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Abstract. Relative dimensions of isotypic components of N th order tensor representations of the symmetric group on n letters give
a Plancherel-type measure on the space of Young diagrams with n cells and at most N rows. It was conjectured by G. Olshanski that
dimensions of isotypic components of tensor representations of finite symmetric groups, after appropriate normalization, converge
to a constant with respect to this family of Plancherel-type measures in the limit when N√

n
converges to a constant. The main result

of the paper is the proof of this conjecture.

Résumé. Les dimensions relatives des composants isotypiques des représentations tensorielles du N ième ordre du groupe symé-
trique sur n lettres induisent une mesure du type Plancherel sur l’espace des diagrammes de Young avec n cellules et au plus N

rangs. G. Olshanski a conjecturé que ces dimensions, après renormalisation, convergent vers une constante sous cette famille de
mesures du type Plancherel dans la limite où N√

n
converge vers une constante. Le principal résultat de cet article est la preuve de

cette conjecture.
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1. Introduction

Let N and n be two positive integers, let Sn be the symmetric group on n letters and let Y
n be the set of Young diagrams

with n cells. The finite dimensional irreducible representations of Sn are parametrized by the set Y
n. Given λ ∈ Y

n let
Vλ be the irreducible representation of Sn corresponding to the Young diagram λ and denote dimλ = dimVλ.

The N th order tensor representation of Sn is the action of Sn on the tensor product space (CN)⊗n by permuting the
factors in the tensor product. We are interested in isotypic components of these representations.

If V is an irreducible subrepresentation of a representation U of a finite group, the isotypic component of U

corresponding to V is defined to be the sum of all subrepresentations of U which are isomorphic to V . It is easy to
show that U decomposes uniquely into a direct sum of its isotypic components.

Let Y
n
N denote the set of Young diagrams with n cells and at most N rows. It follows from Schur–Weyl duality [7,

21] between the symmetric group Sn and the general linear group GL(N,C) that the irreducible representations of Sn

which are subrepresentations of the representation (CN)⊗n are exactly the ones which correspond to Young diagrams
in the set Y

n
N . Given λ ∈ Y

n
N let Eλ denote the isotypic component of (CN)⊗n corresponding to Vλ. Decomposing

(CN)⊗n into a direct sum of its isotypic components and looking at dimensions, we obtain

Nn =
∑

λ∈Y
n
N

dimEλ.
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Introduce a probability measure on Y
n
N given by relative dimensions of the corresponding isotypic components:

P
n
N(λ) = dimEλ

Nn
.

We will call the measures P
n
N(λ) Schur–Weyl measures.

The main result of this paper is the following theorem on the asymptotics of Schur–Weyl measures, which was
conjectured to be true by G. Olshanski:

Theorem 1.1. For any c > 0, c �= 1 there exists a positive number Hc such that for any ε > 0 we have

lim
n→∞
N→∞√
n/N→c

P
n
N

{
λ ∈ Y

n
N :

∣∣∣∣− 1√
n

ln
dimEλ

Nn
− Hc

∣∣∣∣ < ε

}
= 1.

We obtain an explicit, albeit quite complicated formula (43) for the constants Hc .

1.1. Entropy of the Plancherel measure

A major inspiration for this paper is a theorem of A. Bufetov on the entropy of the Plancherel measure. The Plancherel
measure is the measure on Y

n defined by

Pln(λ) = (dimλ)2

n! .

The measure P
n
N(λ) can be thought of as an analog of the Plancherel measure for the tensor representations of Sn

since in view of Burnside’s theorem Pln(λ) can be interpreted as the relative dimension of the isotypic component
of the regular representation of Sn corresponding to Vλ. The measure P

n
N(λ) can also be thought of as a deformation

of the Plancherel measure, since for fixed n, the measures P
n
N converge pointwise to the Plancherel measure when

N → ∞ (see, for example, [14], Section 3).
The theorem of A. Bufetov, which was conjectured by Vershik and Kerov, states:

Theorem 1.2 (Theorem 1.1, [6]). There exists a positive constant H such that for any ε > 0 we have

lim
n→∞ Pln

{
λ ∈ Y

n:

∣∣∣∣− 1√
n

ln
(dimλ)2

n! − H

∣∣∣∣ < ε

}
= 1.

By analogy to the Shannon–McMillan–Breiman Theorem, Vershik and Kerov have suggested to call the constant
H the entropy of the Plancherel measure. See [6] for details. By the same analogy, Hc can be thought of as the entropy

of the family of measures P
�c2N2	
N .

1.2. Outline of the paper

It was proven by P. Biane [1] that appropriately scaled boundaries of random Young diagrams sampled from Y
n
N

according to the Schur–Weyl measures converge to a limit shape in the limit n → ∞, N → ∞ and
√

n
N

→ c (Theo-
rem 2.1). An integral formula for the logarithm of the Schur–Weyl measure P

n
N(λ) in terms of the hook lengths and

contents of λ and the deviation of the boundary of λ from the limit shape was obtained in [10]. In addition, it was
shown in [10] that the limit shape found by Biane is the unique minimizer of this integral, and the quadratic variation
was calculated. The starting point of the proof of Theorem 1.1 is this variational formula (Proposition 2.2). Section 2
provides the necessary background.

To study the limit of the variational formula it is necessary to understand the local statistical properties of the
boundary of Young diagrams under the Schur–Weyl measures. Toward this end, since it is easier to deal with, we first
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study the local statistics under the Poissonization of the Schur–Weyl measures. The first step of the proof is to show
that the Poissonization of the measures P

n
N with respect to n are Plancherel-type measures associated with certain

extreme characters of the infinite dimensional unitary group (Lemma 3.1). Borodin and Kuan have proven that these
Plancherel-type measures are determinantal point processes, have obtained a contour-integral representation of the
correlation kernel and have found limits of the process in various regimes. In Section 3 we present the proof that
in the case which is of relevance to this paper this determinantal process converges to the discrete sine-process, and
using the depoissonization technique of Borodin, Okounkov and Olshanski [3] show that in the limit N → ∞ the
local behavior of the boundary of Young diagrams under the Schur–Weyl measures is characterized by the discrete
sine-kernel (Proposition 3.7). We also show in Section 3 that the probability of Young diagrams which extend beyond
the limit shape at either edge by at least Nδ, δ > 1

3 , is exponentially small. This statement for the right edge is an
immediate corollary of [8], Theorem 1.7.

The next step is to obtain upper bounds for the decay of correlations of the boundary of random Young diagrams.
Since the contour-integral formula of Borodin and Kuan is not very suitable for such estimates, using a method of A.
Okounkov [11] we obtain a different representation of the correlation kernel and use it to obtain various bounds for
the correlation kernel of the poissonized measures (Section 4). We use these estimates to obtain upper bounds on the
decay of correlations (Section 4.3).

We use the bounds on the decay of correlations to show in Section 5 that the weighted sum of the indicator
functions of the presence of a local pattern on the boundary of a Young diagram converges to a constant with respect
to the Schur–Weyl measures. This allows us to show that all the terms in the variational formula for P

n
N(λ) which can

be characterized in terms of short-range patterns converge to constants.
In Section 6 we show that the terms which correspond to long-range interactions converge to 0 with respect to the

Schur–Weyl measures.

2. Background

2.1. The limit shape of Young diagrams with respect to Schur–Weyl measures

Represent λ = (λ1 ≥ λ2 ≥ · · · ≥ λN) ∈ Y
n
N where λi ∈ N and

∑
λi = n by its diagram as shown in Fig. 1. The longest

row consists of λ1 squares of size 1, the next longest one of λ2 such squares, and so on. Note that for λ ∈ Y
n
N the

integer N is not encoded in the diagram of λ.

Scale down the diagram by
√

n
2 in both directions so that the diagram has area 2 and rotate the scaled diagram by

π
4 radians as in Fig. 2. Let Lλ(x) be the function giving the top boundary of the rotated diagram. Notice that Lλ(x) is
a piecewise linear function of slopes ±1 and that Lλ(x) = |x| for x � 1 and x ≤ − N√

n
.

P. Biane [1] has proven that in the limit n → ∞,
√

n/N → c the boundary of a random scaled Young diagram
sampled from the measure P

n
N converges in measure to a limit shape. The limit shape Ωc(s) is described in the

following way. For x ∈ [c − 2, c + 2],

Ωc(x) = 1

π

(
2x arcsin

(
x + c

2
√

1 + xc

)
+ 2

c
arccos

(
2 + xc − c2

2
√

1 + xc

)
+

√
4 − (x − c)2

)
,

Fig. 1. The Young diagram λ = (8,5,4,2,1,0) ∈ Y
20
6 .
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Fig. 2. A rotated scaled Young diagram.

Fig. 3. Graphs of Ωc(x) for c = 0,0.5,1,2.5.

otherwise

Ωc(x) =

⎧⎪⎨
⎪⎩

|x|, 0 < c ≤ 1 and x /∈ [c − 2, c + 2],
|x|, 1 < c and x /∈ [− 1

c
, c + 2

]
,

x + 2
c
, 1 < c and x ∈ [− 1

c
, c − 2

]
.

The precise formulation of Biane’s theorem is the following law of large numbers for the measures P
n
N .

Theorem 2.1 (Theorem 3, [1]). Let N = N(n) be such that

lim
n→∞

√
n

N(n)
= c ≥ 0.

For any fixed ε > 0 we have

lim
n→∞ P

n
N

{
λ ∈ Y

n
N : ∀x ∈ R,

∣∣Lλ(x) − Ωc(x)
∣∣ < ε

} = 1.

Figure 3 gives graphs of Ωc(x) for several values of c. For every c the graph of the function Ωc(x) intersects the
graph of |x| at two points. All the intersections are tangential except the intersections on the left side for c ≥ 1. At the
left intersection point Ω1(x) has slope 0 from the right, while Ωc(x) for c > 1 has slope 1 from the right.

Note: We prove Theorem 1.1 only in the case c �= 1. The case c = 1 cannot be treated together with the other cases,
because the nature of the fluctuations of Lλ near the left intersection point of the graph of Ω1(x) with the graph of |x|
is different from the other cases. The main reason the nature of the fluctuations changes is the transversal intersection
of the nonlinear section of the limit shape with the linear section as indicated in Fig. 3. The nature of fluctuations near
this intersection point has been studied by Borodin and Olshanski [4].
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Fig. 4. p2,3 = 1.5 and q2,3 = 2.5 for the Young diagram λ = (8,5,4,2,1).

Notice that Ωc(x) has a rather simple derivative:

Ω ′
c(x) =

⎧⎨
⎩

2
π arcsin

(
c+x

2
√

1+xc

)
, x ∈ [c − 2, c + 2],

1, x > c + 2, or 1 < c and x ∈ [− 1
c
, c − 2

]
,

−1, otherwise.

(1)

The limit shape Ωc(x) is a continuous deformation (depending on c) of the limit shape of random scaled Young di-
agrams sampled according to the Plancherel measure, which was found independently and simultaneously by Vershik
and Kerov [16], and Logan and Shepp [9]. The Vershik–Kerov–Logan–Shepp limit shape is obtained when c = 0.

2.2. A variational formula for the measures

Let i index the rows and j the columns of a Young diagram. For the cell at position (i, j) in a Young diagram λ define
the numbers pi,j ∈ Z + 1

2 and qi,j ∈ Z + 1
2 to be 1

2 plus the number of cells to the right of and respectively above the
cell as shown in Fig. 4. Define the hook length of the cell at position (i, j) to be hi,j = pi,j + qi,j and the content to
be ci,j = j − i.

For a statement S denote

δS =
{

1, S is true,
0, S is false.

The following variational formula for the measures P
n
N was obtained in [10].

Proposition 2.2 (Propositions 2.1 and 3.1, [10]). Let c = cn,N =
√

n
N

> 0. We have

− ln P
n
N(λ)√
n

=
√

n

8
‖fλ‖2

1/2 +
√

n

2

∫
|x−c|>2

Gc(x)fλ(x)dx + θ̂ (λ) − ρ̂(λ) − εn, (2)

where fλ(x) = Lλ(x) − Ωc(x),

‖f ‖2
1/2 =

∫ ∫ (
f (s) − f (t)

s − t

)2

ds dt

is the 1
2 -Sobolev norm in the space of piecewise-smooth functions,

Gc(x) = δ|x−c|>2

(
arccosh

∣∣∣∣x − c

2

∣∣∣∣ + sign(1 − c) arccosh

∣∣∣∣3c − c3 + (1 + c2)x

2(1 + cx)

∣∣∣∣
)

,

θ̂ (λ) = 1√
n

∑
i,j

m(hi,j ),
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ρ̂(λ) = 1

2
√

n

∑
i,j

m(N + ci,j ),

m(x) =
∞∑

k=1

1

k(k + 1)(2k + 1)

1

x2k
,

and εn = o( lnn√
n
) is independent of λ. The sums in θ̂ and ρ̂ range over all cells of λ.

Using the varrational formula (2) it is not very hard to prove that the random variables 1√
n

ln dimEλ

Nn are bounded in

measure with respect to P
n
N [10]:

Theorem 2.3 (Theorem 1.2, [10]). For any c > 0 there exist positive numbers αc and β such that if

lim
n→∞

√
n

N
= c,

then

lim
n→∞ P

n
N

{
λ: αc < − 1√

n
ln

dimEλ

Nn
< β

}
= 1. (3)

In contrast, Theorem 1.1 states that the random variables 1√
n

ln dimEλ

Nn converge to constants with respect to P
n
N . It

was proven in [10] that the quantities 1√
n

ln
maxλ∈Y

n
N

{dimEλ}
Nn are also bounded.

Theorem 2.4 (Theorem 1.1, [10]). For any c > 0 there exist positive numbers αc and β such that for large enough

n ∈ N and for any N ∈ N, if c >
√

n
N

, then

αc < − 1√
n

ln
maxλ∈Y

n
N
{dimEλ}

Nn
< β. (4)

Analogous results to Theorems 2.3 and 2.4 for the Plancherel measures were obtained by Vershik and Kerov in
1985 [18]. Numerical simulations by Vershik and Pavlov [19] suggest that for the Plancherel measures the typical
dimensions converge in measure (Theorem 1.2 by A. Bufetov). However, their simulations suggest that perhaps no
such convergence holds for the maximal dimensions.

2.3. Plancherel type measures for the infinite-dimensional unitary group

As mentioned in the Introduction, we will need to study the poissonization of the Schur–Weyl measures. The pois-
sonized measures are closely related to measures on signatures of length N corresponding to certain extreme charac-
ters of the infinite dimensional unitary group, which we now introduce.

Let U(N) denote the group of all N × N unitary matrices. There is a natural embedding of U(N) into U(N + 1)

given by

U(N) � U �→
(

U 0
0 1

)
∈ U(N + 1).

Define the infinite dimensional unitary group U(∞) to be

U(∞) =
∞⋃

N=1

U(N).
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Let GTN be the set of signatures of length N , i.e. the set of sequences λ of N nonnegative nonincreasing integers:
λ = (λ1 ≥ λ2 ≥ · · · ≥ λN),λi ∈ Z. It is well known that the irreducible highest-weight representations of U(N) are
parametrized by the set GTN . For λ ∈ GTN let Wλ denote the irreducible representation of U(N) with highest-weight
λ, and let χλ and dimN λ be respectively the character and dimension of Wλ. Note that χλ(e) = dimN λ, where e is

the identity. Define the normalized character χ̃λ as χ̃λ = χλ

dimN λ
.

The notion of a normalized character can be generalized to groups such as U(∞). A normalized character of U(∞)

is a positive-definite continuous function χ which is invariant under conjugation and satisfies the condition χ(e) = 1.
The set of normalized characters of U(∞) is a convex set and the extreme characters of U(∞) are defined to be the
extreme points of this set.

Extreme characters of U(∞) can be approximated by the normalized characters of U(N) when N goes to infinity.
Here we will present the exact statement of this result only in the specific case of interest to us. For a more general
discussion of extreme characters of U(∞) and for proofs see for example [2,12,17] or [5].

A signature λ can be represented by two Young diagrams (λ+, λ−) corresponding to its positive and negative parts.
If λ+ = (λ+

1 ≥ λ+
2 ≥ · · · ≥ 0) and λ− = (λ−

1 ≥ λ−
2 ≥ · · · ≥ 0), then

λ = (
λ+

1 ≥ λ+
2 ≥ · · · ≥ −λ−

2 ≥ −λ−
1

)
.

Let λ±′ be the transposes of λ±, i.e. the number of cells in the ith row of λ±′ is equal to the number of cells in the ith
column of λ±.

For a Young diagram μ let |μ| denote the number of boxes in μ and let d(μ) denote the number of cells on the
diagonal of μ. The numbers pi(μ) := pi,i(μ) and qi(μ) := qi,i(μ),1 ≤ i ≤ d(μ) are called Frobenius coordinates of
the Young diagram μ (see Fig. 4). They completely determine μ.

Theorem 2.5 ([17]). For any extreme character χ of U(∞) there exists a unique set of constants α±
1 ≥ α±

2 ≥ · · · ≥ 0,
β±

1 ≥ β±
2 ≥ · · · ≥ 0 and δ± ≥ 0, satisfying the conditions

∞∑
i=1

(
α±

i + β±
i

)
< δ±, β+

1 + β−
1 ≤ 1,

and such that for any sequence of signatures λ(N) ∈ GTN , if

lim
N→∞

pi(λ(N)±)

N
= α±

i , lim
N→∞

qi(λ(N)±)

N
= β±

i , and lim
N→∞

|λ(N)±|
N

= δ±,

then the normalized characters χ̃λ(N) approximate χ .

Set

γ ± = δ± −
∞∑
i=1

(
α±

i + β±
i

) ≥ 0.

Let χγ +,γ −
denote the characters which according to Theorem 2.5 can be approximated by χ̃λ(N) with

α±
i = β±

i = 0. In other words, χγ +,γ −
correspond to limits of χ̃λ(N) when the rows and columns of λ±(N) grow

sublinearly in N and |λ±(N)| grow as γ ±N .
D. Voiculescu [20] gave a complete description of extreme characters of U(∞). In particular, given U ∈ U(∞),

for χγ +,γ −
we have

χγ +,γ −
(U) =

∏
u∈Spectrum(U)

eγ +(u−1)+γ −(u−1−1). (5)
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Given a character χ of U(∞), consider its restriction to U(N). It can be decomposed into a nonnegative linear
combination of irreducible, and hence normalized irreducible characters of U(N). Write

χ |U(N) =
∑

λ∈GTN

P
χ
N(λ)χ̃λ. (6)

P
χ
N(λ) gives a probability measure on GTN . Let P

γ +,γ −
N be the measure corresponding to the extreme character

χγ +,γ −
.

3. Poissonization and depoissonization

All statements that follow are proven for arbitrary c ∈ (0,1) ∪ (1,∞), however no uniformity in c is established. In
particular all constants may depend on c, but to simplify notation this dependence will not be indicated explicitly.

3.1. Poissonization of Schur–Weyl measures

Recall that the Poisson distribution with rate μ is

Poisμ(n) = e−μ μn

n! .

If {Pn}n∈N is a family of measures with distinct supports {Sn}n∈N, its poissonization with parameter ν is the measure
PoisP,ν with support S := ⋃

n∈N
Sn and defined by

PoisP,ν(x) = e−ν νn

n! P
n(x),

where P
n is naturally extended to S by setting P

n(S \ Sn) = 0.
Let Pν,N denote poissonization of the family of measures P

n
N with respect to n. It is a one-parameter family of

measures on
⋃

n∈N
Y

n
N defined by

Pν,N (λ) = e−ν νn

n! P
n
N(λ) if λ ∈ Y

n
N .

Lemma 3.1. The measure P
γ +,0
N is the poissonization of the measure P

n
N with respect to n. The poissonization pa-

rameter is ν = γ +N .

Proof. We need to show that Pγ +N,N = P
γ +,0
N . By (6) it is enough to show that

χγ +,0|U(N) =
∑

λ∈GTN

Pγ +N,N(λ)
χλ

dimN λ
.

By (5), for U ∈ U(N),

χγ +,0(U) = eγ + trU−γ +N.

It is a consequence of Schur–Weyl duality [7] that Eλ = Vλ ⊗ Wλ. Hence

P
n
N(λ) = dimEλ

Nn
= dimλdimN λ

Nn
,
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which implies

∑
λ∈GTN

Pγ +N,N(λ)
χλ(U)

dimN λ
=

∑
λ∈GTN

e−γ +N (γ +N)n

n! P
n
N(λ)

χλ(U)

dimN λ

=
∑

λ∈GTN

e−γ +N (γ +N)n

n!
dimλdimN λ

Nn

χλ(U)

dimN λ

=
∑

λ∈GTN

e−γ +N (γ +)n

n! χλ(U)dimλ.

Let GT
n
N be the set of signatures λ ∈ GTN which have only nonnegative terms and for which

∑
i λi = n. Note that

GT
n
N coincides with the set Y

n
N . We obtain

∑
λ∈GTN

Pγ +N,N(λ)
χλ(U)

dimN λ
=

∞∑
n=0

e−γ +N (γ +)n

n!
∑

λ∈GT
n
N

χλ(U)dimλ

=
∞∑

n=0

e−γ +N (γ +)n

n! χ(CN)⊗n

(U) =
∞∑

n=0

e−γ +N (γ +)n

n! (trU)n

= e−γ +N
∞∑

n=0

(γ + trU)n

n! = eγ + trU−γ +N,

which completes the proof. �

If certain conditions are met (see Lemma 3.4), properties of a family of measures P
n when n → ∞ can be obtained

from analogous properties of the poissonization PoisP,ν of those measures when ν → ∞:

P
n(x) ≈ PoisP,ν(x), when ν ≈ n � 1.

According to Lemma 3.1 the poissonization of P
n
N with respect to n with parameter ν gives P

ν/N,0
N . Since we are

interested in properties of P
n
N in the limit when n → ∞ so that

√
n

N
→ c, the relevant limit of the poissonized measures

P
γ +,0
N for us is when the poissonization parameter γ +N converges to infinity so that

√
γ +N

N
→ c, or equivalently that

γ +
N

→ c2.

3.2. The poissonized measures as determinantal point processes

Associate with each λ ∈ GTN the point configuration

P (λ) := {λ1 − 1, λ2 − 2, . . . , λN − N} ⊂ Z.

Under this correspondence the pushforward of P
γ +,0
N is a random N -point process on Z. See Fig. 5 for a visualization

of this correspondence. Note, that since the measure P
γ +,0
N is supported on Young diagrams with at most N rows, we

are working with configurations which are subsets of [−N,∞).

Borodin and Kuan have proven that the point process corresponding to P
γ +,0
N is determinantal.

Theorem 3.2 (Theorem 3.2, [2]). The point process P
γ +,0
N is determinantal: for arbitrary x1, . . . , xk ∈ Z,

P
γ +,0
N

{
λ: {x1, . . . , xk} ⊂ P (λ)

} = det
[
KN,γ +(xi, xj )

]
1≤i,j≤k

.
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Fig. 5. Black dots are points in the configuration while white dots are not.

The correlation kernel KN,γ + is given by

KN,γ +(x, y) = 1

(2πi)2

∮
|u|=r

∮
|w−1|=r

eγ +u−1

eγ +w−1

ux

w1+y

(1 − u)N

(1 − w)N

dudw

u − w
, (7)

where r is any constant in (0, 1
2 ).

Note: The theorem as stated here is a special case of the theorem of Borodin and Kuan. The theorem in [2] deals
with point processes corresponding to measures on paths in the Gelfand–Tsetlin graph GT which arise from extreme
characters of U(∞) corresponding to arbitrary parameters (α±

i , β±
i , γ ±).

Given an integer k and a subset X ⊂ Z, define

ck(X) =
{

1, k ∈ X,
0, k /∈ X.

Given an integer vector �m = {m1, . . . ,mr}, define

c �m(X) = cm1(X) · · · cm1(X).

For a Young diagram λ, let

c �m(λ) = c �m
(

P (λ)
)
.

In terms of the introduced notation the statement of Theorem 3.2 is equivalent to

E
P

γ+,0
N

c{x1,...,xk} = det
[
KN,γ +(xi, xj )

]
1≤i,j≤k

.

Another characterization of the poissonization of the measure P
n
N is as the Charlier orthogonal polynomial en-

semble, which was proven by K. Johansson [8]. Thus, the determinantal process with kernel KN,γ + coincides with
the determinantal process with the Christoffel–Darboux kernel of the Charlier ensemble. Since operators given by
Christoffel–Darboux kernels are projection operators [13], it follows that the operator given by KN,γ + is also a pro-
jection operator. In particular, it follows that

KN,γ +(x, x) =
∑
y∈Z

KN,γ +(x, y)KN,γ +(y, x) (8)

for all x.
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3.2.1. The discrete sine-process
Define the discrete sine kernel to be the function

S(l, t) =
{

sin(lt)
πl

, l �= 0,
t
π , l = 0.

Let S(t) be the measure on the power set of Z such that for any m1, . . . ,mr ∈ Z, we have

S(t){X ⊂ Z: m1, . . . ,mr ∈ X} = det
[

S(mi − mj , t)
]

1≤i,j≤r
. (9)

The existence of such a measure follows from the general theory of determinantal point processes [15]. The measure
S(t) is a point process on Z called the discrete sine-process. The condition (9) can also be written as

ES(t)(c �m) = det
[

S(mi − mj , t)
]

1≤i,j≤r
.

The measure S(t) is translation invariant: if for a constant a we denote a + �m = (a + m1, . . . , a + mr), we have

ES(t)(ca+ �m) = ES(t)(c �m).

3.2.2. Limit of KN,γ +

We show that the determinantal process given by KN,γ + converges to the discrete sine-process when N → ∞,
γ +
N

→
c2. Define the function

Ax(z) = c2z−1 + xc ln(z) + ln(1 − z). (10)

Differentiating A with respect to z we obtain

z2(z − 1)A′
x(z) = (1 + cx)z2 − (

c2 + cx
)
z + c2.

If A′
x(z) has nonreal roots, let z+

x be the root of A′
x(z) such that �z+

x > 0:

z+
x = c2 + cx + ic

√
4 − (x − c)2

2(1 + cx)
. (11)

If A′
x(z) has real roots, z+

x is the larger one. Note that z+
x �= 0,1. Let z−

x be the other root and denote φx = arg(z+
x ).

Notice that

∣∣z±
x

∣∣2 = c2

1 + cx
(12)

and

φx = arccos

(
c + x

2
√

1 + cx

)
. (13)

Theorem 3.3. Let �x = (x1, . . . , xk) depend on N in such a way that xi −xj are constant and limN→∞
xj

Nc
= x′ > − 1

c

for all 1 ≤ i, j ≤ k. If limN→∞ γ +
N

= c2, then

lim
N→∞ det

[
KN,γ +(xi, xj )

]
1≤i,j≤k

=
⎧⎨
⎩

det
[

S(xi − xj ,φx′)
]

1≤i,j≤k
, |x′ − c| < 2,

1, x′ − c ≤ −2 and c < 1,
0, otherwise.

(14)
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Note: This is essentially a special case of Theorem 4.6 in [2]. The theorem in [2] deals with a broader family of

kernels in the limit γ +
N

→ a > 0 and γ −
N

→ b > 0. For us b = 0. The proof presented is an adaptation of the proof in
[2] to the case b = 0. The main reason for presenting a complete proof here is that we will need not only the result,
but parts of the proof as well.

Proof of Theorem 3.3. To simplify notation, in this proof we write A(z) for Ax′(z), z+ for z+
x′ and φ for φx′ . From

(7) we obtain

KN,γ +
(
x′cN,x′cN + l

) = 1

(2πi)2

∮
|u|=r

∮
|w−1|=r

eN(c2u−1+x′c ln(u)+ln(1−u)+O(1/N))

eN(c2w−1+x′c ln(w)+ln(1−w)+O(1/N))

dudw

u − w

= 1

(2πi)2

∮
|u|=r

∮
|w−1|=r

eN(A(u)−A(z+)+O(1/N))

eN(A(w)−A(z+)+O(1/N))

dudw

u − w
.

We will use the saddle point method to estimate the contour integrals. For that we need to deform the contours of
integration to contours Cu and Cw , without crossing 0, and 0 or 1 respectively, in such a way that

�(
A(z) − A

(
z+)) ≤ 0 ∀z ∈ Cu,

and

�(
A(z) − A

(
z+)) ≥ 0 ∀z ∈ Cw.

When z± are not real, i.e. when |x′ − c| < 2, the contours are deformed as in Fig. 6. During the deformation contours
cross each other along an arc from z− to z+ which crosses the real axis between 0 and 1, thus

KN,γ +
(
x′cN,x′cN + l

) = 1

(2πi)2

∮
Cu

∮
Cw

eN(A(u)−A(z+)+O(1/N))

eN(A(w)−A(z+)+O(1/N))

dudw

u − w
+ 1

(2πi)

∮ z+

z−
u−1−l du.

In the limit N → ∞ the first integral goes to 0 since the contribution to the integral from points away from the critical
points is exponentially small, while at the critical points the contours Cu and Cw cross transversally. Thus, we obtain

lim
N→∞KN,γ +

(
x′cN,x′cN + l

) = 1

(2πi)

∮ z+

z−
u−1−l du.

Using (12), write z+ = c√
1+cx′ e

iφ . Making the change of variable u = c√
1+cx′ e

iθ and evaluating the remaining integral
we obtain

lim
N→∞KN,γ +

(
x′cN,x′cN + l

) =
(

c√
1 + cx′

)−l

×
{

sin(φl)
πl

, l �= 0,
φ
π , l = 0.

Fig. 6. Deformation of contours in the bulk. The shaded region corresponds to �(A(z) −A(z+)) < 0. The solid red (right) and blue (left) contours
are the original contours. The dotted red and blue contours are the deformed contours.
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Fig. 7. Deformation of contours in frozen regions. In the left figure contours do not cross. In the right figure one contour passes over the other. The
shaded region corresponds to �(A(z)−A(z+)) < 0. The solid red (right) and blue (left) contours are the original contours. The dotted red and blue
contours are the deformed contours.

Fig. 8. Deformation of contours at the transition points. In the left figure contours do not cross. In the right figure one contour passes over the other.
The shaded region corresponds to �(A(z)−A(z+)) < 0. The solid red (right) and blue (left) contours are the original contours. The dotted red and
blue contours are the deformed contours and both are linear near the double critical point.

When taking a determinant, the gauge terms ( c√
1+cx′ )

−l cancel, and we obtain (14).

The critical points z± are real when |x′ − c| ≥ 2. If x′ − c > 2, then during the deformation the contours do not
cross. Thus, no residues are picked up and

lim
N→∞KN,γ +

(
x′cN,x′cN + l

) = 0.

If x′ − c < −2, then during the deformation one contour completely passes over the other as in Fig. 7. Hence,

KN,γ +
(
x′cN,x′cN + l

) = 1

(2πi)

∮
C̃

u−1−l du

for some closed contour C̃. When c < 1, the contour C̃ winds around 0 once and we have

lim
N→∞KN,γ +

(
x′cN,x′cN + l

) =
{

1, l = 0,
0, l �= 0.

When c > 1, then C̃ winds around 1, whence KN,γ +(x′cN,x′cN + l) = 0.
In the case |x′ −c| = 2, A(z) has double real critical points and the contours should be deformed as shown in Fig. 8.

This case can be analyzed similarly by noting that the contribution from the neighborhood of the double critical point
is negligible if contours are deformed as shown. �

3.3. Depoissonization and local statistics of Schur–Weyl measures in the bulk

3.3.1. Depoissonization
A lemma proven by Borodin, Okounkov and Olshanski [3], Lemma 3.1, allows us to pass from asymptotic properties
of the poissonized measures to analogous properties of the original measures. We present a modified version of the
Depoissonization Lemma, which appeared in [6].
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Lemma 3.4 (Depoissonization Lemma, Corollary 3.3 in [6]). Let 0 < α < 1
4 and let {fn} be a sequence of entire

functions

fn(z) = e−z
∑
k≥0

fnk

k! zk, n = 1,2, . . . .

Let C̃ > 0, and let an be a sequence of positive numbers satisfying |an| ≤ C̃. If there exist constants C1,C2, g1, g2 > 0
and f∞ such that

max|z|=n

∣∣fn(z)
∣∣ ≤ C1eg1

√
n

and

max
|z−n|<n1−α

|fn(z) − f∞|
eg2|z−n|/√n

≤ C2an,

then there exists a constant C depending only on C1,C2, g1, g2 and C̃, such that for all n > 0 we have

|fnn − f∞| ≤ Can.

3.3.2. Depoissonization of P
γ +,0
N

For ε ≥ 0 denote

IN(ε) =
{
k ∈ Z:

∣∣∣∣ k

cN
− c

∣∣∣∣ ≤ 2 − ε

}
,

and for δ > 0 and K > 0 denote

I ±
N (K, δ) =

{
k ∈ Z:

∣∣∣∣ k

cN
− c

∣∣∣∣ ≤ 2 ± KNδ−1
}
.

Lemma 3.5. There exist constants C1,C2 > 0 such that

max
|γ +|=c2N

∣∣KN,γ +(x, y)
∣∣ ≤ C1eC2N

(
3

2

)y−x

(15)

for all x and y such that x
cN

,
y

cN
> − 1

c
.

Note: Henceforth, whenever studying the kernel KN,γ + and not the measure P
γ +,0
N , we will allow γ + to be a

complex parameter. In particular, this will be the case in depoissonization lemmas.

Proof of Lemma 3.5. Let γ̃ = γ +
c2N

and l = y − x. Using the contour-integral estimation result which states that for a
continuous function f it holds that∣∣∣∣

∫
C

f (z)dz

∣∣∣∣ ≤ max
z∈C

∣∣f (z)
∣∣l(C),

where l(C) is the length of the contour C, we obtain from (7) that

∣∣KN,γ +(x, x + l)
∣∣ ≤ r2ec2N max(�(γ̃ (u−1−w−1))) rx

(1 ∓ r)1+x+l

(1 + r)N

rN

1

1 − 2r
,
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where the plus sign is chosen when 1 + x + l < 0. Since |γ̃ | = 1, |u| = r and |w| ≥ 1 − r , it follows that

∣∣γ̃ (
u−1 − w−1)∣∣ ≤ 1

r
+ 1

1 − r
,

whence

max
(�(

γ̃
(
u−1 − w−1))) ≤ 1

r(1 − r)
.

Thus,

∣∣KN,γ +(x, x + l)
∣∣ ≤ r2(1 − r)−1−l

1 − 2r
eN((x/N) ln(r)−ln(r)+ln(1+r)−(x/N) ln(1∓r)+c2/(r(1−r))).

Since the coefficient of x
N

is ln(r) − ln(1 ∓ r) < 0 and x
N

is bounded below, taking r = 1
3 completes the proof. �

Lemma 3.6. For any δ0 > 1
3 and any integer l there exist constants C1 = C1(δ0, l) > 0 and C2 = C2(δ0, l) > 0 such

that

∣∣∣∣KN,γ +(x, x + l) −
(

c√
1 + x/N

)−l

S(l, φx/(cN))

∣∣∣∣ ≤ C1eC2|γ +−c2N |

2cN − |x − c2N |

for all γ +, all δ ∈ [δ0,1), all N ∈ N and all x ∈ I −
N (1, δ).

Proof. Throughout the proof C1 and C2 will denote arbitrary constants that depend only on δ0 and l. In this proof the
indices of A, z± and φ are x

cN
, however, to simplify notation, we will omit those indices.

Let γ̃ = γ + − c2N . For contours S1 and S2 define KS1,S2 to be

KS1,S2 = 1

(2πi)2

∮
S1

∮
S2

eN(A(u)−A(z+))

eN(A(w)−A(z+))

eγ̃ u−1

eγ̃ w−1

1

wl+1

dudw

u − w
. (16)

It follows from (7) that

KN,γ +(x, x + l) = K|u|=r,|w−1|=r ,

where 0 < r < 1
2 . It follows from the proof of Theorem 3.3 that

KN,γ +(x, x + l) − 1

(2πi)

∮ z+

z−
u−1−l du = KCu,Cw .

Let x
cN

− c = ±(2 − pNδ−1) for some p > 0. From (10) and (11) we obtain

z+ = c

c ± 1
+ i

c
√

pN(δ−1)/2

(c ± 1)2
+ O

(
Nδ−1), (17)

A′′(z+) = ∓i
2(c ± 1)3√pN(δ−1)/2

c
+ O

(
Nδ−1), (18)

and

A′′′(z+) = ∓2(c ± 1)5

c2
− i

6(c ∓ 2)(c ± 1)4√pN(δ−1)/2

c2
+ O

(
Nδ−1). (19)
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Since A′(z+) = 0, Taylor’s theorem implies

A
(
z+ + eiξ t

) − A
(
z+) = 1

2

(
eiξ t

)2
A′′(z+) + (eiξ t)3

3! A′′′(z+) + (eiξ t)4

4! R3
(
z+ + eiξ t

)
,

where

R3(u) = 1

2πi

∮
A(z)

(z − z+)4(z − u)
dz,

and the last integration is over a closed contour that contains both z+ and u.
We can assume that the contours Cu and Cw are linear near the critical points z±, i.e. that there exist ξ,ψ ∈

(0, π
2 ) ∪ (π

2 ,π) and t0 > 0 such that the contours Cu and Cw coincide respectively with z± + e±iξ t and z± + e±iψt ,
when |t | < t0, t ∈ R. We have

�(
A

(
z+ + eiξ t

) − A
(
z+))

< 0 < �(
A

(
z+ + eiψt

) − A
(
z+))

for all 0 < |t | < t0, t ∈ R. Let β be a constant such that 1
3 < β <

δ0+1
4 . Since �(z+) > N−β , we can divide the contour

Cu into three sections as follows:

Cu,± = z± + e±iξ t when |t | < N−β and C′
u = Cu \ (Cu,+ ∪ Cu,−). (20)

Similarly, divide Cw into three sections Cw,± and C′
w (see Fig. 9). We estimate the contribution of each section

separately. We will present the proofs of the following two estimates:

|KC′
u,Cw

| < C1eC2|γ̃ |

2cN − |x − c2N | , (21)

|KCu,+,Cw,+| < C1eC2|γ̃ |

2cN − |x − c2N | . (22)

Estimates for the other sections can be obtained completely similarly.
We start with proving (21). Since the leading term of A′′(z+) is of order N(δ−1)/2, ξ �= π

2 and R3(u) is bounded in
a neighborhood of z+, there exists D1 ∈ (0, t0) such that

�(
A(u) − A

(
z+)) ≤

{−D2
√

pN(δ−1)/2t2, u = z± + e±iξ t and |t | ≤ D1,

−D3, u ∈ C′
u ∩ {

u:
∣∣u − z±∣∣ > D1

}
for some positive constants D2 and D3.

Fig. 9. Sections of the contours Cu and Cw .
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Since |u| and |w| are bounded away from zero and are bounded above along the contours Cu and Cw , it follows
that ∣∣∣∣ 1

wl+1

eγ̃ u−1

eγ̃ w−1

∣∣∣∣ ≤ C1eC2γ̃ .

Since |u − w|−1 < Nβ along the contours C′
u and Cw , and |eN(A(w)−A(z+))| > 1 for all w ∈ Cw , we obtain

|KC′
u∩{u: |u−z±|>D1},Cw

| ≤ C1N
βeC2γ̃ e−D3N. (23)

For the remaining part of the contour C′
u we obtain

|KC′
u∩{u: |u−z+|<D1},Cw

| ≤ C1eC2γ̃ Nβ

∫ D1

N−β

e−D2
√

pN(δ+1)/2t2
dt. (24)

Making the change of variable t ′ = √
D2

√
pN(δ+1)/4t , we obtain

∫ D1

N−β

e−D2
√

pN(δ+1)/2t2
dt = Nβ√

D2
√

pN(δ+1)/4

∫ D1
√

D2
√

pN(δ+1)/4

√
D2

√
pN(δ+1)/4−2β

e−t ′2 dt ′

<
1

D2
√

pN(δ+1)/2−β
e−D2

√
pN(δ+1)/2−2β

. (25)

Since β < δ+1
4 , combining (23), (24) and (25) we obtain (21).

We now move on to proving (22). We will consider two cases: when |γ̃ | is large and when it is small. Let ζ ∈ (0, β)

and suppose |γ̃ | < Nζ .
Since A′(z+) = 0, we obtain

A
(
z+ + eiξ t

) − A
(
z+) = 1

2
ei2ξA′′(z+)

t2 + t3
(

1

6
ei3ξA′′′(z+) + O(t)

)
. (26)

Since β > 1
3 , it follows that Nt3 = o(1), whence

eNt3((1/6)ei3ξ A′′′(z+)+O(t))

eNs3((1/6)ei3ψA′′′(z+)+O(s))
= 1 + O

(|t |3 + |s|3)N. (27)

Since |γ̃ t | < Nζ−β and ζ − β < 0, we obtain

eγ̃ (z++eiξ t)−1

eγ̃ (z++eiψs)−1 = eγ̃ (z+)−1+O(|γ̃ t |)

eγ̃ (z+)−1+O(|γ̃ s|) = 1 + |γ̃ |O(|t | + |s|). (28)

Define

A(t, s) = eN(1/2)ei2ξ A′′(z+)t2

eN(1/2)ei2ψA′′(z+)s2 .

Since the function

A(t, s)
1

t − ei(ψ−ξ)s

is an odd function, it follows that

∫ N−β

−N−β

∫ N−β

−N−β

A(t, s)
dt ds

t − ei(ψ−ξ)s
= 0. (29)
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Using (20), (26), (27), (28) and (29), and noting that

1

(z+ + eiψs)l+1
= 1

(z+)l+1
+ O(s),

rewrite (16) as

KCu,+,Cw,+ =
∫ N−β

−N−β

∫ N−β

−N−β

A(t, s)
(
O

(|t |3 + |s|3)N + |γ̃ |O(|t | + |s|) + O
(|s|)) dt ds

t − ei(ψ−ξ)s
.

Making the change of variable

t ′ = p1/4N(δ+1)/4t, s′ = p1/4N(δ+1)/4s, (30)

and using (18) we obtain

|KCu,+,Cw,+| ≤ 1

p1/2N(δ+1)/2

∫ p1/4N(δ+1)/4−β

−p1/4N(δ+1)/4−β

∫ p1/4N(δ+1)/4−β

−p1/4N(δ+1)/4−β

e−D4(t
′2+s′2)

×
(

1

p1/2N(δ−1)/2
O

(|t ′|3 + |s′|3) + |γ̃ |O(|t ′| + |s′|) + O
(|s′|)) dt ′ ds′

|t ′ − ei(ψ−ξ)s′| ,

where D4 is a positive constant. Since the remaining integral is O(N−(δ−1)/2 + |γ̃ |), we obtain

|KCu,+,Cw,+| ≤ C1

pNδ
eC2|γ̃ |.

This completes the proof of (22) when |γ̃ | < Nζ .
The case |γ̃ | > Nζ is much simpler. From (16) it follows that

|KCu,+,Cw,+| ≤ C1eC2|γ̃ |
∫ N−β

−N−β

∫ N−β

−N−β

∣∣A(t, s)
∣∣ dt ds

|t − ei(ψ−ξ)s| . (31)

Making the change of variable (30) it is easy to see that the remaining integral is O(1). Since |γ̃ | > Nζ , (22) follows
from (31). �

Proposition 3.7 (Local statistics of P
n
N in the bulk). For any ε > 0 and any integer L > 0, there exists a positive

constant C = C(ε,L) such that for all x ∈ IN(ε), all integer vectors �l satisfying |�l| ≤ L, all N ∈ N and n = �c2N2	,
we have

∣∣EP
n
N
(c

x+�l ) − ES(φx/(cN))(c�l )
∣∣ ≤ C(ε,L)

N
.

Proof. This follows by applying the depoissonization Lemma 3.4 to Theorem 3.3. Lemmas 3.5 and 3.6 show that the
necessary conditions for Lemma 3.4 to apply are satisfied. �

3.4. Statistics near edges

We now prove that the probability of Young diagrams which extend beyond the limit shape at either edge by a distance
more than Nδ with δ > 1

3 are exponentially small. We will need the following lemma, which gives an estimate for
KN,γ +(x, x) near the edges.
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Lemma 3.8. For any δ0 > 1
3 there exist constants C1,C2,C3 > 0 such that for all δ ∈ [δ0,1), for all γ +, for all

N ∈ N, and x /∈ I +
N (1, δ), x > −N , we have

∣∣1 − KN,γ +(x, x)
∣∣ ≤ C1e−C2N

3δ/2−1/2
eC3|γ +−c2N |, if 0 < c < 1 and x < 0, (32)

and ∣∣KN,γ +(x, x)
∣∣ ≤ C1e−C2N

3δ/2−1/2
eC3|γ +−c2N |, if 1 < c or x > 0. (33)

Proof. As before, we let γ̃ = γ + − c2N and drop the indices for A, z± and φ to simplify notation. The indices in this
proof are x

cN
.

Suppose 0 < c < 1 and x < 0. Let x = (c − 2)cN − pcNδ,p > 0. It follows from (10) that A(z) has two distinct
real critical points. Let z− be the smaller critical point. Similarly to (17) we obtain

z− = c

c − 1
− c

√
p

(1 − c)2
N(δ−1)/2 + O

(
Nδ−1).

If we deform the contours of integration of KN,γ +(x, x) according to the saddle point method, one contour completely
moves over the other. Thus, the residues we pick up total to 1 and we have

KN,γ +(x, x) − 1 = 1

(2πi)2

∮
Cu

∮
Cw

eN(A(u)−A(z−))

eN(A(w)−A(z−))

eγ̃ u−1

eγ̃ w−1

1

w

dudw

u − w
,

where the contours Cu and Cw are as in the left part of Fig. 10. Without changing the integral, the contour Cw can
be further deformed into two closed contours Co

w and Ci
w as in the right part of Fig. 10. The outer contour Co

w can be
moved so that there exists a constant C2 > 0 such that �(A(w) − A(z−)) > C2 for all w along this contour. Since u

and w are bounded away from 0 and 1, we obtain

∣∣∣∣ 1

(2πi)2

∮
Cu

∮
Co

w

eN(A(u)−A(z−))

eN(A(w)−A(z−))

eγ̃ u−1

eγ̃ w−1

1

w

dudw

u − w

∣∣∣∣ ≤ C1e−C2NeC3|γ̃ |

for some constants C1,C3 > 0.
Since z− is a critical point of A(z), it follows from Taylor’s theorem that

A
(
z− + t

) − A
(
z−) = 1

2
t2A′′(z−) + 1

6
t3A′′′(z−) + O

(
t4).

Similarly to (18) and (19) we obtain

A′′(z−) = −2(c − 1)3

c

√
pN(δ−1)/2 + O

(
Nδ−1) > 0

Fig. 10. Deformation of contours near the left edge when 0 < c < 1. A(z) has two distinct real critical points. The shaded region corresponds to
�(A(z) − A(z−)) < 0. The solid red (right) and blue (left) contours are the original contours. The dotted red and blue contours are the deformed
contours. The shaded region is bounded and the dotted red contour loops around it (not visible from the figures).
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and

A′′′(z−) = 2
(c − 1)5

c2
+ 6(c + 2)(c − 1)4

c2

√
pN(δ−1)/2 + O

(
Nδ−1),

which imply that there exist constants D1,D2 > 0, depending only on c and p, such that for t0 = D1N
(δ−1)/2 we have

A
(
z− + t0

) − A
(
z−) = D2t

2
0 N(δ−1)/2 + O

(
Nδ−1)

and

A
(
z− + t

) − A
(
z−)

> 0 for all t ∈ (0, t0].
Thus, the inner contour Ci

w can be chosen so that

�(
A(w) − A

(
z−)) = D2t

2
0 N(δ−1)/2 for all w ∈ Ci

w,

and |u−w| ≥ D3t0 for some constant D3 and all u ∈ Cu, w ∈ Ci
w . Hence, there are constants C1,C2,C

′
2,C3 > 0 such

that ∣∣∣∣ 1

(2πi)2

∮
Cu

∮
Ci

w

eN(A(u)−A(z−))

eN(A(w)−A(z−))

eγ̃ u−1

eγ̃ w−1

1

w

dudw

u − w

∣∣∣∣
≤ C1

t0
e−N(C2t

2
0 N(δ−1)/2)eC3|γ̃ | ≤ C1e−C′

2N
3δ/2−1/2

eC3|γ̃ |.

This completes the proof of (32). The argument for (33) is similar. �

Proposition 3.9. Let l(λ) denote the length of λ, i.e. the number of nonzero entries in λ, or equivalently the number
of rows in its diagram. For any δ0 > 1

3 there exist constants C1,C2 > 0 such that for all δ ∈ [δ0,1), for all N ∈ N and
for n = �c2N2	 we have

P
n
N

({
λ: l(λ) > (2 − c)cN + Nδ

}) ≤ C1e−C2N
3δ/2−1/2

, if 0 < c < 1,

P
n
N

({
λ: λN < N + (c − 2)cN − Nδ

}) ≤ C1e−C2N
3δ/2−1/2

, if 1 < c,

and

P
n
N

({
λ: λ1 > (2 + c)cN + Nδ

}) ≤ C1e−C2N
3δ/2−1/2

, if 0 < c.

Proof. Throughout the proof C1 and C2 denote arbitrary constants that depend only on δ0. Since l(λ) > (2 − c)cN +
Nδ implies that there exists x ∈ [−N, (c − 2)cN − Nδ] such that cx(λ) = 0, we obtain

P
n
N

({
λ: l(λ) > (2 − c)cN + Nδ

}) ≤
∑

x∈[−N,(c−2)cN−Nδ ]

(
1 − EP

n
N
(cx)

)
. (34)

When 0 < c < 1 and x ∈ [−N, (c − 2)cN − Nδ], by Lemma 3.8 we obtain

∣∣1 − E
P

γ+,0
N

(cx)
∣∣ = ∣∣1 − KN,γ +(x, x)

∣∣ ≤ C1e−C2N
3δ/2−1/2

eC3|γ +−c2N |.

Depoissonizing by Lemma 3.4 we obtain

∣∣1 − EP
n
N
(cx)

∣∣ ≤ C1e−C2N
3δ/2−1/2

.

This implies the first statement of the proposition since the index set in the sum in (34) is of order N .
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To prove the second statement, notice that

P
n
N

({
λ: λN < N + (c − 2)cN − Nδ

}) ≤
∑

x∈[−N,(c−2)cN−Nδ ]
EP

n
N
(cx)

and proceed as above.
The last statement of the proposition can be proven in a similar way. �

Note: The last statement of Proposition 3.9 also follows immediately from Theorem 1.7 in [8], where it is proven
that after appropriate scaling the local fluctuations of the longest row are characterized by the Tracy–Widom distribu-
tion.

Let Lλ(x) be the boundary of the rotated Young diagram λ when it is scaled so that the cells have diagonal 2. We
have Lλ(x) = √

nLλ(
x√
n
). For δ > 0 and K > 0 denote

Y
n
N(K, δ) = {

λ ∈ Y
n
N : supp

∣∣Lλ(x) − |x|∣∣ ⊂ I +
N (K, δ)

}
.

Figure 11 illustrates the restrictions put on the Young diagrams in the set Y
n
N(K, δ).

Corollary 3.10. For any δ0 > 1
3 there exist constants C1,C2 > 0 such that for all δ ∈ [δ0,1), for all N ∈ N and for

n = �c2N2	 we have

P
n
N

(
Y

n
N \ Y

n
N(K, δ)

) ≤ C1e−C2N
3δ/2−1/2

, if 0 < c < 1,

Proof. This is essentially a reformulation of Proposition 3.9. �

4. Estimates of the correlation kernel

We need to estimate the decay of correlations. For this purpose a different representation of the correlation kernel is
useful. In this section we obtain this representation and use it to obtain various estimates for the correlation kernel.

Define the functions

K+
x,N

(
γ +) = 1

2πi

∮
eγ +u−1

(1 − u)Nux du,

Fig. 11. Restrictions on the Young diagrams in the set Y
n
N

(K, δ). The curves represent the scaled limit shapes.
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where integration is over any closed counter-clockwise contour winding once around 0, and

K−
y,N

(
γ +) = 1

2πi

∮
e−γ +w−1

(1 − w)−Nw−y dw,

where integration is over any closed counter-clockwise contour winding once around 1 and not containing 0.

Lemma 4.1. If x �= y, then

KN,γ +(x, y) = NK+
x,N−1(γ

+)K−
y+1,N+1(γ

+) − γ +K+
x−1,N (γ +)K−

y+2,N (γ +)

x − y
. (35)

Proof. The main idea of the proof is to integrate formula (7) by parts (the idea was used by A. Okounkov to obtain a
similar formula for the Bessel kernel [11]).

In general, for functions f (u,w) and g(u,w) which are differentiable on simple closed contours Cu and Cw

integration by parts gives∮
Cu

∮
Cw

f

(
u

∂

∂u
+ w

∂

∂w

)
g dw du

=
∮

Cw

∮
Cu

f u
∂

∂u
g dudw +

∮
Cu

∮
Cw

f w
∂

∂w
g dw du

= −
∮

Cw

∮
Cu

g

(
u

∂

∂u
+ 1

)
f dudw −

∮
Cu

∮
Cw

g

(
w

∂

∂w
+ 1

)
f dw du

= −
∮

Cu

∮
Cw

g

(
u

∂

∂u
+ w

∂

∂w
+ 2

)
f dw du.

Since

uxw−y−1 =
(

u
∂

∂u
+ w

∂

∂w
+ 1

)
uxw−y−1

x − y
,

applying the integration by parts calculation above to (7) we obtain

KN,γ +(x, y) = − 1

(2πi)2

∮
Cu

∮
Cw

uxw−y−1

x − y

(
u

∂

∂u
+ w

∂

∂w
+ 1

)
eγ +(u−1−w−1)(1 − u)N/(1 − w)N

u − w
dudw.

It follows from

(
u

∂

∂u
+ w

∂

∂w
+ 1

)
eγ +(u−1−w−1)(1 − u)N/(1 − w)N

u − w
= eγ +(u−1−w−1) (1 − u)N

(1 − w)−N

(
γ +

uw
− N

(1 − u)(1 − w)

)

that the integrals with respect to u and w can be separated. Carrying this out we obtain (35). �

4.1. Estimates of K±
x,N (γ +) for various values of x

Lemma 4.2. For any δ0 > 1
3 there exist constants C1 = C1(δ0) > 0 and C2 = C2(δ0) > 0 such that

∣∣K±
x,N

(
γ +)∣∣ ≤ C1e±N�Ax/(cN)(z

+
x/(cN)

) eC2|γ +−c2N |

N(δ+1)/4

for all δ ∈ [δ0,1), all x ∈ I −
N (1, δ), all γ + and all N ∈ N.
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Proof. We present the proof of the result for K+
x,N (γ +). The proof for K−

x,N (γ +) is completely identical.
Throughout the proof C1 and C2 will denote arbitrary constants that depend only on δ0. We will use the same

notation as in the proof of Lemma 3.6. In particular γ̃ = γ + − c2N , A(u) = Ax/(cN)(u), z± = z±
x/(cN), the contour

of integration is deformed so that it goes through z± and has the property that for all u on the deformed contour
�(A(u) − A(z+)) ≤ 0 and the deformed contour Cu is divided into three parts as in (20). Consider

K+
x,N

(
γ +)

e−NA(z+) = 1

2πi

∮
Cu

eN(A(u)−A(z+))eγ̃ u−1
du.

Let x
cN

− c = ±(2 − pNδ−1) for some p > 0. Arguments similar to those in the proof of Lemma 3.6 show that the
contribution of the large contour C′

u is exponentially small. Let β be as in Lemma 3.6. On the contour Cu,+ we have∣∣∣∣ 1

2πi

∮
Cu,+

eN(A(u)−A(z+))eγ̃ u−1
du

∣∣∣∣ ≤ C1eC2|γ̃ |
∫ N−β

−N−β

eN�(A(z++eiξ t)−A(z+)) dt

≤ C1eC2|γ̃ |
∫ N−β

−N−β

e−D
√

pN(δ+1)/2t2
dt

for some positive constant D. Making the change of variable t ′ = N(δ+1)/4t we obtain∣∣∣∣ 1

2πi

∮
Cu,+

eN(A(u)−A(z+))eγ̃ u−1
du

∣∣∣∣ ≤ C1
eC2|γ̃ |

N(δ+1)/4

∫ N(δ+1)/4−β

−N(δ+1)/4−β

e−D
√

pt ′2 dt ′ ≤ C1
eC2|γ̃ |

N(δ+1)/4
.

Of course, the contribution from Cu,− is of the same order. �

Lemma 4.3. For any δ0 > 1
3 there exist constants C1 = C1(δ0) > 0 and C2 = C2(δ0) > 0 such that

∣∣K±
x+1,N

(
γ +) − sign(x)cK±

x,N+1

(
γ +)∣∣ ≤ C1e±N�Ax/(cN)(z

+
x/(cN)

) eC2|γ +−c2N |

N(3−δ)/4

for all δ ∈ [δ0,1), all x ∈ I −
N (1, δ), all γ + and all N ∈ N.

Proof. We present the proof of the result for K+
x,N (γ +). The proof for K−

x,N (γ +) is completely identical.
In this proof the indices of A(u) and z+ are x

cN
. The proof is similar to the proof of Lemma 4.2. Suppose x

cN
− c =

(2 − pNδ−1) > 0. We have

(
K+

x+1,N

(
γ +) − cK+

x,N+1

(
γ +))

e−NA(z+) = 1

2πi

∮
C

eN(A(u)−A(z+))eγ̃ u−1(
u − c(1 − u)

)
du.

The main contribution comes from the sections of the contour near z±. If u = z+ + eiξ t , then from (17) we obtain

∣∣u − c(1 − u)
∣∣ = (c + 1)

∣∣∣∣z+ + eiξ t − c

c + 1

∣∣∣∣ ≤ D1N
(δ−1)/2 + D2t

for some positive constants D1, D2. Proceeding as in Lemma 4.2, we obtain

∣∣K+
x+1,N

(
γ +) − cK+

x,N+1

(
γ +)∣∣ ≤ C1eN�Ax/(cN)(z

+
x/(cN)

) eC2|γ +−c2N |

N(δ+1)/4

(
D1N

(δ−1)/2 + D2

N(δ+1)/4

)
,

which completes the proof when x > 0.
When x < 0, instead of u − c(1 − u) we have

∣∣u + c(1 − u)
∣∣ = |c − 1|

∣∣∣∣z+ + eiξ t − c

c − 1

∣∣∣∣,
and the rest follows as above, since in this case it follows from (17) that the leading term of z+ is c

c−1 . �
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Lemma 4.4. There exist constants C1 > 0 and C2 > 0 such that

∣∣K±
x,N

(
γ +)∣∣ ≤ C1e±N�Ax/(cN)(z

+
x/(cN)

) eC2|γ +−c2N |

N1/3

for all x, all γ + and all N ∈ N.

Proof. We present the proof of the result for K+
x,N (γ +). As before, we drop the indices of A(z) and z+, which are

x
cN

in this proof, and let γ̃ = γ + − c2N . Let | x
cN

− c| = 2 − pNδ−1, δ ≥ 0.
Suppose p > 0. In this case A(z) has complex conjugate critical points. We deform the integration contour as con-

tour Cu in Lemma 3.6, however with one difference: near the critical points we deform the contour to be piecewise
linear with different slopes on each side of the critical points. More precisely, let ξ1,2 ∈ (0,π) and deform the integra-
tion contour so that it is given by z± + e±iξ1 t, t > 0 and z± − e±iξ2 t, t > 0 near the critical points z±. Choose ξ1,2 so
that both �(e2iξA′′(z+)) < 0 and �(e3iξA′′′(z+)) < 0. For example, when x

cN
− c = 2 − pNδ−1, it follows from (18)

and (19) that π
2 < ξ1,2 < 5π

6 . Consider

K+
x,N

(
γ +)

e−NA(z+) = 1

2πi

∮
C

eN(A(u)−A(z+))eγ̃ u−1
du.

We divide the contour into five sections: one away from the critical points and two linear sections near each critical
point. That the contribution of the contour away from the critical points is exponentially small, can be seen as in
Lemma 3.6. The contribution of the linear sections near the critical points is of order

B(N) =
∫ ε

0
e−N(D1t

2N(δ−1)/2+D2t
3)eγ̃�((z±+e±iξ1,2 t)−1) dt

for some positive constants D1 and D2. We estimate B(N) as follows:

B(N) ≤ eC2γ̃

∫ ε

0
e−D2Nt3

dt = eC2γ̃

N1/3

∫ εN1/3

0
e−D2s

3
ds ≤ C1

eC2γ̃

N1/3
.

When p < 0, A(z) has two real critical points. We deform the integration contour as in Lemma 3.8 and proceed as
above. �

Lemma 4.5. For any δ > 1
3 there exist constants C1 > 0, C2 > 0 and C3 > 0 such that

∣∣K±
x,N

(
γ +)∣∣ ≤ C1e±N�Ax/(cN)(z

±
x/(cN)

)e−C3N
(3δ)/2−1/2

eC2|γ +−c2N |

for all x /∈ I +
N (1, δ), x > −N , all γ + and all N ∈ N.

Proof. For K−
x,N (γ +) deform the integration contour as contour Cw in Lemma 3.8 and estimate the contour integral

as in Lemma 3.8. The only difference in obtaining the estimate for K+
x,N (γ +) is that the contour should be deformed

to pass through the larger of the two real critical points of Ax/(cN)(z). �

4.2. Several estimates of the correlation kernel

In this section we use the estimates of the functions K±
x,N obtained in the previous section to obtain estimates for the

correlation kernel.

Lemma 4.6. For any ε > 0 there exist constants C1 and C2 such that

∣∣KN,γ +(x, y)
∣∣ ≤ C1

eC2|γ +−c2N |

1 + |x − y| eN�(Ax/(cN)(z
+
x/(cN)

)−Ay/(cN)(z
+
y/(cN)

))

for all x, y ∈ IN(ε), all γ + and all N ∈ N.
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Proof. When x �= y this follows from Lemmas 4.1 and 4.2. When x = y the result follows from Lemma 3.6. �

Lemma 4.7. Let K1 and K2 be arbitrary positive constants, let 1
3 < δ0 ≤ δ1, δ2 ≤ 1, and let x ∈ I −

N (K1, δ1), y ∈
I −

N (K2, δ2). There exist constants C1,C2 > 0, which depend only on K1,K2 and δ0, such that for all γ + and for all
N ∈ N the following hold. If x and y have the same sign, then

∣∣KN,γ +(x, y)KN,γ +(y, x)
∣∣ ≤ C1eC2|γ +−c2N | N |δ1−δ2|/2

(1 + |x − y|)2
. (36)

If x and y have opposite signs, then

∣∣KN,γ +(x, y)KN,γ +(y, x)
∣∣ ≤ C1eC2|γ +−c2N | N1−(δ1+δ2)/2

(1 + |x − y|)2
. (37)

Proof. If x = y, the result follows immediately from Lemma 3.6. If x �= y and they have the same sign, from
Lemma 4.1 we obtain

KN,γ +(x, y) = 1

x − y

(
NK+

x,N−1

(
γ +)(

K−
y+1,N+1

(
γ +) − sign(y)cK−

y+2,N

(
γ +))

+ sign(y)Nc
(
K+

x,N−1

(
γ +) − sign(x)cK+

x−1,N

(
γ +))

K−
y+2,N

(
γ +)

+ (
γ + − c2N

)
K+

x−1,N

(
γ +)

K−
y+2,N

(
γ +))

.

If |γ + − c2N | < N1/2, applying Lemmas 4.2 and 4.3 we obtain (36). If |γ + − c2N | > N1/2, applying the same
lemmas we obtain

∣∣KN,γ +(x, y)KN,γ +(y, x)
∣∣ ≤ C1eC2|γ +−c2N | |γ + − c2N |2N−(δ1+δ2+2)/2

(1 + |x − y|)2
,

which implies (36) with a larger C2.
When x and y have opposite signs, (37) follows from Lemmas 4.1 and 4.2. �

Remark 4.8. Notice that one of the sets I −
N (K1, δ1), I −

N (K2, δ2) is contained in the other. If, for example,
I −

N (K1, δ1) ⊂ I −
N (K2, δ2), then both x and y are in I −

N (K2, δ2), whence (36) implies the better estimate

∣∣KN,γ +(x, y)KN,γ +(y, x)
∣∣ ≤ C1eC2|γ +−c2N |

(1 + |x − y|)2
.

Lemma 4.9. Let K > 0 and 1
3 < δ0 ≤ δ1 < 1. There exist constants C1,C2 > 0, which depend only on K and δ0, such

that for all γ +, for all x ∈ I −
N (K1, δ1), for all y and for all N ∈ N we have

∣∣KN,γ +(x, y)KN,γ +(y, x)
∣∣ ≤ C1eC2|γ +−c2N | N(5−3δ1)/6

(1 + |x − y|)2
.

Proof. The lemma follows immediately from Lemmas 4.1, 4.2 and 4.4. �

Lemma 4.10. Let K1 and K2 be arbitrary positive constants, let 1
3 < δ0 ≤ δ1 < 1, 1

3 ≤ δ2, and let x ∈ I −
N (K1, δ1),

y /∈ I +
N (K2, δ2), y > −N . There exist constants C1,C2,C3 > 0, which depend only on K1,K2 and δ0, such that for

all γ + and for all N ∈ N we have

∣∣KN,γ +(x, y)KN,γ +(y, x)
∣∣ ≤ C1eC2|γ +−c2N | e−C3N

3δ/2−1/2

(1 + |x − y|)2
.
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Proof. Lemmas 4.1, 4.2 and 4.5 imply

∣∣KN,γ +(x, y)
∣∣ ≤ C1

eC2|γ +−c2N |e−C3N
3δ/2−1/2

1 + |x − y| eN�(Ax/(cN)(z
+
x/(cN)

)−Ay/(cN)(z
+
y/(cN)

))
,

while Lemmas 4.1, 4.2 and 4.4 imply

∣∣KN,γ +(y, x)
∣∣ ≤ C1

eC2|γ +−c2N |N(5−3δ1)/12

1 + |x − y| eN�(Ay/(cN)(z
+
y/(cN)

)−Ax/(cN)(z
+
x/(cN)

))
.

Combining the two estimates completes the proof. �

4.3. Decay of correlations in the bulk

In this section we use the estimates of the correlation kernel obtained in the previous section to estimate the decay of
correlations in the bulk.

Proposition 4.11. For any ε > 0 and any integer L > 0 there exist positive constants C1 = C1(ε,L) and C2 =
C2(ε,L) such that

Cov
P

γ+,0
N

(x, �l;y, �m) := ∣∣E
P

γ+,0
N

(c
x+�l · cy+ �m) − E

P
γ+,0
N

(c
x+�l )EP

γ+,0
N

(cy+ �m)
∣∣

≤ C1
eC2|γ +−c2N |

(1 + |x − y|)2

for all x, y ∈ IN(ε), all integer vectors �l and �m satisfying |�l|, | �m| ≤ L, all γ + and all N ∈ N.

Proof. It follows from Theorem 3.2 that E
P

γ+,0
N

(c
x+�l · cy+ �m) is a determinant of the form

E
P

γ+,0
N

(c
x+�l · cy+ �m) = detA = det

(
B C

D E

)
,

where E
P

γ+,0
N

(c
x+�l ) = detB and E

P
γ+,0
N

(cy+ �m) = detE.

Thus, it follows that Cov
P

γ+,0
N

(x, �l;y, �m) consists of terms in detA which have at least one factor from each of C

and D. Since the terms in C and D are of the form KN,γ +(x + li , y + mj), the proposition follows from Lemma 4.6.
Note that the factors

eN�(Ax/(cN)(z
+
x/(cN)

)−Ay/(cN)(z
+
y/(cN)

))

cancel out, since we are taking a determinant. �

Proposition 4.12. For any ε > 0 and any integer L > 0 there exists a positive constant C = C(ε,L) such that

∣∣EP
n
N
(c

x+�l · cy+ �m) − EP
n
N
(c

x+�l )EP
n
N
(cy+ �m)

∣∣ ≤ C

min{N, (1 + |x − y|)2}
for all x, y ∈ IN(ε), all integer vectors �l and �m satisfying |�l|, | �m| ≤ L, all N ∈ N and n = �c2N2	.

Proof. If x ∈ IN(ε), then 2cN − |x − c2N | is of order N . Using Lemma 3.6 and Proposition 4.11, and noting that
the terms ( c√

1+x/N
)−l in Lemma 3.6 cancel since we are taking determinants, we obtain

∣∣E
P

γ+,0
N

(c
x+�l · cy+ �m) − ES(φx/(cN))(cx+�l )ES(φy/(cN))(cy+ �m)

∣∣ ≤ C1eC2|γ +−c2N |

min{N, (1 + |x − y|)2} .
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Depoissonizing by Lemma 3.4 we obtain

∣∣EP
n
N
(c

x+�l · cy+ �m) − ES(φx/(cN))(cx+�l )ES(φy/(cN))(cy+ �m)
∣∣ ≤ C

min{N, (1 + |x − y|)2} .

Applying Proposition 3.7 to this expression completes the proof. �

5. Proof of Theorem 1.1

In this section we present the proof of the main theorem. We evaluate the limit of the terms in (2) separately.

Lemma 5.1. For any ε > 0 we have

lim
N→∞

n=�c2N2	
P

n
N

{
λ:

∣∣ρ̂(λ)
∣∣ < ε

} = 1,

where ρ̂(λ) is as in Proposition 2.2.

Proof. Let ck(λ) be the number of cells in λ with content k. Notice that if λ ∈ Y
n
N , then ck−N(λ) ≤ min{k,N}. Hence,

ρ̂(λ) =
∞∑

k=1

ck−N(λ)

2
√

n
m(k) ≤ 1

2
√

n

N∑
k=1

m(k)k + N

2
√

n

∞∑
k=N+1

m(k).

Differentiating m(x) three times, we obtain

m′′′(x) =
∞∑

k=1

4

x2k+3
= 4

x3(x2 − 1)
,

whence there exists a constant c > 0 such that

ρ̂(λ) ≤ c lnN

2
√

n
+ c

2
√

n
. �

Lemma 5.2. For any continuous bounded function f : R → C, any integer vector �m, and any ε > 0, we have the
following convergence in measure:

lim
N→∞

n=�c2N2	
P

n
N

{
λ:

∣∣∣∣∣ 1

cN

∞∑
k=−N

f

(
k

cN

)
ck+ �m(λ)

−
(∫ c+2

c−2
f (a)ES(φa)c �m da + δc<1

∫ c−2

−1/c

f (a)da

)∣∣∣∣∣ < ε

}
= 1.

Proof. Let ε0 > 0 and 1 > δ > 1
3 be fixed. Throughout the proof, C will denote an arbitrary constant that depends

only on ε0 and f . It follows from Propositions 4.12 and 3.7 that∣∣∣∣f
(

k

cN

)
f

(
l

cN

)
EP

n
N

(
(ck+ �m − ES(φk/(cN))c �m) · (ck+ �m − ES(φk/(cN))c �m)

)∣∣∣∣
≤ C

min{N, (1 + |k − l|)2} ≤ C

1 + |k − l|
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for all k, l ∈ IN(ε0). Summing up over all such k and l, we obtain

EP
n
N

∣∣∣∣ 1

cN

∑
k∈IN(ε0)

f

(
k

cN

)
ck+ �m − 1

cN

∑
k∈IN(ε0)

f
(
k/(cN)

)
ES(φk/(cN))c �m

∣∣∣∣
2

≤ CN ln(N)

N2
.

Replacing the Riemann sum by the appropriate integral we obtain

lim
N→∞

n=�c2N2	
EP

n
N

∣∣∣∣ 1

cN

∑
k∈IN(ε0)

f

(
k

cN

)
ck+ �m −

∫ c+2−ε0

c−2+ε0

f (a)ES(φa)c �m da

∣∣∣∣
2

= 0. (38)

It follows from Proposition 3.9 that

lim
N→∞

n=�c2N2	
EP

n
N

∣∣∣∣ 1

cN

∑
k /∈I +

N (1,δ)

k≥−N

f

(
k

cN

)
ck+ �m(λ) − δc<1

1

cN

∑
k /∈I +

N (1,δ)

−N≤k≤0

f

(
k

cN

)∣∣∣∣ = 0,

which, since f is bounded, implies

lim
N→∞

n=�c2N2	
EP

n
N

∣∣∣∣ 1

cN

∑
k∈IN(0)

k≥−N

f

(
k

cN

)
ck+ �m(λ) − δc<1

∫ c−2

−1/c

f (a)da

∣∣∣∣ = 0. (39)

Combining (38) and (39), and taking the limit ε0 → 0 completes the proof. �

Corollary 5.3. For any ε > 0 we have

lim
N→∞

n=�c2N2	
P

n
N

{
λ:

∣∣∣∣∣θ̂ (λ) −
∞∑

k=1

(
m(k)

∫ c+2

c−2
ES(φa)c{0} − ES(φa)c{0,k} da

)∣∣∣∣∣ < ε

}
= 1,

where θ̂ (λ) and m(k) are as in Proposition 2.2.

Proof. Given a Young diagram λ and a positive integer k, let hk(λ) be the number of cells in λ with hook length k.
Since hk(λ) is equal to the number of pairs (i, i − k) such that ci(λ) = 1 and ci−k(λ) = 0, we have

hk(λ) =
∞∑

i=−∞

(
ci(λ) − ci(λ)ci−k(λ)

)
.

Applying Lemma 5.2, for any k ∈ N and any ε > 0 we obtain

lim
N→∞

n=�c2N2	
P

n
N

{
λ:

∣∣∣∣hk(λ)

cN
−

∫ c+2

c−2
ES(φa)c{0} − ES(φa)c{0,k} da

∣∣∣∣ < ε

}
= 1. (40)

Notice that

θ̂ (λ) =
∞∑

k=1

hk(λ)√
n

m(k).

Since each row of λ can have at most one cell with hook length k we have hk(λ) < N , whence the expression∣∣∣∣hk(λ)

cN
−

∫ c+2

c−2
(ES(φa)c{0} − ES(φa)c{0,k})da

∣∣∣∣
is bounded. Since the series

∑∞
k=1 m(k) is convergent, summing (40) in k we obtain the statement of the corollary. �
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Define

Fλ(x) = √
nfλ

(
x√
n

)
= Lλ(x) − √

nΩc

(
x√
n

)
.

We have

√
n

8
‖fλ‖2

1/2 = 1

4
√

n

∫ ∞

0

∫ ∞

−∞

(
Fλ(t + h) − Fλ(t)

h

)2

dt dh.

Corollary 5.4. For any h0 > 0 and for any ε > 0 we have

lim
N→∞

n=�c2N2	
P

n
N

{
λ:

∣∣∣∣ 1

4
√

n

∫ h0

0

∫ ∞

−∞

(
Fλ(t + h) − Fλ(t)

h

)2

dt dh − H̃c(h0)

∣∣∣∣ < ε

}
= 1, (41)

where

H̃c(h0) = 1

4

∫ c+2

c−2

∫ 1

0

∫ h0

0
ES(φa)

( Lλ(s + h) − Lλ(s)

h
− 2

π
arcsin

(
c + a

2
√

1 + ac

))2

dhds da.

Proof. For any t and any h such that 0 < h ≤ h0, we have∣∣∣∣cNh
(

Ωc

(
t + h

cN

)
− Ωc

(
t

cN

))
− Ω ′

c

(
t

cN

)∣∣∣∣ ≤ C(h0)

cN
.

From (1) it follows that the integral in (41) is equal to the expression

1

4cN

∫ 1

0

∫ h0

0

∞∑
k=−N

( Lλ(s + k + h) − Lλ(s + k)

h
− Ω ′

c

(
s + k

cN

))2

dhds (42)

up to o(1). From the definition of ck(λ) (see Section 3.2) it follows that we can write

Lλ(s + k + h) − Lλ(s + k)

h
= 1 − 2(1 − s)

h
ck(λ) −

h−1∑
i=1

2

h
ck+i (λ) − 2s

h
ck+h(λ),

which implies that the expression in (42) can be written in the form

1

cN

∑
�m∈Ih0

∑
k

f

(
k

cN

)
ck+ �m

for some finite set Ih0 . Thus, we can apply Lemma 5.2 to (42), and obtain the corollary (it is easy to check that the
contributions coming from the term δc<1

∫
f (a)da in Lemma 5.2 cancel out). �

Lemma 5.5 (The tail estimate). For any ε > 0 there exists h0 > 0 such that

lim
N→∞

n=�c2N2	
P

n
N

{
λ:

1

4
√

n

∫ ∞

h0

∫ ∞

−∞

(
Fλ(t + h) − Fλ(t)

h

)2

dt dh < ε

}
= 1.

The proof of Lemma 5.5 is given in Section 6. We now prove Theorem 1.1.
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Proof of Theorem 1.1. It follows from Corollary 3.10 that

lim
N→∞

n=�c2N2	
P

n
N

{
λ:

∣∣∣∣
√

n

2

∫
|x−c|>2

Gc(x)fλ(x)dx

∣∣∣∣ < ε

}
= 1

for any ε > 0. The theorem follows immediately from Proposition 2.2, Corollaries 5.3 and 5.4, and Lemmas 5.1
and 5.5. For the constant Hc we obtain the following formula:

Hc =
∞∑

k=1

(
m(k)

∫ c+2

c−2
ES(φa)c{0} − ES(φa)c{0,k} da

)

+ 1

4

∫ c+2

c−2

∫ 1

0

∫ ∞

0
ES(φa)

( Lλ(s + h) − Lλ(s)

h
− 2

π
arcsin

(
c + a

2
√

1 + ac

))2

dhds da. (43)
�

6. The tail estimate

The goal of this section is to prove Lemma 5.5. To simplify notation, in this section we set n = c2N2.
For δ > 0 and K > 0 denote

F
K,δ
λ (k) =

{
Fλ(k), k ∈ I −

N (K, δ),
0, otherwise

and

Fλ(k, l) =
(

Fλ(k + l) − Fλ(k)

l

)2

.

Notice that Fλ(x) is a Lipschitz function with Lipschitz constant 2. It was proven in [6] that for a Lipschitz function
with Lipschitz constant 2 the truncated integral in the 1

2 -Sobolev norm can be approximated by a sum of the integrand.
More precisely, Lemma 6.1 in [6] implies:

Lemma 6.1. For any δ ∈ (0, 1
2 ), any K > 0, L > 0 and any ε > 0, there exists a number h0 > 1 depending only on

δ,K,L, ε and such that for all h > h0, all N ∈ N, n = c2N2, and all λ ∈ Y
n
N(K, δ) we have the inequality

1

4
√

n

∫ ∞

h

∫ ∞

−∞

(
Fλ(t + h) − Fλ(t)

h

)2

dt dh ≤ 1√
n

∞∑
l=h

∞∑
k=−∞

(
F

L,δ
λ (k + l) − F

L,δ
λ (k)

l

)2

+ ε.

We now prove Lemma 5.5.

Proof of Lemma 5.5. Fix L > 0 and δ ∈ ( 1
3 , 1

2 ). It follows from Corollary 3.10 that we can restrict to the Young

diagrams in the set Y
n
N(L, δ). Separating the terms where F

L,δ
λ (k + l) = 0 or F

L,δ
λ (k) = 0, we obtain

1

cN

∞∑
l=h

∞∑
k=−∞

(
F

L,δ
λ (k + l) − F

L,δ
λ (k)

l

)2

≤ 1

cN

∑
k,k+l∈I −

N (L,δ)

l≥h

Fλ(k, l) + 2

cN

∑
k∈I −

N (L,δ)

Fλ(k)2

dist(k,Z \ I −
N (L, δ))

. (44)
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It is easy to see that if k ∈ I −
N (L, δ), then

F
L,δ
λ (k + 1) − F

L,δ
λ (k) = 1 − 2ck(λ) − cN

(
Ωc

(
k + 1

cN

)
− Ωc

(
k

cN

))
.

Using Theorem 3.2 and (13) we obtain

F
L,δ
λ (k + 1) − F

L,δ
λ (k) = 2

(
E

P
γ+,0
N

ck − ck(λ)
) + 2

(
φk/(cN)

π
− KN,γ +(k, k)

)

+
(

2

π
arcsin

(
c + k/(cN)

2
√

1 + k/N

)
− cN

(
Ωc

(
k + 1

cN

)
− Ωc

(
k

cN

)))
. (45)

Since Ω ′
c(x) is given by (1) and

Ω ′′
c (x) = 2 − c2 + cx

2(1 + cx)
√

4 − (x − c)2
,

from the second degree Taylor polynomial approximation of Ωc it follows that there exists a constant C > 0 such that∣∣∣∣ 2

π
arcsin

(
c + k/(cN)

2
√

1 + k/N

)
− cN

(
Ωc

(
k + 1

cN

)
− Ωc

(
k

cN

))∣∣∣∣ ≤ C√
4c2N2 − (k − c2N)2

(46)

for all k ∈ I −
N (L, δ).

It follows from Lemma 3.6 that there exist constants C1,C2 > 0 such that for all k ∈ I −
N (L, δ) and for all γ + we

have ∣∣∣∣φk/(cN)

π
− KN,γ +(k, k)

∣∣∣∣ ≤ C1eC2|γ +−c2N |

2cN − |k − c2N | . (47)

Since E
P

γ+,0
N

(ck) = KN,γ +(k, k), combining (45), (46) and (47) we obtain

Fλ(k, l) ≤ 2

l2
Var

P
γ+,0
N

(ck + · · · + ck+l−1) + 1

l2

(
k+l−1∑
j=k

C1eC2|γ +−c2N |

2cN − |j − c2N |

)2

(48)

for some constants C1,C2 > 0 and for all k and l such that k, k + l ∈ I −
N (L, δ).

Summing the second term on the left-hand side of (48) we obtain

1

cN

∑
k,k+l∈I −

N (L,δ)

l≥h

1

l2

(
k+l−1∑
j=k

1

2cN − |j − c2N |

)2

≤ 1

cN

4cN∑
l=h

1

l2

4cN∑
k=1

(
k+l∑
j=k

1

j

)2

≤ 2

cN

4cN∑
l=h

1

l2

4cN∑
k=1

(
ln(k + l) − ln(k)

)2 ≤ 8
4cN∑
l=h

(ln l)2

l2
≤ 20

(lnh)2

h
.

Combining this with the estimate of the variance given in Lemma 6.2 below, we obtain

1

cN

∑
k,k+l∈I −

N (L,δ)

l≥h

Fλ(k, l) ≤ C1eC2|γ +−c2N | (lnh)2

h
. (49)
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We now turn to estimating the second sum on the right-hand side of (44). We will estimate the sum when k is in the
left half of the interval I −

N (L, δ), i.e. when k is larger than c2N . The sum when k < c2N can be estimated completely
similarly. Denote

MN(L, δ) = max
{
M: M ∈ I −

N (L, δ)
}
.

We have

MN(L, δ) = 2cN − LcNδ + c2N

and

dist
(
k,Z \ I −

N (L, δ)
) = MN(L, δ) − k.

Notice that

Fλ(k)2 ≤ 2
(
Fλ(k) − Fλ

(
MN(L, δ)

))2 + 2Fλ

(
MN(L, δ)

)2
. (50)

Since Fλ is Lipschitz with constant 2 and λ ∈ Y
n
N(L, δ), we have∣∣Fλ

(
MN(L, δ)

)∣∣ ≤ 4LNδ,

which implies

2

cN

∑
k∈I −

N (L,δ)

Fλ(MN(L, δ))2

MN(L, δ) − k
≤ 32L2N2δ ln(4cN)

cN
. (51)

Since

2

cN

∑
k∈I −

N (L,δ)

k>c2N

(
∑MN(L,δ)

j=k 1/(2cN − |j − c2N |))2

MN(L, δ) − k
≤ 2

cN

∑
k∈I −

N (L,δ)

k>c2N

(ln(MN(L, δ) − k))2

MN(L, δ) − k
≤ 2(ln(4cN))3

cN
,

it follows from (48), (50) and (51) that

2

cN

∑
k∈I −

N (L,δ)

k>c2N

Fλ(k)2

MN(L, δ) − k

≤ 4

cN

∑
k∈I −

N (L,δ)

k>c2N

Var
P

γ+,0
N

(ck + · · · + cMN(L,δ))

MN(L, δ) − k
+ C1eC2|γ +−c2N | ln(4cN)

N1−2δ
.

Using the estimate of the variance given in Lemma 6.3 below, we obtain

2

cN

∑
k∈I −

N (L,δ)

k>c2N

Fλ(k)2

MN(L, δ) − k
≤ C1eC2|γ +−c2N |

N1/6
.

Combining this with (49) we obtain

E
P

γ+,0
N

(
1√
n

∞∑
l=h

∞∑
k=−∞

(
F

L,δ
λ (k + l) − F

L,δ
λ (k)

l

)2
)

≤ C1eC2|γ +−c2N |
(

1

N1/6
+ (lnh)2

h

)
,

which implies the Lemma after depoissonization. �
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Lemma 6.2. Let

V
L,δ

γ +,N
(h) = 1

N

∑
k,k+l∈I −

N (L,δ)

l≥h

1

l2
Var

P
γ+,0
N

(ck + · · · + ck+l−1).

For any δ > 1
3 and L > 0 there exist constants C1 > 0 and C2 > 0 such that for any h > 0 there exists N0 such that

for all N > N0 and all γ + we have

V
L,δ

γ +,N
(h) ≤ C1eC2|γ +−c2N | lnh

h
.

Proof. We can assume h < Nδ . Throughout the proof, C1 and C2 will denote arbitrary constants that depend only on
L and δ. It is immediate from (8) that

Var
P

γ+,0
N

(ck + · · · + ck+l−1) =
∑

x∈[k,k+l−1]

∑
y /∈[k,k+l−1]

KN,γ +(x, y)KN,γ +(y, x). (52)

Summing over k, k + l ∈ I −
N (L, δ), l ≥ h, we obtain

V
L,δ

γ +,N
(h) = 1

N

∑
k,k+l∈I −

N (L,δ)

l≥h

∑
x∈[k,k+l−1]

∑
y /∈[k,k+l−1]

KN,γ +(x, y)KN,γ +(y, x)

l2
.

Let P h
N(x, y) be the coefficient of KN,γ +(x, y)KN,γ +(y, x) in the above sum and let

Qh
N,γ +(x, y) = P h

N(x, y)KN,γ +(x, y)KN,γ +(y, x).

We have

V
L,δ

γ +,N
(h) = 1

N

∑
x∈I −

N (L,δ)

y∈Z

Qh
N,γ +(x, y).

When x ∈ I −
N (L, δ) and y ∈ I +

N (L, δ), estimating from above the number of intervals of length l ≥ h that contain
x but not y, we obtain

P h
N(x, y) ≤ 2

∞∑
l=h

min{|x − y|, l}
l2

≤ ψ
(
h, |x − y|),

where

ψ(h, l) =
{

2l
h−1 , l ≤ h,

4 ln l, l > h.

Since for a fixed l the number of pairs x, y ∈ I −
N (L, δ) such that |x − y| = l is less than 4cN , it follows from

Remark 4.8 that

1

N

∑
x∈I −

N (L,δ)

y∈I −
N (L/2,δ)

xy>0

∣∣Qh
N,γ +(x, y)

∣∣ ≤
∞∑
l=1

ψ(h, l)C1eC2|γ +−c2N |

(1 + l)2
≤ C1eC2|γ +−c2N | lnh

h
. (53)
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Similarly, it follows from Lemma 4.7 with δ1 = δ2 = 1 that for any ε > 0,

1

N

∑
x,y∈IN (ε)

∣∣Qh
N,γ +(x, y)

∣∣ ≤ C1eC2|γ +−c2N | lnh

h
. (54)

If x ∈ I −
N (L, δ), y ∈ I −

N (L
2 , δ) \ IN(ε), and x and y have opposite signs, then 2cN

3 ≤ |x − y| ≤ 4cN , whence
Lemma 4.7 implies

∣∣Qh
N,γ +(x, y)

∣∣ ≤ C1eC2|γ +−c2N | N1−δ lnN

N2
.

Since the cardinality of the set I −
N (L, δ) × (I −

N (L
2 , δ) \ IN(ε)) is less than 16c2N2, we obtain

1

N

∑
x∈I −

N (L,δ)

y∈I −
N (L/2,δ)\IN(ε)

xy<0

∣∣Qh
N,γ +(x, y)

∣∣ ≤ C1eC2|γ +−c2N | lnN

Nδ
. (55)

If x ∈ I −
N (L, δ) and y ∈ I +

N (L
2 , δ) \ I −

N (L
2 , δ), then 1

2cLNδ < |x − y| < 5cN , whence Lemma 4.9 implies

∣∣Qh
N,γ +(x, y)

∣∣ ≤ C1eC2|γ +−c2N | N(5−3δ)/6 lnN

(1 + |x − y|)2
.

Since the cardinality of I +
N (L

2 , δ) \ I −
N (L

2 , δ) is less than LcNδ and for a fixed

y ∈ I +
N

(
L

2
, δ

) ∖
I −

N

(
L

2
, δ

)

we have ∑
x∈I −

N (L,δ)

1

(1 + |x − y|)2
≤ 2

LcNδ
,

we obtain

1

N

∑
x∈I −

N (L,δ)

y∈I +
N (L/2,δ)\I −

N (L/2,δ)

∣∣Qh
N,γ +(x, y)

∣∣ ≤ C1eC2|γ +−c2N | lnN

N1/6+δ/2
. (56)

When x ∈ I −
N (L, δ) and y /∈ I +

N (L, δ), summing over all subintervals of I −
N (L, δ) of length at least h, we obtain

P h
N(x, y) ≤

|I −
N (L,δ)|∑
l=h

|I −
N (L, δ)| − l

l2
≤ N

h − 1
.

Using Lemma 4.10 to estimate |KN,γ +(x, y)KN,γ +(y, x)|, we obtain

1

N

∑
x∈I −

N (L,δ)

y /∈I +
N (L,δ)

∣∣Qh
N,γ +(x, y)

∣∣ ≤ C1eC2|γ +−c2N | e−C3N
3δ/2−1/2

(1 + |x − y|)2
. (57)

Combining the estimates (53), (54), (55), (56) and (57) completes the proof. �
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Lemma 6.3. For any δ > 1
3 and L > 0 there exist constants C1 > 0 and C2 > 0 such that for any h > 0 there exists

N0 such that for all N > N0 and all γ + we have

2

cN

∑
k∈I −

N (L,δ)

k>c2N

Var
P

γ+,0
N

(ck + · · · + cMN(L,δ))

MN(L, δ) − k
≤ C1eC2|γ +−c2N |

N1/6
.

Proof. Using (52) we can write the sum of the variance in the form

2

cN

∑
k∈I −

N (L,δ)

k>c2N

Var
P

γ+,0
N

(ck + · · · + cMN(L,δ))

MN(L, δ) − k
= 2

cN

∑
x∈I −

N (L,δ)

x>c2N
y /∈[x,MN(L,δ)]

Sh
N,γ +(x, y),

where

Sh
N,γ +(x, y) = Rh

N(x, y)KN,γ +(x, y)KN,γ +(y, x)

and

Rh
N(x, y) =

{∑x−1
k=y

1
MN(L,δ)−k

, y ∈ (
c2N,x

)
,∑x−1

k=c2N
1

MN(L,δ)−k
, y < c2N or y > MN(L, δ).

Since

Rh
N(x, y) ≤ |x − y|

MN(L, δ) − x
if y ∈ I +

N (L, δ),

it follows from Lemma 4.9 that

2

cN

∑
x∈I −

N (L,δ)

y∈I +
N (L,δ)

Sh
N,γ +(x, y) ≤ C1eC2|γ +−c2N | (lnMN(L, δ))2

N1/6+δ/2
≤ C1eC2|γ +−c2N |

N1/6
. (58)

Since

Rh
N(x, y) ≤ 4cN

MN(L, δ) − x
if y /∈ I +

N (L, δ),

it follows from Lemma 4.10 that

2

cN

∑
x∈I −

N (L,δ)

y /∈I +
N (L,δ)

Sh
N,γ +(x, y) ≤ C1eC2|γ +−c2N |e−C3N

3δ/2−1/2
. (59)

Combining the estimates (58) and (59) completes the proof. �
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