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Abstract. This is a continuation of the earlier work (Publ. Res. Inst. Math. Sci. 45 (2009) 745–785) to characterize unitary sta-
tionary independent increment Gaussian processes. The earlier assumption of uniform continuity is replaced by weak continuity
and with technical assumptions on the domain of the generator, unitary equivalence of the process to the solution of an appropriate
Hudson–Parthasarathy equation is proved.

Résumé. Cet article poursuit la recherche initiée dans (Publ. Res. Inst. Math. Sci. 45 (2009) 745–785) pour caractériser les proces-
sus stationnaires unitaires gaussiens à incréments indépendants. L’hypothèse antérieure d’uniforme continuité est remplacée par de
la continuité faible. Avec des conditions techniques sur le domaine du générateur, nous montrons que le processus est équivalent
unitairement à la solution d’une équation de Hudson–Parthasarathy appropriée.
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1. Introduction

In [13,14], by a co-algebraic treatment, Schürmann has proved that any weakly continuous unitary stationary inde-
pendent increment process on the Hilbert space h ⊗ H (h finite dimensional), is unitarily equivalent to the solution of
a Hudson–Parthasarathy (HP) type quantum stochastic differential equation [6]

dVt =
∑

μ,ν≥0

VtL
μ
ν Λν

μ(dt), V0 = 1h⊗Γ , (1.1)
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where Λν
μ are fundamental processes in the symmetric Fock space Γ (L2(R+,k)) with respect to a fixed orthonormal

basis (onb) of the noise space k and the coefficients L
μ
ν : μ,ν ≥ 0 are operators in the initial Hilbert space h given by

Lμ
ν =

⎧⎪⎪⎨
⎪⎪⎩

G for (μ, ν) = (0,0),
Lj for (μ, ν) = (j,0),

−∑
j≥1 L∗

jW
j
k for (μ, ν) = (0, k),

W
j
k − δ

j
k 1h for (μ, ν) = (j, k)

(1.2)

(δj
k stands for Kronecker delta) for some operators G,Lj in h and a unitary operators W on h ⊗ k.

For the characterization of Fock adapted unitary evolutions see [1,5] and references therein. In [7,8], by extended
semigroup methods, Lindsay and Wills have studied such problems for Fock-adapted contractive operator cocycles
and completely positive cocycles.

Recently in [12] authors have studied the case of a unitary stationary independent increment process on Hilbert
space h⊗ H (h a separable Hilbert space), with norm-continuous expectation semigroup and showed its unitary equiv-
alence to a Hudson–Parthasarathy flow. Here we are interested in unitary processes with weakly continuous and not
uniformly continuous expectation semigroup. Under certain assumptions on the domain of the unbounded generators,
extending the ideas of [12] we are able to construct the noise space k and the operators (unbounded) G,Lj :≥ 1
(see Proposition 4.1 and Lemma 4.3) such that the Hudson–Parthasarathy flow equation (1.1) with coefficients (1.2)
(with W being the identity operator), admits a unique unitary solution and the solution is unitarily equivalent to the
unitary process we started with (see Theorem 5.2).

2. Notation and preliminaries

We assume that all the Hilbert spaces appearing in this article are complex separable with inner product anti-linear in
the first variable. For any Hilbert spaces H and K we denote the Banach space of bounded linear operators from H
to K and trace class operators on H by B(H, K) and B1(H) respectively. For a linear map T we write its domain
as D(T ), denote the trace on B1(H) by Tr.

For any ξ ∈ H ⊗ K, h ∈ H the map

K � k �→ 〈ξ,h ⊗ k〉
defines a bounded linear functional on K and thus by Riesz’s representation theorem there exists a unique vector
〈〈h, ξ 〉〉 in K such that〈〈〈h, ξ 〉〉, k〉 = 〈ξ,h ⊗ k〉 ∀k ∈ K. (2.1)

In other words 〈〈h, ξ 〉〉 = F ∗
h ξ where Fh ∈ B(K, H ⊗ K) is given by Fhk = h ⊗ k.

Let h and H be two Hilbert spaces with some orthonormal bases {ej : j ≥ 1} and {ζj : j ≥ 1} respectively. For
A ∈ B(h ⊗ H) and u,v ∈ h we define a linear operator A(u,v) ∈ B(H) by〈

ξ1,A(u, v)ξ2
〉 = 〈u ⊗ ξ1,Av ⊗ ξ2〉 ∀ξ1, ξ2 ∈ H

and read off the following properties (for a proof see Lemma 2.1 in [12]):

Lemma 2.1. Let A,B ∈ B(h ⊗ H) then for any u,v,ui and vi(i = 1,2) in h:

(i) A(·, ·) : h × h �→ B(h) is a continuous sesqui-linear map and if A(u,v) = B(u, v),∀u,v ∈ h then A = B,

(ii) ‖A(u,v)‖ ≤ ‖A‖‖u‖‖v‖ and A(u,v)∗ = A∗(v,u),

(iii) A(u1, v1)B(u2, v2) = [A(|v1 >< u2| ⊗ 1H)B](u1, v2),

(iv) AB(u,v) = ∑
j≥1 A(u, ej )B(ej , v) (the series converging strongly),

(v) 0 ≤ A(u,v)∗A(u,v) ≤ ‖u‖2A∗A(v, v),

(vi) 〈A(u,v)ξ1,B(p,w)ξ2〉 = ∑
j≥1〈p ⊗ ζj , [B(|w >< v| ⊗ |ξ2 >< ξ1|)A∗u ⊗ ζj 〉 = 〈v ⊗ ξ1, [A∗(|u >

< p| ⊗ 1H)Bw ⊗ ξ2〉 for ξ1, ξ2 ∈ H.
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We also need to introduce the partial trace TrH which is a linear map from B1(h ⊗ H) to B1(h) defined by, for
B ∈ B1(h ⊗ H),〈

u,TrH(B)v
〉 := ∑

j≥1

〈u ⊗ ξj ,Bv ⊗ ξj 〉 ∀u,v ∈ h.

In particular, for B = B1 ⊗ B2,TrH(B) = Tr(B2)B1.

For A ∈ B(h ⊗ H), ε ∈ Z2 = {0,1} we define operators A(ε) ∈ B(h ⊗ H) by A(ε) := A if ε = 0 and A(ε) := A∗ if
ε = 1. For 1 ≤ k ≤ n, we define a unitary exchange map Pk,n : h⊗n ⊗ H → h⊗n ⊗ H by putting

Pk,n(u1 ⊗ · · · ⊗ un ⊗ ξ) := u1 ⊗ · · · ⊗ uk−1 ⊗ uk+1 · · · ⊗ un ⊗ uk ⊗ ξ

on product vectors. Let ε = (ε1, ε2, . . . , εn) ∈ Z
n
2 . Consider the ampliation of the operator A(εk) in B(h⊗n ⊗ H) given

by

A(n,εk) := P ∗
k,n

(
1h⊗n−1 ⊗ A(εk)

)
Pk,n.

Now we define the operator A(ε) := ∏n
k=1 A(n,εk) := A(1,ε1) · · ·A(n,εn) in B(h⊗n ⊗ H). Note that as here, through out

this article, the product symbol
∏n

k=1 stands for product with the ordering 1,2 to n. For product vectors u,v ∈ h⊗n

one can see that

m∏
i=1

A(n,εi )(u, v) =
m∏

i=1

A(εi)(ui, vi)

n∏
i=m+1

〈ui, vi〉 ∈ B(H). (2.2)

When ε = 0 ∈ Z
n
2, for simplicity we shall write A(n,k) for A(n,εk) and A(n) for A(ε).

Symmetric fock space and quantum stochastic calculus

Let us briefly recall the fundamental integrator processes of quantum stochastic calculus and the quantum stochastic
differential equation (qsde), introduced by Hudson and Parthasarathy [6,11]. Let us consider the symmetric Fock space
Γ = Γ (L2(R+,k)) and the exponential vector in the Fock space, associated with a vector f ∈ L2(R+,k), given by

e(f ) =
⊕
n≥0

1√
n!f

(n),

where f (n) = f ⊗ f ⊗ · · · ⊗ f︸ ︷︷ ︸
n-copies

for n > 0 and by convention f (0) = 1; where k is a separable Hilbert space. The

exponential vector e(0) is called the vacuum vector. For any subset M of L2(R+,k) we shall write E (M) for the
subspace spanned by {e(f ): f ∈ M}. For an interval Δ of R+, let ΓΔ be the symmetric Fock space over the Hilbert
space L2(Δ,k). For 0 ≤ s ≤ t < ∞, the Hilbert space Γ decompose as Γs] ⊗ Γ(s,t] ⊗ Γ[t respectively, here we have
abbreviated [0, s] by s] and (t,∞) by [t, and for any f ∈ L2(R+,k) the exponential vector e(f ) = e(fs])⊗e(f(s,t])⊗
e(f[t ) where fΔ = 1Δf.

Let us consider the Hudson–Parthasarathy (HP) equation on h ⊗ Γ (L2(R+,k)):

Vs,t = 1h⊗Γ +
∑

μ,ν≥0

∫ t

s

Vs,τL
μ
ν Λν

μ(dτ). (2.3)

Here the coefficients L
μ
ν : μ,ν ≥ 0 are operators in h (not necessarily bounded) and Λν

μ are fundamental processes
with respect to a fixed orthonormal basis {Ej : j ≥ 1} of k :

Λμ
ν (t) =

⎧⎪⎨
⎪⎩

t1h⊗Γ for (μ, ν) = (0,0),
a(1[0,t] ⊗ Ej) for (μ, ν) = (j,0),
a†(1[0,t] ⊗ Ek) for (μ, ν) = (0, k),
Λ
(
1[0,t] ⊗ |Ek >< Ej |

)
for (μ, ν) = (j, k).

(2.4)
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The fundamental processes a, a† and Λ are called annihilation, creation and conservation respectively (for their defi-
nition and detail about quantum stochastic calculus see [4,11]).

3. Unitary processes with stationary and independent increments

Let {Us,t : 0 ≤ s ≤ t < ∞} be a family of unitary operators in B(h ⊗ H) and Ω be a fixed unit vector in H. We shall
write Ut := U0,t for simplicity. Let us consider the family of unitary operators {U(ε)

s,t } in B(h ⊗ H) for ε ∈ Z2 given

by U
(ε)
s,t = Us,t if ε = 0,U

(ε)
s,t = U∗

s,t if ε = 1. As in Section 2, for n ≥ 1, ε ∈ Z
n
2 fixed and 1 ≤ k ≤ n, we define the

families of operators {U(n,εk)
s,t } and {U(ε)

s,t } in B(h⊗n ⊗ H). By identity (2.2) we have, for product vectors u,v ∈ h⊗n

and ε ∈ Z
n
2,

U
(ε)
s,t (u, v) =

n∏
i=1

U
(εi)
s,t (ui, vi).

Furthermore, for s = (s1, s2, . . . , sn), t = (t1, t2, . . . , tn): 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ sn ≤ tn < ∞, we define U
(ε)
s,t ∈

B(h⊗n ⊗ H) by setting

U
(ε)
s,t :=

n∏
k=1

U
(n,εk)
sk,tk

. (3.1)

Then for u = ⊗n
k=1 uk, v = ⊗n

k=1 vk ∈ h⊗n we have

U
(ε)
s,t (u, v) =

n∏
k=1

U
(εk)
sk,tk

(uk, vk).

When ε = 0, we write Us,t for U
(ε)
s,t . For α,β ≥ 0, s = (s1, s2, . . . , sn), t = (t1, t2, . . . , tn) we write α ≤ s, t ≤ β if

α ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ sn ≤ tn ≤ β.

We assume the following on the family of unitary {Us,t ∈ B(h ⊗ H)}.

Assumption A.

A1 (Evolution) For any 0 ≤ r ≤ s ≤ t < ∞,Ur,sUs,t = Ur,t .

A2 (Independence of increments) For any 0 ≤ si ≤ ti < ∞: i = 1,2 such that [s1, t1) ∩ [s2, t2) = ∅:

(i) Us1,t1(u1, v1) commutes with Us2,t2(u2, v2) and U∗
s2,t2

(u2, v2) for every ui, vi ∈ h.

(ii) For s1 ≤ a, b ≤ t1, s2 ≤ q, r ≤ t2 and u,v ∈ h⊗n,p,w ∈ h⊗m, ε ∈ Z
n
2, ε

′ ∈ Z
m
2

〈
Ω,U

(ε)

a,b(u, v)U
(ε′)
q,r (p,w)Ω

〉 = 〈
Ω,U

(ε)

a,b(u, v)Ω
〉〈
Ω,U

(ε′)
q,r (p,w)Ω

〉
.

A3 (Stationarity of increments) For any 0 ≤ s ≤ t < ∞ and u,v ∈ h⊗n, ε ∈ Z
n
2〈

Ω,U
(ε)
s,t (u, v)Ω

〉 = 〈
Ω,U

(ε)
t−s(u, v)Ω

〉
.

Assumption B′ (Weak/strong continuity).

lim
t→0

〈
Ω,(Ut − 1)(u, v)Ω

〉 = 0 ∀u,v ∈ h.

Remark 3.1. The Assumption B′ is an weakening of the Assumption B in [12].
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As in [12] we also assume the following simplifying conditions.

Assumption C (Gaussian condition). For any ui, vi ∈ h, εi ∈ Z2: i = 1,2,3

lim
t→0

1

t

〈
Ω,

(
U

(ε1)
t − 1

)
(u1, v1)

(
U

(ε2)
t − 1

)
(u2, v2)

(
U

(ε3)
t − 1

)
(u3, v3)Ω

〉 = 0. (3.2)

Assumption D (Minimality). The set S0 = {Us,t (u, v)Ω := Us1,t1(u1, v1) · · ·Usn,tn(un, vn)Ω: s = (s1, s2, . . . , sn),

t = (t1, t2, . . . , tn): 0 ≤ s1 ≤ t1 ≤ s2 . . . , sn ≤ tn < ∞, n ≥ 1, u = ⊗n
i=1 ui, v = ⊗n

i=1 vi with ui, vi ∈ h} is total in H.

Remark 3.2. The Assumption D is not really a restriction, one can as well work with replacing H by closure of span
of S0.

Remark 3.3. Under the Assumption D, if we take ui, vi ∈ D ⊆ h in the definition of S0, then the resulting S0 will
continue to be total.

3.1. Expectation semigroups

Let us look at the various semigroups associated with the evolution {Us,t }. Define a family of operators {Tt } on h by
setting

〈u,Ttv〉 := 〈
Ω,Ut(u, v)Ω

〉 ∀u,v ∈ h.

Then as in Lemma 6.1 [12] it can be seen that under the Assumption A and B′, {Tt } is a weakly continuous, hence
strongly continuous, contractive semigroup on h. Let us denote the strong generator of the semigroup Tt by G. By
a simple computation we have the following useful observation (see Eq. (6.2) in [12])∑

k≥1

∥∥(Ut − 1)(φk,w)Ω
∥∥2 = 〈

w, (1 − Tt )w
〉+ 〈

(1 − Tt )w,w
〉
. (3.3)

Lemma 3.4. Under the Assumption C we have the following.

(i) For any n ≥ 3, u, v ∈ h⊗n, ε ∈ Z
n
2

lim
t→0

1

t

〈
Ω,

(
U

(ε1)
t − 1

)
(u1, v1) · · · (U(εn)

t − 1
)
(un, vn)Ω

〉 = 0. (3.4)

(ii) For vectors u ∈ h, v ∈ D(G), product vectors p,w ∈ h⊗n and ε ∈ Z2, ε
′ ∈ Z

n
2

lim
t→0

1

t

〈
(Ut − 1)(ε)(u, v)Ω,

(
U

(ε′)
t − 1

)
(p,w)Ω

〉
= (−1)ε lim

t→0

1

t

〈
(Ut − 1)(u, v)Ω,

(
U

(ε′)
t − 1

)
(p,w)Ω

〉
. (3.5)

Proof. (i) The proof is identical to that of Lemma 6.7 in [12].
(ii) For ε = 0 nothing to prove. To see this for ε = 1 consider the following

lim
t→0

1

t

〈(
Ut + U∗

t − 2
)
(u, v)Ω,

(
U

(ε′)
t − 1

)
(p,w)Ω

〉
= − lim

t→0

1

t

〈[(
U∗

t − 1
)
(Ut − 1)

]
(u, v)Ω,

(
U

(ε′)
t − 1

)
(p,w)Ω

〉
= − lim

t→0

1

t

∑
m≥1

〈
(Ut − 1)(em, v)Ω, (Ut − 1)(em,u)

(
U

(ε′)
t − 1

)
(p,w)Ω

〉
. (3.6)
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That this limit vanishes can be seen from the following∣∣∣∣1

t

∑
m≥1

〈
(Ut − 1)(em, v)Ω, (Ut − 1)(em,u)

(
U

(ε′)
t − 1

)
(p,w)Ω

〉∣∣∣∣2

≤
∑
m≥1

1

t

∥∥(Ut − 1)(em, v)Ω
∥∥2 ∑

m≥1

1

t

∥∥(Ut − 1)(em,u)
(
U

(ε′)
t − 1

)
(p,w)Ω

∥∥2
.

By identity (3.3) and Lemma 2.1(iv) the above quantity is equal to

2Re

〈
v,

1 − Tt

t
v

〉
1

t

〈(
U

(ε′)
t − 1

)
(p,w)Ω,

[(
U∗

t − 1
)
(Ut − 1)

]
(u,u)

(
U

(ε′)
t − 1

)
(p,w)Ω

〉

≤ 2Re

〈
v,

1 − Tt

t
v

〉
1

t

〈(
U

(ε′)
t − 1

)
(p,w)Ω,

(
2 − U∗

t − Ut

)
(u,u)

(
U

(ε′)
t − 1

)
(p,w)Ω

〉
.

Therefore, since Re〈v, 1−Tt

t
v〉 is uniformly bounded in t as Tt is strongly continuous and v ∈ D(G), by Assumption C

we get

lim
t→0

1

t

∑
m≥1

〈
(Ut − 1)(em,u)Ω, (Ut − 1)(em, v)

(
U

(ε′)
t − 1

)
(p,w)Ω

〉 = 0.

Thus (3.5) follows. �

For vectors u,p ∈ h and v,w ∈ D(G), the identity (3.5) gives

lim
t→0

1

t

〈
(Ut − 1)(ε)(u, v)Ω, (Ut − 1)ε

′
(p,w)Ω

〉
= (−1)ε+ε′

lim
t→0

1

t

〈
(Ut − 1)(u, v)Ω, (Ut − 1)(p,w)Ω

〉
. (3.7)

Now define a family of operators {Zt : t ≥ 0} on the Banach space B1(h) by

Ztρ = TrH
[
Ut

(
ρ ⊗ |Ω >< Ω|)U∗

t

]
, ρ ∈ B1(h).

In particular for u,v,p,w ∈ h〈
p,Zt

(|w >< v|)u〉 := 〈
Ut(u, v)Ω,Ut (p,w)Ω

〉
. (3.8)

Lemma 3.5. Under the Assumptions A, B′ the family {Zt } is a C0-semigroup of contractive maps on B1(h).

Proof. For ρ ∈ B1(h) by definition of Zt and trace norm (see [2], p. 47) we have

‖Ztρ‖1 = ∥∥TrH
[
Ut

(
ρ ⊗ |Ω >< Ω|)U∗

t

]∥∥
1

= sup
φ,ψ on b of h

∑
k≥1

∣∣〈φk,TrH
[
Ut

(
ρ ⊗ |Ω >< Ω|)U∗

t

]
ψk

〉∣∣
≤ sup

φ,ψ

∑
j,k≥1

∣∣〈φk ⊗ ζj ,Ut

(
ρ ⊗ |Ω >< Ω|)U∗

t φk ⊗ ζj

〉∣∣
≤ ∥∥Ut

(
ρ ⊗ |Ω >< Ω|)U∗

t

∥∥
1.

Since for any {Ut } is a family of unitary operators

‖Ztρ‖1 ≤ ∥∥ρ ⊗ |Ω >< Ω|∥∥1 ≤ ‖ρ‖1.
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Proof of semigroup property of {Zt } is same as in Lemma 6.4 [12]. In order to prove strong continuity Zt , it is suffices
to prove the same for rank one operator ρ = |w >< v|,w, v ∈ h. We have

∥∥(Zt − 1)
(|w >< v|)∥∥1

= sup
φ on b of h

∣∣〈φk, (Zt − 1)
(|w >< v|)φk

〉∣∣
= sup

φ

∑
k≥1

∣∣〈Ut(φk, v)Ω,Ut (φk,w)Ω
〉− 〈φk, v〉〈φk,w〉∣∣

≤ sup
φ

∑
k≥1

∣∣〈(Ut − 1)(φk, v)Ω,Ut (φk,w)Ω
〉∣∣

+ sup
φ

∑
k≥1

∣∣〈φk, v〉〈Ω,(Ut − 1)(φk,w)Ω
〉∣∣

≤ sup
φ

[∑
k≥1

∥∥(Ut − 1)(φk, v)Ω
∥∥2

]1/2[∑
k≥1

∥∥Ut(φk,w)Ω
∥∥2

]1/2

+ sup
φ

[∑
k≥1

∣∣〈φk, v〉∣∣2]1/2[∑
k≥1

∥∥(Ut − 1)(φk,w)Ω
∥∥2

]1/2

.

Hence by identity (3.3) we obtain

∥∥(Zt − 1)
(|w <> v|)∥∥1

≤ ‖w‖
√

2
∥∥(Tt − 1)v

∥∥+ ‖v‖
√

2
∥∥(Tt − 1)w

∥∥.
Thus by strong continuity of the semigroup Tt and the density of the finite rank vectors in B1(h) the contractive
semigroup Zt is a strongly continuous. �

We shall denote the generator of the semigroup Zt by L. Also we note the following which can be proved identically
as in [12] .

Lemma 3.6. The semigroup Zt is a positive trace preserving semigroup.

Let us define a family {Yt : t ≥ 0} of positive contractions on B1(h) by Yt (ρ) := TtρT ∗
t ,∀ρ ∈ B1(h). Since Tt is

a C0- semigroup of contraction operators on B(h) it can be seen that Yt is a contractive C0-semigroup on B1(h). It
can also be seen that [4] the generator L̃ of Yt satisfy

L̃(ρ) = G∗ρ + ρG ∀ρ ∈ F ≡ {
(1 − G)−1σ

(
1 − G∗)−1: σ ∈ B1(h)

}
and F is a core for L̃.

We also define a family of maps Ft on the Banach space B1(h) by

Ftρ = TrH
[
U∗

t

(
ρ ⊗ |Ω >< Ω|)Ut

] ∀ρ ∈ B1(h). (3.9)

In particular for u,v,p,w ∈ h we have that 〈p,Ft (|w >< v|)u〉 = 〈U∗
t (u, v)Ω,U∗

t (p,w)Ω〉. Then as for Zt it can be
proved that {Ft : t ≥ 0} is a strongly continuous contractive semigroup on B1(h). We shall denote its generator by L′.
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4. Construction of noise space

Let M0 := {(u, v, ε): u = ⊗n
i=1 ui, v = ⊗n

i=1 vi, ui ∈ h, vi ∈ D(G), ε = (ε1, . . . , εn) ∈ Z
n
2, n ≥ 1} and consider

the relation “ ∼ ” on M0 as defined in [12]: (u, v, ε) ∼ (p,w, ε′) if ε = ε′ and |u >< v| = |p >< w| ∈ B(h⊗n).

Expanding the vectors in terms of the orthonormal basis {ej = ej1 ⊗ · · · ⊗ ejn : j = (j1, . . . , jn), j1, . . . , jn ≥ 1}
from D(G), the identity |u >< v| = |p >< w| is equivalent to ujvk = p

j
wk for each multi-indices j, k which

gives, (u, v, ε) ∼ (p,w, ε′) ⇔ A(ε)(u, v) = A(ε′)(p,w) for all bounded operator A and make “ ∼ ” a well de-
fined equivalence relation. Now consider the algebra M generated by M0/ ∼ with multiplication structure given
by (u, v, ε).(p,w, ε′) = (u ⊗ p,v ⊗ w,ε ⊕ ε′). We define a scalar valued map K on M × M by setting, for
(u, v, ε), (p,w, ε′) ∈ M0,

K
(
(u, v, ε),

(
p,w, ε′)) := lim

t→0

1

t

〈(
U

(ε)
t − 1

)
(u, v)Ω,

(
U

ε′
t − 1

)
(p,w)Ω

〉
, if it exists.

If we define the subspace N0 ≡ Span{|u >< v|, u, v ∈ D(G)} of B1(h), then it is clear that N0 is dense in B1(h)

and contained in F , and we have the following result.

Proposition 4.1. If N0 ⊆ D(L) then we have the following.

(i) The map K is a well defined positive definite kernel on M.

(ii) Up to unitary equivalence there exists a unique separable Hilbert space k, an embedding η :M → k and a rep-
resentation π of M,π :M → B(k) such that

{η(u, v, ε): (u, v, ε) ∈ M0} is total in k, (4.1)〈
η(u, v, ε), η

(
p,w, ε′)〉 = K

(
(u, v, ε),

(
p,w, ε′)) (4.2)

and

π(u, v, ε)η
(
p,w, ε′) = η

(
u ⊗ p,v ⊗ w,ε ⊕ ε′)− 〈p,w〉η(u, v, ε). (4.3)

(iii) For any (u, v, ε) ∈ M0, u = ⊗n
i=1 ui, v = ⊗n

i=1 vi and ε = (ε1, . . . , εn).

η(u, v, ε) =
n∑

i=1

∏
k �=i

〈uk, vk〉η(ui, vi, εi). (4.4)

(iv) η(u, v,1) = −η(u, v,0),∀u ∈ h, v ∈ D(G).

(v) Writing η(u, v) for the vector η(u, v,0) ∈ k,

Span
{
η(u, v): u ∈ h, v ∈ D(G)

} = k. (4.5)

Proof. (i) The proof is exactly same as in [12] except the fact that v ∈ D. By Lemma 3.4, for elements
(u, v, ε), (p,w, ε′) ∈ M0, ε ∈ Z

m
2 and ε′ ∈ Z

n
2, we have

K
(
(u, v, ε),

(
p,w, ε′))

= lim
t→0

1

t

〈(
U

(ε)
t − 1

)
(u, v)Ω,

(
U

ε′
t − 1

)
(p,w)Ω

〉
=

∑
1≤i≤m,1≤j≤n

∏
k �=i

〈uk, vk〉
∏
l �=j

〈pl,wl〉 lim
t→0

1

t

〈
(Ut − 1)(εi )(ui, vi)Ω, (Ut − 1)

ε′
j (pj ,wj )Ω

〉
. (4.6)
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Since 〈
(Ut − 1)(u, v)Ω, (Ut − 1)(p,w)Ω

〉
= 〈

Ut(u, v)Ω,Ut (p,w)Ω
〉− 〈u,v〉〈p,w〉

−〈u,v〉〈Ω,
[
(Ut − 1)(p,w)

]
Ω
〉

−〈
Ω,

[
(Ut − 1)(u, v)

]
Ω
〉〈p,w〉

= 〈
p, (Zt − 1)

(∣∣w >< v
∣∣)u〉− 〈u,v〉〈p,

[
(Tt − 1)w

]〉− 〈
u, (Tt − 1)v

〉〈p,w〉.
Thus existence of the limits on the right hand side of (4.6) follows from the identity (3.5) since the semigroups Tt on h
and Zt on B1(h) are strongly continuous and |w >< v| is in D(L). Hence K is well defined on M0. Now extend this
to the algebra M sesqui-linearly. In particular we have

K
(
(u, v, ε),

(
p,w, ε′))

= (−1)ε+ε′
lim
t→0

{〈
p,

Zt − 1

t

(|w >< v|)u〉− 〈u,v〉
〈
p,

Tt − 1

t
w

〉
−

〈
u,

Tt − 1

t
v

〉
〈p,w〉

}

= (−1)ε+ε′{〈
p, L

(|w >< v|)u〉− 〈u,v〉〈p,Gw〉 − 〈u,Gv〉〈p,w〉}. (4.7)

(ii) The Kolmogorov’s construction [11] to the pair (M,K) provides a separable Hilbert space k as closure of the
span of {η(u, v, ε): (u, v, ε) ∈ M0}. Now defining π by (4.3) we obtain a representation of the algebra M in k (proof
goes similarly as in Lemma 7.1 [12].

(iii) Again as in [12] for any (p,w, ε′) ∈ M0, by lemma 3.4, we have

〈
η(u, v, ε), η

(
p,w, ε′)〉 = K

(
(u, v, ε),

(
p,w, ε′))

=
n∑

i=1

∏
k �=i

〈uk, vk〉
〈
η(ui, vi, εi), η

(
p,w, ε′)〉.

Since {η(p,w, ε′): (p,w, ε′) ∈ M0} is a total subset of k, (4.4) follows.

(iv) By (3.5) we have〈
η(u, v,1), η

(
p,w, ε′)〉 = 〈−η(u, v,0), η

(
p,w, ε′)〉.

Since {η(p,w, ε′): (p,w, ε′) ∈ M0} is a total subset of k, η(u, v,1) = −η(u, v,0).

(v) It follows immediately from parts (iii) and (iv). �

Remark 4.2. The representation π of M in k is trivial

π(u, v, ε)η
(
p,w, ε′) = 〈u,v〉η(p,w, ε′). (4.8)

If we redefine M to be generated by u,v ∈ D(G)⊗n, then M can be a ∗-algebra with involution: (u, v, ε)∗ = (←u,←v, ε∗)
(for notations see [12]) and it is obvious that π given by (4.8) is indeed a ∗-representation.

In the sequel, we fix an orthonormal basis {Ej : j ≥ 1} of k.

Lemma 4.3. Under the hypothesis of Proposition 4.1 we have the followings.

(i) There exists a unique family of operators {Lj : j ≥ 1} in h with D(Lj ) ⊇ D(G) such that 〈u,Ljv〉 = ηj (u, v) :=
〈Ej ,η(u, v)〉,∀u ∈ h, v ∈ D(G) and

∑
j≥1 ‖Ljv‖2 = −2Re〈v,Gv〉,∀v ∈ D(G).
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(ii) The family of operators {Lj : j ≥ 1} satisfies
∑

j≥1〈u, cjLjv〉 = 0,∀u ∈ h, v ∈ D(G) for some c = (cj ) ∈ l2(N)

implies c = 0.

(iii) The generator L of strongly continuous semigroup Zt satisfies

〈
p, L

(|w >< v|)u〉 = 〈
p, |Gw >< v|u〉+ 〈

p, |w >< Gv|u〉
+

∑
j≥1

〈
p, |Ljw >< Ljv|u〉 (4.9)

for all u,p ∈ h and v,w ∈ D(G). Furthermore, the family of operators G,Lj : j ≥ 1 satisfies

〈v,Gw〉 + 〈Gv,w〉 +
∑
j≥1

〈Ljv,Ljw〉 = 0, (4.10)

for all v,w ∈ D(G).

Proof. (i) By the identity (4.7), for any u ∈ h, v ∈ D(G)

‖η(u, v)‖2

= 〈
u, L

(|v >< v|)u〉− 〈u,v〉〈u,Gv〉 − 〈u,Gv〉〈u,v〉
≤ {∥∥L

(|v >< v|)∥∥1 + 2‖Gv‖‖v‖}‖u‖2. (4.11)

Thus the linear map h � u �→ η(u, v) ∈ k is a bounded linear map. Hence by Riesz’s representation theorem, there
exists unique linear operator L from D(G) ⊇ h to h ⊗ k such that 〈〈u,Lv〉〉 = η(u, v) where the vector 〈〈u,Lv〉〉 ∈ k
is defined as in (2.1). Equivalently, there exists a unique family of linear operator {Lj : j ≥ 1} from D(G) to h such
that Lu = ∑

j≥1 Lju ⊗ Ej and 〈u,Ljv〉 = ηj (u, v) = 〈Ej ,η(u, v)〉. Now, for any v ∈ D(G)

‖Lv‖2 =
∑
j

‖Ljv‖2 =
∑
j,k

∣∣ηj (ek, v)
∣∣2 =

∑
k

∥∥η(ek, v)
∥∥2

=
∑

k

[〈
ek, L

(|v >< v|)ek

〉− 〈ek, v〉〈ek,Gv〉 − 〈ek,Gv〉〈ek, v〉]
= Tr L

(|v >< v|)− 〈v,Gv〉 − 〈v,Gv〉.

Since Zt is trace preserving and |v >< v| ∈ D(L) by hypothesis it follows that

Tr L
(|v < v|) = 0

and therefore

‖Lv‖2 =
∑
j

‖Ljv‖2 = −〈v,Gv〉 − 〈v,Gv〉 = −2Re〈v,Gv〉. (4.12)

Note that the term on right hand side is positive since G is the generator of a contractive semigroup.
(ii) For some c = (cj ) ∈ l2(N) let 〈u,

∑
j≥1 cjLjv〉 = 0,∀u ∈ h, v ∈ D(G). We have

0 =
〈
u,

∑
j≥1

cjLjv

〉
=

∑
j≥1

cj 〈u,Ljv〉 =
〈∑
j≥1

cjEj , η(u, v)

〉
.

Since Span{η(u, v): u ∈ h, v ∈ D(G)} = k, it follows that
∑

j≥1 cjEj = 0 ∈ k and hence cj = 0,∀j.
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(iii) By part (i) and identity (4.7), for any u,p ∈ h and v,w ∈ D(G) we have∑
j≥1

〈u,Ljv〉〈p,Ljw〉 = 〈
η(u, v), η(p,w)

〉

= 〈
p, L

(|w >< v|)u〉− 〈u,v〉〈p,Gw〉 − 〈u,Gv〉〈p,w〉,
which leads to (4.9).

Since, for any v,w ∈ D(G), by Lemma 3.6, Tr[L(|w >< v|)] = 0, from the above identity we get

〈v,Gw〉 + 〈Gv,w〉 +
∑
j≥1

〈Ljv,Ljw〉 = 0. (4.13)

�

Remark 4.4. If there exists a positive self adjoint operator A such that 〈v,Av〉 = −2Re〈v,Gv〉,∀v ∈ D(G), then
‖Lv‖2 = ∑

j ‖Ljv‖2 = 〈v,Av〉 = ‖A1/2v‖2,∀v ∈ D(G) ⊆ D(A) ⊆ D(A1/2) and hence L will be closable. Clos-
ability of (L, D(G)) can be seen as follows. Suppose {vn} ⊆ D(G) converges to 0 and {Lvn} is convergent. Since
‖L(vn − vm)‖ = ‖A1/2(vn − vm)‖, convergence of {Lvn} implies {A1/2vn} is Cauchy, so convergent in h. As A1/2 is
a closed operator we get that A1/2vn converges to 0 which implies Lvn converges to 0.

This can happen e.g. when {Tt } is a holomorphic semigroup of contractions.

Remark 4.5. If we replace D(G) by any dense subset D ⊆ D(G), such that |u >< v| ∈ D(L) for all u,v ∈ D,

then above Proposition 4.1 and Lemma 4.3 hold with the tensor algebra M modified so as to be generated by
(
⊗n

i=1 ui,
⊗n

i=1 vi): ui ∈ h and vi ∈ D.

5. Hudson–Parthasarathy (HP) flows and equivalence

In order to set up the Hudson–Parthasarathy (HP) equation and proceed further we shall work under the following
extra assumption.

Assumption E. There exists a dense set D ⊆ D(G) ∩ D(G∗) such that D is a core of G in h and:

E1. D ⊆ D(L∗
j ) for every j ≥ 1,

E2. N = Span{|u >< v|: u,v ∈ D} is a core for the generator L and L′ of the semigroup Zt and Ft on B1(h)

respectively,
E3. Lj maps D into itself and for any v ∈ D,

∑
j≥1 ‖GLjv‖2 < ∞.

Since D is dense in h one can see, by a simple approximation argument, that N is dense in B1(h). Recall from the
Remark 4.5 that under the Assumption E2, replacing D(G) by the core D in Proposition 4.1 and Lemma 4.3, we get
a separable Hilbert space k generated by {η(u, v): u ∈ h, v ∈ D} and linear operators {Lj : j ≥ 1} defined on D.

Remark 5.1. The Assumption E1 is needed for setting up an HP equation with coefficients G and Lj : j ≥ 1, As-
sumption E2 is to assure the existence of unique unitary HP flow. The Assumption E3 will be necessary for proving the
minimality of the associated HP flow which will be needed to establish unitary equivalence of the HP flow and unitary
process Ut , we started with.

Now let us state the main result of this article.

Theorem 5.2. Assume A, B, C, D and E. Then we have the following.

(i) The HP equation

Vt = 1h⊗Γ +
∑

μ,ν≥0

∫ t

0
VrL

μ
ν Λν

μ(dr) (5.1)
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on D ⊗ E (L2(R+,k)) with coefficients L
μ
ν given by

Lμ
ν =

⎧⎪⎨
⎪⎩

G for (μ, ν) = (0,0),

Lj for (μ, ν) = (j,0),

−L∗
k for (μ, ν) = (0, k),

0 for(μ, ν) = (j, k),

(5.2)

admit a unique unitary solution Vt .

(ii) There exists a unitary isomorphism Ξ̃ : h ⊗ H → h ⊗ Γ such that

Ut = Ξ̃∗VtΞ̃ ∀t ≥ 0. (5.3)

Here we shall sketch the prove of part (i) of the theorem and postpone the proof of (ii) to the next two subsections. In
order to prove the part (i) we need the following definition and lemmas. For λ > 0, we define the Feller set βλ ⊆ B(h)

by {
x ≥ 0: 〈v, xGw〉 + 〈Gv,xw〉 +

∑
j≥1

〈Ljv, xLjw〉 = λ〈v, xw〉,∀v,w ∈ D
}
.

Similarly we define the Feller set β̃λ for coefficients L̃
μ
ν ≡ (Lν

μ)∗.

Lemma 5.3. Under the Assumption E2, the Feller condition: βλ = {0} as well as β̃λ = {0} for some λ > 0 hold.

Proof. For any x ≥ 0 in B(h), v,w ∈ D we have∑
j≥1

〈Ljv, xLjw〉 = 〈
Lv, (x ⊗ 1k)Lw

〉

=
∑
m≥1

〈〈〈x1/2em,Lv〉〉, 〈〈x1/2em,Lw〉〉〉 = ∑
m≥1

〈
η
(
x1/2em, v

)
, η

(
x1/2em,w

)〉

=
∑
j≥1

〈Ljv, xLjw〉 =
∑
m≥1

〈
η
(
x1/2em, v

)
, η

(
x1/2em,w

)〉

=
∑
m≥1

{〈
x1/2em, L

(|w >< v|)x1/2em

〉− 〈
x1/2em,Gv

〉〈
x1/2em,w

〉− 〈
x1/2em, v

〉〈
x1/2em,Gw

〉}
= Tr

[
xL

(|w >< v|)]− 〈v, xGw〉 − 〈Gv,xw〉,
where we have used (4.7). Thus

〈v, xGw〉 + 〈Gv,xw〉 +
∑
j≥1

〈Ljv, xLjw〉 = Tr
[
xL

(|w >< v|)] (5.4)

and for any x ∈ βλ,

Tr
[
xL

(|w >< v|)] = λ〈v, xw〉 = λTr
(
x|w >< v|) ∀v,w ∈ D. (5.5)

By Assumption E2 the subspace N = Span{|w >< v|: v,w ∈ D} is a core for L and hence the identity (5.5) extends
to Tr[xL(ρ)] = λTr(xρ),∀ρ ∈ D(L). It is also clear that for x ∈ βλ the scalar map φx : D(L) � ρ �→ Tr[xL(ρ)] =
λTr(xρ) extends to a bounded linear functional on B1(h). Hence x is in the domain of L∗ and we get Tr[(|w ><

v|)(L∗ − λ)x] = 0 which implies that 〈v, (L∗ − λ)xw〉 = 0 for v,w ∈ D which in its turn yield that (L∗ − λ)x = 0.
Since L∗ is the generator of a C0-semigroup {Z∗

t } of contraction maps on B(h), for λ > 0, L∗ − λ is invertible and
hence x = 0.
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To prove β̃λ = {0} let us consider the following. By identity (3.7) for vectors u,p ∈ h and v,w ∈ D〈
η(u, v), η(p,w)

〉
= lim

t→0

1

t

〈
(Ut − 1)(u, v)Ω, (Ut − 1)(p,w)Ω

〉
= lim

t→0

1

t

〈(
U∗

t − 1
)
(u, v)Ω,

(
U∗

t − 1
)
(p,w)Ω

〉
= lim

t→0

1

t

{〈
U∗

t (u, v)Ω,U∗
t (p,w)Ω

〉− 〈u,v〉〈p,w〉

−〈u,v〉〈Ω,
[(

U∗
t − 1

)
(p,w)

]
Ω
〉

−〈
Ω,

[(
U∗

t − 1
)
(u, v)

]
Ω
〉〈p,w〉}

= lim
t→0

1

t

{〈
p, (Ft − 1)

(|w >< v|)u〉− 〈u,v〉〈p,
(
T ∗

t − 1
)
w
〉− 〈

u,
(
T ∗

t − 1
)
v
〉〈p,w〉}.

Since by E2, v,w ∈ D ⊆ D(G∗) and |w >< v| ∈ D(L′), we get that

〈
η(u, v), η(p,w)

〉 = 〈
p, L′(|w >< v|)u〉− 〈u,v〉〈p,G∗w

〉− 〈
u,G∗v

〉〈p,w〉. (5.6)

Thus by (5.6) we have∑
j≥1

〈Ljv, xLjw〉 =
∑
m≥1

〈
η
(
x1/2em, v

)
, η

(
x1/2em,w

)〉

=
∑
m≥1

{〈
x1/2em, L′(|w >< v|)x1/2em

〉− 〈
x1/2em, v

〉〈
x1/2em,G∗w

〉

− 〈
x1/2em,G∗v

〉〈
x1/2em,w

〉}
= Tr

[
xL′(|w >< v|)]− 〈

G∗v, xw
〉− 〈

v, xG∗w
〉
.

Thus 〈
v, xG∗w

〉+ 〈
G∗v, xw

〉+∑
j≥1

〈Ljv, xLjw〉 = Tr
[
xL′(|w >< v|)] (5.7)

and for any x ∈ β̃λ,

Tr
[
xL′(|w >< v|)] = λ〈v, xw〉 = λTr

(
x|w >< v|) ∀v,w ∈ D. (5.8)

Since the subspace N = Span{|w >< v|: v,w ∈ D} is a core for L′ by the Assumption E2, a similar argument as
above will give that β̃λ = {0}. �

Remark 5.4. By (5.4) and (5.7) formally (L′ − L)ρ = [G∗ − G,ρ],∀ρ ∈ N . Denoting the imaginary part of G by H

consider the derivation δH (ρ) = −2i[H,ρ]. If δH is bounded then the hypothesis that the subspace N is a core for L
implies that it is a core for L′ and no extra assumption is needed.

Remark 5.5. If {Tt } is a holomorphic semigroup of contractions then the hypotheses on domains of G∗ and L′ will
hold automatically.

Lemma 5.6. Assume the hypotheses E1 and E2. For n ≥ 1, setting Lj (n) = nLj (n1h − G)−1 and G(n) = n2(n1h −
G∗)−1G(n1h − G)−1, we have:
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(i) The operators Lj (n),G(n) ∈ B(h) and
∑

j ‖Lj (n)v‖2 = −2Re〈v,G(n)v〉.
(ii) For v ∈ D, limn→∞ Lj (n)v = Ljv, limn→∞ Lj(n)∗v = L∗

j v and limn→∞ G(n)v = Gv.

Proof. (i) For any v ∈ h,∑
j

∥∥Lj(n)v
∥∥2 =

∑
j

n2
∥∥Lj(n1h − G)−1v

∥∥2

= −2Ren2〈(n1h − G)−1v,G(n1h − G)−1v
〉

= −2Re
〈
v,G(n)v

〉
.

(ii) Since the sequences of bounded operators {nLj (n1h − G)−1} and {nLj (n1h − G∗)−1} are uniformly norm
bounded and converge strongly to identity, the requirements follows. �

Sketch of the proof of part (i) of Theorem 5.2. For each n ≥ 1 we consider the family of operators,

Lμ
ν (n) =

⎧⎪⎪⎨
⎪⎪⎩

G(n) = n2(n1h − G∗)−1G(n1h − G)−1 for (μ, ν) = (0,0),

Lj (n) = nLj (n1h − G)−1 for (μ, ν) = (j,0),

−Lk(n)∗ for (μ, ν) = (0, k),

0 for (μ, ν) = (j, k).

(5.9)

By hypothesis E1, we have that limn→∞ L
μ
ν (n)v = L

μ
ν v,∀v ∈ D and hence there exist unique contractive solution {Vt }

for the HP equation (5.1) (see [3,4,9]). Under the Assumption E the first part of Lemma 5.3, on using Proposition 3.1
in [10] (also see [3,9]) and Theorem 7.2.3 in [4], yields that the solution {Vt } of HP equation (5.1) is isometric. We
shall conclude the unitarity of the process Vt by employing time reversal operator and the results in [4,10]. As Vt

satisfies Eq. (5.1), V ∗
t satisfies the HP equation on D ⊗ E (K), since D ⊆ D(G∗) by E2,

V ∗
t = 1h⊗Γ +

∑
μ,ν≥0

∫ t

0
(Lμ

ν )∗V ∗
r Λμ

ν (dr). (5.10)

Let us define Ṽt := [1h ⊗ Γ (Rt )]V ∗
t [1h ⊗ Γ (Rt )], where Rt is the time reversal operator on L2(R+,k):

Rtf (x) =
{

f (t − x) if x ≤ t ,
f (x) if x > t ,

and Γ (A) denote the second quantization of operator A: Γ (A)e(f ) = e(Af ). Then it can be seen that the process {Ṽt }
satisfies the HP equation on D ⊗ E (K),

Ṽt = 1h⊗Γ +
∑

μ,ν≥0

∫ t

0
Ṽr L̃

μ
ν Λν

μ(dr). (5.11)

Since the Feller condition β̃λ = {0} for L̃
μ
ν holds by the second part of Lemma 5.3 (see again [4]), the solution Ṽt and

hence V ∗
t is isometric or equivalently Vt is co-isometric and therefore Vt is a strongly continuous unitary process. �

Remark 5.7. Using identity (4.13) one constructs the minimal semigroup Ẑt with generator L̂ such that restrictions of

L and L̂ to N are same (see [4,9,10,15]). Therefore, for any λ > 0, the closure (λ − L̂)N = (λ − L)N = (λ− L)D(L)

since by hypothesis E2 the subspace N is a core for L. As L is the generator of a C0-semigroup of contractions on

B1(h) the subspace (λ − L)D(L) = B1(h) and hence (λ − L̂)N = B1(h). Thus by Theorem 3.2.16(ii) and (iii) in
[4] we have that Tr(Ẑtρ) = Tr(ρ), i.e the minimal semigroup Ẑt is conservative which also implies that the Feller

condition is satisfied. We also have (λ − L̂)N = B1(h) = (λ − L̂)D(L̂) which implies N is a core for L̂ as well and
hence L = L̂. Thus Zt is the minimal semigroup.
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For any 0 ≤ s ≤ t < ∞, we define a unitary operator Vs,t := 1Γs] ⊗ [Γ (θs)Vt−sΓ (θ∗
s )], where θs is the right shift

operator on L2(R+,k):

θsf (x) =
{

f (x − s) if x ≥ s,
f (x) if x < s.

It has been shown in Lemma 7.1.3 of [4] that the solution of (5.1) under the condition given above is a unitary cocycle,
i.e. V0,t = V0,sVs,t = V0,s[Γ (θs)Vt−sΓ (θ∗

s )] and satisfies the HP equation

Vs,t = 1h⊗Γ +
∑

μ,ν≥0

∫ t

s

Vs,rL
μ
ν Λν

μ(dr). (5.12)

As for the family of unitary operators {Us,t } on h ⊗ H, for ε = (ε1, ε2, . . . , εn) ∈ Z
n
2 we define V

(ε)
s,t ∈ B(h⊗n ⊗ Γ )

by setting V
(ε)
s,t ∈ B(h ⊗ Γ ) by

V
(ε)
s,t =

{
Vs,t for ε = 0,
V ∗

s,t for ε = 1.

The next result verifies the properties of Assumption A for the family Vs,t with e(0) ∈ Γ replacing Ω ∈ H.

Lemma 5.8. The family of unitary operators {Vs,t } satisfy:

(i) For any 0 ≤ r ≤ s ≤ t < ∞,Vr,t = Vr,sVs,t .

(ii) For [q, r) ∩ [s, t) = ∅,Vq,r (u, v) commute with Vs,t (p,w) and Vs,t (p,w)∗ for every u,v,p,w ∈ h.

(iii) For any 0 ≤ s ≤ t < ∞,〈
e(0),Vs,t (u, v)e(0)

〉 = 〈
e(0),Vt−s(u, v)e(0)

〉 = 〈u,Tt−sv〉 ∀u,v ∈ h.

Proof. (i) For fixed 0 ≤ r ≤ s ≤ t < ∞, we set Wr,t = Vr,sVs,t . Then by (5.1) we have

Wr,t = Vr,s +
∑

μ,ν≥0

∫ t

s

Vr,sVs,qLμ
ν Λν

μ(dq)

= Wr,s +
∑

μ,ν≥0

∫ t

s

Wr,qLμ
ν Λν

μ(dq).

Thus the family of unitary operators {Wr,t } also satisfies the HP equation (5.12). Hence by uniqueness of the solution
of this quantum stochastic differential equation, Wr,t = Vr,t ,∀t ≥ s and the result follows.

(ii) For any 0 ≤ s ≤ t < ∞, Vs,t ∈ B(h ⊗ Γ[s,t]). So for p,w ∈ h,Vs,t (p,w) ∈ B(Γ[s,t]) and the statement follows.

The proof of (iii) follows from (5.12) and the cocycle property of Vs,t . �

Consider the family of maps Z̃s,t defined by

Z̃s,tρ = TrH
[
Vs,t

(
ρ ⊗ ∣∣e(0) >< e(0)

∣∣)V ∗
s,t

] ∀ρ ∈ B1(h).

As for Zt , it can be seen that Z̃s,t is a contractive family of maps on B1(h) and in particular, for any u,v,p,w ∈ h〈
p, Z̃s,t

(|w >< v|)u〉 = 〈
Vs,t (u, v)e(0),Vs,t (p,w)e(0)

〉
.

Lemma 5.9. The family Z̃t := Z̃0,t is a C0-semigroup of contraction on B1(h) and Z̃s,t = Z̃t−s = Zt−s .
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Proof. By (5.12) and Ito’s formula for u,v,p,w ∈ D〈
p, [Z̃s,t − 1](|w >< v|)u〉

= 〈
Vs,t (u, v)e(0),Vs,t (p,w)e(0)

〉− 〈u,v〉〈p,w〉

=
∫ t

s

〈
Vs,τ (u, v)e(0),Vs,τ (p,Gw)e(0)

〉
dτ +

∫ t

s

〈
Vs,τ (u,Gv)e(0),Vs,τ (p,w)e(0)

〉
dτ

+
∫ t

s

〈
Vs,τ (u,Ljv)e(0),Vs,τ (p,Ljw)e(0)

〉
dτ

=
∫ t

s

〈
p, Z̃s,τ

(|Gw >< v|)u〉dτ +
∫ t

s

〈
p, Z̃s,τ

(|w >< Gv|)u〉dτ

+
∑
j≥1

∫ t

s

〈
p, Z̃s,τ

(|Ljw >< Ljv|)u〉dτ.

Thus

〈
p, [Z̃s,t − 1](ρ)u

〉 = ∫ t

s

〈
p, Z̃s,τ L(ρ)u

〉
dτ, (5.13)

where ρ = |w >< v|. Since D is dense in h, N is a core for L and Z̃s,τ is a contractive family Eq. (5.13) extends
to u,p ∈ h and ρ ∈ D(L). Thus the family Z̃s,t satisfies the differential equation

Z̃s,t (ρ) = ρ +
∫ t

s

Z̃s,τ L(ρ)dτ, ρ ∈ D(L).

Since L is the generator of C0-semigroup Zt , it follows that Z̃s,t = Z̃t−s = Zt−s . �

5.1. Minimality of HP flows

In this section we shall show the minimality of the HP flow Vs,t discussed above which will be needed to prove
Theorem 5.2(ii), i.e, to establish unitary equivalence of Ut and Vt . We shall prove here that the subset S ′ := {ζ =
Vs,t (u, v)e(0) := Vs1,t1(u1, v1) · · ·Vsn,tn (un, vn)e(0): s = (s1, s2, . . . , sn), t = (t1, t2, . . . , tn): 0 ≤ s1 ≤ t1 ≤ · · · ≤ sn ≤
tn < ∞, n ≥ 1, u = ⊗n

i=1 ui ∈ h⊗n, v = ⊗n
i=1 vi ∈ D⊗n} is total in the symmetric Fock space Γ (L2(R+,k)).

Since D is dense in h, by Remark 3.3 the subset S := {ζ = Us,t (u, v)Ω := Us1,t1(u1, v1) · · ·Usn,tn (un, vn)Ω: s =
(s1, s2, . . . , sn), t = (t1, t2, . . . , tn): 0 ≤ s1 ≤ t1 ≤ s2 ≤ · · · ≤ sn ≤ tn < ∞, n ≥ 1, u = ⊗n

i=1 ui ∈ h⊗n, v = ⊗n
i=1 vi ∈

D⊗n} is total in H.

Lemma 5.10. Under the Assumption E3, for any v ∈ D,
∑

i,j≥1 ‖LiLjv‖2 < ∞.

Proof. For any j ≥ 1,Ljv ∈ D and by Lemma 4.3(i),

∑
i≥1

‖LiLjv‖2 = −2Re
∑
j≥1

〈Ljv,GLjv〉 ≤ 2

[∑
j≥1

‖Ljv‖2
]1/2[∑

j≥1

‖GLjv‖2
]1/2

< ∞.
�

Let τ ≥ 0 be fixed and as in (Ref. [12]), we note that for any 0 ≤ s < t ≤ τ,u ∈ h, v ∈ D

1

t − s
[Vs,t − 1](u, v)e(0)

= γ (s, t, u, v) + 〈u,Gv〉e(0) + ζ(s, t, u, v) + ς(s, t, u, v), (5.14)



Characterization of unitary processes 591

where these vectors in the Fock space Γ are given by

γ (s, t, u, v) := 1

t − s

∑
j≥1

〈u,Ljv〉a†
j

([s, t])e(0),

ζ(s, t, u, v) := 1

t − s

∑
j≥1

∫ t

s

(Vs,λ − 1)(u,Ljv)a
†
j (dλ)e(0),

ς(s, t, u, v) := 1

t − s

∫ t

s

(Vs,λ − 1)(u,Gv)dλe(0).

Note that any ξ ∈ Γ can be written as ξ = ξ (0)e(0) ⊕ ξ (1) ⊕ · · · , ξ (n) in the n-fold symmetric tensor product
L2(R+,k)⊗n ≡ L2(�n) ⊗ k⊗n where �n is the n-simplex {t = (t1, t2, . . . , tn): 0 ≤ t1 < t2 · · · < tn < ∞}.

Lemma 5.11. For any u ∈ h, v ∈ D,0 ≤ s ≤ t ≤ τ there exist positive constants Cτ,u,v,C
′
τ,u,v given by

Cτ = 2eτ , Cτ,u,v = 2‖u‖2
[
Cτ

∑
j≥1

‖Ljv‖2 + τ‖Gv‖2
]

and

C′
τ,u,v = 2Cτ‖u‖2

[
Cτ

∑
i,j≥1

‖LjLiv‖2 + τ
∑
i≥1

‖GLiv‖2
]

such that

(i) ‖∑j≥1

∫ t

s
Vs,λ(u,Ljv)a

†
j (dλ)e(0)‖2 ≤ Cτ (t − s)‖u‖2 ∑

j≥1 ‖Ljv‖2,

(ii) ‖(Vs,t − 1)(u, v)e(0)‖2 ≤ Cτ,u,v(t − s),

(iii) ‖ζ(s, t, u, v)‖2 ≤ C′
τ,u,v and ‖ς(s, t, u, v)‖ ≤ Cτ,u,v

√
t − s,∀0 ≤ s < t ≤ τ,

(iv) For any ξ ∈ Γ (L2(R+,k)), lims→t 〈ξ, ζ(s, t, u, v)〉 = 0 and

lim
s→t

〈
ξ, γ (s, t, u, v)

〉 = ∑
j≥1

〈u,Ljv〉ξ (1)
j (t) = 〈

ξ (1)(t), η(u, v)
〉
, a.e. t ≥ 0.

Proof. We give the proof of (iii) only since the proof of (i), (ii) and (iv) are identical to that in [12] except for the
observation that in the estimates the constants will depend on the norms of the vectors like ‖Ljv‖,‖Gv‖ instead
of ‖v‖ for v ∈ D. (iii) Using the standard estimate of a stochastic integral [11] and Assumption E3 we get that

∥∥ζ(s, t, u, v)
∥∥2

≤ ‖u‖2

(t − s)2

∥∥∥∥∑
j≥1

∫ t

s

(Vs,λ − 1)Ljva
†
j (dλ)e(0)

∥∥∥∥2

≤ Cτ‖u‖2

(t − s)2

∑
j≥1

∫ t

s

∥∥(Vs,λ − 1)Ljve(0)
∥∥2 dλ

≤ 2
Cτ‖u‖2

(t − s)2

∑
j≥1

(t − s)

[
Cτ (t − s)

∑
i≥1

‖LiLjv‖2 + (t − s)2
∥∥GLjv

∥∥2
]

≤ 2Cτ‖u‖2
∑
j≥1

[
Cτ

∑
i≥1

‖LiLjv‖2 + τ‖GLjv‖2
]

= C′
τ,u,v.

�
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Lemma 5.12. For n ≥ 1, t ∈ �n and uk ∈ h, vk ∈ D :k = 1, . . . , n, ξ ∈ Γ (L2(R+,k)) and [sk, tk)’s are disjoint.

(i) lims→t 〈ξ,
∏n

k=1 M(sk, tk, uk, vk)e(0)〉 = 0, where M(sk, tk, uk, vk) = (Vsk ,tk
−1)

tk−sk
(uk, vk) − 〈uk,Gvk〉 − γ (sk, tk,

uk, vk) and lims→t means sk → tk for each k.

(ii) lims→t 〈ξ,
⊗n

k=1 γ (sk, tk, uk, vk)〉 = 〈ξ (n)(t1, . . . , tn), η(u1, v1) ⊗ · · · ⊗ η(un, vn)〉.

Proof. The proof is omitted since it is identical to that in [12] once we note that vk ∈ D ⊆ D(G), and part (ii) can be
proved using Lemma 5.11 (iv). �

The next lemma extends the lemma 8.4 of [12] to S ′ defined in term of u ∈ h⊗n, v ∈ D⊗n instead of both in h⊗n

as in [12]. The proof proceed along identical lines and hence omitted.

Lemma 5.13. Let ξ ∈ Γ be such that

〈ξ, ζ 〉 = 0 ∀ζ ∈ S ′, (5.15)

then

(i) ξ (0) = 0 and ξ (1)(t) = 0 for a.e. t ∈ [0, τ ].
(ii) For any n ≥ 0, ξ (n)(t) = 0 for a.e. t ∈ �n: ti ≤ τ.

(iii) The set S ′ is total in the Fock space Γ.

We shall now prove the part (ii) of the Theorem 5.2 that the unitary evolution {Ut } on h ⊗ H is unitarily
equivalent to the unitary solution {Vt } of HP equation (5.1). To prove this we need the following two results.
Let us recall that the subset S = {ξ = Us,t (u, v)Ω := Us1,t1(u1, v1) · · ·Usn,tn(un, vn)Ω: s = (s1, s2, . . . , sn), t =
(t1, t2, . . . , tn): 0 ≤ s1 ≤ t1 ≤ · · · ≤ sn ≤ tn < ∞, n ≥ 1, u = ⊗n

i=1 ui ∈ h⊗n, v = ⊗n
i=1 vi ∈ D⊗n} is total in H

and the subset S ′ := {ζ = Vs,t (u, v)e(0) := Vs1,t1(u1, v1) · · ·Vsn,tn(un, vn)e(0): u = ⊗n
i=1 ui ∈ h

⊗
n, v = ⊗n

i=1 vi ∈
D⊗n, s = (s1, s2, . . . , sn), t = (t1, t2, . . . , tn)} is total in Γ.

Lemma 5.14. Let Us,t (u, v)Ω,Us′,t ′(p,w)Ω ∈ S, where v,w ∈ D⊗n. Then there exist an integer m ≥ 1, a =
(a1, a2, . . . , am), b = (b1, b2, . . . , bm): 0 ≤ a1 ≤ b1 ≤ · · · ≤ am ≤ bm < ∞, partition R1 ∪ R2 ∪ R3 = {1, . . . ,m} with
|Ri | = mi, family of vectors xkl

, gki
∈ h and ykl

, hki
∈ D: l ∈ R1 ∪ R2, i ∈ R2 ∪ R3 such that

Us,t (u, v) =
∑

k

∏
l∈R1∪R2

Ual,bl
(xkl

, ykl
), (5.16)

Us′,t ′(p,w) =
∑

k

∏
l∈R2∪R3

Ual,bl
(gkl

, hkl
). (5.17)

Proof. It follows from the evolution hypothesis of the family of unitary operators {Us,t } as for r ∈ [s, t] and ortho-
normal basis {fj } ⊆ D of h we can write Us,t (u, v) = ∑

j≥1 Us,r (u,fj )Ur,t (fj , v). �

Remark 5.15. Since the family of unitaries {Vs,t } on h⊗Γ enjoy all the properties satisfy by family of unitaries {Us,t }
on h ⊗ H the above lemma also hold if we replace Us,t by Vs,t .

Lemma 5.16. For Us,t (u, v)Ω,Us′,t ′(p,w)Ω ∈ S.

〈
Us,t (u, v)Ω,Us′,t ′(p,w)Ω

〉 = 〈
Vs,t (u, v)e(0),Vs′,t ′(p,w)e(0)

〉
. (5.18)

The proof of Lemma 5.18 is as in [12] and hence the part (ii) of Theorem 5.2 follows identically as in [12].
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Remark 5.17. The Assumption C is ruling out the presence of conservation (Poisson) terms in the associated HP
equation as the representation π, we obtained, is trivial (see Remark 4.2). Without this Assumption C, the problem is
not yet settled. In the absence of Assumption C the representation π shall be non trivial which in general will give rise
to a unitary (different from identity) operator W on h ⊗ k and associated HP equation (5.1) will contain conservation
terms with coefficients {Lμ

ν } described as in (2.4).

Remark 5.18. The Assumption E2, i.e. there exists D, core for G such that D ⊆ D(L∗
j ) for every j ≥ 1, is a strong

assumption. But this is necessary one in order that the quantum stochastic differential equation for Vt makes sense.
Only way one can do away with this assumption is to abandon the quantum stochastic differential equation for Vt

and just deal with Vt as a left cocycle described by the associated four semigroups [8]. This programme is not yet
complete.

Remark 5.19. The Hypothesis E3, i.e. for any v ∈ D,
∑

j≥1 ‖GLjv‖2 < ∞. This holds trivially when [G,Lj ] = 0.

Condition [G,Lj ] = 0, in particular holds for classical Brownian motion on R
n and for the Casimir operator G on

the Lie algebra of a locally compact Lie group G with Lj = Xj represented on the Hilbert space h = L2(G), where
{Xj }nj=1 a basis for the Lie algebra. The commutator [G,Lj ] also vanish in case of Quantum Brownian motion on
non-commutative Torus, Quantum Heisenberg manifold and Quantum Plane [4] .
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[2] I. M. Geĺfand and N. Y. Vilenkin. Generalized functions, Vol. 4: Applications of Harmonic Analysis. Translated from the Russian by Amiel
Feinstein. Academic Press, New York, 1964. MR0173945

[3] F. Fagnola. Unitarity of solutions to quantum stochastic differential equations and conservativity of the associated semigroups. In Quantum
Probability and Related Topics 139–148. QP-PQ, VII. World Sci. Publ., River Edge, NJ, 1992. MR1186660

[4] D. Goswami and K. B. Sinha. Quantum Stochastic Processes and Geometry. Cambridge Tracts in Mathematics 169. Cambridge Univ. Press,
2007. MR2299106

[5] R. L. Hudson and J. M. Lindsay. On characterizing quantum stochastic evolutions. Math. Proc. Cambridge Philos. Soc. 102 (1987) 363–369.
MR0898155

[6] R. L. Hudson and K. R. Parthasarathy. Quantum Ito’s formula and stochastic evolutions. Comm. Math. Phys. 93 (1984) 301–323. MR0745686
[7] J. M. Lindsay and S. J. Wills. Markovian cocycles on operator algebras adapted to a Fock filtration. J. Funct. Anal. 178 (2000) 269–305.

MR1802896
[8] J. M. Lindsay and S. J. Wills. Construction of some quantum stochastic operator cocycles by the semigroup method. Proc. Indian Acad. Sci.

(Math. Sci.) 116 (2006) 519–529. MR2349207
[9] A. Mohari. Quantum stochastic differential equations with unbounded coefficients and dilations of Feller’s minimal solution. Sankhyā Ser. A
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