Nous proposons de tester l'homogénéité d'un processus de Poisson observé sur un intervalle borné. Nous établissons tout d'abord des bornes inférieures pour les vitesses de séparation uniformes relativement à la norme sur des Besov bodies classiques ou faibles. De façon surprenante, nous obtenons des bornes inférieures sur les Besov bodies faibles qui coïncident avec les vitesses minimax d'estimation sur ce type de classe. Ensuite, nous construisons des procédures de tests non asymptotiques et non paramétriques qui sont adaptatives, au sens où elles atteignent, à un facteur logarithmique près dans certains cas, les vitesses de séparation optimales sur plusieurs classes d'alternatives simultanément. Ces procédures sont basées sur des méthodes de sélection de modèles et de seuillage. Enfin, nous complétons cette étude théorique par des simulations afin d'estimer par la méthode de Monte Carlo la puissance de nos tests sous diverses alternatives.
We propose to test the homogeneity of a Poisson process observed on a finite interval. In this framework, we first provide lower bounds for the uniform separation rates in -norm over classical Besov bodies and weak Besov bodies. Surprisingly, the obtained lower bounds over weak Besov bodies coincide with the minimax estimation rates over such classes. Then we construct non-asymptotic and non-parametric testing procedures that are adaptive in the sense that they achieve, up to a possible logarithmic factor, the optimal uniform separation rates over various Besov bodies simultaneously. These procedures are based on model selection and thresholding methods. We finally complete our theoretical study with a Monte Carlo evaluation of the power of our tests under various alternatives.
Mots-clés : Poisson process, adaptive hypotheses testing, uniform separation rate, minimax separation rate, model selection, thresholding rule
@article{AIHPB_2011__47_1_176_0, author = {Fromont, M. and Laurent, B. and Reynaud-Bouret, P.}, title = {Adaptive tests of homogeneity for a {Poisson} process}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {176--213}, publisher = {Gauthier-Villars}, volume = {47}, number = {1}, year = {2011}, doi = {10.1214/10-AIHP367}, mrnumber = {2779402}, zbl = {1207.62161}, language = {en}, url = {http://www.numdam.org/articles/10.1214/10-AIHP367/} }
TY - JOUR AU - Fromont, M. AU - Laurent, B. AU - Reynaud-Bouret, P. TI - Adaptive tests of homogeneity for a Poisson process JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2011 SP - 176 EP - 213 VL - 47 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/10-AIHP367/ DO - 10.1214/10-AIHP367 LA - en ID - AIHPB_2011__47_1_176_0 ER -
%0 Journal Article %A Fromont, M. %A Laurent, B. %A Reynaud-Bouret, P. %T Adaptive tests of homogeneity for a Poisson process %J Annales de l'I.H.P. Probabilités et statistiques %D 2011 %P 176-213 %V 47 %N 1 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/10-AIHP367/ %R 10.1214/10-AIHP367 %G en %F AIHPB_2011__47_1_176_0
Fromont, M.; Laurent, B.; Reynaud-Bouret, P. Adaptive tests of homogeneity for a Poisson process. Annales de l'I.H.P. Probabilités et statistiques, Tome 47 (2011) no. 1, pp. 176-213. doi : 10.1214/10-AIHP367. http://www.numdam.org/articles/10.1214/10-AIHP367/
[1] Exchangeability and related topics. In Ecole d'été de probabilité de Saint-Flour XIII 1-198. Lecture Notes in Math. 1117. Springer, Berlin, 1985. | MR | Zbl
.[2] Tests for an increasing trend in the intensity of a Poisson process: A power study. J. Amer. Statist. Assoc. 80 (1985) 419-422.
, and .[3] Non asymptotic minimax rates of testing in signal detection. Bernoulli 8 (2002) 577-606. | MR | Zbl
.[4] Adaptive tests of linear hypotheses by model selection. Ann. Statist. 31 (2003) 225-251. | MR | Zbl
, and .[5] Unconditional tests of goodness of fit for the intensity of time-truncated nonhomogeneous Poisson processes. Technometrics 46 (2004) 330-338. | MR
, and .[6] Nonparametric homogeneity tests. J. Statist. Plann. Inference 136 (2006) 597-639. | MR | Zbl
and .[7] Evaluating tests for increasing intensity of a Poisson process. Technometrics 35 (1993) 446-448. | MR | Zbl
and .[8] Some statistical methods connected with series of events. J. Roy. Statist. Soc. Ser. B 17 (1955) 129-164. | MR | Zbl
.[9] Reliability and analysis for complex repairable systems. In Reliability and Biometry (F. Proschan and R. J. Serfling, eds.) 379-410. Society for Industrial and Applied Mathematics, Philadelphia, 1974. | MR
.[10] Hypotheses testing: Poisson versus self-exciting. Scand. J. Statist. 33 (2006) 391-408. | MR | Zbl
and .[11] Second-order efficient test for inhomogeneous Poisson processes. Stat. Inference Stochastic Proc. 10 (2007) 181-208. | MR | Zbl
.[12] Two simple hypotheses testing for Poisson process. Far East J. Theor. Stat. 15 (2005) 251-290. | MR | Zbl
and .[13] Adaptive goodness-of-fit tests in a density model. Ann. Statist. 34 (2006) 680-720. | MR | Zbl
and .[14] FADO: A statistical method to detect favored or avoided distances between motif occurrences using the Hawkes' model. Stat. Appl. Genet. Mol. Biol. 4 (2005) Article 24. | MR | Zbl
and .[15] Exponential inequalities, with constants, for U-statistics of order 2. In Stochastic Inequalities and Applications 55-69. Progr. Probab. 56. Birkhauser, Basel, 2003. | MR | Zbl
and .[16] Asymptotically minimax testing for nonparametric alternatives I-II-III. Math. Methods Statist. 2 (1993) 85-114, 171-189, 249-268. | MR | Zbl
.[17] Adaptive chi-square tests. J. Math. Sci. 99 (2000) 1110-1119. | MR | Zbl
.[18] Nonparametric hypothesis testing for intensity of the Poisson process. Math. Methods Statist. 16 (2007) 217-245. | MR | Zbl
and .[19] Thresholding algorithms, maxisets and well-concentrated bases. Test 9 (2000) 283-344. | Zbl
and .[20] Adaptive estimation of a quadratic functional of a density by model selection. ESAIM Probab. Stat. 9 (2005) 1-18. | EuDML | Numdam | MR | Zbl
.[21] Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities. Probab. Theory Related Fields 126 (2003) 103-153. | MR | Zbl
.[22] Near optimal thresholding estimation of a Poisson intensity on the real line. Electron J. Statist. 4 (2010) 172-238. | MR
and .[23] Nonlinear estimation over weak Besov spaces and minimax Bayes method. Bernoulli 12 (2006) 609-632. | MR | Zbl
.[24] DNA Words and Models. Cambridge Univ. Press, Cambridge, 2005. | MR | Zbl
, and .[25] Adaptive hypothesis testing using wavelets. Ann. Statist. 24 (1996) 2477-2498. | MR | Zbl
.[26] Adaptive and spatially hypothesis testing of a nonparametric hypothesis. Math. Methods Statist. 7 (1998) 245-273. | MR | Zbl
.[27] Estimating the intensity of a Poisson process. In Applied Time Series Analysis (1st Proceeding, Tulsa, 1976) 325-345. Academic Press, New York, 1978. | MR | Zbl
.- A common shock model for multidimensional electricity intraday price modelling with application to battery valuation, Quantitative Finance, Volume 24 (2024) no. 8, p. 1157 | DOI:10.1080/14697688.2024.2395906
- Minimax and adaptive tests for detecting abrupt and possibly transitory changes in a Poisson process, Electronic Journal of Statistics, Volume 17 (2023) no. 2 | DOI:10.1214/23-ejs2152
- Minimax rates for sparse signal detection under correlation, Information and Inference: A Journal of the IMA, Volume 12 (2023) no. 4, p. 2873 | DOI:10.1093/imaiai/iaad044
- Goodness-of-fit Test for the Baseline Hazard Rate, Nonparametric Statistics, Volume 339 (2020), p. 35 | DOI:10.1007/978-3-030-57306-5_4
- Concentration Inequalities for Randomly Permuted Sums, High Dimensional Probability VIII, Volume 74 (2019), p. 341 | DOI:10.1007/978-3-030-26391-1_17
- Continuous testing for Poisson process intensities: a new perspective on scanning statistics, Biometrika (2018) | DOI:10.1093/biomet/asy044
- Sharp minimax adaptation over Sobolev ellipsoids in nonparametric testing, Electronic Journal of Statistics, Volume 11 (2017) no. 2 | DOI:10.1214/17-ejs1353
- , 2016 IEEE Statistical Signal Processing Workshop (SSP) (2016), p. 1 | DOI:10.1109/ssp.2016.7551768
- Weak dependence of point processes and application to second-order statistics†, Statistics, Volume 50 (2016) no. 6, p. 1221 | DOI:10.1080/02331888.2016.1153097
- Family-Wise Separation Rates for multiple testing, The Annals of Statistics, Volume 44 (2016) no. 6 | DOI:10.1214/15-aos1418
- Combined effect of atmospheric nitrogen deposition and climate change on temperate forest soil biogeochemistry: A modeling approach, Ecological Modelling, Volume 306 (2015), p. 24 | DOI:10.1016/j.ecolmodel.2014.10.002
- A model of Poissonian interactions and detection of dependence, Statistics and Computing, Volume 25 (2015) no. 2, p. 449 | DOI:10.1007/s11222-013-9443-z
- Testing randomness of spatial point patterns with the Ripley statistic, ESAIM: Probability and Statistics, Volume 17 (2013), p. 767 | DOI:10.1051/ps/2012027
- The two-sample problem for Poisson processes: Adaptive tests with a nonasymptotic wild bootstrap approach, The Annals of Statistics, Volume 41 (2013) no. 3 | DOI:10.1214/13-aos1114
- Non asymptotic minimax rates of testing in signal detection with heterogeneous variances, Electronic Journal of Statistics, Volume 6 (2012) no. none | DOI:10.1214/12-ejs667
- Non asymptotic minimax rates of testing in signal detection with heterogeneous variances, arXiv (2009) | DOI:10.48550/arxiv.0912.2423 | arXiv:0912.2423
Cité par 16 documents. Sources : Crossref, NASA ADS