z

d : 0 ≤ x · �u ≤ L‖�u‖2}/(NZ�u2 + · · · + NZ�ud),

i.e. the slab {0 ≤ x · �u ≤ L‖�u‖2} ∩ Z
d where vertices that differ by N �ui for some i ∈ {2, . . . , d} are identified. Let R

denote its “right” end, i.e.

R := {
x ∈ Z

d : ∃�e ∈ V, x · �u ≤ L‖�u‖2 < (x + �e) · �u}
/(NZ�u2 + · · · + NZ�ud) ⊂ CN,L

(note that the inclusion holds for small L due to the constraint ‖�u‖ ≥ ‖�e‖) and similarly L ⊂ CN,L for the “left” end.
We may now define the finite graph GN,L (refer to Fig. 1 for an example in Z

2). Its vertex set is

VN,L := CN,L ∪ {R,∂},
where R and ∂ are new vertices, and the edges of GN,L are of the following types:

(a) edges induced by those of Zd inside CN,L;
(b) edges from (resp. to) the vertices of L to (resp. from) ∂ , corresponding to the edges of Zd exiting (resp. entering)

the cylinder “through the left end”;
(c) edges from (resp. to) the vertices of R to (resp. from) R, corresponding to the edges of Zd exiting (resp. entering)

the cylinder “through the right end”;
(d) a new edge from R to ∂ .

Note that in (b) and (c) several edges may connect two vertices, and that in (d) no edge goes from ∂ to R. We also
introduce weights α

N,L
e on the edges of GN,L as follows (invoking the translation invariance of the weights in Z

d ):

– edges defined in (a), (b) and (c) have the weight of the corresponding edge in Z
d ;

– the edge from R to ∂ has weight

α
N,L
(R,∂) :=

( ∑
x∈R,�e∈V :
x+�e/∈CN,L

α�e
)

−
( ∑

x∈L,�e∈V :
x+�e/∈CN,L

α�e
)

.

By construction, we have divαN,L = 0. The main point to check however is that α
N,L
(R,∂) is positive.

Due to periodicity, both L and R decompose into Nd−1 subsets which are mapped to H0 by translations and we
have, by gathering terms by value of the index �e,

α
N,L
(R,∂) = Nd−1 Area(�u2, . . . , �ud)

∑
�e∈V

(
Φ�u(�e) − Φ−�u(�e)

)
α�e,
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Fig. 1. Graph GN,L for �u = 2�e1 + �e2 (boundary conditions in direction �u2 are periodic).

where Area(�u2, . . . , �ud) = |det(�u,�u2,...,�ud)|
‖�u‖ is the (d − 1)-volume of the hypersurface [0, �u2] + · · · + [0, �ud ] and Φ�u(�e)

is the flux of �e through the oriented hyperplane �u⊥:

Φ�u(�e) := 1

Nd−1 Area(�u2, . . . , �ud)
#{x ∈R: x + �e /∈ CN,L}

= 1

Area(�u2, . . . , �ud)
#
({

x ∈ Z
d : x · �u ≤ 0 < (x + �e) · �u}

/(Z�u2 + · · · +Z�ud)
)
.

Clearly Φ�u(�e) is zero if �u · �e ≤ 0 and otherwise it is a simple geometric fact that the last cardinality above equals the
volume of the parallelotope on the vectors �e, �u2, . . . , �ud . Indeed, this cardinality is also the number of lattice points in
the torus Rd/(Z�e +Z�u2 + · · · +Z�ud), and this torus can be partitioned into the unit cubes x + [0,1)d indexed by the
lattice points x in it. Hence in any case

Φ�u(�e) = Vol(�e, �u2, . . . , �ud)

Area(�u2, . . . , �ud)
1(�u·�e>0) =

( �u
‖�u‖ · �e

)
+
.

This gives

α
N,L
(R,∂) = Nd−1 Area(�u2, . . . , �ud)

∑
�e∈V

(( �u
‖�u‖ · �e

)
+

−
(

− �u
‖�u‖ · �e

)
+

)
α�e

= Nd−1 Area(�u2, . . . , �ud)
∑
�e∈V

( �u
‖�u‖ · �e

)
α�e

= Nd−1 Area(�u2, . . . , �ud)
�u

‖�u‖ · Σ �Δ

therefore finally α
N,L
(R,∂)

> 0 since �u · �Δ > 0, as expected.
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NB. The above computation also shows that, introducing a new notation,

α
N,L
(L,∂)

:=
∑
x∈L

α
N,L
(x,∂) =

∑
x∈L,�e∈V :
x−�e/∈CN,L

α�e = Nd−1 Area(�u2, . . . , �ud)
∑
�e∈V

(
− �u

‖�u‖ · �e
)

+
α�e,

hence in particular

α
N,L
(L,∂)

α
N,L
(R,∂)

=
∑

�e∈V (−�u · �e)+α�e∑
�e∈V (�u · �e)α�e

= E
(α)
o [(X1 · �u)−]
E

(α)
o [X1 · �u]

. (2.1)

Since the weighted graph GN,L is now well defined, let us resume the proof. If the walk starts from X0 = ∂ , then
we have X1 = Z(mod �u2, . . . , �ud) where Z has law μ (defined in (1.2)). Using translation invariance with respect to
vectors �u2, . . . , �ud , and the fact that, starting at ∂ , the event {HR < H+

∂ } (where H stands for hitting time and H+ for
positive hitting time) only depends on the walk before its first return in ∂ – and thus not on the reinforcement of the
very first edge – we deduce, considering μ as a law on (a subset of) L,

P (αN,L)
μ (HR < H∂) = P

(αN,L)
∂ (HR ◦ θ1 < H∂ ◦ θ1) = P

(αN,L)
∂

(
HR < H+

∂

)
(2.2)

(using θ to denote time shift) and thus, by simple inclusion of events,

P (αN,L)
μ (HR < H∂) ≥ P

(αN,L)
∂ (XH∂−1 = R).

The last event is the probability that the walk follows a cycle in a given family (namely cycles going through ∂ only
once and containing the edge (R, ∂)). Applying Lemma 1 to every such cycle and summing up, we get (using (2.1)
for the last equality)

P
(αN,L)
∂ (XH∂−1 = R) = P

(α̌N,L)
∂ (X1 = R)

= α
N,L
(R,∂)

α
N,L
(R,∂)

+ α
N,L
(L,∂)

= E
(α)
o [X1 · �u]

E
(α)
o [(X1 · �u)+]

.

This lower bound is positive and uniform with respect to L and N . We may rewrite the result as

P (αN,L)
μ (HR < H∂) ≥ 1 − E

(α)
o [(X1 · �u)−]

E
(α)
o [(X1 · �u)+]

.

Letting N and then L go to infinity as in [10] (applied to each of the finitely many possible values of X0 in H0) we
get, in Z

d ,

P (α)
μ (∀n ≥ 0,Xn · �u ≥ 0) ≥ 1 − E

(α)
o [(X1 · �u)−]

E
(α)
o [(X1 · �u)+]

hence, by translation invariance of P
(α)
o and then Kalikow’s 0–1 law together with Lemma 4 of [6] (which shows that

the walk cannot stay in a slab),

P (α)
o (Xn · �u−→

n
+∞) = P (α)

μ (Xn · �u−→
n

+∞) ≥ P (α)
μ (∀n ≥ 0,Xn · �u ≥ 0) ≥ 1 − E

(α)
o [(X1 · �u)−]

E
(α)
o [(X1 · �u)+]

> 0.

This is the content of Theorem 1.
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3. Proof of the Corollary 1: Asymptotic direction

Recall from the introduction that oriented-edge reinforced random walks are also random walks in Dirichlet environ-
ment. Due to the 0–1 law of Zerner and Merkl [6] (cf. also [13]) in dimension 2 (for random walks in elliptic random
environment), and of Bouchet [1] in dimension at least 3 (for random walks in Dirichlet environment), the result of
Theorem 1 turns into: for any �u ∈ R

d with rational slopes and such that �u · �Δ > 0,

Xn · �u−→
n

+∞, P (α)
o -a.s. (3.1)

Note that the set of directions �u ∈ R
d such that (3.1) holds also has to be convex, therefore it contains the whole

half-space {�u ∈ R
d : �u · �Δ > 0}.

By Theorem 1 of [11], there exists a direction �ν ∈ S
d−1 such that

Xn

‖Xn‖ −→
n

�ν, P (α)
o -a.s.

On the other hand, this direction must satisfy �ν · �u ≥ 0 for every �u that satisfies (3.1), hence in particular for every �u
such that �Δ · �u > 0. This fully characterizes �ν, which therefore has to be

�ν = �Δ
‖ �Δ‖ .

Remarks.

– We may derive a much weaker result in dimension at least 3 without resorting to the Dirichlet 0–1 law from [1],
namely that an asymptotic direction exists, although it remains unidentified, and possibly random (two-valued).
Indeed, by the 0–1 law of Kalikow (in its elliptic version proved in [6]) and Theorem 1.8 of [3], there exists
�ν ∈ S

d−1 and an event A such that, almost-surely,

Xn

‖Xn‖ −→
n

(1A − 1Ac)�ν

but identifying �ν from Theorem 1 is hindered by the restriction to rational slopes due to the possible non-convexity
of the set of directions �u of transience (i.e. satisfying the theorem).

– In dimension at least 3, since [1] already proves the existence of an asymptotic direction, an alternative derivation
of the corollary without [11] would consist in using Theorem 1 in the proof of Theorem 2 of [1] instead of referring
to [10].

4. Proof of Theorem 2: Identities

4.1. Annealed identity

Let N,L ∈ N
∗. Let us make use of the definitions involved in the proof of Theorem 1, in particular the graph GN,L,

and apply Lemma 1 to a different family of cycles.
As in (2.2), we have

P (αN,L)
μ (HR < H∂) = P

(αN,L)
∂

(
HR < H+

∂

) = 1 − P
(αN,L)
∂

(
H+

∂ < HR

)
.

The last event is the probability that the walk follows a cycle in a given family (namely cycles that pass through
∂ exactly once and don’t visit R). Note that this set of cycles is globally invariant by change of orientation. Thus,
applying Lemma 1 to every such cycle and summing up, we get

P
(αN,L)
∂

(
H+

∂ < HR

) = P
(α̌N,L)
∂

(
H+

∂ < HR

)
.
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The edge (∂,R) is in Ǧ, hence we may decompose the event on the right as follows: the first step is different from R,
and then the walk comes back to ∂ before reaching R. Since the edge (∂,X1) is not involved in the second part, these
events are independent and we have

P
(α̌N,L)
∂

(
H+

∂ < HR

) = P
(α̌N,L)
∂ (X1 �= R)P

(α̌N,L)

μ̌
(H∂ < HR),

where μ̌ is defined like μ with respect to α̌ instead of α. First, using (2.1) for the last equality,

P
(α̌N,L)
∂ (X1 �= R) = 1 − α(R,∂)

α(R,∂) + α(L,∂)

= E
(α)
o [(X1 · �u)−]

E
(α)
o [(X1 · �u)+]

.

Gathering everything, we obtain

P (αN,L)
μ (HR < H∂) = 1 − E

(α)
o [(X1 · �u)−]

E
(α)
o [(X1 · �u)+]

(
1 − P

(α̌N,L)

μ̌
(HR < H∂)

)
.

Letting N , then L go to infinity as in [10], we get

P (α)
μ (∀n ≥ 0,Xn · �u ≥ 0) = 1 − E

(α)
o [(X1 · �u)−]

E
(α)
o [(X1 · �u)+]

(
1 − P

(α̌)

μ̌
(∀n ≥ 0,Xn · �u ≥ 0)

)
.

However, by central symmetry,

P
(α̌)

μ̌
(∀n ≥ 0,Xn · �u ≥ 0) = P

(α)

μ̌
(∀n ≥ 0,Xn · �u ≤ 0)

and the latter event has probability 0 because of Theorem 1 combined to a 0–1 law (namely that of [6] in dimension
2, and of [1] in dimension ≥ 3). This concludes.

4.2. Quenched identity on a cylinder

Let us first recall the quenched version of Lemma 1, for which we refer to [8] or [10].

Lemma 2. Let G = (V ,E) be a finite directed graph, endowed with positive weights (αe)e∈E . Recall notations from
Lemma 1. To any environment ω on G, we also associate its reverse ω̌ defined by ω̌ě = π(e)

π(e)
ωe for all e ∈ E, where π

is the invariant measure for ω. Assume that div(α) = 0. Then L
P(α) (ω̌) = P

(α̌).

Let us follow the same steps as for the annealed identity, now with fixed N = 1, which we omit from indices.
Let L ∈ N

∗. We have, for any environment ω on GL,

P ω
ω(∂,·)(HR < H∂) = P ω

∂ (HR < H∂) = 1 − P ω
∂

(
H+

∂ < HR

)
.

Furthermore, the latter event involves cycles and, considering the reversed cycles, we have

P ω
∂

(
H+

∂ < HR

) = P ω̌
∂

(
H+

∂ < HR

)
,

as a consequence of two facts: first, the set of cycles in the left event is globally unchanged after reversal, and second
the probability of a cycle in ω is equal to the probability of its reverse in ω̌, as a consequence of the definition of ω̌.

For any environment ω on GL, ω̌ is an environment on ǦL hence we may decompose as before, applying Markov
property at time 1,

P ω̌
∂

(
H+

∂ < HR

) = (1 − ω̌(∂,R))P
ω̌
ω̌(∂,·)|L(H∂ < HR),
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where ω̌(∂, ·)|L is the law of X1 under P ω̌
∂ conditioned on {X1 �= R}. By Lemma 2, under P(αL), ω̌ ∼ P

(α̌L). As a

consequence, and because of the “restriction property” of Dirichlet distribution (cf. for instance [12]), under P(αL),
1 − ω̌(∂,R) is independent of ω̌(∂, ·)|L and the latter follows a Dirichlet distribution with parameters α̌(∂,·). On the

other hand, under P(αL),

1 − ω̌(∂,R) ∼ Beta(α̌(∂,L), α̌(∂,R)) = Beta(α(L,∂), α(R,∂)),

which is the distribution in (1.4).
Gathering everything, we obtain that the law under P(αL) of P ω

ω(∂,·)(HR < H∂) is the same as the law of

1 − (1 − ω(R,∂))
(
1 − P ω

ω(∂,·)(HR < H∂)
)

(4.1)

under P(α̌L) (note that here ω is an environment on Ǧ). Although this is not necessary to conclude, we may note that
the two factors are independent, because the paths involved in the last event don’t go out of vertex R.

As was noticed in the annealed proof, when L goes to infinity, the expectation under P(α̌L) of the last probability
in (4.1) goes to P

(α)

μ̌
(∀n,Xn · �u ≤ 0) = 0, hence the last probability under P(α̌L) goes to 0 in L1 and thus in law. On

the other hand, the law of ω(R,∂) under P(α̌L) was shown above to be the Beta distribution from (1.4), and thus does
not depend on L.

We conclude that the law under P(αL) of P ω
ω(∂,·)(HR < H∂) converges to the Beta distribution given in (1.4). This

is the expected conclusion since, on the other hand, these quenched probabilities for growing L can be expressed on
the same cylinder C and thus seen to converge as L → ∞:

P ω
ω(∂,·)(HR < H∂) = P ω

ω(∂,·)
(
T �u

L < T̃ �u
0

) −→
L→∞P ω

ω(∂,·)
(
∀n,Xn · �u ≥ 0, and lim sup

n
Xn · �u = +∞

)
.

As before, the event {lim supn Xn · �u = +∞} is P(α)-a.s. included in {∀n,Xn · �u ≥ 0} because of Lemma 4 of [6].
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