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Abstract. We consider random walks in strong-mixing random Gibbsian environments in Z
d , d ≥ 2. Based on regeneration argu-

ments, we will first provide an alternative proof of Rassoul-Agha’s conditional law of large numbers (CLLN) for mixing environ-
ment (Electron. Commun. Probab. 10 (2005) 36–44). Then, using coupling techniques, we show that there is at most one nonzero
limiting velocity in high dimensions (d ≥ 5).

Résumé. Nous considérons des marches aléatoires dans un environnement Gibbsien fortement mélangeant dans Z
d , d ≥ 2.

A l’aide d’arguments de renouvellement, nous donnons d’abord une preuve alternative de la loi conditionnelle des grands nombres
de Rassoul-Agha (Electron. Commun. Probab. 10 (2005) 36–44) pour des environnements mélangeants. Ensuite, par des méthodes
de couplage, nous montrons qu’il existe au plus une vitesse limite non nulle en grande dimension (d ≥ 5).
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1. Introduction

An environment is an element ω = {ω(x, e)}x∈Zd ,|e|=1 of Ω = MZ
d
, where M is the space of probability measures

on {e ∈ Z
d : |e| = 1} and | · | denotes the Euclidean norm. The random walk in the environment ω ∈ Ω started at x is

the canonical Markov chain (Xn) on (Zd)N, with state space Z
d and law P x

ω specified by

P x
ω {X0 = x} = 1,

P x
ω {Xn+1 = y + e|Xn = y} = ω(y, e), e ∈ Z

d, |e| = 1.

Let P be a stationary (with respect to the shifts in Z
d ) probability measure on Ω . The joint law of the environment

and the walks is denoted by Px = P ⊗ P x
ω . We also write Po as P, where o denotes the origin. We say that the random

environment is i.i.d. if P is a product measure. We say that P is uniformly elliptic if there is a constant κ ∈ (0,1/2d)

such that P -almost surely,

ω(o, e) > κ for all e ∈ Z
d with |e| = 1.

For any vector � ∈ Sd−1, we let

A� =
{

lim
n→∞Xn · � = ∞

}
.
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In recent years, much progress has been made in the study of the limiting velocity limn→∞ Xn/n of random walks
in random i.i.d. environment, see [12] for a survey. For one-dimensional RWRE, the law of large numbers (LLN)
is well known (see [10]). For d ≥ 2, a conditional law of large numbers (CLLN) is proved in [11,13] (see [12],
Theorem 3.2.2, for the full version), which states that P-almost surely, for any direction �,

lim
n→∞

Xn · �
n

= v�1A�
− v−�1A−�

(CLLN)

for some deterministic constants v� and v−� (we set v� = 0 if P(A�) = 0). Moreover, for d = 2, the LLN follows from
combining the CLLN and Zerner and Merkl’s 0–1 law [14] for two-dimensional RWRE: for any direction �,

P(A�) ∈ {0,1}.
When d ≥ 3, the 0–1 law and the LLN are among the main open questions in the study of RWRE. Nevertheless, in
high dimension (d ≥ 5), Berger [1] showed that the limiting velocity can take at most one non-zero value, i.e.,

v�v−� = 0. (1)

The purpose of this paper is to extend the CLLN and Berger’s result (1) to the case when the environments on dif-
ferent sites are allowed to be dependent. Of special interest is the environment that is produced by a Gibbsian particle
system (which we call the Gibbsian environment) and satisfies Dobrushin-Shlosman’s strong-mixing condition IIIc in
[4], p. 378, see [2,3,6–8] for related works. For the definition of the Gibbsian environment and the strong-mixing con-
dition [6], (6.1), see [6], pp. 1454–1455. An important feature of this model is that the influence of the environments
in remote locations decays exponentially as the distance grows.

In [6], assuming a ballisticity condition (Kalikow’s condition) which implies that the event of escape in a direction
has probability 1, Rassoul-Agha proved the LLN for the strong-mixing Gibbsian environment, using the invariant
measure of the “environment viewed from the point of view of the particle” process. In [8], Rassoul-Agha also ob-
tained a CLLN for the strong-mixing Gibbsian environment, under an analyticity condition (see Hypothesis (M) in
[8]). Comets and Zeitouni proved the LLN for environments with a weaker cone-mixing assumption (A1) in [2], but
under some conditions about ballisticity and the uniform integrability of the regeneration times (see (A5) in [2]).

Our first purpose is to prove the CLLN for random walks in the strong-mixing Gibbsian environment. Display (2)
in Theorem 2 is a minor extension of Rassoul-Agha’s CLLN in [8], in which he assumes slightly more than strong-
mixing. Yet, our proof is very different from the proof in [8], which is based on a large deviation principle in [7].
The main contribution of our proof of (2) is a new definition of the regeneration structure, which enables us to divide
a random path in the mixing environment into “almost i.i.d.” parts. With this regeneration structure, we will use the
“ε-coins” introduced in [2] and coupling arguments to prove the CLLN. This regeneration structure will also be used
in the proof of (3).

Our second main result (3) is an extension of Berger’s result (1) from the i.i.d. case to the strong-mixing case.
In [1], assuming that P(A�) > 0 for a direction �, Berger coupled the i.i.d. environment ω with a transient (in the
direction �) environment ω̃ and a “backward path”, such that ω̃ and ω coincide in the locations off the path. Using heat
kernel estimates for random walks with i.i.d. increments, he showed that if v�v−� > 0 and d ≥ 5, then with positive
probability, the random walks in ω̃ is transient to the −� direction without intersecting the backward path, which
contradicts ω̃ being transient in the direction �. The difficulties in applying this argument to mixing environments are
that the regeneration slabs are not i.i.d., and that unlike the i.i.d. case, the environments visited by two disjoint paths
are not independent. To overcome these difficulties, we will construct an environment (along with a path) that is “very
transient” in �, and show that the ballistic walks in the opposite direction (−�) will move further and further away
from the given path (see Fig. 2 in Section 5). The key ingredient here is a heat kernel estimate, which we will obtain
in Section 4 using coupling arguments.

We now describe our main results. Recall first the definition of an r-Markov environment (see [3]).

Definition 1. For r ≥ 1, let ∂rV = {x ∈ Z
d \ V : d(x,V ) ≤ r} be the r-boundary of V ⊂ Z

d . A random environment
(P,Ω) on Z

d is called r-Markov if for any finite V ⊂ Z
d ,

P
(
(ωx)x∈V ∈ ·|FV c

) = P
(
(ωx)x∈V ∈ ·|F∂rV

)
, P -a.s.,

where d(·, ·) denotes the l1-distance and FΛ := σ(ωx : x ∈ Λ).
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We say that an r-Markov environment P satisfies condition (∗) if there exist constants γ,C < ∞ such that for all
finite subsets Δ ⊂ V ⊂ Z

d with d(Δ,V c) ≥ r , and A ⊂ V c,

dP((ωx)x∈Δ ∈ ·|η)

dP((ωx)x∈Δ ∈ ·|η′)
≤ exp

(
C

∑
x∈A,y∈Δ

e−γ d(x,y)

)
(∗)

for P -almost all pairs of configurations η,η′ ∈ MV c
which agree on V c \ A. Here

P
(
(ωx)x∈Δ ∈ ·|η) := P

(
(ωx)x∈Δ ∈ ·|FV c

)|(ωx)x∈V c=η.

We remark that r and γ are used as parameters of the environment throughout the article.
By Lemma 9 in [6], the strong-mixing Gibbsian environment satisfies (∗). Obviously, every finite-range dependent

environment also satisfies (∗).
Our main theorem is:

Theorem 2. Assume that P is uniformly elliptic and satisfies (∗). Then there exist two deterministic constants
v+, v− ≥ 0 and a vector � such that

lim
n→∞

Xn

n
= v+�1A�

− v−�1A−�
, (2)

and v+ = v− = 0 if P(A� ∪ A−�) < 1. Moreover, if d ≥ 5, then there is at most one non-zero velocity. That is,

v+v− = 0. (3)

We remark here that for the finite-range dependent case, the CLLN is proved in [12].
The structure of this paper is as follows. In Section 2, we prove a refined version of [13], Lemma 3. With this

combinatorial result, we will prove the CLLN in Section 3, using coupling arguments. In Section 4, using coupling,
we obtain heat kernel estimates, which is later used in Section 5 to show the uniqueness of the non-zero limiting
velocity.

Throughout the paper, we assume that the environment is uniformly elliptic and satisfies (∗). We use c,C to denote
finite positive constants that depend only on the dimension d and the environment measure P (and implicitly, on
the parameters κ, r and γ of the environment). They may differ from line to line. We denote by c1, c2, . . . positive
constants which are fixed throughout, and which depend only on d and the measure P . Let {e1, . . . , ed} be the natural
basis of Z

d .

2. A combinatorial lemma and its consequences

In this section we consider the case that P(limn→∞ Xn · e1/n > 0) > 0. We will adapt the arguments in [13] and
prove that with positive probability, the number of visits to the ith level Hi = Hi (X0) := {x : x · e1 = X0 · e1 + i}
grows slower than Ci2. An important ingredient of the proof is a refinement of a combinatorial lemma of Zerner [13],
Lemma 3, about deterministic paths.

We say that a sequence {xi}k−1
i=0 ∈ (Zd)k , 2 ≤ k ≤ ∞, is a path if |xi − xi−1| = 1 for i = 1, . . . , k − 1. For i ≥ 0 and

an infinite path X· = {Xn}∞n=0 such that supn Xn · e1 = ∞, let

Ti = inf{n ≥ 0 : Xn ∈ Hi}.
For 0 ≤ i < j and k ≥ 1, let T 1

i,j := Ti and define recursively

T k+1
i,j = inf

{
n ≥ T k

i,j : Xn ∈ Hi and n < Tj

} ∈ N ∪ {∞}.
That is, T k

i,j is the time of the kth visit to Hi before hitting Hj . Let

Ni,j = sup
{
k : T k

i,j < ∞}
be the total number of visits to Hi before hitting Hj .
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As in [13], for i ≥ 0, l ≥ 1, let

hi,l = T
Ni,i+l

i,i+l − Ti

denote the time spent between the first and the last visits to Hi before hitting Hi+l . For m,M,a ≥ 0 and l ≥ 1, set

Hm,l =
l−1∑
i=0

Nm+i,m+l/(i + 1)2

and

EM,l(a) = #{0 ≤ m ≤ M : hm,l ≤ a and Hm,l ≤ a}
M + 1

.

Note that EM,l(a) decreases in l and increases in a.
The following lemma is a minor adaptation of [13], Lemma 3.

Lemma 3. For any path X· with limn→∞ Xn · e1/n > 0,

sup
a≥0

inf
l≥1

lim
M→∞EM,l(a) > 0. (4)

Proof. Since limn→∞ n/Tn = limn→∞ Xn · e1/n > 0, there exist an increasing sequence (nk)
∞
k=0 and δ < ∞ such

that

Tnk
< δnk for all k.

Thus for any m such that nk/2 ≤ m ≤ nk ,

Tm ≤ 2δm. (5)

Set Mk = �nk/2. Then for all k and 1 < l < �nk/2�,

Mk∑
m=0

Hm,l =
l−1∑
i=0

(
Mk∑

m=0

Nm+i,m+l

)/
(i + 1)2

≤
l−1∑
i=0

TMk+l/(i + 1)2 (5)≤ 4δ(Mk + l). (6)

By the same argument as in pp. 193–194 of [13], we will show that there exist constants c1, c2 > 0 such that

inf
l≥1

lim
k→∞

#{0 ≤ m ≤ Mk : hm,l ≤ c1}
Mk + 1

> c2. (7)

Indeed, if (7) fails, then for any u > 0,

lim
k→∞

#{0 ≤ m ≤ Mk,hm,l ≤ u}
Mk + 1

−→ 0

as l → ∞ (note that the right side is decreasing in l). Hence, one can find a sequence (li)i≥0 with li+1 > li, l0 = 0,

such that for all i ≥ 0,

lim
k→∞

#{0 ≤ m ≤ Mk,hm,li+1 ≤ 6δli}
Mk + 1

<
1

3
. (8)
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On the other hand, for i ≥ 0

lim
k→∞

#{0 ≤ m ≤ Mk,hm,li ≥ 6δli}
Mk + 1

≤ lim
k→∞

1

(Mk + 1)6δli

Mk∑
m=0

(Tm+li − Tm)

≤ lim
k→∞

liTMk+li

6δli(Mk + 1)

(5)≤ 1

3
. (9)

By (8) and (9), for any i ≥ 0,

lim
k→∞

#{0 ≤ m ≤ Mk,hm,li+1 > hm,li }
Mk + 1

≥ 1

3
. (10)

Therefore, for any j ≥ 1, noting that

j−1∑
i=0

1hm,li+1 >hm,li
≤ Nm,m+lj ≤ Hm,lj ,

we have

j

3

(10)≤ lim
k→∞

j−1∑
i=0

#{0 ≤ m ≤ Mk,hm,li+1 > hm,li }
Mk + 1

≤ lim
k→∞

1

Mk + 1

Mk∑
m=0

Hm,lj

(6)≤ 4δ,

which is a contradiction if j is large. This proves (7).
It follows from (7) that, for any l ≥ 1, there is a subsequence (M ′

k) of (Mk) such that

#{0 ≤ m ≤ M ′
k : hm,l ≤ c1}

M ′
k + 1

> c2

for all k. Letting c3 = 9δ/c2, we have that when k is large enough,

1

M ′
k + 1

M ′
k∑

m=0

1hm,l≤c1,Hm,l>c3 ≤ 1

c3(M
′
k + 1)

M ′
k∑

m=0

Hm,l

(6)≤ c2

2
.

Hence for any l > 1 and large k,

EM ′
k,l

(c1 ∨ c3) ≥ 1

M ′
k + 1

M ′
k∑

m=0

1hm,l≤c1,Hm,l≤c3

= 1

M ′
k + 1

M ′
k∑

m=0

(1hm,l≤c1 − 1hm,l≤c1,Hm,l>c3) ≥ c2

2
.

This shows the lemma, and what is more, with explicit constants. �

For i ≥ 0, let Ni = limj→∞ Ni,j denote the total number of visits to Hi . With Lemma 3, one can deduce that with
positive probability, Ni ≤ C(i + 1)2 for all i ≥ 0:
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Theorem 4. If P(limn→∞ Xn · e1/n > 0) > 0, then there exists a constant c5 such that

P(R = ∞) > 0,

where R is the stopping time defined by

R = Re1(X·, c5)

:= inf

{
n ≥ 0 :

n∑
i=0

1Xi∈Hj
> c5(j + 1)2 for some j ≥ 0

}
∧ D,

and D := inf{n ≥ 1 : Xn · e1 ≤ X0 · e1}.

Note that for any L > 0 and a path (Xi)
∞
i=0 with X0 = o,

∑
y:y·e1≤−L

0≤i≤R

e−γ d(y,Xi) ≤
∞∑

j=0

(#visits to Hj before time R)e−γ (j+L)

≤ C

∞∑
j=0

c5(j + 1)2e−γ (j+L) ≤ Ce−γL. (11)

Hence on the event {R = ∞}, by (11) and (∗), the trajectory (Xi)
∞
i=0 is “almost independent” with the environments

{ωx : x · e1 ≤ −L} when L is large. See Fig. 1. This fact will be used in our definition of the regeneration times in the
Section 3.

To prove Theorem 4, we need the following lemma. Recall that r, γ are parameters of the environment measure P .
Let S be a countable set of finite paths. With abuse of notation, we also use S as the synonym for the event

⋃
(xi )

N
i=0∈S

{Xi = xi for 0 ≤ i ≤ N}. (12)

Fig. 1. On {R = ∞}, the path visits the ith level no more than c5(i + 1)2 times, and never visits the left-half space.
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Lemma 5. Let a > 0 and A ⊂ Λ ⊂ Z
d . Suppose S �= ∅ is a countable set of finite paths x· = (xi)

N
i=0,N < ∞ that

satisfy d(x·,Λ) ≥ r and∑
y∈A,0≤i≤N

e−γ d(y,xi ) ≤ a.

Then, P -almost surely,

exp(−Ca) ≤ EP [Pω(S)|ωx : x ∈ Λ]
EP [Pω(S)|ωx : x ∈ Λ \ A] ≤ exp(Ca). (13)

Proof. We shall first show that for any (xi)
N
i=0 ∈ S, P -almost surely,

EP

[
Pω(Xi = xi,0 ≤ i ≤ N)|ωy : y ∈ Λ

]
≤ exp(Ca)EP

[
Pω(Xi = xi,0 ≤ i ≤ N)|ωy : y ∈ Λ \ A

]
. (14)

Note that when Λc is a finite subset of Z
d , (14) is an easy consequence of (∗). For general Λ, we let

Λn = Λ ∪ {
x : |x| ≥ n

}
.

When n is sufficiently big, (∗) implies that

EP [Pω(Xi = xi,0 ≤ i ≤ N)|ωy : y ∈ Λn]
EP [Pω(Xi = xi,0 ≤ i ≤ N)|ωy : y ∈ Λn \ A] ≤ exp(Ca).

Since Λn ↓ Λ as n → ∞, (14) follows by taking n → ∞ in the above inequality.
Summing over all (xi)

N
i=0 ∈ S on both sides of (14), we conclude that P -almost surely,

EP

[
Pω(S)|ωy : y ∈ Λ

] ≤ exp(Ca)EP

[
Pω(S)|ωy : y ∈ Λ \ A

]
.

The upper bound of (13) is proved. The lower bound follows likewise. �

Now we can prove the theorem. Our proof is a modification of the proof of Theorem 1 in [13]:

Proof of Theorem 4. It follows by Lemma 3 that there exists a constant c4 > 0 such that

P
(

inf
l≥1

lim
M→∞EM,l(c4) > 0

)
> 0. (15)

For l > r , k ≥ 0 and z ∈ Z
d with z · e1 = r , let Bm,l(z, k, c) denote the event

{Nm+r,m+l = k,XT k
m+r,m+l

= XTm + z,Hm+r,l−r ≤ c}.
Note that on the event {hm,l ≤ c4 and Hm,l ≤ c4}, we have

T
Nm+r,m+l

m+r,m+l − Tm ≤ hm,l +
r∑

i=0

Nm+i,m+l

≤ c4 +
r∑

i=0

(i + 1)2c4 ≤ (1 + r)3c4,

and

Hm+r,l−r ≤
l−r−1∑
i=0

(r + 1)2Nm+r+i,m+l/(r + i + 1)2

≤ (r + 1)2c4 =: c5.
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Hence {hm,l ≤ c4 and Hm,l ≤ c4} ⊂ ⋃
|z|,k≤(r+1)3c4

Bm,l(z, k, c5), and

lim
l→∞ lim

M→∞EM,l(c4) ≤
∑

|z|,k≤(r+1)3c4

lim
l→∞ lim

M→∞
1

M + 1

M∑
m=0

1Bm,l(z,k,c5).

Thus by (15), for some k0 and z0 with z0 · e1 = r ,

P

(
lim

l→∞ lim
M→∞

1

M + 1

M∑
m=0

1Bm,l(z0,k0,c5) > 0

)
> 0. (16)

In what follows, we write Bm,l(z0, k0, c5) simply as Bm,l .
For any l > r and any fixed i ≤ l − 1, let mj = mj(l, i) := i + j l, i.e. (mj )j≥0 is the class of residues of i(mod l).

Now take any j ∈ N. Observe that for any event E = {1Bmj−1,l
= ·, . . . ,1Bm0,l

= ·} and x ∈ Hmj
,

Pω

({XTmj
= x} ∩ E ∩ Bmj ,l

)
≤ Pω

({XTmj
= x} ∩ E

)
P x+z0

ω (D > Tl−r ,H0,l−r ≤ c5). (17)

Moreover, for any x ∈ Hmj
, there exists a countable set S of finite paths (xi)

N
i=0 that satisfy mj + r ≤ xi · e1 ≤ mj + l

and #{k ≤ N : xk ∈ Hi (x0)} ≤ c5(i + 1)2 for 0 ≤ i ≤ N , such that

{X0 = x + z0,D > Tl−r ,H0,l−r ≤ c5}
=

⋃
(xi )

N
i=0∈S

{Xi = xi for 0 ≤ i ≤ N}.

Noting that (by the same argument as in (11)) for any (xi)
N
i=0 ∈ S,

∑
y:y·e1≤mj

i≤N

e−γ d(y,xi ) ≤ Ce−γ r ,

by Lemma 5 we have

EP

[
P x+z0

ω (D > Tl−r ,H0,l−r ≤ c5)|ωy : y · e1 ≤ mj

]
≤ exp

(
Ce−γ r

)
P(D > Tl−r ,H0,l−r ≤ c5).

Thus for j ≥ 0 and l > r ,

P(E ∩ Bmj ,l)

(17)≤
∑

x∈Hmj

EP

[
Pω

({XTmj
= x} ∩ E

)
P x+z0

ω (D > Tl−r ,H0,l−r ≤ c5)
]

≤ exp
(
Ce−γ r

) ∑
x∈Hmj

P
({XTmj

= x} ∩ E
)
P(D > Tl−r ,H0,l−r ≤ c5)

= CP(E)P(D > Tl−r ,H0,l−r ≤ c5).

Hence, for any j ≥ 0 and l > r ,

P(1Bmj ,l
= 1|1Bmj−1,l

, . . . ,1Bm0,l
) ≤ CP(D > Tl−r ,H0,l−r ≤ c5),
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which implies that P-almost surely,

lim
n→∞

1

n

n−1∑
j=0

1Bmj ,l
≤ CP(D > Tl−r ,H0,l−r ≤ c5). (18)

Therefore, P-almost surely,

lim
l→∞ lim

M→∞
1

M + 1

M∑
m=0

1Bm,l
≤ lim

l→∞
1

l

l−1∑
i=0

lim
M→∞

l

M + 1

∑
0≤m≤M

m mod l=i

1Bm,l

(18)≤ lim
l→∞CP(D > Tl−r ,H0,l−r ≤ c5)

= CP

(
D = ∞,

∞∑
i=0

Ni/(i + 1)2 ≤ c5

)
.

This and (16) yield P(D = ∞,
∑∞

i=0 Ni/(i + 1)2 ≤ c5) > 0. The theorem follows. �

3. The conditional law of large numbers

In this section we will prove the conditional law of large numbers (2), using regeneration times and coupling. Given
the dependence structure of the environment, we want to define regeneration times in such a way that what happens
after a regeneration time has little dependence on the past. To this end, we will use the “ε-coins” trick introduced in
[2] and the stopping time R to define the regeneration times. Intuitively, at a regeneration time, the past and the future
movements have nice properties. That is, the walker has walked straight for a while without paying attention to the
environment, and his future movements have little dependence on his past movements.

We define the ε-coins (εi,x)i∈N,x∈Zd =: ε to be i.i.d. random variables with distribution Q such that

Q(εi,x = 1) = dκ and Q(εi,x = 0) = 1 − dκ.

For fixed ω, ε, P x
ω,ε is the law of the Markov chain (Xn) such that X0 = x and that for any e ∈ Z

d such that |e| = 1,

P x
ω,ε(Xn+1 = z + e|Xn = z) = 1εn,z=1

2d
+ 1εn,z=0

1 − dκ

[
ω(z, z + e) − κ

2

]
.

Note that the law of X· under P̄ x
ω = Q ⊗ P x

ω,ε coincides with its law under P x
ω . Sometimes we also refer to P x

ω,ε(·) as
a measure on the sets of paths, without indicating the specific random path. Denote by P̄ = P ⊗ Q ⊗ P o

ω,ε the law of
the triple (ω, ε,X·).

Now we define the regeneration times in the direction e1. Let L be a fixed number which is sufficiently large. Set
R0 = 0. Define inductively for k ≥ 0:

Sk+1 = inf
{
n ≥ Rk : Xn−L · e1 > max{Xm · e1 : m < n − L},

εn−i,Xn−i
= 1,Xn−i+1 − Xn−i = e1 for all 1 ≤ i ≤ L

}
,

Rk+1 = R ◦ θSk+1 + Sk+1,

where θn denotes the time shift of the path, i.e., θnX = (Xn+i )
∞
i=0.
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Let

K = inf{k ≥ 1 : Sk < ∞,Rk = ∞}
and τ1 = τ1(e1, ε,X·) := SK. For k ≥ 1, the (L-)regeneration times are defined inductively by

τk+1 = τ1 ◦ θτk
+ τk.

By similar argument as in [2], Lemma 2.2, we can show:

Lemma 6. If P(limn→∞ Xn · e1/n = 0) < 1, then

P(Ae1 ∪ A−e1) = 1. (19)

Moreover, on Ae1 , τi ’s are P̄-almost surely finite.

Proof. If P(limn→∞ Xn · e1/n = 0) < 1, then

P
(

lim
n→∞Xn · e1/n > 0

)
> 0 or P

(
lim

n→∞Xn · (−e1)/n > 0
)

> 0.

Without loss of generality, assume that

P
(

lim
n→∞Xn · e1/n > 0

)
> 0.

It then follows from Theorem 4 that P(R = ∞) > 0. We want to show that Rk = ∞ for all but finitely many k’s.
For k ≥ 0,

P̄(Rk+1 < ∞)

= P̄(Sk+1 < ∞,R ◦ θSk+1 < ∞)

=
∑
n,x

P̄(Sk+1 = n,Xn = x,R ◦ θn < ∞)

=
∑
n,x

EP⊗Q

[
Pω,ε(Sk+1 = n,Xn = x)P x

ω,θnε(R < ∞)
]
,

where θnε denotes the time shift of the coins ε, i.e. (θnε)i,x = εn+i,x . Note that Pω,ε(Sk+1 = n,Xn = x) and
P x

ω,θnε(R < ∞) are independent under the measure Q, since the former is a function of ε’s before time n, and the
latter involves ε’s after time n. It then follows by induction that

P̄(Rk+1 < ∞)

=
∑
n,x

EP

[
P̄ω(Sk+1 = n,Xn = x)P̄ x

ω (R < ∞)
]

=
∑
n,x

EP

[
P̄ω(Sk+1 = n,Xn = x)EP

[
P̄ x

ω (R < ∞)|ωy : y · e1 ≤ x · e1 − L
]]

(11), Lemma 5≤ P̄(Rk < ∞) exp
(
e−cL

)
P̄(R < ∞)

≤ [
exp

(
e−cL

)
P̄(R < ∞)

]k+1
,

where we used in the second equality the fact that P̄ω(Sk+1 = n,Xn = x) is σ(ωy : y · e1 ≤ x · e1 − L)-measurable.
Hence, by taking L sufficiently large and by the Borel–Cantelli lemma, P̄-almost surely, Rk = ∞ except for finitely
many values of k.
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Let Oe1 denote the event that the signs of Xn ·e1 change infinitely many often. It is easily seen that (by the ellipticity
of the environment)

P(Oe1 ∪ Ae1 ∪ A−e1) = 1

and

Oe1 ⊂
{

sup
n

Xn · e1 = ∞
}
.

However, on {supn Xn · e1 = ∞}, given that Rk is finite, Sk+1 is also finite. Hence τ1 is P̄-almost surely finite on
{supn Xn · e1 = ∞}, and so are the regeneration times τ2, τ3, . . . . Therefore,

P(Oe1) = P̄
(

Oe1 ∩ {τ1 < ∞}).
Since Oe1 ∩ {τ1 < ∞} = ∅, we get P(Oe1) = 0. This gives (19). �

When P(R = ∞) > 0, we let

P̂(·) := P̄(·|R = ∞).

The following proposition is a consequence of Lemma 5.

Proposition 7. Assume P(R = ∞) > 0. Let l > r and Λ ⊂ {x : x · e1 < −r}. Then for any A ⊂ Λ ∩ {x : x · e1 < −l}
and k ∈ N,

exp
(−Ce−γ l

) ≤ EP [P̄ω((Xi)
τk

i=0 ∈ ·,R = ∞)|ωy : y ∈ Λ \ A]
EP [P̄ω((Xi)

τk

i=0 ∈ ·,R = ∞)|ωy : y ∈ Λ] ≤ exp
(
Ce−γ l

)
. (20)

Furthermore, for any k ∈ N and n ≥ 0, P̂-almost surely,

exp
(−e−cL

) ≤ P̂((Xτn+i − Xτn)
τn+k−τn

i=0 ∈ ·|Xτn)

P̂((Xi)
τk

i=0 ∈ ·) ≤ exp
(
e−cL

)
. (21)

Proof. First, we shall prove (20). By the definition of the regeneration times, for any finite path x· = (xi)
N
i=0,N < ∞,

there exists an event Gx· ∈ σ(εi,Xi
,Xi : i ≤ N) such that Gx· ⊂ {R > N} and{

(Xi)
τk

i=0 = (xi)
N
i=0,R = ∞} = Gx· ∩ {R ◦ θN = ∞}.

(For example, when k = 1, we let

Gx· =
∞⋃

j=1

{
(Xi)

N
i=0 = (xi)

N
i=0, Sj = N,R > N

}
.

Then {(Xi)
τ1
i=0 = (xi)

N
i=0,R = ∞} = Gx· ∩ {R ◦ θN = ∞}.)

For n ∈ N, we let

En := Gx· ∩ {R ◦ θN ≥ n}.
Note that En ∈ σ(εi,Xi

,Xi : i ≤ N +n) can be interpreted (in the sense of (12)) as a set of paths with lengths ≤ N +n.
Also note that En ⊂ {R > N + n}. Then by Lemma 5 and (11), we have

exp
(−Ce−γ l

) ≤ EP [P̄ω(En)|ωy : y ∈ Λ \ A]
EP [P̄ω(En)|ωy : y ∈ Λ] ≤ exp

(
Ce−γ l

)
.

(20) follows by letting n → ∞.
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Next, we shall prove (21). Let x ∈ Z
d be any point that satisfies

P̄(Xτn = x) > 0.

By the definition of the regeneration times, for any m ∈ N, there exists an event Gx
m ∈ σ {εi,Xi

,Xi : i ≤ m} such that
P̄ω(Gx

m) is σ(ωy : y · e1 ≤ x · e1 − L)-measurable, and

{τn = m,Xm = x,R = ∞} = Gx
m ∩ {R ◦ θm = ∞}.

Thus

P̄
(
(Xτn+i − Xτn)

τn+k−τn

i=0 ∈ ·,Xτn = x,R = ∞)
=

∑
m

P̄
(
(Xτn+i − Xτn)

τn+k−τn

i=0 ∈ ·, τn = m,Xm = x,R = ∞)

=
∑
m

EP

[
P̄ω

(
Gx

m

)
P̄ x

ω

(
(Xi − x)

τk

i=0 ∈ ·,R = ∞)]
(20)≤ exp

(
Ce−γL

)∑
m

P̄
(
Gx

m

)
P̄
(
(Xi)

τk

i=0 ∈ ·,R = ∞)
. (22)

On the other hand,

P̄(Xτn = x,R = ∞) =
∑
m

EP

[
P̄ω

(
Gx

m

)
P̄ x

ω (R = ∞)
]

(20)≥ exp
(−Ce−γL

)∑
m

P̄
(
Gx

m

)
P̄(R = ∞). (23)

By (22) and (23), we have (note that L is sufficiently big)

P̂
(
(Xτn+i − Xτn)

τn+k−τn

i=0 ∈ ·|Xτn = x
) ≤ exp

(
e−cL

)
P̂
(
(Xi)

τk

i=0 ∈ ·).
The right side of (21) is proved. The left side of (21) follows likewise. �

The next lemma describes the dependency of a regeneration on its remote past. It is a version of Lemma 2.2 in [3].
(The denominator is omitted in the last equality in [3], p. 101, which is corrected here, see the equality in (25).)

Set τ0 = 0. Denote the truncated path between τn−1 and τn − L by

Pn = (
P i

n

)
0≤i≤τn−τn−1−L

:= (Xi+τn−1 − Xτn−1)0≤i≤τn−τn−1−L.

Set

Wn = (ωx+Xτn−1
)x∈Pn =: ωXτn−1+Pn,

Fn = Xτn − Xτn−1,

Jn = (Pn,Wn,Fn, τn − τn−1).

For i ≥ 0, let hi+1(·|ji, . . . , j1) := P̂(Ji+1 ∈ ·|Ji, . . . , J1)|Ji=ji ,...,J1=j1 denote the transition kernel of (Jn). Note that
when i = 0, hi+1(·|ji, . . . , j1) = h1(·|∅) = P̂(J1 ∈ ·).

Lemma 8. Assume P(R = ∞) > 0, 0 ≤ k ≤ n. Then P̂-almost surely,

exp
(−e−c(k+1)L

) ≤ hn+1(·|Jn, . . . , J1)

hk+1(·|Jn, . . . , Jn−k+1)
≤ exp

(
e−c(k+1)L

)
. (24)
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Proof. For jm = (pm,wm,fm, tm),m = 1, . . . n, let

x̄m := f1 + · · · + fm,

t̄m := t1 + · · · + tm,

Bp1,...,pm := {R = ∞,Pi = pi for all i = 1, . . . ,m}, and

ωp1,...,pm := (ωx̄i−1+pi
)mi=1.

First, we will show that for any 1 ≤ k ≤ n,

hk+1(·|jk, . . . , j1) = EP [P̄ x̄k
ω (J1 ∈ ·,R = ∞)|ωp1,...,pk

]
EP [P̄ x̄k

ω (R = ∞)|ωp1,...,pk
]

∣∣∣∣
ωp1,...,pk

=(wi )
k
i=1

. (25)

By the definition of the regeneration times, there exists an event

Gp1,...,pk
∈ σ(Xi+1, εi,Xi

,0 ≤ i ≤ t̄k − 1)

such that

Bp1,...,pk
= Gp1,...,pk

∩ {R ◦ θt̄k = ∞}. (26)

On the one hand, for any σ(Jk, . . . , J1)-measurable function g(Jk, . . . , J1),

EP̄

[
hk+1(·|Jk, . . . , J1)g(Jk, . . . , J1)1Bp1,...,pk

]
= EP̄[g1Bp1,...,pk

1Jk+1∈·]
= EP

[
g1Bp1,...,pk

P̄ω(Jk+1 ∈ ·,Bp1,...,pk
)
]

(26)= EP

[
g1Bp1,...,pk

P̄ω(Gp1,...,pk
)P̄ x̄k

ω (J1 ∈ ·,R = ∞)
]
. (27)

On the other hand, we also have

EP̄

[
hk+1(·|Jk, . . . , J1)g(Jk, . . . , J1)1Bp1,...,pk

]
= EP

[
hk+1(·|Jk, . . . , J1)g1Bp1,...,pk

P̄ω(Bp1,...,pk
)
]

(26)= EP

[
hk+1(·|Jk, . . . , J1)g1Bp1,...,pk

P̄ω(Gp1,...,pk
)P̄ x̄k

ω (R = ∞)
]
. (28)

Comparing (27) and (28) and observing that on Bp1,...,pk
, P̄ω(Gp1,...,pk

) and all functions of J1, . . . , Jk are σ(ωy : y ∈
x̄i−1 + pi, i ≤ k)-measurable, we obtain that on Bp1,...,pk

, P -almost surely,

hk+1(·|Jk, . . . , J1) = EP [P̄ x̄k
ω (J1 ∈ ·,R = ∞)|ωx̄i−1+pi

, i ≤ k]
EP [P̄ x̄k

ω (R = ∞)|ωx̄i−1+pi
, i ≤ k] .

Noting that

Bp1,...,pk
∩ {

ωp1,...,pk
= (wi)

k
i=1

} = {Ji = ji,1 ≤ i ≤ k},

(25) is proved.
Next, we will prove the lower bound in (24).
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When n ≥ k ≥ 1, by formula (25) and (20), we have

hn+1(·|jn, . . . , j1)

= EP [P̄ x̄n
ω (J1 ∈ ·,R = ∞)|ωp1,...,pn ]

EP [P̄ x̄n
ω (R = ∞)|ωp1,...,pn ]

∣∣∣∣
ωp1,...,pn=(wi)

n
i=0

≤ exp(Ce−γ (k+1)L)EP [P̄ x̄n
ω (J1 ∈ ·,R = ∞)|ωx̄i−1+pi

, n − k + 1 ≤ i ≤ n]
exp(−Ce−γ (k+1)L)EP [P̄ x̄n

ω (R = ∞)|ωx̄i−1+pi
, n − k + 1 ≤ i ≤ n]

∣∣∣∣
ωp1,...,pn=(wi)

n
i=0

= exp
(
2Ce−γ (k+1)L

)EP [P̄ x̄n−x̄n−k
ω (J1 ∈ ·,R = ∞)|ωpn−k+1,...,pn ]

EP [P̄ x̄n−x̄n−k
ω (R = ∞)|ωpn−k+1,...,pn]

∣∣∣∣
ωpn−k+1,...,pn=(wi)

n
i=n−k+1

(25)= exp
(
2Ce−γ (k+1)L

)
hk+1(·|jn, . . . , jn−k+1), (29)

where we used the translation invariance of the measure P in the last but one equality.
When k = 0 and n ≥ 1, by formula (25) and (20),

hn+1(·|jn, . . . , j1) ≤ exp(Ce−γL)EP [P̄ x̄n
ω (J1 ∈ ·,R = ∞)]

exp(−Ce−γL)EP [P̄ x̄n
ω (R = ∞)]

= exp
(
2Ce−γL

)
P̂(J1 ∈ ·)

= exp
(
2Ce−γL

)
h1(·|∅). (30)

When k = n = 0, (24) is trivial. Hence combining (29) and (30), the lower bound in (24) follows as we take L

sufficiently big. The upper bound follows likewise. �

Lemma 9. Suppose that a sequence of non-negative random variables (Xn) satisfies

a ≤ dP(Xn+1 ∈ ·|X1, . . . ,Xn)

dμ
≤ b

for all n ≥ 1, where a ≤ 1 ≤ b are constants and μ is a probability measure. Let mμ ≤ ∞ be the mean of μ. Then
almost surely,

amμ ≤ lim
n→∞

1

n

n∑
i=1

Xi ≤ lim
n→∞

1

n

n∑
i=1

Xi ≤ bmμ. (31)

Before giving the proof, let us recall the “splitting representation” of random variables:

Proposition 10 ([9], p. 94). Let ν and μ be probability measures. Let X be a random variable with law ν. If for some
a ∈ (0,1),

dν

dμ
≥ a,

then, enlarging the probability space if necessary, we can find independent random variables Δ,π,Z such that

(i) Δ is Bernoulli with parameter 1 − a, i.e., P(Δ = 1) = 1 − a, P(Δ = 0) = a;
(ii) π is of law μ, and Z is of law (ν − aμ)/(1 − a);

(iii) X = (1 − Δ)π + ΔZ.

Proof of Lemma 9. By Proposition 10, enlarging the probability space if necessary, there are random variables
Δi,πi,Zi, i ≥ 1, such that for any i ∈ N,
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• Δi is Bernoulli with parameter (1 − a), and πi is of law μ;
• Δi,πi and Zi are mutually independent;
• (Δi,πi) is independent of σ(Δk,πk,Zk : k < i);
• Xi = (1 − Δi)πi + ΔiZi .

Note that since Xi ’s are supported on [0,∞), πi ≥ 0 and Zi ≥ 0 for all i ∈ N. Thus by the law of large numbers,
almost surely,

lim
n→∞

1

n

n∑
i=1

Xi ≥ lim
n→∞

1

n

n∑
i=1

(1 − Δi)πi = amμ.

This proves the first inequality of (31).
If mμ = ∞, the last inequality of (31) is trivial. Assume that mμ < ∞. Let (Δ̃i)i≥1 be an i.i.d. Bernoulli sequence

with parameter 1 − b−1 such that every Δ̃i is independent of all the Xn’s. By a similar splitting procedure, we can
construct non-negative random variables π̃i , Z̃i , i ≥ 1, such that (π̃i)i≥1 are i.i.d. with law μ, and

π̃i = (1 − Δ̃i)Xi + Δ̃iZ̃i .

Let Yi = (1 − b−1 − Δ̃i)Xi1Xi≤i , we will first show that

lim
n→∞

1

n

n∑
i=1

Yi = 0. (32)

By Kronecker’s lemma, it suffices to show that

∞∑
i=1

Yi

i
converges.

Observe that (
∑n

i=1 Yi/i)n∈N is a martingale sequence. Moreover, for all n ∈ N,

E

(
n∑

i=1

Yi

i

)2

=
n∑

i=1

EY 2
i / i2 ≤

∞∑
i=1

EX2
i 1Xi≤i/ i2

≤ b

∞∑
i=1

Eπ̃2
i 1π̃i≤i/ i2

= b

∫ ∞

0
x2

(∑
i≥x

1

i2

)
dμ

≤ C

∫ ∞

0
x dμ = Cmμ < ∞.

By the L2-martingale convergence theorem,
∑

Yi/i converges a.s. and in L2. This proves (32).
Since∑

i

P
(
Yi �= (

1 − b−1 − Δ̃i

)
Xi

) ≤
∑

i

P (Xi > i) ≤ b
∑

i

P (π1 > i) ≤ bmμ < ∞,

by the Borel–Cantelli lemma, it follows from (32) that

lim
n→∞

1

n

n∑
i=1

(
1 − b−1 − Δ̃i

)
Xi = 0, a.s.
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Hence almost surely,

mμ = lim
n→∞

1

n

n∑
i=1

π̃i ≥ lim
n→∞

1

n

n∑
i=1

(1 − Δ̃i)Xi = lim
n→∞

1

n

n∑
i=1

b−1Xi.

The last inequality of (31) is proved. �

Theorem 11. There exist two deterministic numbers ve1, v−e1 ≥ 0 such that P-almost surely,

lim
n→∞

Xn · e1

n
= ve11Ae1

− v−e11A−e1
. (33)

Moreover, if ve1 > 0, then EP̂τ1 < ∞ and P(Ae1 ∪ A−e1) = 1.

Proof. We only consider the nontrivial case that P(limXn · e1/n = 0) < 1, which by Lemma 6 implies P(Ae1 ∪
A−e1) = 1. Without loss of generality, assume P(limn→∞ Xn · e1/n > 0) > 0. We will show that on Ae1 ,

lim
n→∞Xn · e1/n = ve1 > 0, P-a.s.

By (21) and Lemma 9, we obtain that P(·|Ae1)-almost surely,

exp
(−e−cL

)
EP̂Xτ1 · e1 ≤ lim

n→∞
Xτn · e1

n

≤ lim
n→∞

Xτn · e1

n
≤ exp

(
e−cL

)
EP̂Xτ1 · e1, (34)

exp
(−e−cL

)
EP̂τ1 ≤ lim

n→∞
τn

n
≤ lim

n→∞
τn

n
≤ exp

(
e−cL

)
EP̂τ1. (35)

Note that (34), (35) hold even if EP̂Xτ1 · e1 = ∞ or EP̂τ1 = ∞. But it will be shown later that under our assumption,
both of them are finite.

We claim that

EP̂Xτ1 · e1 < ∞. (36)

To see this, let Θ := {i : Xτk
· e1 = i for some k ∈ N}. Since τi ’s are finite on Ae1 , there exist (recall that τ0 = 0) a

sequence (kn)n∈N such that Xτkn
· e1 ≤ n < Xτkn+1 · e1 for all n ∈ N and limn→∞ kn = ∞. Hence for n ≥ 1,∑n

i=1 1i∈Θ

n
≤ kn + 1

Xτkn
· e1

, P̂-a.s.

Then, P̂-a.s.,

lim
n→∞

∑n
i=1 1i∈Θ

n
≤ lim

n→∞
n

Xτn · e1
.

Let Bk = {εk,Xk
= 0,Xk+1 − Xk = e1, εk+i,Xk+i

= 1,Xk+i+1 − Xk+i = e1 for all 1 ≤ i ≤ L}. Then

P̄ω(Bk) ≥ (dκ)L(1 − dκ)

(
κ

2

)(
1

2d

)L
1≥2dκ

>

(
κ

2

)L+2

.

Observe that by the definition of the regeneration times, for n > L + 1,{
Tn−L−1 = k,Xk = x − (L + 1)e1,R > k

} ∩ Bk ∩ {R ◦ θk+L+1 = ∞}
⊂ {R = ∞, n ∈ Θ,Tn = k + L + 1,XTn = x}.
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Hence for n > L + 1,

P̂(n ∈ Θ)

≥
∑

k∈N,x∈Hn

P̂
(
Bk ∩ {

Tn−L−1 = k,Xk = x − (L + 1)e1,R ◦ θk+L+1 = ∞})

≥
∑

k∈N,x∈Hn

EP

[
Pω

(
Tn−L−1 = k,Xk = x − (L + 1)e1,R > k

)(κ

2

)L+2

× P x
ω(R = ∞)

]/
P(R = ∞).

Since by (20) and the translation invariance of P ,

EP

[
P x

ω(R = ∞)|ωy : y · e1 ≤ x · e1 − L − 1
] ≥ exp

(−e−cL
)
P(R = ∞),

we have for n > L + 1,

P̂(n ∈ Θ)

≥
(

κ

2

)L+2

exp
(−e−cL

) ∑
k∈N,x∈Hn

P
(
Tn−L−1 = k,Xk = x − (L + 1)e1,R > k

)

≥
(

κ

2

)L+2

e−1P(R = ∞). (37)

Hence

C

EP̂Xτ1 · e1

(34)≥ EP̂ lim
n→∞

n

Xτn · e1
≥ EP̂ lim

n→∞

∑n
i=1 1i∈Θ

n

≥ lim
n→∞EP̂

∑n
i=1 1i∈Θ

n

(37)≥
(

κ

2

)L+2

e−1P(R = ∞) > 0.

This gives (36).
Now we can prove the theorem. By (34) and (35),

exp
(−2e−cL

)EP̂Xτ1 · e1

EP̂τ1
≤ lim

n→∞
Xτn · e1

τn+1

≤ lim
n→∞

Xτn+1 · e1

τn

≤ exp
(
2e−cL

)EP̂Xτ1 · e1

EP̂τ1
, (38)

P(·|Ae1)-almost surely. Further, by the fact that |Xi | ≤ i and the obvious inequalities

lim
n→∞

Xτn · e1

τn+1
≤ lim

n→∞
Xn · e1

n
≤ lim

n→∞
Xn · e1

n
≤ lim

n→∞
Xτn+1 · e1

τn

,

we have that

lim
n→∞

∣∣∣Xn · e1

n
− EP̂Xτ1 · e1

EP̂τ1

∣∣∣ ≤ exp
(
2e−cL

) − 1, P(·|Ae1)-a.s.
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Therefore, P(·|Ae1)-almost surely,

lim
n→∞

Xn · e1

n
= lim

L→∞

EP̂X
τ

(L)
1

· e1

EP̂τ
(L)
1

:= ve1,

where τ1 is written as τ
(L)
1 to indicate that it is an L-regeneration time. Moreover, our assumption P(limn→∞ Xn ·

e1/n > 0) > 0 implies that ve1 > 0 and (by (38))

EP̂τ1 < ∞.

Our proof is complete. �

If ve1 > 0, then it follows by (35) that

EP̂τn ≤ CnEP̂τ1 < ∞. (39)

Observe that although Theorem 11 is stated for e1, the previous arguments, if properly modified, still work if one
replaces e1 with any z ∈ R

d \ {o}. So Theorem 11 is true for the general case. That is, for any z �= o, there exist two
deterministic constants vz, v−z ≥ 0 such that

lim
n→∞

Xn · z
n

= vz1Az − v−z1A−z

and that P(Az ∪ A−z) = 1 if vz > 0. Then, by the same argument as in [5], p. 1112, one concludes that the limiting
velocity limn→∞ Xn/n can take at most two antipodal values. This proves display (2) of Theorem 2.

4. Heat kernel estimate

The following heat kernel estimates are crucial for the proof of the uniqueness of the non-zero velocity in the next
section. Although in the mixing case we do not have i.i.d. regeneration slabs, we know that (by Lemma 8) a regen-
eration slab has little dependence on its remote past. This allows us to use coupling techniques to get the same heat
kernel estimates as in [1]:

Theorem 12 (Heat kernel estimate). Assume ve1 > 0. For x ∈ Z
d and n ∈ N, we let

Q(n,x) := P̂
(
x is visited in [τn−1, τn)

)
.

Then, for any x ∈ Z
d and n ∈ N,

P̂(Xτn = x) ≤ Cn−d/2, (40)∑
x∈Zd

Q(n, x)2 ≤ C(EP̂τ1)
2n−d/2. (41)

By Lemma 8, we have for n ≥ 2 and 1 ≤ k ≤ n − 1, P̂-almost surely,

hk+1(·|Jn−1, . . . , Jn−k)

hk(·|Jn−1, . . . , Jn−k+1)
= hk+1(·|Jn−1, . . . , Jn−k)

hn(·|Jn−1, . . . , J1)

hn(·|Jn−1, . . . , J1)

hk(·|Jn−1, . . . , Jn−k+1)

≥ exp
(−e−c(k+1)L − e−ckL

)
≥ 1 − e−ckL (42)



Limiting velocity of RW in mixing RE 393

for large L. Hence for n ≥ 2 and 1 ≤ k ≤ n − 1, we can define a (random) probability measure ζ
Jn−1,...,Jn−k

n,k that
satisfies

hk+1(·|Jn−1, . . . , Jn−k)

= e−ckLζ
Jn−1,...,Jn−k

n,k (·) + (
1 − e−ckL

)
hk(·|Jn−1, . . . , Jn−k+1). (43)

To prove Theorem 12, we will construct in Section 4.1 a sequence of random variables (J̃i , i ∈ N) (in a larger
probability space) such that for any n ∈ N,

(J̃1, . . . , J̃n) ∼ P̂(J1 ∈ ·, . . . , Jn ∈ ·), (44)

and J̃i ’s can be decomposed into random variables that have good independence properties (see Remark 13). Here
“X ∼ μ” means “X is of law μ”.

4.1. Construction of the J̃i ’s

Our construction consists of three steps:
Step 1. We let J̃1, J̃2,1, Δ̃2,1 be independent random variables such that

J̃1 ∼ h1(·|∅), J̃2,1 ∼ h1(·|∅)

and Δ̃2,1 is Bernoulli with parameter e−cL. Let Z̃2,1 be independent of σ(J̃2,1, Δ̃2,1) such that

P(Z̃2,1 ∈ ·|J̃1) = ζ
J̃1
2,1(·).

Setting J̃2 := (1 − Δ̃2,1)J̃2,1 + Δ̃2,1Z̃2,1, by (43) we have

(J̃1, J̃2) ∼ P̂(J1 ∈ ·, J2 ∈ ·).
Step 2. For n ≥ 3, assume we have constructed J̃1 and (J̃i,1, Δ̃i,j , Z̃i,j ,1 ≤ j < i ≤ n − 1) such that

(J̃1, . . . , J̃n−1) ∼ P̂(J1 ∈ ·, . . . , Jn−1 ∈ ·),
where for 2 ≤ j ≤ i ≤ n − 1,

J̃i,j := (1 − Δ̃i,j−1)J̃i,j−1 + Δ̃i,j−1Z̃i,j−1

and

J̃i := J̃i,i .

Then, we define J̃n,1 and (Δ̃n,k, Z̃n,k,1 ≤ k < n) to be random variables such that, conditioning on the values of J̃1
and (J̃i,1, Δ̃i,j , Z̃i,j ,1 ≤ j < i < n),

• (J̃n,1, Δ̃n,k, Z̃n,k,1 ≤ k ≤ n − 1) are conditionally independent;
• The conditional distribution of J̃n,1 is h1(·|∅);

• For 1 ≤ k ≤ n − 1, the conditional distribution of Z̃n,k is ζ
J̃n−1,...,J̃n−k

n,k (·), and Δ̃n,k is Bernoulli with parameter

e−ckL.

Step 3. For 2 ≤ k ≤ n, set

J̃n,k := (1 − Δ̃n,k−1)J̃n,k−1 + Δ̃n,k−1Z̃n,k−1,

J̃n := J̃n,n.
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Then (by (43)) almost surely,

P(J̃n,k ∈ ·|J̃n−1, . . . , J̃1) = hk(·|J̃n−1, . . . , J̃n−k+1). (45)

It follows immediately that

(J̃1, . . . , J̃n) ∼ P̂(J1 ∈ ·, . . . , Jn ∈ ·).

Therefore, by induction, we have constructed (J̃i , i ∈ N) such that (44) holds for all n ∈ N.
In what follows, with abuse of notation, we will identify J̃i with Ji and simply write J̃i,j , Δ̃i,j , Z̃i,j as Ji,j ,Δi,j

and Zi,j , 1 ≤ j < i. We still use P̂ to denote the law of the random variables in the enlarged probability space.

Remark 13. To summarize, we have introduced random variables Ji,j ,Δi,j ,Zi,j , 1 ≤ j < i such that for any n ≥ 2,

Jn,2 = (1 − Δn,1)Jn,1 + Δn,1Zn,1,

. . . ,

Jn,n−1 = (1 − Δn,n−2)Jn,n−2 + Δn,n−2Zn,n−2,

Jn = (1 − Δn,n−1)Jn,n−1 + Δn,n−1Zn,n−1.

Intuitively, we flip a sequence of “coins” Δn,n−1, . . . ,Δn,1 to determine whether J1, . . . , Jn−1 are in the “memory”
of Jn. For instance, if

Δn,n−1 = · · · = Δn,n−i = 0,

then Jn = Jn,n−i does not “remember” J1, . . . , Ji (in the sense that

P̂(Jn,n−i ∈ ·|Jn−1, . . . , J1) = hn−i (·|Jn−1, . . . , Ji+1),

see (45)).

4.2. Proof of Theorem 12

For 1 < i ≤ n, let In(i) be the event that Δi,i−1 = · · · = Δi,1 = 0 and Δm,m−1 = · · · = Δm,m−i = 0 for all i < m ≤ n.
Let In(1) be the event that Δm,m−1 = 0 for all m = 2, . . . , n. Set J1,1 = J1. Then on In(i),

Ji = Ji,1 and Jm = Jm,m−i for all i < m ≤ n. (46)

Lemma 14. For n ≥ 2, let H be a nonempty subset of {1, . . . , n}, and set

Mn := {
1 ≤ i ≤ n : the event In(i) happens

}
.

Conditioning on the event {Mn = H }, the sequence (Ji)i∈H is i.i.d. ∼ P̂(J1 ∈ ·) and independent of (Ji)i∈{1,...,n}\H .

Proof of Lemma 14. It follows from our construction that for any i ≥ 1, Ji,1 is independent of

σ(Δk,j ,1 ≤ j < k) ∨ σ(Jl,1 ≤ l < i) ∨ σ(Jm,m−i ,m > i).

Since Mn is measurable with respect to σ(Δk,j ,1 ≤ j < k), we get that Ji,1 is independent of

σ(Mn) ∨ σ(Jl,1 ≤ l < i) ∨ σ(Jm,m−i ,m > i).
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Hence, by (46), for any i ∈ H and any appropriate measurable sets (Vj )1≤j≤n,

P̂(Jj ∈ Vj ,1 ≤ j ≤ n|Mn = H)

= P̂(Ji,1 ∈ Vi)P̂(Jj ∈ Vj ,1 ≤ j ≤ n, j �= i|Mn = H).

Noting that P̂(Ji,1 ∈ Vi) = P̂(J1 ∈ Vi) and by induction, we get

P̂(Jj ∈ Vj ,1 ≤ j ≤ n|Mn = H)

=
∏
i∈H

P̂(Ji,1 ∈ Vi)P̂(J1 ∈ Vj ,1 ≤ j ≤ n, j /∈ H |Mn = H).

The lemma is proved. �

Proof of Theorem 12. By Lemma 14, for i ∈ H ⊂ {1, . . . , n},

P̂
(
Xτi

− Xτi−1 = (L + 1)e1 ± ej |Mn = H
) = P̂

(
Xτ1 = (L + 1)e1 ± ej

)
> 0

for all j ∈ {1, . . . , d}, where the last inequality is due to ellipticity. Hence arguing as in [1], pp. 736, 737, using
Lemma 14 and the heat kernel estimate for bounded i.i.d. random walks in Z

d , we get that for any x ∈ Z
d ,

P̂
(∑

i∈H

Xτi
− Xτi−1 = x

∣∣∣ Mn = H

)
≤ C|H |−d/2,

where |H | is the cardinality of H . Hence, for any subset H ⊂ {1, . . . , n} such that |H | ≥ n/2,

P̂(Xτn = x|Mn = H)

=
∑
y

P̂
(∑

i∈H

Xτi
− Xτi−1 = x − y,

∑
i∈{1,...,n}\H

Xτi
− Xτi−1 = y

∣∣∣Mn = H

)

=
∑
y

[
P̂
(∑

i∈H

Xτi
− Xτi−1 = x − y

∣∣∣Mn = H

)

× P̂
( ∑

i∈{1,...,n}\H
Xτi

− Xτi−1 = y

∣∣∣Mn = H

)]

≤ Cn−d/2, (47)

where we used Lemma 14 in the second equality.
On the other hand,

|Mn| ≥ n −
(

n∑
i=2

1Δi,i−1+···+Δi,1>0 +
n∑

i=1

n∑
m=i+1

1Δm,m−1+···+Δm,m−i>0

)

= n −
n∑

i=2

1Δi,i−1+···+Δi,1>0 −
n∑

m=2

m−1∑
i=1

1Δm,m−1+···+Δm,m−i>0

≥ n − 2
n∑

m=2

Km,
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where Km := sup{1 ≤ j < m : Δm,j = 1}. Here we follow the convention that sup ∅ = 0. Since Km’s are independent,
and for m ≥ 2,

EP̂eKm =
m−1∑
j=0

ej P̂(Km = j)

≤
m−1∑
j=1

ej P̂(Δm,j = 1) + 1

≤
∞∑

j=1

ej e−cjL + 1 → 1 as L → ∞,

we take L to be large enough such that EP̂eKm ≤ e1/8 for all m ≥ 2 and so

P̂(|Mn| < n/2) ≤ P̂(K2 + · · · + Kn > n/4)

≤ e−n/4EP̂eK2+···+Kn ≤ e−n/8. (48)

By (47) and (48), inequality (40) follows immediately.
Furthermore, since

Q(n,x)

=
∑
y

P̂(Xτn−1 = y)P̂
(
x is visited in [τn−1, τn)|Xτn−1 = y

)
Lemma 8≤ C

∑
y

P̂(Xτn−1 = y)P̂
(
(x − y) is visited during [0, τ1)

)
,

by Hölder’s inequality we have

Q(n,x)2

≤ C

[∑
y

P̂
(
(x − y) is visited during [0, τ1)

)]

×
[∑

y

P̂(Xτn−1 = y)2P̂
(
(x − y) is visited during [0, τ1)

)]

≤ CEP̂τ1

∑
y

P̂(Xτn−1 = y)2P̂
(
(x − y) is visited during [0, τ1)

)
.

Hence∑
x

Q(n, x)2

≤ CEP̂τ1

∑
y

[
P̂(Xτn−1 = y)2

∑
x

P̂
(
(x − y) is visited during [0, τ1)

)]

≤ C(EP̂τ1)
2
∑
y

P̂(Xτn−1 = y)2

(40)≤ C(EP̂τ1)
2n−d/2

∑
y

P̂(Xτn−1 = y) = C(EP̂τ1)
2n−d/2.

Theorem 12 is proved. �
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5. The uniqueness of the non-zero velocity

In this section we will show that in high dimension (d ≥ 5), there exists at most one non-zero velocity. The idea is the
following. Consider two random walk paths: one starts at the origin, the other starts near the nth regeneration position
of the first path. By Levy’s martingale convergence theorem, the second path is “more and more transient” as n grows
(Lemma 16). On the other hand, by heat kernel estimates, when d ≥ 5, two ballistic walks in opposite directions will
grow further and further apart from each other (see Lemma 15), thus they are almost independent. This contradicts
the previous fact that starting at the nth regeneration point of the first path will prevent the second path from being
transient in the opposite direction.

Set δ = δ(d) := d−4
8(d−1)

(the reason of choosing this notation will become clear in (56)). For any finite path y· =
(yi)

M
i=0,M < ∞, define A(y·, z) to be the set of paths (xi)

N
i=0,N ≤ ∞ that satisfy

(1) x0 = y0 + z;
(2) d(xi, yj ) > (i ∨ j)δ if i ∨ j > |z|/3.

The motivation for the definition of A(y·, z) is as follows. Note that for two paths x· = (xi)
N
i=0 and y· = (yi)

M
i=0

with x0 = y0 + z, if i ∨ j ≤ |z|/3, then

d(xi, yj ) ≥ d(x0, y0) − d(x0, xi) − d(y0, yj ) ≥ |z| − i − j ≥ |z|/3.

Hence, for (xi)
N
i=0 ∈ A(y·, z),∑

i≤N,j≤M

e−γ d(xi ,yj ) ≤
∑

0≤i,j≤|z|/3

e−γ |z|/3 +
∑

i∨j>|z|/3

e−γ (iδ+jδ)/2

≤
( |z|

3

)2

e−γ |z|/3 +
( ∞∑

i=0

e−γ iδ/2

)2

< C. (49)

This gives us (by (∗)) an estimate of the interdependence between σ(ωx : x ∈ (xi)
N
i=0) and σ(ωx : x ∈ (yi)

M
i=0).

In what follows, we use

τ ′· = τ·(−e1, ε,X·)

to denote the regeneration times in the −e1 direction. Assume that there are two opposite nonzero limiting velocities
in directions e1 and −e1, i.e.,

ve1 · v−e1 > 0.

We let P̌(·) := P(·|R−e1 = ∞).

Fig. 2. X· ∈ A(Yn· , z). When i ∨ j > |z|/3, the distance between Yn
j

of the “backward path” and Xi is at least (i ∨ j)δ .
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Lemma 15. Assume that there are two nonzero limiting velocities in direction e1. We sample (ε, X̃·) according to P̂
and let τ̃· = τ·(e1, ε, X̃·) denote its regeneration times. For n ≥ 1, we let

Yn· = (
Yn

i

)τ̃n

i=0 := (X̃τ̃n−i )
τ̃n

i=0

be the reversed path of (X̃i)
τ̃n

i=0. If |z| is large enough, d ≥ 5 and n ≥ 1, then

EP̂P̌X̃τ̃n+z
(
X· ∈ A

(
Yn· , z

))
> C > 0. (50)

Proof. Let

mz := ⌊|z|1/2⌋.

Then

EP̂P̌X̃τ̃n+z
(
X· /∈ A

(
Yn· , z

))
≤ EP̂P̌X̃τ̃n+z

(
τ ′
mz

≥ |z|/3
) + P̂(τ̃n − τ̃n−mz ≥ |z|/3) (51)

+ EP̂P̌X̃τ̃n+z
(
d
(
Xi,Y

n·
) ≤ iδ for some i > τ ′

mz

)
(52)

+ EP̂P̌X̃τ̃n+z
(
d(X̃τ̃n−j ,X·) ≤ jδ for some j > τ̃n − τ̃n−mz

)
. (53)

We will first estimate (51). By the translation invariance of the environment measure,

P̌x
(
τ ′
mz

≥ |z|/3
) = P̌

(
τ ′
mz

≥ |z|/3
)

for any x ∈ Z
d .

Hence

EP̂P̌X̃τ̃n+z
(
τ ′
mz

≥ |z|/3
) = P̌

(
τ ′
mz

≥ |z|/3
) ≤ 3EP̌τ ′

mz

|z|
(39)≤ C

(
EP̌τ ′

1

)|z|−1/2. (54)

Similarly,

P̂(τ̃n − τ̃n−mz ≥ |z|/3)
(21)≤ exp

(
e−cL

)
P̂(τmz ≥ |z|/3) ≤ C(EP̂τ1)|z|−1/2. (55)

To estimate (52) and (53), for i ≥ 1, n ≥ j ≥ 1, we let

Q′(i, x) = P̌
(
x is visited in

[
τ ′
i−1, τ

′
i

))
,

Q̃(j, x) = P̂
(
Xτn + x is visited in [τn−j , τn−j+1)

)
.

Note that by arguments that are similar to the proof of Theorem 12, one can also obtain the heat kernel estimate (40)
for Q′(i, x) and Q̃(j, x). For l > 0, let B(o, l) = {x ∈ Z

d : d(o, x) ≤ l}. Recall the definition of the r-boundary in
Definition 1. By the translation invariance of the environment measure,

P̌y(Xi = y + z) = P̌(Xi = z) for any y, z ∈ Z
d and i ∈ N.

Hence

EP̂P̌X̃τ̃n+z
(
d(Xi, X̃·) ≤ iδ for some i > τ ′

mz

)
≤

∑
i≥mz

∑
y∈∂1B(o,iδ)

∑
x

EP̂

[
P̌X̃τ̃n+z

(
X̃τ̃n

+ z + x is visited in
[
τ ′
i , τ

′
i+1

))
1
X̃τ̃n+z+x+y∈Yn·

]
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=
∑
i≥mz

∑
y∈∂1B(o,iδ)

∑
x

P̌
(
x is visited in

[
τ ′
i , τ

′
i+1

))
P̂
(
X̃τ̃n

+ z + x + y ∈ Yn·
)

=
∑
i≥mz

∑
y∈∂1B(o,iδ)

∑
j≤n

∑
x

Q′(i, x)Q̃(j, x + z + y).

By the heat kernel estimates and Hölder’s inequality,

∑
j≤n

∑
x

Q′(i, x)Q̃(j, x + z + y) ≤
√∑

x

Q′(i, x)2
∑
j≤n

√∑
x

Q̃(j, x + y)2

≤ C
(
EP̌τ ′

1

)
i−d/4

∑
j≤n

(EP̂τ1)j
−d/4

d≥5≤ Ci−d/4EP̌τ ′
1EP̂τ1.

Thus

EP̂P̌X̃τ̃n+z
(
d(Xi, X̃·) ≤ iδ for some i > τ ′

mz

)
≤ C

∑
i≥mz

∑
y∈∂1B(o,iδ)

i−d/4EP̌τ ′
1EP̂τ1

≤ C
∑
i≥mz

i(d−1)δi−d/4EP̌τ ′
1EP̂τ1 ≤ C|z|−(d−4)/8EP̌τ ′

1EP̂τ1, (56)

where we used d ≥ 5 and δ = d−4
8(d−1)

in the last inequality. Similarly, we have

EP̂P̌X̃τ̃n+z
(
d(X̃τ̃n−j ,X·) ≤ jδ for some j > τ̃n − τ̃n−mz

)
≤ C|z|−(d−4)/8EP̌τ ′

1EP̂τ1. (57)

Combining (54), (55), (56) and (57), we conclude that

EP̂P̌X̃τ̃n+z
(
X· ∈ A

(
Yn· , z

))
> C > 0,

if |z| is large enough and d ≥ 5. �

Let

T o = inf{i ≥ 0 : Xi · e1 < 0}.
For every fixed ω ∈ Ω and P o

ω,ε-almost every X·,

P
Xn

ω,θnε

(
T o = ∞)

1T o>n = P o
ω,ε

(
T o = ∞|X1, . . . ,Xn

)
,

and so by Levy’s martingale convergence theorem,

lim
n→∞P

Xn

ω,θnε

(
T o = ∞)

1T o>n = 1T o=∞, P o
ω,ε-almost surely.

Hence, for (ω, ε, X̃·) sampled according to P̂,

lim
n→∞P

X̃τ̃n

ω,θ τ̃n ε

(
T o = ∞) = 1, P̂-almost surely.
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It then follows by the dominated convergence theorem that

lim
n→∞EP̂P

X̃τ̃n

ω,θ τ̃n ε

(
T o < ∞) = 0. (58)

Lemma 16. For any z ∈ Z
d ,

lim
n→∞EP̂P

X̃τ̃n+z

ω,θ τ̃n ε

(
T o < ∞) = 0. (59)

Proof. For n > |z|, obviously

(X̃τ̃n
+ z) · e1 > 0.

This together with ellipticity yields

P
X̃τ̃n

ω,θ τ̃n ε

(
T o < ∞) ≥

(
κ

2

)|z|
P

X̃τ̃n+z

ω,θ τ̃n+|z|ε
(
T o < ∞)

.

Hence using (58),

lim
n→∞EP̂P

X̃τ̃n+z

ω,θ τ̃n+|z|ε
(
T o < ∞) = 0.

On the other hand, noting that {R > τ1} = {R = ∞},

EP̂P
X̃τ̃n+z

ω,θ τ̃n+|z|ε
(
T o < ∞)

=
∑
m,x

EP⊗Q

[
P x+z

ω,θm+|z|ε
(
T o < ∞)

P o
ω,ε(R > τ1, τn = m,Xm = x)

]
/P(R = ∞)

=
∑
m,x

EP⊗Q

[
P x+z

ω,θmε

(
T o < ∞)

P o
ω,ε(R > τ1, τn = m,Xm = x)

]
/P(R = ∞)

= EP̂P
X̃τ̃n+z

ω,θ τ̃n ε

(
T o < ∞)

,

where we used the independence (under Q) of P x+z
ω,θmε(T

o < ∞) and P o
ω,ε(R > τ1, τn = m,Xm = x) in the second to

last equality. The conclusion follows. �

Proof of the uniqueness of the non-zero velocity when d ≥ 5, as stated in Theorem 2. If the two antipodal veloc-
ities are both non-zero, we assume that

ve1 · v−e1 > 0.

Sample (ω, ε·, X̃·) according to P̂. Henceforth, we take z = z0 such that (50) holds and

z0 · e1 < −L.

We will prove Theorem 2 by showing that

EP̂P
X̃τ̃n+z0

ω,θ τ̃n ε

(
T o < ∞)

> C (60)

for all n > |z0|, which contradicts with (59).
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First, let G denote the set of finite paths y· = (yi)
M
i=0 that satisfy yM = 0,M < ∞. Then

EP̂P
X̃τ̃n+z0

ω,θ τ̃n ε

(
T o < ∞)

≥ EP̂P
X̃τ̃n+z0

ω,θ τ̃n ε

(
(Xi)

T o

i=0 ∈ A
(
Yn· , z0

)
, T o < ∞)

=
∑

y·=(yi )
M
i=0∈G

EP̂

[
P

y0+z0
ω,θMε

(
(Xi)

T o

i=0 ∈ A(y·, z0), T
o < ∞)

1Yn· =y·
]

= 1

P(R = ∞)

∑
y·∈G

∑
N<∞

(xi )
N
i=0∈A(y·,z0)

EP⊗Q

[
P

y0+z0
ω,θMε

(
(Xi)

T o

i=0 = x·
)
Pω,ε

(
Yn· = y·

)]
. (61)

By the definition of the regeneration times, for any finite path y· = (yi)
M
i=0, there exists an event Gy· such that

Pω,ε(Gy·) is σ(εi,yi
,ωyj

: 0 ≤ i ≤ M,0 ≤ j ≤ M − L)-measurable and

{
Yn· = y·

} = {
(X̃i)

τ̃n

i=0 = (yM−j )
M
j=0

} = Gy· ∩ {R ◦ θM = ∞}.
Hence, for and any y· = (yi)

M
i=0 ∈ G and x· = (xi)

N
i=0 ∈ A(y·, z0), N < ∞,

EP⊗Q

[
P

y0+z0
ω,θMε

(
(Xi)

T o

i=0 = x·,R−e1 > N
)
Pω,ε

(
Yn· = y·

)]
= EP

[
P̄ y0+z0

ω

(
(Xi)

T o

i=0 = x·,R−e1 > N
)
P̄ω(Gy·)P̄

y0
ω (R = ∞)

]
(20)≥ CEP

[
P̄ y0+z0

ω

(
(Xi)

T o

i=0 = x·,R−e1 > N
)
P̄ω(Gy·)

]
P̄(R = ∞), (62)

where we used in the equality that (εi,x)i≥0,x∈Zd are i.i.d. and in the inequality the fact that

P̄ y0+z0
ω

(
(Xi)

T o

i=0 = x·,R−e1 > N
)
P̄ω(Gy·)

is σ(ωv : v · e1 ≤ y0 · e1 − L)-measurable (note that z0 · e1 < −L). Further, by Lemma 5 and (49), we have

EP

[
P̄ y0+z0

ω

(
(Xi)

T o

i=0 = x·,R−e1 > N
)
P̄ω(Gy·)

]
≥ CP̄y0+z0

(
(Xi)

T o

i=0 = x·,R−e1 > N
)
P̄(Gy·). (63)

Note that

P̄(Gy·)P̄(R = ∞)
(20)≥ CEP

[
P̄ω(Gy·)P̄

y0
ω (R = ∞)

] = CP̄
(
Yn· = y·

) ≥ CP̂
(
Yn· = y·

)
. (64)

Therefore, by (61), (62) and (63),

EP̂P
X̃τ̃n+z0

ω,θ τ̃n ε

(
T o < ∞)

≥ C
∑
y·∈G

∑
N<∞

(xi )
N
i=0∈A(y·,z0)

P̄y0+z0
(
(Xi)

T o

i=0 = x·,R−e1 > N
)
P̄(Gy·)P̄(R = ∞)

(64)≥ C
∑
y·∈G

∑
N<∞

(xi )
N
i=0∈A(y·,z0)

P̄y0+z0
(
(Xi)

T o

i=0 = x·,R−e1 > N
)
P̂
(
Yn· = y·

)

≥ CEP̂P̌X̃τ̃n+z0
(
X· ∈ A

(
Yn· , z0

)) Lemma 15
> C.

Inequality (60) is proved. �
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