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Abstract. A variational formula for positive functionals of a Poisson random measure and Brownian motion is proved. The formula
is based on the relative entropy representation for exponential integrals, and can be used to prove large deviation type estimates.
A general large deviation result is proved, and illustrated with an example.

Résumé. Une formule variationnelle pour des fonctionnelles positives d’une mesure de Poisson aléatoire et d’un mouvement
brownien est démontrée. Cette formule provient de la représentation des intégrales exponentielles par l’entropie relative, et peut
être utilisée pour obtenir des estimées de grandes déviations. Un résultat de grandes déviations général est démontré.
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1. Introduction

In this paper we prove a variational representation for positive measurable functionals of a Poisson random measure
and an infinite-dimensional Brownian motion. These processes provide the driving noises for a wide range of impor-
tant process models in continuous time, and thus we also obtain variational representations for these processes when
a strong solution exists. The representations have a number of uses, the most important being to prove large deviation
estimates.

The theory of large deviations is by now well understood in many settings, but there remain some situations where
the topic is not as well developed. These are often settings where technical issues challenge standard approaches, and
the problem of finding nearly optimal or even reasonably weak sufficient conditions is hindered as much by technique
of proof as any other issue.

Variational representations of the sort developed in this paper have been shown to be particularly useful, when
combined with weak convergence methods, for analyzing such systems. For example, Brownian motion representa-
tions have been used by [1, 6–8, 9, 10, 17–21, 23–25, 26, 29] in the large deviation analysis of solutions to SPDEs
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in the small noise limit, and recently in [5] for interacting particle limits. Other examples occur when there is little
regularity associated with the process dynamics, such as non-Lipschitz or even discontinuous coefficients [3,19].

The usefulness of the representations is in part due to the fact that they avoid certain discretization and/or approx-
imation arguments, which can be cumbersome for complex systems. Another reason is that exponential tightness,
a property that is often required by other approaches and which often leads to artificial conditions, is replaced by or-
dinary tightness for controlled processes with uniformly bounded control costs. (Although exponential tightness can
a posteriori be obtained as consequence of the large deviation principle (LDP) and properties of the rate function.)
What is required for the weak convergence approach, beyond the variational representations, is that basic qualitative
properties (existence, uniqueness and law of large number limits) can be demonstrated for certain controlled versions
of the original process.

Previous work on variational representations has focused on either discrete time processes [11], functionals of
finite-dimensional Brownian motion [2], or various formulations of infinite-dimensional Brownian motion [4,6]. An
important class of processes that were not covered are continuous time Markov processes with jumps, e.g., Lévy
processes. In this paper we eliminate this gap, and in fact give variational representations for functionals of a fairly
general Poisson random measure (PRM) plus an independent infinite-dimensional Brownian motion (BM), thereby
covering many continuous time models.

In [28] Zhang has also proved a variational representation for functionals of a PRM. The representation in [28] is
given in terms of certain predictable transformations on the canonical Poisson space. Existence of such transformations
relies on solvability of certain nonlinear partial differential equations from the theory of mass transportation. This
imposes restrictive conditions on the intensity measure (e.g., absolute continuity with respect to Lebesgue measure)
of the PRM (see (H1) and (H2) of [28]), and even the very elementary setting of a standard Poisson process is not
covered. Additionally, use of such a representation for proving large deviation results for general continuous time
models with jumps appears to be unclear.

In contrast, we impose very mild assumptions on the intensity measure (namely, it is a σ -finite measure on a
locally compact space), and establish a representation in Theorem 2.1 (see also Theorem 3.1), that is given in terms
of a fixed PRM defined on an augmented space. A key question in formulating the representation for PRM is “what
form of controlled PRM is natural for the representation of exponential integrals via relative entropy duality?” In the
Brownian case there is little room for discussion, since control by shifting the mean is obviously very appealing. In [28]
the control moves the atoms of the Poisson random measure through a rather complex nonlinear transformation. The
fact that atoms are neither created nor destroyed is partly responsible for the fact that the representation does not cover
the standard Poisson process. In the representation obtained here the control process enters as a censoring/thinning
function in a very concrete fashion, which in turn allows for elementary weak convergence arguments in proofs of
large deviation results.

As an application of the representation, we establish a general large deviation principle (LDP) for functionals
of a PRM and an infinite-dimensional BM in Section 4. A similar LDP for functionals of an infinite-dimensional
BM [4] has been used in recent years by numerous authors to study small noise asymptotics for a variety of infinite-
dimensional stochastic dynamical models (e.g., [1, 6–8, 9, 10, 17–21, 23–25, 26, 29]). The LDP obtained in the current
paper is expected to be similarly useful in the study of infinite-dimensional stochastic models with jumps (e.g., SPDEs
with jumps). We illustrate the use of the LDP in Section 4 via a simple finite-dimensional jump-diffusion model. The
goal is to simply show how the approach can be used and no attempt is made to obtain the best possible conditions.

An outline of the paper is as follows. In the next section we state and prove the representation for the case of a
PRM. We note that the argument used for the lower bound is much simpler than the corresponding argument used in
previous papers [4,6]. A statement of the general representation (i.e., for functionals of both a PRM and an infinite-
dimensional BM) is in Section 3 with a sketch of proof given in the Appendix. A general large deviation result and a
particular example are given in Section 4, and the paper concludes with an appendix which contains proofs of some
auxiliary results.

Notation and a topology

The following notation will be used. For a metric space S denote by Mb(S), C(S), Cb(S), Cc(S), the spaces of real,
bounded Borel measurable functions, continuous functions, continuous bounded functions and continuous functions
with compact support, respectively. The Borel σ -field on S will be denoted as B(S). For an S-valued measurable map
X defined on some probability space (Ω,F,P ) we will denote the measure induced by X on (S, B(S)) by P ◦ X−1.
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Given S-valued random variables Xn,X, we will write Xn ⇒ X to denote the weak convergence of P ◦ X−1
n to

P ◦ X−1. For a real bounded measurable map h on a measurable space (V , V ), we denote supv∈V |h(v)| by |h|∞. The
space of all probability measures on (V , V ) is denoted as P(V , V ) or merely as P(V ), when clear from the context.

For a locally compact Polish space S, we denote by MF (S) the space of all measures ν on (S, B(S)), satisfying
ν(K) < ∞ for every compact K ⊂ S. We endow MF (S) with the weakest topology such that for every f ∈ Cc(S) the
function ν �→ 〈f, ν〉 = ∫

S
f (u)ν(du), ν ∈ MF (S) is continuous. This topology can be metrized such that MF (S) is a

Polish space. One metric that is convenient for this purpose is the following. Consider a sequence of open sets {Oj , j ∈
N} such that Ōj ⊂ Oj+1, each Ōj is compact, and

⋃∞
j=1 Oj = S (cf. Theorem 9.5.21 of [22]). Let φj (x) = [1 −

d(x,Oj )]∨0, where d denotes the metric on S. Given any μ ∈ MF (S), let μj ∈ MF (S) be defined by [dμj/dμ](x) =
φj (x). Given μ,ν ∈ MF (S), let

d̄(μ, ν) =
∞∑

j=1

2−j
∥∥μj − νj

∥∥
BL,

where ‖ · ‖BL denotes the bounded, Lipschitz norm:

∥∥μj − νj
∥∥

BL = sup

{∫
S

f dμj −
∫

S

f dνj : |f |∞ ≤ 1,
∣∣f (x) − f (y)

∣∣ ≤ d(x, y) for all x, y ∈ S

}
.

It is straightforward to check that d̄(μ, ν) defines a metric under which MF (S) is a Polish space, and that convergence
in this metric is essentially equivalent to weak convergence on each compact subset of X. Specifically, d̄(μn,μ) → 0
if and only if for each j ∈ N, μ

j
n → μj in the weak topology as finite nonnegative measures, i.e., for all f ∈ Cb(X)∫

S

f dμ
j
n →

∫
S

f dμj .

Throughout B(MF (S)) will denote the Borel σ -field on MF (S), under this topology.

2. Representations for functionals of a PRM

Let X be a locally compact Polish space. Fix T ∈ (0,∞) and let XT = [0, T ] × X. Fix a measure ν ∈ MF (X) and let
νT = λT ⊗ ν, where λT is Lebesgue measure on [0, T ]. Let M = MF (XT ) and denote by P the unique probability
measure on (M, B(M)) under which the canonical map, N : M → M,N(m)

.= m, is a Poisson random measure with
intensity measure νT (see [12], Section I.8). With applications to large deviations in mind, we also consider, for θ > 0,
the analogous probability measures Pθ on (M, B(M)) under which N is a Poisson random measure with intensity θνT .
The corresponding expectation operators will be denoted by E and Eθ , respectively.

We will obtain variational representations for − logEθ (exp[−F(N)]), where F ∈ Mb(M), in terms of a Poisson
random measure constructed on a larger space. We now describe this construction.

2.1. Controlled Poisson random measure

Let Y = X × [0,∞) and YT = [0, T ] × Y. Let M̄ = MF (YT ) and let P̄ be the unique probability measure on
(M̄, B(M̄)) such that the canonical map, N̄ : M̄ → M̄, N̄(m)

.= m, is a Poisson random measure with intensity
measure ν̄T = λT ⊗ ν ⊗ λ∞, where λ∞ is Lebesgue measure on [0,∞). The corresponding expectation opera-
tor will be denoted by Ē. The control will act through this additional component of the underlying point space. Let
Gt

.= σ {N̄((0, s]×A): 0 ≤ s ≤ t,A ∈ B(Y)}, and to facilitate the use of a martingale representation theorem let F̄t de-
note the completion under P̄. We denote by P̄ the predictable σ -field on [0, T ]×M̄ with the filtration {F̄t : 0 ≤ t ≤ T }
on (M̄, B(M̄)). Let Ā be the class of all (P̄ ⊗ B(X))\B[0,∞) measurable maps ϕ : XT ×M̄ → [0,∞). Since M̄ is the
underlying probability space, following standard convention, we will at times suppress the dependence of ϕ(t, x,ω)

on ω, (t, x,ω) ∈ XT × M̄, and merely write ϕ(t, x). For ϕ ∈ Ā, define a counting process Nϕ on XT by

Nϕ
(
(0, t] × U

) =
∫

(0,t]×U

∫
(0,∞)

1[0,ϕ(s,x)](r)N̄(ds dx dr), t ∈ [0, T ],U ∈ B(X). (2.1)
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Nϕ is to be thought of as a controlled random measure, with ϕ selecting the intensity for the points at location x

and time s, in a possibly random but nonanticipating way. When, for some θ > 0, ϕ(s, x,ω) = θ , for all (s, x,ω) ∈
XT × M̄, we will write Nϕ as Nθ . Obviously Nθ has the same distribution on M̄ with respect to P̄ as N has on M

with respect to Pθ . Nθ therefore plays the role of N on M̄. Define 
 : [0,∞) → [0,∞) by


(r) = r log r − r + 1, r ∈ [0,∞).

As is well known, 
 is the local rate function for a standard Poisson process and so it is not surprising that it plays a
key role in our analysis. For ϕ ∈ Ā, define a [0,∞]-valued random variable LT (ϕ) by

LT (ϕ)(ω) =
∫

XT



(
ϕ(t, x,ω)

)
νT (dt dx), ω ∈ M̄. (2.2)

The following is the main result of this section. The first equality is elementary.

Theorem 2.1. Let F ∈ Mb(M). Then, for θ > 0,

− logEθ

(
e−F(N)

) = − log Ē
(
e−F(Nθ )

) = inf
ϕ∈Ā

Ē
[
θLT (ϕ) + F

(
Nθϕ

)]
.

The proof of this theorem follows from an upper bound established in Theorem 2.6 of Section 2.3.1, and a lower
bound established in Theorem 2.8 of Section 2.3.2. For notational convenience we will only provide arguments for
the case θ = 1. The general case is treated similarly.

Remark 2.2. In some applications a generalization of this result is useful. Consider a probability space with a com-
plete filtration on which is given a PRM (with respect to this filtration) with intensity measure ν̄T = λT ⊗ ν ⊗ λ∞.
Then a representation as in Theorem 2.1 holds with expectation computed on this space and the infimum taken over
all controls that are predictable with respect to the given filtration (which may be strictly larger than the filtration
generated by the PRM). A similar extension is possible for Theorem 3.1. For concreteness, the canonical space and
filtration is considered here, but we note that analogous representations, for functionals of Brownian motions, in terms
of general filtrations have been established in [4]. It is only in the proof of the upper bound in the representation that
additional work is needed, and a remark on how the extension can be proved is given at the end of Section 2.3.1.

2.2. A class of nice controls

Let {Kn ⊂ X, n = 1,2, . . .} be an increasing sequence of compact sets such that
⋃∞

n=1 Kn = X. For each n let

Āb,n
.= {

ϕ ∈ Ā : for all (t,ω) ∈ [0, T ] × M̄, n ≥ ϕ(t, x,ω) ≥ 1/n and ϕ(t, x,ω) = 1 if x ∈ Kc
n

}
,

and let

Āb =
∞⋃

n=1

Āb,n.

This class of controls is particularly convenient. Let N1
c be the compensated version of N1, which is defined by

N1
c (A) = N1(A) − νT (A) for all A ∈ B(XT ) such that νT (A) < ∞.
Another class of processes, which will be used as test functions, is as follows. Let Âb be the set of all of all bounded

(P̄ ⊗ B(Y))\B(R) measurable maps ϑ : YT ×M̄ → R, such that for some for some compact K ⊂ Y, ϑ(s, x, r,ω) = 0
whenever (x, r) ∈ Kc . Once again ω will be frequently suppressed from the notation. The following result is standard
(see, e.g., Theorem III.3.24 of [14]).
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Lemma 2.3. Let ϕ ∈ Āb . Then

Et (ϕ)
.= exp

{∫
(0,t]×X

log
(
ϕ(s, x)

)
N1

c (ds dx) +
∫

(0,t]×X

(
log

(
ϕ(s, x)

) − ϕ(s, x) + 1
)
νT (ds dx)

}

= exp

{∫
(0,t]×X×[0,1]

log
(
ϕ(s, x)

)
N(ds dx dr) +

∫
(0,t]×X×[0,1]

(−ϕ(s, x) + 1
)
ν̄T (ds dx dr)

}

is an {F̄t }-martingale. Define a probability measure Qϕ on M̄ by

Qϕ(G) =
∫

G

ET (ϕ)dP̄ for G ∈ B(M̄).

Then for any ϑ ∈ Âb ,

EQϕ

∫
ϑ(s, x, r)N̄(ds dx dr) = EQϕ

∫
ϑ(s, x, r)

[
ϕ(s, x)1(0,1](r) + 1(1,∞)(r)

]
ν̄T (ds dx dr).

The last statement in the lemma says that under Qϕ , N̄ is a random counting measure with compensator
[ϕ(s, x)1(0,1](r) + 1(1,∞)(r)]ν̄T (ds dx dr).

Lemma 2.4. Let ϕ ∈ Āb,n. Then there exists a sequence of processes ϕk ∈ Āb,n with the following properties:

(1) There exist 
,n1, . . . , n
 ∈ N and a partition 0 = t0 < t1 < · · · < t
 = T , F̄ti−1 -measurable random variables Xij ,
i = 1, . . . , 
, j = 1, . . . , n
, and for each i = 1, . . . , 
 a disjoint measurable partition Eij of Kn, j = 1, . . . , n
,
such that 1/n ≤ Xij ≤ n and

ϕk(t, x, m̄) = 1{0}(t) +

∑

i=1

ni∑
j=1

1(ti−1,ti ](t)Xij (m̄)1Eij
(x) + 1Kc

n
(x)1(0,T ](t). (2.3)

(2) Nϕk converges in distribution to Nϕ as k → ∞.
(3) Ē|LT (ϕk) − LT (ϕ)| → 0 and Ē|ET (ϕk) − ET (ϕ)| → 0, as k → ∞.

The collection of processes identified in item 1 of the lemma will be denoted Ās,n. We let Ās = ⋃∞
n=1 Ās,n and

refer to elements in Ās as simple processes.

Proof of Lemma 2.4. We first construct processes ϕk which satisfy parts (2) and (3) of the lemma but not (necessarily)
part (1). For k ∈ N define

ϕk(t, x,ω) = k

n

(
1

k
− t

)+
+ k

∫ t

(t−1/k)+
ϕ(s, x,ω)ds, (t, x,ω) ∈ XT × M̄.

An application of Lusin’s theorem gives that for ν ⊗ P̄-a.e. (x,ω), as k → ∞∫
[0,T ]

∣∣ϕk(t, x,ω) − ϕ(t, x,ω)
∣∣dt → 0,

∫
[0,T ]

∣∣
(ϕk(t, x,ω)
) − 


(
ϕ(t, x,ω)

)∣∣dt → 0. (2.4)

In particular, ϕk ∈ Āb,n for every k and Ē|LT (ϕk) − LT (ϕ)| → 0, as k → ∞. Also note that for f ∈ Cc(XT )

Ē
∣∣〈f,Nϕk

〉 − 〈
f,Nϕ

〉∣∣ ≤ Ē

∫
YT

∣∣f (s, x)
∣∣∣∣1[0,ϕk(s,x,ω)](r) − 1[0,ϕ(s,x,ω)](r)

∣∣ν̄T (ds dx dr)

≤ c1Ē

∫
[0,T ]×Kn

∣∣ϕk(s, x,ω) − ϕ(s, x,ω)
∣∣νT (ds dx).
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Using (2.4) and ν(Kn) < ∞ shows that the last quantity approaches 0 as k → ∞, and hence Nϕk ⇒ Nϕ .
Next we consider the L1(P̄) convergence of ET (ϕk). By Scheffe’s lemma it suffices to show that

ET (ϕk) → ET (ϕ) in P̄-probability. (2.5)

For this, it is enough to show that∫
[0,T ]×X

(
1 − ϕk(s, x)

)
νT (ds dx) →

∫
[0,T ]×X

(
1 − ϕ(s, x)

)
νT (ds dx)

and ∫
[0,T ]×X

log
(
ϕk(s, x)

)
N1(ds dx) →

∫
[0,T ]×X

log
(
ϕ(s, x)

)
N1(ds dx)

in probability as k → ∞. The first convergence is immediate from (2.4), the uniform bounds on ϕk,ϕ, ν(Kn) < ∞,
and the fact that 1 − ϕk(s, x) = 1 − ϕ(s, x) = 0 for x /∈ Kn. The second convergence follows similarly on noting that∣∣log

(
ϕk(s, x)

) − log
(
ϕ(s, x)

)∣∣ ≤ n
∣∣ϕk(s, x) − ϕ(s, x)

∣∣.
This proves (2.5) and so Ē|ET (ϕk) − ET (ϕ)| → 0 as k → ∞. This completes the construction of ϕk which satisfy
parts (2) and (3) of the lemma.

Next we show that part (1) can also be satisfied. Note that by construction, t �−→ ϕk(t, x,ω) is continuous for
ν ⊗ P̄-a.e. (x,ω). Consider any ϕk as constructed previously, and to simplify the notation drop the k subscript. Two
more levels of approximation will be used, and indexed by q and r . Thus for the fixed ϕ and q ∈ N define

ϕq(t, x,ω) =
�qT �∑
m=0

ϕ

(
m

q
,x,ω

)
1(m/q,(m+1)/q](t), (t, x,ω) ∈ XT × M̄.

It is easily checked that (2.4) is satisfied as q → ∞, and so, arguing as above, the sequence {ϕq} satisfies parts (2) and
(3) of the lemma. Note that for fixed q and m, g(x,ω) = ϕ(m/q,x,ω) is a B(X)⊗ F̄m/q -measurable map with values
in [1/n,n] and g(x,ω) = 1 for x ∈ Kc

n . By a standard approximation procedure one can find B(X)⊗ F̄m/q -measurable

maps gr , r ∈ N with the following properties: gr(x,ω) = ∑a(r)
j=1 cr

j (ω)1Er
j
(x) for x ∈ Kn, where for each r , {Er

j }a(r)
j=1

is some measurable partition of Kn and for all j, r, cr
j (ω) ∈ [1/n,n] a.s.; gr(x,ω) = 1 for x ∈ Kc

n; gr → g a.s. ν ⊗ P̄.
Hence by taking q and r large we can find processes which satisfy all parts (1)–(3) of the lemma. �

A last result is needed before proving the main theorem. This result, which is a key element in the proof of the
representation, shows that simple controls under a new measure can always be replicated on the original probability
space, and vice versa. The proof of the lemma, which uses an elementary but detailed argument, is in the Appendix.

Lemma 2.5. For every ϕ ∈ Ās , there is ϕ̃ ∈ Ās such that P̄ ◦ (Nϕ)−1 = Qϕ̃ ◦ (N1)−1 and

EQϕ̃ [
LT (ϕ̃) + F

(
N1)] = Ē

[
LT (ϕ) + F

(
Nϕ

)]
. (2.6)

Conversely, given any ϕ̃ ∈ Ās there is ϕ ∈ Ās such that P̄ ◦ (Nϕ)−1 = Qϕ̃ ◦ (N1)−1 and (2.6) holds.

2.3. Proof of Theorem 2.1

The starting point for the proof is the basic relative entropy representation for exponential integrals. For Q and P in
P(M̄), the relative entropy of Q with respect to P is defined by

R(Q ‖ P) =
∫

M̄

(
log

dQ

dP

)
dQ
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whenever Q is absolutely continuous with respect to P and log(dQ/dP) is Q-integrable, and in all other cases R(Q ‖
P) = ∞.

Let h : M̄ → M be defined by

h(m̄)
(
U × (0, t]) =

∫
U×(0,t]×(0,∞)

1[0,1](r)m̄(ds dx dr), t ∈ [0, T ],U ∈ B(X).

Thus N1 = h(N). By the well-known relative entropy representation for exponential integrals (see, e.g., Proposi-
tion 1.4.2 of [11]),

− log Ē
(
e−F(N1)

) = − log
∫

M̄

e−F(h(m̄))P̄(dm̄)

= inf
Q∈P(M̄)

[
R(Q ‖ P̄) +

∫
M̄

F
(
h(m̄)

)
Q(dm̄)

]
. (2.7)

2.3.1. Proof of the upper bound

Theorem 2.6. For every F ∈ Mb(M)

− log Ē
(
e−F(N1)

) ≤ inf
ϕ∈Ā

Ē
[
LT (ϕ) + F

(
Nϕ

)]
.

Proof. We begin by evaluating R(Qϕ ‖ P̄) for a ϕ ∈ Āb . By Lemma 2.3 {Et (ϕ)} is an {F̄t }-martingale and under Qϕ ,
N̄ is a random counting measure with compensator [ϕ(s, x)1(0,1](r) + 1(1,∞)(r)]ν̄T (ds dx dr). It follows from the
definition of relative entropy and LT in (2.2) that

R
(
Qϕ ‖ P̄

) =
∫ [∫

log
(
ϕ(s, x)

)
N1

c (ds dx) +
∫ (

log
(
ϕ(s, x)

) − ϕ(s, x) + 1
)
νT (ds dx)

]
dQϕ

=
∫ [∫

log
(
ϕ(s, x)

)
N1(ds dx) +

∫ (−ϕ(s, x) + 1
)
νT (ds dx)

]
dQϕ

=
∫ [∫ (

ϕ(s, x) log
(
ϕ(s, x)

) − ϕ(s, x) + 1
)
νT (ds dx)

]
dQϕ

= EQϕ

LT (ϕ). (2.8)

Thus, by (2.7), for ϕ ∈ Āb

− log Ē
(
e−F(N1)

) ≤
[
R

(
Qϕ ‖ P̄

) +
∫

M̄

F
(
h(m̄)

)
Qϕ(dm̄)

]

= EQϕ [
LT (ϕ) + F

(
N1)]. (2.9)

We complete the proof by showing that for any ϕ ∈ Ā,

− log Ē
(
e−F(N1)

) ≤ Ē
[
LT (ϕ) + F

(
Nϕ

)]
. (2.10)

Case 1: ϕ ∈ Ās . According to Lemma 2.5 one can find ϕ̃ that is F̄t -predictable and simple, and such that

EQϕ̃ [
LT (ϕ̃) + F

(
N1)] = Ē

[
LT (ϕ) + F

(
Nϕ

)]
.

Thus (2.10) follows directly from (2.9).
Case 2: ϕ ∈ Āb . Given ϕ ∈ Āb , let ϕk ∈ Ās be the sequence constructed as in Lemma 2.4. By case 1, for every

k ∈ N

− log Ē
(
e−F(N1)

) ≤ Ē
[
LT (ϕk) + F

(
Nϕk

)]
. (2.11)
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From Lemma 2.4, under P̄, Nϕk ⇒ Nϕ and Ē[LT (ϕk)] → Ē[LT (ϕ)]. However, F is not assumed continuous, and so
we cannot simply pass to the limit in the last display. Instead, we will apply Lemma 2.8 of [2], which allows F to be
just bounded and measurable when there are bounds on certain relative entropies. The first and the last equalities in the
following display follow from Lemma 2.5, the second equality is a consequence of (2.8), and the inequality follows
from the fact that relative entropy can only decrease when considering measures induced by the same mapping (in
this case the random variable N1):

R
(
P̄ ◦ (

Nϕk
)−1 ‖ P̄ ◦ (

N1)−1) = R
(
Qϕ̃k ◦ (

N1)−1 ‖ P̄ ◦ (
N1)−1)

≤ R
(
Qϕ̃k ‖ P̄

)
= EQϕ̃k

[
LT (ϕ̃k)

]
= Ē

[
LT (ϕk)

]
. (2.12)

Since Ē[LT (ϕk)] → Ē[LT (ϕ)] < ∞ we have supk R(P̄ ◦ (Nϕk )−1 ‖ P̄ ◦ (N1)−1) < ∞, and so by Lemma 2.8 of [2]
we can pass to the limit in (2.11) and obtain (2.10) for all ϕ ∈ Āb . For future use we note that the lower semicontinuity
of relative entropy and (2.12) imply R(P̄ ◦ (Nϕ)−1 ‖ P̄ ◦ (N1)−1) ≤ Ē[LT (ϕ)] for ϕ ∈ Āb .

Case 3: ϕ ∈ Ā. Define

ϕn(x, t,ω) =
{[

ϕ(x, t,ω) ∨ (1/n)
] ∧ n, x ∈ Kn,

1, else.

Note that ϕn ∈ Āb,n, and so (2.10) holds with ϕ replaced by ϕn. Since the definition of ϕn implies 
(ϕn(x, t,ω))

is nondecreasing in n, by monotone convergence ĒLT (ϕn) ↑ ĒLT (ϕ). If ĒLT (ϕ) = ∞ there is nothing to prove.
Assume therefore that

ĒLT (ϕ) < ∞. (2.13)

Then R(P̄ ◦ (Nϕn)−1 ‖ P̄ ◦ (N1)−1) ≤ ĒLT (ϕn) ≤ ĒLT (ϕ). Since the relative entropies are uniformly bounded and
the level sets of the relative entropy function are compact (see Lemma 1.4.3(c) of [11]), at least along a subsequence
Nϕn converges in distribution to some random variable N∗. We claim that N∗ has same distribution as Nϕ . If true, we
can once again apply Lemma 2.8 of [2], pass to the limit on n, and thereby obtain (2.10) for arbitrary ϕ ∈ Ā.

To prove the claim and hence complete the proof of Theorem 2.6, it suffices to show that for every f ∈ Cc(XT )〈
f,Nϕn

〉 → 〈
f,Nϕ

〉
in P̄-probability as n → ∞. (2.14)

Let n0 be large enough that the support of f is contained in [0, T ] × Kn0 . Then for all n ≥ n0

Ē
∣∣〈f,Nϕk

〉 − 〈
f,Nϕ

〉∣∣ ≤ |f |∞Ē

∫
[0,T ]×Kn0

(
1

n
+ (

ϕ(t, x) − n
)+

)
νT (ds dx).

Next note that νT ([0, T ] × Kn0) < ∞, (ϕ(t, x) − n)+ → 0 as n → ∞, and that (ϕ(t, x) − n)+ ≤ 
(ϕ(t, x)). These
observations together with (2.13) show that the right-hand side in the last display approaches 0 as n → ∞. This proves
(2.14) and the claim follows. �

Remark 2.7. Following up on Remark 2.2, we indicate here how one can generalize Theorem 2.1 to allow the infimum
in the representation to be over all controls which are predictable with respect to a possibly larger filtration. The
only issue is whether the upper bound will continue to hold when a filtration larger than the completion of the one
generated by the PRM is used. First note that Lemma 2.4 is valid without change in this more general setting. Letting
an asterisk denote objects on the new probability space, it follows that for any bounded control ϕ∗ we can find a
sequence of simple controls ϕ∗

k (all predictable with respect to the given filtration) such that

N∗,ϕ∗
k converges in distribution to N∗,ϕ∗

(2.15)
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and

E∗LT

(
ϕ∗

k

) → E∗LT

(
ϕ∗). (2.16)

Arguing as in case 3 of Theorem 2.6, the same result holds without the boundedness assumption so long as
E∗LT (ϕ∗) < ∞, which can be assumed without loss.

Given any ϕ∗
k , one can find a sequence of sets Sj ⊂ [0,∞), each with finite cardinality, and a sequence of Sj -valued

controls ϕ∗
k,j , such that E∗LT (ϕ∗

k,j ) → E∗LT (ϕ∗
k ) and N

∗,ϕ∗
k,j converges in distribution to N∗,ϕ∗

k . Thus in (2.15) and
(2.16) we can assume that each ϕ∗

k takes on only a finite number of values. Finally, using the martingale convergence
theorem as in [16], Theorem 10.3.1, and a chattering lemma as in [15], Theorem 3.1, we can further assume that for
each k there is θ > 0 and a finite partition {Γk, k = 1, . . . ,K} of Y such that ϕ∗

k (s) depends only on N∗([0, lθ ],Γk)

for l such that lθ ≤ s and k = 1, . . . ,K , where N∗ is the PRM with intensity ν̄T = λT ⊗ ν ⊗ λ∞ on this space.
This exhibits ϕ∗

k (s) as a measurable function of the past values of this PRM, and hence there are corresponding simple
controls ϕk on the canonical space such that ĒLT (ϕk) → E∗LT (ϕ∗) and Nϕk converges in distribution to N∗,ϕ∗

. Using
the identification of ĒLT (ϕk) with relative entropies and the convergence in distribution, we can argue as before that
ĒF(Nϕk ) → E∗F(N∗,ϕ∗

). Thus the infimum over all controls with respect to the larger filtration is no smaller than
the infimum over all controls on the canonical space.

2.3.2. Proof of the lower bound

Theorem 2.8. For every F ∈ Mb(M)

− log Ē
(
e−F(N1)

) ≥ inf
ϕ∈Ā

Ē
[
LT (ϕ) + F

(
Nϕ

)]
. (2.17)

Proof. Following [28], we first consider a class of particularly simple F . Let F ∈ Mb(M) be of the form F(m) =
g(〈f1,m〉, . . . , 〈fk,m〉), where k ∈ N, g ∈ C∞

c (Rk), and fi ∈ Cc(XT ). The class of all such F is denoted by Ccyl(M).
Once the result for F ∈ Ccyl(M) is proved, the general case will follow from an approximation argument based on
the fact that Ccyl(M) is dense in Mb(M), namely for an arbitrary F̃ ∈ Mb(M) one can find a sequence of Fj ∈
Ccyl(M) such that for all j ≥ 1, ‖Fj‖ ≤ ‖F̃‖ < ∞ and as j → ∞, Fj (m) → F̃ (m) for P̄-almost all m ∈ M. By
Proposition 1.4.2 of [11],

− log Ē
(
e−F(N1)

) = R(Q ‖ P̄) + EQ
[
F

(
h(N̄)

)]
,

where Q is the probability measure defined by

Q(A) =
∫
A

e−F(h(m̄)) dP̄(m̄)∫
M̄

e−F(h(m̄)) dP̄(m̄)
. (2.18)

By the martingale representation for Poisson random measures ([14], Theorem III.4.37), there is an F̄t -predictable
process ϕ̃ such that

dQ

dP̄
= ET (ϕ̃). (2.19)

Owing to the form of F , ϕ̃ ∈ Ab,n for some n < ∞ (see Proposition 4.2 and Eq. (30) of [28]). It follows from (2.8)
that

− log Ē
(
e−F(N1)

) = EQϕ̃ [
LT (ϕ̃) + F

(
h(N̄)

)]
, (2.20)

where we now denote Q by Qϕ̃ . For F of this special form, it remains to construct a near minimizer on the original
probability space. Given ε ∈ (0,1) we will construct ϕ ∈ As,n such that

EQϕ̃ [
LT (ϕ̃) + F

(
h(N̄)

)] ≥ Ē
[
LT (ϕ) + F

(
Nϕ

)] − ε. (2.21)
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Since ε > 0 is arbitrary this will complete the proof of (2.17) for F ∈ Ccyl(M).
Let ϕ̃k be a sequence in As as constructed in Lemma 2.4 for ϕ̃ introduced in (2.19). We claim that as k → ∞

EQϕ̃k
[
LT (ϕ̃k) + F

(
h(N̄)

)] → EQϕ̃ [
LT (ϕ̃) + F

(
h(N̄)

)]
. (2.22)

To see this, rewrite the quantities in (2.22) in terms of the original measure P̄:

EQϕ̃k
[
LT (ϕ̃k) + F

(
h(N̄)

)] = Ē
(

ET (ϕ̃k)
[
LT (ϕ̃k) + F

(
h(N̄)

)])
and

EQϕ̃ [
LT (ϕ̃) + F

(
h(N̄)

)] = Ē
(

ET (ϕ̃)
[
LT (ϕ̃) + F

(
h(N̄)

)])
.

To show (2.22) it is enough to show that

Ē
([

ET (ϕ̃k) − ET (ϕ̃)
][

LT (ϕ̃k) + F
(
h(N̄)

)]) → 0 (2.23)

and

Ē
(

ET (ϕ̃)
[
LT (ϕ̃k) − LT (ϕ̃)

]) → 0. (2.24)

However, statements (2.23) and (2.24) follow from part (3) of Lemma 2.4 on noting that F and ET (ϕ̃) are bounded,
and LT (ϕ̃k) is uniformly bounded for k ∈ N.

Now fix k large enough that the difference between the expressions on the two sides of (2.22) is bounded by ε.
According to the second part of Lemma 2.5 (with ϕ̃ there replaced by ϕ̃k), we can find ϕ such that (2.21) holds, which
proves the theorem when F ∈ Ccyl(M).

Next consider an arbitrary F ∈ Mb(M). Let Fj ∈ Ccyl(M) be such that ‖Fj‖ ≤ ‖F‖ < ∞ and Fj (m) → F(m) for
P̄-almost all m ∈ M. By dominated convergence

− log Ē
(
e−Fj (N1)

) → − log Ē
(
e−F(N1)

)
. (2.25)

Let ϕ̃j ∈ Āb,n be determined by applying the martingale representation theorem to dQ/dP̄ where Q is defined by
(2.18), but with F replaced by Fj . Let ϕj ∈ Ās,n be such that (2.21) holds with (ϕ̃j,ϕj ,Fj ) replacing (ϕ̃, ϕ,F ). Then
(2.21) along with (2.20) gives supj Ē(LT (ϕj )) ≤ 2|F |∞ + 1. As noted in (2.12), R(P̄ ◦ (Nϕj )−1 ‖ P̄ ◦ (N1)−1) ≤
Ē(LT (ϕj )). Thus, along a subsequence, Nϕj converges in distribution to some limit N∗. By Lemma 2.8 of [2], along
this subsequence

Ē
[
Fj

(
Nϕj

)] → Ē
[
F

(
N∗)] and Ē

[
F

(
Nϕj

)] → Ē
[
F

(
N∗)]. (2.26)

Finally, by (2.25), (2.21) (with (ϕ̃j,ϕj ,Fj )) and (2.26), for sufficiently large j within the convergent subsequence

− log Ē
(
e−F(N1)

) ≥ − log Ē
(
e−Fj (N1)

) − ε

= Ē
[
LT (ϕj ) + Fj

(
Nϕj

)] − 2ε

≥ Ē
[
LT (ϕj ) + F

(
Nϕj

)] − 3ε.

Since ε > 0 is arbitrary, this completes the proof of the lower bound. �

3. Functionals of PRM and BM

In this section we state the representation for functionals of both a PRM and an infinite-dimensional BM. One can
obtain, as in [6], representations for related objects, such as Hilbert space-valued BM, Brownian sheet, etc.
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We first define the probability space. Denote the product space of countable infinite copies of the real line by R∞.
Endowed with the topology of coordinate-wise convergence R∞ is a Polish space. Recall the definitions of M and
M̄ from the beginning of Section 2. We denote the Polish space C([0, T ]: R∞) by W and denote by V the product
space W × M. Let V̄ = W × M̄. Abusing notation from Section 2, let N : V → M be defined by N(w,m) = m,
for (w,m) ∈ V. The map N̄ : V̄ → M̄ is defined analogously. Let β = (βi)

∞
i=1 be coordinate maps on V defined as

βi(w,m) = wi . Analogous maps on V̄ are denoted again as β = (βi)
∞
i=1. Define Gt

.= σ {N((0, s] × A),βi(s): 0 ≤
s ≤ t,A ∈ B(X), i ≥ 1}. For θ > 0, denote by Pθ the unique probability measure on (V, B(V)) such that under Pθ :

(1) (βi)
∞
i=1 is an i.i.d. family of standard Brownian motions.

(2) N is a PRM with intensity measure θνT .
(3) {βi(t), t ∈ [0, T ]}, {N([0, t] × A) − θtν(A), t ∈ [0, T ]} are Gt -martingales for every i ≥ 1, A ∈ B(X) such that

ν(A) < ∞.

Define (P̄, {Ḡt }) on (V̄, B(V̄)) analogous to (Pθ , {Gt }) by replacing (N, θνT ) with (N̄, ν̄T ) in the above. Through-
out we will consider the P̄-completion of the filtration {Ḡt } and denote it by {F̄t }. We denote by P̄ the predictable
σ -field on [0, T ]× V̄ with the filtration {F̄t : 0 ≤ t ≤ T } on (V̄, B(V̄)). Let Ā be the class of all (P̄ ⊗ B(X))\B[0,∞)

measurable maps ϕ : XT × V̄ → [0,∞). For ϕ ∈ Ā, define LT (ϕ) and the counting process Nϕ on XT as in Section 2.
We denote by 
2 the Hilbert space of real sequences a = (ai) satisfying ‖a‖2 = ∑∞

i=1 a2
i < ∞, with the usual inner

product. Define

P2 =
{
ψ = (ψi)

∞
i=1: ψi is P̄\B(R) measurable and

∫ T

0

∥∥ψ(s)
∥∥2 ds < ∞, a.s. P̄

}

and set U = P2 × Ā. For ψ ∈ P2 define L̃T (ψ) = 1
2

∫ T

0 ‖ψ(s)‖2 ds and for u = (ψ,ϕ) ∈ U , set L̄T (u)

= LT (ϕ) + L̃T (ψ). For ψ ∈ P2, let βψ = (β
ψ
i ) be defined as β

ψ
i (t) = βi(t) + ∫ t

0 ψi(s)ds, t ∈ [0, T ], i ∈ N. The
following is the main result of this section.

Theorem 3.1. Let F ∈ Mb(V). Then for θ > 0,

− logEθ

(
e−F(β,N)

) = − log Ē
(
e−F(β,Nθ )

) = inf
u=(ψ,ϕ)∈U

Ē
[
θL̄T (u) + F

(
β

√
θψ ,Nθϕ

)]
.

The proof of Theorem 3.1 is very similar to that of Theorem 2.1, however for the reader’s convenience a sketch is
included in the Appendix.

4. Application to large deviations

We now apply the representation obtained in Section 3 to prove a large deviation result. Let {Gε}ε>0, be a family
of measurable maps from V to U, where U is some Polish space. Let {Zε}ε>0 be a collection of U-valued random
variables defined on (V̄, B(V̄), P̄) by

Zε = Gε
(√

εβ, εNε−1)
. (4.1)

We are interested in a large deviation principle for the family {Zε}ε>0 as ε → 0. We begin with some notation. For
N ∈ N, let

S̃N = {
f ∈ L2([0, T ]: 
2

)
: L̃T (f ) ≤ N

}
.

With the weak topology on the Hilbert space, S̃N is a compact subset of L2([0, T ]: 
2). We will throughout consider
S̃N endowed with this topology. Also, let

SN = {
g: XT → [0,∞): LT (g) ≤ N

}
.
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A function g ∈ SN can be identified with a measure ν
g
T ∈ M, defined by ν

g
T (A) = ∫

A
g(s, x)νT (ds dx), A ∈ B(XT ).

Recalling that convergence in M is essentially equivalent to weak convergence on compact subsets (see the Introduc-
tion), the superlinear growth of 
 implies that {νg

T : g ∈ SN } is a compact subset of M. Throughout we consider the
topology on SN obtained through this identification which makes SN a compact space. We let S̄N = S̃N × SN with
the usual product topology. Let S = ⋃

N≥1 S̄N and let U N be the space of S̄N -valued controls:

U N = {
u = (ψ,ϕ) ∈ U : u(ω) ∈ S̄N , P̄-a.e. ω

}
.

The following will be the main assumption in our large deviations result.

Condition 4.1. There exists a measurable map G 0 : V → U such that the following hold.

(1) For N ∈ N let (fn, gn), (f, g) ∈ S̄N be such that (fn, gn) → (f, g). Then

G 0
(∫ ·

0
fn(s)ds, ν

gn

T

)
→ G 0

(∫ ·

0
f (s)ds, ν

g
T

)
.

(2) For N ∈ N let uε = (ψε,ϕε), u = (ψ,ϕ) ∈ U N be such that, as ε → 0, uε converges in distribution to u. Then

Gε

(√
εβ +

∫ ·

0
ψε(s)ds, εNε−1ϕε

)
⇒ G 0

(∫ ·

0
ψ(s)ds, ν

ϕ
T

)
.

For φ ∈ U, define Sφ = {(f, g) ∈ S: φ = G 0(
∫ ·

0 f (s)ds, ν
g
T )}. Let I : U → [0,∞] be defined by

I (φ) = inf
q=(f,g)∈Sφ

{
L̄T (q)

}
. (4.2)

The following is the main result of this section. The proof is similar to that of Theorem 5 in [6] (see also [4]) and is
therefore relegated to the Appendix.

Theorem 4.2. For ε > 0, let Zε be defined by (4.1) and suppose that Condition 4.1 holds. Then I is a rate function
on U and the family {Zε}ε>0 satisfies a large deviation principle with rate function I .

4.1. An example: Finite-dimensional jump diffusions

As an application of Theorem 4.2, we consider small noise stochastic differential equations (SDE) of the form:

dZε(t) = b
(
t,Zε(t)

)
dt + √

εσ
(
t,Zε(t)

)
dβ(t) +

∫
X

γ
(
t,Zε(t−), x

)(
εNε−1

(dt dx) − νT (dt dx)
)
,

(4.3)
Zε(0) = z ∈ Rd .

Here β is a d-dimensional standard BM and the coefficients b,σ and γ satisfy the following conditions:

(1) The maps b,σ and γ are bounded and measurable, from [0, T ] × Rd to Rd , [0, T ] × Rd to Rd×d and [0, T ] ×
Rd × X to Rd , respectively.

(2) For some L ∈ (0,∞), we have for all t ∈ [0, T ], x ∈ X and z, z′ ∈ Rd

∣∣b(t, z) − b
(
t, z′)∣∣ + ∣∣σ(t, z) − σ

(
t, z′)∣∣ + ∣∣γ (t, z, x) − γ

(
t, z′, x

)∣∣ ≤ L
∣∣z − z′∣∣.

(3) For some compact K ⊂ X, γ (t, z, x) = 0 for all (t, z, x) ∈ [0, T ] × Rd × Kc .

Under these conditions, there is a unique strong solution of (4.3) – indeed the conditions can be substantially
weakened, see, e.g., Theorem III.2.3.2 of [14].
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Let U = D([0, T ]: Rd), i.e., the space of Rd -valued, right-continuous functions with left limits and the usual
Skorohod topology. Then the solution Zε of (4.3) is a U-valued random variable. We will now prove a large deviation
principle for the family {Zε}ε>0 as ε → 0. For q = (f, g) ∈ S, denote by ξ = ξq ∈ U the unique solution of the integral
equation

ξ(t) = z +
∫

[0,t]

(
b
(
s, ξ(s)

) + σ
(
s, ξ(s)

)
f (s) +

∫
X

γ
(
s, ξ(s), x

)(
g(s, x) − 1

)
ν(dx)

)
ds.

Let I : U → [0,∞] be defined as

I(φ) = inf
q∈S:φ=ξq

L̄T (q).

Theorem 4.3. The map I is a rate function on U and {Zε}ε>0 satisfies a large deviation principle on U with rate
function I.

Proof. Modifying the notation from Section 3, we denote by V the space C([0, T ] : Rd)×M. With obvious notational
changes, Theorem 4.2 holds for β as in the current section (i.e., a d-dimensional Brownian motion rather than an
infinite-dimensional Brownian motion). Since (4.3) has a unique strong solution, there is a measurable map Gε : V →
U such that Zε = Gε(

√
εβ, εNε−1

). We will now verify that Gε satisfies Condition 4.1. Define G 0 : V → U as follows.
If (w,m) ∈ V is of the form (w,m) = (

∫ ·
0 f (s)ds, νg) for some q = (f, g) ∈ S, we define

G 0(w,m) = G 0
(∫ ·

0
f (s)ds, νg

)
= ξq .

For all other (w,m) ∈ V we set G 0(w,m) = 0. With this definition, I = I , where I is as defined in (4.2). We now
show that part (2) of Condition 4.1 holds with this choice of G 0. The proof of part (1) is similar, and hence omitted.
Fix N ∈ N and uε = (ψε,ϕε), u = (ψ,ϕ) ∈ U N such that, as ε → 0, uε converges in distribution to u. Then Z̃ε =
Gε(

√
εβ + ∫ ·

0 ψε(s)ds, εNε−1ϕε ) is the unique solution of the controlled SDE

dZ̃ε(t) = (
b
(
t, Z̃ε(t)

) + σ
(
t, Z̃ε(t)

)
ψε(t)

)
dt + √

εσ
(
t, Z̃ε(t)

)
dβ(t)

+
∫

X

γ
(
t, Z̃ε(t−), x

)(
εNε−1ϕε (dt dx) − νT (dt dx)

)
, (4.4)

Z̃ε(0) = z.

It is easily checked that {Z̃ε}ε>0 is a tight family of U-valued random variables. Elementary martingale estimates
show that

sup
0≤t≤T

∣∣∣∣
∫

[0,t]×X

γ
(
s, Z̃ε(s−), x

)(
εNε−1ϕε (dt dx) − ϕε(t, x)νT (dt dx)

)∣∣∣∣ → 0

and

sup
0≤t≤T

√
ε

∣∣∣∣
∫

[0,t]
σ
(
s, Z̃ε(s)

)
dβ(s)

∣∣∣∣ → 0

in P̄-probability, as ε → 0. Thus choosing a subsequence along which (Z̃ε,ψε,ϕε) converges in distribution (as a
sequence of U × S̃N × SN -valued random variables) to (Z̃, ψ̃, ϕ̃) we have that (ψ̃, ϕ̃) has the same probability law as
(ψ,ϕ) and, by using conditions (1)–(3) on the coefficients, it can be verified that Z̃ solves

Z̃(t) = z +
∫

[0,t]

(
b
(
s, Z̃(s)

) + σ
(
s, Z̃(s)

)
ψ̃(s) +

∫
X

γ
(
s, Z̃(s), x

)(
ϕ̃(s, x) − 1

)
ν(dx)

)
ds.
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This shows that Z̃ = G 0(
∫ ·

0 ψ̃(s)ds, ν
ϕ̃
T ), and proves part (2) of Condition 4.1, i.e.,

Gε

(√
εβ +

∫ ·

0
ψε(s)ds, εNε−1ϕε

)
⇒ G 0

(∫ ·

0
ψ(s)ds, ν

ϕ
T

)
.

The result follows. �

Appendix

A.1. Proof of Lemma 2.5

We need to show that the distribution of N1 under Qϕ̃ is same as that of Nϕ under P̄, and that the costs LT (ϕ̃) under
Qϕ̃ and LT (ϕ) under P̄ are the same.

Let ϕ ∈ Ās be represented as on the right-hand side of (2.3). We will need some notation to describe how measures
on [0, T ] × Y are decomposed into parts on subintervals of the form (ti−1, ti], and also how after some manipulation
such quantities can be recombined. For i = 1, . . . , 
 let Ii = (ti−1, ti] and let Yi

.= Ii × Y. Denote by M̄i the space
of nonnegative σ -finite integer valued measures m̄i on (Yi , B(Yi )) that satisfy mi(Ii × K) < ∞ for all compact
K ⊂ Y. Endow Mi with the weakest topology making the functions m �−→ 〈f,m〉,m ∈ Mi continuous, for every f

in C(Ii × Y) vanishing outside some compact subset of Y. Denote by Mi the corresponding Borel σ -field. Let N̄i be
the M̄i -valued random variable on (M̄, B(M̄)) defined by N̄i(A) = N̄(A), A ∈ B(Yi ). Also, define Ji

.= [1/n,n]ni ,
and the Ji -valued random variable Xi by Xi = (Xi1, . . . ,Xini

). Let M̂ = M̄1 × · · · × M̄
, and define � : M̂ → M̄ by
�(m̂) = m when

m(A × B) =
q∑

i=1

mi

(
(A ∩ Ii ) × B

)
, m̂ = (m̄1, . . . , m̄
), m̄i ∈ M̄i ,B ∈ B(Y),A ∈ B[0, T ].

Thus � concatenates the measures back together: �((N̄1, . . . , N̄
)) = N̄ .
From the predictability properties of ϕ it follows that for i = 2, . . . , 
 there are measurable maps ξi : M̄1 × · · · ×

M̄i−1 → Ji such that

Xij (m̄) = ξij

(
N̄1(m̄), . . . , N̄i−1(m̄)

)
, ξi = (ξi1, . . . , ξini

).

Also, for i = 1, X1 = ξ1 a.s.-P̄ for some fixed vector ξ1 in J1. The construction of ϕ̃, which takes the same form as ϕ,
is recursive. For s ∈ I1 we set ϕ̃(s, x, m̄) = ϕ(s, x, m̄). As we will see, if there were only one time interval we would
be done, in that Nϕ under P̄ and N1 under Qϕ̃ would have the same distribution, and the costs LT (ϕ) and LT (ϕ̃)

would obviously be the same. The definition on subsequent intervals will depend on maps Ti : M̄1 × · · · × M̄i → M̄i

for i = 1, . . . , 
, which must also be defined recursively.
Observe that under P̄, m̄1 has intensity ds × ν(dx) × dr . Under Qϕ̃ , regardless of the definition of ϕ̃ on later

intervals, m̄1 has intensity

ds × ν(dx) ×
[

n1∑
j=1

ξ1j 1E1j
(x)1(0,1](r) + 1(1,∞)(r)

]
dr.

The task of T1 is to “undo” the effect of the change of measure, so that under Qϕ̃ , m̃1 = T1[m̄1] has intensity ds ×
ν(dx) × dr . This can be done by requiring that for any j ∈ {1, . . . , n1} and any Borel subsets A ⊂ I1, B ⊂ E1j ,
C1 ⊂ [0, ξ1j ] and C2 ⊂ (ξ1j ,∞),

m̃1
(
A × B × [C1 ∪ C2]

) = m̄1

(
A × B ×

[
1

ξ1j

C1 ∪ (C2 − ξ1j + 1)

])
.

The mapping T1 can thus be viewed as a transformation on the underlying space Y1 on which m1 is defined. An
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equivalent characterization of m̃1 = T1(m̄1) that will be used below is that m̃1 is the unique measure that satisfies

∫
Y1

ψ(s, x, r)m̃1(ds dx dr)

=
n1∑

j=1

∫
Y1

1E1j
(x)

(
ψ(s, x, ξ1j r)1(0,1](r) + ψ(s, x, r + ξ1j − 1)1(1,∞)(r)

)
m̄1(ds dx dr)

for all nonnegative ψ ∈ Mb(Yi ).
With T1 in hand the definition of ϕ̃(s, x, m̄) for s ∈ I2 is straightforward. Indeed, since m̃1 has the same distribution

under Qϕ̃ that m̄1 has under P̄, and since each ξ2j is a function only of N̄1(m̄) = m̄1, with the definition ξ̃2j (m̄) =
ξ2j (T1[m̄1]), ξ̃2j (m̄) under Qϕ̃ has the same distribution as ξ2j (m̄) under P̄. The sets E2j are used as in (2.3) to
define ϕ̃ on I1 ∪ I2, so that {ϕ̃(s, x, m̄), s ∈ I1 ∪ I2, x ∈ X} under Qϕ̃ has the same distribution as {ϕ(s, x, m̄),

s ∈ I1 ∪ I2, x ∈ X} under P̄.
We now proceed recursively, and having defined T1, . . . , Tp−1 for some 1 < p ≤ 
, we define Tp by Tp(m̄1,

. . . , m̄p) = m̃p , where m̃p is the unique measure satisfying, for all nonnegative ψ ∈ Mb(Yp),

∫
Yp

ψ(s, x, r)m̃p(ds dx dr)

=
np∑

j=1

∫
Yp

1Epj
(x)

(
ψ(s, x, ξ̃pj r)1(0,1](r) + ψ(s, x, r + ξ̃pj − 1)1(1,∞)(r)

)
m̄p(ds dx dr),

where ξ̃p = ξp(m̃1, . . . , m̃p−1) and m̃i = Ti(m̄1, . . . , m̄i). We define the transformation T : M̄ → M̄ by

T (m̄) = �
(
T1

(
N̄1(m̄)

)
, . . . , T


(
N̄1(m̄), . . . , N̄
(m̄)

))
,

and define ϕ̃ ∈ Ās for all times s by replacing Xij with X̃ij in the right-hand side of (2.3), where

X̃i(m̄) = Xi

(
T (m̄)

) = ξi

(
T1

(
N̄1(m̄)

)
, . . . , Ti

(
N̄1(m̄), . . . , N̄i(m̄)

))
. (A.1)

Denoting T (N̄) by Ñ we see that for ϑ ∈ Âb(YT )

∫
ϑ(s, x, r)Ñ(ds dx dr)

=
∫ (

ϑ
(
s, x, ϕ̃(s, x)r

)
1(0,1](r) + ϑ

(
s, x, r + ϕ̃(s, x) − 1

)
1(1,∞)(r)

)
N̄(ds dx dr). (A.2)

Also, let hϕ : M̄ → M be defined by

hϕ(m̄)(A × B) =

∑

i=1

ni∑
j=1

m̄
(
(A ∩ Ii ) × (B ∩ Eij ) × [

0,Xij (m̄)
])

for A × B ∈ B(XT ). We want to show that the distribution of N1 under Qϕ̃ is same as that of Nϕ under P̄, and that
the costs LT (ϕ̃) under Qϕ̃ and LT (ϕ) under P̄ are the same. To do this, we will prove the following:

(1) The distribution of T (N̄) under Qϕ̃ is same as that of N̄ under P̄.
(2) hϕ(N̄) = Nϕ and hϕ(T (N̄)) = hϕ(Ñ) = N1.
(3) For some measurable map Θ : M̄ → [0,∞), LT (ϕ) = Θ(N̄) and LT (ϕ̃) = Θ(T (N̄)), a.s. P̄.
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Item (3) is an immediate consequence of the definition of ϕ̃ via (A.1). We next consider (2). Noting that N̄(m̄) = m̄

(and suppressing m̄ in notation), we have for A × B ∈ B(XT ),

hϕ(N̄)(A × B) =

∑

i=1

ni∑
j=1

N̄
(
(A ∩ Ii ) × (B ∩ Eij ) × [0,Xij ]

)

=

∑

i=1

∫
(ti−1,ti ]×X

∫
[0,∞)

1A×B(s, x)1[0,ϕ(s,x)](r)N̄(ds dx dr)

=
∫

YT

1A×B(s, x)1[0,ϕ(s,x)](r)N̄(ds dx dr)

= Nϕ(A × B).

This proves the first statement in (2). Next, using (A.1), (A.2), and the observation that r > 1 implies r + ϕ̃(s, x)−1 >

ϕ̃(s, x),

hϕ

(
T (N̄)

)
(A × B) =

∫
1A×B(s, x)1[0,ϕ̃(s,x)](r)Ñ(ds dx dr)

=
∫

1A×B(s, x)
(
1[0,ϕ̃(s,x)]

(
ϕ̃(s, x)r

)
1[0,1](r)

+ 1[0,ϕ̃(s,x)]
(
r + ϕ̃(s, x) − 1

)
1(1,∞)(r)

)
N̄(ds dx dr)

=
∫

1A×B(s, x)1[0,1](r)N̄(ds dx dr)

= N1(A × B).

This proves the second statement in (2). Lastly we prove (1). It suffices to show that for every ϑ ∈ Âb ,

EQϕ̃

∫
ϑ(s, x, r)Ñ(ds dx dr) = EQϕ̃

∫
ϑ(s, x, r)ν̄T (ds dx dr).

Using (A.2) along with Lemma 2.3, we have that

EQϕ̃

∫
ϑ(s, x, r)Ñ(ds dx dr)

= EQϕ̃

∫ (
ϑ

(
s, x, ϕ̃(s, x)r

)
ϕ̃(s, x)1[0,1](r)

+ ϑ
(
s, x, r + ϕ̃(s, x) − 1

)
1(1,∞)(r)

)
ν̄T (ds dx dr)

= EQϕ̃

∫ (
ϑ(s, x, r)1[0,ϕ̃(s,x)](r) + ϑ(s, x, r)1(ϕ̃(s,x),∞)(r)

)
ν̄T (ds dx dr)

= EQϕ̃

∫
ϑ(s, x, r)ν̄T (ds dx dr),

which proves (1), and completes the proof of the first part of the lemma.
We now consider the second part. This requires that we start with a simple control ϕ̃ and associated measure Qϕ̃ ,

and construct a control ϕ for use with the original measure P̄. Let ϕ̃ take the form of the right-hand side of (2.3),
but with the corresponding tilded quantities X̃pj . As before, let ξ̃pj indicate the dependence of X̃pj on points in
M̄1 × · · · × M̄p . Define maps T̄i : M̄1 × · · · × M̄i → M̄i for i = 1, . . . , 
, recursively, as follows. Let T̄1(m̄1) = m̂1 be
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defined by∫
Y1

ψ(s, x, r)m̂1(ds dx dr)

=
n1∑

j=1

∫
Y1

1E1j
(x)

(
ψ

(
s, x,

r

ξ1j

)
1[0,ξ1j ](r) + ψ(s, x, r − ξ1j + 1)1(ξ1j ,∞)(r)

)
m̄1(ds dx dr)

for ψ ∈ Mb(Yi ). Having defined T̄1, . . . , T̄p−1 for some 1 < p ≤ 
, we now define T̄p by T̄p(m̄1, . . . , m̄p) = m̂p when∫
Yp

ψ(s, x, r)m̂p(ds dx dr)

=
np∑

j=1

∫
Yp

1Epj
(x)

(
ψ

(
s, x,

r

ξ̂pj

)
1[0,ξ̂pj ](r) + ψ(s, x, r − ξ̂pj + 1)1

(ξ̂pj ,∞)
(r)

)
m̄p(ds dx dr),

where ξ̂p = ξ̃p(m̂1, . . . , m̂p−1) and m̂i = T̄i (m̄1, . . . , m̄i). We now define the transformation T̄ : M̄ → M̄ by the rela-
tion

T̄ (m̄) = �
(
T̄1

(
N̄1(m̄)

)
, . . . , T̄


(
N̄1(m̄), . . . , N̄
(m̄)

))
.

Next, define ϕ ∈ Ās by replacing Xij with X̂ij in the right-hand side of (2.3), where

X̂ij (m̄) = X̃ij

(
T̄ (m̄)

) = ξ̃i

(
T̄1

(
N̄1(m̄)

)
, . . . , T̄i

(
N̄1(m̄), . . . , N̄i(m̄)

))
.

Denoting T̄ (N̄) by N̂ we see that for ϑ ∈ Âb(YT )∫
ϑ(s, x, r)N̂(ds dx dr)

=
∫ (

ϑ

(
s, x,

r

ϕ̃(s, x)

)
1[0,ϕ̃(s,x)](r) + ψ

(
s, x, r − ϕ̃(s, x) + 1

)
1(ϕ̃(s,x),∞)(r)

)
N̄(ds dx dr).

Also, let h1 : M̄ → M be defined by

h1(m̄)(A × B) =

∑

i=1

ni∑
j=1

m̄
(
(A ∩ Ii ) × (B ∩ Eij ) × (0,1])

for A × B ∈ B(XT ). Again, we need to show that the distribution of N1 under Qϕ̃ is same as that of Nϕ under P̄, and
that the costs LT (ϕ̃) under Qϕ̃ and LT (ϕ) under P̄ are the same. To do this, we show:

(1) The distribution of N̄ under Qϕ̃ is same as that of T̄ (N̄) under P̄.
(2) h1(N̄) = N1 and h1(T̄ (N̄)) = h1(N̂) = Nϕ .
(3) For some measurable map Θ : M̄ → [0,∞), LT (ϕ̃) = Θ(N̄) and LT (ϕ) = Θ(T̄ (N̄)), a.s. P̄.

The proofs of items (2) and (3) are exactly the same as in the proof of the first part of the lemma. We now prove (1).
Once again, following steps similar to the proof of the first part, it is easily seen that for every ϑ ∈ Âb ,

EQϕ̃

∫
ϑ(s, x, r)N̄(ds dx dr) = EQϕ̃

∫
ϑ(s, x, r)

(
ϕ̃(s, x)1(0,1](r) + 1(1,∞)(r)

)
ν̄T (ds dx dr), (A.3)

and

Ē

∫
ϑ(s, x, r)N̂(ds dx dr) = Ē

∫
ϑ(s, x, r)

(
ϕ(s, x)1(0,1](r) + 1(1,∞)(r)

)
ν̄T (ds dx dr). (A.4)
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Item (1) is essentially a consequence of the above two relations, but we provide additional details. In order to prove
(1), it suffices to establish that for every q = 1, . . . , 
,

distribution of (N̄1, . . . , N̄q) under Qϕ̃ equals that of (N̂1, . . . , N̂q) under P̄, (A.5)

where N̂q = T̄q(N̄1(m̄), . . . , N̄q(m̄)) for q = 1, . . . , 
. We proceed recursively. For each i = 1, . . . , q and yi ∈
[1/n,n]ni

.= Ji , we define a σ -finite measure ν
yi

i on (X, B(X)) as

ν
yi

i (A) = ν
(
A ∩ Kc

n

) +
ni∑

j=1

yij ν(A ∩ Eij ), yi = (yi1, . . . , yini
),A ∈ B(X).

Define ν̄
yi

i on (Y, B(Y)) as ν̄
yi

i (A × B) = ν
yi

i (A)λ∞(B ∩ (0,1]) + λ∞(B ∩ (1,∞)). Denote by μ
yi

i the unique prob-
ability measure on (M̄i , B(M̄i )) under which the canonical map N∗

i : M̄i → M̄i ,N
∗
i (m)

.= m,m ∈ Mi , is a Poisson
random measure with intensity measure λi ⊗ ν̄

yi

i , where λi is the Lebesgue measure on Ii .

From (A.3) and (A.4) it follows that N̄1 under Qϕ̃ and N̂1 under P̄, are both distributed according to μ
ξ1
1 . Suppose

now that (A.5) holds with q replaced by q − 1, for some 1 < q ≤ 
. Note that, under Qϕ̃ , using (A.3), the conditional

law of N̄q given (N̄1, . . . , N̄q−1) equals μ
ξ̄q
q , where ξ̄q = ξq(N̄1, . . . , N̄q−1). Similarly, using (A.4), the conditional

law, under P̄, of N̂q given (N̂1, . . . , N̂q−1) equals μ
ξ̂q
q , where ξ̂q = ξq(N̂1, . . . , N̂q−1). Combining these observations

with our assumption that (A.5) holds with q replaced by q −1, we have that (A.5) holds with q as well. This completes
the proof of (1) and the lemma follows.

A.2. Sketch of Proof of Theorem 3.1

As for the proof of Theorem 2.1, we will only consider the case θ = 1. Define Āb , Ās , Āb,n, Ās,n, Âb as in Sec-
tion 2.2. Denote by P s,n

2 [P b,n
2 ], the collection of 
2-valued simple predictable (bounded predictable) processes ψ

with ‖ψ(t)‖ ≤ n, a.s. P̄, for t ∈ [0, T ]. Let P s
2 = ⋃

n≥1 P s,n
2 and P b

2 = ⋃
n≥1 P b,n

2 . Set Us,n = Ās,n × P s,n
2 and define

Us , Ub,n, Ub analogously. For ϕ ∈ Āb , let Et (ϕ) be as defined in Lemma 2.3. For ψ ∈ P b
2 , define the martingale

Ẽt (ψ) = exp

{ ∞∑
i=1

∫ t

0
ψi(s)dβi(s) − 1

2

∫ t

0

∥∥ψ(s)
∥∥2

ds

}
, t ∈ [0, T ].

Finally, for u = (ψ,ϕ) ∈ Ub , let Ēt (u) = Et (ϕ)Ẽt (ψ), t ∈ [0, T ]. The following result is standard, see Theorem III.3.24
of [14].

Lemma A.1. Let u ∈ Ub . Then {Ēt (u)} is an {F̄t }-martingale. Define a probability measure Qu on V̄ by

Qu(G) =
∫

G

ĒT (u)dP̄ for G ∈ B(V̄).

Then for any ϑ ∈ Âb ,

EQu

∫
ϑ(s, x, r)N̄(ds dx dr) = EQu

∫
ϑ(s, x, r)

(
ϕ(s, x)1(0,1](r) + 1(1,∞)(r)

)
ν̄T (ds dx dr).

Furthermore, under Qu, {βi(t) − ∫ t

0 ψi(s)ds,0 ≤ t ≤ T } is an i.i.d. sequence of standard Brownian motions.

The next two lemmas are proved in a manner similar to Lemmas 2.4 and 2.5. The proofs are omitted.

Lemma A.2. Let u = (ψ,ϕ) ∈ Ub,n. Then there exists a sequence of processes uk = (ψk,ϕk) ∈ Us,n such that, as
k → ∞:
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(1) (βψk ,Nϕk ) converges in distribution to (βψ,Nϕ).
(2) Ē|LT (ϕk) − LT (ϕ)| → 0 and Ē|L̃T (ψk) − L̃T (ψ)| → 0.
(3) Ē|ĒT (uk) − ĒT (u)| → 0, as k → ∞.

Lemma A.3. For every u = (ψ,ϕ) ∈ Us , there is ũ ∈ Us such that P̄ ◦ (βψ,Nϕ)−1 = Qũ ◦ (β,N1)−1 and

EQũ[
L̄T (ũ) + F

(
β,N1)] = Ē

[
L̄T (u) + F

(
βψ,Nϕ

)]
. (A.6)

Conversely, given any ũ ∈ Us there is u = (ψ,ϕ) ∈ Us such that P̄ ◦ (βψ,Nϕ)−1 = Qũ ◦ (β,N1)−1 and (A.6) holds.

Using the above three results we can now establish the following upper bound:

Theorem A.4. For every F ∈ Mb(V)

− logE
(
e−F(β,N)

) ≤ inf
u=(ψ,ϕ)∈U

Ē
[
L̄T (u) + F

(
βψ,Nϕ

)]
.

Sketch of Proof. Similar to the proof of Theorem 2.6, we prove that for any u = (ψ,ϕ) ∈ U ,

− log Ē
(
e−F(β,N1)

) ≤ Ē
[
L̄T (u) + F

(
βψ,Nϕ

)]
(A.7)

by considering three cases. Proofs for cases (1) and (2) (i.e., u ∈ Us and u ∈ Ub) follow exactly as for Theorem 2.6
upon using Lemmas A.1–A.3 in place of Lemmas 2.3–2.5. In particular (cf. below (2.12)),

R
(
P̄ ◦ (

βψ,Nϕ
)−1 ‖ P̄ ◦ (

β,N1)−1) ≤ Ē
[
L̄T (u)

]
for u = (ψ,ϕ) ∈ Ub. (A.8)

We provide additional details for the proof of case (3). Consider now u = (ψ,ϕ) ∈ U . Without loss of generality we
assume ĒL̄T (u) < ∞. Define ϕn as in case (3) of Theorem 2.6. Then ϕn ∈ Āb,n, and ĒLT (ϕn) ↑ ĒLT (ϕ). Next, let

τn = inf

{
t ∈ [0, T ]:

∫ t

0

∥∥ψ(s)
∥∥2 ds ≥ n

}
,

with the convention that τn = T if
∫ T

0 ‖ψ(s)‖2 ds < n. Let ψn(t) = ψ(t ∧ τn). It is easily checked that ĒL̃T (ψn) ↑
ĒL̃T (ψ). Thus, in particular, the relative entropies R(P̄◦ (βψn,Nϕn)−1 ‖ P̄◦ (β,N1)−1) are uniformly bounded. Also,
noting Ē

∫
[0,T ] ‖ψn(t) − ψ(t)‖2 dt → 0, we see that βψn → βψ , in P̄-probability. Combining these observations with

calculations similar to those below (2.14), we have that Ē[F(βψn,Nϕn)] → Ē[F(βψ,Nϕ)]. The result now follows
on recalling that (A.7) holds with u = (ψ,ϕ) replaced by un = (ψn,ϕn) and sending n → ∞. �

For the proof of the lower bound, as in Section 2.3.2, we begin by considering a suitable class of “cylindrical”
functions. For η = (ηi) ∈ L2([0, T ]: 
2), let ι(η) : V → R be defined as ι(η) = ∑∞

i=1

∫ T

0 ηi(s)dβi(s). Let

F(w,m) = g
(
ι
(
η1), . . . , ι(ηp

)
, 〈f1,m〉, . . . , 〈fk,m〉), (w,m) ∈ V,

where p,k ∈ N, g ∈ C∞
c (Rp+k), ηi ∈ L2([0, T ]: 
2) and fi ∈ Cc(XT ). The class of all such F is denoted as Ccyl(V).

Standard approximations show that, for every F ∈ Mb(V),

there is a sequence Fn ∈ Ccyl(V) such that |Fn|∞ ≤ |F |∞ and Fn → F a.s. P̄. (A.9)

By Proposition 1.4.2 of [11],

− log Ē
(
e−F(β,N1)

) = R(Q ‖ P̄) + ĒQ
[
F

(
β,h(N̄)

)]
,
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where Q is the probability measure defined by

Q(A) =
∫
A

e−F(w,h(m̄)) dP̄(w, m̄)∫
V̄

e−F(w,h(m̄)) dP̄(w, m̄)
, A ∈ B(V̄). (A.10)

The key ingredient in the proof of the lower bound is the following representation for the Radon–Nikodym derivative
dQ

dP̄
.

Theorem A.5. Let F ∈ Ccyl(V) and Q be defined by (A.10). Then there is a u ∈ Ub such that dQ

dP̄
= ĒT (u).

The proof of the statement that dQ

dP̄
= ĒT (u) for some u ∈ U follows from classical martingale representation results

(see, e.g., Theorem 2 of [13]). The property that u can in fact be chosen to be an element of Ub , when F is a smooth
cylindrical function (i.e., F belongs to Ccyl(V)), can be deduced using arguments similar to [28] (see Proposition 4.2
and Eq. (30) therein; see also [27], Theorem 3.4). Details are omitted.

Following the proof of (2.20) we have for F ∈ Ccyl(V) and u ∈ Ub as in Theorem A.5, writing Q = Qu,

− log Ē
(
e−F(β,N1)

) = EQu[
L̄T (u) + F

(
β,h(N̄)

)]
. (A.11)

Let uk be a sequence in Us as constructed in Lemma A.2 for u as above. Then for each k[
R

(
Quk ‖ P̄

) +
∫

V̄

F
(
w,h(m̄)

)
dQuk (w, m̄)

]
= EQuk

[
L̄T (uk) + F

(
β,h(N̄)

)]
.

Using Lemma A.3 and Theorem A.5 we now obtain the following lower bound, whose proof is the same as that of
Theorem 2.8.

Theorem A.6. For every F ∈ Mb(V)

− logE
(
e−F(β,N)

) ≥ inf
u=(ψ,ϕ)∈U

Ē
[
L̄T (u) + F

(
βψ,Nϕ

)]
.

Theorem 3.1 is an immediate consequence of Theorems A.4 and A.6.

A.3. Proof of Theorem 4.2

In order to show that I is a rate function, it suffices to prove that for every M ∈ (0,∞), the set

ΛM = {
φ ∈ U: I (φ) ≤ M

}
is compact. Part (1) of Condition 4.1 implies that for every K ∈ (0,∞) the set

ΓK =
{

G 0
(∫ ·

0
f (s)ds, ν

g
T

)
: (f, g) ∈ S̄K

}

is compact. Compactness of ΛM is now an immediate consequence of the identity ΛM = ⋂
n≥1 ΓM+1/n. This proves

the first part of the theorem. For the second part, it suffices to show that for F ∈ Cb(U)

lim
ε→0

−ε log Ē
(
e−ε−1F(Zε)

) = inf
φ∈U

{
I (φ) + F(φ)

}
. (A.12)

Lower bound: We begin by showing that the left-hand side (with lim replaced by liminf) of (A.12) is bounded
below by the right-hand side. Note that

−ε log Ē
(
e−ε−1F(Zε)

) = −ε log Ē
[
e−ε−1F◦Gε (

√
εβ,εNε−1

)
]
.
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Noting that Nε−1
is a PRM with intensity ε−1νT , we see from Theorem 3.1 (with θ = ε−1) that the right-hand side

above equals

inf
u=(ψ,ϕ)∈U

Ē

[
L̄T (u) + F ◦ Gε

(√
εβ +

∫ ·

0
ψ(s)ds, εNε−1ϕ

)]
. (A.13)

Fix δ ∈ (0,1). For each ε choose uε = (ψε,ϕε) ∈ U such that the expression above is bounded below by

Ē

[
L̄T (uε) + F ◦ Gε

(√
εβ +

∫ ·

0
ψε(s)ds, εNε−1ϕε

)]
− δ. (A.14)

Clearly Ē(L̄T (uε)) ≤ 2|F |∞ + 1. For 0 ≤ t ≤ T let

Lt(uε) =
∫

[0,t]

(∥∥ψε(s)
∥∥2 +

∫
X



(
ϕε(s, x)

)
ν(dx)

)
ds

and

τ ε
M = inf

{
t ∈ [0, T ] : L̄t (uε) ≥ M

} ∧ T .

Define

ϕε,M(t, x) = 1 + [
ϕε(t, x) − 1

]
1[0,τ ε

M ](t),ψε,M(t) = ψε(t)1[0,τ ε
M ](t), t ∈ [0, T ], x ∈ X.

Note that uε,M = (ψε,M,ϕε,M) ∈ U M . Also,

P̄(uε �= uε,M) ≤ P̄
(
L̄T (uε) ≥ M

) ≤ 2|F |∞ + 1

M
.

Choose M large enough so that the right-hand side above is bounded by δ/(2|F |∞). Then the expression in (A.14) is
bounded below by

Ē

[
L̄T (uε,M) + F ◦ Gε

(√
εβ +

∫ ·

0
ψε,M(s)ds, εNε−1ϕε,M

)]
− 2δ.

Note that {uε,M }ε>0 is a family of S̄M -valued random variables. Recalling that S̄M is compact, choose a weakly
convergent subsequence and denote by u = (ψ,ϕ) the weak limit point. From part (2) of Condition 4.1 we have that
along this subsequence Gε(

√
εβ + ∫ ·

0 ψε,M(s)ds, εNε−1ϕε,M ) converges weakly to G 0(
∫ ·

0 ψ(s)ds, ν
ϕ
T ). Thus, using

Fatou’s lemma and lower semicontinuity properties of L̄T

lim inf
ε→0

−ε log Ē
(
e−ε−1F(Zε)

)

≥ lim inf
ε→0

Ē

[
L̄T (uε) + F ◦ Gε

(√
εβ +

∫ ·

0
ψε,M(s)ds, εNε−1ϕε,M

)]
− 2δ

≥ Ē

[
L̄T (u) + F ◦ G 0

(∫ ·

0
ψ(s)ds, ν

ϕ
T

)]
− 2δ

≥ inf
φ∈U

inf
q∈Sφ

(
L̄T (q) + F(φ)

) − 2δ

= inf
φ∈U

(
I (φ) + F(φ)

) − 2δ.

Since δ ∈ (0,1) is arbitrary, this completes the proof of the lower bound.
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Upper bound. We now show that the left-hand side in (A.12) (with lim replaced by limsup) is bounded above by
the right-hand side. Fix δ ∈ (0,1) and φ0 ∈ U such that

I (φ0) + F(φ0) ≤ inf
φ∈U

(
I (φ) + F(φ)

) + δ.

Choose q = (f, g) ∈ Sφ0 such that L̄T (q) ≤ I (φ0) + δ. Note that with this choice

φ0 = G 0
(∫ ·

0
f (s)ds, ν

g
T

)
.

Recalling from the proof of the lower bound that −ε log Ē(exp(−ε−1F(Zε))) equals the expression in (A.13), we
have that

lim sup
ε→0

−ε log Ē
(
e−ε−1F(Zε)

)

≤ L̄T (q) + lim sup
ε→0

Ē

[
F ◦ Gε

(√
εβ +

∫ ·

0
f (s)ds, εNε−1g

)]

≤ I (φ0) + δ + F ◦ G 0
(∫ ·

0
f (s)ds, ν

g
T

)
= I (φ0) + F(φ0) + δ

≤ inf
φ∈U

(
I (φ) + F(φ)

) + 2δ,

where the second inequality in the above display makes use of part (2) of Condition 4.1. Since δ ∈ (0,1) is arbitrary
the desired upper bound follows. This completes the proof of the theorem.
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