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Abstract. Let us consider the simplest model of one-dimensional probabilistic cellular automata (PCA). The cells are indexed
by the integers, the alphabet is {0,1}, and all the cells evolve synchronously. The new content of a cell is randomly chosen,
independently of the others, according to a distribution depending only on the content of the cell itself and of its right neighbor.
There are necessary and sufficient conditions on the four parameters of such a PCA to have a Bernoulli product invariant measure.
We study the properties of the random field given by the space–time diagram obtained when iterating the PCA starting from its
Bernoulli product invariant measure. It is a non-trivial random field with very weak dependences and nice combinatorial properties.
In particular, not only the horizontal lines but also the lines in any other direction consist of i.i.d. random variables. We study
extensions of the results to Markovian invariant measures, and to PCA with larger alphabets and neighborhoods.

Résumé. Considérons le modèle le plus simple d’automates cellulaires probabilistes (ACP) de dimension 1. Les cellules sont
indexées par les entiers relatifs, l’alphabet est {0,1}, et toutes les cellules évoluent de manière synchrone. Le nouveau contenu
d’une cellule est choisi aléatoirement, indépendamment des autres, selon une distribution dépendant seulement du contenu de la
cellule et de sa voisine de droite. On connaît des conditions nécessaires et suffisantes portant sur les quatre paramètres d’un tel
ACP pour qu’il ait la mesure produit de Bernoulli comme mesure invariante. Nous étudions les propriétés du champ aléatoire
formé par le diagramme espace-temps obtenu lorsqu’on itère l’ACP à partir de sa mesure invariante de Bernoulli. Il s’agit d’un
champ aléatoire non trivial, présentant de très faibles dépendances et de jolies propriétés combinatoires. En particulier, les lignes
horizontales mais aussi les lignes selon les autres directions sont constituées de variables aléatoires i.i.d. Nous étudions l’extension
de ces résultats à des mesures invariantes de forme markovienne, ainsi qu’aux ACP ayant des alphabets et des voisinages plus
grands.
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1. Introduction

Consider a bi-infinite set of cells indexed by the integers Z, each cell containing a letter from a finite alphabet A. The
updating is local (each cell updates according to a finite neighborhood), time-synchronous, and space-homogeneous.
When the updating is deterministic, we obtain a Cellular Automaton (CA), and when it is random, we obtain a
Probabilistic Cellular Automaton (PCA). Alternatively, a PCA may be viewed as the discrete-time and synchronous
counterpart of a (finite range) interacting particle system. We refer to [14] for a comprehensive survey of the theory
of PCA.
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There are two complementary viewpoints on PCA. First, it defines a mapping from the set of probability measures
on AZ into itself. Second, it defines a discrete-time Markov chain on the state space AZ. A realization of the Markov
chain defines a random field on AZ×N, called a space–time diagram. An invariant measure for a PCA is a probability
measure on AZ which is left invariant by the dynamics. Starting from an invariant measure, we obtain a space–time
diagram which is time-stationary. Our goal is to study the stationary random fields associated to some particular and
remarkable PCA.

First, we consider the image by a PCA of a Bernoulli product measure. The resulting measure is described via
explicit formulas for its finite-dimensional marginals. Second, we use this description to revisit a result from [1] (see
also [14,15]) with a new and simple proof: explicit conditions on a PCA ensuring that a Bernoulli product measure is
invariant. Third, we focus on the equilibrium behavior of PCA having such a Bernoulli product invariant measure. The
resulting space–time diagram turns out to have an original and subtle correlation structure: it is non-i.i.d. but, in any
direction, the “lines” are i.i.d. In the case of an alphabet of size two and a neighborhood of size two (the updating of a
cell depends only on itself and its right-neighbor), the stationary space–time diagram satisfies additional remarkable
properties: it can also be seen as being obtained by iterating a transversal PCA in another direction.

The paper is structured as follows. General definitions are given in Section 2. A special emphasis is put on the
simplest non-trivial PCA, that is, the ones defined on an alphabet of size 2 and a neighborhood of size 2. They are
studied in detail in Sections 3 and 4. In Section 5, we consider the extension to general alphabets and neighborhoods,
and we also consider the case of Markovian invariant measures. In Section 6, we revisit classical results on CA in
view of the PCA results.

Notations. Given a finite set A, the free semigroup generated by A is denoted by A+. The length, that is, number
of letters, of a word u ∈ A+ is denoted by |u|. The number of occurrences of the letter a ∈ A in a word u ∈ A+ is
denoted by |u|a .

2. Probabilistic cellular automata (PCA)

Although PCA can be defined in any dimension, during this whole paper, they will be one-dimensional.

2.1. Definition of PCA

Let A be a finite set, called the alphabet, and let X = AZ. The set Z will be referred to as the set of cells, whereas X
is the set of configurations. For some finite subset K of Z, consider y = (yk)k∈K ∈ AK . The cylinder defined by y is
the set

[y] = {x ∈ X | ∀k ∈ K,xk = yk}.
For a given finite subset K , we denote by C(K) the set of all cylinders of base K . Given K,L ⊂ Z, we define
K + L = {u + v | u ∈ K,v ∈ L}.

We denote by M(A) the set of probability measures on A. Let us equip X with the product topology, which can
be described as the topology generated by cylinders. We denote by M(X ) the set of probability measures on X for
the Borel σ -algebra.

Definition 2.1. Given a finite set N ⊂ Z, a transition function of neighborhood N is a function f : A N → M(A). The
probabilistic cellular automaton (PCA) of transition function f is the application F : M(X ) −→ M(X ),μ �−→ μF ,
defined on cylinders by: ∀K,∀y = (yk)k∈K ,

μF [y] =
∑

[x]∈C(K+N )

μ[x]
∏
k∈K

f
(
(xk+v)v∈N

)
(yk).

Assume that the initial measure is concentrated on some configuration x ∈ X . Then by application of F , the content
of the kth cell is updated to a ∈ A with probability f ((xk+v)v∈N )(a).
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Fig. 1. Space–time diagram.

We keep the notation f for the extended mapping M(A N ) −→ M(A), ν �−→ νf with

∀a ∈ A, νf (a) =
∑

u∈AN

ν(u)f (u)(a).

2.2. Space–time diagrams

A PCA is a Markov chain on the state space X . Consider a realization (Xn)n∈N of that Markov chain. If X0 is
distributed according to μ on X , then Xn is distributed according to μFn. The random field (Xn)n∈N = (Xn

k )k∈Z,n∈N

is called a space–time diagram (the space-coordinate is k, and the time-coordinate is n).
If the neighborhood is N = {0,1}, for symmetry reasons, a natural choice is to represent the space–time diagram

on a regular triangular lattice, as in Fig. 1.
The dependence cone D(i, n) of the variable Xn

i is defined as the set of variables which are influenced by the value
of Xn

i . If the neighborhood is N = {0, . . . �}, then D(i, n) = {Xn+k
i+j , k ∈ N,−k� ≤ j ≤ 0}.

The next lemma follows directly from the definition of a PCA.

Lemma 2.2. Let (i, n) belong to Z × (N \ {0}) and let S be a subset of Z × N such that D(i, n) ∩ S = ∅. Then, Xn
i is

independent of (Xm
j )(j,m)∈S conditionally to (Xn−1

i+v )v∈N .

We point out that if a PCA has positive rates, i.e., ∀u ∈ A N ,∀a ∈ A, f (u)(a) > 0, then any of its stationary space–
time diagrams is a Markovian random field. We refer to [6,10] for an in-depth study of the connections between Gibbs
states and stationary space–time diagrams of PCA.

2.3. Product form invariant measures

Definition 2.3. For p ∈ [0,1], we denote by μp the Bernoulli product measure of parameter p on {0,1}Z, that is,
μp = B⊗Z

p , where Bp denotes the Bernoulli measure of parameter p on {0,1}. Thus, for any cylinder [x], we have

μp[x] = (1 − p)|x|0p|x|1 .

We give a first property of the space–time diagram that is shared by every PCA having a Bernoulli product invariant
measure.

Lemma 2.4. Let F be a PCA of neighborhood {0, . . . , �}. Assume that μpF = μp and consider the stationary space–
time diagram obtained for that invariant measure. Then for any α > −1/�, the line Lα = {(k, n) ∈ Z × N | n = αk} is
such that the random variables (Xn

k )(k,n)∈Lα are i.i.d.
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Proof. Let us show that any finite sequence of consecutive random variables on such a line is i.i.d. We can assume
without loss of generality that the first of these points is X0

0. Then, using the hypothesis on the slope, we obtain that the
other random variables on that line are all outside the dependence cone of X0

0. Thus, the (n − 1)-tuple they constitute
is independent of X0

0. By induction, we get the result. �

3. PCA of alphabet and neighborhood of size 2

For the time being, we assume that the neighborhood is N = {0,1} and that the alphabet is A = {0,1}. For conve-
nience, we introduce the notations: for x, y ∈ A,

θxy = θ1
xy = f (x, y)(1), θ0

xy = f (x, y)(0) = 1 − θxy.

Observe that a PCA is completely characterized by the four parameters: θ00, θ01, θ10, and θ11.

3.1. Computation of the image of a product measure by a PCA

The goal of this section is to give an explicit description of the measure μpF , where μp is the Bernoulli product
measure of parameter p, as a function of the parameters θ00, θ01, θ10, θ11.

Let us start with an observation. Consider (Yn)n∈Z ∼ μpF . Let q ∈ [0,1] be such that Y0 ∼ Bq (that is, q =
(1−p)2θ00 + (1−p)p(θ01 + θ10)+p2θ11). Clearly, we have: (Y2n)n∈Z ∼ μq and (Y2n+1)n∈Z ∼ μq . But the two i.i.d.
sequences have a complex joint correlation structure. It makes it non-elementary to describe the finite-dimensional
marginals of μpF .

Assume that the parameters satisfy:

(θ00, θ01), (θ10, θ11) /∈ {
(0,0), (1,1)

}
. (1)

For p ∈ (0,1), α ∈ {0,1}, define the function

gα : [0,1] −→ (0,1),

q �−→ (1 − q)(1 − p)θα
00 + (1 − q)pθα

01 + q(1 − p)θα
10 + qpθα

11. (2)

Consider three random variables X0,X1, Y0 with (X0,X1) ∼ Bq ⊗ Bp and Y0 ∼ (Bq ⊗ Bp)f . In words, gα(q) is the
probability to have Y0 = α. With the condition (1), we have gα(q) ∈ (0,1) for all q . Observe also that: g0(q)+g1(q) =
1 for all q .

For p ∈ (0,1), α ∈ {0,1}, we also define the function

hα : [0,1] −→ [0,1],
q �−→ [

(1 − q)pθα
01 + qpθα

11

]
gα(q)−1. (3)

Consider X0,X1, Y0 with (X0,X1) ∼ Bq ⊗ Bp and Y0 ∼ (Bq ⊗ Bp)f . In words, hα(q) is the probability to have
X1 = 1 conditionally to Y0 = α.

Proposition 3.1. Consider a PCA satisfying (1). Consider p ∈ (0,1). For α0 · · ·αn−1 ∈ An, the probability of the
cylinder [α0 · · ·αn−1] under μpF is given by:

μpF [α0 · · ·αn−1] = gα0(p)

n−1∏
i=1

gαi

(
hαi−1

(
hαi−2

(· · ·hα0(p) · · ·))).
By reversing the space-direction, we get an analogous proposition for a PCA satisfying the symmetrized condition:

(θ00, θ10), (θ01, θ11) /∈ {(0,0), (1,1)}.
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Proof of Proposition 3.1. Let us compute recursively the value μpF [α0 · · ·αn−1]. We set X = X0 and Y = X1.
Assuming that X ∼ μp , by definition,

μpF [α0] = P(Y0 = α0) = gα0(p).

We can decompose the probability μpF [α0α1] into

μpF [α0α1] = P(Y0 = α0, Y1 = α1) = P(Y1 = α1|Y0 = α0)P(Y0 = α0).

By definition, the conditional law of X1 assuming that Y0 = α0 is given by Bhα0 (p). So the law of (X1,X2) is Bhα0 (p) ⊗
Bp and we obtain

μpF [α0α1] = gα1

(
hα0(p)

)
gα0(p).

More generally, we have:

P(Y0 = α0, . . . , Yk = αk) = P(Yk = αk|Y0 = α0, . . . , Yk−1 = αk−1)P(Y0 = α0, . . . , Yk−1 = αk−1).

By induction, the law of Xk knowing that Y0 = α0, . . . , Yk−1 = αk−1 is Bhαk−1 (hαk−2 (···hα0 (p)···)). The result follows. �

3.2. Conditions for a product measure to be invariant

For x ∈ X , denote by δx the Dirac probability measure concentrated on the configuration x. The probability measure
μ1 = δ1Z is invariant for the PCA F if and only if θ11 = 1. Similarly, μ0 = δ0Z is invariant for F if and only if θ00 = 0.

Using Proposition 3.1, we get a necessary and sufficient condition for μp , p ∈ (0,1), to be an invariant measure
of F . The result is stated in Theorem 3.2. It already appeared in [1] and [14], but our proof is new and simpler.

Theorem 3.2. The measure μp , p ∈ (0,1), is an invariant measure of the PCA F of parameters θ00, θ01, θ10, θ11 if
and only if one of the two following conditions is satisfied:

(i) (1 − p)θ00 + pθ01 = (1 − p)θ10 + pθ11 = p,

(ii) (1 − p)θ00 + pθ10 = (1 − p)θ01 + pθ11 = p.

In particular, a PCA has a (non-trivial) Bernoulli product invariant measure if and only if its parameters satisfy:

θ00(1 − θ11) = θ10(1 − θ01) or θ00(1 − θ11) = θ01(1 − θ10). (4)

Proof. Let us assume that F satisfies condition (i) for some p ∈ (0,1). Then, the function g1 is given by g1(q) =
(1 − q)p + qp = p, and g0(q) = 1 − g1(q) = 1 − p. By Proposition 3.1, we have,

∀α = α0 · · ·αn−1 ∈ An, μpF [α] = (1 − p)|α|0p|α|1 = μp[α].
So μp is an invariant measure.

Now, assume that the PCA F satisfies condition (ii). Let us reverse the space direction, that is, let us read the
configurations from right to left. The same dynamic is now described by a new PCA F̃ defined by the parameters
θ̃00 = θ00, θ̃01 = θ10, θ̃10 = θ01, θ̃11 = θ11. So, the new PCA satisfies condition (i). According to the above, we have
μpF̃ = μp . Let us reverse the space direction, once again. Since the Bernoulli product measure is unchanged, we
obtain μpF = μp .

Conversely, assume that μpF = μp . It follows from Proposition 3.1 that for any value of the αi , we must have
g1(hαn−1(hαn−2(· · ·hα0(p) · · ·))) = p. Since g1 is an affine function, there are only two possibilities: either g1 is the
constant function equal to p; or hαn−1(hαn−2(· · ·hα0(p) · · ·)) = p for all values of α0, . . . , αn−1 ∈ A.

In the first case, observe that

g1(q) = q
[−(1 − p)θ00 − pθ01 + (1 − p)θ10 + pθ11

] + (1 − p)θ00 + pθ01.
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To get: ∀q ∈ [0,1], g1(q) = p, we must have condition (i).
In the second case, we must have h0(p) = h1(p) = p and g1(p) = p. Using g0(p) = 1 −p and g1(p) = p, we get:

h0(p) = [
(1 − p)p(1 − θ01) + pp(1 − θ11)

]
(1 − p)−1,

h1(p) = [
(1 − p)pθ01 + ppθ11

]
p−1 = (1 − p)θ01 + pθ11.

The equality h1(p) = p provides the condition (1 − p)θ01 + pθ11 = p. Let us switch to the equality h0(p) = p. We
have:

h0(p) = p ⇐⇒ (1 − p)(1 − θ01) + p(1 − θ11) = 1 − p

⇐⇒ (1 − p)θ01 + pθ11 = p.

So, we obtain condition (ii). �

To complete Theorem 3.2, let us quote a result from [15]. We recall that a PCA has positive rates if: ∀u ∈ N ,∀a ∈
A, f (u)(a) > 0.

Proposition 3.3. Consider a positive-rates PCA F satisfying condition (i) or (ii), for some p ∈ (0,1). Then F is
ergodic, that is, μp is the unique invariant measure of F and for all initial measure μ, the sequence (μFn)n≥0
converges weakly to μp .

Assessing the ergodicity of a PCA is a difficult problem, which is algorithmically undecidable in general, see
[3,13]. On the other hand, a long standing conjecture had been that any one-dimensional PCA with positive rates
is ergodic. However, in 2001, Gács disproved the conjecture by exhibiting a very complex counter-example with
several invariant measures [5] (for two-dimensional PCA, the Toom model is a much simpler example of non-ergodic
PCA with positive rates, see [12]). In this complicated landscape, Proposition 3.3 gives a restricted setting in which
ergodicity can be proven.

Observe that Proposition 3.3 is not true without the positive-rates assumption. Consider for instance the PCA
defined by: θ00 = p/(1 − p), θ01 = 0, θ10 = 0, θ11 = 1 for some p ∈ (0,1/2]. It satisfies (i) and (ii), but it is not
ergodic since δ1Z and μp are both invariant.

3.3. Transversal PCA

We assume that μp is invariant under the action of the PCA, and we focus on the correlation structure of the space–
time diagram obtained when the initial measure is μp . Observe that this space–time diagram is both space-stationary
and time-stationary. By time-stationarity, the space–time diagram can be extended from Z × N to Z

2. From now on,
we work with this extension.

Let (Xk,n)k,n∈Z×Z be a realization of the stationary space–time diagram.

It is convenient to define the three vectors �u, �v, and �w as in the figure above. The PCA generating the space–time
diagram is the PCA of direction �u. In some cases, the space–time diagram when rotated by an angle of 2π/3 (resp.
−2π/3) still has the correlation structure of a space–time diagram generated by a PCA of neighborhood {0,1}. In this
case, we say that, in the original space–time diagram, there is a transversal PCA of direction �v (resp. �w).

Proposition 3.4. Under condition (i), each line of angle π/3 of the space–time diagram is distributed according
to μp . Moreover, their correlations are the ones of a transversal PCA of direction �v and rates given by: ϑ00 = θ00,
ϑ01 = θ10, ϑ10 = θ01, ϑ11 = θ11.
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To prove Proposition 3.4, we need two preliminary lemmas. Set X = X0 and Y = X1, so that we have in particular
(X,Y ) ∼ (μp,μpF).

Lemma 3.5. Under condition (i), the variables (Yk)k≥0 are independent of X0, that is, for any n ≥ 0,

P
(
X0 = x0, (Yi)0≤i≤n = (yi)0≤i≤n

) = μp[x0]
n∏

i=0

μp[yi].

Proof. The left-hand side can be decomposed into:∑
x1···xn+1∈{0,1}n+1

P
(
(Xi)0≤i≤n+1 = (xi)0≤i≤n+1, (Yi)0≤i≤n = (yi)0≤i≤n

)
,

which can be expressed with the transition rates of the PCA as follows:

∑
x1···xn+1∈{0,1}n+1

μp[x0]
n∏

i=0

μp[xi+1]θyi
xixi+1

= μp[x0]
∑

x1∈{0,1}
μp[x1]θy0

x0x1

∑
x2∈{0,1}

μp[x2]θy1
x1x2 · · ·

∑
xn+1∈{0,1}

μp[xn+1]θyn
xnxn+1 .

Condition (i) can be rewritten as:

∀a, b, c ∈ {0,1},
∑

b∈{0,1}
μp[b]θc

ab = μp[c].

Using this, and simplifying from the right to the left, we obtain: μp[x0]∏n
i=0 μp[yi]. �

Lemma 3.6. Under condition (i), for any n ≥ 0,

P
(
X0 = x0,X1 = x1, (Yi)0≤i≤n = (yi)0≤i≤n

) = μp[x0]μp[x1]θy0
x0x1

n∏
i=1

μp[yi].

Proof. The proof is analogous. We decompose the left-hand side into:∑
x2···xn+1∈{0,1}n

P
(
(Xi)0≤i≤n+1 = (xi)0≤i≤n+1, (Yi)0≤i≤n = (yi)0≤i≤n

)
,

which can be expressed with the transition rates of the PCA as follows:

∑
x2···xn+1∈{0,1}n

μp[x0]
n∏

i=0

μp[xi+1]θyi
xixi+1

= μp[x0]μp[x1]θy0
x0x1

∑
x2∈{0,1}

μp[x2]θy1
x1x2 · · ·

∑
xn+1∈{0,1}

μp[xn+1]θyn
xnxn+1 .

Using (i) and simplifying from the right to the left, we get the result. �
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Proof of Proposition 3.4. To prove the first part of the proposition, it is sufficient to prove that the sequence (Xk
0)k∈Z

is i.i.d. For a given n ∈ N and a sequence (αk)0≤k≤n, let us prove recursively that P((Xn
0 )0≤k≤n = (αk)0≤k≤n) =

μp[α0 · · ·αn]. For n = 0, the result is straightforward; and for n = 1, it is a direct consequence of Lemma 3.5. For
larger values of n, set A = P((Xk

0)0≤k≤n = (αk)0≤k≤n), we have:

A =
∑

y1···yn−1∈{0,1}n−1

P
((

Xk
0

)
0≤k≤n

= (αk)0≤k≤n, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1
)
.

Since X0
0 = X0,X

1
0 = Y0, it can be rewritten as:

A =
∑

y1···yn−1∈{0,1}n−1

P
((

Xk
0

)
2≤k≤n

= (αk)2≤k≤n|X0 = α0, Y0 = α1, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1
)

× P
(
X0 = α0, Y0 = α1, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1

)
.

The law of (Xk
0)2≤k≤n conditionally to (X0, (Yi)0≤i≤n−1) is equal to the law of (Xk

0)2≤k≤n conditionally to
(Yi)0≤i≤n−1. Also, using Lemma 3.5, we have: P(X0 = α0, Y0 = α1, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1) = μp[α0]P(Y0 =
α1, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1). Coupling these two points, we get:

A =
∑

y1···yn−1∈{0,1}n−1

P
((

Xk
0

)
2≤k≤n

= (αk)2≤k≤n|Y0 = α1, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1
)

× μp[α0]P
(
Y0 = α1, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1

)
= μp[α0]P

((
Xk

0

)
1≤k≤n

= (αk)1≤k≤n

)
.

By induction, we obtain the result.

The second part of the proposition consists of proving that

P
((

Xk
1

)
0≤k≤n

= (βk)0≤k≤n|
(
Xk

0

)
0≤k≤n+1 = (αk)0≤k≤n+1

) =
n∏

k=0

ϑβk
αk+1αk

. (5)
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We prove the result recursively. For n = 0, set A = P(X1 = β0|Y0 = α1,X0 = α0). We want to prove that A =
ϑ

β0
α1α0 . Using the first part of the proposition, we have:

A = P(Y0 = α1|X0 = α0,X1 = β0)P(X0 = α0,X1 = β0)P(X0 = α0, Y0 = α1)
−1

= θ
α1
α0β0

μp[α0]μp[β0]μp[α0]−1μp[α1]−1 = θ
α1
α0β0

μp[β0]μp[α1]−1.

If α1 = β0 = u, we get A = θu
α0u

= ϑu
uα0

. Assume that α1 �= β0. Condition (i) can be rewritten as:

μp[β0]θα1
α0β0

+ μp[α1]θα1
α0α1

= μp[α1]. (6)

Dividing by μp[α1], we get:

A = θ
α1
α0β0

μp[β0]μp[α1]−1 = 1 − θα1
α0α1

= θβ0
α0α1

= ϑβ0
α1α0

.

For larger n, it is convenient to prove the next equality, which is equivalent to (5):

P
((

Xk
0

)
0≤k≤n+1 = (αk)0≤k≤n+1,

(
Xk

1

)
0≤k≤n

= (βk)0≤k≤n

) = μp[αn+1]
n∏

k=0

μp[αk]ϑβk
αk+1αk

.

The left-hand side can be decomposed into:∑
y2···yn∈{0,1}n−1

P
((

Xk
0

)
0≤k≤n+1 = (αk)0≤k≤n+1,

(
Xk

1

)
0≤k≤n

= (βk)0≤k≤n, (Yi)2≤i≤n = (yi)2≤i≤n

)
.

Let us decompose each term of the sum, conditioning by the values of X0,X1, Y0, and Y1. We have:

P
((

Xk
0

)
2≤k≤n+1 = (αk)2≤k≤n+1,

(
Xk

1

)
2≤k≤n

= (βk)2≤k≤n|
(X0,X1, Y0, Y1) = (α0, β0, α1, β1), (Yi)2≤i≤n = (yi)2≤i≤n

)
= P

((
Xk

0

)
2≤k≤n+1 = (αk)2≤k≤n+1,

(
Xk

1

)
2≤k≤n

= (βk)2≤k≤n|
(Y0, Y1) = (α1, β1), (Yi)2≤i≤n = (yi)2≤i≤n

)
and using Lemma 3.6, and the equality μp[β0]θα1

α0β0
= μp[α1]ϑβ0

α1α0 (see (6)):

P
(
(X0,X1, Y0, Y1) = (α0, β0, α1, β1), (Yi)2≤i≤n = (yi)2≤i≤n

)
= μp[α0]μp[β0]θα1

α0β0
P
(
Y1 = β1, (Yi)2≤i≤n = (yi)2≤i≤n

)
= μp[α0]μp[α1]ϑβ0

α1α0
P
(
Y1 = β1, (Yi)2≤i≤n = (yi)2≤i≤n

)
= μp[α0]ϑβ0

α1α0
P
(
(Y0, Y1) = (α1, β1), (Yi)2≤i≤n = (yi)2≤i≤n

)
.

Assembling the pieces together, we obtain:

P
((

Xk
0

)
0≤k≤n+1 = (αk)0≤k≤n+1,

(
Xk

1

)
0≤k≤n

= (βk)0≤k≤n

)
= μp[α0]ϑβ0

α1α0
P
((

Xk
0

)
1≤k≤n+1 = (αk)1≤k≤n+1,

(
Xk

1

)
1≤k≤n

= (βk)1≤k≤n

)
.

We conclude the proof by induction. �

Corollary 3.7. Under condition (i), all the lines of the space–time diagram except possibly those of angle 2π/3 consist
of i.i.d. random variables.
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Proof. The previous proposition claims that the lines of angle π/3 are i.i.d. Lemma 2.4 provides the result for the
lines of angles in [0,π/3) ∪ (2π/3,π]. The angles in (π/3,2π/3) correspond to lines that are outside the dependence
cones of the transversal PCA, so we obtain the result by applying again Lemma 2.4 for the transversal PCA. �

In the same way, one can prove the following.

Proposition 3.8. Under condition (ii), the lines of angle 2π/3 of the space–time diagram are distributed according to
μp and their correlations are those of a transversal PCA of direction �w and rates given by ϑ00 = θ00, ϑ11 = θ11 and
ϑ01 = θ10, ϑ10 = θ01.

Corollary 3.9. Under condition (ii), all the lines of the space–time diagram except possibly the ones of angle π/3
consist of i.i.d. random variables.

For a PCA satisfying (i) (resp. (ii)), the lines of angle 2π/3 (resp. π/3) are not i.i.d., except if the PCA also
satisfies condition (ii) (resp. (i)). The distribution of the lines of angle 2π/3 (resp. π/3) does not necessary have a
Markovian form either. For example, if θ00 = θ01 = 1/2 and θ10 = 0, θ11 = 1 (condition (i) is satisfied with p = 1/2),
one can check that P(X0

0 = 0,X1−1 = 0,X2−2 = 0) = 19/64 which is different P(X0
0 = 0)P(X1−1 = 0|X0

0 = 0)P(X2−2 =
0|X1−1 = 0) = (1/2)(3/4)2.

It is an open problem to know if under condition (i) (resp. (ii)), it is possible to give an explicit description of the
distribution of the lines of angle 2π/3 (resp. π/3).

4. Non-i.i.d. random field with every line i.i.d.

We now concentrate on PCA satisfying both conditions (i) and (ii) for some p ∈ (0,1). We consider the stationary
space–time diagram associated with μp , and we still denote it by (Xn

k )k,n∈Z.

4.1. All the lines are i.i.d.

For a given p ∈ (0,1), conditions (i) and (ii) are both satisfied if and only if:

∃s ∈
[

2p − 1

p
,

p

1 − p

]
, θ00 = p(1 − s)

1 − p
, θ01 = θ10 = s, θ11 = 1 − (1 − p)s

p
. (7)

Example 4.1. For any value of p ∈ (0,1), the choice s = p is allowed. In that case, the transition rates θij are all
equal to p and the stationary random field is i.i.d., there is no dependence in the space–time diagram.

Example 4.2. If p = 1/2, every choice of s ∈ [0,1] is valid and the corresponding PCA has the transition function
f (x, y) = sδx+y mod 2 + (1 − s)δx+y+1 mod 2 (see Fig. 2).

Example 4.3. For any value of p ∈ (0,1/2], it is possible to set s = 0 and then, θ01 = θ10 = 0, θ11 = 1, and θ00 =
p/(1 − p). This PCA forbids the elementary triangles pointing up that have exactly one vertex labeled by a 0 (see
Fig. 3).

The next proposition is a direct consequence of Corollaries 3.7 and 3.9.

Proposition 4.4. Consider a PCA satisfying (7). Every line of the stationary space–time diagram consists of i.i.d.
random variables. In particular, any two different variables are independent.

4.2. Equilateral triangles pointing up are correlated

We have seen that all the lines of the space–time diagram are i.i.d. But the whole space–time diagram is i.i.d. if
and only if s = p. Indeed, if s �= p, the random variable Xn+1

k is not independent of (Xn
k ,Xn

k+1); in words, the
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Fig. 2. An example of space–time diagram for p = 1/2 and s = 3/4.

Fig. 3. An example of space–time diagram for p = 1/3 and s = 0.

three variables of an elementary triangle pointing up are correlated. Precisely, the triple (Xn
k ,Xn

k+1,X
n+1
k ) consists

of random variables which are: (1) identically distributed; (2) pairwise independent; (3) globally dependent if s �= p.
The “converse” holds.

Proposition 4.5. Let ν be a law on {0,1}3 such that the three marginals on {0,1}2 are i.i.d. Assume that ν is non-
degenerate (ν �= δ000, ν �= δ111). Then ν can be realized as the law of an “elementary triangle pointing up” in the
stationary space–time diagram of exactly one PCA satisfying (7).

Proof. Consider (X0,X1, Y0) ∼ ν. Assume that the common law of X0,X1, and Y0 is Bp . By the pairwise indepen-
dence, we have:

P(X0 = 1,X1 = 0, Y0 = 0) = P(X1 = 0, Y0 = 0) − P(X0 = 0,X1 = 0, Y0 = 0)

= (1 − p)2 − P(X0 = 0,X1 = 0, Y0 = 0).

We obtain:

P(X0 = 1,X1 = 0, Y0 = 0) = P(X0 = 0,X1 = 1, Y0 = 0) = P(X0 = 0,X1 = 0, Y0 = 1),

P(X0 = 0,X1 = 1, Y0 = 1) = P(X0 = 1,X1 = 0, Y0 = 1) = P(X0 = 1,X1 = 1, Y0 = 0).

Set q0 = P(X0 = 1,X1 = 0, Y0 = 0) and q1 = P(X0 = 0,X1 = 1, Y0 = 1). We have:

P(X0 = 0,X1 = 0, Y0 = 0) = (1 − p)2 − q0, P(X0 = 1,X1 = 1, Y0 = 1) = p2 − q1.

Furthermore:

q0 + q1 = P(X0 = 0,X1 = 0, Y0 = 1) + P(X0 = 1,X1 = 0, Y0 = 1) = P(X1 = 0, Y0 = 1) = p(1 − p).
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Using the above, and expressing everything as a function of p and q1, we get:

P(Y0 = 1|X0 = 0,X1 = 0) = (
p(1 − p) − q1

)
/(1 − p)2,

P(Y0 = 1|X0 = 0,X1 = 1) = q1/
(
p(1 − p)

)
,

P(Y0 = 1|X0 = 1,X1 = 0) = q1/
(
p(1 − p)

)
,

P(Y0 = 1|X0 = 1,X1 = 1) = 1 − q1/p
2.

By setting θij = P(Y0 = 1|X0 = i,X1 = j) and s = q1/(p(1 − p)), we recover exactly (7). �

Proposition 4.6. Consider a PCA satisfying (7) with s �= p. The correlations between three random variables that
form an equilateral triangle pointing up decrease exponentially as a function of the size of the triangle.

Proof. Let us consider the random field (X2n
2k )k,n∈Z. Observe that all its random variables are distributed according

to Bp , and that each line consists of i.i.d. random variables. Moreover, for any a < b, the variables (X2n+2
2k )a≤k≤b

are independent conditionally to the variables (X2n
2k )a≤k≤b+1. Thus, this “extracted” random field corresponds to the

space–time diagram of a new PCA, having a neigborhood of size 2 and satisfying (7) for the same value of p. To
know its transition rates θ

(2)
ij = P(X2

0 = 1|X0
0 = i,X0

2 = j), it is enough to compute θ
(2)
10 = θ

(2)
01 . We denote this value

by φ(s), since it is a function of s = θ01 = θ10.
Summing over all possible values of X0

1,X
1
0,X

1
1 (we first consider the case X0

1 = 1 and then the one X0
1 = 0), we

get:

φ(s) = p
[
θ01θ11θ11 + (1 − θ01)θ11θ01 + θ01(1 − θ11)θ10 + (1 − θ01)(1 − θ11)θ00

]
+ (1 − p)

[
θ00θ01θ11 + (1 − θ00)θ01θ01 + θ00(1 − θ01)θ10 + (1 − θ00)(1 − θ01)θ00

]
.

Replacing the coefficients θij by their expression as a function of p and s and simplifying the result, we obtain:

φ(s) = p + (s − p)3

p(1 − p)
.

We proceed similarly for the random field (X2in
2i k

)k,n∈Z. The coefficient θ
(2i )
01 = P(X2i

0 = 1|X0
0 = 0,X0

2i = 1) is

equal to φi(s), which satisfies:

φi(s) − p = (s − p)3i

(
p(1 − p)

)(3i−1)/2
= √

p(1 − p)

(
s − p√
p(1 − p)

)3i

.

Similar computations can be performed for equilateral triangles pointing up of other sizes. The decay of correlation
for equilateral triangles pointing up is exponential in function of their size. �

The next lemma will allow us to characterize completely the triples of random variables that are not independent.

Lemma 4.7. Consider a PCA satisfying (7). The variable X0
0 is independent of (Xn

k )k∈Z,n∈N\{0}.

Proof. Set X = X0 and Y = X1. It is sufficient to prove that X0 is independent of (Yk)k∈Z. But (Yk)k≥0 and (Yk)k<0
are independent conditionally to X0, so that we can conclude with Lemma 3.5 and its analogue for condition (ii). �

Proposition 4.8. Consider a PCA satisfying (7) with s �= p. Three random variables of the stationary space–time
diagram are correlated if and only if they form an equilateral triangle pointing up.

Proof. Three variables that form an equilateral triangle pointing up are correlated, see the proof of Proposition 4.6. Let
us now consider three variables (Z1,Z2,Z3) that do not constitute such a triangle. Then, if we consider the smallest
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equilateral triangle pointing up that contains them, there is an edge of that triangle that contains exactly one of these
variables. By rotation of angle 2π/3 or translation of the diagram, one can assume that this edge is the horizontal
one and that it contains the variable Z1, and not the variables Z2,Z3. Now, using Lemma 4.7, we obtain that Z1 is
independent of (Z2,Z3). But since Z2 and Z3 are independent, the three variables (Z1,Z2,Z3) are independent. �

There are subsets of four variables that do not contain equilateral triangles pointing up and that are correlated.
It is the case in general of (X0,X2, Y0, Y1). Let us consider for instance the PCA of Example 4.3. The event
(X0,X2, Y0, Y1) = (0,1,1,1) has probability zero, since whatever the value of X1, the space–time diagram would
have an elementary triangle pointing up with exactly one zero.

4.3. Incremental construction of the random field

Let us show how to construct incrementally the stationary space–time diagram of a PCA satisfying conditions (i)
and (ii), using two elementary operations.

Consider a PCA satisfying (i) and (ii) for some p ∈ (0,1). Let S ⊂ Z
2 be the finite set of points of the space–time

diagram that has been constructed at some step. Initially S = {(0,0)} and X0
0 ∼ Bp .

• If (i, n), (i + 1, n) ∈ S, (i, n + 1) /∈ S, and D(i, n + 1) ∩ S = ∅. Choose Xn+1
i knowing (Xn

i ,Xn
i+1) according to

the law of the PCA.
If (i, n), (i, n+1) ∈ S, (i+1, n) /∈ S, and if no point of the dependence cone of (i+1, n) with respect to the transver-
sal PCA of direction �v belongs to S: choose Xn

i+1 knowing (Xn+1
i ,Xn

i ) according to the law of the transversal PCA
of direction �v.
If (i, n+ 1), (i + 1, n) ∈ S, (i, n) /∈ S, and if no point of the dependence cone of (i, n) with respect to the transversal
PCA of direction �w belongs to S: choose Xn

i knowing (Xn
i+1,X

n+1
i ) according to the law of the transversal PCA

of direction �w.
• If (i, n) /∈ S, and if (j,m) ∈ S implies m < n: choose Xn

i according to Bp and independently of the variables
Xm

j , (j,m) ∈ S.
If (i, n) /∈ S, and if (j,m) ∈ S implies j < i: choose Xn

i according to Bp and independently of the variables
Xm

j , (j,m) ∈ S.
If (i, n) /∈ S, and if (j,m) ∈ S implies j +m > i +n: choose Xn

i according to Bp and independently of the variables
Xm

j , (j,m) ∈ S.

By applying the above rules in the order illustrated by the figure below, one can progressively build the stationary
space–time diagram of the PCA. Indeed the rules enlarge S in such a way that, at each step, the variables of S have
the same distribution as the corresponding finite-dimensional marginal of the stationary space–time diagram. This is
proved by Lemmas 2.2 and 4.7.

On the figure, the labelling of the nodes corresponds to the step at which the corresponding variable is computed
(after the three variables of the grey triangle). An arrow pointing to a variable means that it has been constructed
according to the PCA of the direction of the arrow (first rule). The nodes labelled by � are the ones which have been
constructed by independence (second rule).
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5. Extensions

We consider two types of extensions. First, PCA with an alphabet and neighborhood of size 2 but having a Marko-
vian invariant measure. Second, PCA having a Bernoulli product invariant measure but with a general alphabet and
neighborhood.

5.1. Markovian invariant measures

Markovian measures are a natural extension of Benoulli product measures. In a nutshell, the tools of Section 3 can be
extended to find conditions for having a Markovian invariant measure, but the spatial properties presented in Section 4
do not remain.

Definition 5.1. Consider a, b ∈ (0,1). The Markovian measure on {0,1}Z of transition matrix

Q =
(

1 − a a

1 − b b

)

is the measure νQ defined on cylinders by:

∀x = xm · · ·xn, νQ[x] = πxm

n−1∏
i=m

Qxi,xi+1 ,

where π = (π0,π1) is such that πQ = π , π0 + π1 = 1, that is, π0 = (1 − b)/(1 − b + a) and π1 = a/(1 − b + a).

The Markovian measure νQ is space-stationary. If a = b, then νQ = μa , the Bernoulli product measure of parame-
ter a.

Let us fix the PCA, that is, the parameters (θ00, θ01, θ10, θ11) and assume that (1) holds. Let us fix the parameters
a and b in (0,1) (defining Q and π as in Definition 5.1). We introduce the analogues of the functions defined in (2)
and (3).

For α ∈ {0,1}, define the function:

gα : [0,1] −→ (0,1),

r �−→ (1 − r)(1 − a)θα
00 + (1 − r)aθα

01 + r(1 − b)θα
10 + rbθα

11. (8)
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In words, gα(r) is the probability that Y0 = α if the law of (X0,X1) is given by P(X0 = x0,X1 = x1) = rx0Qx0,x1

with r0 = 1 − r and r1 = r . With condition (1) on the parameters, we have gα(r) ∈ (0,1) for all r . Observe also that:
g0(r) + g1(r) = 1.

For α ∈ {0,1}, we also define the function:

hα : [0,1] −→ [0,1],
r �−→ [

(1 − r)aθα
01 + rbθα

11

]
gα(r)−1. (9)

In words, hα(r) is the probability to have X1 = 1 conditionally to Y0 = α if (X0,X1) is distributed according to the
above law.

Proposition 5.2. Consider the Markovian measure νQ and the PCA F as above. For α0 · · ·αn−1 ∈ An, the probability
of the cylinder [α1 · · ·αn] under νQF is given by:

νQF [α0 · · ·αn−1] = gα0(π1)

n−1∏
i=1

gαi

(
hαi−1

(
hαi−2

(· · ·hα0(π1) · · ·))).
Using Proposition 5.2, we obtain sufficient conditions for having a Markovian invariant measure. This provides a

new proof of a result mentioned in [14] and first published in [1] (see also [16] for a related result).

Theorem 5.3. A PCA has a Markovian invariant measure if its parameters satisfy:

θ00θ11(1 − θ01)(1 − θ10) = θ01θ10(1 − θ00)(1 − θ11), (10)

and θ00 �= 0, θ11 �= 1, (θ01, θ10) /∈ {(0,1), (1,0)} and [(θ00, θ01) �= (1,1), (θ10, θ11) �= (0,0)] or [(θ00, θ10) �=
(1,1), (θ01, θ11) �= (0,0)].

Proof. We treat the case [(θ00, θ01) �= (1,1), (θ10, θ11) �= (0,0)] (observe that Proposition 5.2 holds). The case
[(θ00, θ10) �= (1,1), (θ01, θ11) �= (0,0)] can be treated by reversing the space-direction.

Let us assume that the following conditions are satisfied:

1. for α ∈ {0,1}, gα(π1) = πα ;
2. for α ∈ {0,1}, there exists cα ∈ [0,1] such that: ∀r, hα(r) = cα ;
3. for α,β ∈ {0,1}, gβ(cα) = Qα,β .

Then, by a direct application of Proposition 5.2, the measure νQ is invariant. When are these conditions fulfilled?
For α = 1, condition 2 tells us that there exists c1 ∈ [0,1] such that for any r ∈ [0,1],

(1 − r)aθ01 + rbθ11 = c1
(
(1 − r)(1 − a)θ00 + (1 − r)aθ01 + r(1 − b)θ10 + rbθ11

)
.

This is the case if and only if:

aθ01 = c1
(
(1 − a)θ00 + aθ01

)
, bθ11 = c1

(
(1 − b)θ10 + bθ11

)
.

Thus, condition 2 for α = 1 is equivalent to:

a(1 − b)θ01θ10 = (1 − a)bθ00θ11. (11)

In the same way, condition 2 for α = 0 is equivalent to:

a(1 − b)(1 − θ01)(1 − θ10) = (1 − a)b(1 − θ00)(1 − θ11). (12)

Eliminating a and b in (11) and (12), we obtain the relation (10) for the parameters of the PCA.
Conversely, let us assume that relation (10) holds. We will prove that there exists a, b ∈ (0,1) such that the three

above conditions are satisfied.
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First observe that (11) holds if and only if (12) holds. So, we have a first relation to be satisfied by the parameters
a, b ∈ (0,1) which is (11). Under this relation, condition 2 is satisfied with:

c0 = a(1 − θ01)

(1 − a)(1 − θ00) + a(1 − θ01)
= b(1 − θ11)

(1 − b)(1 − θ10) + b(1 − θ11)
, (13)

and

c1 = aθ01

(1 − a)θ00 + aθ01
= bθ11

(1 − b)θ10 + bθ11
. (14)

Now consider condition 3 for α = β = 1. Symplifying using (14), we obtain:

g1(c1) = Q11 = b ⇐⇒ (1 − a)θ00 = b(1 − θ11). (15)

Condition 3 for other values of α and β provides the same relation after simplification.
Let us show that if equations (11) and (15) are satisfied, then the PCA also fulfills condition 1. It is sufficient to

prove that g1(π1) = π1. Expanding both sides of (12) and simplifying using (11), we obtain:

a(1 − b)(1 − θ01 − θ10) = (1 − a)b(1 − θ00 − θ11). (16)

Applying the definition (8), we have:

g1(π1) = 1

1 − b + a

(
(1 − b)(1 − a)θ00 + (1 − b)aθ01 + a(1 − b)θ10 + abθ11

)
.

Using (16), we can replace a(1 − b)(θ01 + θ10) by a(1 − b) − (1 − a)b(1 − θ00 − θ11). With (15), we finally obtain
g1(π1) = a/(1 − b + a) = π1.

Now, observe that the system:{
(1 − b)aθ01θ10 = b(1 − a)θ00θ11,

(1 − a)θ00 = b(1 − θ11)
(17)

has a unique solution (a, b) ∈ (0,1)2. Let Q be the matrix associated with (a, b). Since the three above conditions are
satisfied, the Markovian measure νQ is invariant by the PCA. �

In the Markovian case, unlike the Bernoulli case, there is no simple description of the law of other lines in the
stationary space–time diagram. Nevertheless, the stationary space–time diagram has a different but still remarkable
property: it is time-reversible, meaning it has the same distribution if we reverse the direction of time. This is proved
in [15].

Bernoulli product measures are special cases of Markovian measures. Therefore it is natural to ask whether all the
cases covered by Theorem 3.2 are retrieved in (10). The answer is no. Indeed, the measure νQ is a Bernoulli product
measure iff a = b. Simplifying in (17) and (10), we obtain:

[θ00 = θ01, θ11 = θ10] or [θ00 = θ10, θ11 = θ01].

The corresponding PCA have a neighborhood of size 1. This is far from exhausting the PCA with a Bernoulli product
measure.

Finite set of cells
It is also interesting to draw a parallel between the result of Theorem 5.3 and Proposition 4.6 of Bousquet-Mélou
[2]. In this last article, the author studies PCA of alphabet A = {0,1} and neighborhood N = {0,1}, but defined on a
finite ring of size N (periodic boundary conditions: XN = X0), and proves that the invariant measure has a Markovian
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form if the parameters satisfy the same relation (10) as in the infinite case. The expression of the measure is then
given by:

P(X0 = x0,X1 = x1, . . . ,XN−1 = xN−1) = 1

Z

N−1∏
i=0

Qxi,xi+1 ,

where Z is a normalizing constant, and where the coefficients a and b defining the matrix Q are the solution of the
same system (17) as in the infinite case.

For a PCA satisfying condition (10), we have a Markovian invariant measure both on a finite ring and on Z. This
is not the case for Bernoulli product measures: except when the actual neighborhood is of size 1, PCA satisfying the
conditions of Theorem 3.2 do not have a product form invariant measure on finite rings.

Example 5.4. Consider for instance the PCA of transition function f (x, y) = (3/4)δx+y mod 2 + (1/4)δx+y+1 mod 2
(Example 4.2), on the ring of size 4. Its invariant measure μ is different from the uniform measure:

μ(0000) = 573/8192, μ(0001) = 963/16,384, μ(0011) = 33/512,

μ(0101) = 69/1024, μ(0111) = 957/16,384, μ(1111) = 563/8192.

5.2. General alphabet and neighborhood

In this section, the neighborhood is N = {0, . . . , �} and the alphabet is A = {0, . . . , n}. For p = (p0, . . . , pn) such that
p0 + · · · + pn = 1, we still denote by μp the corresponding Bernoulli product measure on AZ.

For convenience, we introduce the following notations: ∀x0, . . . , x� ∈ A,∀k ∈ A,

θk
x0···x�

= f (x0, . . . , x�)(k).

We define new functions gk and hk , which generalize the ones in (2) and (3). These new functions gk and hk are
not functions of a single variable, but of probability measures on A�. Assume that:

∀k ∈ A,∀x0 · · ·x�−1 ∈ A�,∃i ∈ A, θk
x0···x�−1i

> 0. (18)

Let us define:

gk : M
(

A�
) −→ (0,1),

D �−→ the probability that Y0 = k if (X0, . . . ,X�) ∼ D ⊗ Bp,

hk : M
(

A�
) −→ M

(
A�

)
,

D �−→ the distribution of (X1, . . . ,X�) conditionally to Y0 = k

if (X0, . . . ,X�) ∼ D ⊗ Bp.

We have the following analogue of Proposition 3.1.

Proposition 5.5. Consider a PCA satisfying (18). Consider p = (pi)i∈A with pi > 0 for all i. For α0 · · ·αn−1 ∈ An,
the probability of the cylinder [α0 · · ·αn−1] under μpF is given by:

μpF [α0 · · ·αn−1] = gα0

(
B⊗�+1

p

) n−1∏
i=1

gαi

(
hαi−1

(
hαi−2

(· · ·hα0

(
B⊗�

p

) · · ·))).
By reversing the space-direction, we get an analog of Proposition 5.5 under the symmetric condition: ∀k ∈

A,∀x0 · · ·x�−1 ∈ A�,∃i ∈ A, θk
ix0···x�−1

> 0.
Applying Proposition 5.5, we obtain the following result. It already appears in [15] in a more complicated setting.
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Theorem 5.6. Consider p = (pi)i∈A with pi > 0 for all i. The measure μp is an invariant measure of the PCA F if
one of the two following conditions is satisfied:

∀x0, . . . , x�−1 ∈ A,∀k ∈ A,
∑
i∈A

piθ
k
x0···x�−1i

= pk, (19)

∀x0, . . . , x�−1 ∈ A,∀k ∈ A,

n∑
i∈A

piθ
k
ix0···x�−1

= pk. (20)

Proof. Let us assume that F satisfies condition (19). Then, the function gk is constant. Indeed,

gk(D) =
∑

i∈A,x0···x�−1∈A�

D(x0, . . . , x�−1)piθ
k
x0···x�−1i

= pk.

By Proposition 5.5, we obtain that μpF = μp .
Now, like in the proof of Theorem 3.2, we can reverse the space direction and define a new PCA F̃ . The PCA F

satisfies condition (20) iff the PCA F̃ satisfies condition (19). Therefore, if F satisfies condition (20), then we have
μpF̃ = μp , which implies in turn that μpF = μp . �

As opposed to Theorem 3.2, the conditions in Theorem 5.6 are sufficient but not necessary. To illustrate this fact,
the simplest examples are provided by PCA that do not depend on all the elements of their neighborhood. Consider
for instance the PCA of alphabet A = {0,1} and neighborhood N = {0,1,2}, defined, for some a, b ∈ (0,1), by:
∀u,v ∈ A, θ1

u0v = a, θ1
u1v = b. This PCA has a Bernoulli invariant measure, but if a �= b, it satisfies neither condition

(19), nor condition (20).
Let us state a result from [15], which extends Proposition 3.3, and completes Theorem 5.6. (For the relevance of

this result, see the discussion following Proposition 3.3.)

Proposition 5.7. Consider a positive-rates PCA F satisfying condition (19) or (20), for some p = (pi)i∈A, pi > 0 for
all i. Then F is ergodic, that is, μp is the unique invariant measure of F and for all initial measure μ, the sequence
(μFn)n≥0 converges weakly to μp .

Condition (19) implies that the variables X0, . . . ,X�−1, Y0 are mutually independent, since for any v ∈ {0,1}� and
α ∈ {0,1}, we have P((X0, . . . ,X�−1) = v,Y0 = α) = μp[v]∑i∈A piθ

α
vi = μp[v]μp[α]. Similarly, condition (20)

implies that the variables X1, . . . ,X�,Y0 are mutually independent.
The next lemma is a generalization of Lemma 4.7.

Lemma 5.8. Under conditions (19) and (20), the variable X0
0 is independent of (Xn

k )k∈Z,n∈N\{0}.

Proof. Set X = X0 and Y = X1. Like in Lemma 4.7, it is sufficient to prove that X0 is independent of Y = (Yk)k∈Z.
Let us fix some a, b ∈ Z (a < 0 < b), and prove that X0 is independent of (Ya,Ya+1, . . . , Yb). We have:

S = P
(
X0 = x0, (Yi)a≤i≤b = (yi)a≤i≤b

)
=

∑
xi∈A

i∈{a,a+1,...,b+�}\{0}

P
(
(Xi)a≤i≤b+� = (xi)a≤i≤b+�, (Yi)a≤i≤b = (yi)a≤i≤b

)
.

Furthermore

P
(
(Xi)a≤i≤b+� = (xi)a≤i≤b+�, (Yi)a≤i≤b = (yi)a≤i≤b

)
= μp[x0]

−1∏
i=a

μp[xi]θyi
xi ···xi+�

b+�∏
j=�

μp[xj ]θyj−�
xj−�···xj

�−1∏
k=1

μp[xk].
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If we compute the sum S in the order: xa, . . . , x−1 first (simplifications using condition (19)) then xb+�, xb+�−1, . . . , x�

(simplifications using condition (20)), and finally x1, . . . , x�−1, we obtain eventually: S = μp[x0]∏b
i=a μp[yi]. �

Corollary 5.9. If both conditions (19) and (20) are satisfied, then every line of the stationary space–time diagram
consists of i.i.d. random variables. In particular, any two different random variables are independent.

If the neighborhood is N = {0,1}, the spatial properties of Section 4 remain for a general alphabet (existence of
transversal PCA, properties of triangles, . . . ). For other neighborhoods, there is no natural transversal PCA.

6. Cellular automata

A cellular automaton (CA) is a PCA in which the transition function f is such that, for all x ∈ A N , the probability
measure f (x) is concentrated on a single letter of the alphabet. Thus, the transition function of a CA can be described
by a mapping f : AN −→ A, and the CA can be viewed as a deterministic mapping F : AZ −→ AZ.

Cellular automata are classical and relevant mathematical objects: they are precisely the mappings from AZ to AZ

which are continuous (with respect to the product topology) and commute with the shift, see [7].

6.1. Known results

Definition 6.1. A cellular automaton of transition function f : AN −→ A, where the neighborhood is of the form
N = {�, . . . , r − 1, r} for some � < r , is left-permutative (resp. right-permutative) if, for all w = w� · · ·wr−1 ∈ Ar−�,
the mapping from A to A defined by: a �−→ f (aw) (resp. a �−→ f (wa)), is bijective. A CA is permutative if it is either
left or right-permutative.

Let F : AZ −→ AZ be a permutative CA. The existence of the bijections, see Definition 6.1, has two direct conse-
quences: (i) F is surjective; (ii) the uniform measure is invariant: μ1/2F = μ1/2. In fact, these last two properties are
equivalent.

Proposition 6.2 (Hedlund [7]). Let F be a cellular automaton. We have:

F is surjective ⇐⇒ μ1/2F = μ1/2.

There exist surjective CA which are non-permutative. Consider, for instance, the mapping F0 : {0,1}Z −→ {0,1}Z,
defined as follows. Set A = 10010 and B = 11000. Observe that the two patterns A and B do not overlap. From
a configuration u ∈ {0,1}Z, we get its image F0(u) by changing each occurrence of A into B , resp. of B into A.
Clearly, the mapping F0 can be defined as a cellular automaton with neighborhood N = {−4, . . . ,0, . . . ,4}. Also, F

is surjective but not permutative.
Let us present a recent result which refines Proposition 6.2. Given a finite and non-empty word u ∈ A+, let uZ =

· · ·uuu · · · ∈ AZ be a periodic bi-infinite word of period u (the starting position is indifferent). If F : AZ −→ AZ is a
CA, then F(uZ) = vZ for some word v with |v| = |u|. For simplicity, we write v = F(u).

Theorem 6.3 (Kari–Taati [8]). Consider a CA F on the alphabet A. The Bernoulli product measure μp , p =
(pi)i∈A, pi > 0 for all i, is invariant for F if and only if:

(i) F is surjective and

(ii) ∀u ∈ A+,
∑
i∈A

|u|i log(pi) =
∑
i∈A

∣∣F(u)
∣∣
i
log(pi).

Let us mention two consequences of the above results.
If a cellular automaton has an invariant Bernoulli product measure μp (pi > 0 for all i), then the uniform measure

is also invariant.
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A cellular automaton F is number-conserving if: ∀u ∈ A+,∀i ∈ A, |u|i = |F(u)|i . A surjective and number-
conserving CA admits all Bernoulli product measures μp as invariant measures. For instance, the CA F0, defined
above, is surjective and number-conserving. Therefore, all the Bernoulli product measures are invariant for F0.

6.2. Link with the conditions for PCA

The results in Sections 3, 4, 5 give conditions for a PCA to admit invariant Bernoulli product measures. The above
results, Section 6.1, give conditions for a CA to admit invariant Bernoulli product measures. The natural question is
whether we obtain the latter conditions by specializing the former ones.

Recall that the conditions (19) or (20) of Theorem 5.6 are sufficient for the Bernoulli product measure μp (∀i ∈
A,pi > 0) to be invariant for the PCA F . Let us specialize these conditions to cellular automata, that is, let us assume
that all the coefficients θk

x0···x�−1i
are equal to 0 or 1.

Lemma 6.4. A cellular automaton satisfies condition (19), resp. (20), if and only if it is right-permutative, resp.
left-permutative.

Proof. Consider a CA (transition function f ) satisfying condition (19) for some p = (pi)i∈A. Set J = {j ∈ A | pj =
mini∈A pi} and consider j ∈ J . The equality pj = ∑

i∈A pi ·θj
x0···x�−1i

, together with the constraints θ
j
x0···x�−1i

∈ {0,1},
implies that there must be exactly one index k ∈ J such that θ

j
x0···x�−1k

= 1, i.e. f (x0, . . . , x�−1, k) = j . By repeating
the argument, we obtain that for all x0 · · ·x�−1, the mapping j �→ f (x0, . . . , x�−1, j) restricted to J is a bijection. We
now proceed by considering the set of indices J2 = {j ∈ A − J | pj = mini∈A\J pi}, and so on. �

To summarize, we recover the permutative CA. On the other hand, the sujective but non-permutative CA are not
captured by the sufficient conditions of Theorem 5.6.

For a left-permutative CA (resp. right-permutative), the transversal CA, see Section 3.3, is right-permutative (resp.
left-permutative), and explicitly computable. Moreover, it is well-defined even if the space–time diagram is not as-
sumed to be stationary. We recover here a folk result.

In the special case A = {0,1} and N = {0,1}, all the surjective CA are permutative. So in this case, we recover all
the surjective CA. This is consistent with the fact that in this case, the conditions of Theorem 5.6 are necessary and
sufficient (see Theorem 3.2).

Remark. Condition (19) can be interpreted as “being right-permutative in expectation” for a PCA. And similarly,
condition (20) amounts to “being left-permutative in expectation”.

7. Related open issues

Consider a PCA of alphabet and neighborhood of size 2. Under the relations (4) or (10), it has an explicit invariant
measure with a simple form (Bernoulli product or Markovian). The conditions (4) and (10) are of codimension 1 in
the parameter space. What happens for other values of the parameters? Is it still possible to give an explicit description
of the invariant measure? This is an open and presumably difficult question. It has been deeply investigated for the
family of PCA’s defined by: θ00 = θ01 = θ10 = a, θ11 = 1 − a, for some a ∈ (0,1). Observe that neither (4) nor (10)
is satisfied except in the trivial case a = 1/2. The specific interest for these PCA is due to a connection with directed
animals and percolation theory first noticed by Dhar [4], see also [2,9]. More specifically, determining explicitly the
invariant measure for the above PCA would enable to: (1) compute the area and perimeter generating function of
directed animals in the square lattice; (2) compute the directed site-percolation threshold in the square lattice. The
most recent efforts to compute the invariant measure can be found in [11].
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