Duality of chordal SLE, II

Dapeng Zhan ${ }^{1}$

Michigan State University. E-mail: zhan@math.msu.edu
Received 28 July 2008; revised 12 April 2009; accepted 16 September 2009

Abstract

We improve the geometric properties of $\operatorname{SLE}(\kappa ; \vec{\rho})$ processes derived in an earlier paper, which are then used to obtain more results about the duality of SLE. We find that for $\kappa \in(4,8)$, the boundary of a standard chordal SLE (κ) hull stopped on swallowing a fixed $x \in \mathbb{R} \backslash\{0\}$ is the image of some $\operatorname{SLE}(16 / \kappa ; \vec{\rho})$ trace started from a random point. Using this fact together with a similar proposition in the case that $\kappa \geq 8$, we obtain a description of the boundary of a standard chordal SLE (κ) hull for $\kappa>4$, at a finite stopping time. Finally, we prove that for $\kappa>4$, in many cases, a chordal or strip $\operatorname{SLE}(\kappa ; \vec{\rho})$ trace a.s. ends at a single point.

Résumé. Nous améliorons des résultats précédemment obtenus concernant les propriétés géométriques des processus SLE $(\kappa ; \vec{\rho})$, que nous utilisons ensuite pour étudier la propriété dite de dualité des processus SLE.

Nous prouvons que pour $\kappa \in(4,8)$, la frontière de l'enveloppe d'un $\operatorname{SLE}(\kappa)$ chordal standard arrêté quand il disconnecte un point fixe $x \in \mathbb{R} \backslash\{0\}$ de l'infini est une courbe $\operatorname{SLE}(16 / \kappa, \vec{\rho})$ issue d'un point aléatoire. Nous obtenons ainsi une description de la frontière de l'enveloppe d'un $\operatorname{SLE}(\kappa)$ pour $\kappa>4$. Finalement, nous démontrons que pour $\kappa>4$, dans de nombreux cas, la courbe de processus $\operatorname{SLE}(\kappa ; \vec{\rho})$ généralisés (par exemple dans une bande) se termine presque sûrement en un point unique.

MSC: 30C20; 60H05
Keywords: SLE; Duality; Coupling technique

1. Introduction

This paper is a follow-up of the paper [9], in which we proved some versions of Duplantier's duality conjecture about Schramm's SLE process [8]. In the present paper, we will improve the technique used in [9], and derive more results about the duality conjecture.

Let us now briefly review some results in [9]. Let $\kappa_{1}<4<\kappa_{2}$ with $\kappa_{1} \kappa_{2}=16$. Let $x_{1} \neq x_{2} \in \mathbb{R}$. Let $N \in \mathbb{N}$ and $p_{1}, \ldots, p_{N} \in \mathbb{R} \cup\{\infty\} \backslash\left\{x_{1}, x_{2}\right\}$ be distinct points. Let $C_{1}, \ldots, C_{N} \in \mathbb{R}$ and $\rho_{j, m}=C_{m}\left(\kappa_{j}-4\right), 1 \leq m \leq N$, $j=1$, 2. Let $\vec{p}=\left(p_{1}, \ldots, p_{N}\right)$ and $\vec{\rho}_{j}=\left(\rho_{j, 1}, \ldots, \rho_{j, N}\right), j=1,2$. We used Itô's calculus and the Girsanov theorem to derive some commutation relation between two SLE-type processes in the upper half-plane $\mathbb{H}=\{z \in \mathbb{C}$: $\operatorname{Im} z>$ $0\}$: one is a chordal $\operatorname{SLE}\left(\kappa_{1} ;-\frac{\kappa_{1}}{2}, \vec{\rho}_{1}\right)$ process, say $K_{1}(t), 0 \leq t<T_{1}$, started from $\left(x_{1} ; x_{2}, \vec{p}\right)$, the other a chordal $\operatorname{SLE}\left(\kappa_{2} ;-\frac{\kappa_{2}}{2}, \vec{\rho}_{2}\right)$ process $K_{2}(t), 0 \leq t<T_{2}$, started from ($x_{2} ; x_{1}, \vec{p}$). Using the coupling technique obtained in [11], we obtained a coupling of the above two SLE processes such that for any $j \neq k \in\{1,2\}$, if $S_{k}<T_{k}$ is a stopping time for $\left(K_{k}(t)\right)$, and if we conditioned on $K_{k}(t), 0 \leq t \leq S_{k}$, then after a time-change, the part of $K_{j}(t)$ before hitting $K_{k}\left(S_{k}\right)$ is a chordal $\operatorname{SLE}\left(\kappa_{j} ;-\frac{\kappa_{j}}{2}, \vec{\rho}_{j}\right)$ process in $\mathbb{H} \backslash K_{k}\left(S_{k}\right)$ started from $\left(x_{j} ; \beta_{k}\left(S_{k}\right), \vec{p}\right)$, where $\beta_{k}(t)$ is the tract that corresponds to $\left(K_{k}(t)\right)$. Moreover, some p_{m} could be degenerate, i.e., $p_{m}=x_{j}^{+}$or x_{j}^{-}, if the corresponding force $\rho_{j, m}$ satisfies $\rho_{j, m} \geq \kappa_{j} / 2-2$.

[^0]This theorem was then applied to the case that $N=3 ; x_{1}<x_{2} ; p_{1} \in\left(-\infty, x_{1}\right)$ or $=x_{1}^{-} ; p_{2} \in\left(x_{2}, \infty\right)$, or $=\infty$, or $=x_{2}^{+}$; and $p_{3} \in\left(x_{1}, x_{2}\right)$, or $=x_{1}^{+}$, or $=x_{2}^{-} ; C_{1} \leq 1 / 2, C_{2}=1-C_{1}$ and $C_{3}=1 / 2$. Using some study about the behavior of these $\operatorname{SLE}(\kappa ; \vec{\rho})$ traces at their end points, we concluded that $K_{1}\left(T_{1}^{-}\right):=\bigcup_{0 \leq t<T_{1}} K_{1}(t)$ is the outer boundary of $K_{2}\left(T_{2}^{-}\right):=\bigcup_{0 \leq t<T_{2}} K_{2}(t)$ in \mathbb{H}.

The following proposition, i.e., Theorem 5.2 in [9], is an application of the above result. It describes the boundary of a standard chordal $\operatorname{SLE}(\kappa)$ hull, where $\kappa \geq 8$, at the time when a fixed $x \in \mathbb{R} \backslash\{0\}$ is swallowed.

Proposition 1.1. Suppose $\kappa \geq 8$, and $K(t), 0 \leq t<\infty$ is a standard chordal $\operatorname{SLE}(\kappa)$ process. Let $x \in \mathbb{R} \backslash\{0\}$ and T_{x} be the first t such that $x \in \overline{K(t)}$. Then $\partial K\left(T_{x}\right) \cap \mathbb{H}$ has the same distribution as the image of a chordal $\operatorname{SLE}\left(\kappa^{\prime} ;-\frac{\kappa^{\prime}}{2},-\frac{\kappa^{\prime}}{2}, \frac{\kappa^{\prime}}{2}-2\right)$ trace started from $\left(x ; 0, x^{a}, x^{b}\right)$, where $\kappa^{\prime}=16 / \kappa, a=\operatorname{sign}(x)$ and $b=\operatorname{sign}(-x)$. So a.s. $\partial K\left(T_{x}\right) \cap \mathbb{H}$ is a crosscut in \mathbb{H} connecting x with some $y \in \mathbb{R} \backslash\{0\}$ with $\operatorname{sign}(y)=\operatorname{sign}(-x)$.

Here, a crosscut in \mathbb{H} on \mathbb{R} is a simple curve in \mathbb{H} whose two ends approach to two different points on \mathbb{R}. Since $\kappa \geq 8$, the trace is space-filling, so a.s. x is visited by the trace at time T_{x}, and so x is an end point of $\overline{K\left(T_{x}\right)} \cap \mathbb{R}$. From this proposition, we see that the boundary of $K\left(T_{x}\right)$ in \mathbb{H} is an $\operatorname{SLE}(16 / \kappa)$-type trace in \mathbb{H} started from x.

The motivation of the present paper is to derive the counterpart of Proposition 1.1 in the case that $\kappa \in(4,8)$. In this case, the trace, say γ, is not space-filling, so a.s. x is not visited by γ, at time T_{x}, and so x is an interior point of $\overline{K\left(T_{x}\right)} \cap \mathbb{R}$. Thus we can not expect that the boundary of $K\left(T_{x}\right)$ in \mathbb{H} is a curve started from x.

This difficulty will be overcome by conditioning the process $K(t), 0 \leq t<T_{x}$, on the value of $\gamma\left(T_{x}\right)$. In Section 3, we will prove that conditioned on $y=\gamma\left(T_{x}\right), K(t), 0 \leq t<T_{x}$, is a chordal $\operatorname{SLE}(\kappa ;-4, \kappa-4)$ process started from $(0 ; y, x)$. This is the statement of Corollary 3.2.

In Section 4, we will improve the geometric results about $\operatorname{SLE}(\kappa ; \vec{\rho})$ processes that were derived in [9]. Using these geometric results, we will prove in Section 5 that Proposition 2.8 can be applied with $N=4$ and suitable values of p_{m} and C_{m} for $1 \leq m \leq 4$, to obtain more results about duality. Especially, using Corollary 3.2, we will obtain the counterpart of Proposition 1.1 in the case that $\kappa \in(4,8)$, which is Theorem 1.1 below.

Theorem 1.1. Let $\kappa \in(4,8)$, and $x \in \mathbb{R} \backslash\{0\}$. Let $K(t)$ and $\gamma(t), 0 \leq t<\infty$, be standard chordal $\operatorname{SLE}(\kappa)$ process and trace, respectively. Let T_{x} be the first time that $x \in \overline{K(t)}$. Let $\bar{\mu}$ denote the distribution of $\partial K\left(T_{x}\right) \cap \mathbb{H}$. Let λ denote the distribution of $\gamma\left(T_{x}\right)$. Let $\kappa^{\prime}=16 / \kappa, a=\operatorname{sign}(x)$ and $b=\operatorname{sign}(-x)$. Let \bar{v}_{y} denote the distribution of the image of a chordal $\operatorname{SLE}\left(\kappa^{\prime} ;-\frac{\kappa^{\prime}}{2}, \frac{3}{2} \kappa^{\prime}-4,-\frac{\kappa^{\prime}}{2}+2, \kappa^{\prime}-4\right)$ trace started from $\left(y ; 0, y^{a}, y^{b}, x\right)$. Then $\bar{\mu}=\int \bar{v}_{y} \mathrm{~d} \lambda(y)$. So a.s. $\partial K\left(T_{x}\right) \cap \mathbb{H}$ is a crosscut in \mathbb{H} connecting some $y, z \in \mathbb{R} \backslash\{0\}$, where $\operatorname{sign}(y)=\operatorname{sign}(x),|y|>|x|$, and $\operatorname{sign}(z)=\operatorname{sign}(-x)$.

In Section 6, we will use Theorem 1.1 and Proposition 1.1 to study the boundary of a standard chordal SLE (κ) hull, say $K(t)$, at a finite positive stopping time T. Let $\gamma(t)$ be the corresponding SLE trace. We will find that if $\gamma(T) \in \mathbb{R}$, then $\partial K(T) \cap \mathbb{H}$ is a crosscut in \mathbb{H} with $\gamma(T)$ as one end point; and if $\gamma(T) \in \mathbb{H}$, then $\partial K(T) \cap \mathbb{H}$ is the union of two semi-crosscuts in \mathbb{H}, which both have $\gamma(T)$ as one end point. Here a semi-crosscut in \mathbb{H} is a simple curve in \mathbb{H} whose one end lies in \mathbb{H} and the other end approaches to a point on \mathbb{R}. Moreover, in the latter case, every intersection point of the two semi-crosscuts other than $\gamma(T)$ corresponds to a cut-point of $K(T)$. If $\kappa \geq 8$, then the two semi-crosscuts only meet at $\gamma(T)$, and so $\partial K(T) \cap \mathbb{H}$ is again a crosscut in \mathbb{H} on \mathbb{R}.

In the last section of this paper, we will use the results in Section 6 to derive more geometric results about $\operatorname{SLE}(\kappa ; \vec{\rho})$ processes. We will prove that many propositions in [9] and Section 4 of this paper about the limit of an $\operatorname{SLE}(\kappa ; \vec{\rho})$ trace that hold for $\kappa \in(0,4]$ are also true for $\kappa>4$.

Julien Dubédat has a nice result ([4], Theorem 1) about the boundary arc of $K(t)$ straddling x, i.e., the boundary arc seen by x at time T_{x}^{-}, which says that the boundary arc is also an $\operatorname{SLE}(16 / \kappa)$ curve. His result is about the "inner" boundary of $K\left(T_{x}\right)$, while Theorem 1.1 in this paper is about the "outer" boundary. The author prefers to apply Theorem 1.1 to study the boundary of standard chordal $\operatorname{SLE}(\kappa)$ hulls at general stopping times, and to derive other related results.

2. Preliminary

In this section, we review some definitions and propositions in [9], which will be used in this paper.

If H is a bounded and relatively closed subset of $\mathbb{H}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$, and $\mathbb{H} \backslash H$ is simply connected, then we call H a hull in \mathbb{H} w.r.t. ∞. For such H, there is φ_{H} that maps $\mathbb{H} \backslash H$ conformally onto \mathbb{H}, and satisfies $\varphi_{H}(z)=$ $z+\frac{c}{z}+\mathrm{O}\left(\frac{1}{z^{2}}\right)$ as $z \rightarrow \infty$, where $c=\operatorname{hcap}(H) \geq 0$ is called the capacity of H in \mathbb{H} w.r.t. ∞.

For a reall interval I, we use $C(I)$ to denote the space of real continuous functions on I. For $T>0$ and $\xi \in$ $C([0, T)$), the chordal Loewner equation driven by ξ is

$$
\partial_{t} \varphi(t, z)=\frac{2}{\varphi(t, z)-\xi(t)}, \quad \varphi(0, z)=z
$$

For $0 \leq t<T$, let $K(t)$ be the set of $z \in \mathbb{H}$ such that the solution $\varphi(s, z)$ blows up before or at time t. We call $K(t)$ and $\varphi(t, \cdot), 0 \leq t<T$, chordal Loewner hulls and maps, respectively, driven by ξ. It turns out that $\varphi(t, \cdot)=\varphi_{K(t)}$ for each $t \in[0, T)$.

Let $B(t), 0 \leq t<\infty$, be a (standard linear) Brownian motion. Let $\kappa \geq 0$. Then $K(t)$ and $\varphi(t, \cdot), 0 \leq t<\infty$, driven by $\xi(t)=\sqrt{\kappa} B(t), 0 \leq t<\infty$, are called standard chordal $\operatorname{SLE}(\kappa)$ hulls and maps, respectively. It is known [5,7] that almost surely for any $t \in[0, \infty)$,

$$
\begin{equation*}
\gamma(t):=\lim _{\mathbb{H} \ni z \rightarrow \xi(t)} \varphi(t, \cdot)^{-1}(z) \tag{2.1}
\end{equation*}
$$

exists, and $\gamma(t), 0 \leq t<\infty$, is a continuous curve in $\overline{\mathbb{H}}$. Moreover, if $\kappa \in(0,4]$, then γ is a simple curve, which intersects \mathbb{R} only at the initial point, and for any $t \geq 0, K(t)=\gamma((0, t])$; if $\kappa>4$ then γ is not simple; if $\kappa \geq 8$ then γ is space-filling. Such γ is called a standard chordal $\operatorname{SLE}(\kappa)$ trace.

If $(\xi(t))$ is a semi-martingale, and $\mathrm{d}\langle\xi(t)\rangle=\kappa \mathrm{d} t$ for some $\kappa>0$, then from Girsanov theorem (cf. [6]) and the existence of standard chordal SLE (κ) trace, almost surely for any $t \in[0, T), \gamma(t)$ defined by (2.1) exists, and has the same property as a standard chordal $\operatorname{SLE}(\kappa)$ trace (depending on the value of κ) as described in the last paragraph.

Let $\kappa \geq 0, \rho_{1}, \ldots, \rho_{N} \in \mathbb{R}, x \in \mathbb{R}$, and $p_{1}, \ldots, p_{N} \in \widehat{\mathbb{R}} \backslash\{x\}$, where $\widehat{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$ is a circle. Let $\xi(t)$ and $p_{k}(t)$, $1 \leq k \leq N$, be the solutions to the SDE:

$$
\left\{\begin{array}{l}
\mathrm{d} \xi(t)=\sqrt{\kappa} \mathrm{d} B(t)+\sum_{k=1}^{N} \frac{\rho_{k}}{\xi(t)-p_{k}(t)} \mathrm{d} t, \tag{2.2}\\
\mathrm{~d} p_{k}(t)=\frac{2}{p_{k}(t)-\xi(t)} \mathrm{d} t, \quad 1 \leq k \leq N
\end{array}\right.
$$

with initial values $\xi(0)=x$ and $p_{k}(0)=p_{k}, 1 \leq k \leq N$. If $\varphi(t, \cdot)$ are chordal Loewner maps driven by $\xi(t)$, then $p_{k}(t)=\varphi\left(t, p_{k}\right)$. Suppose [$\left.0, T\right)$ is the maximal interval of the solution. Let $K(t)$ and $\gamma(t), 0 \leq t<T$, be chordal Loewner hulls and trace driven by ξ. Let $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{N}\right)$ and $\vec{p}=\left(p_{1}, \ldots, p_{N}\right)$. Then $K(t)$ and $\gamma(t), 0 \leq t<T$, are called (full) chordal SLE $\left(\kappa ; \rho_{1}, \ldots, \rho_{N}\right)$ or $\operatorname{SLE}(\kappa ; \vec{\rho})$ process and trace, respectively, started from $\left(x ; p_{1}, \ldots, p_{N}\right)$ or $(x ; \vec{p})$. If $T_{0} \in(0, T]$ is a stopping time, then $K(t)$ and $\gamma(t), 0 \leq t<T_{0}$, are called partial chordal SLE $(\kappa ; \vec{\rho})$ process and trace, respectively, started from $(x ; \vec{p})$.

If we allow that one of the force points takes value x^{+}or x^{-}, or two of the force points take values x^{+}and x^{-}, respectively, then we obtain the definition of degenerate chordal $\operatorname{SLE}(\kappa ; \vec{\rho})$ process. Let $\kappa \geq 0 ; \rho_{1}, \ldots, \rho_{N} \in \mathbb{R}$, and $\rho_{1} \geq \kappa / 2-2 ; p_{1}=x^{+}, p_{2}, \ldots, p_{N} \in \widehat{\mathbb{R}} \backslash\{x\}$. Let $\xi(t)$ and $p_{k}(t), 1 \leq k \leq N, 0<t<T$, be the maximal solution to (2.2) with initial values $\xi(0)=p_{1}(0)=x$, and $p_{k}(0)=p_{k}, 1 \leq k \leq N$. Moreover, we require that $p_{1}(t)>\xi(t)$ for any $0<t<T$. Then the chordal Loewner hulls $K(t)$ and trace $\gamma(t), 0 \leq t<T$, driven by ξ, are called chordal $\operatorname{SLE}\left(\kappa ; \rho_{1}, \ldots, \rho_{N}\right)$ process and trace started from $\left(x ; x^{+}, p_{2}, \ldots, p_{N}\right)$. If the condition $p_{1}(t)>\xi(t)$ is replaced by $p_{1}(t)<\xi(t)$, then we get chordal $\operatorname{SLE}\left(\kappa ; \rho_{1}, \ldots, \rho_{N}\right)$ process and trace started from $\left(x ; x^{-}, p_{2}, \ldots, p_{N}\right)$. Now suppose $N \geq 2, \rho_{1}, \rho_{2} \geq \kappa / 2-2, p_{1}=x^{+}$and $p_{2}=x^{-}$. Let $\xi(t)$ and $p_{k}(t), 1 \leq k \leq N, 0<t<T$, be the maximal solution to (2.2) with initial values $\xi(0)=p_{1}(0)=p_{2}(0)=x$, and $p_{k}(0)=p_{k}, 1 \leq k \leq N$, such that $p_{1}(t)>\xi(t)>p_{2}(t)$ for all $0<t<T$. Then we obtain chordal $\operatorname{SLE}\left(\kappa ; \rho_{1}, \ldots, \rho_{N}\right)$ process and trace started from $\left(x ; x^{+}, x^{-}, p_{3}, \ldots, p_{N}\right)$. The force point x^{+}or x^{-}is called a degenerate force point. Other force points are called generic force points. Let $\varphi(t, \cdot)$ be the chordal Loewner maps driven by ξ. Since for any generic force point p_{j}, we have $p_{j}(t)=\varphi\left(t, p_{j}\right)$, so we write $\varphi\left(t, p_{j}\right)$ for $p_{j}(t)$ in the case that p_{j} is a degenerate force point.

For $h>0$, let $\mathbb{S}_{h}=\{z \in \mathbb{C}: 0<\operatorname{Im} z<h\}$ and $\mathbb{R}_{h}=\mathrm{i} h+\mathbb{R}$. If H is a bounded closed subset of $\mathbb{S}_{\pi}, \mathbb{S}_{\pi} \backslash H$ is simply connected, and has \mathbb{R}_{π} as a boundary arc, then we call H a hull in \mathbb{S}_{π} w.r.t. \mathbb{R}_{π}. For such H, there is a unique ψ_{H} that maps $\mathbb{S}_{\pi} \backslash H$ conformally onto \mathbb{S}_{π}, such that for some $c \geq 0, \psi_{H}(z)=z \pm c+\mathrm{o}(1)$ as $z \rightarrow \pm \infty$ in \mathbb{S}_{π}. We call such c the capacity of H in \mathbb{S}_{π} w.r.t. \mathbb{R}_{π}, and let it be denoted it by $\operatorname{scap}(H)$.

For $\xi \in C([0, T))$, the strip Loewner equation driven by ξ is

$$
\begin{equation*}
\partial_{t} \psi(t, z)=\operatorname{coth}\left(\frac{\psi(t, z)-\xi(t)}{2}\right), \quad \psi(0, z)=z \tag{2.3}
\end{equation*}
$$

For $0 \leq t<T$, let $L(t)$ be the set of $z \in \mathbb{S}_{\pi}$ such that the solution $\psi(s, z)$ blows up before or at time t. We call $L(t)$ and $\psi(t, \cdot), 0 \leq t<T$, strip Loewner hulls and maps, respectively, driven by ξ. It turns out that $\psi(t, \cdot)=\psi_{L(t)}$ and $\operatorname{scap}(L(t))=t$ for each $t \in[0, T)$. In this paper, we use $\operatorname{coth}_{2}(z), \tanh _{2}(z), \cosh _{2}(z)$ and $\sinh _{2}(z)$ to denote the functions $\operatorname{coth}(z / 2), \tanh (z / 2), \cosh (z / 2)$ and $\sinh (z / 2)$, respectively.

Let $\kappa \geq 0, \rho_{1}, \ldots, \rho_{N} \in \mathbb{R}, x \in \mathbb{R}$, and $p_{1}, \ldots, p_{N} \in \mathbb{R} \cup \mathbb{R}_{\pi} \cup\{+\infty,-\infty\} \backslash\{x\}$. Let $B(t)$ be a Brownian motion. Let $\xi(t)$ and $p_{k}(t), 1 \leq k \leq N$, be the solutions to the SDE :

$$
\left\{\begin{array}{l}
\mathrm{d} \xi(t)=\sqrt{\kappa} \mathrm{d} B(t)+\sum_{k=1}^{N} \frac{\rho_{k}}{2} \operatorname{coth}_{2}\left(\xi(t)-p_{k}(t)\right) \mathrm{d} t \tag{2.4}\\
\mathrm{~d} p_{k}(t)=\operatorname{coth}_{2}\left(p_{k}(t)-\xi(t)\right) \mathrm{d} t, \quad 1 \leq k \leq N
\end{array}\right.
$$

with initial values $\xi(0)=x$ and $p_{k}(0)=p_{k}, 1 \leq k \leq N$. Here, if some $p_{k}= \pm \infty$, then $p_{k}(t)= \pm \infty$ and $\operatorname{coth}_{2}\left(\xi(t)-p_{k}(t)\right)= \pm 1$ for all $t \geq 0$. Suppose $[0, T)$ is the maximal interval of the solution to (2.4). Let $L(t)$, $0 \leq t<T$, be strip Loewner hulls driven by ξ. Let $\beta(t)=\lim _{\mathbb{S}_{\pi} \ni z \rightarrow \xi(t)} \psi(t, z), 0 \leq t<T$. Then we call $L(t)$ and $\beta(t), 0 \leq t<T$, (full) strip $\operatorname{SLE}(\kappa ; \vec{\rho})$ process and trace, respectively, started from $(x ; \vec{p})$, where $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{N}\right)$ and $\vec{p}=\left(p_{1}, \ldots, p_{N}\right)$. If $T_{0} \in(0, T]$ is a stopping time, then $L(t)$ and $\beta(t), 0 \leq t<T_{0}$, are called partial strip $\operatorname{SLE}(\kappa ; \vec{\rho})$ process and trace, respectively, started from $(x ; \vec{p})$.

The following two propositions are Lemmas 2.1 and 2.3 in [9]. They will be used frequently in this paper. Let S_{1} and S_{2} be two sets of boundary points or prime ends of a domain D. We say that K does not separate S_{1} from S_{2} in D if there are neighborhoods U_{1} and U_{2} of S_{1} and S_{2}, respectively, in D such that U_{1} and U_{2} lie in the same pathwise connected component of $D \backslash K$.

Proposition 2.1. Suppose $\kappa \geq 0$ and $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{N}\right)$ with $\sum_{m=1}^{N} \rho_{m}=\kappa-6$. For $j=1,2$, let $K_{j}(t), 0 \leq t<T_{j}$, be a generic or degenerate chordal $\operatorname{SLE}(\kappa ; \vec{\rho})$ process started from $\left(x_{j} ; \vec{p}_{j}\right)$, where $\vec{p}_{j}=\left(p_{j, 1}, \ldots, p_{j, N}\right)$, $j=1$, 2 . Suppose W is a conformal or conjugate conformal map from \mathbb{H} onto \mathbb{H} such that $W\left(x_{1}\right)=x_{2}$ and $W\left(p_{1, m}\right)=p_{2, m}$, $1 \leq m \leq N$. Let $p_{1, \infty}=W^{-1}(\infty)$ and $p_{2, \infty}=W(\infty)$. For $j=1,2$, let $S_{j} \in\left(0, T_{j}\right]$ be the largest number such that for $0 \leq t<S_{j}, K_{j}(t)$ does not separate $p_{j, \infty}$ from ∞ in \mathbb{H}. Then $\left(W\left(K_{1}(t)\right), 0 \leq t<S_{1}\right)$ has the same law as $\left(K_{2}(t), 0 \leq t<S_{2}\right)$ up to a time-change. A similar result holds for the traces.

Proposition 2.2. Suppose $\kappa \geq 0$ and $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{N}\right)$ with $\sum_{m=1}^{N} \rho_{m}=\kappa-6$. Let $K(t), 0 \leq t<T$, be a chordal $\operatorname{SLE}(\kappa ; \vec{\rho})$ process started from $(x ; \vec{p})$, where $\vec{p}=\left(p_{1}, \ldots, p_{N}\right)$. Let $L(t), 0 \leq t<S$, be a strip $\operatorname{SLE}(\kappa ; \vec{\rho})$ process started from $(y ; \vec{q})$, where $\vec{q}=\left(q_{1}, \ldots, q_{N}\right)$. Suppose W is a conformal or conjugate conformal map from \mathbb{H} onto \mathbb{S}_{π} such that $W(x)=y$ and $W\left(p_{k}\right)=q_{k}, 1 \leq k \leq N$. Let $I=W^{-1}\left(\mathbb{R}_{\pi}\right)$ and $q_{\infty}=W(\infty)$. Let $T^{\prime} \in(0, T]$ be the largest number such that for $0 \leq t<T^{\prime}, K(t)$ does not separate I from ∞ in \mathbb{H}. Let $S^{\prime} \in(0, S]$ be the largest number such that for $0 \leq t<S^{\prime}, L(t)$ does not separate q_{∞} from \mathbb{R}_{π}. Then $\left(W(K(t)), 0 \leq t<T^{\prime}\right)$ has the same law as $\left(L(t), 0 \leq t<S^{\prime}\right)$ up to a time-change. A similar result holds for the traces.

Now we recall some geometric results of $\operatorname{SLE}(\kappa ; \vec{\rho})$ traces derived in [9].
Let $\kappa>0$, and $\rho_{+}, \rho_{-} \in \mathbb{R}$ be such that $\rho_{+}+\rho_{-}=\kappa-6$. Suppose $\beta(t), 0 \leq t<\infty$, is a strip $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}\right)$trace started from $(0 ;+\infty,-\infty)$. In the following propositions, Proposition 2.3 is a combination of Lemma 3.1, Lemma 3.2 and the argument before Lemma 3.2 in [9]; Propositions 2.4 and 2.5 are Theorem 3.3, and Theorem 3.4, respectively, in [9].

Proposition 2.3. If $\left|\rho_{+}-\rho_{-}\right|<2$, then a.s. $\beta\left([0, \infty)\right.$) is bounded, and $\overline{\beta([0, \infty))}$ intersects \mathbb{R}_{π} at a single point $J+\pi \mathrm{i}$. And the distribution of J has a probability density function w.r.t. the Lebesgue measure, which is proportional to $\exp \left(\frac{1}{\kappa}\left(\rho_{-}-\rho_{+}\right) x\right)\left(\cosh _{2} x\right)^{-4 / \kappa}$.

Proposition 2.4. If $\kappa \in(0,4]$ and $\left|\rho_{+}-\rho_{-}\right|<2$, then a.s. $\lim _{t \rightarrow \infty} \beta(t) \in \mathbb{R}_{\pi}$.

Proposition 2.5. If $\kappa \in(0,4]$ and $\pm\left(\rho_{+}-\rho_{-}\right) \geq 2$, then a.s. $\lim _{t \rightarrow \infty} \beta(t)=\mp \infty$.
The following two propositions are Theorems 3.1 and 3.2 in [9].
Proposition 2.6. Let $\kappa>0, N_{+}, N_{-} \in \mathbb{N}, \vec{\rho}_{ \pm}=\left(\rho_{ \pm 1}, \ldots, \rho_{ \pm N_{ \pm}}\right) \in \mathbb{R}^{N_{ \pm}}$with $\sum_{j=1}^{k} \rho_{ \pm j} \geq \kappa / 2-2$ for $1 \leq k \leq N_{ \pm}$, $\vec{p}_{ \pm}=\left(p_{ \pm 1}, \ldots, p_{ \pm N_{ \pm}}\right)$with $0<p_{1}<\cdots<p_{N_{+}}$and $0>p_{-1}>\cdots>p_{-N_{-}}$. Let $\gamma(t), 0 \leq t<T$, be a chordal $\operatorname{SLE}\left(\kappa ; \vec{\rho}_{+}, \vec{\rho}_{-}\right)$trace started from $\left(0 ; \vec{p}_{+}, \vec{p}_{-}\right)$. Then a.s. $T=\infty$ and ∞ is a subsequential limit of $\gamma(t)$ as $t \rightarrow \infty$.

Proposition 2.7. Let $\kappa \in(0,4], \rho_{+}, \rho_{-} \geq \kappa / 2-2$. Suppose $\gamma(t), 0 \leq t<\infty$, is a chordal $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}\right)$trace started from ($0 ; p_{+}, p_{-}$). If $p_{+}=0^{+}$and $p_{-}=0^{-}$, or $p^{+} \in(0, \infty)$ and $p^{-} \in(-\infty, 0)$, then a.s. $\lim _{t \rightarrow \infty} \gamma(t)=\infty$.

The following proposition is Theorem 4.1 in [9] in the case that $\kappa_{1}<4<\kappa_{2}$.
Proposition 2.8. Let $0<\kappa_{1}<4<\kappa_{2}$ be such that $\kappa_{1} \kappa_{2}=16$. Let $x_{1} \neq x_{2} \in \mathbb{R}$. Let $N \in \mathbb{N}$. Let $p_{1}, \ldots, p_{N} \in \mathbb{R} \cup$ $\{\infty\} \backslash\left\{x_{1}, x_{2}\right\}$ be distinct points. For $1 \leq m \leq N$, let $C_{m} \in \mathbb{R}$ and $\rho_{j, m}=C_{m}\left(\kappa_{j}-4\right), j=1,2$. There is a coupling of $K_{1}(t), 0 \leq t<T_{1}$, and $K_{2}(t), 0 \leq t<T_{2}$, such that (i) for $j=1,2, K_{j}(t), 0 \leq t<T_{j}$, is a chordal $\operatorname{SLE}\left(\kappa_{j} ;-\frac{\kappa_{j}}{2}, \vec{\rho}_{j}\right)$ process started from $\left(x_{j} ; x_{3-j}, \vec{p}\right)$; and (ii) for $j \neq k \in\{1,2\}$, if $\bar{\tau}_{k}$ is an $\left(\mathcal{F}_{t}^{k}\right)$-stopping time with $\bar{t}_{k}<T_{k}$, then conditioned on $\mathcal{F}_{t_{k}}^{k}$, $\varphi_{k}\left(\bar{t}_{k}, K_{j}(t)\right), 0 \leq t \leq T_{j}\left(\bar{t}_{k}\right)$, has the same distribution as a time-change of a partial chordal $\operatorname{SLE}\left(\kappa_{j} ;-\frac{\kappa_{j}}{2}, \vec{\rho}_{j}\right)$ process started from $\left(\varphi_{k}\left(\bar{t}_{k}, x_{j}\right) ; \xi_{k}\left(\bar{t}_{k}\right), \varphi_{k}\left(\bar{t}_{k}, \vec{p}\right)\right)$, where $\varphi_{k}(t, \vec{p})=\left(\varphi_{k}\left(t, p_{1}\right), \ldots, \varphi_{k}\left(t, p_{N}\right)\right)$; $\varphi_{k}(t, \cdot), 0 \leq t<T_{k}$, are chordal Loewner maps for the hulls $K_{k}(t), 0 \leq t<T_{k} ; T_{j}\left(\bar{t}_{k}\right) \in\left(0, T_{j}\right]$ is the largest number such that $\overline{K_{j}(t)} \cap \overline{K_{k}\left(\bar{t}_{k}\right)}=\varnothing$ for $0 \leq t<T_{j}\left(\bar{t}_{k}\right)$; and $\left(\mathcal{F}_{t}^{j}\right)$ is the filtration generated by $\left(K_{j}(t)\right), j=1,2$. This still holds if some p_{m} take(s) value $x_{1}^{ \pm}$or $x_{2}^{ \pm}$.

3. Integration of SLE measures

Let $\kappa>0, \rho_{+}, \rho_{-} \in \mathbb{R}, \rho_{+}+\rho_{-}=\kappa-6$, and $\left|\rho_{+}-\rho_{-}\right|<2$. Suppose $\xi(t), 0 \leq t<\infty$, is the driving function of a strip $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}\right)$process started from $(0 ;+\infty,-\infty)$. Let $\sigma=\left(\rho_{-}-\rho_{+}\right) / 2$. Then there is a Brownian motion $B(t)$ such that $\xi(t)=\sqrt{\kappa} B(t)+\sigma t, 0 \leq t<\infty$.

Let μ denote the distribution of ξ. We consider μ as a probability measure on $C([0, \infty))$. Let $\left(\mathcal{F}_{t}\right)$ be the filtration on $C([0, \infty))$ generated by coordinate maps. Then the total σ-algebra is $\mathcal{F}_{\infty}=\bigvee_{t \geq 0} \mathcal{F}_{t}$. For each $x \in \mathbb{R}$, let v_{x} denote the distribution of the driving function of a strip $\operatorname{SLE}\left(\kappa ;-4, \rho_{-}+2, \rho_{+}+2\right)$ process started from $(0 ; x+$ $\pi \mathrm{i},+\infty,-\infty)$, which is also a probability measure on $C([0, \infty))$. Then we have the following lemma.

Lemma 3.1. We have

$$
\mu=\frac{1}{Z} \int_{\mathbb{R}} v_{x} \exp (2 \sigma x / \kappa)\left(\cosh _{2} x\right)^{-4 / \kappa} \mathrm{d} x
$$

where $\mathrm{d} x$ is Lebesgue measure, $Z=\int_{\mathbb{R}} \exp (2 \sigma x / \kappa)\left(\cosh _{2} x\right)^{-4 / \kappa} \mathrm{d} x$, which is finite because $|\sigma|<1$, and the integral means that for any $A \in \mathcal{F}_{\infty}$,

$$
\begin{equation*}
\mu(A)=\frac{1}{Z} \int_{\mathbb{R}} v_{x}(A) \exp (2 \sigma x / \kappa)\left(\cosh _{2} x\right)^{-4 / \kappa} \mathrm{d} x \tag{3.1}
\end{equation*}
$$

Proof. Let $f(x)=\frac{1}{Z} \exp (2 \sigma x / \kappa)\left(\cosh _{2} x\right)^{-4 / \kappa}, x \in \mathbb{R}$. Then $\int_{\mathbb{R}} f(x) \mathrm{d} x=1$, and

$$
\begin{align*}
& \frac{f^{\prime}(x)}{f(x)}=\frac{2}{\kappa}\left(\sigma-\tanh _{2} x\right), \quad x \in \mathbb{R}, \tag{3.2}\\
& \frac{\kappa}{2} f^{\prime \prime}(x)+f^{\prime}(x)\left(-\sigma+\tanh _{2} x\right)+\frac{f(x)}{2}\left(\cosh _{2} x\right)^{-2}=0, \quad x \in \mathbb{R} \tag{3.3}
\end{align*}
$$

Note that the collection of A 's that satisfy (3.1) is a monotone class, and $\bigcup_{t \geq 0} \mathcal{F}_{t}$ is an algebra. From Monotone Class theorem, we suffice to show that (3.1) holds for any $A \in \mathcal{F}_{t}, t \in[0, \infty)$. This will be proved by showing that $v_{x}\left|\mathcal{F}_{t} \ll \mu\right| \mathcal{F}_{t}$ for all $x \in \mathbb{R}$ and $t \in[0, \infty)$, and if $R_{t}(x)$ is the Radon-Nikodym derivative, then $\int_{\mathbb{R}} R_{t}(x) f(x) \mathrm{d} x=1$.

Let $\psi(t, \cdot), 0 \leq t<\infty$, be the strip Loewner maps driven by ξ. For $x \in \mathbb{R}$ and $t \geq 0$, let $X(t, x)=\operatorname{Re}(\psi(t, x+$ $\pi i)-\xi(t))$. Note that $\psi(t, x+\pi i) \in \mathbb{R}_{\pi}$ for any $t \geq 0$. From (2.3), for any fixed $x \in \mathbb{R}, X(t, x)$ satisfies the SDE

$$
\begin{equation*}
\partial_{t} X(t, x)=-\sqrt{\kappa} \partial B(t)-\sigma \partial t+\tanh _{2}(X(t, x)) \partial t \tag{3.4}
\end{equation*}
$$

If t is fixed, then $\partial_{x} X(t, x)=\partial_{x} \psi(t, x+\pi i)$. From (2.3), we have

$$
\begin{align*}
\partial_{t} \partial_{x} X(t, x) & =\partial_{t} \partial_{x} \psi(t, x+\pi \mathrm{i})=-\frac{1}{2} \sinh _{2}^{-2}(\psi(t, x+\pi \mathrm{i})-\xi(t)) \partial_{x} \psi(t, x+\pi \mathrm{i}) \\
& =\frac{1}{2} \cosh _{2}^{-2}(X(t, x)) \partial_{x} X(t, x) \tag{3.5}
\end{align*}
$$

For $x \in \mathbb{R}$ and $t \geq 0$, define $M(t, x)=f(X(t, x)) \partial_{x} X(t, x)$. From (3.2)-(3.5) and Itô's formula (cf. [6]), we find that for any fixed $x,(M(t, x))$ is a local martingale, and satisfies the SDE:

$$
\frac{\partial_{t} M(t, x)}{M(t, x)}=-\frac{f^{\prime}(X(t, x))}{f(X(t, x))} \sqrt{\kappa} \partial B(t)=-\frac{2}{\sqrt{\kappa}}\left(\sigma-\tanh _{2}(X(t, x))\right) \partial B(t)
$$

From the definition, f is bounded on \mathbb{R}. From (3.5) and that $\partial_{x} X(0, x)=1$, it follows that $\left|\partial_{x} X(t, x)\right| \leq \exp (t / 2)$. Thus, for any fixed $t_{0}>0, M(t, x)$ is bounded on $\left[0, t_{0}\right] \times \mathbb{R}$. So $\left(M(t, x): 0 \leq t \leq t_{0}\right)$ is a bounded martingale. Then we have $\mathbf{E}\left[M\left(t_{0}, x\right)\right]=M(0, x)=f(x)$ for any $x \in \mathbb{R}$. Now define the probability measure $v_{t_{0}, x}$ such that $\mathrm{d} \nu_{t_{0}, x} / \mathrm{d} \mu=M\left(t_{0}, x\right) / f(x)$, and let

$$
\widetilde{B}(t)=B(t)+\int_{0}^{t} \frac{2}{\sqrt{\kappa}}\left(\sigma-\tanh _{2}(X(s, x))\right) \mathrm{d} s, \quad 0 \leq t \leq t_{0}
$$

From the Girsanov theorem, under the probability measure $v_{t_{0}, x}, \widetilde{B}(t), 0 \leq t \leq t_{0}$, is a partial Brownian motion. Now $\xi(t), 0 \leq t \leq t_{0}$, satisfies the SDE:

$$
\begin{aligned}
\mathrm{d} \xi(t) & =\sqrt{\kappa} \mathrm{d} \widetilde{B}(t)+\sigma \mathrm{d} t-2\left(\sigma-\tanh _{2}(X(t, x))\right) \mathrm{d} t \\
& =\sqrt{\kappa} \mathrm{d} \widetilde{B}(t)-\sigma \mathrm{d} t-\frac{-4}{2} \operatorname{coth}_{2}(\psi(t, x+\pi \mathrm{i})-\xi(t)) \mathrm{d} t
\end{aligned}
$$

Since $\xi(0)=0$, so under $v_{t_{0}, x},\left(\xi(t), 0 \leq t \leq t_{0}\right)$ has the distribution of the driving function of a strip SLE $\left(\kappa ;-4, \rho_{-}+\right.$ $\left.2, \rho_{+}+2\right)$ process started from $(0 ; x+\pi \mathrm{i},+\infty,-\infty)$. So we conclude that $v_{t_{0}, x}\left|\mathcal{F}_{t_{0}}=v_{x}\right| \mathcal{F}_{t_{0}}$. Thus, $v_{x}\left|\mathcal{F}_{t_{0}} \ll \mu\right| \mathcal{F}_{t_{0}}$, and the Radon-Nikodym derivative is $R_{t_{0}}(x)=M\left(t_{0}, x\right) / f(x)$. Thus,

$$
\int_{\mathbb{R}} R_{t_{0}}(x) f(x) \mathrm{d} x=\int_{\mathbb{R}} M\left(t_{0}, x\right) \mathrm{d} x=\int_{\mathbb{R}} f\left(X\left(t_{0}, x\right)\right) \partial_{x} X\left(t_{0}, x\right) \mathrm{d} x=\int_{\mathbb{R}} f(y) \mathrm{d} y=1
$$

Theorem 3.1. Let $\kappa>0$, and $\rho_{+}, \rho_{-} \in \mathbb{R}$ satisfy $\rho_{+}+\rho_{-}=\kappa-6$ and $\left|\rho_{+}-\rho_{-}\right|<2$. Let $\bar{\mu}$ denote the distribution of a strip $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}\right)$trace $\beta(t), 0 \leq t<\infty$, started from $(0 ;+\infty,-\infty)$. Let λ denote the distribution of the intersection point of $\overline{\beta([0, \infty))}$ with \mathbb{R}_{π}. For each $p \in \mathbb{R}_{\pi}$, let \bar{v}_{p} denote the distribution of a strip $\operatorname{SLE}\left(\kappa ;-4, \rho_{-}+\right.$ $\left.2, \rho_{+}+2\right)$ trace started from $(0 ; p,+\infty,-\infty)$. Then $\bar{\mu}=\int_{\mathbb{R}_{\pi}} \bar{v}_{p} \mathrm{~d} \lambda(p)$.

Proof. This follows from Proposition 2.3 and the above lemma.
Remark. A special case of the above theorem is that $\kappa=2$ and $\rho_{+}=\rho_{-}=-2$, so $\rho_{+}+2=\rho_{-}+2=0$. From [10], a strip $\operatorname{SLE}(2 ;-2,-2)$ trace started from $(0 ;+\infty,-\infty)$ is a continuous $L E R W$ in \mathbb{S}_{π} from 0 to \mathbb{R}_{π}; a strip $\operatorname{SLE}(2 ;-4,0,0)$ trace started from $(0 ; p,+\infty,-\infty)$ is a continuous LERW in \mathbb{S}_{π} from 0 to p; and the above theorem in this special case follows from the convergence of discrete LERW to continuous LERW.

Corollary 3.1. Let $\kappa>0, \rho \in(\kappa / 2-4, \kappa / 2-2)$, and $x \neq 0$. Let $\bar{\mu}$ denote the distribution of a chordal $\operatorname{SLE}(\kappa ; \rho)$ trace $\gamma(t), 0 \leq t<T$, started from $(0 ; x)$. Let λ denote the distribution of the subsequential limit of $\gamma(t)$ on \mathbb{R} as $t \rightarrow T$, which is a.s. unique. For each $y \in \mathbb{R}$, let \bar{v}_{y} denote the distribution of a chordal $\operatorname{SLE}(\kappa ;-4, \kappa-4-\rho)$ trace started from $(0 ; y, x)$. Then $\bar{\mu}=\int_{\mathbb{R}} \bar{\nu}_{y} \mathrm{~d} \lambda(y)$.

Proof. This follows from the above theorem and Proposition 2.2.
Corollary 3.2. Let $\kappa \in(4,8)$ and $x \neq 0$. Let $\gamma(t), 0 \leq t<\infty$, be a standard chordal $\operatorname{SLE}(\kappa)$ trace. Let T_{x} be the first that $\gamma([0, t])$ disconnects x from ∞ in \mathbb{H}. Let $\bar{\mu}$ denote the distribution of $\left(\gamma(t), 0 \leq t<T_{x}\right)$. Let λ denote the distribution of $\gamma\left(T_{x}\right)$. For each $y \in \mathbb{R}$, let $\bar{\nu}_{y}$ denote the distribution of a chordal $\operatorname{SLE}(\kappa ;-4, \kappa-4)$ trace started from $(0 ; y, x)$. Then $\bar{\mu}=\int_{\mathbb{R}} \bar{\nu}_{y} \mathrm{~d} \lambda(y)$.

Proof. This is a special case of the above corollary because $\gamma(t), 0 \leq t<T_{x}$, is a chordal $\operatorname{SLE}(\kappa ; 0)$ trace started from ($0 ; x$), and $0 \in(\kappa / 2-4, \kappa / 2-2)$.

4. Geometric properties

In this section, we will improve some results derived in Section 3 of [9]. We first derive a simple lemma.
Lemma 4.1. Suppose $\psi(t, \cdot), 0 \leq t<T$, are strip Loewner maps driven by ξ. Suppose $\xi(0)<x_{1}<x_{2}$ or $\xi(0)>$ $x_{1}>x_{2}$, and $\psi\left(t, x_{1}\right)$ and $\psi\left(t, x_{2}\right)$ are defined for $0 \leq t<T$. Then for any $0 \leq t<T$,

$$
\left|\int_{0}^{t} \operatorname{coth}_{2}\left(\psi\left(s, x_{1}\right)-\xi(s)\right) \mathrm{d} s-\int_{0}^{t} \operatorname{coth}_{2}\left(\psi\left(s, x_{2}\right)-\xi(s)\right) \mathrm{d} s\right|<\left|x_{1}-x_{2}\right| .
$$

Proof. By symmetry, we only need to consider the case that $\xi(0)<x_{1}<x_{2}$. For any $0 \leq t<T$, we have $\xi(t)<\psi\left(t, x_{1}\right)<\psi\left(t, x_{2}\right)$, which implies that $\operatorname{coth}_{2}\left(\psi\left(t, x_{1}\right)-\xi(t)\right)>\operatorname{coth}_{2}\left(\psi\left(t, x_{2}\right)-\xi(t)\right)>0$. Also, note that $\partial_{t} \psi\left(t, x_{j}\right)=\operatorname{coth}_{2}\left(\psi\left(t, x_{j}\right)-\xi(t)\right), j=1,2$, so for $0 \leq t<T$,

$$
\begin{aligned}
0 & \leq \int_{0}^{t} \operatorname{coth}_{2}\left(\psi\left(s, x_{1}\right)-\xi(s)\right) \mathrm{d} s-\int_{0}^{t} \operatorname{coth}_{2}\left(\psi\left(s, x_{2}\right)-\xi(s)\right) \mathrm{d} s \\
& =\left(\psi\left(t, x_{1}\right)-\psi\left(0, x_{1}\right)\right)-\left(\psi\left(t, x_{2}\right)-\psi\left(0, x_{2}\right)\right) \\
& =\psi\left(t, x_{1}\right)-\psi\left(t, x_{2}\right)+x_{2}-x_{1}<x_{2}-x_{1}=\left|x_{1}-x_{2}\right| .
\end{aligned}
$$

From now on, in this section, we let $\kappa>0, N_{+}, N_{-} \in \mathbb{N} \cup\{0\}$, $\vec{\rho}_{ \pm}=\left(\rho_{ \pm 1}, \ldots, \rho_{ \pm N_{ \pm}}\right) \in \mathbb{R}^{N_{ \pm}}$, and $\chi_{ \pm}=$ $\sum_{m=1}^{N_{ \pm}} \rho_{ \pm m}$. Let $\tau_{+}, \tau_{-} \in \mathbb{R}$ be such that $\chi_{+}+\tau_{+}+\chi_{-}+\tau_{-}=\kappa-6$. Let $\vec{p}_{ \pm}=\left(p_{ \pm 1}, \ldots, p_{ \pm N_{ \pm}}\right)$be such that $p_{-N_{-}}<\cdots<p_{-1}<0<p_{1}<\cdots<p_{N_{+}}$. Suppose $\beta(t), 0 \leq t<T$, is a strip SLE $\left(\kappa ; \vec{\rho}_{+}, \vec{\rho}_{-}, \tau_{+}, \tau_{-}\right)$trace started from $\left(0 ; \vec{p}_{+}, \vec{p}_{-},+\infty,-\infty\right)$. Let $\xi(t)$ and $\psi(t, \cdot), 0 \leq t<T$, be the driving function and strip Loewner maps for β. Then there is a Brownian motion $B(t)$ such that for $0 \leq t<T, \xi(t)$ satisfies the SDE

$$
\begin{align*}
\mathrm{d} \xi(t)= & \sqrt{\kappa} \mathrm{d} B(t)-\sum_{m=1}^{N_{+}} \frac{\rho_{m}}{2} \operatorname{coth}_{2}\left(\psi\left(t, p_{m}\right)-\xi(t)\right) \mathrm{d} t \\
& -\sum_{m=1}^{N_{-}} \frac{\rho_{-m}}{2} \operatorname{coth}_{2}\left(\psi\left(t, p_{-m}\right)-\xi(t)\right) \mathrm{d} t-\frac{\tau_{+}-\tau_{-}}{2} \mathrm{~d} t . \tag{4.1}
\end{align*}
$$

For $0 \leq t<T$, we have

$$
\begin{equation*}
\psi\left(t, p_{-N_{-}}\right)<\cdots<\psi\left(t, p_{-1}\right)<\xi(t)<\psi\left(t, p_{1}\right)<\cdots<\psi\left(t, p_{N_{+}}\right) . \tag{4.2}
\end{equation*}
$$

Since $\partial_{t} \psi(t, x)=\operatorname{coth}_{2}(\psi(t, x)-\xi(t))$, so $\partial_{t} \psi\left(t, p_{m}\right)>1$ for $1 \leq m \leq N_{+}$, and $\partial_{t} \psi\left(t, p_{-m}\right)<-1$ for $1 \leq m \leq N_{-}$. Thus, for $0 \leq t<T, \psi\left(t, p_{m}\right)$ increases in t, and $\psi\left(t, p_{m}\right)>t$ for $1 \leq m \leq N_{+} ; \psi\left(t, p_{-m}\right)$ decreases in t, and $\psi\left(t, p_{-m}\right)<-t$ for $1 \leq m \leq N_{-}$. We say that some force point p_{s} is swallowed by β if $T<\infty$ and $\psi\left(t, p_{s}\right)-\xi(t) \rightarrow$ 0 as $t \rightarrow T$. In fact, if $T<\infty$ then some force point on \mathbb{R} must be swallowed by β, and from (4.2) we see that either p_{1} or p_{-1} is swallowed.

Lemma 4.2. (i) If $\sum_{j=1}^{k} \rho_{j} \geq \kappa / 2-2$ for $1 \leq k \leq N_{+}$, then a.s. p_{1} is not swallowed by β. (ii) If $\sum_{j=1}^{k} \rho_{-j} \geq \kappa / 2-2$ for $1 \leq k \leq N_{-}$, then a.s. p_{-1} is not swallowed by β.

Proof. From symmetry, we only need to prove (i). Suppose $\sum_{j=1}^{k} \rho_{j} \geq \kappa / 2-2$ for $1 \leq k \leq N_{+}$. Let \mathcal{E} denote the event that p_{1} is swallowed by β. Let \mathbf{P} be the probability measure we are working on. We want to show that $\mathbf{P}(\mathcal{E})=0$. Assume that $\mathbf{P}(\mathcal{E})>0$. Assume that \mathcal{E} occurs. Then $\lim _{t \rightarrow T} \xi(t)=\lim _{t \rightarrow T} \psi\left(t, p_{1}\right) \geq T$. For $1 \leq m \leq N_{-}$, since $\psi\left(t, p_{-m}\right)<-t, 0 \leq t<T$, so $\psi\left(t, p_{-m}\right)-\xi(t)$ on $[0, T)$ is uniformly bounded above by a negative number. Thus $\operatorname{coth}_{2}\left(\psi\left(t, p_{-m}\right)-\xi(t)\right)$ on $[0, T)$ is uniformly bounded for $1 \leq m \leq N_{-}$. For $0 \leq t<T$, let $\widetilde{B}(t)=B(t)+\int_{0}^{t} a(s) \mathrm{d} s$, where

$$
\begin{aligned}
a(t)= & -\frac{\kappa / 2-2}{2 \sqrt{\kappa}}+\frac{\kappa / 2-4-\chi_{+}}{2 \sqrt{\kappa}} \operatorname{coth}_{2}(\psi(t, \pi \mathrm{i})-\xi(t)) \\
& -\sum_{m=1}^{N_{-}} \frac{\rho_{-m}}{2 \sqrt{\kappa}} \operatorname{coth}_{2}\left(\psi\left(t, p_{-m}\right)-\xi(t)\right)-\frac{\tau_{+}-\tau_{-}}{2 \sqrt{\kappa}}
\end{aligned}
$$

For $0 \leq t<T$, since $\psi(t, \pi \mathrm{i})-\xi(t) \in \mathbb{R}_{\pi}$, so $\left|\operatorname{coth}_{2}(\psi(t, \pi \mathrm{i})-\xi(t))\right| \leq 1$. From the previous discussion, we see that if \mathcal{E} occurs, then $T<\infty$ and $a(t)$ is uniformly bounded on $[0, T)$, and so $\int_{0}^{T} a(t)^{2} \mathrm{~d} t<\infty$. For $0 \leq t<T$, define

$$
\begin{equation*}
M(t)=\exp \left(-\int_{0}^{t} a(s) \mathrm{d} B(s)-\frac{1}{2} \int_{0}^{t} a(s)^{2} \mathrm{~d} s\right) . \tag{4.3}
\end{equation*}
$$

Then $(M(t), 0 \leq t<T)$ is a local martingale and satisfies $\mathrm{d} M(t) / M(t)=-a(t) \mathrm{d} B(t)$. In the event \mathcal{E}, since $\int_{0}^{T} a(t)^{2} \mathrm{~d} t<\infty$, so a.s. $\lim _{t \rightarrow T} M(t) \in(0, \infty)$. For $N \in \mathbb{N}$, let $T_{N} \in[0, T]$ be the largest number such that $M(t) \in(1 /(2 N), 2 N)$ on $\left[0, T_{N}\right)$. Let $\mathcal{E}_{N}=\mathcal{E} \cap\left\{T_{N}=T\right\}$. Then $\mathcal{E}=\bigcup_{N=1}^{\infty} \mathcal{E}_{N}$ a.s., and $\mathbf{E}\left[M\left(T_{N}\right)\right]=M(0)=1$, where $M(T):=\lim _{t \rightarrow T} M(t)$. Since $\mathbf{P}(\mathcal{E})>0$, so there is $N \in \mathbb{N}$ such that $\mathbf{P}\left(\mathcal{E}_{N}\right)>0$. Define another probability measure \mathbf{Q} such that $\mathrm{d} \mathbf{Q} / \mathrm{d} \mathbf{P}=M\left(T_{N}\right)$. Then $\mathbf{P} \ll \mathbf{Q}$, and so $\mathbf{Q}\left(\mathcal{E}_{N}\right)>0$. By the Girsanov theorem, under the probability measure $\mathbf{Q}, \widetilde{B}(t), 0 \leq t<T_{N}$, is a partial Brownian motion. From (4.1), $\xi(t), 0 \leq t<T$, satisfies the SDE:

$$
\begin{aligned}
\mathrm{d} \xi(t)= & \sqrt{\kappa} \mathrm{d} \widetilde{B}(t)-\sum_{m=1}^{N_{+}} \frac{\rho_{m}}{2} \operatorname{coth}_{2}\left(\psi\left(t, p_{m}\right)-\xi(t)\right) \mathrm{d} t \\
& +\frac{\kappa / 2-2}{2} \mathrm{~d} t-\frac{\kappa / 2-4-\chi_{+}}{2} \operatorname{coth}_{2}(\psi(t, \pi \mathrm{i})-\xi(t)) \mathrm{d} t,
\end{aligned}
$$

so under $\mathbf{Q}, \beta(t), 0 \leq t<T_{N}$, is a partial strip $\operatorname{SLE}\left(\kappa ; \overrightarrow{\rho_{+}}, \frac{\kappa}{2}-2, \frac{\kappa}{2}-4-\chi_{+}\right)$trace started from ($\left.0 ; \vec{p}_{+},-\infty, \pi \mathrm{i}\right)$. In the event \mathcal{E}_{N}, since $\psi\left(t, p_{1}\right)-\xi(t) \rightarrow 0$ as $t \rightarrow T_{N}=T$, so $\beta(t), 0 \leq t<T_{N}$, is a full trace under \mathbf{Q}. Note that

$$
\sum_{m=1}^{N_{+}} \rho_{m}+\left(\frac{\kappa}{2}-2\right)+\left(\frac{\kappa}{2}-4-\chi_{+}\right)=\kappa-6 .
$$

From Proposition 2.2, Proposition 2.6, and that $\sum_{j=1}^{k} \rho_{j} \geq \kappa / 2-2$ for $1 \leq k \leq N_{+}$, we see that on \mathcal{E}_{N}, \mathbf{Q}-a.s. $\pi \mathrm{i}$ is a subsequential limit of $\beta(t)$ as $t \rightarrow T_{N}$, which implies that the height of $\beta((0, t])$ tends to π as $t \rightarrow T_{N}$, and so $T_{N}=\infty$. This contradicts that $T_{N}=T<\infty$ on \mathcal{E}_{N} and $\mathbf{Q}\left(\mathcal{E}_{N}\right)>0$. Thus $\mathbf{P}(\mathcal{E})=0$.

Lemma 4.3. (i) If $\chi_{+} \geq-2$ and $\chi_{+}+\tau_{+}>\kappa / 2-4$, then $T=\infty$ a.s. implies that $\liminf _{t \rightarrow \infty}\left(\psi\left(t, p_{m}\right)-\xi(t)\right) / t>0$ for $1 \leq m \leq N_{+}$. (ii) If $\chi_{-} \geq-2$ and $\chi_{-}+\tau_{-}>\kappa / 2-4$, then a.s. $T=\infty$ implies that $\lim \sup _{t \rightarrow \infty}\left(\psi\left(t, p_{-m}\right)-\right.$ $\xi(t)) / t<0$ for $1 \leq m \leq N_{-}$.

Proof. We will only prove (i) since (ii) follows from symmetry. Suppose $\chi_{+} \geq-2$ and $\chi_{+}+\tau_{+}>\kappa / 2-4$. Then $\Delta:=1+\frac{\chi_{+}}{2}+\frac{\tau_{+}}{2}-\frac{\chi_{-}}{2}-\frac{\tau_{-}}{2}>0$. Let $X(t)=\psi\left(t, p_{1}\right)-\xi(t), t \geq 0$. From (4.2) we suffice to show that $T=\infty$ a.s. implies that $\liminf _{t \rightarrow \infty} X(t) / t>0$. Now assume that $T=\infty$. From (2.3) and (4.1), for any $0 \leq t_{1} \leq t_{2}$,

$$
\begin{align*}
X\left(t_{2}\right)-X\left(t_{1}\right)= & -\sqrt{\kappa} B\left(t_{2}\right)+\sqrt{\kappa} B\left(t_{1}\right)+\frac{\tau_{+}-\tau_{-}}{2}\left(t_{2}-t_{1}\right)+\int_{t_{1}}^{t_{2}} \operatorname{coth}_{2}(X(t)) \mathrm{d} t \\
& +\sum_{m=1}^{N_{+}} \frac{\rho_{m}}{2} \int_{t_{1}}^{t_{2}} \operatorname{coth}_{2}\left(\psi\left(t, p_{m}\right)-\xi(t)\right) \mathrm{d} t+\sum_{m=1}^{N_{-}} \frac{\rho_{-m}}{2} \int_{t_{1}}^{t_{2}} \operatorname{coth}_{2}\left(\psi\left(t, p_{-m}\right)-\xi(t)\right) \mathrm{d} t . \tag{4.4}
\end{align*}
$$

Let $M_{+}=\sum_{m=1}^{N_{+}}\left|\rho_{m} \| p_{m}-p_{1}\right|$. From Lemma 4.1, for any $0 \leq t_{1} \leq t_{2}$,

$$
\begin{equation*}
\sum_{m=1}^{N_{+}} \frac{\rho_{m}}{2} \int_{t_{1}}^{t_{2}} \operatorname{coth}_{2}\left(\psi\left(t, p_{m}\right)-\xi(t)\right) \mathrm{d} t \geq \frac{\chi_{+}}{2} \int_{t_{1}}^{t_{2}} \operatorname{coth}_{2}(X(t)) \mathrm{d} t-M_{+} . \tag{4.5}
\end{equation*}
$$

Let $\varepsilon_{1}=\min \{\Delta, 1\} / 6>0$. There is a random number $A_{0}=A_{0}(\omega)>0$ such that a.s.

$$
\begin{equation*}
|\sqrt{\kappa} B(t)| \leq A_{0}+\varepsilon_{1} t \quad \text { for any } t \geq 0 . \tag{4.6}
\end{equation*}
$$

Let $\chi_{-}^{*}=\sum_{m=1}^{N_{-}}\left|\rho_{-m}\right|$, and $\varepsilon_{2}=\frac{\Delta}{\chi_{-}^{*}+1}>0$. Choose $R>0$ such that if $x<-R$ then $\left|\operatorname{coth}_{2}(x)-(-1)\right|<\varepsilon_{2}$. Suppose $X(t) \leq t$ on $\left[t_{1}, t_{2}\right]$, where $t_{2} \geq t_{1} \geq R$. Then for $1 \leq m \leq N_{-}$and $t \in\left[t_{1}, t_{2}\right]$, from $\psi\left(t, p_{-m}\right)<-t$ and $\psi\left(t, p_{1}\right)>t$, we have

$$
\psi\left(t, p_{-m}\right)-\xi(t)=\psi\left(t, p_{-m}\right)-\psi\left(t, p_{1}\right)+X(t)<-t-t+t=-t \leq-R,
$$

and so $\left|\operatorname{coth}_{2}\left(\psi\left(t, p_{-m}\right)-\xi(t)\right)-(-1)\right|<\varepsilon_{2}$. Then

$$
\begin{equation*}
\sum_{m=1}^{N_{-}} \frac{\rho_{-m}}{2} \int_{t_{1}}^{t_{2}} \operatorname{coth}_{2}\left(\psi\left(t, p_{-m}\right)-\xi(t)\right) \mathrm{d} t \geq\left(-\frac{\chi_{-}}{2}-\frac{\chi_{-}^{*}}{2} \varepsilon_{2}\right)\left(t_{2}-t_{1}\right) \tag{4.7}
\end{equation*}
$$

Suppose $X\left(t_{0}\right) \geq t_{0}$ for some $t_{0} \geq \max \left\{R, 2 M_{+}+4 A_{0}+2\right\}$. We claim that a.s. for any $t \geq t_{0}$, we have $X(t) \geq \varepsilon_{1} t$. If this is not true, then there are $t_{2}>t_{1} \geq t_{0}$ such that $X\left(t_{1}\right)=t_{1}, X\left(t_{2}\right)=\varepsilon_{1} t_{2}$ and $X(t) \leq t$ for $t \in\left[t_{1}, t_{2}\right]$. From (4.4)-(4.7), we have a.s.

$$
\begin{align*}
X\left(t_{2}\right)-X\left(t_{1}\right) \geq & -2 A_{0}-\varepsilon_{1} t_{1}-\varepsilon_{1} t_{2}+\frac{\tau_{+}-\tau_{-}}{2}\left(t_{2}-t_{1}\right) \\
& +\left(1+\frac{\chi_{+}}{2}\right) \int_{t_{1}}^{t_{2}} \operatorname{coth}_{2}(X(t)) \mathrm{d} t-M_{+}-\frac{\chi_{-}+\chi_{-}^{*} \varepsilon_{2}}{2}\left(t_{2}-t_{1}\right) \\
\geq & -M_{+}-2 A_{0}-2 \varepsilon_{1} t_{2}+\left(\Delta-\frac{\chi_{-}^{*} \varepsilon_{2}}{2}\right)\left(t_{2}-t_{1}\right), \tag{4.8}
\end{align*}
$$

where in the last inequality we use the facts that $\operatorname{coth}_{2}(X(t))>1$ and $1+\frac{\chi_{+}}{2} \geq 0$. Since $X\left(t_{1}\right)=t_{1}$ and $X\left(t_{2}\right)=\varepsilon_{1} t_{2}$, so we have

$$
M_{+}+2 A_{0} \geq\left(\Delta-\chi_{-}^{*} \varepsilon_{2} / 2-3 \varepsilon_{1}\right)\left(t_{2}-t_{1}\right)+\left(1-3 \varepsilon_{1}\right) t_{1}
$$

Since $\Delta-\chi_{-}^{*} \varepsilon_{2} / 2-3 \varepsilon_{1} \geq \Delta-\Delta / 2-\Delta / 2 \geq 0$ and $1-3 \varepsilon_{1} \geq 1 / 2$, so

$$
M_{+}+2 A_{0} \geq t_{1} / 2 \geq t_{0} / 2 \geq\left(2 M_{+}+4 A_{0}+2\right) / 2=M_{+}+2 A_{0}+1
$$

which is a contradiction. Thus, if $X\left(t_{0}\right) \geq t_{0}$ for some $t_{0} \geq \max \left\{R, 2 M_{+}+4 A_{0}+2\right\}$, then a.s. $X(t) \geq \varepsilon_{1} t$ for any $t \geq t_{0}$, and so $\lim \inf _{t \rightarrow \infty} X(t) / t \geq \varepsilon_{1}>0$. The other possibility is that $X\left(t_{0}\right)<t_{0}$ for all $t_{0} \geq \max \left\{R, 2 M_{+}+4 A_{0}+2\right\}$. Let $t_{1}=\max \left\{R, 2 M_{+}+4 A_{0}+2\right\}$ and $t_{2} \geq t_{1}$. Then (4.4)-(4.7) still hold, so we have (4.8) again. Let both sides of (4.8) be divided by t_{2} and let $t_{2}=t \rightarrow \infty$. Then we have a.s.

$$
\liminf _{t \rightarrow \infty} X(t) / t \geq \Delta-\chi_{-}^{*} \varepsilon_{2} / 2-2 \varepsilon_{1} \geq \Delta / 6>0
$$

The following theorem improves Theorem 3.6 in [9].
Theorem 4.1. If $\kappa \in(0,4], \sum_{j=1}^{k} \rho_{ \pm j} \geq \kappa / 2-2,1 \leq k \leq N_{ \pm}$, and $\left|\chi_{+}+\tau_{+}-\chi_{-}-\tau_{-}\right|<2$, then a.s. $T=\infty$ and $\lim _{t \rightarrow \infty} \beta(t) \in \mathbb{R}_{\pi}$.

Proof. From Lemma 4.2, a.s. neither p_{1} nor p_{-1} is swallowed by β, so $T=\infty$. Since $\left|\chi_{+}+\tau_{+}-\chi_{-}-\tau_{-}\right|<2$ and $\chi_{+}+\tau_{+}+\chi_{-}+\tau_{-}=\kappa-6$, so $\chi_{ \pm}+\tau_{ \pm}>\kappa / 2-4$. If $N_{+} \geq 1$, then $\chi_{+}=\sum_{m=1}^{N_{+}} \rho_{ \pm} \geq \kappa / 2-2 \geq-2$, so from Lemma 4.3, a.s. $\liminf _{t \rightarrow \infty}\left(\psi\left(t, p_{m}\right)-\xi(t)\right) / t>0$ for $1 \leq m \leq N_{+}$. If $N_{+}=0$, this is also true since there is nothing to check. Similarly, $\lim \sup _{t \rightarrow \infty}\left(\psi\left(t, p_{-m}\right)-\xi(t)\right) / t<0$ for $1 \leq m \leq N_{-}$. For $0 \leq t<\infty$, let $\widetilde{B}(t)=$ $B(t)+\int_{0}^{t} a(s) \mathrm{d} s$, where

$$
a(t)=\sum_{m=1}^{N_{+}} \frac{\rho_{m}}{2 \sqrt{\kappa}}\left(1-\operatorname{coth}_{2}\left(\psi\left(t, p_{m}\right)-\xi(t)\right)\right)-\sum_{m=1}^{N_{-}} \frac{\rho_{-m}}{2 \sqrt{\kappa}}\left(1+\operatorname{coth}_{2}\left(\psi\left(t, p_{-m}\right)-\xi(t)\right)\right) .
$$

Then $\int_{0}^{\infty} a(t)^{2} \mathrm{~d} t<\infty$, and $\xi(t), 0 \leq t<\infty$, satisfies the SDE :

$$
\begin{equation*}
\mathrm{d} \xi(t)=\sqrt{\kappa} \mathrm{d} \widetilde{B}(t)-\frac{\tau_{+}+\chi_{+}-\tau_{-}-\chi_{-}}{2} \mathrm{~d} t \tag{4.9}
\end{equation*}
$$

For $0 \leq t<\infty$, define $M(t)$ by (4.3). Then $(M(t))$ is a local martingale, satisfies the SDE: $\mathrm{d} M(t) / M(t)=$ $-a(t) \mathrm{d} B(t)$, and a.s. $M(\infty):=\lim _{t \rightarrow \infty} M(t) \in(0, \infty)$. For $N \in \mathbb{N}$, let $T_{N} \in[0, \infty]$ be the largest number such that $M(t) \in(1 /(2 N), 2 N)$ on $\left[0, T_{N}\right)$. Then $\mathbf{E}\left[M\left(T_{N}\right)\right]=M(0)=1$. Let $\mathcal{E}_{N}=\left\{T_{N}=\infty\right\}$. Let \mathbf{P} be the probability measure we are working on. Fix $\varepsilon>0$. There is $N \in \mathbb{N}$ such that $\mathbf{P}\left[\mathcal{E}_{N}\right]>1-\varepsilon$. Define another probability measure \mathbf{Q} such that $\mathrm{d} \mathbf{Q} / \mathrm{d} \mathbf{P}=M\left(T_{N}\right)$. By the Girsanov theorem, under $\mathbf{Q}, \widetilde{B}(t), 0 \leq t<T_{N}$, is a partial Brownian motion, which together with (4.9) implies that $\beta(t), 0 \leq t<T_{N}$, is a partial strip $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}\right)$trace started from $(0 ;+\infty,-\infty)$, where $\rho_{ \pm}=\chi_{ \pm}+\tau_{ \pm}$. Since $\rho_{+}+\rho_{-}=\kappa-6$ and $\left|\rho_{+}-\rho_{-}\right|<2$, so from Proposition 2.4, \mathbf{Q}-a.s. $\lim _{t \rightarrow T_{N}} \beta(t) \in \mathbb{R}_{\pi}$ on $\left\{T_{N}=\infty\right\}=\mathcal{E}_{N}$. Since $\mathbf{P} \ll \mathbf{Q}$, so $(\mathbf{P}-)$ a.s. $\lim _{t \rightarrow T_{N}} \beta(t) \in \mathbb{R}_{\pi}$ on \mathcal{E}_{N}. Since $\mathbf{P}\left[\mathcal{E}_{N}\right]>1-\varepsilon$, so the probability that $\lim _{t \rightarrow \infty} \beta(t) \in \mathbb{R}_{\pi}$ is greater than $1-\varepsilon$. Since $\varepsilon>0$ is arbitrary, so $(\mathbf{P}-)$ a.s. $\lim _{t \rightarrow \infty} \beta(t) \in \mathbb{R}_{\pi}$.

The following theorem improves Theorem 3.1 in [9] when $\kappa \in(0,4]$.
Theorem 4.2. Suppose $\kappa \in(0,4] ; N_{+}, N_{-} \in \mathbb{N} \cup\{0\} ; \vec{\rho}_{ \pm}=\left(\rho_{ \pm 1}, \ldots, \rho_{ \pm N_{ \pm}}\right) \in \mathbb{R}^{N_{ \pm}} ; \sum_{j=1}^{k} \rho_{ \pm j} \geq \kappa / 2-2,1 \leq k \leq$ $N_{ \pm} ; \vec{p}_{ \pm}=\left(p_{ \pm 1}, \ldots, p_{ \pm N_{ \pm}}\right) \in \mathbb{R}^{N_{ \pm}} ; p_{-N_{-}}<\cdots<p_{-1}<0<p_{1}<\cdots<p_{N_{+}}$. Let $\gamma(t), 0 \leq t<T$, be a chordal $\operatorname{SLE}\left(\kappa ; \vec{\rho}_{+}, \vec{\rho}_{-}\right)$trace started from $\left(0 ; \vec{p}_{+}, \vec{p}_{-}\right)$. Then a.s. $\lim _{t \rightarrow T} \gamma(t)=\infty$.

Proof. If $N_{+}=N_{-}=0$, then γ is a standard chordal $\operatorname{SLE}(\kappa)$ trace, so the conclusion follows from Theorem 7.1 in [7]. If $N_{+}=0$ and $N_{-}=1$, or $N_{+}=1$ and $N_{-}=0$, the conclusion follows from Propositions 2.2 and 2.5 . If $N_{+}=N_{-}=1$, this follows from Proposition 2.7. For other cases, we will prove the theorem by reducing the number of force points.

Now consider the case that $N_{-}=0$ and $N_{+} \geq 2$. Choose W that maps \mathbb{H} conformally onto \mathbb{S}_{π} such that $W(0)=0$, $W(\infty)=-\infty$, and $W\left(p_{N_{+}}\right)=+\infty$. Let $N_{+}^{\prime}=N_{+}-1 ; \vec{q}=\left(q_{1}, \ldots, q_{N_{+}^{\prime}}\right)$, where $q_{m}=W\left(p_{m}\right), 1 \leq m \leq N_{+}^{\prime}$. Then
$0<q_{1}<\cdots<q_{N_{+}^{\prime}}$. Let $\vec{\rho}=\left(\rho_{1}, \ldots, \rho_{N_{+}^{\prime}}\right) \in \mathbb{R}^{N_{+}^{\prime}}$. Then $\sum_{j=1}^{k} \rho_{j} \geq \kappa / 2-2$ for $1 \leq k \leq N_{+}^{\prime}$. Let $\chi_{+}=\sum_{m=1}^{N_{+}^{\prime}} \rho_{m}$. Then $\chi_{+} \geq \kappa / 2-2 \geq-2$. Let $\tau_{+}=\rho_{N_{+}}$and $\tau_{-}=\kappa-6-\chi_{+}-\tau_{+}$. Then $\chi_{+}+\tau_{+}+\tau_{-}=\kappa-6$ and $\chi_{+}+\tau_{+}=$ $\sum_{m=1}^{N_{+}} \rho_{m} \geq \kappa / 2-2>\kappa / 2-4$. From Proposition 2.2, a time-change of $W \circ \gamma(t), 0 \leq t<T$, say $\beta(t), 0 \leq t<S$, is a strip $\operatorname{SLE}\left(\kappa ; \tau_{-}, \tau_{+}, \vec{\rho}\right)$ trace started from $(0 ;-\infty,+\infty, \vec{q})$. Let $\xi(t)$ and $\psi(t, \cdot), 0 \leq t<S$, be the driving function and strip Loewner maps for β. Then there is a Brownian motion $B(t)$ such that for $0 \leq t<S, \xi(t)$ satisfies the SDE

$$
\mathrm{d} \xi(t)=\sqrt{\kappa} \mathrm{d} B(t)-\frac{\tau_{+}-\tau_{-}}{2} \mathrm{~d} t-\sum_{m=1}^{N_{+}^{\prime}} \frac{\rho_{m}}{2} \operatorname{coth}_{2}\left(\psi\left(t, q_{m}\right)-\xi(t)\right) \mathrm{d} t .
$$

From Lemmas 4.2 and 4.3, a.s. $S=\infty$ and $\liminf _{t \rightarrow \infty}\left(\psi\left(t, q_{m}\right)-\xi(t)\right) / t>0$ for $1 \leq m \leq N_{+}^{\prime}$. Let $\widetilde{B}(t)=B(t)+$ $\int_{0}^{t} a(s) \mathrm{d} s$, where

$$
a(t)=\sum_{m=1}^{N_{+}^{\prime}} \frac{\rho_{m}}{2 \sqrt{\kappa}}\left(1-\operatorname{coth}_{2}\left(\psi\left(t, p_{m}\right)-\xi(t)\right)\right) .
$$

Then $\int_{0}^{\infty} a(t)^{2} \mathrm{~d} t<\infty$. Now $\xi(t)$ satisfies the SDE

$$
\mathrm{d} \xi(t)=\sqrt{\kappa} \mathrm{d} \widetilde{B}(t)-\frac{\chi_{+}+\tau_{+}-\tau_{-}}{2} \mathrm{~d} t .
$$

Note that $\left(\chi_{+}+\tau_{+}\right)-\tau_{-} \geq 2$. We observe that if $\widetilde{B}(t)$ is a Brownian motion, then β is a strip $\operatorname{SLE}\left(\kappa ; \chi_{+}+\tau_{+}, \tau_{-}\right)$ trace started from $(0 ;+\infty,-\infty)$, and so from Proposition 2.5, we have $\lim _{t \rightarrow \infty} \beta(t)=-\infty$. Using the argument at the end of the proof of Theorem 4.1, we conclude that a.s. $\lim _{t \rightarrow \infty} \beta(t)=-\infty$, and so $\lim _{t \rightarrow T} \gamma(t)=W^{-1}(-\infty)=$ ∞.

For the case $N_{-}=1$ and $N_{+} \geq 2$, we define W and β as in the above case, and conclude that $\lim _{t \rightarrow \infty} \beta(t)=-\infty$ using the same argument as above except that now we use Proposition 2.2 and the conclusion of this theorem in the case $N_{+}=N_{-}=1$ to prove that a.s. $\lim _{t \rightarrow \infty} \beta(t)=-\infty$. So again we conclude that a.s. $\lim _{t \rightarrow T} \gamma(t)=\infty$. The cases that $N_{+} \in\{0,1\}$ and $N_{-} \geq 2$ are symmetric to the above two cases. For the case that $N_{+}, N_{-} \geq 2$, we define W and β as in the case that $N_{-}=0$ and $N_{+} \geq 2$, and conclude that a.s. $\lim _{t \rightarrow \infty} \beta(t)=-\infty$ using the same argument as in that case except that now we use Proposition 2.2 and the conclusion of this theorem in the case $N_{-} \geq 2$ and $N_{+}=1$. So we also have a.s. $\lim _{t \rightarrow T} \gamma(t)=\infty$.

5. Duality

Let γ be a simple curve in a simply connected domain Ω. We call γ a crosscut in Ω if its two ends approach to two different boundary points or prime ends of Ω. We call γ a degenerate crosscut in Ω if its two ends approach to the same boundary point or prime end of Ω. We call γ a semi-crosscut in Ω if its one end approaches to some boundary point or prime end of Ω, and the other end stays inside Ω. In the above definitions, if $\Omega=\mathbb{H}$, and no end of γ is ∞, then γ is called a crosscut, or degenerate crosscut, or semi-crosscut, respectively, in \mathbb{H} on \mathbb{R}. For example, $\mathrm{e}^{\mathrm{i} \theta}$, $0<\theta<\pi$, is a crosscut in \mathbb{H} on \mathbb{R}; $\mathrm{e}^{\mathrm{i} \theta}, 0<\theta \leq \pi / 2$, is a semi-crosscut in \mathbb{H} on $\mathbb{R} ; \mathrm{i}+\mathrm{e}^{\mathrm{i} \theta},-\pi / 2<\theta<3 \pi / 2$, is a degenerate crosscut in \mathbb{H} on \mathbb{R}. If γ is a crosscut in \mathbb{H} on $\mathbb{R}, \mathbb{H} \backslash \gamma$ has two connected components. We use $D_{\mathbb{H}}(\gamma)$ to denote the bounded component.

In Proposition 2.8, let $N=4$; choose $p_{1}<x_{1}<p_{3}<p_{4}<x_{2}<p_{2}$; choose $C_{2}, C_{4} \geq 1 / 2$, let $C_{1}=1-C_{2}, C_{3}=$ $1 / 2-C_{4}$ and $\rho_{j, m}=C_{m}\left(\kappa_{j}-4\right), 1 \leq m \leq 4, j=1,2$. Let $K_{j}(t), 0 \leq t<T_{j}, j=1,2$, be given by Proposition 2.8. Let $\varphi_{j}(t, \cdot)$ and $\gamma_{j}(t), 0 \leq t<T_{j}, j=1,2$, be the corresponding chordal Loewner maps and traces.

Since $\kappa_{1} \in(0,4)$, so $\gamma_{1}(t), 0 \leq t<T_{j}$, is a simple curve, and $\gamma_{1}(t) \in \mathbb{H}$ for $0<t<T_{j}$. From Theorem 4.1 and Proposition 2.2, a.s. $\gamma_{1}\left(T_{1}\right):=\lim _{t \rightarrow T_{1}} \gamma_{1}(t) \in\left(x_{2}, p_{2}\right)$. Thus, γ_{1} is a crosscut in \mathbb{H} on \mathbb{R}. Note that γ_{1} disconnects x_{2} from ∞ in \mathbb{H}. If $\bar{t}_{2} \in\left[0, T_{2}\right)$ is an $\left(\mathcal{F}_{t}^{2}\right)$-stopping time, then conditioned on $\mathcal{F}_{\bar{t}_{2}}^{2}$, after a time-change, $\varphi_{2}\left(\bar{t}_{2}, \gamma_{1}(t)\right), 0 \leq$ $t<T_{1}\left(\bar{t}_{2}\right)$, has the same distribution as a chordal $\operatorname{SLE}\left(\kappa_{1} ;-\frac{\kappa_{1}}{2}, \vec{\rho}_{1}\right)$ trace started from $\left(\varphi_{2}\left(\bar{t}_{2}, x_{1}\right) ; \xi_{2}\left(\bar{t}_{2}\right), \varphi_{2}\left(\bar{t}_{2}, \vec{p}\right)\right)$. Then we find that a.s. $\lim _{t \rightarrow T_{1}\left(\bar{t}_{2}\right)} \varphi_{2}\left(\bar{t}_{2}, \gamma_{1}(t)\right) \in\left(\xi_{2}\left(\bar{t}_{2}\right), \varphi_{2}\left(\bar{t}_{2}, p_{2}\right)\right)$. Thus, $\varphi_{2}\left(\bar{t}_{2}, \gamma_{1}(t)\right), 0 \leq t<T_{1}\left(\bar{t}_{2}\right)$, disconnects
$\xi_{2}\left(\bar{t}_{2}\right)$ from ∞ in \mathbb{H}, and so γ_{1} disconnects $\gamma_{2}\left(\bar{t}_{2}\right)$ from ∞ in $\mathbb{H} \backslash L_{2}\left(\bar{t}_{2}\right)$. By choosing a sequence of $\left(\mathcal{F}_{t}^{2}\right)$-stopping times that are dense in $\left[0, T_{2}\right)$, we conclude that a.s. $\overline{K_{2}\left(T_{2}^{-}\right)} \subset \overline{D_{\mathbb{H}}\left(\gamma_{1}\right)}$, where $K_{2}\left(T_{2}^{-}\right)=\bigcup_{0 \leq t<T_{2}} K_{2}(t)$. From Propositions 2.6 and 2.1, a.s. x_{1} is a subsequential limit of $\gamma_{2}(t)$ as $t \rightarrow T_{2}$. Similarly, for every $\left(\mathcal{F}_{t}^{1}\right)$-stopping time $\bar{t}_{1} \in\left(0, \bar{T}_{1}\right), \gamma_{1}\left(\bar{t}_{1}\right)$ is a subsequential limit of $\gamma_{2}(t)$ as $t \rightarrow T_{2}\left(\bar{t}_{1}\right)$. By choosing a sequence of $\left(\mathcal{F}_{t}^{1}\right)$-stopping times that are dense in $\left[0, T_{1}\right)$, we conclude that a.s. $\gamma_{1}(t) \in K_{2}\left(T_{2}^{-}\right)$for $0 \leq t<T_{1}$. So we have the following lemma and theorem. Here, $\partial_{\mathbb{H}}^{\text {out }} S$ is defined for bounded $S \subset \mathbb{H}$, which is the intersection of \mathbb{H} with the boundary of the unbounded component of $\mathbb{H} \backslash S$. For detailed proof of the lemma, please see Lemma 5.1 in [9].

Lemma 5.1. Almost surely $\partial_{\mathbb{H}}^{\text {out }} K_{2}\left(T_{2}^{-}\right)$is the image of $\gamma_{1}(t), 0<t<T_{1}$.
Theorem 5.1. Suppose $\kappa>4$; $p_{1}<x_{1}<p_{3}<p_{4}<x_{2}<p_{2} ; C_{2}, C_{4} \geq 1 / 2, C_{1}=1-C_{2}$, and $C_{3}=1 / 2-C_{4}$. Let $K(t), 0 \leq t<T$, be chordal $\operatorname{SLE}\left(\kappa ;-\frac{\kappa}{2}, C_{1}(\kappa-4), C_{2}(\kappa-4), C_{3}(\kappa-4), C_{4}(\kappa-4)\right)$ process started from $\left(x_{2} ; x_{1}, p_{1}, p_{2}, p_{3}, p_{4}\right)$. Let $K\left(T^{-}\right)=\bigcup_{0 \leq t<T} K(t)$. Then a.s. $K\left(T^{-}\right)$is bounded, and $\partial_{H \mathbb{H}}^{\text {out }} K\left(T^{-}\right)$has the distribution of the image of a chordal $\operatorname{SLE}\left(\kappa^{\prime} ;-\frac{\kappa^{\prime}}{2}, C_{1}\left(\kappa^{\prime}-4\right), C_{2}\left(\kappa^{\prime}-4\right), C_{3}\left(\kappa^{\prime}-4\right), C_{4}\left(\kappa^{\prime}-4\right)\right)$ trace started from $\left(x_{1} ; x_{2}, p_{1}, p_{2}, p_{3}, p_{4}\right)$, where $\kappa^{\prime}=16 / \kappa$.

The above lemma and theorem still hold if we let $p_{1} \in\left(-\infty, x_{1}\right)$, or $=x_{1}^{-}$; let $p_{2} \in\left(x_{2}, \infty\right)$, or $=\infty$, or $=x_{2}^{+}$; let $p_{3} \in\left(x_{1}, x_{2}\right)$, or $=x_{1}^{+}$; let $p_{4} \in\left(x_{1}, x_{2}\right)$ or $=x_{2}^{-}$. Here if $p_{2}=x_{2}^{+}$, we use Theorem 4.2 instead of Theorem 4.1 to prove that the image of γ_{1} in Lemma 5.1 is a crosscut in \mathbb{H} on \mathbb{R}.

Proof of Theorem 1.1. First suppose $x<0$. Then λ is supported by $(-\infty, x)$, and $\bar{\mu}=\int \bar{\nu}_{y} \mathrm{~d} \lambda(y)$ follows from Corollary 3.2 and Theorem 5.1 with $x_{1}=y, x_{2}=0, p_{1}=y^{-}, p_{2}=\infty, p_{3}=y^{+}, p_{4}=x, C_{1}=\frac{\kappa-6}{\kappa-4}, C_{2}=\frac{2}{\kappa-4}$, $C_{3}=-1 / 2$ and $C_{4}=1$. From Theorem 4.1 and Proposition 2.2, for each $y \in(-\infty, x), \bar{\nu}_{y}$ is supported by the space of crosscuts in \mathbb{H} from y to some point on $(0, \infty)$. Thus a.s. $\partial_{\mathbb{H}}^{\text {out }} K\left(T_{x}\right)$ is a crosscut in \mathbb{H} on \mathbb{R} connecting some $y \in(-\infty, x)$ with some $z \in(0, \infty)$. The case that $x>0$ is symmetric.

Let $S \subset \mathbb{H}$. Suppose $\bar{S} \cap(a, \infty)=\varnothing$ for some $a \in \mathbb{R}$. Then there is a unique component of $\mathbb{H} \backslash \bar{S}$, which has (a, ∞) as part of its boundary. Let D_{+}denote this component. Then $\partial D_{+} \cap \mathbb{H}$ is called the right boundary of S in \mathbb{H}. Let it be denoted by $\partial_{\mathbb{H}}^{+} S$. Similarly, if $\bar{S} \cap(-\infty, a)=\varnothing$ for some $a \in \mathbb{R}$. Then there is a unique component of $\mathbb{H} \backslash \bar{S}$, which has $(-\infty, a)$ as part of its boundary. Let D_{-}denote this component. Then $\partial D_{-} \cap \mathbb{H}$ is called the left boundary of S in \mathbb{H}. Let it be denoted by $\partial_{\mathbb{H}}^{-} S$. The following theorem improves Theorem 5.3 in [9].

Theorem 5.2. Let $\kappa>4$ and $C_{r}, C_{l} \geq 1 / 2$. Let $K(t), 0 \leq t<\infty$, be a chordal $\operatorname{SLE}\left(\kappa ; C_{r}(\kappa-4), C_{l}(\kappa-4)\right)$ process started from $\left(0 ; 0^{+}, 0^{-}\right)$. Let $K(\infty)=\bigcup_{t \geq 0} K(t)$. Let $\kappa^{\prime}=16 / \kappa$ and $W(z)=1 / \bar{z}$. Then (i) $W\left(\partial_{\mathbb{H}}^{+} K(\infty)\right)$ has the same distribution as the image of a chordal $\overline{\operatorname{SLE}}\left(\kappa^{\prime} ;\left(1-C_{r}\right)\left(\kappa^{\prime}-4\right),\left(1 / 2-C_{l}\right)\left(\kappa^{\prime}-4\right)\right)$ trace started from $\left(0 ; 0^{+}, 0^{-}\right)$; (ii) $W\left(\partial_{\mathbb{H}}^{-} K(\infty)\right)$ has the same distribution as the image of a chordal $\operatorname{SLE}\left(\kappa^{\prime} ;\left(1 / 2-C_{r}\right)\left(\kappa^{\prime}-4\right),(1-\right.$ $\left.C_{l}\right)\left(\kappa^{\prime}-4\right)$) trace started from $\left(0 ; 0^{+}, 0^{-}\right)$; and (iii) a.s. $\overline{K(\infty)} \cap \mathbb{R}=\{0\}$.

Proof. Let $W_{0}(z)=1 /(1-z)$. Then W_{0} maps \mathbb{H} conformally onto \mathbb{H}, and $W_{0}(0)=1, W_{0}(\infty)=0, W_{0}\left(0^{ \pm}\right)=1^{ \pm}$. From Proposition 2.1, after a time-change, $\left(W_{0}(K(t))\right)$ has the same distribution as a chordal $\operatorname{SLE}\left(\kappa ;\left(\frac{3}{2}-C_{r}-\right.\right.$ $\left.\left.C_{l}\right)(\kappa-4)-\frac{\kappa}{2}, C_{r}(\kappa-4), C_{l}(\kappa-4)\right)$ process started from $\left(1 ; 0,1^{+}, 1^{-}\right)$. Applying Theorem 5.1 with $x_{1}=0$, $x_{2}=1, p_{1}=0^{-}, p_{2}=1^{+}, p_{3}=0^{+}, p_{4}=1^{-}, C_{1}=1-C_{r}, C_{2}=C_{r}, C_{3}=1 / 2-C_{l}$, and $C_{4}=C_{l}$, we find that $\partial_{\mathbb{H}}^{\text {out }} W_{0}(K(\infty))$ has the same distribution as the image of a chordal $\operatorname{SLE}\left(\kappa^{\prime} ;\left(C_{2}+C_{4}\right)\left(\kappa^{\prime}-4\right)-\frac{\kappa^{\prime}}{2}, C_{1}\left(\kappa^{\prime}-\right.\right.$ 4), $C_{3}\left(\kappa^{\prime}-4\right)$) trace started from ($0 ; 1,0^{-}, 0^{+}$). Let γ denote this trace. From Proposition 2.1 and Theorem 4.2, γ is a crosscut in \mathbb{H} from 0 to 1 . Thus $\partial_{\mathbb{H}}^{+} K(\infty)=W_{0}^{-1}(\gamma)$, and so $W\left(\partial_{\mathbb{H}}^{+} K(\infty)\right)=W \circ W_{0}^{-1}(\gamma)$. Let $W_{1}=W \circ W_{0}^{-1}$. Then $W_{1}(z)=\bar{z} /(\bar{z}-1)$. So $W_{1}(0)=0, W_{1}(1)=\infty, W_{1}\left(0^{ \pm}\right)=0^{\mp}$. From Proposition 2.1, after a time-change, $W_{1}(\gamma)$ has the same distribution as a chordal $\operatorname{SLE}\left(\kappa^{\prime} ; C_{1}\left(\kappa^{\prime}-4\right), C_{3}\left(\kappa^{\prime}-4\right)\right)$ trace started from $\left(0 ; 0^{+}, 0^{-}\right)$. Since $C_{1}=1-C_{r}$ and $C_{3}=1 / 2-C_{l}$, so we have (i). Now (ii) follows from symmetry. Finally, from (i), (ii) and Proposition 2.7, $\partial_{\mathbb{H}}^{+} K(\infty)$ and $\partial_{\mathbb{H}}^{-} K(\infty)$ are two crosscuts in \mathbb{H} that connect ∞ with 0 , so we have (iii).

In the proof of the above theorem, if we choose p_{2} and p_{4} to be generic force points, then we may obtain the following theorem using a similar argument.

Theorem 5.3. Let $\kappa>4, C_{r}, C_{l} \geq 1 / 2$, and $p_{r}>0>p_{l}$. Suppose $K(t), 0 \leq t<\infty$, is a chordal $\operatorname{SLE}\left(\kappa ; C_{r}(\kappa-\right.$ 4), $C_{l}(\kappa-4)$) process started from ($0 ; p_{r}, p_{l}$). Let $K(\infty)=\bigcup_{t \geq 0} K(t)$ and $\kappa^{\prime}=16 / \kappa$. Then $\partial_{\mathbb{H}}^{+} K(\infty)$ is a crosscut in \mathbb{H} from ∞ to some point on $\left(0, p_{r}\right) ; \partial_{\mathbb{H}}^{-} K(\infty)$ is a crosscut in \mathbb{H} from ∞ to some point on $\left(p_{l}, 0\right)$; and $K(\infty)$ is bounded away from $\left(-\infty, p_{l}\right]$ and $\left[p_{r},+\infty\right)$.

6. Boundary of chordal SLE

In this section, we use Theorem 1.1 and Proposition 1.1 to study the boundary of standard chordal SLE (κ) hulls for $\kappa>4$.

Let $\kappa>4$. Let $K(t), 0 \leq t<\infty$, be a standard chordal SLE (κ) process. Let $\xi(t), \varphi(t, \cdot)$ and $\gamma(t), 0 \leq t<\infty$, be the corresponding driving function, chordal Loewner maps, and trace. Then there is a Brownian motion $B(t)$ such that $\xi(t)=\sqrt{\kappa} B(t), t \geq 0$. For each $t>0$, let $a(t)=\inf (\overline{K(t)} \cap \mathbb{R})$ and $b(t)=\sup (\overline{K(t)} \cap \mathbb{R})$, then $a(t)<0<b(t)$, and $\varphi(t, \cdot)$ maps $(-\infty, a(t))$ and $(b(t),+\infty)$ onto $(-\infty, c(t))$ and $(d(t),+\infty)$ for some $c(t)<0<d(t)$. And we have $c(t) \leq \xi(t) \leq d(t), t>0$. For each $t>0, f_{t}:=\varphi(t, \cdot)^{-1}$ extends continuously to $\overline{\mathbb{H}}$ with $f_{t}(c(t))=a(t), f_{t}(d(t))=$ $b(t), f_{t}(\xi(t))=\gamma(t)$, and $K(t)$ is bounded by $f_{t}([c(t), d(t)])$ and \mathbb{R}. We have the following theorem.

Theorem 6.1. Let $T \in(0, \infty)$ be a stopping time w.r.t. the filtration generated by $(\xi(t))$. Then $\gamma(T) \in \mathbb{R}$ a.s. implies that $\xi(T)=c(T)$ or $=d(T)$, and the curve $f_{t}(x), c(T)<x<d(T)$, is a crosscut in \mathbb{H} on \mathbb{R} with dimension $1+2 / \kappa$ everywhere; and $\gamma(T) \in \mathbb{H}$ a.s. implies that $c(T)<\xi(T)<d(T)$, and the two curves $f_{t}(x), c(T)<x \leq \xi(T)$, and $f_{t}(x), \xi(T) \leq x<d(T)$, are both semi-crosscuts in \mathbb{H} on \mathbb{R} with dimension $1+2 / \kappa$ everywhere. Moreover, $\overline{K(T)}$ is connected, and has no cut-point on \mathbb{R}.

Here, a curve α is said to have dimension d everywhere if any nondegenerate subcurve of α has Hausdorff dimension d. From the main theorem in [3], every standard chordal SLE (κ) trace has dimension $(1+\kappa / 8) \wedge 2$ everywhere. From the Girsanov theorem and Proposition 2.2, this is also true for any chordal or strip SLE $(\kappa ; \vec{\rho})$ trace. For a connected set $K \subset \mathbb{C}, z_{0} \in K$ is called a cut-point of K, if $K \backslash\left\{z_{0}\right\}$ is not connected. Such cut-point must lie on the boundary of K.

We need a lemma to prove this theorem. For each $p \in \mathbb{R} \backslash\{0\}$, let T_{p} denote the first time that p is swallowed by $K(t)$. Then $T_{p}>0$ is a finite stopping time because $\kappa>4$.

Lemma 6.1. For $p_{-}<0<p_{+}$, the events $\left\{T_{p_{-}}<T_{p_{+}}\right\}$and $\left\{T_{p_{+}}<T_{p_{-}}\right\}$both have positive probabilities.
Proof. Let $T=T_{p_{-}} \wedge T_{p_{+}}$. Let $X_{ \pm}(t)=\varphi\left(t, p_{ \pm}\right)-\xi(t), 0 \leq t<T$. Then $X_{ \pm}(t)$ satisfies the SDE: $\mathrm{d} X_{ \pm}(t)=$ $-\sqrt{\kappa} \mathrm{d} B(t)+\frac{2}{X_{ \pm}(t)} \mathrm{d} t$. Let $Y_{ \pm}(t)=\ln \left(\left|X_{ \pm}(t)\right|\right), 0 \leq t<T$. From Itô's formula, $Y_{ \pm}(t)$ satisfies the SDE:

$$
\mathrm{d} Y_{ \pm}(t)=-\frac{\sqrt{\kappa}}{X_{ \pm}(t)} \mathrm{d} B(t)+\left(2-\frac{\kappa}{2}\right) \frac{\mathrm{d} t}{X_{ \pm}(t)^{2}} .
$$

Let $Y(t)=Y_{+}(t)-Y_{-}(t), 0 \leq t<T$. Then $Y(t)$ satisfies the SDE:

$$
\mathrm{d} Y(t)=-\sqrt{\kappa}\left[\frac{1}{X_{+}(t)}-\frac{1}{X_{-}(t)}\right] \mathrm{d} B(t)+\left(2-\frac{\kappa}{2}\right)\left[\frac{1}{X_{+}(t)^{2}}-\frac{1}{X_{-}(t)^{2}}\right] \mathrm{d} t .
$$

Let $u(t)=\int_{0}^{t}\left(1 / X_{+}(s)-1 / X_{-}(s)\right)^{2} \mathrm{~d} s, 0 \leq t<T$. Let $Z(t)=Y\left(u^{-1}(t)\right), 0 \leq t<u(T)$. Then there is a Brownian motion $\widetilde{B}(t)$ such that $Z(t)$ satisfies the SDE:

$$
\begin{aligned}
\mathrm{d} Z(t) & =-\sqrt{\kappa} \mathrm{d} \widetilde{B}(t)+\left(2-\frac{\kappa}{2}\right) \frac{X_{-}\left(u^{-1}(t)\right)+X_{+}\left(u^{-1}(t)\right)}{X_{-}\left(u^{-1}(t)\right)-X_{+}\left(u^{-1}(t)\right)} \mathrm{d} t \\
& =-\sqrt{\kappa} \mathrm{d} \widetilde{B}(t)+\left(\frac{\kappa}{2}-2\right) \tanh _{2}(Z(t)) \mathrm{d} t .
\end{aligned}
$$

From the chordal Loewner equation, $X_{+}(t)-X_{-}(t)=\varphi\left(t, p_{+}\right)-\varphi\left(t, p_{-}\right)$increases in t. If $T=T_{p_{-}}$, as $t \rightarrow T^{-}$, $X_{-}(t)=\varphi\left(t, p_{-}\right)-\xi(t) \rightarrow 0$, so $\left|X_{+}(t)\right| /\left|X_{-}(t)\right| \rightarrow \infty$, which implies that $Z(t) \rightarrow+\infty$ as $t \rightarrow u(T)$. Similarly, if $T=T_{p_{+}}$, then $Z(t) \rightarrow-\infty$ as $t \rightarrow u(T)$. Thus as $t \rightarrow T$, either $Z(t) \rightarrow+\infty$ or $Z(t) \rightarrow-\infty$. For $x \in \mathbb{R}$, let $h(x)=$ $\int_{0}^{x}\left(\cosh _{2} s\right)^{2 / \kappa-2} \mathrm{~d} s$. Since $2 / \kappa-2<0$, so h maps \mathbb{R} onto a finite interval, say $(-L, L)$. And we have $\frac{\kappa}{2} h^{\prime \prime}(x)+$ $\left(\frac{\kappa}{2}-2\right) h^{\prime}(x) \tanh _{2}(x)=0$ for any $x \in \mathbb{R}$. Let $W(t)=h(Z(t)), 0 \leq t<u(T)$. Then as $t \rightarrow u(T)$, either $W(t) \rightarrow L$ or $W(t) \rightarrow-L$. From Itô's formula, $(W(t))$ is a bounded martingale. Thus, the probability that $\lim _{t \rightarrow u(T)} W(t)=L$ is $(W(0)-(-L)) /(2 L)>0$. So the probability that $T_{p_{-}}<T_{p_{+}}$, i.e., $T=T_{p_{-}}$, is positive. Similarly, the probability that $T_{p_{+}}<T_{p_{-}}$is also positive.

Proof of Theorem 6.1. Let $\kappa^{\prime}=16 / \kappa \in(0,4)$. If $T=T_{p}$ for some $p \in \mathbb{R} \backslash\{0\}$, then $\gamma(T) \in \mathbb{R}$, and $\xi(T)=c(T)$ or $d(T)$, depending on whether $p<0$ or $p>0$. From Theorem 1.1 and Proposition 1.1, $\partial K(T) \cap \mathbb{H}=\left\{f_{T}(x): c(T)<\right.$ $x<d(T)\}$ is the image of a chordal $\operatorname{SLE}\left(\kappa^{\prime}, \vec{\rho}\right)$ trace, and so it has dimension $1+\kappa^{\prime} / 8=1+2 / \kappa$ everywhere. We also see that this curve is a crosscut in \mathbb{H} on \mathbb{R}, so $K(T)$ is the hull bounded by this crosscut. Thus, $\overline{K(T)}$ is connected, and has no cut-point.

Now consider the general case. We first prove (i): $\xi(T)=c(T)$ a.s. implies that $f_{t}(x), c(T)<x<d(T)$, is a crosscut in \mathbb{H} on \mathbb{R} with dimension $1+2 / \kappa$ everywhere. Let \mathcal{E} denote the event that $\xi(T)=c(T)$, but $f_{t}(x), c(T)<$ $x<d(T)$, is not a crosscut in \mathbb{H} on \mathbb{R}, or does not have dimension $1+2 / \kappa$ anywhere. Assume that $\mathbf{P}(\mathcal{E})>0$. For each $n \in \mathbb{N}$, let

$$
\begin{aligned}
\mathcal{E}_{n}:= & \{\xi(T)=c(T)\} \cap\{-n<a(T)\} \cap\{d(T)-c(T)>1 / n\} \\
& \cap\left\{f_{t}(x), c(T)+1 / n \leq x<d(T), \text { is not a semi-crosscut in } \mathbb{H} \text { on } \mathbb{R},\right.
\end{aligned}
$$

or does not have dimension $1+2 / \kappa$ everywhere $\}$.
Since $f_{T}(c(T))=a(T) \in \mathbb{R}$, and $a(T)<b(T)=f_{T}(d(T))$, so $\mathcal{E}=\bigcup_{n=1}^{\infty} \mathcal{E}_{n}$. Then there is $n_{0} \in \mathbb{N}$ such that $\mathbf{P}\left(\mathcal{E}_{n_{0}}\right)>$ 0.

Let $(\widetilde{K}(t), 0 \leq t<\infty)$ be a standard chordal $\operatorname{SLE}(\kappa)$ process that is independent of $(K(t))$. Let $\widetilde{\mathcal{E}}_{n_{0}}$ denote the event that $\widetilde{K}(t)$ swallows $\varphi\left(T,-n_{0}\right)-\xi(T)$ before swallowing $1 / n_{0}$, and let \widetilde{T} denote the first time that $\widetilde{K}(t)$ swallows $\varphi\left(T,-n_{0}\right)-\xi(T)$. From Lemma 6.1, the probability of $\widetilde{\mathcal{E}}_{n_{0}}$ is positive. Let $\widehat{\mathcal{E}}_{n_{0}}=\mathcal{E}_{n_{0}} \cap \widetilde{\mathcal{E}}_{n_{0}}$. Then $\widehat{\mathcal{E}}_{n_{0}}$ also has positive probability.

Define $\widehat{K}(t)=K(t)$ for $0 \leq t \leq T$; and $\widehat{K}(t)=K(T) \cup f_{T}(\widetilde{K}(t-T)+\xi(T))$ for $t>T$. Then $(\widehat{K}(t))$ has the same distribution as $(K(t))$. Let $\widehat{T}_{-n_{0}}$ denote the first time that $\widehat{K}(t)$ swallows $-n_{0}$. Then $\partial \widehat{K}\left(\widehat{T}_{-n_{0}}\right) \cap \mathbb{H}$ is a.s. a crosscut in \mathbb{H} on \mathbb{R} with dimension $1+2 / \kappa$ everywhere. Since on $\widehat{\mathcal{E}}_{n_{0}}, \widehat{T}_{-n_{0}}=T+\widetilde{T}$, and $\widetilde{K}(\widetilde{T}) \cap \mathbb{R}$ is bounded above by $1 / n_{0}$, so $\left\{f_{T}(x), c(T)+1 / n_{0} \leq x<d(T)\right\}$ is a subset of the boundary of $\widehat{K}\left(\widehat{T}_{-n_{0}}\right)=K(T) \cup f_{T}(\widetilde{K}(\widetilde{T})+\xi(T))$ in \mathbb{H}, which implies that a.s. $f_{T}(x), c(T)+1 / n_{0} \leq x<d(T)$, is a semi-crosscut with dimension $1+2 / \kappa$ everywhere. This contradicts that $\widehat{\mathcal{E}}_{n_{0}}$ has positive probability. So we have (i). Symmetrically, we have (ii): $\xi(T)=d(T)$ a.s. implies that $f_{t}(x), c(T)<x<d(T)$, is a crosscut in \mathbb{H} on \mathbb{R} with dimension $1+2 / \kappa$ everywhere.

If $\gamma(T)=f_{T}(\xi(T)) \in \mathbb{H}$, then $\gamma(T) \notin\{c(T), d(T)\}$, so $c(T)<\xi(T)<d(T)$. Using the same argument as in (i), we can prove (iii): $\gamma(T) \in \mathbb{H}$ a.s. implies that $f_{t}(x), \xi(T) \leq x<d(T)$, is a semi-crosscut in \mathbb{H} on \mathbb{R} with dimension $1+2 / \kappa$ everywhere. Symmetrically, we have (iv): $\gamma(T) \in \mathbb{H}$ a.s. implies that $f_{t}(x), c(T)<x \leq \xi(T)$, is a semicrosscut in \mathbb{H} on \mathbb{R} with dimension $1+2 / \kappa$ everywhere. From (iii) and (iv), we see that $\gamma(T) \in \mathbb{H}$ a.s. implies that $\overline{K(T)}$ is connected, and has no cut-point on \mathbb{R}. Similarly, we have (v): $c(T)<\xi(T)<d(T)$ and $\gamma(T) \in \mathbb{R}$ a.s. implies that $f_{T}(x), \xi(T)<x<d(T)$, and $f_{T}(x), c(T)<x<\xi(T)$, are both crosscuts or degenerate crosscuts in \mathbb{H} on \mathbb{R}. Moreover, these two curves intersect at only one point: $\gamma(T)$, since the curve $\alpha(y):=\frac{f_{T}(\xi(T)+\mathrm{i} y), y>0 \text {, connects }}{K(T)}$ $\gamma(T)$ with ∞, and does not intersect the above two curves. So $\gamma(T)$ is a cut-point of $\overline{K(T)}$ on \mathbb{R}.

To finish the proof, it remains to prove (vi): $\gamma(T) \in \mathbb{R}$ a.s. implies that $\xi(T)=c(T)$ or $=d(T)$. Let \mathcal{E} denote the event that $\gamma(T) \in \mathbb{R}$ and $c(T)<\xi(T)<d(T)$. We suffice to show that $\mathbf{P}(\mathcal{E})=0$. Assume that $\mathbf{P}(\mathcal{E})>0$. Assume that \mathcal{E} occurs. From (v), we know that $K(T)=K_{1} \cup K_{2}$, where K_{1} and K_{2} are hulls bounded by crosscut or degenerate crosscut in \mathbb{H} on \mathbb{R}, and $\overline{K_{1}} \cap \overline{K_{2}}=\{\gamma(T)\}$. Since $\kappa>4$, so a.s. $K(T)$ contains a neighborhood of 0 in \mathbb{H}. We may label K_{1} and K_{2} such that K_{1} contains a neighborhood of 0 in \mathbb{H}. Then $\gamma(T) \neq 0$. Let $\mathcal{S}=\{\overline{\mathbf{B}(x+\mathrm{i} y ; r)}: x, y, r \in$ $\mathbb{Q}, y, r>0, r<y / 2\}$, where $\mathbf{B}\left(z_{0} ; r\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$. Then \mathcal{S} is countable, and every $A \in \mathcal{S}$ is contained in \mathbb{H}. For $A \in \mathcal{S}$, let \mathcal{E}_{A} denote the intersection of \mathcal{E} with the event that $A \cap \partial K_{2} \neq \varnothing$ and $A \cap K_{1}=\varnothing$. Then $\mathcal{E}=\bigcup_{A \in \mathcal{S}} \mathcal{E}_{A}$.

So there is $A_{0} \in \mathcal{S}$ such that $\mathbf{P}\left(\mathcal{E}_{A_{0}}\right)>0$. Let T_{0} be the first time that $\gamma(t)$ hits A_{0}. Let $T_{1}=T \wedge T_{0}$. Then T_{1} is a finite stopping time. Assume $\mathcal{E}_{A_{0}}$ occurs. Since $\gamma(t), 0 \leq t \leq T$, visits every point on $\partial K_{2} \cap \mathbb{H} \subset \partial K(T) \cap \mathbb{H}$, so $T_{0} \leq T$, and so $T_{1}=T_{0}$. We have $\gamma\left(T_{1}\right)=\gamma\left(T_{0}\right) \in A_{0}$. Since $A_{0} \cap \mathbb{R}=\varnothing$, so $\gamma\left(T_{1}\right) \in \mathbb{H}$. Since $\gamma(0)=0 \in \overline{K_{1}}$, and $\gamma\left(T_{1}\right) \in \overline{K_{2}}$, which are both different from $\gamma(T)$, so $\gamma(T) \in \overline{K_{1}} \cap \overline{K_{2}}$ is a cut-point of $\overline{K\left(T_{1}\right)}$. However, since T_{1} is a positive finite stopping time, and $\gamma\left(T_{1}\right) \in \mathbb{H}$ on $\mathcal{E}_{A_{0}}$, so from (iii) and (iv) in the above proof, a.s. $\overline{K\left(T_{1}\right)}$ has no cut-point on \mathbb{R} in the event $\mathcal{E}_{A_{0}}$. This contradicts that $\mathbf{P}\left(\mathcal{E}_{A_{0}}\right)>0$. So $\mathbf{P}(\mathcal{E})=0$.

Corollary 6.1. For any stopping time $T \in(0, \infty)$, a.s. $f_{T}(x) \notin \mathbb{R}$ for $x \in(c(T), d(T)) ; \partial K(T) \cap \mathbb{H}$ has Hausdorff dimension $1+2 / \kappa ; \overline{K(T)}$ is connected, and has no cut-point on \mathbb{R}; and for every $x \in(a(T), b(T)), K(T)$ contains a neighborhood of x in \mathbb{H}.

In the above theorem, when $\gamma(T) \in \mathbb{H}, \partial K(T) \cap \mathbb{H}$ is composed of two semi-crosscuts in \mathbb{H} on \mathbb{R}, which are $f_{T}(x)$, $c(T)<x \leq \xi(T)$ and $f_{T}(x), \xi(T) \leq x<d(T)$. If the two semi-crosscuts intersect only at $\gamma(T)=f_{T}(\xi(T))$, then we get a crosscut $f_{T}(x), c(T)<x<d(T)$. If the two semi-crosscuts intersect at any point z_{0} other than $\gamma(T)$, then z_{0} is a cut-point of $K(T)$. To see this, suppose $f_{T}\left(x_{1}\right)=f_{T}\left(x_{2}\right)=z_{0}$, where $c(T)<x_{1}<\xi(T)<x_{2}<d(T)$. Then $f_{T}(x), c(T)<x \leq x_{1}$ and $f_{T}(x), x_{2} \leq x<d(T)$ are two semi-crosscuts in \mathbb{H} on \mathbb{R}, which together bound a hull in \mathbb{H} on \mathbb{R}. Let it be denoted by K_{1}. The simple curves $f_{T}(x), x_{1} \leq x \leq \xi(T)$, and $f_{T}(x), \xi(T) \leq x \leq x_{2}$, together bound a closed bounded set in \mathbb{H}. Let it be denoted by K_{2}. Then $K(T)=K_{1} \cup K_{2}$ and $K_{1} \cap K_{2}=\left\{z_{0}\right\}$. On the other hand, every cut-point of $K(T)$ corresponds to an intersection point between $f_{T}(x), c(T)<x<\xi(T)$, and $f_{T}(x)$, $\xi(T)<x<d(T)$, and so such cut-point disconnects $\gamma(T)$ from $\xi(0)=0$ in $K(T)$. From Theorem 5 in [2], if $\kappa>8$ and $T>0$ is a constant, then a.s. $K(T)$ has no cut-point, so $f_{T}(x), c(T)<x<d(T)$, is a crosscut in \mathbb{H} on \mathbb{R}. We now make some improvement over this result.

Theorem 6.2. If $\kappa \geq 8$ and $T \in(0, \infty)$ is a stopping time, then a.s. $K(T)$ has no cut-point, and so $f_{T}(x), c(T)<$ $x<d(T)$, is a crosscut in \mathbb{H} on \mathbb{R}.

Proof. First suppose $\kappa>8$. Let \mathcal{E} denote the event that $K(T)$ has a cut-point. We suffice to show that $\mathbf{P}(\mathcal{E})=0$. Assume that $\mathbf{P}(\mathcal{E})>0$. For each $n \in \mathbb{N}$, let \mathcal{E}_{n} denote the event that $c(T)+1 / n<\xi(T)<d(T)-1 / n$, and the two curves $f_{T}(x), c(T)<x \leq \xi(T)-1 / n$, and $f_{T}(x), \xi(T)+1 / n \leq x<d(T)$, are not disjoint. Then $\mathcal{E}=\bigcup_{n=1}^{\infty} \mathcal{E}_{n}$. So there is $n_{0} \in \mathbb{N}$ such that $\mathbf{P}\left(\mathcal{E}_{n_{0}}\right)>0$.

Let $(\widetilde{K}(t))$ be a standard chordal $\operatorname{SLE}(\kappa)$ process that is independent of $(K(t))$. There is a small $h>0$ such that the probability that $\widetilde{\widetilde{K}(h)} \cap \mathbb{R} \subset\left(-1 / n_{0}, 1 / n_{0}\right)$ is positive. There is $t_{0} \in[0, \infty)$ such that $\mathbf{P}\left(\mathcal{E}_{n_{0}} \cap\left\{t_{0}-h \leq T \leq t_{0}\right\}\right)>0$. Let $\widehat{\mathcal{E}}$ denote the intersection of $\mathcal{E}_{n_{0}} \cap\left\{t_{0}-h \leq T \leq t_{0}\right\}$ with $\left\{\widetilde{K}(h) \cap \mathbb{R} \subset\left(-1 / n_{0}, 1 / n_{0}\right)\right\}$. Then $\widehat{\mathcal{E}}$ also has positive probability. Define $\widehat{K}(t)=K(t)$ for $0 \leq t \leq T$; and $\widehat{K}(t)=K(T) \cup f_{T}(\widetilde{K}(t-T)+\xi(T))$ for $t>T$. Then $(\widehat{K}(t))$ has the same distribution as $(K(t))$. From Theorem 5 in [2], a.s. $\widehat{K}\left(t_{0}\right)$ has no cut-point. Since $T \leq t_{0} \leq T+h$, so $K(T) \subset \widehat{K}\left(t_{0}\right) \subset K(T) \cup f_{T}(\widetilde{K}(h)+\xi(T))$. In the event $\widehat{\mathcal{E}}$, since $\widetilde{K}(h) \cap \mathbb{R} \subset\left(-1 / n_{0}, 1 / n_{0}\right)$, so $f_{T}(x), c(T)<x \leq$ $\xi(T)-1 / n_{0}$, and $f_{T}(x), \xi(T)+1 / n_{0} \leq x<d(T)$, are subarcs of $\partial \widehat{K}\left(t_{0}\right) \cap \mathbb{H}$. However, in the event $\widehat{\mathcal{E}}$, the above two curves are not disjoint, so $\widehat{K}\left(t_{0}\right)$ has a cut-point, which contradicts that $\widehat{\mathcal{E}}$ has positive probability. Thus $\mathbf{P}(\mathcal{E})=0$.

Now suppose $\kappa=8$. Let $\gamma^{R}(t)=\gamma(1 / t), 0<t<\infty$. Since chordal SLE(8) trace is reversible (cf. [5]), so after a time-change, γ^{R} has the distribution of a chordal $\operatorname{SLE}(8)$ trace in \mathbb{H} from ∞ to 0 . Thus, a.s. there is a crosscut α in $\mathbb{H} \backslash \gamma^{R}((0,1 / T])=\mathbb{H} \backslash \gamma([T, \infty))$ connecting $\gamma^{R}(1 / T)=\gamma(T)$ with 0 . Then $\alpha \subset K(T)$ and does not intersect $\partial K(T)$. If $K(T)$ has any cut-point, the cut-point must disconnect $\gamma(T)$ from 0 in $K(T)$, so such α does not exist. Thus a.s. $K(T)$ has no cut-point.

If $\kappa \in(4,8)$, this theorem does not hold since from Theorem 5 in [2], the probability that $K(1)$ has cut-point is positive.

7. More geometric results

The description of the boundary of $\operatorname{SLE}(\kappa)$ hulls for $\kappa>4$ enables us to obtain some results about the limit of $\operatorname{SLE}(\kappa ; \vec{\rho})$ traces when $\kappa>4$. We will prove that the limits of the traces exist when certain conditions are satisfied.

Let $\kappa>4$. In this section, $L(t), 0 \leq t<T_{e}$, is a strip $\operatorname{SLE}(\kappa ; \vec{\rho})$ process started from $(0 ; \vec{p})$, where no force point is degenerate. Let $\xi(t), \psi(t, \cdot)$, and $\beta(t), 0 \leq t<T_{e}$, be the corresponding driving function, strip Loewner maps, and trace. For $t \in\left(0, T_{e}\right)$, let $a(t)=\inf (\overline{L(t)} \cap \mathbb{R})<0$ and $b(t)=\sup (\overline{L(t)} \cap \mathbb{R})>0$. Then $\psi(t, \cdot)$ maps $(-\infty, a(t))$ and $(b(t),+\infty)$ onto $(-\infty, c(t))$ and $(d(t),+\infty)$ for some $c(t)<0<d(t)$, and we have $c(t) \leq \xi(t) \leq d(t)$. For each $t>0, f_{t}:=\psi(t, \cdot)^{-1}$ extends continuously to $\overline{\mathbb{S}_{\pi}}$ such that $f_{t}(c(t))=a(t), f_{t}(d(t))=b(t)$ and $f_{t}(\xi(t))=\beta(t)$. From Theorem 6.1, Proposition 2.2 and the Girsanov theorem, we have the following lemma.

Lemma 7.1. If $T \in\left(0, T_{e}\right)$ is a stopping time, then a.s. $f_{T}(x) \in \mathbb{S}_{\pi}$ for $c(T)<x<d(T)$, and for every $x \in$ $(a(T), b(T)), L(T)$ contains a neighborhood of x in \mathbb{S}_{π}.

Lemma 7.2. Let $T \in\left[0, T_{e}\right)$ be a stopping time. Define $\beta_{T}(t)=\psi(T, \beta(T+t))-\xi(T), 0 \leq t<T_{e}-T$. Suppose $\vec{p}=\left(p_{1}, \ldots, p_{N}\right)$. If $\psi\left(T, p_{m}\right)-\xi(T)=p_{m}$ for $1 \leq m \leq N$, then β_{T} has the same distribution as β. In the general case, conditioned on $\beta(t), 0 \leq t \leq T, \beta_{T}$ is a strip $\operatorname{SLE}(\kappa ; \vec{\rho})$ trace started from $(0 ; \vec{q})$, where $\vec{q}=\left(q_{1}, \ldots, q_{N}\right)$ and $q_{m}=\psi\left(T, p_{m}\right)-\xi(T), 1 \leq m \leq N$.

Proof. This follows from the definition of strip $\operatorname{SLE}(\kappa ; \vec{\rho})$ process and the property that Brownian motion has i.i.d. increment.

Lemma 7.3. Let $\kappa>4, \rho_{+}, \rho_{-} \in \mathbb{R}, \rho_{+}+\rho_{-}=\kappa-6$, and $\rho_{-}-\rho_{+} \geq 2$. Suppose $\beta(t), 0 \leq t<\infty$, is a strip $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}\right)$trace started from $(0 ;+\infty,-\infty)$. Then a.s. any subsequential limit of $\beta(t)$ as $t \rightarrow \infty$ does not lie on $\mathbb{R} \cup \mathbb{R}_{\pi} \cup\{-\infty\}$.

Proof. Let Q denote the set of subsequential limits of $\beta(t)$ as $t \rightarrow \infty$. Let $\sigma=\left(\rho_{-}-\rho_{+}\right) / 2 \geq 1$. Then there is a Brownian motion $B(t)$ such that $\xi(t)=\sqrt{\kappa} B(t)+\sigma t, 0 \leq t<\infty$. Thus, a.s. there is a random number $A_{0}<0$ such that $\xi(t) \geq A_{0}$ for $0 \leq t<\infty$. From (2.3), for any $z \in \mathbb{S}_{\pi}$ with $\operatorname{Re} z<A_{0}, \psi(t, z)$ never blows up for $0 \leq t<\infty$. Thus, a.s. $\beta([0, \infty)) \subset\left\{z \in \overline{\mathbb{S}_{\pi}}: \operatorname{Re} z \geq A_{0}\right\}$. So a.s. $-\infty \notin Q$. Moreover, for any $\varepsilon>0$, there is $R_{\varepsilon}>0$ such that the probability that $\operatorname{Re} \beta(t) \geq-R_{\varepsilon}$ for $0 \leq t<\infty$ is at least $1-\varepsilon$.

Fix $x_{0} \in \mathbb{R}$. Let $X(t)=\operatorname{Re} \psi\left(t, x_{0}+\pi \mathrm{i}\right)-\xi(t), 0 \leq t<\infty$. Then $X(t)$ satisfies the SDE: $\mathrm{d} X(t)=-\sqrt{\kappa} \mathrm{d} B(t)+$ $\tanh _{2}(X(t)) \mathrm{d} t-\sigma \mathrm{d} t$. Define h on \mathbb{R} such that

$$
h^{\prime}(x)=\exp (2 \sigma x / \kappa)\left(\cosh _{2} x\right)^{-4 / \kappa}, \quad x \in \mathbb{R}
$$

Since $\sigma \geq 1$, so h maps \mathbb{R} onto (L, ∞) for some $L \in \mathbb{R}$. Let $Y(t)=h(X(t)), 0 \leq t<\infty$. From Itô's formula, $Y(t)$ satisfies the SDE: $\mathrm{d} Y(t)=-h^{\prime}(X(t)) \sqrt{\kappa} \mathrm{d} B(t)$. Define $u(t)=\int_{0}^{t} \kappa h^{\prime}(X(s))^{2} \mathrm{~d} s, 0 \leq t<\infty$, and $u(\infty)=\sup u([0, \infty))$. Then $Y\left(u^{-1}(t)\right), 0 \leq t<u(\infty)$, has the distribution of a partial Brownian motion. Since $Y\left(u^{-1}(t)\right) \in(L, \infty)$ for $0 \leq$ $t<u(\infty)$, so a.s. $u(\infty)<\infty$ and $\lim _{t \rightarrow \infty} Y(t)=\lim _{t \rightarrow u(\infty)} Y\left(u^{-1}(t)\right) \in[L, \infty)$. Note that $\lim _{t \rightarrow \infty} Y(t) \in(L, \infty)$ implies that $\lim _{t \rightarrow \infty} X(t) \in \mathbb{R}$ and so $X(t), 0 \leq t<\infty$, is bounded. If X is bounded on $[0, \infty)$, from the definition of $u, u^{\prime}(t)$ is uniformly bounded below by a positive constant, which implies that $u(\infty)=\infty$. Since a.s. $u(\infty)<\infty$, so $\lim _{t \rightarrow \infty} Y(t) \notin(L, \infty)$. Thus, a.s. $\lim _{t \rightarrow \infty} Y(t)=L$, and so $\lim _{t \rightarrow \infty} X(t)=-\infty$.

Fix $\varepsilon>0$. Let T be the first time such that $X(t) \leq-R_{\varepsilon}-1$. Then T is a finite stopping time. Let β_{T} be defined as in Lemma 7.2. Then β_{T} has the same distribution as β. So the probability that $\operatorname{Re} \beta_{T}(t) \geq-R_{\varepsilon}$ for any $0 \leq t<\infty$ is at least $1-\varepsilon$. Let Q_{T} denote the set of subsequential limits of $\beta_{T}(t)$ as $t \rightarrow \infty$. Then the probability that $Q_{T} \cap(\pi \mathrm{i}+$ $\left.\left(-\infty,-R_{\varepsilon}-1\right]\right)=\varnothing$ is at least $1-\varepsilon$. If for any $x \leq x_{0}, x+\pi \mathrm{i} \in Q$, then $\psi(T, x+\pi \mathrm{i})-\xi(T) \in Q_{T}$. Since $x \leq x_{0}$, so $\operatorname{Re} \psi(T, x+\pi \mathrm{i})-\xi(T) \leq X(T) \leq-R_{\varepsilon}-1$, and so $\psi(T, x+\pi \mathrm{i})-\xi(T) \in Q_{T} \cap\left(\pi \mathrm{i}+\left(-\infty,-R_{\varepsilon}-1\right]\right)$. Thus, the probability that $Q \cap\left(\pi \mathrm{i}+\left(-\infty, x_{0}\right]\right)=\varnothing$ is at least $1-\varepsilon$. Since $\varepsilon>0$ is arbitrary, so a.s. $Q \cap\left(\pi \mathrm{i}+\left(-\infty, x_{0}\right]\right)=\varnothing$. Since this holds for any $x_{0} \in \mathbb{N}$, so a.s. $Q \cap \mathbb{R}_{\pi}=\varnothing$.

Fix $\varepsilon>0$ and $x_{0} \geq R_{\varepsilon}+1$. Let $X_{0}(t)=\psi\left(t, x_{0}\right)-\xi(t), 0 \leq t<T_{0}$, where $\left[0, T_{0}\right)$ is the largest interval on which $\psi\left(t, x_{0}\right)$ is defined. Then $X_{0}(t)$ satisfies the SDE: $\mathrm{d} X_{0}(t)=-\sqrt{\kappa} \mathrm{d} B(t)+\operatorname{coth}_{2}\left(X_{0}(t)\right) \mathrm{d} t-\sigma \mathrm{d} t$. Define h_{0} on $(0, \infty)$ such that

$$
h_{0}^{\prime}(x)=\exp (2 \sigma x / \kappa)\left(\sinh _{2} x\right)^{-4 / \kappa}, \quad 0<x<\infty .
$$

Since $\kappa>4$ and $\sigma \geq 1$, so h_{0} maps $(0, \infty)$ onto (L, ∞) for some $L \in \mathbb{R}$. From Itô's formula, $Y_{0}(t):=h_{0}\left(X_{0}(t)\right)$, $0 \leq t<T_{0}$, satisfies the SDE: $\mathrm{d} Y_{0}(t)=-h_{0}^{\prime}\left(X_{0}(t)\right) \sqrt{\kappa} \mathrm{d} B(t)$. Using a similar argument as before, we conclude that a.s. $T_{0}<\infty$ and $\lim _{t \rightarrow T_{0}} X_{0}(t)=0$. So T_{0} is a finite stopping time. Let $\beta_{T_{0}}$ be the β_{T} in Lemma 7.2 with $T=T_{0}$. Then $\beta_{T_{0}}$ has the same distribution as β. Let $Q_{T_{0}}$ denote the set of subsequential limits of $\beta_{T_{0}}(t)$ as $t \rightarrow \infty$. Then $Q_{T_{0}}=\psi\left(T_{0}, Q\right)-\xi\left(T_{0}\right)$.

Since x_{0} is swallowed at time T_{0}, so $\xi\left(T_{0}\right)=d\left(T_{0}\right)$ and $b\left(T_{0}\right) \geq x_{0}$. Since the extremal distance (cf. [1]) between $\left(-\infty, a\left(T_{0}\right)\right)$ and $\left(b\left(T_{0}\right), \infty\right)$ in $\mathbb{S}_{\pi} \backslash L\left(T_{0}\right)$ is not less than the extremal distance between them in \mathbb{S}_{π}, so from the properties of $f_{T_{0}}$, we have $d\left(T_{0}\right)-c\left(T_{0}\right) \geq b\left(T_{0}\right)-a\left(T_{0}\right)$. Thus,

$$
c\left(T_{0}\right)-\xi\left(T_{0}\right)=c\left(T_{0}\right)-d\left(T_{0}\right) \leq a\left(T_{0}\right)-b\left(T_{0}\right) \leq-b\left(T_{0}\right) \leq-x_{0} \leq-R_{\varepsilon}-1 .
$$

If $Q \cap\left(-\infty, a\left(T_{0}\right)\right] \neq \varnothing$, then since $Q_{T_{0}}=\psi\left(T_{0}, Q\right)-\xi\left(T_{0}\right)$, so $Q_{T_{0}} \cap\left(-\infty, c\left(T_{0}\right)-\xi\left(T_{0}\right)\right] \neq \varnothing$, which happens with probability less than ε since $\beta_{T_{0}}$ has the same distribution as β, and $c\left(T_{0}\right)-\xi\left(T_{0}\right) \leq-R_{\varepsilon}-1$. From Lemma 7.1, for every $x \in\left(a\left(T_{0}\right), b\left(T_{0}\right)\right), L\left(T_{0}\right)$ contains a neighborhood of x in \mathbb{S}_{π}. Since β does not cross its past, so $Q \cap$ $\left(a\left(T_{0}\right), b\left(T_{0}\right)\right)=\varnothing$. Thus, the probability that $Q \cap\left(-\infty, b\left(T_{0}\right)\right) \neq \varnothing$ is less than ε. Since $b\left(T_{0}\right) \geq x_{0}$, and $x_{0} \geq R_{\varepsilon}+1$ is arbitrary, so the probability that $Q \cap \mathbb{R} \neq \varnothing$ is less than ε. Since $\varepsilon>0$ is arbitrary, so a.s. $Q \cap \mathbb{R}=\varnothing$.

Corollary 7.1. Let $\kappa>4$ and $\rho \geq \kappa / 2-2$. Suppose $\gamma_{*}(t), 0 \leq t<\infty$, is a chordal $\operatorname{SLE}(\kappa ; \rho)$ trace started from $(0 ; 1)$. Then a.s. γ_{*} has no subsequential limit on \mathbb{R}.

Proof. This follows from the above lemma and Proposition 2.2.
Theorem 7.1. Let $\kappa>4$ and $\rho \geq \kappa / 2-2$. Suppose $\gamma(t), 0 \leq t<\infty$, is a chordal $\operatorname{SLE}(\kappa ; \rho)$ trace started from $\left(0 ; 0^{+}\right)$or $\left(0 ; 0^{-}\right)$. Then a.s. $\lim _{t \rightarrow \infty} \gamma(t)=\infty$.

Proof. By symmetry, we only need to consider the case that the trace is started from $\left(0,0^{+}\right)$. Let Q be the set of subsequential limits of γ. From Proposition 2.1, for any $a>0,(a \gamma(t))$ has the same distribution as $\left(\gamma\left(a^{2} t\right)\right)$. Thus, $a Q$ has the same distribution as Q for any $a>0$. To prove that a.s. $Q=\{\infty\}$, we suffice to show that a.s. $0 \notin Q$.

Let $\zeta(t)$ and $\varphi(t, \cdot), 0 \leq t<\infty$, be the driving function and chordal Loewner maps for γ. Let $X(0)=0$ and $X(t)=\varphi\left(t, 0^{-}\right)-\zeta(t)$ for $t>0$. Then $(X(t) / \sqrt{\kappa})$ is a Bessel process with dimension $\frac{2}{\kappa}(2+\rho)+1 \geq 2$. So a.s. $\lim \sup _{t \rightarrow \infty} X(t)=\infty$. Let T be the first time that $X(t)=1$. Then T is a finite stopping time. Let $\gamma_{*}(t)=\varphi(T, \gamma(T+$ $t))-\zeta(T), t \geq 0$. Then γ_{*} is a chordal $\operatorname{SLE}(\kappa ; \rho)$ trace started from $(0 ; 1)$. From the last corollary, γ_{*} has no subsequential limit on \mathbb{R}. Let $g_{T}=\varphi(T, \cdot)^{-1}$. Then g_{T} extends continuously to $\overline{\mathbb{H}}$, and $\gamma(T+t)=g_{T}\left(\gamma_{*}(t)+\zeta(T)\right)$. From the property of $\varphi(T, \cdot)$, we have $g_{T}(z)=z+\mathrm{o}(1)$ as $z \rightarrow \infty$, so $g_{T}^{-1}(0)-\zeta(T) \subset \mathbb{R}$ is bounded. If $0 \in Q$, then γ_{*} has a subsequential limit on $g_{T}^{-1}(0)-\zeta(T) \subset \mathbb{R}$, which a.s. does not happen. Thus, a.s. $0 \notin Q$.

Corollary 7.2. Let γ_{*} be as in Corollary 7.1. Then a.s. $\lim _{t \rightarrow \infty} \gamma_{*}(t)=\infty$.
Proof. Let γ be a chordal $\operatorname{SLE}(\kappa ; \rho)$ trace started from $\left(0 ; 0^{+}\right)$. Let $\zeta(t)$ and $\varphi(t, \cdot), 0 \leq t<\infty$, be the driving function and chordal Loewner maps for γ. Let $X(0)=0$ and $X(t)=\varphi\left(t, 0^{-}\right)-\zeta(t)$ for $t>0$. Let T be the first time that $X(t)=1$. Then T is a finite stopping time. Let $\gamma_{1}(t)=\varphi(T, \gamma(T+t))-\zeta(T), t \geq 0$. Then γ_{1} has the same distribution as γ_{*}. Since a.s. $\lim _{t \rightarrow \infty} \gamma(t)=\infty$, so a.s. $\lim _{t \rightarrow \infty} \gamma_{1}(t)=\infty$. Since γ_{1} has the same distribution as γ_{*}, so a.s. $\lim _{t \rightarrow \infty} \gamma_{*}(t)=\infty$.

Theorem 7.2. Proposition 2.5 also holds for $\kappa>4$.
Proof. This follows from the above corollary and Proposition 2.2.
Let $\kappa>4, p_{0}=x_{0}+\pi \mathrm{i} \in \mathbb{R}_{\pi}, \rho_{+}, \rho_{-}, \rho_{0} \in \mathbb{R}$, and $\rho_{+}+\rho_{-}+\rho_{0}=\kappa-6$. Let $\beta(t), 0 \leq t<\infty$, be a strip $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}, \rho_{0}\right)$ trace started from $\left(0 ;+\infty,-\infty, p_{0}\right)$. Let $\xi(t), \psi(T, \cdot)$ and $L(t), 0 \leq t<\infty$, be the corresponding
driving function, strip Loewner maps and hulls. Then there is some Brownian motion $B(t)$ such that $\xi(t)$ satisfies the SDE:

$$
\mathrm{d} \xi(t)=\sqrt{\kappa} \mathrm{d} B(t)-\frac{\rho_{+}-\rho_{-}}{2} \mathrm{~d} t-\frac{\rho_{0}}{2} \operatorname{coth}_{2}\left(\psi\left(t, p_{0}\right)-\xi(t)\right) \mathrm{d} t .
$$

Let

$$
\begin{equation*}
X(t)=\operatorname{Re} \psi\left(t, p_{0}\right)-\xi(t), \quad 0 \leq t<\infty . \tag{7.1}
\end{equation*}
$$

Then $X(t)$ satisfies the SDE:

$$
\mathrm{d} X(t)=-\sqrt{\kappa} \mathrm{d} B(t)+\frac{\rho_{+}-\rho_{-}}{2} \mathrm{~d} t+\left(\frac{\kappa}{2}-2-\frac{\rho_{+}+\rho_{-}}{2}\right) \tanh _{2}(X(t)) \mathrm{d} t .
$$

Define h on \mathbb{R} such that

$$
h^{\prime}(x)=\exp \left(\frac{1}{\kappa}\left(\rho_{-}-\rho_{+}\right) x\right)\left(\cosh _{2} x\right)^{-(4 / \kappa) \cdot\left(\kappa / 2-2-\left(\rho_{+}+\rho_{-}\right) / 2\right)}, \quad x \in \mathbb{R}
$$

Let $Y(t)=h(X(t)), 0 \leq t<\infty$. From Itô's formula, $Y(t)$ satisfies the SDE: $\mathrm{d} Y(t)=-h^{\prime}(X(t)) \sqrt{\kappa} \mathrm{d} B(t)$. For $0 \leq$ $t<\infty$, let $u(t)=\int_{0}^{t} \kappa h^{\prime}(X(s))^{2} \mathrm{~d} s$. Then $Y\left(u^{-1}(t)\right), 0 \leq t<u(\infty):=\sup u([0, \infty))$, is a partial Brownian motion. The behavior of $X(t)$ as $t \rightarrow \infty$ depends on the values of ρ_{+}and ρ_{-}. Now we suppose that $\rho_{+}, \rho_{-} \geq \kappa / 2-2$. Then h maps \mathbb{R} onto \mathbb{R}. If $u(\infty)<\infty$, then a.s. $Y\left(u^{-1}(t)\right)$ is bounded on $[0, u(\infty))$, so $X(t)$ is bounded on $[0, \infty)$. This then implies that $u^{\prime}(t)$ is uniformly bounded below by a positive constant, and so $u(\infty)=\infty$, which is a contradiction. Thus, a.s. $u(\infty)=\infty$, and so $\limsup _{t \rightarrow u(\infty)} Y\left(u^{-1}(t)\right)=\infty$ and $\liminf _{t \rightarrow u(\infty)} Y\left(u^{-1}(t)\right)=-\infty$, which implies that $\lim \sup _{t \rightarrow \infty} X(t)=\infty$ and $\liminf _{t \rightarrow \infty} X(t)=-\infty$.

Lemma 7.4. Let β be as above. If $\rho_{+}, \rho_{-} \geq \kappa / 2-2$, then a.s. β has no subsequential limit on $\mathbb{R} \cup\{+\infty,-\infty\} \cup$ $\mathbb{R}_{\pi} \backslash\left\{p_{0}\right\}$.

Proof. Let Q denote the set of subsequential limits of $\beta(t)$ as $t \rightarrow \infty$. Let $L(\infty)=\bigcup_{t \geq 0} L(t)$. From Theorem 5.3 and Proposition 2.2, a.s. $p_{0} \in \overline{L(\infty)}$, and $L(\infty)$ is bounded by two crosscuts in \mathbb{S}_{π} that connect p_{0} with a point on $(-\infty, 0)$ and a point on $(0, \infty)$, respectively. Thus, a.s. $Q \cap\left(\mathbb{R}_{\pi} \cup\{+\infty,-\infty\} \backslash\left\{p_{0}\right\}\right)=\varnothing$. Moreover, for any $\varepsilon>0$, there is $R_{\varepsilon}>0$ such that the probability that $\overline{L(\infty)} \cap \mathbb{R} \subset\left[-R_{\varepsilon}, R_{\varepsilon}\right]$ is at least $1-\varepsilon$.

For $r \in(0,1)$, let $A_{r}=\left\{z: r<\left|z-p_{0}\right|<\pi\right\}$. If $\operatorname{dist}\left(p_{0}, L(t)\right) \leq r$, then any curve in $\mathbb{S}_{\pi} \backslash L(t)$ that connects the $\operatorname{arc}\left[p_{0},+\infty\right) \subset \mathbb{R}_{\pi}$ with $(-\infty, a(t))$ must connect the two boundary components of A_{r}. Thus, the extremal distance between $\left[p_{0},+\infty\right)$ and $(-\infty, a(t))$ in $\mathbb{S}_{\pi} \backslash L(t)$ is at least $(\ln (\pi)-\ln (r)) / \pi$. So the extremal distance between $\left[\psi\left(t, p_{0}\right),+\infty\right)$ and $(-\infty, c(t))$ in \mathbb{S}_{π} is at least $(\ln (\pi)-\ln (r)) / \pi$, which tends to ∞ as $r \rightarrow 0$. This implies that $\operatorname{Re} \psi\left(t, p_{0}\right)-c(t) \rightarrow \infty$ as $\operatorname{dist}\left(p_{0}, L(t)\right) \rightarrow 0$. Similarly, $d(t)-\operatorname{Re} \psi\left(t, p_{0}\right) \rightarrow \infty$ as $\operatorname{dist}\left(p_{0}, L(t)\right) \rightarrow 0$. Fix $\varepsilon>0$. There is $r \in(0,1)$ such that if $\operatorname{dist}\left(p_{0}, L(t)\right) \leq r$, then $\operatorname{Re} \psi\left(t, p_{0}\right)-c(t), d(t)-\operatorname{Re} \psi\left(t, p_{0}\right) \geq R_{\varepsilon}+\left|x_{0}\right|+1$. Let T_{0} be the first t such that $\operatorname{dist}\left(p_{0}, \beta(t)\right)=r$. Since a.s. $p_{0} \in \overline{L(\infty)}$, so T_{0} is a finite stopping time.

Let $X(t)$ be defined as in (7.1). Let T be the first $t \geq T_{0}$ such that $X(t)=x_{0}=$ Re p_{0}. Since $\limsup p_{t \rightarrow \infty} X(t)=$ $+\infty$ and $\liminf _{t \rightarrow \infty} X(t)=-\infty$, so T is also a finite stopping time. Let β_{T} be defined as in Lemma 7.2, then β_{T} has the same distribution as β. So the probability that $\overline{\beta_{T}([0, \infty))} \cap \mathbb{R} \subset\left[-R_{\varepsilon}, R_{\varepsilon}\right]$ is at least $1-\varepsilon$. Since $\operatorname{dist}\left(p_{0}, L(T)\right) \leq \operatorname{dist}\left(p_{0}, L\left(T_{0}\right)\right)=r$, so $\operatorname{Re} \psi\left(T, p_{0}\right)-c(T), d(T)-\operatorname{Re} \psi\left(T, p_{0}\right) \geq R_{\varepsilon}+\left|x_{0}\right|+1$. Since $X(T)=$ $\operatorname{Re} \psi\left(T, p_{0}\right)-\xi(T)=x_{0}$, so $\xi(T)-c(T), d(T)-\xi(T) \geq R_{\varepsilon}+1$, and so $\left[-R_{\varepsilon}, R_{\varepsilon}\right] \subset[c(T)-\xi(T), d(T)-\xi(T)]$. Thus, the probability that $\overline{\beta_{T}([0, \infty))} \cap \mathbb{R} \subset[c(T)-\xi(T), d(T)-\xi(T)]$ is at least $1-\varepsilon$. Since for every $x \in$ $(a(T), b(T)), L(T)$ contains a neighborhood of x in \mathbb{S}_{π}, and β does not cross its past, so $Q \cap(a(T), b(T))=\varnothing$. If $Q \cap$ $(-\infty, a(T)] \cup[b(T), \infty) \neq \varnothing$, then β_{T} has a subsequential limit on $(-\infty, c(T)-\xi(T)] \cup[d(T)-\xi(T), \infty)$, which happens with probability at most ε. Thus, the probability that $Q \cap \mathbb{R} \neq \varnothing$ is at most ε. Since $\varepsilon>0$ is arbitrary, so a.s. $Q \cap \mathbb{R}=\varnothing$.

Corollary 7.3. Let $\kappa>4, \rho_{+}, \rho_{-} \geq \kappa / 2-2$, and $p_{-}<0<p_{+}$. Let $\gamma_{1}(t), 0 \leq t<\infty$, be a chordal $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}\right)$ trace started from $\left(0 ; p_{+}, p_{-}\right)$. Then a.s. γ_{1} has no subsequential limit on \mathbb{R}.

Proof. This follows from the above lemma and Proposition 2.2.
Theorem 7.3. Let $\kappa>4$ and $\rho_{+}, \rho_{-} \geq \kappa / 2-2$. Let $\gamma(t), 0 \leq t<\infty$, be a chordal $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}\right)$trace started from $\left(0 ; 0^{+}, 0^{-}\right)$. Then a.s. $\lim _{t \rightarrow \infty} \gamma(t)=\infty$.

Proof. Let Q be the set of subsequential limits of γ. From Proposition 2.1, for any $a>0,(a \gamma(t))$ has the same distribution as $\left(\gamma\left(a^{2} t\right)\right)$. Thus $a Q$ has the same distribution as Q for any $a>0$. So we suffice to show that a.s. $0 \notin Q$.

Let $\varphi(t, \cdot)$ and $\zeta(t)$ be the chordal Loewner maps and driving function for the trace γ. Then for $t>0, \varphi\left(t, 0^{-}\right)<$ $\zeta(t)<\varphi\left(t, 0^{+}\right)$. Let $p_{ \pm}=\varphi\left(1,0^{ \pm}\right)-\zeta(1)$. Let $\gamma_{1}(t)=\varphi(1, \gamma(1+t))-\zeta(1)$. Then conditioned on $\gamma(t), 0 \leq t \leq 1$, γ_{1} is a chordal $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}\right)$trace started from $\left(0 ; p_{+}, p_{-}\right)$. From the argument in the proof of Theorem 7.1, we see that if $0 \in Q$, then γ_{1} has a subsequential limit on \mathbb{R}. From Corollary 7.3, this a.s. does not happen. Thus, a.s. $0 \notin Q$.

Theorem 7.4. Let β be as in Lemma 7.4. Then a.s. $\lim _{t \rightarrow \infty} \beta(t)=p_{0}$.
Proof. Let $\gamma(t), 0 \leq t<\infty$, be a chordal SLE $\left(\kappa ; \rho_{+}, \rho_{-}\right)$trace started from $\left(0 ; 0^{+}, 0^{-}\right)$. Let $\varphi(t, \cdot)$ and $\zeta(t)$ be the chordal Loewner maps and driving function for the trace γ. Let $\gamma_{1}(t)=\varphi(1, \gamma(1+t))-\zeta(1)$. Let $p_{ \pm}=\varphi\left(1,0^{ \pm}\right)-$ $\zeta(1)$. Then conditioned on $\gamma(t), 0 \leq t \leq 1, \gamma_{1}$ is a chordal $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}\right)$trace started from ($0 ; p_{+}, p_{-}$). Choose W that maps \mathbb{H} conformally onto \mathbb{S}_{π} such that $W(0)=0$ and $W\left(p_{ \pm}\right)= \pm \infty$. Let $p_{*}=W(\infty) \in \mathbb{R}_{\pi}$, and $\rho_{0}=$ $\kappa-6-\rho_{+}-\rho_{-}$. From Proposition 2.2, there is a time-change function $u(t)$ such that $\beta_{*}(t):=W\left(\gamma_{1}\left(u^{-1}(t)\right)\right)$, $0 \leq t<\infty$, is a strip $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}, \rho_{0}\right)$ trace started from $\left(0 ;+\infty,-\infty, p_{*}\right)$. Let $\xi_{*}(t)$ and $\psi_{*}(t, \cdot), 0 \leq t<\infty$, denote the driving function and strip Loewner maps for the trace β_{*}. Let $X_{*}(t)=\operatorname{Re} \psi_{*}\left(t, p_{*}\right)-\xi_{*}(t), 0 \leq t<$ ∞. Let T be the first time such that $X_{*}(t)=x_{0}=\operatorname{Re} p_{0}$. Since $\rho_{+}, \rho_{-} \geq \kappa / 2-2$, so $\lim \sup _{t \rightarrow \infty} X_{*}(t)=\infty$ and $\liminf _{t \rightarrow \infty} X_{*}(t)=-\infty$. Thus T is a finite stopping time. Let $\beta_{T}(t)=\psi_{*}\left(T, \beta_{*}(T+t)\right)-\xi_{*}(T), t \geq 0$. Then β_{T} is a strip $\operatorname{SLE}\left(\kappa ; \rho_{+}, \rho_{-}\right)$trace started from $\left(0 ;+\infty,-\infty, p_{0}\right)$. From Theorem 7.3, we have a.s. $\lim _{t \rightarrow \infty} \gamma(t)=\infty$, which implies that $\lim _{t \rightarrow \infty} \gamma_{1}(t)=\infty$, and so $\lim _{t \rightarrow \infty} \beta_{*}(t)=p_{*}$. Thus, a.s. $\lim _{t \rightarrow \infty} \beta_{T}(t)=\psi\left(T, p_{*}\right)-\xi_{*}(T)=$ $X_{*}(T)+\pi \mathrm{i}=p_{0}$. Since $\left(\beta_{T}(t)\right)$ has the same distribution as $(\beta(t))$, so a.s. $\lim _{t \rightarrow \infty} \beta(t)=p_{0}$.

Corollary 7.4. Let γ_{1} be as in Corollary 7.3. Then a.s. $\lim _{t \rightarrow \infty} \gamma_{1}(t)=\infty$.
Theorem 7.5. Proposition 2.4 also holds for $\kappa>4$.
Proof. This follows from Theorems 3.1 and 7.4.
Theorem 7.6. Theorem 4.1 also holds for $\kappa>4$.
Proof. The proof of Theorem 4.1 still works here except that Theorem 7.5 should be used instead of Proposition 2.4.

Theorem 7.7. Theorem 4.2 also holds for $\kappa>4$.
Proof. The proof of Theorem 4.2 still works here except that Theorems 7.2 and 7.4 should be used instead of Propositions 2.5 and 2.7.

Let γ be as in Theorem 7.7. Let $K(t), 0 \leq t<\infty$, be the chordal Loewner hulls generated by γ. Let $K(\infty)=$ $\bigcup_{t \geq 0} K(t)$. Let $\kappa^{\prime}=16 / \kappa, \rho_{ \pm m}^{\prime}=C_{ \pm m}\left(\kappa^{\prime}-4\right), 1 \leq m \leq N_{ \pm}, \vec{\rho}_{ \pm}^{\prime}=\left(\rho_{ \pm 1}^{\prime}, \ldots, \rho_{ \pm N_{ \pm}}^{\prime}\right), C_{ \pm}=\sum_{m=1}^{N_{ \pm}} C_{ \pm m}, W(z)=$ $1 / \bar{z}, p_{ \pm m}^{\prime}=W\left(p_{ \pm m}\right), 1 \leq m \leq N_{ \pm}$, and $\vec{p}_{ \pm}^{\prime}=\left(p_{ \pm 1}^{\prime}, \ldots, p_{ \pm N_{ \pm}}^{\prime}\right)$. In Lemma 5.1, if we take $N_{\mp}+1$ force points, one of which is x_{1}^{+}, on $\left(x_{1}, x_{2}\right)$, and take $N_{ \pm}+1$ force points, one of which is x_{1}^{-}, outside $\left[x_{1}, x_{2}\right]$, then we have the following theorem.

Theorem 7.8. (i) If $N_{+} \geq 1$, then $W\left(\partial_{\mathbb{H}}^{+} K(\infty)\right)$ has the same distribution as a chordal $\mathrm{SLE}\left(\kappa^{\prime} ;\left(1-C_{+}\right)\left(\kappa^{\prime}-\right.\right.$ $\left.4),\left(1 / 2-C_{-}\right)\left(\kappa^{\prime}-4\right), \vec{\rho}_{+}^{\prime}, \vec{\rho}_{-}^{\prime}\right)$ trace started from $\left(0 ; 0^{+}, 0^{-}, \vec{p}_{+}^{\prime}, \vec{p}_{-}^{\prime}\right)$. And $\partial_{\mathbb{H}}^{+} K(\infty)$ is a crosscut in \mathbb{H} that connects ∞ with some point that lies on $\left(0, p_{1}\right)$.
(ii) If $N_{-} \geq 1$, then $W\left(\partial_{\mathbb{H}}^{-} K(\infty)\right)$ has the same distribution as a chordal $\operatorname{SLE}\left(\kappa^{\prime} ;\left(1 / 2-C_{+}\right)\left(\kappa^{\prime}-4\right),\left(1-C_{-}\right)\left(\kappa^{\prime}-\right.\right.$ 4), $\left.\vec{\rho}_{+}^{\prime}, \vec{\rho}_{-}^{\prime}\right)$ trace started from $\left(0 ; 0^{+}, 0^{-}, \vec{p}_{+}^{\prime}, \vec{p}_{-}^{\prime}\right)$. And $\partial_{\mathbb{H}}^{-} K(\infty)$ is a crosscut in \mathbb{H} that connects ∞ with some point that lies on $\left(p_{-1}, 0\right)$.

Let $\beta(t), X(t)$ and $h(x)$ be defined as before Lemma 7.4. Then $(h(X(t)))$ is a local martingale. Let $I_{1}=[\kappa / 2-$ $2, \infty), I_{2}=(\kappa / 2-4, \kappa / 2-2)$ and $I_{3}=(-\infty, \kappa / 2-4]$. Let case $(j k)$ denote the case that $\rho_{+} \in I_{j}$ and $\rho_{-} \in I_{k}$. We have studied case (11). In cases (12) and (13), h maps \mathbb{R} onto $(-\infty, L)$ for some $L \in \mathbb{R}$, and we conclude that a.s. $\lim _{t \rightarrow \infty} X(t)=\infty$. Symmetrically, in cases (21) and (31), a.s. $\lim _{t \rightarrow \infty} X(t)=\infty$. In cases (22), (23), (32) and (33), h maps \mathbb{R} onto $\left(L_{1}, L_{2}\right)$ for some $L_{1}<L_{2} \in \mathbb{R}$, and we conclude that for some $p \in(0,1)$, with probability p, $\lim _{t \rightarrow \infty} X(t)=\infty$; and with probability $1-p, \lim _{t \rightarrow \infty} X(t)=-\infty$. Now we are able to prove the counterpart of Theorem 3.5 in [9] when $\kappa>4$.

Theorem 7.9. In case (11), a.s. $\lim _{t \rightarrow \infty} \beta(t)=p_{0}$. In case (12), a.s. $\lim _{t \rightarrow \infty} \beta(t) \in\left(-\infty, p_{0}\right)$. In case (21), a.s. $\lim _{t \rightarrow \infty} \beta(t) \in\left(p_{0},+\infty\right)$. In case (13), a.s. $\lim _{t \rightarrow \infty} \beta(t)=-\infty$. In case (31), a.s. $\lim _{t \rightarrow \infty} \beta(t)=+\infty$. In case (22), a.s. $\lim _{t \rightarrow \infty} \beta(t) \in\left(-\infty, p_{0}\right)$ or $\in\left(p_{0},+\infty\right)$. In case (23), a.s. $\lim _{t \rightarrow \infty} \beta(t)=-\infty$ or $\in\left(p_{0},+\infty\right)$. In case (32), a.s. $\lim _{t \rightarrow \infty} \beta(t) \in\left(-\infty, p_{0}\right)$ or $=+\infty$. In case (33), a.s. $\lim _{t \rightarrow \infty} \beta(t)=-\infty$ or $=+\infty$. And in each of the last four cases, both events happen with some positive probability.

Proof. This follows from the same argument as in the proof of Theorem 3.5 in [9] except that here we use Theorems 7.2, 7.4 and 7.5.

We believe that for any chordal or strip $\operatorname{SLE}(\kappa ; \vec{\rho})$ trace $\beta(t), 0 \leq t<T$, it is always true that a.s. $\lim _{t \rightarrow T} \beta(t)$ exists.

References

[1] L. V. Ahlfors. Conformal Invariants: Topics in Geometric Function Theory. McGraw-Hill, New York, 1973. MR0357743
[2] V. Beffara. Hausdorff dimensions for SLE 6_{6}. Ann. Probab. 32 (2004) 2606-2629. MR2078552
[3] V. Beffara. The dimension of the SLE curves. Ann. Probab. 36 (2008) 1421-1452. MR2435854
[4] J. Dubédat. Duality of Schramm-Loewner evolutions. Ann. Sci. École Norm. Sup. (4) 42 (2009) 697-724. MR2571956
[5] G. F. Lawler, O. Schramm and W. Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 (2004) 939-995. MR2044671
[6] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer, Berlin, 1991. MR1083357
[7] S. Rohde and O. Schramm. Basic properties of SLE. Ann. Math. 161 (2005) 883-924. MR2153402
[8] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 (2000) 221-288. MR1776084
[9] D. Zhan. Duality of chordal SLE. Inven. Math. 174 (2008) 309-353. MR2439609
[10] D. Zhan. The scaling limits of planar LERW in finitely connected domains. Ann. Probab. 36 (2008) 467-529. MR2393989
[11] D. Zhan. Reversibility of chordal SLE. Ann. Probab. 36 (2008) 1472-1494. MR2435856

[^0]: ${ }^{1}$ Supported by NSF Grant 0963733.

