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Abstract. In this work, we provide non-asymptotic bounds for the average speed of convergence of the empirical measure in the
law of large numbers, in Wasserstein distance. We also consider occupation measures of ergodic Markov chains. One motivation
is the approximation of a probability measure by finitely supported measures (the quantization problem). It is found that rates
for empirical or occupation measures match or are close to previously known optimal quantization rates in several cases. This is
notably highlighted in the example of infinite-dimensional Gaussian measures.

Résumé. Dans ce travail, on exhibe des bornes non asymptotiques pour la vitesse de convergence en moyenne de la mesure
empirique dans la loi des grands nombres, en distance de Wasserstein. On considère également la mesure d’occupation d’une
chaîne de Markov ergodique. L’une des motivations est l’approximation d’une mesure de probabilité par des mesures à support fini
(le problème de la quantification). On détermine que les taux de convergence des mesures empiriques ou des mesures d’occupation
correspondent dans plusieurs cas aux taux de quantification optimale déjà établis par ailleurs. Ce fait est notamment établi pour des
mesures gaussiennes dans des espaces de dimension infinie.
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1. Introduction

This paper is concerned with the rate of convergence in Wasserstein distance for the so-called empirical law of large
numbers: let (E,d,μ) denote a measured Polish space, and let

Ln = 1

n

n∑
i=1

δXi
(1)

denote the empirical measure associated with the i.i.d. sample (Xi)1≤i≤n of law μ, then with probability 1, Ln ⇀ μ

as n → +∞ (convergence is understood in the sense of the weak topology of measures). This theorem is also known
as Glivenko–Cantelli theorem and is due in this form to Varadarajan [31].

For 1 ≤ p < +∞, the p-Wasserstein distance is defined on the set Pp(E)2 of couples of measures with a finite pth
moment by

W
p
p (μ, ν) = inf

π∈P (μ,ν)

∫
dp(x, y)π(dx,dy),
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where the infimum is taken over the set P (μ, ν) of probability measures with first, resp. second, marginal μ, resp. ν.
This defines a metric on Pp , and convergence in this metric is equivalent to weak convergence plus convergence of the
moment of order p. These metrics, and more generally the Monge transportation problem from which they originate,
have played a prominent role in several areas of probability, statistics and the analysis of P.D.E.s: for a rich account,
see C. Villani’s St-Flour course [32].

Our purpose in this paper is to give bounds on the speed of convergence in Wp distance for the Glivenko–Cantelli
theorem, i.e. bounds for the convergence E(Wp(Ln,μ)) → 0. Such results are desirable notably in view of numerical
and statistical applications: indeed, the approximation of a given probability measure by a measure with finite support
in Wasserstein distance is a topic that appears in various guises in the literature, see for example [16]. The first
motivation for this work was to extend the results obtained by F. Bolley, A. Guillin and C. Villani [5] in the case of
variables with support in Rd . As in this paper, we aim to produce bounds that are non-asymptotic and effective (that
is with explicit constants), in order to achieve practical relevance.

We also extend the investigation to the convergence of occupation measure for suitably ergodic Markov chains:
again, we have practical applications in mind, as this allows to use Metropolis–Hastings-type algorithms to approxi-
mate an unknown measure (see Section 1.3 for a discussion of this).

There are many works in statistics devoted to convergence rates in some metric associated with the weak conver-
gence of measures, see e.g. the book of A. Van der Vaart and J. Wellner [30]. Of particular interest to us is R. M.
Dudley’s article [12], see Remark 1.1.

Other works have been devoted to convergence of empirical measures in Wasserstein distance, we quote some
of them. Horowitz and Karandikar [19] gave a bound for the rate of convergence of E[W 2

2 (Ln,μ)] to 0 for general
measures supported in Rd under a moment condition. M. Ajtai, J. Komlos and G. Tusnády [1] and M. Talagrand [29]
studied the related problem of the average cost of matching two i.i.d. samples from the uniform law on the unit cube
in dimension d ≥ 2. This line of research was pushed further, among others, by V. Dobrić and J. E. Yukich [11] or
F. Barthe and C. Bordenave [2] (the reader may refer to this last paper for an up-to-date account of the Euclidean
matching problem). These papers give a sharp result for measures in Rd , with an improvement both over [19] and [5].
In the case μ ∈ P (R), E. del Barrio, E. Giné and C. Matrán [8] obtain a central limit theorem for W1(Ln,μ) under the
condition that

∫ +∞
−∞

√
F(t)(1 − F(t))dt < +∞ where F is the cumulative distribution function (c.d.f.) of μ. In the

companion paper [4], we investigate the case of the W1 distance by using the dual expression of the W1 transportation
cost by Kantorovich and Rubinstein, see therein for more references.

We will also discuss problems related to the optimal quantization of probability measures, that is the approximation
of probability distributions by distributions with finite support. A general reference on this topic is the book by S. Graf
and H. Luschgy [16]. Let us also mention the paper [17] that lays out the connections between optimal quantization
and empirical processes.

Before moving on to our results, we make a remark on the scope of this work. Generally speaking, the problem of
convergence of Wp(Ln,μ) to 0 can be divided in two separate questions:

• the first one is to estimate the mean rate of convergence, that is the convergence rate of E[Wp(Ln,μ)],
• while the second one is to study the concentration properties of Wp(Ln,μ) around its mean, that is to find bounds

on the quantities

P
(
Wp(Ln,μ) − E

[
Wp(Ln,μ)

] ≥ t
)
.

Our main concern here is the first point. The second one can be dealt with by techniques of measure concentration.
We will elaborate on this in Appendices A and B.

1.1. Main result and first consequences

Definition 1.1. For S ⊂ E, the covering number of order δ for S, denoted by N(S, δ), is defined as the minimal n ∈ N
such that there exist x1, . . . , xn in S with

S ⊂
n⋃

j=1

B(xi, δ).
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Our main statement is summed up in the following result.

Theorem 1.1. Choose t > 0. Let μ ∈ P (E) with support included in S ⊂ E with finite diameter ΔS such that
N(S, t) < +∞. We have the bound:

E
(
Wp(Ln,μ)

) ≤ c

(
t + n−1/2p

∫ ΔS/4

t

N(S, δ)1/2p dδ

)

with c ≤ 64/3.

Remark. Theorem 1.1 is related in spirit and proof to the results of R. M. Dudley [12] in the case of the bounded
Lipschitz metric

dBL(μ, ν) = inf
f 1−Lip,‖f ‖∞≤1

∫
f d(μ − ν).

The analogy is not at all fortuitous: indeed, the bounded Lipschitz metric is linked to the 1-Wasserstein distance
via the well-known Kantorovich–Rubinstein dual definition of W1:

W1(μ, ν) = sup
f 1−Lip

∫
f d(μ − ν).

The analogy stops at p = 1 since there is no representation of Wp as an empirical process for p > 1 (there
is, however, a general dual expression of the transport cost). In spite of this, the technique of proof in [12] proves
useful in our case, and the technique of using a sequence of coarser and coarser partitions is at the heart of many
later results, notably in the literature concerned with the problem of matching two independent samples in Euclidean
space, see e.g. [29] or the recent paper [2].

We now give a first example of application, under an assumption that the underlying metric space is of finite-
dimensional type in some sense. More precisely, we assume that there exist kE > 0, α > 0 such that

N(E, δ) ≤ kE(DiamE/δ)α. (2)

Here, the parameter α plays the role of a dimension.

Corollary 1.2. Assume that E satisfies (2), and that α > 2p. With notations as earlier, the following holds:

E
[
Wp(Ln,μ)

] ≤ c

(
2p

α − 2p

)2p/α

DiamEk
1/α
E n−1/α

with c ≤ 64/3.

Remark. In the case of measures supported in Rd , this result is neither new nor fully optimal. For a sharp statement
in this case, the reader may refer to [2] and references therein. However, we recover at least the exponent of n−1/d

which is sharp for d ≥ 3, see [2] for a discussion. And on the other hand, Corollary 1.2 extends to more general metric
spaces of finite-dimensional type, for example manifolds.

Remark. Corollary 1.2 and other results throughout this work require a lower bound on the dimension parameter α.
Here for instance we impose α > 2p, which implies that α > 2 since p ≥ 1. This high-dimensional hypothesis is also
commonplace in matching problems: for instance in [1] (where matchings over the cube with p = 1 are studied),
the convergence rates for dimension 3 and above differ from those in dimension 1 and 2. In low dimensions, further
difficulties arise and Theorem 1.1 will overestimate the convergence rate. For instance on the 2-dimensional cube we
would get a convergence rate of logn/

√
n instead of a correct

√
logn/n as established in [1].
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It is possible to remove the assumption of boundedness of the metric space and replace it with the following: we
assume that there exist kE > 0, α > 0 such that for all bounded S ⊂ E,

N(S, δ) ≤ kE(DiamS/δ)α. (3)

In this context, the following result holds.

Corollary 1.3. Assume that (E,d) satisfies (3), that that μ ∈ Pp(E) has some finite moment of order q > 2p ∨
αp/(α − p), meaning that Mq = ∫

dq(x0, x)dμ < +∞ for some x0 ∈ E. Also assume that α > 2p.
Then there exists C > 0, depending on E, p, α and Mq , such that

E
(
Wp(Ln,μ)

) ≤ Cn−1/α.

Remark. A more precise statement is the following: with the same notations as above, for all ξ > 1 and ζ > 1, we
have

E
(
Wp(Ln,μ)

) ≤ C(ξ)n−1/2p + C′(ζ )n−1/α,

where there exist constants c, c′ depending on p,α,E, but not on μ (c is universal, c′ is the constant that appears in
Corollary 1.2), such that

C(ξ) = c

[
1 + M

1/p
p + M

1/2p

2ξp

(
M

1/p
p

2−ξ

1 − 2−ξ
+ 21−ξ

1 − 21−ξ

)]
,

C′(ζ ) = c′
[

1 + M
(α−p)/αp

ζαp/(α−p)

41−ζ

1 − 21−ζ

]
.

As opposed to Corollaries 1.2 and 1.3, our next result is set in an infinite-dimensional framework.

1.2. An application to Gaussian r.v.s in Banach spaces

We apply the results above to the case where E is a separable Banach space with norm ‖ · ‖, and μ is a centered
Gaussian random variable with values in E, meaning that the image of μ by every continuous linear functional
f ∈ E∗ is a centered Gaussian variable in R. The couple (E,μ) is called a (separable) Gaussian–Banach space.

Let X be an E-valued r.v. with law μ, and define the weak variance of μ as

σ = sup
f ∈E∗,|f |≤1

(
Ef 2(X)

)1/2
.

The small ball function of a Gaussian–Banach space (E,μ) is the function

ψ(t) = − logμ
(
B(0, t)

)
.

We can associate to the couple (E,μ) their Cameron–Martin Hilbert space H ⊂ E, see e.g. [22] for a reference.
It is known that the small ball function has deep links with the covering numbers of the unit ball of H , see e.g. the
papers by Kuelbs and Li [21] and Li and Linde [25], as well as with the approximation of μ by measures with finite
support in Wasserstein distance (the quantization or optimal quantization problem), see Fehringer’s Ph.D. thesis [13],
Dereich, Fehringer, Matoussi and Scheutzow [9], Graf, Luschgy and Pagès [18].

We make the following assumptions on the small ball function:

(1) there exists κ > 1 such that ψ(t) ≤ κψ(2t) for 0 < t ≤ t0,
(2) for all ε > 0, n−ε = o(ψ−1(logn)).

Assumption (2) implies that the Gaussian measure is genuinely infinite dimensional: indeed, in the case when
dimK < +∞, the measure is supported in a finite-dimensional Banach space, and in this case the small ball function
behaves as log t .
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Theorem 1.4. Let (E,μ) be a Gaussian–Banach space with weak variance σ and small ball function ψ . Assume that
assumptions (1) and (2) hold.

Then there exists a universal constant c such that for all integers n ≥ 1 such that

logn ≥ (6 + κ)
(
log 2 ∨ ψ(1) ∨ ψ(2t0) ∨ 1/σ 2),

the following holds:

E
(
W2(Ln,μ)

) ≤ c

[
ψ−1

(
1

6 + κ
logn

)
+ σn−1/[4(6+κ)]

]
. (4)

In particular, there is a C = C(μ) such that

E
(
W2(Ln,μ)

) ≤ Cψ−1(logn). (5)

Moreover, for λ > 0,

W2(Ln,μ) ≤ (C + λ)ψ−1(logn) with probability 1 − exp

[
−n

(
ψ−1(logn)

)2 λ2

2σ 2

]
. (6)

Remark. Note that the choice of 6 + κ is not particularly sharp and may likely be improved.

In order to underline the interest of the result above, we introduce some definitions from optimal quantization. For
n ≥ 1 and 1 ≤ r < +∞, define the optimal quantization error at rate n as

δn,r (μ) = inf
ν∈Θn

Wr(μ, ν),

where the infimum runs over the set Θn of probability measures with finite support of cardinal bounded by n.
Precise connections have been made in the literature between the rate of optimal quantization (i.e. the speed of

convergence of δn,r to 0) and the behaviour of the small ball function near 0. Two rather complete works on this topic
are [9] and [18]. Assume that t → ψ(1/t) is regularly varying at infinity, i.e. that there exists a function L and a > 0
such that

ψ(ε) = ε−aL

(
1

ε

)
,

L(st)

L(t)
→t→+∞ 1 for all s > 0.

Roughly speaking, Theorem 4.1 in [9] and Theorem 2 in [18] imply that there exist c, c′ > 0 such that

cψ−1(logn) � δn,r � c′ψ−1(logn)

(where an � bn means lim infbn/an ≥ 1).
Please note that the regular variation condition is not the sharpest condition stated in either paper; however it is

satisfied by usual Gaussian processes. In the terminology of quantization, the quantization rate is given by the sequence
ψ−1(logn). We can restate Theorem 1.4 by saying that the empirical measure is a rate-optimal quantizer with high
probability (under some assumptions on the small ball function and when the distortion index is r = 2). This is of
practical interest, since obtaining the empirical measure is only as difficult as simulating an instance of the Gaussian
vector, and one avoids dealing with computation of appropriate weights in the approximating discrete measure.

We now quote some results on the asymptotic behaviour of the quantization rate and the small ball function for
classic Gaussian processes, to illustrate the result above. In all of these examples, the assumptions of Theorem 1.4 on
the small ball function are satisfied, so that the convergence rate is also the proper one for empirical measures.
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• E = (L2([0,1]),‖ · ‖2) and μ is the Wiener measure. In this case, we quote [9] to get

ψ(t) ∼t→0
1

8t2
.

Thus,

1√
8 logn

� δn,r � 1√
logn

.

Actually, a sharper result is δn,r ∼ √
2/π

√
logn, c.f. [26]. In our case, we get the bound

EW2(Ln,μ) = O

(
1√

logn

)
.

• E = (C([0,1]),‖ · ‖∞) (the space of continuous functions endowed with the sup-norm) and μ is the Wiener mea-
sure. Quoting again from [9], we have

ψ(t) ∼ π2

8t2

from which we deduce again that there exist c, c′ > 0 with

c√
logn

� δn,r � c′
√

logn

and EW2(Ln,μ) = O(1/
√

logn).
• E = (C([0,1]),‖ · ‖∞), and this time μ is the law of a fractional Brownian motion with Hurst exponent ρ ∈ (0,1).

As stated in [18,25,26], we have

ψ(t) ∼ Cρ

t1/ρ

which entails a bound EW2(Ln,μ) = O((logn)−ρ) (with a matching lower bound on δn,2).
• Finally, consider E = (C([0,1]2),‖ · ‖∞) and the law of the Brownian sheet on I = [0,1]2, i.e. the centered con-

tinuous Gaussian process (Xt )t∈I such that

EXsXt = (s1 ∧ t1)(s2 ∧ t2)

if s = (s1, s2), t = (t1, t2). Quoting again from [26], we get

ct−2 log(1/t)3 � ψ(t) � c′t−2 log(1/t)3.

We obtain EW2(Ln,μ) = O((logn)−1/2(log logn)3/2) (and a matching lower bound on δn,2).

Many more results may be readily obtained from the literature. References are given e.g. in the two articles we
quoted. One may also take advantage directly of some estimates of the Kolmogorov entropy of Gaussian processes
(i.e. covering numbers of the Cameron–Martin ball), bypassing small ball estimates. Such direct estimates are provided
for example in [27].

We leave aside the question of determining the sharp asymptotics for the average error E(W2(Ln,μ)), that is of
finding whether there exists c > 0 such that

E
(
W2(Ln,μ)

) ∼ cψ−1(logn).

Let us underline that the corresponding question for the quantization rate is tackled for example in [26]. In this
paper, instead of connecting the quantization rate to small deviation asymptotics, a truncation of the Karhunen–Loève
expansion of the Gaussian vector is used. Proving the existence of c as above and computing its value on classical
Gaussian processes would allow a sharp comparison of the relative asymptotic performance of empirical measures
and optimal quantizers.
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1.3. The case of Markov chains

We wish to extend the control of the speed of convergence to weakly dependent sequences, such as rapidly-mixing
Markov chains. There is a natural incentive to consider this question: there are cases when one does not know how to
sample from a given measure π , but a Markov chain with stationary measure π is nevertheless available for simulation.
This is the basic set-up of the Markov Chain Monte Carlo framework, and a very frequent situation, even in finite
dimension.

When looking at the proof of Theorem 1.1, it is apparent that the main ingredient missing in the dependent case is
the argument following (19), i.e. that whenever A ⊂ X is measurable, nLn(A) follows a binomial law with parameters
n and μ(A), and this must be remedied in some way. It is natural to look for some type of quantitative ergodicity
property of the chain, expressing almost-independence of Xi and Xj in the long range (|i − j | large).

We will consider decay-of-variance inequalities of the following form:

Varπ P nf ≤ Cλn Varπ f. (7)

In the reversible case, a bound of the type of (7) is ensured by Poincaré or spectral gap inequalities. We recall one
possible definition in the discrete-time Markov chain setting.

Definition 1.2. Let P be a Markov kernel with reversible measure π ∈ P (E). We say that a Poincaré inequality with
constant CP > 0 holds if

Varπ f ≤ CP

∫
f

(
I − P 2)f dπ (8)

for all f ∈ L2(π).
If (8) holds, we have

Varπ P nf ≤ λn Varπ f

with λ = (CP − 1)/CP .

The choice of assumption (7) is fairly standard. More generally, one may assume that we have a control of the
decay of the variance in the following form:

Varπ P nf ≤ Cλn

∥∥∥∥f −
∫

f dπ

∥∥∥∥
Lp

. (9)

As soon as p > 2, these inequalities are weaker than (7). Our proof would be easily adaptable to this weaker
decay-of-variance setting. We do not provide a complete statement of this claim.

For a discussion of the links between Poincaré inequality and other notions of weak dependence (e.g. mixing
coefficients), see the recent paper [7].

For the next two theorems, we make the following dimension assumption on E: there exists kE > 0 and α > 0 such
that for all S ⊂ E with finite diameter,

N(S, δ) ≤ kE(DiamS/δ)α. (10)

The following theorem is the analogue of Corollary 1.2 under the assumption that the Markov chain satisfies a
decay-of-variance inequality.

Theorem 1.5. Assume that E has finite diameter Δ > 0 and (10) holds. Let π ∈ P (E), and let (Xi)i≥0 be an E-
valued Markov chain with initial law ν such that π is its unique invariant probability. Assume also that (7) holds for
some C > 0 and λ < 1.
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Then if 2p < α(1 + 1/r) and Ln denotes the occupation measure 1/n
∑n

i=1 δXi
, the following holds:

Eν

[
Wp(Ln,π)

] ≤ C1k
(1/α(1+1/r))
E Δ

(
C‖dν/dπ‖Lr(π)

(1 − λ)n

)1/[α(1+1/r)]

with C1 ≤ 64/3(
2p

α(1+1/r)−2p
)2p/(α(1+1/r)).

Our next theorem is an extension to the unbounded case under some moment conditions on π .

Theorem 1.6. Assume that (10) holds. Let π ∈ P (E), and let (Xi)i≥0 be an E-valued Markov chain with initial law
ν such that π is its unique invariant probability. Assume also that (7) holds for some C > 0 and λ < 1. Let x0 ∈ E and
for all θ ≥ 1, denote Mθ = ∫

d(x0, x)θ dπ . Fix r and assume 2p < α(1 + 1/r). Assume that π admits a finite moment
of order q > 2p/(1 − 1/r) ∨ αp/(α − p).

Then there exists C1 > 0 depending on E,α,p, r, q and on Mq such that

Eν

[
Wp(Ln,π)

] ≤ C1

(
C‖dν/dπ‖Lr(π)

(1 − λ)n

)1/[α(1+1/r)]
.

Remark. As in the case of Corollary 1.3, a more precise expression may be found in the proof.

To conclude this section, we include without proof a possible variant of the results above. We no longer assume that
(Xn)n≥0 is the trajectory of a Markov chain, but instead that (Xn)n∈Z is a general π -stationary sequence of variables
with controlled ρ-mixing coefficients. Remember that the ρ-mixing coefficient of two sub-σ -algebras F and G over
a common probability space is

ρ(F , G) = sup
X∈L2(F ),Y∈L2 G

Cov(X,Y )√
Var(X)Var(Y )

,

and that the sequence of ρ-mixing coefficients for the π -stationary sequence (Xn)n∈Z is the sequence given by ρ0 = 1
and

ρn = ρ
(
σ(Xs, s ≤ 0), σ (Xt , t ≥ n)

)
for n ≥ 1. The proof of the following proposition may be obtained along the same lines as in the Markov case.

Proposition 1.7. Assume that (Xn) is a π -stationary sequence as above, such that ρn → 0 as n → +∞. Define

χn = 1

n2

n∑
i=1

i∑
j=1

ρj .

Then if Δ = DiamE and t > 0 is fixed, we have

EWp(Ln,π) ≤ c

(
t + χ

1/2p
n

∫ Δ/4

t

N(E, δ)1/2p dδ

)
.

If for example E has finite-dimensional type with parameter α as defined earlier, we would get a convergence rate of
the form

EWp(Ln,π) ≤ cΔχ
1/α
n .

Remark. If (ρn) is exponentially decaying we retrieve our more usual case since χn is of order n−1.
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2. Proofs in the independent case

Lemma 2.1. Let S ⊂ E, s > 0 and u,v ∈ N with u < v. Suppose that N(S,4−vs) < +∞. For u ≤ j ≤ v, there exist
integers

m(j) ≤ N
(
S,4−j s

)
(11)

and non-empty subsets Sj,l of S, u ≤ j ≤ v, 1 ≤ l ≤ m(j), such that the sets Sj,l 1 ≤ l ≤ m(j) satisfy

(1) for each j , (Sj,l)1≤l≤m(j) is a partition of S,
(2) DiamSj,l ≤ 4−j+1s,
(3) for each j > u, for each 1 ≤ l ≤ m(j) there exists 1 ≤ l′ ≤ m(j − 1) such that Sj,l ⊂ Sj−1,l′ .

In other words, the sets Sj,l form a sequence of partitions of S that get coarser as j decreases (tiles at the scale
j − 1 are unions of tiles at the scale j ).

Proof. We begin by picking a set of balls Bj,l = B(xj,l ,4−j s) ∩ S with u ≤ j ≤ v and 1 ≤ l ≤ N(S,4−j s), such that
for all j ,

S ⊂
N(S,4−j s)⋃

l=1

Bj,l .

Define Sv,1 = Bv,1, and successively set

Sv,l = Bv,l

∖ ⋃
1≤l′≤l−1

Sv,l′ .

Discard the possible empty sets and relabel the existing sets accordingly. We have obtained the finest partition,
obviously satisfying conditions (1)–(2).

Assume now that the sets Sj,l have been built for k + 1 ≤ j ≤ v. Set Sk,1 to be the reunion of all Sk+1,l′
such that Sk+1,l′ ∩ Bk,1 �= ∅. Likewise, define by induction on l the set Sk,l as the reunion of all Sk+1,l′ such that
Sk+1,l′ ∩ Bk,l �= ∅ and Sk+1,l′ � Sk,p for 1 ≤ p < l. Again, discard the possible empty sets and relabel the remaining
tiles. It is readily checked that the sets obtained satisfy assumptions (1) and (3). We check assumption (2): let xk,l

denote the center of Bk,l and let y ∈ Sk+1,l′ ⊂ Sk,l . We have

d(xk,l, y) ≤ 4−ks + DiamSk+1,l′ ≤ 2 × 4−ks,

thus DiamSk,l ≤ 4−k+1s as desired. �

Consider as above a subset S of E with finite diameter ΔS , and assume that N(S,4−kΔS) < +∞. Pick a sequence
of partitions (Sj,l)1≤l≤m(j) for 1 ≤ j ≤ k, as per Lemma 2.1. For each (j, l) choose a point xj,l ∈ Sj,l . Define the set
of points of level j as the set L(j) = {xj,l}1≤l≤m(j). Say that xj ′,l′ is an ancestor of xj,l if Sj,l ⊂ Sj ′,l′ : we will denote
this relation by (j, l) � (j ′, l′).

The next two lemmas study the cost of transporting a finite measure mk to another measure nk when these measures
have support in L(k). The underlying idea is that we consider the finite metric space

T = {
xj,l,1 ≤ l ≤ m(j),1 ≤ j ≤ k

}
as a metric tree, where the ancestry relationship � defined above corresponds to the hierarchical structure of the tree.
This tree is naturally endowed with a metric by considering that the distance from a point to its child (i.e. one-step
descendant) is given by their distance on the original space (E,d), and the distance between two points of T is the
sum of distances on the unique tree path that joins them. By the triangle inequality it is immediate to see that this tree
metric dominates the metric inherited from (E,d). We consider the problem of transportation between two masses
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at the leaves of the tree. The transportation algorithm we consider consists in allocating as much mass as possible at
each point, then moving the remaining mass up one level in the tree, and iterating the procedure.

A technical warning: please note that the transportation cost is usually defined between two probability measures;
however there is no difficulty in extending its definition to the transportation between two finite measures of equal
total mass, and we will freely use this fact in the sequel.

Lemma 2.2. Let mj , nj be measures with support in Lj with same mass. Define the measures m̃j−1 and ñj−1 on
Lj−1 by setting

m̃j−1(xj−1,l′) =
∑

(j,l)�(j−1,l′)

(
mj(xj,l) − nj (xj,l)

) ∨ 0, (12)

ñj−1(xj−1,l′) =
∑

(j,l)�(j−1,l′)

(
nj (xj,l) − mj(xj,l)

) ∨ 0. (13)

The measures m̃j−1 and ñj−1 have same mass, so the transportation cost between them may be defined. Moreover,
if ΔS = DiamS, the following bound holds:

Wp(mj ,nj ) ≤ 2 × 4−j+2ΔS‖mj − nj‖1/p
TV + Wp(m̃j−1, ñj−1). (14)

Proof. Set mj ∧ nj (xj,l) = mj(xj,l) ∧ nj (xj,l). We introduce the measure mj ∧ nj + m̃j−1 defined by

[mj ∧ nj + m̃j−1](xj,l) = mj ∧ nj (xj,l),

[mj ∧ nj + m̃j−1](xj−1,l′) = m̃j−1(xj−1,l′).

Likewise, we define the measure mj ∧ nj + ñj−1. We stress that they have the same mass as mj ,nj .
By the triangle inequality,

Wp(mj ,nj ) ≤ Wp(mj ,mj ∧ nj + m̃j−1) + Wp(mj ∧ nj + m̃j−1,mj ∧ nj + ñj−1)

+ Wp(mj ∧ nj + ñj−1, nj ).

We bound the term on the left. Introduce the transport plan πm defined by

πm(xj,l, xj,l) = mj ∧ nj (xj,l),

πm(xj,l, xj−1,l′) = (
mj(xj,l) − nj (xj,l)

)
+ when (j, l) � (

j − 1, l′
)
.

The reader can check that πm ∈ P (mj ,mj ∧ nj + m̃j−1). Moreover,

Wp(mj ,mj ∧ nj + m̃j−1) ≤
(∫

dp(x, y)πm(dx,dy)

)1/p

≤ 4−j+2ΔS

(
m(j)∑
l=1

(
mj(xj,l) − nj (xj,l)

)
+

)1/p

.

Likewise,

Wp(nj ,mj ∧ nj + ñj−1) ≤ 4−j+2ΔS

(
m(j)∑
l=1

(
nj (xj,l) − mj(xj,l)

)
+

)1/p

.
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As for the term in the middle, it is bounded by Wp(m̃j−1, ñj−1): indeed, this follows by considering a transport
plan that leaves the mass mj ∧ nj in place and optimally maps m̃j−1 towards ñj−1. Putting this together and using
the inequality x + y ≤ 21−1/p(xp + yp)1/p , we get

Wp(mj ,nj ) ≤ 21−1/p4−j+2ΔS

(
m(j)∑
l=1

∣∣mj(xj,l) − nj (xj,l)
∣∣)1/p

+ Wp(m̃j−1, ñj−1).
�

Lemma 2.3. Let mj , nj be measures with support in Lj . Define for 1 ≤ i < j the measures mi , ni with support in Li

by

mi (xi,l′) =
∑

(j,l)�(i,l′)
mj (xj,l), ni (xi,l′) =

∑
(j,l)�(i,l′)

nj (xj,l). (15)

The following bound holds:

Wp(mj ,nj ) ≤
j∑

i=1

2 × 4−i+2ΔS‖mi − ni‖1/p
TV . (16)

Proof. We proceed by induction on j . For j = 1, the result is obtained by using the simple bound Wp(m1, n1) ≤
ΔS‖m1 − n1‖1/p

TV .
Suppose that (16) holds for measures with support in Lj−1. By Lemma 2.2, we have

Wp(mj ,nj ) ≤ 2 × 4−j+2ΔS‖mj − nj‖1/p
TV + Wp(m̃j−1, ñj−1),

where m̃j−1 and ñj−1 are defined by (12) and (13) respectively. For 1 ≤ i < j − 1, define following (15)

m̃i (xi,l′) =
∑

(j−1,l)�(i,l′)
m̃j−1(xj−1,l), ñi (xi,l′) =

∑
(j−1,l)�(i,l′)

ñj−1(xj−1,l).

We have by induction hypothesis

Wp(mj ,nj ) ≤ 2 × 4−j+2ΔS‖mj − nj‖1/p
TV +

j−1∑
i=1

2 × 4−i+2ΔS‖m̃i − ñi‖1/p
TV .

To conclude, it suffices to check that for 1 ≤ i ≤ j − 1, ‖m̃i − ñi‖TV = ‖mi − ni‖TV. �

Proof of Theorem 1.1. We pick some positive integer k whose value will be determined further on. Introduce the
sequence of partitions (Sj,l)1≤l≤m(j) for 0 ≤ j ≤ k as in the lemmas above, as well as the points xj,l . Define μk as the
measure with support in L(k) such that μk(xk,l) = μ(Sk,l) for 1 ≤ l ≤ m(k). The diameter of the sets Sk,l is bounded
by 4−k+1ΔS , therefore Wp(μ,μk) ≤ 4−k+1ΔS .

Let Lk
n denote the empirical measure associated to μk .

For 0 ≤ j ≤ k − 1, define as in Lemma 2.3 the measures μj and L
j
n with support in L(j) by

μj (xj,l′) =
∑

(k,l)�(j,l′)
μk(xk,l), (17)

L
j
n(xj,l′) =

∑
(k,l)�(j,l′)

Lk
n(xk,l). (18)
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It is simple to check that μj (xj,l) = μ(Sj,l), and that L
j
n is the empirical measure associated with μj . Applying

(16), we get

Wp

(
μk,L

k
n

) ≤
k∑

j=1

2 × 4−j+2ΔS

∥∥μj − L
j
n

∥∥1/p

TV . (19)

Observe that nL
j
n(xj,l) is a binomial law with parameters n and μ(Sj,l). The expectation of ‖μj − L

j
n‖TV is

bounded as follows:

E
(∥∥μj − L

j
n

∥∥
TV

) = 1/2
m(j)∑
l=1

E
(∣∣(Lj

n − μj

)
(xj,l)

∣∣)

≤ 1/2
m(j)∑
l=1

√
E

(∣∣(Lj
n − μj

)
(xj,l)

∣∣2)

= 1/2
m(j)∑
l=1

√
μ(Sj,l)(1 − μ(Sj,l))

n

≤ 1/2

√
m(j)

n
.

In the last inequality, we use Cauchy–Schwarz’s inequality and the fact that (Sj,l)1≤l≤m(j) is a partition of S.
Plugging this back in (19), we get

E
(
Wp

(
μk,L

k
n

)) ≤ n−1/2p

k∑
j=1

21−1/p4(−j+2)ΔSm(i)1/2p

≤ 25−1/pn−1/2p

k∑
j=1

4−jΔSN
(
S,4−jΔS

)1/2p

≤ 26−1/p/3n−1/2p

∫ ΔS/4

4−(k+1)ΔS

N(S, δ)1/2pdδ.

In the last line, we use a standard sum-integral comparison argument.
By the triangle inequality, we have

Wp(μ,Ln) ≤ Wp(μ,μk) + Wp

(
μk,L

k
n

) + Wp

(
Lk

n,Ln

)
.

We claim that E(Wp(Lk
n,Ln)) ≤ Wp(μ,μk). Indeed, choose n i.i.d. couples (Xi,X

k
i ) such that Xi ∼ μ, Xk

i ∼ μk ,
and the joint law of (Xi,X

k
i ) achieves an optimal coupling, i.e. E|Xi − Xk

i |p = W
p
p (μ,μk). Observe that existence of

this optimal coupling is guaranteed e.g. by Theorem 4.1 in [32]. We have the identities in law

Ln ∼ 1

n

n∑
i=1

δXi
, Lk

n ∼ 1

n

n∑
i=1

δXk
i
.

Choose the transport plan that sends Xi to Xk
i : this gives the upper bound

W
p
p

(
Ln,L

k
n

) ≤ 1/n

n∑
i=1

∣∣Xi − Xk
i

∣∣p
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and passing to expectation proves our claim.
Thus, E(Wp(μ,Ln)) ≤ 2Wp(μ,μk) + E(Wp(μk,L

k
n)). Choose now k as the largest integer such that 4−kΔS > t .

This imposes 4−k+1ΔS ≤ 16t , and this finishes the proof. �

Proof of Corollary 1.2. The proof simply consists in plugging the bound 2 on covering numbers in the estimate of
Theorem 1.1, and choosing an optimal t > 0. �

Lemma 2.4. Let 1 ≤ p < +∞, μ,ν ∈ Pp(E), and for i ≥ 1, let μi, νi ∈ Pp(E), λi ≥ 0 be such that
∑

i≥1 λi = 1 and∑
i≥1

λiμi = μ,
∑
i≥1

λiνi = ν.

Then the following bound holds:

Wp(μ,ν) ≤
∑
i≥1

λ
1/p
i Wp(μi, νi).

Proof. Let us pick random variables (Xi, Yi) realizing optimal couplings of μi, νi for all i ≥ 1. Define a random
variable I over N, independent of the previous variables, such that P(I = i) = λi . Then the variables μI , νI have
respective laws μ and ν.

By definition of Wp ,

Wp(μ,ν) ≤ [
Edp(XI ,YI )

]1/p

=
[
E

(∑
i≥1

1I=id(Xi, Yi)

)p]1/p

≤
∑
i≥1

[
E1I=id

p(Xi,Yi)
]1/p =

∑
i≥1

λ
1/p
i Wp(μi, νi).

Here we have used the triangle inequality for Lp-norms to go from the second to the third line. �

Proof of Corollary 1.3. Let ri , i ≥ 1, be an increasing sequence of positive numbers to be specified later. We will use
a decomposition of the space E into the union of rings

K1 = B(x0, r1), Ki = B(x0, ri) \ B(x0, ri−1) for i ≥ 2.

Define the conditional measures

μKi = 1Ki
μ

μ(Ki)
, Li

n = 1Ki
Ln

Ln(Ki)

(whenever Ln(Ki) �= 0). Notice that

Ln =
∑
i≥1

Ln(Ki)L
i
n,

μ =
∑
i≥1

μ(Ki)μ
Ki ,

which we rewrite as

Ln =
∑
i≥1

Ln(Ki) ∧ μ(Ki)L
i
n +

∑
i≥1

[(
Ln(Ki) − μ(Ki)

) ∨ 0
]
Li

n,

μ =
∑
i≥1

Ln(Ki) ∧ μ(Ki)μ
Ki +

∑
i≥1

[(
μ(Ki) − Ln(Ki)

) ∨ 0
]
μKi .
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In the two preceding relations, we make the convention that whenever Ln(Ki) = 0, we set 0 × Li
n = 0, so that no

terms are ill-defined. Set

λ =
∑
i≥1

(
Ln(Ki) − μ(Ki)

) ∨ 0 =
∑
i≥1

(
μ(Ki) − Ln(Ki)

) ∨ 0,

λi = Ln(Ki) ∧ μ(Ki)

(the two definitions of λ agree since
∑

i≥1 Ln(Ki) = ∑
i≥1 μ(Ki) = 1). Set

m = 1

λ

∑
i≥1

[(
Ln(Ki) − μ(Ki)

) ∨ 0
]
Li

n,

n =
∑
i≥1

[(
μ(Ki) − Ln(Ki)

) ∨ 0
]
μKi ,

so that

Ln =
∑
i≥1

λiL
i
n + λm,

μ =
∑
i≥1

λiμ
Ki + λn.

According to Lemma 2.4, we have

Wp(Ln,μ) ≤
∑
i≥1

λ
1/p
i Wp

(
Li

n,μ
Ki

) + λ1/pWp(m,n)

≤
∑
i≥1

λ
1/p
i Wp

(
Li

n,μ
Ki

) + λ1/pWp(μ,m) + λ1/pWp(μ,n).

We take expectations and bound the terms in the right-hand side. Let us start with the second one. With another
application of Lemma 2.4, we get

λ1/pWp(μ,m) ≤
∑
i≥1

[(
Ln(Ki) − μ(Ki)

) ∨ 0
]1/p

Wp

(
μ,Li

n

)
.

We bound the Wasserstein distance with the classical inequality

Wp

(
μ,Li

n

) ≤ M
1/p
p +

(∫
d(x0, x)dLi

n(x)

)1/p

≤ M
1/p
p + ri .

Taking expectations, and choosing some ξ ≥ 1, we have

Eλ1/pWp(μ,m) ≤
∑
i≥1

(
E|Ln(Ki) − μ(Ki)|2

)1/2p(
M

1/p
p + ri

)

≤
∑
i≥1

(
μ(Ki)

n

)1/2p(
M

1/p
p + ri

)

≤ n−1/2p

[
M

1/p
p + r1 +

∑
i≥2

M2ξp
1/2p

r
ξ
i−1

(
M

1/p
p + ri

)]
.
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We have used Jensen’s inequality in the first line, the fact that nLn(Ki) is binomial in the second line and Markov’s
inequality in the third line. Set ri = 2i : we get

Eλ1/pWp(μ,m) ≤ n−1/2pC(μ, ξ),

where

C(μ, ξ) = M
1/p
p + 2 + M

1/2p

2ξp

(
M

1/p
p

2−ξ

1 − 2−ξ
+ 21−ξ

1 − 21−ξ

)
.

The third term is bounded likewise and this yields the same bound. We turn our attention to the first term. In order
to control it, we will apply our result for bounded spaces on the spaces Ki , conditionally on the value of Ln(Ki). Let
us bound λi with Ln(Ki): we get

Eλ
1/p
i Wp

(
Li

n,μ
Ki

) ≤ E
[
Ln(Ki)

1/pc(E,p,α)ri
(
nLn(Ki)

)−1/α]
≤ 2iE

(
Ln(Ki)

1/p−1/α
)
c(E,p,α)n−1/α

≤ 2iμ(Ki)
(α−p)/αpc(E,p,α)n−1/α.

Here c(E,p,α) is the constant given in Corollary 1.2. By an application of Markov’s inequality, picking ζ > 1
yields∑

i≥1

2iμ(Ki)
(α−p)/αp ≤ 1 + M

(α−p)/αp

ζαp/(α−p)

∑
i≥2

2ζ 2i(1−ζ )

= 1 + M
(α−p)/αp

ζαp/(α−p)

2

1 − 21−ζ
.

This implies that the first term is bounded as follows:∑
i≥1

Eλ
1/p
i Wp

(
Li

n,μ
Ki

) ≤ C′(E,p,α,μ, ζ )n−1/α,

where

C′(E,p,α,μ, ζ ) = c(E,p,α)M
(α−p)/αp

ζαp/(α−p)

2

1 − 21−ζ
.

This completes the proof. �

3. Proof of Theorem 1.4

We begin by noticing that statement (6) is a simple consequence of statement (5) and the tensorization of the trans-
portation inequality T2 (see Appendices A and B): we have by Corollary A.1

P
(
W2(Ln,μ) ≥ E

(
W2(Ln,μ)

) + t
) ≤ e−nt2/(2σ 2),

and it suffices to choose t = λψ−1(logn) to conclude. We now turn to the other claims.
Denote by K the unit ball of the Cameron–Martin space associated to E and μ, and by B the unit ball of E.

According to the Gaussian isoperimetric inequality (see [22]), for all λ > 0 and ε > 0,

μ(λK + εB) ≥ �
(
λ + �−1(μ(εB)

))
,

where �(t) = ∫ t

−∞ e−u2/2 du/
√

2π is the Gaussian c.d.f.
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Choose λ > 0 and ε > 0, and set S = λK + εB . Note

μ′ = 1

μ(S)
1Sμ

the restriction of μ to the enlarged ball.
The diameter of S is bounded by 2(σλ + ε). By Theorem 1.1, the W2 distance between Ln and μ is thus bounded

as follows:

EW2(Ln,μ) ≤ 2W2
(
μ,μ′) + ct + cn−1/4

∫ (σλ+ε)/2

t

N(S, δ)1/4 dδ. (20)

Let us denote

I1 = W2
(
μ,μ′), (21)

I2 = t, (22)

I3 = n−1/4
∫ (σλ+ε)/2

t

N(S, δ)1/4 dδ. (23)

To begin with, set ε = t/2.
Controlling I1. We use transportation inequalities and the Gaussian isoperimetric inequality. By Lemma B.1, μ sat-

isfies a T2(2σ 2) inequality, so that we have

W2
(
μ,μ′) ≤

√
2σ 2H

(
μ′|μ) =

√
−2σ 2 logμ(λK + εB)

≤
√

−2σ 2 log�
(
λ + �−1

(
μ(εB)

))
= √

2σ

√
− log�

(
λ + �−1

(
e−ψ(t/2)

))
.

Introduce the tail function of the Gaussian distribution

Υ (x) = √
2π

−1
∫ +∞

x

e−y2/2 dy.

We will use the fact that �−1 + Υ −1 = 0, which comes from symmetry of the Gaussian distribution. We will also
use the bound Υ (t) ≤ e−t2/2/2, t ≥ 0 and its consequence

Υ −1(u) ≤ √−2 logu, 0 < u ≤ 1/2.

We have

�−1(e−ψ(t/2)
) = −Υ −1(e−ψ(t/2)

) ≥ −√
2ψ(t/2)

as soon as ψ(t/2) ≥ log 2. The elementary bound log 1
1−x

≤ 2x for x ≤ 1/2 yields

√−2 log�(u) = √
2

(
log

1

1 − Υ (u)

)1/2

≤ 2e−u2/4

whenever u ≥ Υ −1(1/2) = 0. Putting this together, we have

I1 ≤ 2σe−(λ−√
2ψ(t/2))2/4 (24)
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whenever

ψ(t/2) ≥ log 2 and λ − √
2ψ(t/2) ≥ 0. (25)

Controlling I3. The term I3 is bounded by 1/2n−1/4(σλ + t/2)N(S, t)1/4 (just bound the function inside by its
value at t , which is minimal). Denote by k = N(λK, t − ε) the covering number of λK (w.r.t. the norm of E). Let
x1, . . . , xk ∈ K be such that union of the balls B(xi, t − ε) contains λK . From the triangle inequality we get the
inclusion

λK + εB ⊂
k⋃

i=1

B(xi, t).

Therefore, N(S, t) ≤ N(λK, t − ε) = N(λK, t/2).
We now use the well-known link between N(λK, t/2) and the small ball function. Lemma 1 in [21] gives the

bound

N(λK, t/2) ≤ eλ2/2+ψ(t/4) ≤ eλ2/2+κψ(t/2)

so that

I3 ≤ 1

2
(σλ + t/2)eλ2/8+(κ/4)ψ(t/2)−(1/4) logn. (26)

Remark that we have used the doubling condition on ψ , so that we require

t/4 ≤ t0. (27)

Final step. Set now t = 2ψ−1(a logn) and λ = 2
√

2a logn, with a > 0 yet undetermined. Using (24) and (26), we
see that there exists a universal constant c such that

E
(
W2(Ln,μ)

) ≤ c
[
ψ−1(a logn) + σe−(a/2) logn

+ (
σ
√

a logn + ψ−1(a logn)
)
e[a(1+κ/4)−1/4] logn

]
.

Choose a = 1/(6 + κ) and assume logn ≥ (6 + κ)(log 2 ∨ ψ(1) ∨ ψ(2t0)). This guarantees that the technical
conditions (25) and (27) are enforced, and that ψ−1(a logn) ≤ 1. Summing up, we get:

E
(
W2(Ln,μ)

) ≤ c

[
ψ−1

(
1

6 + κ
logn

)
+

(
1 + σ

√
1

6 + κ
logn

)
n−1/(12+2κ)

]
.

Impose logn ≥ (6 + κ)/σ 2: this ensures σ

√
1

6+κ
logn ≥ 1. And finally, there exists some c > 0 such that for all

x ≥ 1,
√

logxx−1/4 ≤ c: this implies

√
1

6 + κ
lognn−1/(24+4κ) ≤ c.

This gives

(
1 + σ

√
1

6 + κ
logn

)
n−1/(12+2κ) ≤ cσn−1/[4(6+κ)]

and the proof is finished.
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4. Proofs in the dependent case

We consider hereafter a Markov chain (Xn)n∈N defined by X0 ∼ ν and the transition kernel P . Let us denote by

Ln =
n∑

i=1

δXi

its occupation measure.

Proposition 4.1. Suppose that the Markov chain satisfies (7) for some C > 0 and λ < 1. Then the following holds:

Eν

(
Wp(Ln,π)

) ≤ c

(
t +

(
C

(1 − λ)n

∥∥∥∥ dν

dπ

∥∥∥∥
Lr(π)

)1/2p ∫ Δ/4

t

N(E, δ)1/2p(1+1/r) dδ

)
. (28)

Proof. Introduce a sequence of k ≥ 1 nested partitions (Sj,l)1≤j≤k as in Lemma 2.1. An application of (16) as in the
proof of Theorem 1.1 (see (19)) yields

E
(
Wp(Ln,π)

) ≤ 2 × 4−k+1Δ +
k∑

j=1

2 × 4−j+2Δ

(
m(j)∑
l=1

E
∣∣(Ln − π)(Sj,l)

∣∣)1/p

. (29)

Let A be a measurable subset of E, and set fA(x) = 1A(x) − π(A). We have

E
∣∣(Ln − π)(A)

∣∣ = 1/nEν

∣∣∣∣∣
n∑

i=1

fA(Xi)

∣∣∣∣∣
≤ 1/n

√√√√ n∑
i=1

n∑
j=1

Eν

[
fA(Xi)fA(Xj )

]
.

Let p̃, q̃, r ≥ 1 be such that 1/p̃ + 1/q̃ + 1/r = 1, and let s be defined by 1/s = 1/p̃ + 1/q̃ . Now, using Hölder’s
inequality with r and s,

Eν

[
fA(Xi)fA(Xj )

] ≤
∥∥∥∥ dν

dπ

∥∥∥∥
Lr(π)

(
Eπ |fA(Xi)fA(Xj )|s

)1/s
.

Take j ≥ i. Use the Markov property and the fact that f → Pf is a contraction in Ls(π) to get

Eν

[
fA(Xi)fA(Xj )

] ≤
∥∥∥∥ dν

dπ

∥∥∥∥
Lr(π)

∥∥fAP j−ifA

∥∥
Ls(π)

.

Finally, use Hölder’s inequality with p̃, q̃: we get

Eν

[
fA(Xi)fA(Xj )

] ≤
∥∥∥∥ dν

dπ

∥∥∥∥
Lr(π)

∥∥P j−ifA

∥∥
Lp̃(π)

‖fA‖Lq̃(π). (30)

Set p̃ = 2 and note that for 1 ≤ t ≤ +∞, we have ‖fA‖Lt (π) ≤ 2π(A)1/t . Use (7) applied to the centered function
fA to get

Eν

[
fA(Xi)fA(Xj )

] ≤ 4Cλj−i

∥∥∥∥ dν

dπ

∥∥∥∥
Lr(π)

π(A)1−1/r ,
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and as a consequence,

E
∣∣(Ln − π)(A)

∣∣ ≤ 1√
n

2
√

2C√
1 − λ

∥∥∥∥ dν

dπ

∥∥∥∥
1/2

Lr(π)

π(A)1/2−1/2r . (31)

Come back to (29): we have

E
(
Wp(Ln,π)

) ≤ 2 × 4−k+1Δ + 32

(
2
√

2C√
1 − λ

)1/p∥∥∥∥ dν

dπ

∥∥∥∥
1/2p

Lr(π)

n−1/2p

×
k∑

j=1

4−jΔ

(
m(j)∑
l=1

π(Xj,l)
1/2−1/2r

)1/p

≤ 2 × 4−k+1Δ + c

(
C

(1 − λ)n

∥∥∥∥ dν

dπ

∥∥∥∥
Lr(π)

)1/2p

×
k∑

j=1

4−jΔm(j)1/2p(1+1/r)

≤ c

(
t +

(
C

(1 − λ)n

∥∥∥∥ dν

dπ

∥∥∥∥
Lr(π)

)1/2p ∫ Δ/4

t

N(E, δ)1/2p(1+1/r) dδ

)
. �

Proof of Theorem 1.5. Use (28) and (10) to get

EWp(Ln,μ) ≤ c
[
t + At−α/2p(1+1/r)+1],

where

A = 2p

α(1 + 1/r)

(
C/(1 − λ)

)1/2p

∥∥∥∥ dν

dπ

∥∥∥∥
1/2p

Lr (π)

n−1/2pΔα/2p(1+1/r).

Optimizing in t finishes the proof. �

We now move to the proof in the unbounded case.

Proof of Theorem 1.6. We will mimic the proof of Corollary 1.3: we give an outline and indicate where changes are
appropriate. First introduce the rings Ki and the conditional measures

π |Ki
= 1Ki

π

π(Ki)
, Li

n = 1Ki
Ln

Ln(Ki)
.

Also let

λ0 =
∑
i≥1

(
Ln(Ki) − π(Ki)

) ∨ 0 =
∑
i≥1

(
π(Ki) − Ln(Ki)

) ∨ 0,

λi = Ln(Ki) ∧ π(Ki)

and

m = 1

λ0

∑
i≥1

[(
Ln(Ki) − π(Ki)

) ∨ 0
]
Li

n,

n =
∑
i≥1

[(
π(Ki) − Ln(Ki)

) ∨ 0
]
π |Ki

.
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Following the proof of Corollary 1.3 we get

Wp(Ln,π) ≤
∑
i≥1

λ
1/p
i Wp

(
Li

n,π |Ki

) + λ
1/p

0 Wp(π,m) + λ
1/p

0 Wp(π,n).

We will take expectations and bound the terms separately. The second term is bounded as follows:

Eλ
1/p

0 Wp(μ,m) ≤
∑
i≥1

(
E|Ln(Ki) − μ(Ki)|2

)1/2p(
M

1/p
p + ri

)
.

Here we must depart from the independent case. Using instead relation (31), we have

(
E|(Ln − π)(Ki)|2

)1/2p ≤ n−1/2p

(
8C

1 − λ

∥∥∥∥ dν

dπ

∥∥∥∥
Lr(π)

)1/2p

π(Ki)
(1−1/r)/2p.

Take ri = 2i , set ξ > 1 and use Markov’s inequality. After summation, we see that

Eλ
1/p

0 Wp(μ,m) ≤
(

8C

(1 − λ)n

∥∥∥∥ dν

dπ

∥∥∥∥
Lr(π)

)1/2p

C(μ,p, r, ξ) (32)

where

C(μ,p, r, ξ) = M
1/p
p + 2 + M

(1−1/r)/2p

2pξ/(1−1/r)

[
M

1/p
p

2−ξ

1 − 2−ξ
+ 21−ξ

1 − 21−ξ

]
.

The third term is bounded identically. As for the first one, it will require a little more work. For now fix i ≥ 1 and
k ≥ 1, and introduce nested tesselations (Sj,l)1≤j≤k of Ki as in the proof of Proposition 4.1. Following the line of
reasoning of this proof, we obtain

E
(
λ

1/p
i Wp

(
Li

n,π |Ki

)) ≤ 2 × 4−k+1riπ(Ki)
1/p

+
k∑

j=1

2 × 4−j+2ri

(
m(j)∑
l=1

ELn(Ki)
∣∣(Li

n − π |Ki

)
(Sj,l)

∣∣)1/p

.

Let us deal with the term inside parentheses. Observe that

Ln(Ki)
∣∣(Li

n − π |Ki

)
(Sj,l)

∣∣ =
∣∣∣∣1

n

n∑
t=1

1Sj,l
(Xt ) − Ln(Ki)

π(Ki)
π(Sj,l)

∣∣∣∣
≤

∣∣∣∣1

n

n∑
t=1

(
1Sj,l

(Xt ) − π(Sj,l)
)∣∣∣∣ + π(Sj,l)

∣∣∣∣Ln(Ki)

π(Ki)
− 1

∣∣∣∣.
After summing over all l and taking expectations, we get

m(j)∑
l=1

ELn(Ki)
∣∣(Li

n − π |Ki

)
(Sj,l)

∣∣ ≤
m(j)∑
l=1

E
∣∣(Ln − π)(Sj,l)

∣∣ + E
∣∣Ln(Ki) − π(Ki)

∣∣.
With help of (31), setting Z = ( 8C

1−λ
‖ dν

dπ
‖Lr(π))

1/2 for convenience, we bound the above by

m(j)∑
l=1

ELn(Ki)
∣∣(Li

n − π |Ki

)
(Sj,l)

∣∣ ≤ Z√
n

(
m(j)∑
l=1

π(Sj,l)
1/2−1/2r + π(Ki)

1/2−1/2r

)

≤ Z√
n
π(Ki)

1/2−1/2r
(
m(j)1/2+1/2r + 1

)
.
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With this bound and arguments of integral approximation that are by now usual, we obtain

E
(
λ

1/p
i Wp

(
Li

n,π |Ki

)) ≤ C1 × (
π(Ki)

1/p−1/α2i
)( C

(1 − λ)n

∥∥∥∥ dν

dπ

∥∥∥∥
Lr(π)

)1/[α(1+1/r)]
,

where C1 > 0 is some constant depending on E,α,p, r . The end goes as in the proof of Corollary 1.3: for ζ > 1, we
get

∑
i≥1

E
(
λ

1/p
i Wp

(
Li

n,π |Ki

)) ≤ C2(μ,p, r, ζ,α)

(
C

(1 − λ)n

∥∥∥∥ dν

dπ

∥∥∥∥
Lr(π)

)1/[α(1+1/r)]
, (33)

where

C2(μ,p, r, ζ,α) = C1

(
1 + M

(α−p)/αp

ζαp/(α−p)

21−ζ

1 − 21−ζ

)

(and C1 depends on E,α,p, r). This completes the proof. �

Appendix A: Some results from measure concentration

In this appendix, we provide results for the deviation of Wp(Ln,μ) from its mean. We consider only the independent
case here. Together with our main results, they give quantitative bounds for the convergence in probability of the
empirical measure.

It is an easy observation that when En is endowed with the lp metric

dp

(
(x1, . . . , xn), (y1, . . . , yn)

) = (
d(x1, y1)

p + · · · + d(xn, yn)
p
)1/p

, (34)

the application (x1, . . . , xn) → Lx
n = 1/n

∑n
i=1 δxi

is Lipschitz with constant n−1/p , when the arrival space Pp(E) is
endowed with the metric Wp . Therefore, it is natural to look for concentration inequalities for Lipschitz functions on
the space En endowed with the product measure μ⊗n, under which Lx

n is the empirical measure associated with μ.
One suitable choice is to look for transportation inequalities.

Transportation inequalities or transportation-entropy inequalities were introduced by K. Marton [28] in order to
study the phenomenon of concentration of measure. M. Talagrand showed that the finite-dimensional Gaussian mea-
sures satisfy a T2 inequality. Appendix B contains a simple extension of this result to the infinite-dimensional case.
For much more on the topic of transportation inequalities, the reader may refer to the survey [15] by N. Gozlan and
C. Léonard.

For μ ∈ P (E), let H(·|μ) denote the relative entropy with respect to μ:

H(ν|μ) =
∫

E

dν

dμ
log

dν

dμ
dμ

if ν � μ, and H(ν|μ) = +∞ otherwise.
We say that μ ∈ Pp(E) satisfies a Tp(C) transportation inequality when

Wp(ν,μ) ≤ √
CH(ν|μ) ∀ν ∈ Pp(E).

Let Ln denote the empirical measure associated with μ ∈ P (E). The next result states that a Tp inequality on μ

implies a Gaussian concentration inequality for Wp(Ln,μ). We reproduce a particular case of more general results of
N. Gozlan and C. Léonard [14,15].
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Theorem A.1 ([14], Theorem 12). Let μ ∈ P (E) satisfy a Tp(C) inequality. The following holds:

P
(
Wp(Ln,μ) ≥ E

[
Wp(Ln,μ)

] + t
) ≤ e−nt2/C. (35)

Likewise, if μ satisfies the modified inequality Wp(μ,ν) ≤ (CH(ν|μ))1/2p , the following holds:

P
(
Wp(Ln,μ) ≥ E

[
Wp(Ln,μ)

] + t
) ≤ e−nt2p/C. (36)

Remark. Actually, it is not difficult to check that in Theorem A.1 we can actually replace Wp(Ln,μ) with Wp(Ln, ν)

for any ν ∈ P (E) (the only important point being that x → Wp(Lx
n, ν) is always Lipschitz).

The bound (35) is used for Gaussian measures in Appendix B. As for the bound (36), its interest is made clear by
the following result of F. Bolley and C. Villani ([6], Particular case 2.5): whenever μ ∈ Pp(E) has support with finite
diameter D, it satisfies

Wp(ν,μ) ≤ (
2D2pH(ν|μ)

)1/2p ∀ν ∈ Pp(E). (37)

With this in hand, we are in a position to give deviation bounds for measures satisfying only some boundedness or
moment condition.

Proposition A.2. If μ ∈ Pp(E) satisfies D = Diam Suppμ < +∞, we have

P
(
Wp(Ln,μ) ≥ E

[
Wp(Ln,μ)

] + t
) ≤ e−nt2p/(2D2p).

Likewise, if μ has finite moment of order β , i.e. Mβ = ∫
d(x0, x)β dμ < +∞, and β > 2p, we have

P
(
Wp(Ln,μ) ≥ E

[
Wp(Ln,μ)

] + t
) ≤ Cβn1−β/2pt−β

(
1 + (

lognβ/2p−1tβ
)β/2p)

,

where the constant Cβ is bounded by 2β(1+1/2p)Mβ .

Remark. In contrast with the case of transportation inequalities, we get a polynomial speed of convergence under
a polynomial moment assumption. This is not too surprising if one ponders the fact that a transportation inequality
implies the finiteness of a square-exponential moment (see [10]), and more generally that any convex transportation-
entropy inequality, as defined in [14], requires at least the finiteness of an exponential moment.

Proof. The majorization in the bounded case is a straightforward consequence of (36) and (37).
In the unbounded case, we use a conditioning argument. Let Xi denote i.i.d. variables of law μ. Let us call M =

max1≤i≤n d(x0,Xi) with x0 some fixed point, and Ln = ∑n
i=1 δXi

. Let R > 0 and denote by B the ball B(x0,R):
conditionally to M ≤ R, Ln is the empirical measure associated with the measure μB = μ1B/μ(B).

We have

P
(
Wp(Ln,μ) ≥ E

[
Wp(Ln,μ)

] + t
) ≤ P

(
Wp(Ln,μ) ≥ E

[
Wp(Ln,μ)

] + t |M ≤ R
)

+ P(M ≥ R).

Thanks to the first result, we know that

P
(
Wp(Ln,μ) ≥ E

[
Wp(Ln,μ)

] + t |M ≤ R
) ≤ e−nt2p/(2(2R)2p).

Observe that we used our first result with Wp(Ln,μ) instead of Wp(Ln,μ
B), but it is still valid in this case for the

same reasons as in the remark following Theorem A.1.
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On the other hand,

P(M ≥ R) = 1 − P(X1 ≤ R)n = 1 − (
1 − P(X1 ≥ R)

)n

≤ nP(X1 ≥ R)

≤ nMβ/Rβ.

Altogether,

P
(
Wp(Ln,μ) ≥ E

[
Wp(Ln,μ)

] + t
) ≤ e−nt2p/(22p+1R2p) + nMβ/Rβ.

Set y = nt2p/(22p+1R2p): the right-hand side is equal to

e−y + n1−β/2pt−βMβ2β(2p+1)/2pyβ/2p.

We pick a value for y by setting y = − logn1−β/2pt−β , which is positive as soon as n ≥ t−2pβ/(β−2p). We get the
announced result. �

Remark. At least in the case p = 1, the result of Proposition A.2 in the bounded support case can be recovered in an
alternate fashion, using Azuma’s inequality (also known as the method of bounded martingale differences). To do so,
one should note that the function

(x1, . . . , xn) → W1
(
Lx

n,μ
)

has increments bounded by D/n in all its variables.

We do not go any further in the discussion of this topic. However, it is clear that there exist many more functional
inequalities yielding concentration-of-measure estimates, such as Poincaré and log-Sobolev inequalities and their
weak or weighted forms, and the behaviour under tensorization of these inequalities, which is crucial in the argument
above, is generally well understood. References may be found e.g. in the book [23].

Remark. We have left aside the case of dependent samples, which requires results on dependent tensorization of
concentration inequalities. Results in this case are not as numerous as in the independent framework. The reader may
refer to Theorem 2.5 in [10] as well as to [4,20] in the W1 case.

Appendix B: Transportation inequalities for Gaussian measures on a Banach space

We identify what kind of transport inequality is satisfied by a Gaussian measure on a Banach space. We remind the
reader of the following definition: let (E,μ) be a Gaussian–Banach space and X ∼ μ be an E-valued r.v. The weak
variance of μ or X is defined by

σ 2 = sup
f ∈E∗,|f |≤1

E
(
f 2(X)

)
.

The lemma below is optimal, as shown by the finite-dimensional case.

Lemma B.1. Let (E,μ) be a Gaussian–Banach space, and let σ 2 denote the weak variance of μ. Then μ satisfies a
T2(2σ 2) inequality.

Proof. According e.g. to [24], there exists a sequence (xi)i≥1 in E and an orthogaussian sequence (gi)i≥1 (meaning
a sequence of i.i.d. standard normal variables) such that∑

i≥1

gixi ∼ μ,
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where convergence of the series holds a.s. and in all the Lp’s. In particular, the laws μn of the partial sums
∑n

i=1 gixi

converge weakly to μ.
As a consequence of the stability result of Djellout, Guillin and Wu (Lemma 2.2 in [10]) showing that T2 is stable

under weak convergence, it thus suffices to show that the measures μn all satisfy the T2(2σ 2) inequality.
First, by definition of σ , we have

σ 2 = sup
f ∈E∗,|f |≤1

E

(+∞∑
i=1

f (xi)gi

)2

and since (gi) is an orthogaussian sequence, the sum is equal to
∑+∞

i=1 f 2(xi).
Consider the mapping

T :
(
Rn,N

) → (
E,‖ · ‖)

(a1, . . . , an) →
n∑

i=1

aixi .

(here Rn is equipped with the Euclidean norm N ). With the remark above it is easy to check that ‖T (a)‖ ≤ σN(a)

for a ∈ Rn. Consequently, T is σ -Lipschitz, and we can use the second stability result of Djellout, Guillin and Wu
(Lemma 2.1 in [10]): the push forward of a measure satisfying T2(C) by a L-Lipschitz function satisfies T2(L

2C).
As is well-known, the standard Gaussian measure γ n on Rn satisfies T2(2) and thus T#γ

n satisfies T2(2σ 2). But it is
readily checked that T#γ

n = μn, which concludes this proof. �

Remark. M. Ledoux indicated to us another way to obtain this result. First, one shows that the Gaussian measure
satisfies a T2(2) inequality when considering the cost function c = d2

H , where dH denotes the Cameron–Martin metric
on E inherited from the scalar product on the Cameron–Martin space. This can be done in a number of ways, for
example by tensorization of the finite-dimensional T2 inequality for Gaussian measures or by adapting the Hamilton–
Jacobi arguments of Bobkov, Gentil and Ledoux [3] in the infinite-dimensional setting. It then suffices to observe that
this transport inequality implies the one we are looking for since we have the bound d ≤ σdH (here d denotes the
metric inherited from the norm of the Banach space).
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