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Abstract. We consider a catalytic branching random walk on Z that branches at the origin only. In the supercritical regime we
establish a law of large number for the maximal position Mn: For some constant α, Mn

n → α almost surely on the set of infinite
number of visits of the origin. Then we determine all possible limiting laws for Mn − αn as n goes to infinity.

Résumé. Nous considérons une marche aléatoire branchant catalytique sur Z qui ne branche qu’à l’origine. Dans le cas surcritique,
nous établissons une loi des grands nombres pour la position maximale Mn : Il existe une constante α explicite telle que Mn

n → α

presque sûrement sur l’ensemble des trajectoires pour lesquelles l’origine est visitée une infinité de fois.
Ensuite, nous déterminons toutes les lois limites possibles, lorsque n → +∞, pour la suite Mn − αn.

MSC: 60K37
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1. Introduction

A catalytic branching random walk (CBRW) on Z branching at the origin only is the following particle system:
When a particle location x is not the origin, the particle evolves as an irreducible random walk (Sn)n∈N on Z

starting from x.
When a particle reaches the origin, say at time t , then a time t + 1 it dies and gives birth to new particles positioned

according to a point process D0. Each particle (at the origin at time t ) produces new particles independently of every
particle living in the system up to time t . These new particles evolve as independent copies of (Sn)n∈N starting from
their birth positions.

The system starts with an initial ancestor particle located at the origin. Denote by P the law of the whole system (P
also governs the law of the underlying random walk S), and by Px if the initial particle is located at x (then P = P0).

Let {Xu, |u| = n} denote the positions of the particles alive at time n (here |u| = n means that the generation of the
particle u in the Ulam–Harris tree is n). We assume that

D0 = {
Xu, |u| = 1

} d= {
S

(i)
1 ,1 ≤ i ≤ N

}
where N is an integer random variable describing the offspring of a branching particle, with finite mean m = E[N ],
and (S

(i)
n , n ≥ 0)i≥1 are independent copies of (Sn,n ≥ 0), and independent of N .
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Let τ be the first return time to the origin

τ := inf{n ≥ 1: Sn = 0} with inf ∅ = +∞.

The escape probability is qesc := P(τ = +∞) ∈ [0,1) (qesc < 1 because S is irreducible). Assume that we are in
the supercritical regime, that is

m(1 − qesc) > 1. (1.1)

An explanation of assumption (1.1) is given in Section 7, Lemma 7.3.
Since the function defined on (0,∞) by r → ρ(r) = mE[e−rτ ] is of class C∞, strictly decreasing, limr→0 ρ(r) =

mP(τ < +∞) = m(1 − qesc) > 1 and limr→+∞ ρ(r) = 0, there exists a unique r > 0, a Malthusian parameter such
that

mE
[
e−rτ

] = 1. (1.2)

Let ψ be the logarithmic moment generating function of S1:

ψ(t) := logE
[
etS1

] ∈ (−∞,+∞], t ∈ R.

Let ζ := sup{t > 0: ψ(t) < ∞}. We assume furthermore that ζ > 0 and there exists some t0 ∈ (0, ζ ) such that

ψ(t0) = r. (1.3)

Observe that by convexity ψ ′(t0) > 0.
Let Mn := sup|u|=n Xu be the maximal position at time n of all living particles (with convention sup ∅ := −∞).

Since the system only branches at the origin 0, we define the set of infinite number of visits of the catalyst by

S :=
{
ω: lim sup

n→∞
{
u: |u| = n,Xu = 0

} �= ∅

}
.

Remark that P(dω)-almost surely on S c, for all large n ≥ n0(ω), either the system dies out or the system behaves
as a finite union of some random walks on Z, starting respectively from Xu(ω) with |u| = n0. In particular, the almost
sure behavior of Mn is trivial on S c. It is then natural to consider Mn on the set S . Our first result on Mn is

Theorem 1.1 (Law of large numbers). Assume (1.1) and (1.3). On the set S , we have the convergence

lim
n→+∞

Mn

n
= α := ψ(t0)

t0
a.s.

In Theorem 1.1, the underlying random walk S can be periodic. In order to refine this convergence to a fluctuation
result by centering Mn, we shall need to assume the aperiodicity of S. However, we cannot expect a convergence in
distribution for Mn − αn since Mn is integer-valued whereas αn in general is not.

For x ∈ R, let 	x
 be the integer part of x and {x} := x − 	x
 ∈ [0,1) be the fractional part of x.

Theorem 1.2. Assume (1.1) and (1.3). Assume furthermore that E(N2) < ∞ and that S is aperiodic. Then there exists
a constant c∗ > 0 and a random variable Λ∞ such that for any fixed y ∈ R,

P(Mn − αn > y) = E
[
1 − e−c∗e−t0y(et0{αn+y}+o(1))Λ∞]

, (1.4)

where o(1) denotes some deterministic term which goes to 0 as n → ∞. The random variable Λ∞ is nonnegative and
satisfies that

{Λ∞ > 0} = S a.s. (1.5)
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Consequently for any subsequence nj → ∞ such that {αnj } → s ∈ [0,1) for some s ∈ [0,1), we have that

lim
j→∞P

(
Mnj

− 	αnj 
 = y
) = E

(
e−c∗e−t0(y−s)Λ∞ − e−c∗e−t0(y−1−s)Λ∞)

(∀y ∈ Z). (1.6)

Let us make some remarks on Theorem 1.2:

Remark 1.

1. The random variable Λ∞ is the limit of the positive fundamental martingale of Section 4. The value of constant c∗
is given in (6.14) at the beginning of Section 6.

2. The hypothesis E(N2) < ∞ might be weakened to E(N log(N + 1)) < ∞, just as the classical L logL-condition
(see e.g. Biggins [8]) in the branching random walk.

3. We do need the aperiodicity of the underlying random walk S in the proof of Theorem 1.2. However, for the
particular case of the nearest neighborhood random walk (the period equals 2), we can still get a modified version
of Theorem 1.2, see Remark 5 of Section 6.1.

Theorems 1.1 and 1.2 are new, even though a lot of attention has been given to CBRW in continuous time. In papers
[3–5,10,27–30] very precise asymptotics are established for the moments of ηt (x) the number of particles located at x

at time t , in every regime (sub/super/critical). Elaborate limit theorems were obtained for the critical case by Vatutin,
Topchii and Yarovaya in [27–30].

Concerning on the maximal/minimal position of a branching random walk (BRW) on R, some important progress
were made in recent years, in particular a convergence in law result was proved in Aïdékon [1] when the BRW is not
lattice-valued. It is expected that such convergence dos not hold in general for lattice-valued BRW, for instance see
Bramson [11] where he used a centering with the integer part of some (random) sequence. In the recent studies of
BRW, the spine decomposition technique plays a very important role. It turns out that a similar spine decomposition
exists for CBRW (and more generally for branching Markov chains), and we especially acknowledge the paper [16]
that introduced us the techniques of multiple spines, see Section 3.

We end this introduction by comparing our results to their analogue for (noncatalytic) branching random walks
(see e.g. [1,2,23,25]). We shall restrict ourselves to simple random walk on Z, that is P(S1 = ±1) = 1

2 .

For supercritical BRW (m > 1), almost surely on the set of nonextinction limn→+∞ M
(brw)
n

n
= b, where b is the

unique solution of ψ∗(b) = logm, with ψ∗(b) := supt (bt − ψ(t)) the rate function for large deviations of the simple
random walk and ψ(t) = log cosh(t). For CBRW, we can do explicit computations: Since for x �= 0, Ex[e−rτ ] = e−t0|x|
the Malthusian parameter satisfies r + t0 = log(m). Combined with log cosh(t0) = r this implies et0 = √

2m − 1 and
α = 2 log(m)

log(2m−1)
− 1. Numerically, for m = 1.83 we find b = 0.9 and α = 0.24. The second order results emphasize the

difference between BRW and CBRW: for BRW, M
(brw)
n − bn is of order O(logn), whereas for CBRW, Mn − αn is of

order O(1), see Remark 5.
The organization of the rest of this paper is as follows: We first give in Section 2 the heuristics explaining the

differences between CBRW and ordinary BRW (branching random walk). Then we proceed (in Section 3) to recall
many to one/few lemmas, we exhibit a fundamental martingale (in Section 4) and prove Theorems 1.1 and 1.2 in
Sections 5 and 6 respectively, with the help of sharp asymptotics derived from renewal theory. Finally, Section 7 is
devoted to an extension to the case of multiple catalysts. There the supercritical assumption (1.1) appears in a very
natural way.

Finally, let us denote by C, C′ or C′′ some unimportant positive constants whose values can be changed from one
paragraph to another.

2. Heuristics

Assume for sake of simplicity that we have a simple random walk. The existence of the fundamental martingale
Λn = e−rn

∑
|u|=n φ(Xu), see Section 4, such that {Λ∞ > 0} = S , shows that on the set of nonextinction S , we have

roughly ern particles at time n.
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If we apply the usual heuristic for branching random walk (see e.g. [25], Section II.1), then we say that we have
approximately ern independent random walks positioned at time n, and therefore the expected population above level
an > 0 is roughly:

E

[	ern
∑
i=1

1
(S

(i)
n ≥an)

]
= 	e
rn
P(Sn ≥ an) = e−n(ψ∗(a)−r)(1+o(1))

where ψ∗(a) = supt≥0(ta − ψ(t)) is the large deviation rate function (for simple random walk, eψ(t) = E[etS1 ] =
ch(t)).

This expected population is of order 1 when ψ∗(a) = r and therefore we would expect to have Mn

n
→ γ on S ,

where ψ∗(γ ) = r .
However, for CBRW, this is not the right speed, since the positions of the independent particles cannot be assumed

to be distributed as random walks. Instead, the 	ern
 independent particles may be assumed to be distributed as a fixed
probability distribution, say ν. If ηn(x) = ∑

|u|=n 1(Xu=x) is the number of particles at location x at time n, we may
assume that for a constant C > 0, e−rnE[ηn(x)] → Cν(x) and thus, ν inherits from ηn the relation:

ν(x) = e−r
∑
y

c(y)p(y, x)(m1(y=0) + 1(y �=0))

with p(x, y) the random walk kernel. For simple random walk, this implies that for |x| ≥ 2 we have 1
2 (ν(x + 1) +

ν(x − 1)) = erν(x) and thus ν(x) = Ce−t0|x| for |x| ≥ 2, with ψ(t0) = log cosh(t0) = r .
Therefore the expected population with distance to the origin at least an is roughly

E

[ ∑
|x|≥an

ηn(x)

]
= ern

∑
|x|≥an

e−rnE
[
ηn(x)

]
∼ ernC

∑
|x|≥an

e−t0|x| ∼ C′erne−t0an.

This expectation is of order 1 when a = r
t0

= ψ(t0)
t0

= α, and this yields the right asymptotics

Mn

n
→ α a.s. on S.

This heuristically gives the law of large numbers in Theorem 1.1.

3. Many to one/few formulas for multiple catalysts branching random walks (MCBRW)

For a detailed exposition of many to one/few formulas and the spine construction we suggest the papers of Biggins
and Kyprianou [9], Hardy and Harris [20], Harris and Roberts [22] and the references therein. For an application to
the computations of moments asymptotics in the continuous setting, we refer to Döring and Roberts [16]. We state the
many to one/two formulas for a CBRW with multiple catalysts and will specify the formulas in the case with a single
catalyst.

3.1. Multiple catalysts branching random walks (MCBRW)

The set of catalysts is a some subset C of Z. When a particle reaches a catalyst x ∈ C it dies and gives birth to new
particles according to the point process

Dx
d= (

S
(i)
1 ,1 ≤ i ≤ Nx

)
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where (S
(i)
n , n ∈ N)i≥1 are independent copies of an irreducible random walk (Sn,n ∈ N) starting form x, independent

of the random variable Nx which is assumed to be integrable. Each particle in C produces new particles independently
from the other particles living in the system. Outside of C a particle performs a random walk distributed as S. The
CBRW (branching only at 0) corresponds to C = {0}.

3.2. The many to one formula for MCBRW

Some of the most interesting results about first and second moments of particle occupation numbers that we obtained
come from the existence of a “natural” martingale. An easy way to transfer martingales from the random walk to the
branching processes is to use a slightly extended many to one formula that enables conditioning. Let

m1(x) := E[Nx] < ∞, x ∈ Z. (3.1)

On the space of trees with a spine (a distinguished line of descent) one can define a probability Q via martingale
change of probability, that satisfies

E

[
Z

∑
|u|=n

f (Xu)

]
= Q

[
Zf (Xξn)

∏
0≤k≤n−1

m1(Xξk
)

]
, (3.2)

for all n ≥ 1, f : Z → R+ a nonnegative function and Z a positive Fn measurable random variable, and where (Fn, n ≥
0) denotes the natural filtration generated by the MCBRW (it does not contain information about the spine). On the
right-hand-side of (3.2) (ξk) is the spine, and it happens that the distribution of (Xξn)n∈N under Q is the distribution
of the random walk (Sn)n∈N.

Specializing this formula to CBRW for which m1(x) = m1(x=0) + 1(x �=0) yields

E

[ ∑
|u|=n

f (Xu)

]
= E

[
f (Sn)m

Ln−1
]
, (3.3)

where Ln−1 = ∑n−1
k=0 1(Sk=0) is the local time at level 0.

3.3. The many to two formula for MCBRW

Recall (3.1). Let us assume that

m2(x) := E
[
N2

x

]
< ∞, x ∈ Z. (3.4)

Then for any n ≥ 1 and f : Z × Z → R+, we have

E

[ ∑
|u|=|v|=n

f (Xu,Xv)

]
= Q

[
f

(
S1

n, S2
n

) ∏
0≤k<T de∧n

m2
(
S1

k

) ∏
T de∧n≤k<n

m1
(
S1

k

)
m1

(
S2

k

)]
, (3.5)

where under Q, S1 and S2 are coupled random walks that start from 0 and stay coupled (in particular at the same
location) until the decoupling time T de and after T de, they behave as independent random walks.

More precisely, we have a three component Markov process (S1
n, S2

n, In, n ≥ 0) where In ∈ {0,1} is the indicator
that is one iff the random walks are decoupled: when the two random walks are coupled at time n, and at site x, the
they stay coupled at time n + 1 with probability m1(x)

m2(x)
. That means that the transition probability are the following:

• P(S1
n+1 = y,S2

n+1 = y, In+1 = 0|S1
n = S2

n = x, In = 0) = m1(x)
m2(x)

p(x, y),

• P(S1
n+1 = y,S2

n+1 = z, In+1 = 1|S1
n = S2

n = x, In = 0) = (1 − m1(x)
m2(x)

)p(x, y)p(x, z),

• P(S1
n+1 = y,S2

n+1 = z, In+1 = 1|S1
n = x1, S

2
n = x2, In = 1) = p(x1, y)p(x2, z).
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The random walks are initially coupled and at the origin. The decoupling time T de = inf{n ≥ 1: In = 1} satisfies
for any k ≥ 0,

Q
[
T de ≥ k + 1|σ{

S1
j , S2

j , Ij , j ≤ k
}] =

∏
0≤l≤k−1

m1(S
1
l )

m2(S
2
l )

1(Ik=0), (3.6)

where we keep the usual convention
∏

∅
≡ 1.

This formula is proved in [20,22] by defining a new probability Q on the space of trees with two spines.
An alternative proof, that makes more natural the coupling of (S1, S2) is to condition on the generation of the

common ancestor w = u ∧ v of the two nodes, then use the branching to get independence, and plug in the many to
one formula in each factor. We omit the details.

4. A fundamental martingale

Martingale arguments have been used for a long time in the study of branching processes. For example, for the Galton
Watson process with mean progeny m and population Zn at time n, the sequence Wn = Zn

mn is a positive martingale
converging to positive finite random variable W . The Kesten–Stigum theorem implies that if E[N log(N +1)] < +∞,
we have the identity a.s., {W > 0} equals the survival set. A classical proof can be found in the reference book of
Athreya and Ney [6], Section I.10. A more elaborate proof, involving size-biased branching processes, may be found
in Lyons–Pemantle–Peres [24].

Similarly, the law of large numbers for the maximal position Mn of branching random walks system may be proved
by analyzing a whole one parameter family of martingales (see Shi [26] for a detailed exposition on the equivalent
form of Kesten–Stigum’s theorem for BRW). Recently, the maximal position of a branching Brownian motion with
inhomogeneous spatial branching has also been studied with the help a family of martingale indexed this time by a
function space (see Berestycki, Brunet, Harris and Harris [7] or Harris and Harris [21]).

We want to stress out the fact that for catalytic branching random walk, since we branch at the origin only, we only
have one natural martingale, which we call the fundamental martingale.

Let T = inf{n ≥ 0: Sn = 0} be the first hitting time of 0, recall that τ = inf{n ≥ 1: Sn = 0} and let

φ(x) := Ex

[
e−rT

]
(x ∈ Z), (4.1)

where r is given in (1.2). Finally let p(x, y) = Px(S1 = y) and Pf (x) = ∑
y p(x, y)f (y) be the kernel and semigroup

of the random walk S.

Proposition 4.1. Under (1.1) and (1.3).

(1) The function φ satisfies

Pφ(x) = erφ(x)

(
1

m
1(x=0) + 1(x �=0)

)
.

(2) The process

Δn := e−rnφ(Sn)m
Ln−1

is a martingale, where Ln−1 = ∑
0≤k≤n−1 1(Sk=0) is the local time at level 0.

(3) The process

Λn := e−rn
∑
|u|=n

φ(Xu)

is a martingale called the fundamental martingale.
(4) If E[N2] < +∞, then the process Λn is bounded in L2, and therefore is a uniformly integrable martingale.
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Proof. (1) If x �= 0, then T ≥ 1, therefore, by conditioning on the first step:

φ(x) =
∑
y

p(x, y)e−rEy

[
e−rT

] = e−rPφ(x).

On the other hand, τ ≥ 1 so conditioning by the first step again,

φ(0) = 1 = mE
[
e−rτ

] = m
∑
y

p(0, y)e−rEy

[
e−rT

] = me−rPφ(0).

(2) Denote by F S
n := σ {S1, . . . , Sn} for n ≥ 1. We have,

E
[
Δn+1|F S

n

] = e−r(n+1)mLnE
[
φ(Sn+1)|F S

n

] = e−r(n+1)mLnPφ(Sn)

= e−r(n+1)mLnerφ(Sn)

(
1

m
1(Sn=0) + 1(Sn �=0)

)
= Δn.

(3) Recall that (Fn)n≥0 denotes the natural filtration of the CBRW. By the many to one formula, if Z is Fn−1

measurable positive, then

E[ΛnZ] = e−rnE

[ ∑
|u|=n

φ(Xu)Z

]
= e−rnE

[
Zφ(Sn)m

Ln−1
] = E[ZΔn]

= E[ZΔn−1] (the martingale property of Δn)

= E[Λn−1Z].
(4) The proof is given in Section 7 in the case of multiple catalysts and uses heavily the many to two formula. �

Let us introduce ηn(x) the number of particles located at x at time n:

ηn(x) :=
∑
|u|=n

1(Xu=x).

Corollary 4.2. Under (1.1) and (1.3).

(1) We have supx,n e−rnφ(x)ηn(x) < +∞ a.s.
(2) If N has finite variance then there exists a constant 0 < C < ∞ such that

E
[
ηn(x)ηm(y)

] ≤ C

φ(x)φ(y)
er(n+m) (n,m ∈ N, x, y ∈ Zd).

Proof. (1) Let us write Λn = e−rn
∑

x φ(x)ηn(x). Since it is a positive martingale it converges almost surely to a
finite integrable positive random variable Λ∞. Therefore Λ∗∞ := supΛn < +∞ a.s. and

sup
x,n

e−rnφ(x)ηn(x) ≤ Λ∗∞.

(2) Assume for example that n ≤ m and let C = supn E[Λ2
n] < +∞. We have, since Λn is a martingale,

e−r(n+m)φ(x)φ(y)E
[
ηn(x)ηm(y)

] ≤ E[ΛnΛm]
= E

[
ΛnE[Λm|Fn]

] = E
[
Λ2

n

] ≤ C. �
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For the proof of the following result instead of using large deviations for Ln, we use renewal theory, in the spirit of
[12,17]. Let d be the period of the return times to 0:

d := gcd
{
n ≥ 1: P(τ = n) > 0

}
. (4.2)

Proposition 4.3. Assume (1.1) and (1.3). For every x ∈ Z there exists a constant cx ∈ (0,∞) and a unique lx ∈
{0,1, . . . , d − 1} such that

lim
n→+∞ e−r(dn+lx )E

[
ηnd+lx (x)

] = cx.

Moreover, for any l �≡ lx(modd), ηnd+l (x) = 0 for all n ≥ 0. In particular, for x = 0, lx = 0 and c0 = d
m

.

Proof. By the many to one formula (3.2),

vn(x) := E
[
ηn(x)

] = E

[ ∑
|u|=n

1(Xu=x)

]
= Q

(
1(Sn=x)e

A0(ξn)
)

= E
[
1(Sn=x)m

Ln−1
]
.

We decompose this expectation with respect to the value of τ = inf{n ≥ 1: Sn = 0}:
vn(x) = mE[1(Sn=x)1(τ≥n)] +

∑
1≤k≤n−1

E
[
1(Sn=x)m

Ln−1 1(τ=k)

]
.

By the Markov property, if uk := P(τ = k), then

vn(x) = mP(τ ≥ n,Sn = x) +
∑

1≤k≤n−1

mukvn−k(x) = mP(τ ≥ n,Sn = x) + mv.(x) ∗ u(n),

Recall that the Malthusian parameter r is defined by

1 = mE
[
e−rτ

] = m
∑
k≥1

e−rkuk.

Hence if we let ṽn(x) = e−rnvn(x) and ũk = me−rkuk then,

ṽn(x) = me−rnP(τ ≥ n,Sn = x) + ṽ·(x) ∗ ũ(n).

By the periodicity, we have un = 0 if n is not a multiple of d and for x ∈ Zd there is a unique lx ∈ {0,1, . . . , d − 1}
such that νn(x) = 0 if n �≡ lx(modd). Therefore the sequence tn = ṽnd+l(x) satisfies the following renewal equation

tn = yn + t ∗ sn

with sn = ũnd and yn = e−r(nd+lx )P(τ ≥ dn + lx, Sdn+lx = x). Since the sequence s is aperiodic, the discrete renewal
theorem (see Feller [18], Section XIII.10, Theorem 1) implies that

tn →
∑∞

n=1 yn∑∞
n=1 nsn

=: cx.

Remark that
∑∞

n=1 nsn = ∑∞
n=1 ne−rndmund = 1

d
. We have

cx = d

∞∑
n=1

e−r(nd+lx )P(τ ≥ dn + lx, Sdn+lx = x) > 0.
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This is exactly the desired result.
Finally for x = 0, �x = 0 and c0 = d

∑∞
n=1 e−rndP(τ ≥ dn,Sdn = 0) = d

∑∞
n=1 e−rndP(τ = dn) = dE(e−rτ ) = d

m

by the choice of r . This completes the proof of Proposition 4.3. �

Remark 2. The family (cx)x∈Z satisfies a system of linear equations, dual to the one (see Proposition 4.1) satisfied by
the function φ: Recalling that p(x, y) = Px(S1 = y) is the kernel of the random walk, we have the recurrence relation

E
[
ηn+1(x)

] =
∑
y

E
[
ηn(y)

]
p(y, x)(m1(y=0) + 1(y �=0)).

Assuming for simplicity d = 1 and multiplying by e−r(n+1) and letting n → +∞, we obtain the following functional
equation for the function x → cx :

cx = e−r
∑
y

cyp(y, x)(m1(y=0) + 1(y �=0)), x ∈ Z.

We end this section by the following lemma which yields the part (1.5) in Theorem 1.2.

Lemma 4.4. Assume (1.1) and (1.3). Assume furthermore that N has finite variance. Then we have

{Λ∞ > 0} = S a.s.

Remark that in this Lemma we do not need the aperiodicity of the underlying random walk S.

Proof of Lemma 4.4. We first prove that S c ⊂ {Λ∞ = 0} a.s. In fact, on S c, either the system dies out then Λn = 0
for all large n, or for all large n ≥ n0(ω): ηn(0) = 0. Then, if ηn = ∑

x ηn(x) is the total population, ηn = ηn0 for all
n ≥ n0 since the system only branches at 0. Since Λn = e−rn

∑
φ(Xu) ≤ e−rnηn = e−rnηn0 , we still get Λ∞ = 0.

Let s = P(Λ∞ = 0) and ŝ := P(S c). If we can prove s = ŝ, then the lemma follows. We shall condition on the
number of children of the initial ancestor N . For k ≥ j ≥ 0, let Υk,j be the event that amongst k particles of the first
generation there are exactly j particles which will return to 0. Then

s = P(Λ∞ = 0) =
∞∑

k=0

P(N = k)

k∑
j=0

P
(
Υk,j ∩ {Λ∞ = 0}|N = k

)

=
∞∑

k=0

P(N = k)

k∑
j=0

(
k

j

)
q

k−j
esc (1 − qesc)

j sj

=
∞∑

k=0

P(N = k)
(
qesc + s(1 − qesc)

)k = f
(
qesc + s(1 − qesc)

)
,

with f (x) = E[xN ] the generating function of the reproduction law. Exactly in the same way, we show that ŝ satisfies
the same equation as s.

It remains to check the equation x = f (qesc + x(1 − qesc)) has a unique solution in [0,1) (ŝ ≤ s and s < 1 thanks
to Proposition 4.1). To this end, we consider the function g(x) := f (qesc + x(1 − qesc)) − x. The function g is strictly
convex on [0,1], g(0) = f (qesc) > 0, g(1) = 0 and g′(1) = m(1 − qesc) − 1 > 0. Thus g has a unique zero on [0,1),
proving the lemma. �
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5. The law of large numbers: Proof of Theorem 1.1

5.1. Proof of the upper bound

Let θ > 0, x > 0. By the many to one formula,

P(Mn > xn) = P

( ∑
|u|=n

1(Xu>xn) �= 0

)

≤ E

[ ∑
|u|=n

1(Xu>xn)

]
= E

[
1(Sn>nx)m

Ln−1
]

≤ E
[
eθ(Sn−xn)mLn−1

] = e−θnxhn, with hn = E
[
eθSnmLn−1

]
.

As in Proposition 4.3, we are going to use the renewal theory to study the asymptotics of vn. Let us condition on
τ = inf{n ≥ 1: Sn = 0}:

hn = E
[
eθSnmLn−1 1(τ≥n)

] +
∑

1≤k≤n−1

E
[
eθSnmLn−1 1(τ=k)

]
= E

[
eθSn1(τ≥n)

] +
∑

1≤k≤n−1

mP(τ = k)hn−k

= zn + mh ∗ u(n),

with zn := E[eθSn1(τ≥n)] and un := P(τ = n).
Assume now that θ > t0 so that ψ(θ) > ψ(t0) = r . We let

h̃n := e−nψ(θ)hn, z̃n := e−nψ(θ)zn, ũn := me−nψ(θ)un.

On the one hand, by definition of the Malthusian parameter we have 1 = mE[e−rτ ] = ∑
mne−rnun so that

∑
k ũk < 1.

On the other hand,

z̃n = E
[
eθSn−nψ(θ)1(τ≥n)

] = Pθ (τ ≥ n)

with Pθ defined by the martingale change of probability

dPθ

dP
= eθSn−nψ(θ) (on Fn).

Since under Pθ , (Sn)n≥0 is a random walk with mean Eθ [S1] = ψ ′(θ) ≥ ψ ′(t0) > 0, we have

z̃n → z̃∞ := Pθ (τ = +∞).

If we make the aperiodicity assumption d = 1, then by the discrete renewal theorem, we have

h̃n → ỹ∞
1 − ∑

k ũk

.

In the general case, we can prove exactly as in the proof of Proposition 4.3 that for every l ∈ {0, . . . , d − 1} there exists
a finite constant Kl such that

lim
n→+∞ h̃nd+l → Kl.
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Therefore in any case, the sequence h̃n is bounded, and if x >
ψ(θ)

θ

P(Mn > xn) ≤ e−n(θx−ψ(θ))h̃n

satisfies
∑

n P(Mn > xn) < +∞. Hence, by Borel Cantelli’s lemma

lim sup
n→+∞

Mn

n
≤ x a.s.

Hence, letting first x ↓ ψ(θ)
θ

and then θ ↓ t0 we obtain that

lim sup
n→+∞

Mn

n
≤ ψ(t0)

t0
= α a.s.

5.2. Proof of the lower bound, under the hypothesis E(N2) < ∞

The strategy of proof is as follows: Let 0 < s < 1, a > 0 and consider the event An,a,s (with c′ a positive constant):
“the particles survive forever, there are at least 1

2c′ersn particle alive at time sn, and one of these particle stays strictly
positive until time n and reaches a position larger that (1 − s)an at time n.”

We shall prove that for a suitable constant c′, we can choose a, s such that on the set S of infinite number of visits
to 0, for large n we are in An,a,s . This implies that almost surely on S , lim inf Mn

n
≥ a(1 − s). Optimizing over the set

of admissible couples (a, s) will yield the desired lower bound: lim inf Mn

n
≥ α a.s. on S .

Recall from Proposition 4.3 and Corollary 4.2 that

lim
n→+∞ e−rdnE

[
ηdn(0)

] = c0, sup
n

e−2rdnE
[
ηdn(0)2] < +∞.

Therefore Paley–Zygmund’s inequality entails that

P
(
ηdn(0) ≥ c′erdn

) ≥ c′, (5.1)

for some constant c′ > 0. The following lemma aims at describing the a.s. behavior of ηn(0):

Lemma 5.1. Under (1.1) and (1.3). Almost surely on S ,

ηdn(0) ≥ c′

2
erdn,

for all large n.

Proof. We shall write the proof for the aperiodic case d = 1. The generalization to a period d ≥ 2 is straightforward
by considering dn instead of n throughout the proof of this Lemma.

Let ηn = ∑
x ηn(x) be the total population at time n. Since 0 ≤ φ(x) ≤ 1 we have Λn = e−rn

∑
x φ(x)ηn(x) ≤

e−rnηn. Furthermore, a particle living at time n has to have an ancestor at location 0 at some time k ≤ n, and if Ni is
the number of children of this ancestor, then

ηn ≤
∑

1≤i≤Γn

Ni with Γn =
∑

0≤k≤n

ηk(0)

where the (Ni)i≥1 are independent random variables distributed as N and independent of Γn. Since E[N ] < +∞, by
Borel Cantelli’s Lemma, there exists i0 = i0(ω) such that

Ni ≤ i2 for i ≥ i0.
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Hence, almost surely for n large enough,

ηn ≤
∑

1≤i≤i0

Ni + Γ 2
n

≤
∑

1≤i≤i0

Ni + n2
(

sup
0≤k≤n

ηk(0)
)2

.

By Lemma 4.4, almost surely on the survival set S , we have Λ∞ > 0 and thus, for n large enough ηn ≥ 1
2Λ∞ern

and therefore for n large enough, on S ,

sup
0≤k≤n

ηk(0) > ern/4.

Considering the stopping time (for the branching system endowed with the natural filtration)

T := inf
{
n: ηn(0) > ern/4}.

We have established that on S , T < ∞ a.s. It follows from the branching property and (5.1) that

P
(
ηn+T (0) ≤ c′ern, S

) ≤ P
(
ηn(0) ≤ c′ern

)ern/4

≤ (
1 − c′)ern/4

,

whose sum on n converges. By Borel–Cantelli’s lemma, on S , a.s. for all large n,

ηn(0) ≥ c′er(n−T ) ≥ c′

2
ern.

This proves the lemma. �

Proof of the lower bound of Mn. Let 0 < s < 1. Define k = k(n) := d	 sn
d


. By the preceding lemma, on the survival

set S , at time k, there are at least 	 c′
2 erk
 particles at 0, which move independently. Letting these particles move

as the random walk S staying positive up to time n − k, then Mn is bigger than 	 c′
2 erk
 i.i.d. copies of Sn−k with

S1 > 0, . . . , Sn−k > 0. By a large deviations estimate (Theorem 5.2.1 of Dembo and Zeitouni [15], see the forthcoming
Remark 3), for any fixed a ∈ (0,∞),

P
(
Sn−k > a(1 − s)n,S1 > 0, . . . , Sn−k > 0

) = e−(1−s)nψ∗(a)+o(n),

where we denote as before,

ψ∗(a) = sup
θ>0

(
aθ − ψ(θ)

)
.

It follows that

P

(
Mn ≤ (1 − s)an,ηk(0) ≥ c′

2
erk

)
≤ (

1 − P
(
Sn−k > a(1 − s)n,S1 > 0, . . . , Sn−k > 0

))	c′/2erk


= exp
(−ersn−ψ∗(a)(1−s)n+o(n)

)
.

Choose (a, s) ∈ (0,+∞) × (0,1) such that

rs > ψ∗(a)(1 − s),



The spread of a catalytic branching random walk 339

we apply Borel–Cantelli’s lemma and get that a.s. for all large n, either Mn > (1 − s)an or ηk(0) < c′
2 erk . Hence on

the set S , by Lemma 5.1, a.s.,

lim inf
n→∞

Mn

n
≥ γ := sup

{
(1 − s)a: (a, s) ∈ (0,∞) × (0,1), rs > ψ∗(a)(1 − s)

}
. (5.2)

Recalling r = ψ(t0), then

γ = sup
a>0

aψ(t0)

ψ∗(a) + ψ(t0)
.

Let us study the derivative of a → aψ(t0)
ψ∗(a)+ψ(t0)

. Recall that ψ∗(a) = aθ(a) − ψ(θ(a)) with a = ψ ′(θ(a)), and

(ψ∗)′(a) = θ(a). Since the derivative of a → aψ(t0)
I (a)+ψ(t0)

has the same sign as ψ∗(a) + ψ(t0) − a(ψ∗)′(a) = ψ(t0) −
ψ(θ(a)), it is negative if a > ψ ′(t0) (i.e. θ(a) > t0), positive if a < ψ ′(t0) and vanishes at ψ ′(t0). Therefore

γ = ψ(t0)

t0
= α,

which in view of (5.2) yields the lower bound of Theorem 1.1 under the hypothesis that E(N2) < ∞. �

Remark 3. Mogulskii’s theorem (Theorem 5.2.1 of Dembo and Zeitouni [15]) implies that

P(Sj > aj,S1 > 0, . . . , Sj > 0) = e−jK(a)+o(j),

with

K(a) = inf

{∫ 1

0
ψ∗(ḟ (t)

)
dt, f ∈ A

}
,

A = {
φ absolutely continuous, f (0) = 0, f (1) = a,f (s) > 0 ∀s ∈ (0,1)

}
.

Let us check that K(a) = ψ∗(a). In fact, since the function f (t) = at is in A, we have K(a) ≤ ∫ 1
0 ψ∗(a)dt = ψ∗(a).

On the other hand, the function ψ∗ is convex, therefore, by Jensen’s inequality, if φ ∈ A,∫ 1

0
ψ∗(ḟ (t)

)
dt ≥ ψ∗

(∫ 1

0
ḟ (t)dt

)
= ψ∗(f (1) − f (0)

) = ψ∗(a).

We can thus conclude that K(a) = ψ∗(a).

5.3. Proof of the lower bound, without the hypothesis E(N2) < ∞

The proof relies on a coupling for the general N with mean m: Let N(L) := min(N,L) with a sufficiently large integer
L such that mL := E(N(L)) satisfies mL(1 − qesc) > 1 (this is possible since mL → m). Consider a new CBRW
(X

(L)
u , |u| ≥ 0) with N(L) as the number of offsprings and the same random walk (Sn) as the displacements, i.e. on

each step of branching at 0 we keep at most L-children and their displacements in the original CBRW. The associated
maximum at generation n is denoted by M

(L)
n . Then by construction

Mn ≥ M(L)
n , a.s.

By the lower bound for M
(L)
n established in Section 5.2, if we denote by

SL :=
{
ω: lim sup

n→∞
{
u: |u| = n,X(L)

u = 0
} �= ∅

}
,
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then a.s. on SL,

lim inf
n→∞

M
(L)
n

n
≥ αL,

with αL = ψ(t0(L))
t0(L)

, and where t0(L) is defined in the same way as t0 in (1.3) and (1.2) by replacing m by mL. We
remark that by continuity such solution t0(L) exists for all sufficiently large L, say L ≥ L0. Moreover αL → α as

L → ∞, and SL ⊂ SL+1 for any L ≥ 1. Then on the set S̃ := ⋃
L≥1 SL, a.s. lim infn→∞ M

(L)
n

n
≥ α. This will yield the

lower bound in Theorem 1.1 once we have checked the equality:

S = S̃, a.s. (5.3)

Let us check (5.3) in the same way as in the proof of Lemma 4.4. Plainly S̃ ⊂ S . To prove the reverse inclusion,
we remark at first that by Lemma 4.4, SL equals a.s. the nonzero set of the corresponding limit of the fundamental
martingale (which is bounded in L2), hence SL �= ∅ for all large L. Consequently S̃ �= ∅.

Let t := P(S c) and t̃ := P(S̃ c). Then t ≤ t̃ < 1. As in the proof of Lemma 4.4, by conditioning on the number of
offsprings N , we obtain that

t̃ =
∞∑

k=0

P(N = k)

k∑
j=0

C
j
k q

k−j
esc (1 − qesc)

j (t̃)j = f
(
qesc + t̃ (1 − qesc)

)
,

with f (x) = E(xN). The constant t satisfies the same equation as t̃ and we have already proved in the proof of
Lemma 4.4 the uniqueness of solutions in [0,1). Hence t = t̃ and (5.3) follows. This completes the proof of the lower
bound in Theorem 1.1. �

6. Refining the convergence: Proof of Theorem 1.2

The key of the proof of Theorem 1.2 is the following double limit of Proposition 6.1. Then we shall prove its uniform
version (uniformly on the starting point of the system) in Proposition 6.2, from which Theorem 1.2 follows easily (see
Section 6.3).

Proposition 6.1. Under the assumptions in Theorem 1.2, there exists a positive constant c∗ > 0 such that

lim sup
z→∞

lim sup
n→∞

∣∣et0ze−t0{αn+z}P(Mn > αn + z) − c∗
∣∣ = 0,

where as before α := ψ(t0)
t0

and {αn + z} ∈ [0,1) denotes the fractional part of αn + z.

The value of c∗ is given in (6.14) by c∗ = e−t0

(1−e−t0 )Ẽ(H1)
and Ẽ(H1) is given in equation (6.9). We also mention that

we can not replace Mn > αn + z by Mn ≥ αn + z in the above Proposition, since Mn is integer-valued.
The proof of Proposition 6.1 is divided into the upper and lower bounds, proved respectively in Sections 6.1

and 6.2.

6.1. Upper bound in Proposition 6.1

Recall that α := ψ(t0)
t0

is the velocity of Mn. We prove the following upper bound: for all z ∈ R,

lim sup
n→∞

e−t0{αn+z}P(Mn > αn + z) ≤ c∗e−t0z.
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Let us start from P(Mn > αn + z) = P(∃|u| = n: Xu > αn + z). For any n ≥ 1 and any |u| = n, denote by
u0 = ∅ < u1 < · · · < un = u the shortest path relating ∅ to u such that |uk| = k for any k ≤ n. For |u| = n with
Xu > αn + z > 0 (as n is large), there exists some k < n such that Xuk

= 0 and Xuj
> 0 for all k < j ≤ n. Therefore

{Mn > αn + z} =
⋃

0≤k≤n−1

Bk (6.1)

with

Bk :=
⋃

|v|=k

Av(k,n),

and

Av(k,n) := {∃|u| = n: v = uk,Xv = 0,Xuj
> 0,∀k < j ≤ n,Xun−k

> αn + z
}
.

Denote as before by ηn(x) the number of particles at x at time n. Then, conditioning on Fk , Bk is an union of ηk(0)

i.i.d. events, and each event holds with probability

p(k,n) := P
(∃|u| = n − k,Xu1 > 0, . . . ,Xun−k

> 0,Xu > αn + z
)
.

It is easy to compute p(k,n): by conditioning on the number of offspring N = l, p(k,n) is the probability that
among these l particles in the first generation there exists at least one particle which remains positive up to generation
n − k and lives in (αn + z,∞) at (n − k)th generation. It follows that

p(k,n) =
∞∑
l=0

P(N = l)
(
1 − (

1 − q(k,n)
)l) = 1 − f

(
1 − q(k,n)

)
, (6.2)

where f (x) := E(xN) is the generating function of N and q(k,n) is defined as follows:

q(k,n) := P(S1 > 0, . . . , Sn−k > 0, Sn−k > αn + z).

Let ε > 0 be small. By Proposition 4.3 (with d = 1), limn→∞ e−rnE[ηn(0)] = c0 = 1
m

. It follows that for any n > k ≥
k0 ≡ k0(ε),

P(Bk) ≤ E
(
ηk(0)p(k,n)

) ≤ (c0 + ε)erkp(k,n).

Hence for any n > k0,

P(Mn > αn + z) ≤
n−1∑
k=0

P(Bk) ≤ (c0 + ε)

n−1∑
k=k0

erkp(k,n) + Ck0

k0−1∑
k=1

p(k,n), (6.3)

where Ck0 := max1≤k≤k0 E(ηk(0)). Recalling f ′(1) = m and (6.2), we deduce from the convexity of f that for all
k < n,

f ′(1 − q(k,n)
)
q(k,n) ≤ p(k,n) ≤ mq(k,n). (6.4)

It is easy to see that the sum
∑k0−1

k=1 in (6.3) is negligible as n → ∞. In fact, for any 1 ≤ k ≤ k0, q(k,n) ≤
P(Sn−k−1 > αn + z). But E(S1) = ψ ′(0) < α = ψ(t0)

t0
by the (strict) convexity of ψ . Then p(k,n) ≤ mq(k,n) → 0 as

n → ∞ (exponentially fast by the large deviation principle).
To estimate the probability q(k,n) for k0 ≤ k < n, we introduce a new probability

dP̃

dP

∣∣∣∣
σ {S0,...,Sn}

= et0Sn−nψ(t0).
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Under P̃, S1 has the mean ψ ′(t0) > 0. Therefore for 1 ≤ k ≤ n and for all z ≥ 0,

q(k,n) = P(S1 > 0, . . . , Sn−k > 0, Sn−k > αn + z)

= Ẽ
(
e−t0Sn−k+(n−k)ψ(t0)1(Sj >0,∀j≤n−k,Sn−k>αn+z)

)
= e−rkP̃

(
e(t0) ≥ Sn−k − αn,Sj > 0,∀j ≤ n − k,Sn−k > αn + z

)
,

where e(t0) denotes an independent exponential random variable with parameter t0 and we also used the fact that
α = ψ(t0)

t0
and r = ψ(t0). Plainly in the event of the above probability term, e(t0) must be bigger than z. Thanks to the

loss of memory property of e(t0), we get that for 1 ≤ k ≤ n and for all z ≥ 0,

erkq(k, n) = e−t0zP̃
(
Sj > 0,∀j ≤ n − k,αn + z < Sn−k ≤ αn + z + e(t0)

)
. (6.5)

Summing (6.5) over 0 ≤ k ≤ n − 1 and letting i = n − k, we obtain that

n−1∑
k=0

erkq(k, n)

= e−t0z
n∑

i=1

P̃
(
Sj > 0,∀j ≤ i, αn + z < Si ≤ αn + z + e(t0)

)
= e−t0z

(
Ẽ

(
U

(
αn + z,αn + z + e(t0)

]) − sn
)
, (6.6)

where for any x < y,

U(y) :=
∞∑

k=1

P̃(Sj > 0,∀1 ≤ j ≤ k,Sk ≤ y), U(x, y] := U(y) − U(x), (6.7)

and

sn :=
∞∑

k=n

P̃
(
Sj > 0,∀j ≤ k,αn + z < Sk ≤ αn + z + e(t0)

)
. (6.8)

Under P̃, Sj is a random walk with positive mean. Define by T0 := 0, Tj := inf{i > Tj−1: Si > STj−1} and Hj :=
STj

for j ≥ 1. Then 0 < T1 < · · · < Tj < · · · and 0 < H1 < · · · < Hj < · · · are the strict ladder epochs and ladder
heights of the random walk S (under P̃). The duality lemma says that for any y > 0,

U(y) =
∞∑
l=1

P̃(Hl ≤ y).

Since Ẽ[S2
1 ] < +∞, Ẽ(H1) < ∞ and we have the Wald identity (see [19] Feller Volume II, Chapter XVIII, Theo-

rem 1)

Ẽ(H1) = Ẽ(S1)Ẽ(T1). (6.9)

We are going to apply the renewal theorem (see [19] Feller, p. 360) to U and prove that there exists some constant
cH > 0 such that

lim
x→∞ e−t0{x}Ẽ

(
U

(
x, x + e(t0)

]) = cH . (6.10)
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To check (6.10), we remark that the span of H1 equals 1 (because S is aperiodic). By the renewal theorem, for
any j ≥ 1, U(x,x + j ] → j

Ẽ(H1)
as x → ∞. Moreover there exists some constant C > 0 such that for all y > x ≥ 0,

U(x,y] ≤ C(1 + y − x). Let x > 0. Observe that almost surely,

U
(
x, x + e(t0)

] = U
(	x
, x + e(t0)

] =
∞∑

j=1

1(j<{x}+e(t0)<j+1)U
(	x
, 	x
 + j

]
.

Taking expectation gives that

Ẽ
(
U

(
x, x + e(t0)

]) =
∞∑

j=1

e−t0(j−{x})(1 − e−t0
)
U

(	x
, 	x
 + j
]
,

which proves (6.10) after an application of the dominated convergence theorem, with

cH :=
∞∑

j=1

e−t0j
(
1 − e−t0

) j

Ẽ(H1)
= e−2t0

(1 − e−t0)Ẽ(H1)
. (6.11)

Now we prove that sn → 0, where sn is defined in (6.8). Remark that Ẽ(S1) = ψ ′(t0) > α := ψ(t0)
t0

by convexity.
Pick up some small positive constant δ < (ψ ′(t0) − α)/2. There exists some sufficiently small constant b ∈ (0, t0)

such that Ẽe−bS1 ≤ e−b(ψ ′(t0)−δ). Then by Chebychev’s inequality, for any t > 0 and k ≥ n, P̃(Sk ≤ z + αn + t) ≤
ebz+btebαnẼe−bSk ≤ ebz+bte−δbk . It follows that

sn ≤
∞∑

k=n

ebze−δbkẼ
(
ebe(t0)

) = t0

(1 − e−δb)(t0 − b)
ebze−δbn.

In particular sn → 0. This together with (6.10), (6.6) yields that for any z ≥ 0,

lim
n→∞ e−t0{αn+z}

n−1∑
k=0

erkq(k, n) = e−t0zcH . (6.12)

Now by using the lower bound of (6.4) and (6.5), for any k < n and z ≥ 0, p(k,n) ≥ f ′(1 − e−rk)q(k, n) because
q(k,n) ≤ e−r(k+1)e−t0z ≤ e−rk . Then for any small δ > 0, there exists some k0(δ) such that f ′(1 − e−rk) ≥ m(1 − δ)

for all k ≥ k0 (recalling f ′(1) = m). It follows that for any k0 ≤ k < n and z ≥ 0, p(k,n) ≥ (1 − δ)mq(k,n). On the
other hand, p(k,n) ≤ mq(k,n) for any k < n, and limn→∞

∑k0
k=0 q(k,n) = 0. This in view of (6.12) implies that for

any z ≥ 0,

lim
n→∞ e−t0{αn+z}

n−1∑
k=0

erkp(k,n) = me−t0zcH . (6.13)

Applying the above limit to (6.3) gives that for any z ≥ 0,

lim sup
n→∞

e−t0{αn+z}P(Mn > αn + z) ≤ (c0 + ε)mcH e−t0z,

which implies the upper bound in Proposition 6.1 by letting ε → 0 and

c∗ := c0mcH = c0me−2t0

(1 − e−t0)Ẽ(H1)
= e−2t0

(1 − e−t0)Ẽ(H1)
, (6.14)

since c0 = 1/m (the period d = 1) as stated in Proposition 4.1. �
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Remark 4. Let us mention an uniform estimate: for some constant C > 0,

P(Mn > αn + z) ≤ Ce−t0z, ∀z ∈ R, n ≥ 1. (6.15)

In fact, there exists some constant C′ > 0 such that E(ηk(0)) ≤ C′erk for any k ≥ 1, hence by the first inequality
in (6.3), P(Mn > αn + z) ≤ C′ ∑n−1

k=0 erkp(k,n) ≤ C′m
∑n−1

k=0 erkq(k, n). Using (6.6) and the fact that ∃C ′′ > 0:
U(x,y] ≤ C′′(1 + y − x) for all x < y, we immediately get (6.15).

Remark 5. If the underlying random walk S is of period d ≥ 2, then in (6.1), Bk = ∅ if k is not multiple of d (namely
if d � | k). Then instead of

∑n−1
k=0 erkp(k,n), we have to deal with

∑n−1
k=0,d|k erkp(k,n), which in turn leads to the study

of
∑n

k=0,d|k erkq(k, n). An equality similar to (6.6) holds with U replaced by

U(d,�)(y) :=
∞∑

k=0

P̃(Sj > 0,∀1 ≤ j ≤ kd + �,Skd+� ≤ y),

where � ∈ {0, . . . , d − 1} comes from the rest of division of n by d [� being fixed and we let n → ∞ with n − 1 ≡
�(modd)]. Technically we are not able to prove any renewal theorem for U(d,�)(y) for a general random walk S.

In the particular case when S is a nearest neighbor random walk on Z, we can use parity to handle U(d,�)(y).
Considering for instance � = 0 (d = 2). Thanks to parity, we have that for any k ≥ 1 and y > 0,

P̃(Sj > 0,∀1 ≤ j ≤ 2k,S2k ≤ y) = P̃(S2j > 0,∀1 ≤ j ≤ k,S2k ≤ y),

which implies that U(2,0)(y) is the renewal function for the random walk (S2n)n≥0 (under P̃). Then we can apply the
standard renewal theorem to U(2,0)(y). The term U(2,1)(y) can be dealt with in the same way. Then we get a result
similar to Proposition 6.1 and the forthcoming Proposition 6.2, and finally a modified version of Theorem 1.2 for the
nearest neighbor random walk. The details are omitted.

6.2. Lower bound in Proposition 6.1

Let ε > 0 be small. Let λ ≡ λ(ε) be a large constant whose value will be determined later on. Recall (6.1). Consider

En :=
n−1⋃
k=0

B ′
k,

with B ′
k := Bk ∩ {ηk(0) ≤ λerk} := Bk ∩ Fk. Then by Cauchy–Schwarz’ inequality,

P(Mn > αn + z) ≥ P(En) ≥ (
∑

0≤k<n P(B ′
k))

2∑
0≤k1,k2<n P(B ′

k1
∩ B ′

k2
)
. (6.16)

Conditioning on Fk , Bk is an union of ηk(0) i.i.d. events,

P(Bk|Fk) = 1 − (
1 − p(k,n)

)ηk(0)
.

Let 0 ≤ k < n. By (6.4) and (6.5), p(k,n) ≤ me−r(k+1)e−t0z. On Fk , ηk(0) ≤ λerk hence p(k,n)ηk(0) ≤
e−r−t0zmλ. Therefore for all z ≥ z0(λ, ε) and for all k < n,

1 − (
1 − p(k,n)

)ηk(0) ≥ (1 − ε)p(k,n)ηk(0)

hence

P
(
B ′

k|Fk

) ≥ (1 − ε)p(k,n)ηk(0)1Fk
.
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In particular,

n−1∑
k=0

P
(
B ′

k

) ≥ (1 − ε)

n−1∑
k=0

p(k,n)E
(
ηk(0)1Fk

)
.

Since ηk(0)e−rk is bounded in L2, we deduce from Proposition 4.3 that we can choose (and then fix) some large λ

and some k0 ≡ k0(ε) such that E(ηk(0)1Fk
) ≥ c0(1 − ε)erk for all k ≥ k0. It follows that for all n > k0,

n−1∑
k=0

P
(
B ′

k

) ≥ c0(1 − ε)2
n−1∑
k=k0

erkp(k,n).

Consequently, for all z ≥ z0 there exists some n0(z, ε) such that for all n ≥ n0,

n−1∑
k=0

P
(
B ′

k

) ≥ c0m(1 − ε)3
n−1∑
k=k0

erkq(k, n) ≥ c∗(1 − ε)4e−t0zet0{αn+z}, (6.17)

by applying (6.12) [recalling c∗ = c0mcH , c0 = 1/m and that for any fixed k q(k,n) → 0 as n → ∞]. The probability
P(Bk) has already been estimated in the proof of upper bound of Proposition 6.1, see (6.3) and (6.13): for all z ≥ 0
and n ≥ n0(z, ε),

n−1∑
k=1

P
(
B ′

k

) ≤
n−1∑
k=1

P(Bk) ≤ c∗(1 + ε)e−t0zet0{αn+z}. (6.18)

Now we estimate the denominator in (6.16). Let k1 < k2. On Bk1 ∩ Bk2 , there are at least two different v �= v′ at
generation k1 such that Av(k1, n) holds and for v′, there exists some descendant u (denoted by u > v′) at generation
k2 such that Au(k2, n) holds. Then,

Bk1 ∩ Bk2 ⊂
⋃

v �=v′,|v|=|v′|=k1

{
Av(k1, n) ∩ {∃|u| = k2, u > v′: Au(k2, n) holds

}}
.

Since different particles branch independently, we get that

P(Bk1 ∩ Bk2 |Fk1) ≤
∑

v �=v′,|v|=|v′|=k1

p(k1, n)E

( ∑
|u|=k2,u>v′

p(k2, n)|Fk1

)
.

Taking the expectations, we obtain that for k1 < k2,

P(Bk1 ∩ Bk2) ≤ p(k1, n)p(k2, n)E
(
ηk1(0)ηk2(0)

) ≤ Cp(k1, n)p(k2, n)er(k1+k2),

by Corollary 4.2. Therefore for all z ≥ z0 and n > n0(z, ε),

∑
0≤k1,k2<n

P
(
B ′

k1
∩ B ′

k2

) ≤
n−1∑
k=0

P
(
B ′

k

) + C

(
n−1∑
k=0

erkp(k,n)

)2

≤ c∗(1 + ε)e−t0zet0{αn+z} + C′e−2t0z,

for some numerical constant C′ > 0. In view of (6.16), we have that for all z ≥ z0 and n > n0(z, ε),

P(Mn > αn + z) ≥ c2∗(1 − ε)8e−t0zet0{αn+z}

c∗(1 + ε) + C′e−t0z
.
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It follows that

lim inf
z→∞ lim inf

n→∞ et0z−t0{αn+z}P(Mn > αn + z) ≥ c∗
(1 − ε)8

1 + ε
.

Letting ε → 0, we obtain the lower bound in Proposition 6.1. The proof of Proposition 6.1 is complete. �
Recall that φ(x) is defined in (4.1) and φ(x) > 0 thanks to the aperiodicity. Let us establish an uniform version of

Proposition 6.1:

Proposition 6.2. Under the assumptions in Theorem 1.2. Uniformly on x ∈ Z,

lim sup
n→∞

∣∣∣∣et0ze−t0{αn+z}

φ(x)
Px(Mn > αn + z) − c∗

∣∣∣∣ → 0,

as z → ∞.

Proof. Assume x �= 0 and let S∗ = max0≤i≤τ Si, where τ is the first return time to 0. Then

Px(Mn > αn + z) ≤ Px

(
S∗ > αn + z

) +
n∑

k=1

Px(τ = k)P(Mn−k > αn + z).

Let ε > 0 be small (in particular ε < c∗). Let � be some integer whose value will be fixed later on. By Proposi-
tion 6.1, there exists some y0(ε) > 0 such that for all y ≥ y0(ε), there exists some j0(y, ε) such that for all j ≥ j0(y, ε),∣∣et0ye−t0{αj+y}P(Mj > αj + y) − c∗

∣∣ < ε. (6.19)

Observe that for any k < n, P(Mn−k > αn+z) = P(Mn−k > α(n−k)+z+αk). We shall apply (6.19) to y = αk+z

and j = n − k. Then for all z ≥ y0(ε), there exists some j1(z, �) such that for all 1 ≤ k ≤ � and n ≥ j1(z, �),∣∣et0(z+αk)e−t0{αn+z}P(Mn−k > αn + z) − c∗
∣∣ < ε. (6.20)

We stress that y0(ε) does not depend on �. Then for all n > j1(z, �),

�∑
k=1

Px(τ = k)P(Mn−k > αn + z) ≤ (c∗ + ε)e−t0zet0{αn+z}
�∑

k=1

Px(τ = k)e−αt0k

≤ (c∗ + ε)e−t0zet0{αn+z}φ(x),

since αt0 = ψ(t0) = r and φ(x) = Ex[e−rτ ]. For k > �, we apply (6.15) and get that

n∑
k=�

Px(τ = k)P(Mn−k > αn + z) ≤
n∑

k=�

Ce−t0(αk+z) = Ce−t0z
e−r�

r
.

It follows that for any z ≥ y0(ε) and any x ∈ Z,

lim sup
n→∞

et0ze−t0{αn+z}Px(Mn > αn + z) ≤ (c∗ + ε)φ(x) + C
e1−r�

r
. (6.21)

For the lower bound, we have from (6.20) that for any z ≥ y0(ε) and all n > j1(z, �),

�∑
k=1

Px(τ = k)P(Mn−k > αn + z) ≥ (c∗ − ε)e−t0zet0{αn+z}
�∑

k=1

Px(τ = k)e−αt0k

= (c∗ − ε)e−t0zet0{αn+z}Ex

[
e−rτ 1(τ≤�)

]
.
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Hence for any z ≥ y0(ε) and any x ∈ Z,

lim inf
n→∞ et0ze−t0{αn+z}Px(Mn > αn + z) ≥ (c∗ − ε)Ex

[
e−rτ 1(τ≤�)

]
.

Letting � → ∞ in the above lim inf inequality and in (6.21) gives that for any z ≥ y0(ε) and uniformly for all
x ∈ Z,

lim sup
n→∞

∣∣et0ze−t0{αn+z}Px(Mn > αn + z) − c∗φ(x)
∣∣ ≤ εφ(x), (6.22)

proving Proposition 6.2 since ε can be arbitrarily small. �

6.3. Proof of Theorem 1.2

The part (1.5) of Theorem 1.2 was already proved in Lemma 4.4. We now prove (1.4).
Let ε, δ > 0 be small. For any k ≥ 1, there exists some integer �k = �k(ε) such that

P

(
max|u|=k

|Xu| ≤ �k

)
≥ 1 − ε.

Recalling the martingale Λn defined in Proposition 4.1. Since a.s. Λn → Λ∞, there exists some k1 = k1(ε, δ) such
that for any k ≥ k1,

P
(
(1 − δ)Λ∞ ≤ Λk ≤ (1 + δ)Λ∞

) ≥ 1 − ε.

By (6.22), there exists some z0(δ) such that for all z ≥ z0(δ) and for all x ∈ Z, there exists some n0(z, x, δ) such
that for all j ≥ n0(z, x, δ),∣∣et0ze−t0{αj+z}Px(Mj > αj + z) − c∗φ(x)

∣∣ ≤ δφ(x). (6.23)

Elementarily there exists some s0(δ) > 0 such that 1− s ≥ e−(1+δ)s for all 0 ≤ s < s0(δ). Let k2 = k2(δ, y) be some
integer satisfying (c∗ + δ)e−t0(αk2+y−1) < s0(δ). Define k := k1 + k2 + 	 z0(δ)

α

 + 1. Let n1 := maxx∈Z,|x|≤�k

n0(z, x,

δ)+k. Considering n ≥ n1. Conditioning on Fk and on the set {max|u|=k |Xu| ≤ �k}, the particles in the kth generation
move independently, hence for any n > n1,

P(Mn > αn + y|Fk) = 1 −
∏

x∈Z,|x|≤Lk

Px(Mn−k ≤ αn + y)ηk(x). (6.24)

Applying (6.23) to j = n − k, z = αk + y yields that for any |x| ≤ �k (and x ∈ Z),

(c∗ − δ)φ(x)e−t0(αk+y)+t0{αn+y} ≤ Px(Mn−k > αn + y) ≤ (c∗ + δ)φ(x)e−t0(αk+y)+t0{αn+y}.

Since 1 − s ≥ e−(1+δ)s for all 0 ≤ s < s0(δ), we deduce from (6.24) that on the set {max|u|=k |Xu| ≤ �k},
P(Mn > αn + y|Fk)

≤ 1 − exp

(
−

∑
x∈Z,|x|≤�k

(c∗ + δ)(1 + δ)φ(x)ηk(x)e−t0(αk+y)et0{αn+y}
)

= 1 − exp
(−(c∗ + δ)(1 + δ)Λke−t0yet0{αn+y}). (6.25)

Then by taking the expectation, we get

P(Mn > αn + y)

≤ E
(
1 − exp

(−(c∗ + δ)(1 + δ)Λke−t0yet0{αn+y})) + P

(
max|u|=k

|Xu| > �k

)
≤ E

(
1 − exp

(−(c∗ + δ)(1 + δ)2Λ∞e−t0yet0{αn+y})) + 2ε,
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where the factor 2 in 2ε comes from Λk which is replaced by (1 + δ)Λ∞. Since ε and δ can be arbitrarily small, we
get the upper bound in (1.4). The lower bound in (1.4) can be proved in the same way.

Finally, let y ∈ Z. Observe that for any nj ≥ 1, P(Mnj
− 	αnj
 ≥ y + 1) = P(Mnj

− 	αnj
 > y + {αnj }) =
P(Mnj

− αnj > y). We apply (1.4) to y and y − 1, (1.6) follows immediately. This completes the proof of Theo-
rem 1.2. �

7. Extension to multiple catalysts branching random walk (MCBRW)

Recall Section 3.1 for the definition of MCBRW. Let us assume that the set of catalysts C is a finite subset of Z.
By forgetting/erasing the time spent between the catalysts, we obtain an underlying Galton–Watson process which is
multitype with the moment matrix

Mxy := mean number of particles born at x that reach site y

= m1(x)Px(τ = τy, τ < ∞) (x, y ∈ C),

where m1(x) = E[Nx] is the mean offspring at site x, τy := inf {n ≥ 1: Sn = y} is the first return time at y, and
τ = τC = infy∈C τy is the first return time to C .

We assume to be in the supercritical regime, that is ρ > 1, where ρ is the maximal eigenvalue of matrix M , which
by assumption is irreducible. We let ρ(r) be the maximum eigenvalue of the matrix

M(r)
xy := m1(x)Ex

[
e−rτ 1(τ=τy ,τ<∞)

]
(x, y ∈ C).

The function r → ρ(r) is continuous, strictly decreasing, C∞ on (0,+∞), ρ(0) = ρ > 1 and limr→+∞ ρ(r) = 0
since M

(r)
xy ≤ m1(x)e−r . Therefore there exists a unique r > 0, a Malthusian parameter, such that ρ(r) = 1. We shall

fix this value of r in the sequel.
Let v = v(r) be a right eigenvector of M(r) associated to ρ(r) = 1: For any x ∈ C , v(x) > 0 and

v(x) =
∑
a∈C

m1(x)Ex

[
e−rτ 1(τ=τa,τ<∞)

]
v(a) (x ∈ C).

Let us denote by p(x, y) = Ex[S1 = y] and Pf (x) = ∑
y p(x, y)f (y) the random walk kernel and semigroup. Let

us consider the hitting times

Tx := inf {n ≥ 0: Sn = x}, TC = inf
x∈C

Tx = inf {n ≥ 0: Sn ∈ C}.

Lemma 7.1. The function

φ(x) :=
∑
a∈C

v(a)Ex

[
e−rTC 1(TC =Ta,TC <∞)

]
is a solution of

Pφ(x) = erφ(x)

(
1

m1(x)
1(x∈C) + 1(x /∈C)

)
.

Proof. The proof is similar to that of Proposition 4.1 by using the Markov property of the random walk. The details
are omitted. �

We are now ready to introduce the fundamental martingale.
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Lemma 7.2.

(1) For the CBRW process with multiple catalysts, the process

Λn := e−rn
∑
|u|=n

φ(Xu)

is a martingale.
(2) For the random walk, the process

Δn := e−rnφ(Sn)
∏
x∈C

m1(x)L
x
n−1

is a martingale where Lx
n−1 = ∑

0≤k≤n−1 1(Sk=x) is the local time at level x at time n − 1.
(3) If N has finite variance, then the process Λn is bounded in L2 and therefore a uniformly integrable martingale.

Proof. Based on the many-to-one formula, the parts (1) and (2) can be proved in the same way as in Proposition 4.1.
Let us only give the details of the proof of (3). To compute the second moment, we use the many to two formula (3.5)
of Section 3

E
[
Λ2

n

] = e−2rnE

[ ∑
|u|=|v|=n

φ(Xu)φ(Xv)

]

= e−2rnQ

[
φ
(
S1

n

)
φ
(
S2

n

) ∏
0≤k<T ∧n

m2
(
S1

k

) ∏
T ∧n≤k<n

m1
(
S1

k

)
m1

(
S2

k

)]
.

Recall (3.6). We have that

E
[
Λ2

n

] = e−2rnQ

[
φ(Sn)

2
∏
x∈C

m1(x)L
x
n−1

]

+ e−2rn
∑

1≤k≤n−1

Q

[ ∏
0≤l≤k−2

m1(Sl)

m2(Sl)

(
1 − m1(Sk−1)

m2(Sk−1)

)
ESk−1 [Δn−(k−1)]2e2r(n−(k−1))

]
.

Observe that since 0 ≤ φ ≤ 1 we have 0 ≤ φ(x)2 ≤ φ(x), and combine it with Ex[Δp] = φ(x)m1(x) ≤ C and m1(x)
m2(x)

≤
1 to obtain the upper bound

E
[
Λ2

n

] ≤ 1 + C2
∑

1≤k≤n−1

e−2r(k−1) ≤ C′ < ∞,

which completes the proof of this Lemma. �

We are now able to give an explanation of the supercritical regime assumption of the introduction.

Lemma 7.3. When there is only one catalyst at the origin, the supercritical regime is m(1 − qesc) > 1.

Proof. Indeed, M is then a one dimensional matrix and ρ = M00 = mP(τ < +∞) = m(1 − qesc). �

We end this section by stating the law of large numbers. Intuitively, if c is the rightmost catalyst, the maximal
position at time n comes from particles born at location c.

Proposition 7.4 (Law of large numbers). Assume the supercritical regime and (1.3). Then, on the set of nonextinction
S we have

lim
n→+∞

Mn

n
= r

t0
, a.s.,
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with r the Malthusian parameter defined by ρ(r) = 1 and t0 > 0 such that ψ(t0) = r .

Proof. First observe that the heuristics do not change at all since by applying the optional stopping theorem to the
martingale et0Sn−nr to the time T , we obtain that for x > c

et0x = et0cEx

[
e−rT

]
,

and thus

φ(x) = v(c)Ex

[
e−rTc

] = v(c)et0(x−c),

and we approximate the expected number of particles above level an in the same way, and hence obtain the same
guess for the asymptotics.

Furthermore, the proofs are mutatis mutandis the same as the one given in Section 5. The only difference would
come from the use of renewal theorems: we get a system of renewal equations, e.g., for(

Ea

(
eθSn

∏
b∈C

m1(b)L
b
n−1

))
a,b∈C

as n → ∞, which can be dealt with an application of a matrix version of renewal theorems (see [13,14]). We feel free
to omit the details. �
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