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Abstract. We reveal a shape transition for a transient simple random walk forced to realize an excess q-norm of the local times,
as the parameter q crosses the value qc(d) = d

d−2 . Also, as an application of our approach, we establish a central limit theorem for
the q-norm of the local times in dimension 4 or more.

Résumé. Nous décrivons un phénomène de transition de forme d’une marche aléatoire transiente forcée à réaliser une grande
valeur de la norme-q du temps local, lorsque le paramètre q traverse la valeur critique qc(d) = d

d−2 . Comme application de notre
approche, nous établissons un théorème de la limite centrale pour la norme-q du temps local en dimension 4 et plus.
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1. Introduction

We consider a simple random walk {S(n),n ∈ N} on Z
d , starting at the origin. For any set A, we denote by 1A the

indicator of A, and consider the local times of the walk {ln(z), z ∈ Z
d} given by

ln(z) = 1{S(0)=z} + · · · + 1{S(n−1)=z}. (1.1)

For a real q > 1, we form the sum of the qth power of the local times

‖ln‖q
q =

∑
z∈Zd

ln(z)
q . (1.2)

When q is integer, ‖ln‖q
q can be written in terms of the q-fold self-intersection local times of a random walk. For

instance, when q = 2

‖ln‖2
2 = n + 2

∑
0≤i<j<n

1{S(i)=S(j)}.

For q positive real, we still call ‖ln‖q
q the q-fold self-intersection local times.

In dimension three and more, Becker and König [6] have shown that there are positive constants, say κ(q, d), such
that almost surely

lim
n→∞

‖ln‖q
q

n
= κ(q, d). (1.3)
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Here, we are concerned with estimating the deviations of ‖ln‖q
q away from its mean. That is, if P denotes the law of

the walk started at 0, we give estimates for

P
(‖ln‖q

q − E
[‖ln‖q

q

] ≥ ξn
)

(1.4)

for ξ positive, and n going to infinity.
There is a rich literature concerning the two-fold self-intersection local times. The reason being that ‖ln‖2 is a

natural object in quantum-field theory (see [1,14,22], for instance), as well as in the statistical physics of polymers
(see [8,9,13], for instance). However ‖ln‖q for q ∈ R \ N has no such direct links with physics. It comes up naturally
in studying large and moderate deviations for random walk in random sceneries (see [5] and [15]).

Now, in the large deviations results for the two-fold self-intersection of a transient random walk (see [2,3,5,11])
two strategies have a distinguished role:

• Strategy A: the walk visits of the order of (ξn)1/q -times, finitely many sites in a ball of bounded radius. For a
transient walk, the number of visits of a bounded domain is bounded by a geometric variable. Thus, strategy A costs
of the order of exp(−O((nξ)1/d)), where we use the notation yn = O(xn) for two positive sequences {xn, yn,n ∈ N},
to mean that there is K > 0 such that 0 ≤ yn ≤ Kxn.

• Strategy B: the walk visits of the order of ξ1/(q−1)-times, about n/ξ1/(q−1) sites. Presumably, the walk stays, a
time n, in a ball of volume n/ξ1/(q−1). The cost of staying a time n within a ball of radius rn � √

n is about
exp(−O(n/r2

n)), so that strategy B costs of the order of exp(−O(n1−2/dξ2/(d(q−1)))).

When q = 2, [2,5] have shown that strategy A is adopted in d ≥ 5, whereas [3] (see also Chapter 8.4 of [11]) suggests
that strategy B is adopted in d = 3.

To summarize in words our main finding, assume d ≥ 3, fix ξ > 0 and look at typical paths realizing {‖ln‖q
q −

E[‖ln‖q
q ] ≥ ξn}. As we increase q , we step on a value, qc(d), above which our large deviation event is realized by

strategy A, and below which it is realized by strategy B. The critical value qc(d) = d
d−2 is obtained as we equal the

costs of strategies A and B.
Note that qc(d) is a well known number: if q is integer, then q independent simple random walks, on Z

d , intersect
infinitely often if and only if q < qc(d) (see, for instance, [18], Proposition 7.1 and [17], Section 4.1).

Let us now describe, in mathematical terms, this shape transition. The first theorem deals with the sub-critical
regime q < qc(d).

Theorem 1.1. Assume dimension d ≥ 3. Then, for q and d such that 1 < q < d
d−2 , there are constants c±

1 (q, d) > 0
such that for ξ ≥ 1, and n large enough

exp
(−c−

1 (q, d)ξ (2/d)(1/(q−1))n1−2/d
) ≤ P

(‖ln‖q
q − E

[‖ln‖q
q

] ≥ ξn
)

≤ exp
(−c+

1 (q, d)ξ2/d(1/(q−1))n1−2/d
)
. (1.5)

Moreover, in this regime the sites visited more than some large constant do not contribute to realizing the excess
self-intersection. In other words,

lim sup
A→∞

lim sup
n→∞

1

n1−2/d
logP

(∑
z∈Zd

1{ln(z)>A}ln(z)q ≥ ξn

)
= −∞. (1.6)

Our second theorem deals with the super-critical regime q > qc(d).

Theorem 1.2. Assume dimension d ≥ 3. For q and d such that q > d
d−2 , there are constants c±

2 (q, d) > 0 such that
for ξ ≥ 1, and n large enough

exp
(−c−

2 (q, d)(ξn)1/q
) ≤ P

(‖ln‖q
q − E

[‖ln‖q
q

] ≥ ξn
) ≤ exp

(−c+
2 (q, d)(ξn)1/q

)
. (1.7)
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Moreover, the sites visited much less than n1/q do not contribute to realizing the excess self-intersection. In other
words,

lim sup
ε→0

lim sup
n→∞

1

n1/q
logP

(∑
z∈Zd

1{ln(z)<εn1/q }ln(z)q ≥ E
[‖ln‖q

q

] + ξn

)
= −∞. (1.8)

Remark 1.3. In Theorems 1.1 and 1.2, we could take ξ to grow with n. The only (necessary) bound on ξn comes from
the bound ‖ln‖q ≤ n which imposes that ξn ≤ nq−1. The proofs are written with general ξn ≥ 1.

The next result deals with the contribution of some level sets of the local times to deviation on a much larger scale
than the mean, and can be obtained by the same approach yielding Theorem 1.2. We include it in this form since it can
be of independent interest, while showing the possibilities offered by our approach. Also, it generalizes Lemma 1.8 of
[5].

Lemma 1.4. Assume d ≥ 3 and q ≥ qc(d). Choose a, b > 0 such that 1 < a < 1 + b(q − 1). Then, for any ε > 0, and
n large enough

P

(∑
z∈Zd

1{ln(z)<nb}ln(z)q ≥ na

)
≤ e−nζ(q,a,b)−ε

with ζ(q, a, b) = b + 1

qc(d)
(a − qb). (1.9)

Remark 1.5. Our approach is not suited to studying small ξn for reasons explained later in Remark 1.7. However,
when 1 > ξn ≥ n−δ , for some positive δ small enough, our approach yields a constant c1 such that for q < qc(d)

P
(‖ln‖q

q − E
[‖ln‖q

q

] ≥ ξnn
) ≤ exp

(−c1ξ
2/d(q/(q−1))
n n1−2/d

)
. (1.10)

When q > qc(d), we have a constant c2 such that

P
(‖ln‖q

q − E
[‖ln‖q

q

] ≥ ξnn
) ≤ exp

(−c2ξ
1/q+2/d
n n1/q

)
. (1.11)

We believe that the powers of ξn in (1.10) and (1.11) are not optimal. However, (1.10) and (1.11) are useful in deriving
a central limit theorem stated in Theorem 1.9.

Our initial goal was to improve the main result of [3], which states that in dimension 3, there is χ > 0 and ε > 0
such that for ξ > 0, and n large

P

(∑
z∈Z3

1{ln(z)>log(n)
χ }l2

n(z) > nξ

)
≤ exp

(−n1/3 log(n)ε
)
. (1.12)

Note that (1.6) improves (1.12). One reason to study ‖ln‖q for q > 2, is that the upper bound (1.5) for q > 2, yields
(1.6) at once. More precisely, for q < qc(d), choose q ′ with q < q ′ < qc(d), and for any A > 0, the obvious inequality

∑
z∈Zd

1{ln(z)>A}lqn (z) ≤ ‖ln‖q ′
q ′

Aq ′−q
, (1.13)

implies that

P

(∑
z∈Zd

1{ln(z)>A}lqn (z) ≥ nξ

)
≤ P

(‖ln‖q ′
q ′ ≥ Aq ′−qnξ

)
.
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For A and n large enough, Aq ′−qnξ ≥ 2E[‖ln‖q ′
q ′ ]. Thus, if we set β = 2

d
q ′−q
q ′−1 > 0, then from (1.5), we have a constant

c1(d, q ′) such that

P

(∑
z∈Zd

1{ln(z)>A}lqn (z) ≥ nξ

)
≤ exp

(−c1
(
d, q ′)ξ (2/d)(1/(q ′−1))Aβn1−2/d

)
. (1.14)

Thus, in order to improve (1.12) in d = 3, we were left with studying q-fold self-intersections with 2 < q < 3 = qc(3).
In most works on two-fold self-intersection, a starting point, which we trace back to the work of Westwater [21]

and Le Gall [19], is a decomposition of ‖ln‖2
2 in terms of intersection local times of two independent random walks

starting at the origin. However, such a decomposition is restricted to q-fold self-intersection local times with q ∈ N:
When q = 2 and d = 3 (in the sub-critical regime) Le Gall’s decomposition is a first step in obtaining, in [11], a
moderate and large deviations principles. When q = 3 and d ≥ 4 (in the super-critical regime), [15] uses a type of Le
Gall’s decomposition to obtain moderate and large deviations estimates.

Here, our starting point is an approximate decomposition obtained by slicing ‖ln‖q
q over level sets of the local

times, for any real q > 1. This is based on the following simple inequality. Let {bn,n ∈ N} be a subdivision of [1,∞),
and let l1 and l2 be positive integers (which we think of as the local times of a given site in each half time-period).
Then, for q > 1, we have the upper bound

(l1 + l2)
q ≤ l

q

1 + l
q

2 + 2q

∞∑
i=0

b
q−2
i+1 1{bi≤max(l1,l2)<bi+1}l1 × l2, (1.15)

as well as the obvious lower bound: (l1 + l2)
q ≥ l

q

1 + l
q

2 . The desirable feature of (1.15) is that on its right-hand side,
the qth power of l1 and l2 comes without penalty, whereas the term l1 × l2 yields an intersection local times. Thus,
(1.15) leads to the following result which plays here the role of Le Gall’s decomposition of [19].

Proposition 1.6. For any integers n and l, with 2l < n, let {ni, i = 1, . . . ,2l} be positive integers summing up to n.
Let {l(i)· , i = 1, . . . ,2l} be the local times of 2l independent random walks starting at 0. If {bi, i ∈ N} is a subdivision
of [1, n], then,

S(l)
q ≤ ‖ln‖q

q ≤ S(l)
q +

l∑
j=1

Ij , where S(l)
q

law=
2l∑

i=1

∥∥l(i)ni

∥∥q

q
, (1.16)

and, for j = 1, . . . , l, and mk = n(k−1)2l−j +1 + · · · + nk2l−j for k = 1, . . . ,2j

Ij
law=

2j−1∑
k=1

∑
i

2qb
q−1
i+1

( ∑
z:bi≤l

(2k)
m2k

(z)<bi+1

l(2k−1)
m2k−1

(z) +
∑

z:bi≤l
(2k−1)
m2k−1 (z)<bi+1

l(2k)
m2k

(z)

)
. (1.17)

Remark 1.7. We first note some natural limitations in using the approximate decomposition (1.16). When we deal
with {‖ln‖q

q −E[‖ln‖q
q ] ≥ ξnn} for small ξn, we need to bound the difference between E[‖ln‖q

q ] and the expectation of
the upper bound in (1.16). When, we take l such that 2l ∼ n1−δ0 , then this difference turns out to be of order smaller
than n1−δ0/2, allowing us to write

{‖ln‖q
q − E

[‖ln‖q
q

] ≥ ξnn
} ⊂

{
S(l)

q − E
[
S(l)

q

] ≥ ξn

2
n

}
∪

{
l∑

j=1

Ij − E[Ij ] ≥ ξn

2
n − n1−δ0/2

}
. (1.18)

(1.18) requires that ξn ≥ n−δ0/2.

Proposition 1.6 is our initial step in the proof of Theorems 1.1 and 1.2, and leads to a central limit theorem (CLT)
for ‖ln‖q

q in dimension 4 or more, as well as a characterization of the variance of ‖ln‖q
q .
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Before stating results concerning the typical behavior of ‖ln‖q
q , we give a heuristic discussion of the proof of

Theorem 1.1 assuming Proposition 1.6. More precisely, we wish to sketch the reasons why the approximate decompo-
sition (1.16), reduces large deviations for the q-norm of the local times, to large deviations for a sum of independent
geometric variables.

Consider a choice of l such that 2l is close to n in (1.16), and ni ∼ n/2l . Then, S
(l)
q is a sum of about n independent

terms, each one bounded by its time-span, n/2l , to the power q . Recall that the probability of deviating from the mean,
for a sum of n independent and essentially bounded variables, is of order exp(−O(n)) (see Lemma 2.4 for a precise
statement). We can therefore neglect the contribution of S

(l)
q to the excess q-norm, though the mean of S

(l)
q is close

to E[‖ln‖q
q ], as easily seen from Lemma 1.8 below. Now, for a fixed j in {1, . . . , l}, let m = n/2j , and note that Ij

is a finite sum of independent terms distributed as bq−1lm(D̃(b)), where D̃(b) is the set {z: l̃m(z) ∼ b}, with l̃m an
independent copy of lm, and b spans a subdivision of [1, n]. Since we consider transient random walks, lm(D̃(b)) is
bounded by a geometric variable (when fixing D̃(b), as shown in Lemma 1.2 of [4]). At this point, one normalizes
lm(D̃(b)). If P0 and P̃0 are the law of the two independent copies of the (transient) walk started at 0, define

X = lm(D̃(b))

E0[lm(D̃(b))] , so that for some κ > 0, P̃0 ⊗ P0(X > t) ≤ e−κt . (1.19)

Now, it is well known that for any m, E0[lm(D̃(b))] ≤ C|D̃(b)|2/d , (see Lemma A.2). Thus, an estimate of the large
deviation probability requires an estimate on the volume of level sets of the local times. Now, in obtaining a bound
on the volume of D̃(b), assume for simplicity that we only have two types of b: that is, we distinguish often visited
sites, say sites visited nx -times with x close to 1/q , whose level sets are part of what we call top levels, and say the
once-visited sites, whose level sets are part of what we call bottom levels. The bottom levels are the easiest to treat
(see Section 3.2 and Lemma 3.1). Indeed, we use essentially that |D̃(b)| ≤ n for b ∼ 1, so that we expect (when we
restrict Ij only to bottom levels and using Xk = X in law)

P
(

Ij − E[Ij ] ≥ nξ
) ∼ P

(
2j∑

k=1

Xk − E[Xk] ≥ nξ

n2/d

)
∼ exp

(−O
(
n1−2/d

))
.

The top levels, treated in Section 3.3, require a type of bootstrap argument, using that if D̃(b) has a large volume,
it implies that the q-norm of the local time l̃m is large. The bootstrap argument yields Corollary 2.2. It allows us to
normalize properly our geometric-like random variables bq−1lm(D̃(b)).

We turn now to the typical behavior of the q-norm. Chen has provided in [10] asymptotics for the variance of
‖ln‖2

2 in d ≥ 3. He shows that (i) in d = 3, var(‖ln‖2
2) ∼ λ3n log(n), and (ii) in d ≥ 4, var(‖ln‖2

2) ∼ λdn, where λd

are constants expressed in terms of the Green’s function of the walk. Following ideas of Jain and Pruitt [16], and of
Le Gall and Rosen [20], Chen obtains a CLT in dimension 3 or more for ‖ln‖2

2. Finally, Becker and König in [6]
have shown that for q integer, (i) in d = 3, var(‖ln‖q

q) ≤ n3/2, (ii) in d = 4, var(‖ln‖q
q) ≤ n log(n), and (iii) in d ≥ 5,

var(‖ln‖q
q) ≤ cdn. Our result deals with the general case (q > 1 real), where no representation of ‖ln‖q

q is possible in
terms of multiple time-intersections. We transform Lindeberg’s condition into a large deviation event for ‖lTn‖2

2 on
the scale of time of the CLT, that is Tn ≈ √

n.
We start with an estimate for the expectation of ‖ln‖q

q , of the same type as Theorem 1 of Dvoretzky and Erdös [12]
for the range of a transient random walk. Thus, if γd is the probability of never returning to its original position, it is
shown in [12] that for positive constants cd , when Rn is the set of visited sites before time n,

∣∣E[|Rn|
] − nγd

∣∣ ≤ cdψd(n), with ψd(n) =
⎧⎨
⎩

n1/2 for d = 3,
log(n) for d = 4,
1 for d ≥ 5,

(1.20)

Jain and Pruitt [16] obtain the asymptotics var(|Rn|) ∼ a log(n)n for some a > 0 in d = 3, and var(|Rn|) ∼ c′
dn in

d > 3, for some positive constants c′
d . The corresponding CLT (in d ≥ 3) was shown by Jain and Pruitt [16] for the

simple random walk, and by Le Gall and Rosen [20] for stable random walks. Note that the limiting law is Gaussian,
in d ≥ 3 but fails to be so in d = 2, as shown by Le Gall in [18].
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Lemma 1.8. Assume that d ≥ 3 and q > 1. There is a constant Cd , such that

0 ≤ κ(q, d)n − E
[‖ln‖q

q

] ≤ Cdψd(n), with κ(q, d) = γdE
[
l∞(0)q

]
. (1.21)

Also, if d = 3, then, there is a constant c3 such that

var
(‖ln‖q

q

) ≤ c3 log(n)2n. (1.22)

If d ≥ 4, then there are positive constants v(q, d) and c(q, d), such that∣∣∣∣var(‖ln‖q
q)

n
− v(q, d)

∣∣∣∣ ≤ c(q, d)
log(n)√

n
. (1.23)

Finally, we have the following central limit theorem.

Theorem 1.9. If Z is a standard normal variable, then

‖ln‖q
q − nκ(q, d)√
nv(q, d)

law−→ Z. (1.24)

A challenging open question is to understand the strategy which realizes {‖ln‖q
q − E[‖ln‖q

q ] ≥ ξn}, right at the
critical value q = qc(d) = d

d−2 .
The paper is organized as follows. The approximate decomposition of ‖ln‖q

q is given in Section 2.1. The sub-
critical regime is studied in Section 3: The upper bound in (1.5) is proved in Section 3.5, and the lower bound is given
in Section 3.4. The super-critical regime is studied in Section 4. Theorem 1.2 is proved in Section 4. The proof of (1.8)
is given in Section 4.1. The proof of Lemma 1.4 is given in Section 4.2. Lemma 1.8, as well as the CLT are proved in
Section 5. In the Appendix, we recall Lemma 5.1 of [3], and improve Lemma 5.3 of [3], used to control intersection
local times-type quantities.

2. General considerations (q > 1)

In this section, we deal with the general case q > 1. In Section 2.1, we develop a approximation of ‖ln‖q
q as sums of

two types of independent variables:

1. Intersection local times of independent walks.
2. Self-intersection local times, on a much shorter time-period.

In Section 2.2, we treat the sums of self-intersection local times.

2.1. Approximate decomposition for ‖ln‖q
q

Before we prove Proposition 1.6, we present a useful corollary which requires more notations.
For integers n and l, with 2l < n, we recall the “almost” dyadic decomposition of n of Remark 2.1 of [5]. We divide

n into 2l integers n
(l)
1 , . . . , n

(l)

2l with n = n
(l)
1 + · · · + n

(l)

2l and

max
i

(
n

(l)
i

) − min
i

(
n

(l)
i

) ≤ 1,
n

2l
− 1 ≤ n

(l)
i ≤ n

2l
+ 1 and n

(l−1)
k = n

(l)
2k−1 + n

(l)
2k . (2.1)

We run 2l independent random walks starting at the origin. The ith walk runs for a time-period [0, n
(l)
i [, and we denote

by l
(l)
i : Zd → N its local times during time-period [0, n

(l)
i [. Also, we introduce, for k = 1, . . . ,2l , the following sets

D(l)
k,i = {

z ∈ Z
d : bi ≤ l

(l)
k (z) < bi+1

}
. (2.2)

Now, for any M > 0, let {bi, i ∈ N} be a subdivision of [1,M], and denote by ΘM(x) = x1{x≤M}.



256 A. Asselah

Remark 2.1. We could restrict the sum over Z
d which enters ‖ln‖q

q in (1.16) over {z: ln(z) ≤ M} for any positive M .
The proof of Proposition 1.6 yields, for any {bi, i ∈ N} subdivision of [1,M],

∑
z∈Zd

ΘM

(
ln(z)

)q ≤
2l∑

k=1

∑
z∈Zd

ΘM

(
l
(l)
k (z)

)q +
l∑

j=1

Ij . (2.3)

The only difference with (1.16) is the subdivision which enters into the definition of Ij . The proof of Proposition 1.6
is written in view of (2.3) (see the key step (2.12)).

As a corollary of (2.3), we obtain the following result.

Corollary 2.2. For any M > 0, let {bi, i ∈ N} be a subdivision of [1,M]. For any integers n and L, with 2L < n, and
for any sequence of positive numbers {mn, εn,n ∈ N}, we have

P
(∥∥ΘM(ln)

∥∥q

q
≥ mn + εn

) ≤ 2L+1P

(
2L∑

j=1

∥∥ΘM

(
l
(L)
j

)∥∥q

q
≥ mn

)
+

L∑
h=1

2hP

(
L∑

l=h

1{G(l)
1 ∩G(l)

2 }Il ≥ εn

)
, (2.4)

where for l ≤ L, k = 1, . . . ,2l , and i ∈ N

G(l)
k,i =

{∣∣D(l)
k,i

∣∣ ≤ mn + εn

b
q
i

}
, G(l)

1 =
2l⋂

k=1

⋂
i

G(l)
2k,i and G(l)

2 =
2l⋂

k=1

⋂
i

G(l)
2k−1,i . (2.5)

Remark 2.3. The symbols, εn and mn, are suggestive of the fact that when L is large enough, the sum of 2L indepen-
dent q-fold self-intersections, that we called S

(L)
q , stays close to its mean, which is also close to the mean of ‖ln‖q

q .
This is shown in Section 2.2. So, mn stands for mean, and εn stands for excess. To estimate how small can εn be, we
now compute the expectation of

∑L
l=1 Il . We use Lemma A.2 in the worse case, that is in dimension 3, to obtain for

some constants c1, c2 and c3

E

[
L∑

l=1

Il

]
=

L∑
l=1

2l
∑
i∈N

2q(bi+1)
q−1Cdψd

(
n

2l

)
e−κdbi

≤ c1
√

n

L∑
l=1

2l/2
∑
i∈N

(bi+1)
q−1e−κdbi

≤ c2

√
2Ln

∑
i∈N

(bi+1)
q−1e−κdbi . (2.6)

First, we need to choose a subdivision {bi, i ∈ N} such that the last sum in (2.6) is convergent. Secondly, the right-hand
side of (2.4) is small if

∑L
l=h E[1{G(l)

1 ∩ G(l)
2 }Il] � εn. From (2.6), we see that εn can be chosen small if 2L � n.

On the other hand, we see in Section 2.2, that L has to be large enough, for the probability of {S(L)
q ≥ mn} to be

negligible, when mn = E[‖ln‖q
q ] + nε. Remark 2.5 shows that a choice of L such that 2L > n1−δ0 with qδ0 < 2

d
,

fulfills both requirements.

Proof of Proposition 1.6. The proof proceeds by induction on l ≥ 1. It is however easy to see that proving the case
l = 1 requires the same arguments as going from l − 1 to l. We focus on the first step l = 1, and omit the easy passage
from l − 1 to l.

For any x ∈ [0,1], and q ≥ 1, we have

1 + xq ≤ (1 + x)q ≤ 1 + xq + 2qx. (2.7)
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Thus, for any nonnegative integers l1, l2 with 0 ≤ l1, l2 ≤ M , we have from (2.7)

l
q

1 + l
q

2 ≤ (l1 + l2)
q ≤ l

q

1 + l
q

2 + 2qMq−2l1l2. (2.8)

Now, for any M > 0, let {bi, i ∈ N} be a subdivision of [1,M], and recall that ΘM(x) = x1{x≤M}. For any nonnegative
integers l1, l2

(
ΘM(l1 + l2)

)q ≤ (
ΘM(l1)

)q + (
ΘM(l2)

)q + 2q
n∑

i=1

b
q−2
i+1 1

{
bi ≤ max(l1, l2) < bi+1

}
l1 × l2. (2.9)

Indeed, l1 + l2 ≤ M and l1, l2 ≥ 0, imply (i) l1 ≤ M and l2 ≤ M , and (ii) for some i0 > 0, max(l1, l2) ∈ [bi0, bi0+1[.
Then, from (2.8)

(
ΘM(l1 + l2)

)q ≤ ΘM(l1)
q + ΘM(l2)

q + 2qb
q−2
i0+1l1 × l2.

For any integer n, we consider the local time ln, which we denote as l[0,n[(z) to emphasize the time period. For any
integer n1 with 0 < n1 < n, set n2 = n − n1, and from the increments of our initial random walk, say {Yn,n ∈ N}, we
build two independent random walks with local times

l
(1,1)
]0,k] (z) = 1{Yn1 = z} + · · · + 1{Yn1 + · · · + Yn1−k+1 = z}

and

l
(1,2)
[0,k[ (z) = 1{0 = z} + 1{−Yn1+1 = z} + · · · + 1{−Yn1 − · · · − Yn1+k−1 = z}. (2.10)

It is obvious that on {S(n1) = y},

ln(z) = l
(1,1)
]0,n1](y − z) + l

(1,2)
[0,n2[(y − z). (2.11)

If we denote l̄(1)(z) = max(l
(1,1)
]0,n1](z), l

(1,2)
[0,n2[(z)), and sum (2.11) over z ∈ Z

d , we obtain

∑
z

ΘM

(
ln(z)

)q ≤
∑

z

ΘM

(
l
(1,1)
]0,n1]

(
S(n1) − z

))q +
∑

z

ΘM

(
l
(1,2)
[0,n2[

(
S(n1) − z

))q

+ 2q
∑
z∈Zd

n∑
i=1

b
q−2
i+1 1{bi≤l̄(1)(S(n1)−z)<bi+1}l

(1,1)
]0,n1]

(
S(n1) − z

) × l
(1,2)
[0,n2[

(
S(n1) − z

)

≤
∑
z∈Zd

ΘM

(
l
(1,1)
]0,n1](z)

)q +
∑
z∈Zd

ΘM

(
l
(1,2)
[0,n2[(z)

)q

+ 2q
∑
z∈Zd

n∑
i=1

b
q−2
i+1 1{bi≤l̄(1)(z)<bi+1}l

(1,1)
]0,n1](z) × l

(1,2)
[0,n2[(z). (2.12)

Now, we rewrite (2.12) in a concise form as∥∥ΘM(ln)
∥∥q

q
≤ ∥∥ΘM

(
l
(1,1)
]0,n1]

)∥∥q

q
+ ∥∥ΘM

(
l
(1,2)
[0,n2[)

)∥∥q

q
+ Ĩ1(n1, n2), (2.13)

where the term dealing with intersection times of independent strands is

Ĩ1(n1, n2) = 2q
∑
z∈Zd

n∑
i=1

b
q−2
i+1 1{bi≤l̄(1)(z)<bi+1}l

(1,1)
]0,n1](z) × l

(1,2)
[0,n2[(z). (2.14)
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To prove the upper bound in (1.16) for l = 1, it suffices to set M = n (so that this truncation disappears), and to show
that Ĩ1(n1, n2) ≤ I1 given in (1.17). This latter inequality follows first by noting the obvious inclusion

{
z: bi ≤ max

(
l
(1,1)
]0,n1](z), l

(1,2)
[0,n2[(z)

)
< bi+1

} ⊂ {
z: bi ≤ l

(1,1)
]0,n1](z) < bi+1

} ∪ {
z: bi ≤ l

(1,2)
[0,n2[(z) < bi+1

}
,

and secondly, using that

∑
z∈Zd

1{bi≤l̄(1)(z)<bi+1}l
(1,1)
]0,n1](z) × l

(1,2)
[0,n2[(z) ≤

∑
z∈Zd

1
{
bi ≤ l

(1,1)
]0,n1](z) < bi+1

}
bi+1l

(1,2)
[0,n2[(z)

+
∑
z∈Zd

1
{
bi ≤ l

(1,2)
[0,n2[(z) < bi+1

}
bi+1l

(1,1)
]0,n1](z). (2.15)

As we iterate the approximate decomposition l-times, we obtain the upper bound in (1.16), or more generally the
bound (2.3).

The lower bound in (1.16) is an obvious corollary of the inequality (l1 + l2)
q ≥ l

q

1 + l
q

2 , valid for q ≥ 1 and l1, l2
nonnegative. �

Proof of Corollary 2.2. We write the case M = n, that is the case with no truncation. The case with truncation is
obtained as we replace ln(z) by ΘM(ln(z)) wherever it appears. Assume that we stop the induction in Proposition 1.6
at some step L (typically 2L = n1−δ0 and δ0 small). For any sequence of positive numbers εn,mn, we have from
(1.16),

P
(‖ln‖q

q ≥ mn + εn

) ≤ P
(
S(L)

q ≥ mn

) + P

(
L∑

l=1

Il ≥ εn

)
, where S(l)

q =
2l∑

k=1

∥∥l
(l)
k

∥∥q

q
. (2.16)

We introduce, as in [3,5], a bootstrap control on the volume of D
(l)
k,i . Consider G(l)

k,i given in (2.5). On the complement

of G(l) = G(l)
1 ∩ G(l)

2 , there is k0, i0 such that |D(l)
k0,i0

| > (mn + εn)/b
q
i0

so that

S(l)
q ≥

∑
z∈D

(l)
k0,i0

(
l
(l)
k0

(z)
)q ≥ mn + εn

b
q
i0

b
q
i0

= mn + εn. (2.17)

Writing S
(0)
q = ‖ln‖q

q , we write a more suggestive relation

P
(
S(0)

q ≥ mn + εn

) ≤ P
(
S(L)

q ≥ mn

) + P

(
L∑

l=1

1{G(l)}Il ≥ εn

)
+

L∑
l=1

P
(
S(l)

q ≥ mn + εn

)
. (2.18)

Starting the approximation with S
(l)
q with l < L, we obtain similarly

P
(
S(l)

q ≥ mn + εn

) ≤ P
(
S(L)

q ≥ mn

) + P

(
L∑

j=l+1

1{G(j)}Ij ≥ εn

)
+

L∑
j=l+1

P
(
S

(j)
q ≥ mn + εn

)
. (2.19)

Assume now that for j > l, and j < L we have

P
(
S

(j)
q ≥ mn + εn

) ≤ 2L−j+1P
(
S(L)

q ≥ mn

) +
L∑

h=j+1

2h−j−1P

(
L∑

i=h

1{G(i)}Ii ≥ εn

)
. (2.20)
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Note that (2.20) is true for j = L − 1. Then, using the hypothesis (2.19) in (2.20), we obtain

P
(
S(l)

q ≥ mn + εn

) ≤
L∑

j=l

2L−jP
(
S(L)

q ≥ mn

) +
L∑

j=l+1

L∑
h=j+1

2h−j−1P

(
L∑

i=h

1{G(i)}Ii ≥ εn

)

≤ 2L−l+1P
(
S(L)

q ≥ mn

) +
L∑

h=l+1

2h

( ∑
l<j<h

2−j

)
P

(
L∑

i=h

1{G(i)}Ii ≥ εn

)
. (2.21)

By way of induction, (2.21) yields (2.4). �

2.2. On large sums of q-fold self-intersection

In this section, we consider the contribution of the term S
(l)
q , which appears in (1.16), in making {‖ln‖q

q − E[‖ln‖q
q ] ≥

ξn}. Recall that S
(l)
q is a sum of independent copies of q-fold self-intersection over times of order n/2l . We first choose

l large enough, and then use the boundedness of the q-fold self-intersection.
Fix δ0 such that 0 < δ0 < 2

qd
. Let L be an integer so that 2L ≤ n1−δ0 < 2L+1. Note the obvious bound

max
k≤2L

∥∥l
(L)
k

∥∥q

q
≤ max

k≤2L

(
n

(L)
k

)q ≤
(

n

2L
+ 1

)q

≤ 2q+1nqδ0 . (2.22)

The main result, in this section, reads as follows.

Lemma 2.4. Fix δ ≥ 0, with either (i) dimension is 3 and δ < δ0/2, or (ii) dimension is 4 or more and δ < δ0. Let
ξn ≥ n−δ . Then, for n large enough

P
(∣∣S(L)

q − E
[‖ln‖q

q

]∣∣ > ξnn
) ≤ exp

(
−ξn

2
n1−δ0q

)
. (2.23)

Remark 2.5. Let us consider now the regimes of Theorems 1.1 and 1.2:

• When q < qc(d), the speed exponent in (1.5) is 1 − 2
d

. Thus, the right-hand side of (2.23) with ξn = ξ is negligible

when 1 − qδ0 > 1 − 2
d

, so that we need qδ0 < 2/d .
• When q > qc(d), the speed exponent in (1.5) is 1

q
. It is enough to have again qδ0 < 2/d .

Proof of Lemma 2.4. First, we write

S(L)
q − E

[‖ln‖q
q

] =
2L∑

k=1

Z(k) + R1, with Z(k) = ∥∥l
(L)
k

∥∥q

q
− E

[∥∥l
(L)
k

∥∥q

q

]
(2.24)

and

R1 =
2L∑

k=1

(
E

[∥∥l
(L)
k

∥∥q

q

] − κ(q, d)n
(L)
k

) − (
E

[‖ln‖q
q

] − κ(q, d)n
)
.

Using Lemma 1.8 in d ≥ 3, we have a constants cd such that

|R1| ≤ cdψd(n) + cd

2L∑
k=1

ψd

(
n

(L)
k

) ≤ cd

(
ψd(n) + 2L+1ψd

(
n

2L

))
. (2.25)
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Thus, for ξn ≥ n−δ and (i) 0 ≤ δ < δ0/2 in d = 3, or (ii) 0 ≤ δ < δ0 in d > 3, we have

P
(∣∣S(L)

q − E
[‖ln‖q

q

]∣∣ ≥ ξnn
) ≤ P

(∣∣∣∣∣
2L∑

k=1

Z(k)

∣∣∣∣∣ ≥ ξn

2
n

)
. (2.26)

We note that |x| = max(x,−x), and use Chebyshev’s exponential inequality. For λ ∈ [0,1],

P

(
±

2L∑
k=1

Z(k) ≥ ξn

2
n

)
≤ exp

(
−λ

ξn

2

(
2L

n

)q

n

)(
E

[
e±λ(2L/n)qZ(k)

])2L

≤ exp

(
−λ

ξn

2

(
2L

n

)q

n

)(
1 + λ2

(
2L

n

)2q

var
(
Z(k)

))2L

≤ exp

(
−λ

ξn

2

(
2L

n

)q

n + λ22L

(
2L

n

)2q

var
(
Z(k)

))
. (2.27)

We used the uniform bound (2.22) on |Z(k)| in the second inequality, and the fact that for x ≤ 1, we have ex ≤
1 + x + x2. We recall that the bound (1.22) holds in dimension 3 and more, and reads var(Z(k)) ≤ n

2L log2( n
2L ). Thus,

(2.27) is useful if

ξn

2

(
2L

n

)q

n ≥ 2λ2L n

2L
log2

(
n

2L

)(
2L

n

)2q

⇐⇒ ξn ≥ 4λ log2
(

n

2L

)(
2L

n

)q

. (2.28)

Since ξn ≥ n−δ , (2.28) is implied if δ0q > δ, which holds if conditions (i) or (ii) of Lemma 2.4 are assumed.
In case (i) or (ii), we choose λ = 1, and take n large enough so that (2.28) holds. We then obtain (2.23). �

3. The sub-critical regime

We consider here the case q < d
d−2 . The main result of this section is the upper bound of (1.5). Indeed, we have shown

in the Introduction (in (1.14)) that (1.5) implies (1.6). Finally, the easy lower bound in (1.5) is proved in Section 3.4.
We have divided the proof into many sections. Our starting point is (1.16). With the notation of Section 2.1, we set,

with 2ε0 < 1,

mn = E
[‖ln‖q

q

] + nε0ξn and εn = nξn(1 − ε0).

In Section 3.1, we choose an appropriate subdivision of [1, n]. When q < qc(d), strategy B described in the Intro-
duction suggests to divide the set of visited sites into those visited about ξ

1/(q−1)
n -times, and the remaining too often

visited sites. The contribution of the former sites to
∑

Il in (1.16), is called the bottom-level term, and is treated in
Section 3.2. The contribution of the latter sites is called the top-level term, and is treated in Section 3.3.

3.1. A choice of a subdivision

We first choose the largest α0 such that

α
q−1
0

∞∑
l=0

(
1

2q−1

)l

≤ 1

16
, (3.1)

and, for some positive integer j0, α0ξ
γ
n = 2j0 . Note that α0 is bounded by 1, though j0 grows with ξn. Recall that

γ = 1
q−1 , and consider for i = −j0, . . . ,Mn

bi = ξ
γ
n βi, with βi = α02i , (3.2)
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where Mn is such that βMn is of order n1/qc(d). We divide the intersection local times according to whether l
(l)
k (z) ≥

α0ξ
γ
n (which yields what we call a top-level term), or l

(l)
k (z) < α0ξ

γ
n (which yields what we call a bottom-level term).

Introduce, for l ≤ L

C↑
n (l) =

∑
i≥0

2l∑
k=1

2q
(
ξ

γ
n βi+1

)q−1(1G(l)
2k,i

l
(l)
2k−1

(
D(l)

2k,i

) + 1G(l)
2k−1,i

l
(l)
2k

(
D(l)

2k−1,i

))
, (3.3)

where for a subset A of Z
d , l

(l)
k (A) = ∑

z∈A l
(l)
k (z) and,

C↓
n (l) =

∑
−j0≤j<0

2l∑
k=1

2q
(
ξ

γ
n βj+1

)q−1(
l
(l)
2k−1

(
D(l)

2k,j

) + l
(l)
2k

(
D(l)

2k−1,j

))
. (3.4)

Note that if for any α0 satisfying (3.1), we have α0ξ
γ
n < 1, then there will be no term C↓

n (l). Note also that in both C↑
n (l)

and C↓
n (l), the sum over k is over independent variables. We call C↑

n (l) the top-level term, and C↓
n (l) the bottom-level

term.
We choose now L such that 2L = n1−δ0 , and inequality (2.6) of Remark 2.3 gives us that for some constant c3

∑
†∈{↑,↓}

L∑
h=1

E
[

C †(h)
] ≤ c3n

1−δ0/2. (3.5)

We denote by C̄ †(h) = C †(h) − E[C †(h)]. Finally, ξnn ≥ 4c3n
1−δ0/2 implies that ξn ≥ 4c3n

−δ0/2. Inequality (2.4)
yields

P
(‖ln‖q

q − E
[‖ln‖q

q

] ≥ nξn

) ≤ 2LP
(
S(L)

q − E
[‖ln‖q

q

] ≥ nε0
) +

L−1∑
h=1

2h−1
∑

†∈{↑,↓}
P

(
C̄ †(h) ≥ nξn

8

)
. (3.6)

Note that from Lemma 2.4, we have

P
(
S(L)

q − E
[‖ln‖q

q

] ≥ ε0ξnn
) ≤ exp

(
−ε0ξn

2
n1−δ0q

)
. (3.7)

(3.7) shows that the contribution of S
(L)
q to an excess self-intersection local times is negligible when 1 − δ0q > 1 − 2

d
,

that is when qδ0 < 2
d

. It remains to show that the other terms in (3.6) are of the right order.

3.2. The bottom-level terms

Note that the bottom-level sets C↓
n depend on ξn. Also, from (3.7), we need only consider generation l < L with

2L = n1−δ0 for qδ0 < 2
d

. We establish in this section, the following result.

Lemma 3.1. Assume d ≥ 3 and q > 1. There is a constant C > 0 such that for any h ∈ {1, . . . ,L}, and 1 ≤ ξn

P

(
L∑

l=h

C̄↓
n (l) ≥ ξnn

8

)
≤ exp

(−Cξ
(2/d)(1/(q−1))
n n1−2/d

)
. (3.8)

Remark 3.2. Recall that α0 ≤ 1, and that if ξn < 1, then the terms {C↓
n (l)} vanish.
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Proof of Lemma 3.1. We first show that we can restrict the sum over i in the definition of C↓
n (l) in (3.4), to 0 > i ≥ −l.

We make use of the obvious fact that for any generation l, the total time over which run the local times of the 2l strands
is n. In other words,

2l∑
k=1

∑
z∈Zd

l
(l)
k (z) =

2l∑
k=1

n
(l)
k = n.

We consider now C↓
n (l) given in (3.4), and divide it into C I(l), where the sum over i spans {−1, . . . ,−l}, and C II(l)

for the remaining terms. In case j0 > l, then C II(l) vanishes. Note that for any h ≤ L,

L∑
l=h

C II(l) ≤
L∑

l=h

2l∑
k=1

∑
i<−l

2q

(
α0ξ

γ
n

2l

)q−1(
l
(l)
2k

(
D(l)

2k−1,i

) + l
(l)
2k−1

(
D(l)

2k,i

))

≤ 2q
L∑

l=h

(
α0ξ

γ
n

2l

)q−1 2l∑
k=1

∑
z∈Zd

l
(l)
k (z) ≤ nξnα

q−1
0

∑
l≥0

(
1

2q−1

)l

<
nξn

16
. (3.9)

We have used the condition (3.1) to obtain the last line in (3.9).
Now, we use that

P

(
L∑

l=h

C̄↓
n (l) ≥ nξn

8

)
≤ P

(
L∑

l=h

C̄ I(l) ≥ nξn

16

)
+ P

(
L∑

l=h

C̄ II(l) ≥ nξn

16

)
.

Thus, in view of (3.9), the choice of (3.1) implies that for any h, P(
∑L

l=h C̄ II(l) ≥ nξn

16 ) = 0.
We proceed now with estimating {C̄ I(l)}. We do so in three steps. In Step 1, we perform the transformation of

the terms of C↓
n (l) into independent variables Xk distributed as geometric variables. Then, Lemma A.1 provides the

following bound. For 1/2 > δ > 0,

P

(
2l∑

k=1

X̄k ≥ xn

)
≤ e−δxn/4, if 4cu2l max

(
E

[
X2

k

]1−δ
,E

[
X2

k

]) ≤ xn. (3.10)

Step 2 establishes the condition in the right-hand side of (3.10). Finally, Step 3 compares xn with the desired rate of
decay.

Step 1. Note that the volume |D(l)
k,i | times the minimal amount of time spent on sites of D(l)

k,i , that is bi , is bounded
by the total time left for a strand of random walk at generation l, so that

∣∣D(l)
k,i

∣∣ × bi ≤ n

2l
. (3.11)

Now, for fixed l and 0 > i ≥ −l, and for k = 1, . . . ,2l , we define, following (1.19),

Xk :=
(

bi

2l

n

)2/d

l
(l)
2k−1

(
D(l)

2k,i

)
and X′

k =
(

bi

2l

n

)2/d

l
(l)
2k

(
D(l)

2k−1,i

)
. (3.12)

We set X̄k = Xk − E[Xk] and X̄′
k = X′

k − E[X′
k], and using (3.4), we rewrite

{
L∑

l=h

C̄ I(l) ≥ nξn

16

}
=

{
L∑

l=h

−1∑
i=−l

2l∑
k=1

2qb
q−1
i+1

(
n

2lbi

)2/d(
X̄k + X̄′

k

) ≥ nξn

16

}
. (3.13)
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We recall an obvious general bound (for any countable set of indices A)

P

(∑
a∈A

Xa ≥
∑
a∈A

αa

)
≤

∑
a∈A

P(Xa ≥ αa). (3.14)

Now, (3.14) applied to the expression of the right-hand side of (3.13), yields

P

(
L∑

l=h

C̄ I(l) ≥ ξnn

16

)
≤ 2

L−1∑
l=1

−1∑
i=−l

P

(
2l∑

k=1

X̄k ≥ xn,l,i

)
, (3.15)

with, for 0 > i ≥ −l, and ε > 0 (using
∑

i≤0 2εi = ∑
l≥0 2−εl = (1 − 2−ε)−1)

xn,l,i = c1
1

b
q−1
i+1

(
bi2l

n

)2/d

2−ε(l−i)nξn and c1 = (1 − 2−ε)2

32 × 2q
.

The factor 2 appearing in the right-hand side of (3.15) comes from noting that X̄′
k has the same law, as X̄k .

Note that for any k = 1, . . . ,2l , P(Xk > t) ≤ P(X > t), where X = lm(D̃)/|D̃|2/d with m = n/2l , and D̃ is a
certain level set of local times l̃m independent from lm. If P0 and P̃0 are the law of the two independent local times,
then Lemma 1.2 of [4] yields

P(Xk > t) ≤ Ẽ0
[
P0

(
lm(D̃) > |D̃|2/d t

)] ≤ Ẽ0

[
exp

(
−κ

|D̃|2/d t

|D̃|2/d

)]
≤ e−κt . (3.16)

Step 2. First, by Lemma A.2, we have

E
[
X2

k

] ≤ C′
dψ2

d

(
n

2l

)(
bi2l

n

)4/d

e−κdbi . (3.17)

When we recall that bi+1 = 2bi (see (3.2)), (3.10) requires that for some constant K , and 0 < δ < 1/2

(
ψ2

d

(
n

2l

)(
bi2l

n

)4/d

e−κdbi

)1−δ

≤ K
1

b
q−1
i

(
bi2l

n

)2/d

2−ε(l−i)nξn. (3.18)

We use now that ψ2
d (k) ≤ k (see (A.3)), and (3.18) follows as soon as

b
q−1+(2/d)(1−2δ)
i e−(1−δ)κdbi ≤

(
n

2l

)(2/d)(1−2δ)

2−ε(l−i)ξn. (3.19)

Recall that bi ≥ 1, and the left-hand side of (3.19) is bounded from above and below by constants, when δ is small
enough. Since 2l ≤ n1−δ0 with qδ0 < 2

d
, we have that (3.19) holds with as soon as ξn ≥ 1 (and choosing δ < 1/2 and

ε small enough). In particular, nothing prevents ξn to be as large as possible here.
Step 3. Lemma 3.1 is proved if we show that for some constant K > 0, and any i and l,

ξ
(2/d)γ
n n1−2/d ≤ Kxn,l,i

(
recall that γ = 1

q − 1

)
. (3.20)

Condition (3.20) is the most critical to check. It requires (recalling that 0 > i ≥ −l)

2−i(q−1)

(
α0ξ

γ
n 2l+i

n

)2/d

2−ε(l−i)n ≥ ξ
(2/d)γ
n n1−2/d ⇐� (l + i)

2

d
− i(q − 1) > ε(l − i), (3.21)

which holds if 2ε < min(q − 1, 2
d
). �
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3.3. The top-level terms

Lemma 3.3. Assume d ≥ 3 and 1 < q < qc(d). There is a constant C > 0, and δ > 0, such that for any h ∈ {1, . . . ,L}
and ξn ≥ n−δ

P

(
L∑

l=h

C̄↑
n (l) ≥ ξnn

8

)
≤ exp

(−Cξ
(2/d)(1/(q−1))
n min

(
1, ξ

2/d
n

)
n1−2/d

)
. (3.22)

Proof. Following [3], we take two sequences of positive numbers {ai, i = 1, . . . ,Mn}, and for each i {p(i)
l , l =

h, . . . ,L − 1} (to be made explicit later) with

Mn∑
i=1

ai = 1, and for each i

L−1∑
l=h

p
(i)
l = 1. (3.23)

For any h ≤ L, we have

P

(
L∑

l=h

C̄↑
n (l) ≥ ξnn

8

)

≤ 2
L∑

l=1

∑
i≥1

P

(
2l∑

k=1

1G(l)
2k,i

l
(l)
2k−1

(
D(l)

2k,i

) − E
[
1G(l)

2k,i

l
(l)
2k

(
D(l)

2k−1,i

)] ≥ n

8 · 2qβ
q−1
i+1

p
(i)
l ai

)
. (3.24)

We proceed as in the proof of Lemma 3.1 with Steps 1–3.
Step 1. We first bound |D(l)

2k,i |. Note that on G(l)
2k,i for any k, i, we have

∣∣D(l)
2k,i

∣∣ ≤ min

(
n/2l

βiξ
γ
n

,
n(2κ(q, d) + ξn)

β
q
i ξ

γ+1
n

)
≤ n

βiξ
γ
n min(1, ξn)

min

(
1

2l
,

2κ(q, d) + 1

β
q−1
i

)
. (3.25)

We used in (3.25) that

2κ(q, d) + ξn

ξn

≤ (
2κ(q, d) + 1

)max(ξn,1)

ξn

= 2κ(q, d) + 1

min(ξn,1)
.

In order to use Lemma A.1, we need to normalize l
(l)
2k (D(l)

2k−1,i ) with a constant smaller than |D(l)
2k−1,i |−2/d . We choose,

for l and i fixed,

ζ
(l)
i =

(
βiξ

γ
n min(1, ξn)

n

)2/d
{(

2κ(q, d) + 1
)−2/d

β
(2/d)(q−1)
i for l ≤ l∗i ,

2(1/d)l for l > l∗i ,
(3.26)

with l∗i is such that 2l∗i = (2κ(q, d) + 1)−2β
2(q−1)
i . As in (3.16), we set

Xk = ζ
(l)
i 1{G(l)

2k,i }l
(l)
2k−1

(
D(l)

2k,i

)
and P(Xk > t) ≤ exp(−κt).

Using (3.25), and the notation X̄k for Xk − E[Xk], we have

P

(
L∑

l=h

C̄↑
n (l) ≥ ξnn

8

)
≤ 2

L∑
l=h

∑
i≥1

P

(
2l∑

k=1

X̄k ≥ xn,l,i

)
with xn,l,i = nζ

(l)
i

16(2q + 1)β
q−1
i+1

aip
(i)
l . (3.27)

Step 2. We establish now a condition equivalent to (3.10).

2l(1+δ0(2/d))E
[
X2

k

] ≤ Kξ
(2/d)γ
n min

(
1, ξ

2/d
n

)
n1−2/d (3.28)
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for some constant K . Thus, when l ≤ l∗i , and for some constant C

2l(1+δ0(2/d))E
[
X2

k

] ≤ 2l2lδ0(2/d)

(
β

q
i

ξ
γ
n

n

)4/d

min
(
1, ξ

4/d
n

)
Cdψ2

d

(
n

2l

)
e−κdξ

γ
n βi

≤ Cd min
(
1, ξ

4/d
n

)n1−2/d

ξ
4/d
n

(
2l

n
ψ2

d

(
n

2l

))(
2lδ0

n

)2/d

sup
x>0

{
x4q/d exp(−κdx)

}
≤ Cn1−2/d−(2/d)(1−δ0(1−δ0)). (3.29)

In this case, (3.28) holds if for some constant C

ξ
γ
n min(1, ξn) ≥ C

n(1−δ0(1−δ0))
. (3.30)

(3.30) holds when ξn ≥ n−δ for δ > 0 small enough. When l > l∗i , for a constant C′

2l(1+δ0(2/d))E
[
X2

k

] ≤ 2l2lδ0(2/d)

(
βi

ξ
γ
n

n

)4/d

min
(
1, ξ

4/d
n

)
Cdψ2

d

(
n

2l

)
e−κdξ

γ
n βi 2(2/d)l

≤ Cdn1−2/d min
(
1, ξ

4/d
n

)(2l

n
ψ2

d

(
n

2l

))(
2l(1+δ0)

n

)2/d

sup
x>0

{
x4/d exp(−κdx)

}
≤ C′ min

(
1, ξ

4/d
n

)
n1−2/d−(2/d)δ2

0 . (3.31)

When ξn ≥ 1, (3.28) follows from (3.29) and (3.31). When ξn < 1, we need in addition that ξ
γ−1
n ≥ n−δ2

0 .
Step 3. We show that we can choose p

(i)
l and ai such that for any i, l (and n large enough), there is a constant c,

independent on i, l and n, and

nζ
(l)
i

β
q−1
i+1

p
(i)
l ai ≥ cn1−2/dξ

(2/d)γ
n min

(
1, ξ

2/d
n

)
. (3.32)

It is possible to choose a normalizing constant a0 (which depends only on q), such that for i = 1, . . . ,Mn,
∑

i≥1 ai ≤ 1,
where

ai = a0

(
β

q−1
i+1

β
(2/d)q
i

)1/2

= a02(q−1)/22−αi, with α := 1

2

(
1 − q

qc(d)

)
. (3.33)

Indeed, the condition q < qc(d) implies that α is positive, and the series in (3.33) is convergent.
Now, for a fixed i ≥ 1, we turn to the choice of {p(i)

l , l ≥ 1}. We will choose later two constants p∗ and p̄ such that
for l < l∗i ,

p
(i)
l = p∗2−αi, (3.34)

whereas for l > l∗i ,

p
(i)
l = p̄

β
q−1
i+1

β
2/d
i

2αi

2l/d
≤ p̄

β
q−1
i+1

β
2/d
i

(
β

(2/d)q
i

β
(q−1)

i+1

1

2l∗i /d

)1/2 2(q−1)/2

2l/(2d)

≤ p̄

(
β

q−1
i+1

β
(2/d)q
i

2q−1

2(l−l∗i )/d

)1/2

≤ p̄
2(q−1)/2

2(l−l∗i )/(2d)
.
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We proceed now to normalize {p(i)
l , l ≥ 1}. We need to choose p∗ and p̄ such that for each i,

∑
l p

(i)
l ≤ 1. Recall that

there is c1 such that l∗i ≤ c1i. Now, note that

∑
l

p
(i)
l ≤ p∗l∗i 2−αi + p̄2(q−1)/2

∑
l>l∗i

2−(l−l∗i )/(2d)

≤ p∗c1i2
−αi + p̄2(q−1)/2

∑
l>0

1

2l/(2d)

≤ c1p
∗ sup

x>0

{
x2−αx

} + p̄
2(q−1)/2

21/(2d) − 1
. (3.35)

It is important to see that p∗ and p̄ can be chosen independently of i. Now, we check (3.32). For l < l∗i ,

nζ
(l)
i

β
q−1
i+1

p
(i)
l ai = a0p

∗ nζ
(l)
i

β
2q/d
i

= a0p
∗ξ (2/d)γ

n min
(
1, ξ

2/d
n

)
n1−2/d . (3.36)

For l ≤ l∗i ,

nζ
(l)
i

β
q−1
i+1

p
(i)
l ai = a0p̄2(q−1)/2 nζ

(l)
i

2l/dβ
2/d
i

= a0p̄2(q−1)/2ξ
(2/d)γ
n min

(
1, ξ

2/d
n

)
n1−2/d . (3.37)

This concludes the proof of Lemma 3.3. �

3.4. The lower bound in (1.5)

As in inequalities (80) and (81) of [5], the lower bound follows from Hölder’s inequality. Indeed, it is immediate that
‖ln‖q

q/n ≥ (n/|Rn|)q−1, where Rn is the set of visited sites up to time n. Thus, when n is large enough

|Rn| ≤ n

(2κ(q, d) + ξn)γ
�⇒ ‖ln‖q

q ≥ n
(
2κ(q, d) + ξn

) ≥ E
[‖ln‖q

q

] + ξnn.

Now, forcing the walk to stay in a ball B(0, rn) centered at the origin, and of radius rn satisfying rd
n = n/(2κ(q, d) +

ξn)
γ implies that |Rn| ≤ n/(2κ(q, d) + ξn)

γ . The cost of this constraint is exp(−c n

r2
n
), which yields the lower bound

in (1.5), when we recall that ξn ≥ 1.

3.5. Proof of Theorem 1.1

We collect the estimates of the previous sections in order to prove (1.5) allowing ξ to depend on n, as in Remark 1.5.
When ξn ≥ 1, using the decomposition (3.6), with the estimates (3.7), (3.8) and (3.22), we obtain the upper bound

in (1.6). The lower bound in (1.6) follows from Section 3.4.
When ξn < 1, then Lemma 2.4 imposes that ξn ≥ n−δ with 0 ≤ δ < δ0/2, whereas Lemma 3.3 holds for some

positive δ. Thus, we conclude that Remark 1.5 holds with (1.10). Note that a lower bound is missing in this case.

4. The super-critical regime

We consider here q > qc(d) = d
d−2 . The main result of this section is to show that only sites of {z: ln(z) ≥ (nξn)

1/q/A}
(for some A > 0), contribute to realize the excess self-intersection, at a cost given in (1.7).
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The proof of Theorem 1.2 relies on the following estimates. For any ε with 0 < ε < 1/q , and any δ, with 0 < δ <

1/3, and two constants A > A0, we write

P
(‖ln‖q

q − E
[‖ln‖q

q

] ≥ ξnn
) ≤ P

(∑
z

1
{
z: ln(z) < ξ

1/q
n n1/q−ε

}
l
q
n (z) − E

[‖ln‖q
q

] ≥ nδξn

)

+ P

(∑
z

1

{
ξ

1/q
n n1/q−ε < ln(z) ≤ (ξnn)1/q

A

}
l
q
n (z) ≥ nδξn

)

+ P

(∑
z

1

{
(ξnn)1/q

A
< ln(z) ≤ (ξnn)1/q

A0

}
l
q
n (z) ≥ nξn(1 − 3δ)

)

+ P

(∑
z

1

{
ln(z) >

(ξnn)1/q

A0

}
l
q
n (z) ≥ nξnδ

)
. (4.1)

In Section 4.1, we show that the contribution of {z: ln(z) < ξ
1/q
n n1/q−ε}, for any ε > 0, is negligible. More precisely,

we establish that there is ε′ > 0 such that for any δ > 0, and n large enough

P

(∑
z∈Zd

1
{
z: ln(z) < ξ

1/q
n n1/q−ε

}
l
q
n (z) − E

[‖ln‖q
q

] ≥ nδξn

)
≤ exp

(−ξ
1/q
n n1/q+ε′)

. (4.2)

The proof of (4.2) is similar to that of Theorem 1.1.
In Section 4.3, we show the following lemma.

Lemma 4.1. Assume d ≥ 3 and q > qc(d). There is constants A0 and κd , such that for ε > 0, and any ξn > 0, and
any integer n,

P

(∑
z∈Zd

1

{
ξ

1/q
n n1/q−ε < ln(z) ≤ (ξnn)1/q

A0

}
ln(z)

q ≥ nξn

)
≤ exp

(−κdξ
1/q
n n1/q

)
. (4.3)

Furthermore, there is a constant C > 0 such that for δ > 0, and A > A0

P

(∑
z∈Zd

1

{
ξ

1/q
n n1/q−ε < ln(z) ≤ (ξnn)1/q

A

}
l
q
n (z) ≥ nδξn

)
≤ exp

(−CAδ1−2/dn1/q
)
. (4.4)

Finally, since we have a transient random walk, it is obvious that for c > 0,

P

(∑
z

1

{
ln(z) ≥ (ξnn)1/q

A0

}
l
q
n (z) ≥ nξnδ

)
≤ P

(
∃z: ln(z) ≥ (ξnn)1/q

A0

)
≤ ne−c(ξnn)1/q/A0 .

The lower bound comes from requiring that the origin is visited (nξn)
1/q times.

4.1. The contribution of {z: ln(z) < ξ
1/q
n n1/q−ε}

The first step is to perform a approximation of ‖ln‖q
q over {z: ln(z) < ξ

1/q
n n1/q−ε} as in Section 2. This is explained

in Remark 2.1.
To allow for the possibility of ξn to depend on n, we need to trace the occurrences of ξn, and in this respect, it is

useful to modify the subdivision chosen in (3.2). We choose again α0 as in (3.1), and for i ≥ −j0 we keep βi = α02i ,
and

∀i < 0 bi = ξ
1/(q−1)
n βi and ∀i ≥ 0 bi = ξ

1/q
n βi . (4.5)
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Recall that when ξn < 1, then D(l)
k,i = ∅ for i < 0, and C↓

n vanishes. However, when ξn ≥ 1, for each k and l, there is

an overlap between D(l)
k,−1 and D(l)

k,0 since ξ
1/q
n ≤ ξ

1/(q−1)
n .

For a small ε > 0, the subdivision {bi} covers [1, ξ
1/q
n n1/q−ε]. As in the proof of Theorem 1.1, we start with (3.6).

We first treat C↑
n (l).

Lemma 4.2. Assume d ≥ 3, and q > qc(d). We consider a sequence {ξn, n ∈ N} such that for some δ > 0 small
enough ξn ≥ n−δ . There is a constant ε′ > 0, such that for any h ∈ {1, . . . ,L} and for n large enough

P

(
L∑

l=h

C̄↑
n (l) ≥ ξnn

8

)
≤ exp

(−ξ
1/q
n min

(
1, ξ

2/d
n

)
n1/q+ε′)

. (4.6)

When q = qc(d), then for any h ∈ {1, . . . ,L}, and n large enough

P

(
L∑

l=h

C̄↑
n (l) ≥ ξnn

8

)
≤ exp

(−ξ
1/q
n min

(
1, ξ

2/d
n

)
n1/q−ε′)

. (4.7)

Remark 4.3. When 1 > ξn ≥ n−δ with δ small, then the terms {C↓
n (l), l ≤ L} vanish, whereas S

(L)
q is negligible.

Indeed, according to Lemma 2.4, it suffices to show that

ξnn
1−qδ0 ≥ ξ

1/q+2/d
n n1/q+ε′

,

which holds when ξn > 1/
√

n (which we always assume).
When ξn ≥ 1, and for a choice of δ0 < 2/(dq), we have ξnn

1−qδ0 ≥ (ξnn)1/q so that by (2.23), we can neglect S
(L)
q .

Also, recall that we can assume ξn ≤ nq−1 (see Remark 1.3). This latter bound is equivalent to

ξ
(2/d)(1/(q−1))
n n1−2/d ≥ (ξnn)1/q .

Now, (3.8) of Lemma 3.1 allows us to neglect the contribution of {C↓
n (l), l ≤ L}.

Proof of Lemma 4.2. We proceed with Steps 1–3 as in the proofs of Lemmas 3.1 and 3.3.
Step 1. The first difference with the proof of Theorem 1.1, is the choice of the subdivision {bi} of (4.5). Note that

the bound on |D(l)
k,i | of (3.25) becomes

∣∣D(l)
k,i

∣∣ ≤ (
2κ(q, d) + 1

) n

min(1, ξn)β
q
i

.

This implies a new definition for ζ
(l)
i . Also, note that the choice (3.33) for ai is not possible since α < 0 in this case.

Thus, we set for i ∈ N, and δ > 0 to be chosen later,

ai = (
1 − 2−δ

)
2−δi , p

(i)
l = (

1 − 2−δ
)
2−δl and ζ

(l)
i =

(
β

q
i

n
min(1, ξn)

)2/d

. (4.8)

Accordingly, inequality (3.27) holds, but with

xn,l,i = nξ
1/q
n min(1, ξ

2/d
n )ζ

(l)
i

16(2q + 1)β
q−1
i+1

p
(i)
l ai

= c2−δ(i+l)β
q(2/d)−(q−1)
i ξ

1/q
n min

(
1, ξ

2/d
n

)
n1−2/d

= c2−δ(i+l)ξ
1/q
n min

(
1, ξ

2/d
n

)
n1/qc(d)β

1−q/qc(d)
i . (4.9)
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Note that q > qc(d) implies that xn,l,i is small when βi is large.
Step 2. We establish that for δ > 0 small 2l(1+δ)E[X2

k ] ≤ xn,l,i . This latter inequality is equivalent to

2l(1+δ)ζ
(l)
i ψ2

d

(
n

2l

)
e−κdξ

1/q
n βi ≤ c

nξ
1/q
n

β
q−1
i

2−δ(i+l), (4.10)

which is equivalent to(
2l

n
ψ2

d

(
n

2l

))
2δ(i+2l)β

q2/d+(q−1)
i e−κdξ

1/q
n βi ≤ cn2/dξ

1/q
n min

(
1, ξ

2/d
n

)
. (4.11)

Since ψ2
d (k) ≤ k when d ≥ 3, (4.11) holds for any βi , δ > 0 small enough, and ξn ≥ n−δ .

Step 3. We distinguish the cases q > qc(d) and q = qc(d).
When q > qc(d), then we need to show that

xn,l,i ≥ ξ
1/q
n min

(
1, ξ

2/d
n

)
n1/q+ε′

using (4.9), this is equivalent to

n1/qc(d)β
1−q/qc(d)
i 2−δ(i+l) ≥ cn1/q+ε′

. (4.12)

So (4.12) holds if for some ε′ > 0

2δ(i+l)β
q/qc(d)−1
i ≤ n1/qc(d)−1/q−ε′

. (4.13)

Since βi ≤ n1/q−ε , (4.13) holds for δ and ε′ both small enough.
When q = qc(d), we need to show that

xn,l,i ≥ ξ
1/q
n min

(
1, ξ

2/d
n

)
n1/qc(d)−ε′

.

This is obvious as soon as nε′ ≥ 2δ(l+i), which holds for ε′ > 0, when δ is small enough. �

4.2. Proof of Lemma 1.4

Since the proof of Lemma 1.4 is similar to the proof given in Section 4.1, we do not give all details, but only focus
on the differences. When dealing with {‖Θnb(ln)‖q

q ≥ na}, with a > 1, our starting point is inequality (2.4) of Corol-

lary 2.2 with M = nb . We choose mn = E[‖ln‖q
q ]+εna , for ε < 1/2, and εn = (1−ε)na . We use the sets {D(l)

k,i , i ∈ N}
of Section 4.1. However, {bi, i ∈ N} only cover [1, nb], and ξn of (3.2) is set to 1. This latter choice implies that there
is no term C↓

n (l). Note that the bootstrap bound of (2.5) defining G(l)
k,i is here {|D(l)

k,i | ≤ na/β
q
i }.

Now, we proceed as in the proof of Lemma 1.4. To see that S
(L)
q has a negligible contribution, note that for a > 1

and any ε > 0, (2.23) implies that

P
(
S(L)

q (n) − E
[‖ln‖q

q

] ≥ εna
) ≤ e−εna−qδ0

.

Since qδ0 < 2/d , it is enough (and easy) to check that for a > 1 and q ≥ qc(d)

a − 2

d
>

(
1 − 2

d

)
a −

(
q

qc(d)
− 1

)
b.

The main differences with the proof of Section 4.1, is ζ
(l)
i and xn,l,i which read here

ζ
(l)
i = β

(2/d)q
i

n(2/d)a
and xn,l,i = naζ

(l)
i

2(2q + 1)β
q−1
i+1

p
(i)
l ai . (4.14)
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Step 2 (similar to (4.10)) is easy to check here, and we omit to do it.
To check Step 3, i.e. the condition corresponding to (3.20), we recall the definition of ai and p

(i)
l given in (4.8),

and use that βi ≤ nb (and q ≥ qc(d)), to obtain

xn,l,i = c2−δ(i+l)na(1−2/d)β
1−q/qc(d)
i ≥ c2−δ(i+l)na(1−2/d)−b(q/qc(d)−1). (4.15)

In conclusion, we obtain for any ε > 0, and δ > 0 small enough

P

(
L∑

l=h

C̄↑
n (l) ≥ na

)
≤ exp

(−nζ(q,a,b)−ε
)

with ζ(q, a, b) = a

(
1 − 2

d

)
− b

(
q

qc(d)
− 1

)
. (4.16)

4.3. The contribution of {z: ξ
1/q
n n1/q−ε < ln(z)}

In this section, we prove Lemma 4.1. We deal with sites whose local times is close to n1/q . We follow now the proof
of Lemma 3.1 of [2]. Let {αi, i = 1, . . . ,M} be a subdivision of [ 1

q
− ε, 1

q
], to be chosen later. We justify later in the

proof, the choice of

A0 = exp

(
2

(√
q

qc(d)
− 1

))
. (4.17)

Also, let {pi, i = 0, . . . ,M} be positive number summing up to 1, and define for i < M , and A ≥ A0

Di = {
z: ξ

1/q
n nαi ≤ ln(z) < ξ

1/q
n nαi+1

}
and αM = 1

q
− log(A)

log(n)
. (4.18)

Now, as in (3.5) of [2] (see also Lemma 3.1 of [5]), we have for any δ > 0

P

( ∑
z∈⋃ Di

l
q
n (z) ≥ nδξn

)
≤ sup

0≤i<M

{
Ci(n) exp

(−κdξ
1/q
n δ1−2/dnζi p

1−2/d
i

)}
, (4.19)

with an innocuous combinatorial term Ci(n) independent on ξn. For 0 ≤ i < M ,

ζi = αi +
(

1 − 2

d

)
(1 − qαi+1) = 1

q
+ q

qc

(
1

q
− αi+1

)
−

(
1

q
− αi

)
. (4.20)

Set a = √
q/qc > 1, and for i < M

1

q
− αi = a

(
1

q
− αi+1

)
, so that

1

q
− αi = aM−i

(
1

q
− αM

)
= aM−i log(A)

log(n)
. (4.21)

Now, M is chosen such that α0 = 1
q

− ε, that is ε log(n) = aM log(A). Also, we have ζi = 1
q

+ (a − 1)( 1
q

− αi), and
we choose (with a normalizing constant p̄ depending only on a)(

pi

p̄

)1−2/d

= e−(a−1)aM−i

and nζi p
1−2/d
i = n1/q p̄1−2/de((log(A)−(a−1))aM−i ). (4.22)

We need to choose log(A0) > (a − 1), and our arbitrary choice of (4.17) achieves this goal. Thus, the smallest value
of nζi p

1−2/d
i is n1/q p̄A exp(1 − a). When we choose A = A0, and δ = 1, we obtain (4.3), whereas when we choose

A > A0, and δ < 1, we reach (4.4).

5. About the CLT

It will be convenient to use, in this section, the notation Lq(n) = ‖ln‖q
q .
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5.1. Expectation estimates

Proof of Lemma 1.8. Let n1 and n be two integers with n1 ≤ n, and let n2 = n − n1. Taking expectation in (2.13)
yields

E
[
S(1)

q

] ≤ E
[

Lq(n)
] ≤ E

[
S(1)

q

] + E
[

I1(n1, n2)
]
. (5.1)

We choose the subdivision {bi, i ∈ N} with bi = i, and compute E[I1(n1, n2)]. Now, using inequality (A.4) of
Lemma A.2, as well as (2.1) we have constants cd such that, when calling l

(1)
n1 = l

(1,1)
]0,n1] and l

(2)
n2 = l

(1,2)
[0,n2[, and us-

ing that the local time of a site increases with the length of the time-period,

E
[

I1(n1, n2)
] ≤ 2q

∑
z∈Zd

∑
i≥1

b
q−1
i+1

(
l(1)
n1

({
z: l(2)

n2
(z) ≥ bi

}) + l(2)
n2

({
z: l(1)

n1
(z) ≥ bi

}))

≤ Cdψd

(
max(n1, n2)

)∑
i≥1

(i + 1)q−1e−κd i ≤ cdψd

(
max(n1, n2)

)
. (5.2)

Thus, if we call a(n) = E[Lq(n)], and use (5.1) and (5.2)

a(n1) + a(n2) ≤ a(n) ≤ a(n1) + a(n2) + cdψd

(
max(n1, n2)

)
. (5.3)

We fix an integer n, and for any k (going to infinity), we perform its euclidean division k = mkn+ rk with 0 ≤ rk < n,
and obtain from (5.3)

mka(n) ≤ mka(n) + a(rk) ≤ a(mkn + rk) ≤ a(mkn) + a(rk) + cdψd(mkn). (5.4)

Now, we can use the almost dyadic decomposition of mk , so that if L(mk) denote the integer part of log2(mk)+ 1, we
have

a(mkn) ≤ a
(
m

(1)
1 n

) + a
(
m

(1)
2 n

) + cd

(
ψd

(
m

(1)
1 n

) + ψd

(
m

(1)
2 n

))

≤ mka(n) + cd

L(mk)∑
l=1

2l∑
j=1

ψd

(
m

(l)
j n

)

≤ mka(n) + 2cd

L(mk)∑
l=1

2lψd

(
mk

2l
n

)
≤ mka(n) + 4cdψd(n)mk. (5.5)

The last line of (5.5) is obtained after a simple computation that we omit. Thus, we are left with

nmk

nmk + rk

a(n)

n
≤ a(k)

k
≤ nmk

nmk + rk

a(n)

n
+ a(rk)

k
+ 4cdψd(n)mk

mkn + rk
. (5.6)

Now, we take first the limit k = mkn + rk to infinity while n is fixed. We obtain

a(n)

n
≤ lim inf

a(k)

k
≤ lim sup

a(k)

k
≤ a(n)

n
+ 4cdψd(n)

n
. (5.7)

Then, we take n to infinity to obtain the existence of a limit for a(k)/k, say κ(q, d). Looking at (5.7) with an identifi-
cation of the limit, we have, for any n

E
[

Lq(n)
] ≤ nκ(q, d) ≤ E

[
Lq(n)

] + 4cdψd(n).

and this is (1.21). �



272 A. Asselah

5.2. Variance estimates

We estimate now the variance of Lq(n), and prove (1.22) and (1.23) of Theorem 1.9.
Step 1. We show first that (1.22) holds in any dimension greater or equal to 3. To estimate the variance of Lq(n),

we use the following simple fact. If X,Y,Z are random variables, and ε > 0, then

Y ≤ X ≤ Y + Z �⇒ var(X) ≤ (1 + ε)var(Y ) +
(

1 + 1

ε

)
E

[
Z2]. (5.8)

Indeed, we have |X − E[Y ]| ≤ |Y − E[Y ]| + Z (note that Z ≥ 0), and

var(X) = inf
c

E
[
(X − c)2] ≤ E

[(
X − E[Y ])2] ≤ (1 + ε)E

[(
Y − E[Y ])2] +

(
1 + 1

ε

)
E

[
Z2].

Thus, we have from (2.13) and (5.8)

S1 ≤ Lq(n) ≤ S1 + I1(n1, n2) �⇒ var
(

Lq(n)
) ≤ (1 + ε)var(S1) +

(
1 + 1

ε

)
E

[
I 2

1 (n1, n2)
]
. (5.9)

Similarly as in (5.2), we have a constant Cd such that

E
[

I 2
1 (n1, n2)

] ≤ Cdψ2
d

(
max(n1, n2)

) ≤ Cdψ2
d (n), (5.10)

where we only used that ψd is increasing. Thus,

var
(

Lq(n)
) ≤ (1 + ε)

(
var

(
Lq(n1)

) + var
(

Lq(n2)
)) +

(
1 + 1

ε

)
Cdψ2

d (n). (5.11)

Now, when we choose the almost dyadic decomposition of Section 3, (2.1) and using induction, we have

var
(

Lq(n)
) ≤ (1 + ε)L

(
2L∑

k=1

var
(

Lq

(
n

(L)
k

))) +
(

1 + 1

ε

)
C′

d

2L∑
k=1

(1 + ε)k−12k−1ψ2
d

(
n

2k−1

)
. (5.12)

Recall that ψ2
d (k) ≤ k for d ≥ 3. Thus, when reaching L = �log2(n)�, var(Lq(n

(L)
k )) are of order 1, and there is a

constant C, such that

var
(

Lq(n)
) ≤ C(1 + ε)L2L + C′

d

(
1 + 1

ε

)
(1 + ε)L

ε
n. (5.13)

Choosing ε = 1/L, we obtain (1.22) in d ≥ 3.
Step 2. We consider now d ≥ 4. We show that there is a constant Cd such that

var
(

Lq(n)
) ≤ Cdn. (5.14)

We go back to (5.11) and optimize over ε to obtain

var
(

Lq(n)
) ≤ (

var
(

Lq(n1)
)) + var

(
Lq(n2)

) + C′
dψ2

d

(
max(n1, n2)

)
+ 2

((
var

(
Lq(n1)

) + var
(

Lq(n2)
))

C′
dψ2

d

(
max(n1, n2)

))1/2
. (5.15)

Now, choose first n = 2m, and n1 = n2 = 2m−1, and set ak = var(Lq(2k))2−k . Then, using (1.22) to estimate the
cross-product in (5.15), we have

am ≤ am−1 + rm, with rm = C′
dψ2

d (2m)

2m
+ 2

(
C′

dcdm2ψ2
d (2m)

2m

)1/2

. (5.16)
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When d ≥ 4, ψ2
d (2m) ≤ Cm2 and {rm,m ∈ N} defines a convergent series. Thus,

am ≤ a0 +
m∑

k=1

rk ≤ cd := a0 +
∞∑

k=1

rk �⇒ var
(

Lq

(
2m

)) ≤ cd2m. (5.17)

Now, write any integer n in terms of its binary decomposition n = 2m1 + · · · + 2mk , with 0 ≤ m1 < m2 < · · · < mk .
We call now n1 = 2mk , and n2 = n − n1, and note that n1 ≥ n2. In d ≥ 4, we use the bound ψd(k) ≤ log(k) in (5.15),
and the estimate (1.22) in bounding the term var(Lq(n1)) + var(Lq(n2)) which appears in the square root in (5.15).
Thus, we obtain that there exists a constant c independent of n such that

var
(

Lq(n)
) ≤ var

(
Lq(n1)

) + var
(

Lq(n2)
) + cm2

k

√
2mk . (5.18)

By iterating (5.18), we obtain using (5.17)

var
(

Lq(n)
) ≤

k∑
j=1

var
(

Lq

(
2mj

)) + c

k∑
j=1

m2
j

√
2mj ≤ cd

k∑
j=1

2mj + c

k∑
j=1

m2
j√

2mj
2mj ≤ (cd + cc3)n, (5.19)

where c3 is a constant such that for any m, m ≤ c3
√

2m.
Step 3. We show now how to obtain (1.23). Note first that using similar arguments as those leading to (5.9) and

(5.15), we have

(
var

(
Lq(n1)

) + var
(

Lq(n2)
)) ≤ var

(
Lq(n)

) + C′
dψ2

d

(
n

2

)
+ 2

(
var

(
Lq(n)

)
C′

dψ2
d

(
n

2

))1/2

. (5.20)

Thus, using (1.22) and (5.20), there is c1 > 0 such that for any integer j ,

∣∣var
(

Lq

(
2j

)) − 2 var
(

Lq

(
2j−1))∣∣ ≤ c1j

√
2j . (5.21)

Now, we consider m, l, i integers, such that 2m = 2l2i , and consider for j = 1, . . . , l the system of inequalities obtained
from (5.21)∣∣2j var

(
Lq

(
2i+l−j

)) − 2j−1 var
(

Lq

(
2i+l−j+1))∣∣ ≤ c1(i + l − j + 1)2j−1

√
2i+l−j+1. (5.22)

By summing (5.22) for j = 1, . . . , l, and using the triangle inequality, we obtain

∣∣2l var
(

Lq

(
2i

)) − var
(

Lq

(
2m

))∣∣ ≤ c1

√
2i+l

l∑
j=1

(i + l − j + 1)
√

2j−1. (5.23)

By dividing both sides of (5.23) by 2m, we have a constant c2 such that∣∣∣∣var(Lq(2i ))

2i
− var(Lq(2m))

2m

∣∣∣∣ ≤ c2i
√

2l

√
2i+l

. (5.24)

In (5.24), we take first the limit l to infinity (recall that 2m = 2l2i ), then i to infinity to conclude that there exists

lim
n→∞ var

(
Lq

(
2n

))
/2n = v(q, d) and

∣∣∣∣var(Lq(2n))

2n
− v(q, d)

∣∣∣∣ ≤ c2n√
2n

. (5.25)

It is easy to conclude (1.23). Indeed, for any integer n, consider its dyadic decomposition, say n = 2m1 + · · · + 2mk ,
and note that using (5.20) and Step 2, we can improve (5.6) into∣∣∣∣∣var

(
Lq(n)

) −
k∑

j=1

var
(

Lq

(
2mj

))∣∣∣∣∣ ≤ c1

k∑
j=1

mj

√
2mj , (5.26)
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and (5.25) allows us to conclude.

5.3. The central limit theorem

The aim of this section is to prove (1.24). We use the notations of Section 3. We fix δ1 > 0 small, and let Ln be the
integer part of log2(

√
nn−δ1). Note that this choice 2Ln ∼ √

n/nδ1 is different from the choice of Section 2.2 where
2L ∼ n1−δ0 for δ0 smaller that 2/(dq).

If we define R(n) = Lq(n) − S
(Ln)
q , then (1.16) yields

0 ≤ R(n) ≤
2Ln∑
l=1

Il . (5.27)

By subtracting to Lq(n) its average, we obtain

Lq(n) − E
[

Lq(n)
] =

2Ln∑
k=1

Z
(Ln)
k + R(n) − E

[
R(n)

]
, (5.28)

with Z
(Ln)
k = L(k)

q (n
(Ln)
k ) − E[L(k)

q (n
(Ln)
k )]. As a first step, we show that R(n)/

√
n vanishes in law. More precisely,

we show that

lim
n→∞

E[R(n)]√
n

= 0. (5.29)

Then, as a second step, we invoke the CLT for triangular arrays (see, for instance, [7], p. 310), since we deal with
independent random variables {Z(Ln)

k , k = 1, . . . ,2Ln}. The CLT states that for a standard normal variable Z

∑2Ln

k=1 Z
(Ln)
k√∑2Ln

k=1 var(Z(Ln)
k )

law−→ Z, (5.30)

provided that Lindeberg’s condition holds. This latter condition reads in our context

lim
n→∞ sup

k≤2Ln

E[1{|Z(Ln)
k |>ε

√
n}(Z

(Ln)
k )2]

E[(Z(Ln)
k )2]

= 0. (5.31)

Assuming (5.29) and (5.31) hold, we rely on Lemma 1.8 to replace E[Lq(n)] by nκ(q, d) at a negligible cost, and

rely on Theorem 1.9 to replace the
∑

k var(Z(Ln)
k ) by nv(q, d). Indeed, note that by (1.23)

∣∣var
(
Z

(Ln)
k

) − n
(Ln)
k v(q, d)

∣∣ ≤ c(q, d) log
(
n

(Ln)
k

)√
n

(Ln)
k , (5.32)

so that by summing over k = 1, . . . ,2Ln ,

∣∣∣∣∣
2Ln∑
k=1

var
(
Z

(Ln)
k

) − nv(q, d)

∣∣∣∣∣ ≤ c(q, d)2Ln

√
n

2Ln
log

(
n

2Ln

)
≤ c(q, d)n3/4 log(

√
nnδ1)√

nδ1
. (5.33)

Step 1. We estimate the expectation of R(n). From (1.17) and Lemma A.2, with bi = i,

E[Il] ≤
2l∑

k=1

∑
i≥0

2q(i + 1)q−1e−κd iCdψd

(
n

(l)
k

) ≤ C′
d2l log

(
n

2l

)
. (5.34)
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Thus, E[R(n)] ≤ C′2Ln log(n) ≤ C′ log(n)
√

n

nδ1
and limn→∞ E[R(n)√

n
] = 0.

Step 2. To check Lindeberg’s condition, we start with estimating P(|Z(Ln)
k | ≥ ε

√
n). To simplify notation, we set

nk = n
(Ln)
k , and we note that

P
(∣∣Z(Ln)

k

∣∣ ≥ ε
√

n
) = P

(∣∣Lq(nk) − E
[

Lq(nk)
]∣∣ ≥ ξnk

nk

)
and ξnk

= ε
√

n

nk

≥ ε

2nδ
k

, (5.35)

with δ = 2δ1
1+2δ1

. Thus, Lindeberg’s condition is written as a large deviation for Lq(nk). Note that nk is almost the scale
of the CLT. We now use Remark 1.5, and Lemma A.3 of the Appendix. We apply (1.10), (1.11) of Remark 1.5, and
(A.5) and (A.6) of Lemma A.3, to obtain for arbitrarily small ε′ and δ

P
(∣∣Z(Ln)

k

∣∣ ≥ ε
√

n
) ≤ P

(
Z

(Ln)
k ≥ ε

√
n
) + P

(
Z

(Ln)
k ≤ −ε

√
n
)

≤ exp

(
−C

(
2ε

nδ
k

)max(1/q,(2/d)γ )+2/d

n
min(1/qc(d),1/q)−ε′
k

)
+ e−(ε/4)n

1−qδ0−δ

k . (5.36)

Inequality (5.36) with the uniform bound |Z(Ln)
k | ≤ nq(δ+1/2), and the lower bound on var(Z(Ln)

k ) in (5.32), imply that
Lindeberg’s condition (5.31) holds.

Appendix

In this section, we recall and improve some key estimates for dealing with large deviation for intersection local times.
First, we recall a special form of Lemma 5.1 of [3].

Lemma A.1 (Lemma 5.1 of [3]). Assume {Y1, . . . , Yn} are positive and independent. Furthermore, assume that there
is a constant C > 0 such that for any i ∈ {1, . . . , n}

∀t > 0 P(Yi > t) ≤ C exp(−t). (A.1)

Then, for some cu > 0, and any 0 < δ < 1, we have for any integer n

P

(
n∑

i=1

(
Yi − E[Yi]

) ≥ xn

)
≤ exp

(
cuδ

2(1−δ)nmax
i

(
E

[
Y 2

i

]
,E

[
Y 2

i

]1−δ) − δ

2
xn

)
. (A.2)

Secondly, we improve Lemma 5.3 of [3] into inequalities we believe are optimal. Consider two independent random
walks {S(n), S̃(n), n ∈ N}, and for an integer k, denote D̃n(k) := {z ∈ Z

d : l̃n(z) > k}. We recall that if ln is the local
times and A a subset of Z

d , then ln(A) = ∑
z∈A ln(z).

Lemma A.2. Assume dimension d ≥ 3. There are constants Cd,C′
d , κd such that

E
[
ln

(
D̃n(k)

)] ≤ Cde−κdkψd(n), with ψd(n) =
⎧⎨
⎩

n1/2 for d = 3,
log(n) for d = 4,
1 for d ≥ 5,

(A.3)

and,

E
[
ln

(
D̃n(k)

)2] ≤ C′
de−κdkψd(n)2. (A.4)

Finally, we prove the following lemma. This result is not optimal, but suffices for our purpose.

Lemma A.3. Assume d ≥ 3, and take 1 > ξn ≥ n−δ for δ ≤ δ0/3 small enough.
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(i) When q ≥ qc(d), then for any ε > 0,

P
(

Lq(n) − E
[

Lq(n)
] ≥ ξnn

) ≤ exp
(−Cξ

1/q+2/d
n n1/q−ε

)
. (A.5)

(ii) For any q > 1,

P
(

Lq(n) − E
[

Lq(n)
] ≤ −ξnn

) ≤ exp

(
−ξn

2
n1−qδ0

)
. (A.6)

A.1. Proof of Lemma A.2

To emphazise the starting point, we denote by Pz the law of the random walk started at site z ∈ Z
d . We let Hz =

inf{n ≥ 0: S(n) = z}, and use Theorem 3.2.3 of Lawler [17].

∑
z∈Zd

P0(Hz ≤ n)2 ≤
∑
z∈Zd

(
n∑

k=0

P0
(
S(k) = z

))2

≤ Cdψd(n). (A.7)

Now call P0(l∞(0) > 1) = e−κd < 1, the return probability, and

E0
[
l∞(0)

] = 1

1 − e−κd
and E0

[
l∞(0)2] = 1 + e−κd

(1 − e−κd )2
.

It is easy to see that for any z ∈ Z
d

E0
[
ln(z)

] ≤ P0(Hz ≤ n)E0
[
l∞(0)

]
and E0

[
l2
n(z)

] ≤ P0(Hz ≤ n)E0
[
l2∞(0)

]
.

Similarly,

P0
(
ln(z) > k

) ≤ P0(Hz ≤ n)Pz

(
l∞(z) > k

) = e−κdkP0(Hz ≤ n).

Thus, there is Cd such that

E
[
ln

(
D̃n(k)

)] =
∑
z∈Zd

E0
[
ln(z)

]
P0

(
ln(z) > k

) ≤ e−κdkE0
[
l∞(0)

] ∑
z∈Zd

P0(Hz ≤ n)2 ≤ Cde−κdkψd(n). (A.8)

Now, we expand the square of ln(D̃n(k))

ln
(
D̃n(k)

)2 =
(∑

z∈Zd

ln(z)1
{
l̃n(z) > k

})2

=
∑

z

ln(z)
21

{
l̃n(z) > k

} +
∑
z �=z′

ln(z)ln
(
z′)1{

l̃n(z) > k, l̃n
(
z′) > k

}
. (A.9)

After taking the expectation of ln(D̃n(k))2

E
[
ln

(
D̃n(k)

)2] =
∑

z

E0
[
ln(z)

2]P0
(
ln(z) > k

) +
∑
z �=z′

E0
[
ln(z)ln

(
z′)]P0

(
ln(z) ∧ ln

(
z′) > k

)

≤ E0
[
ln(0)2]e−κdk

∑
z

P0(Hz ≤ n)2

+
∑
z �=z′

E0
[
ln(z)ln

(
z′)]P0

(
ln(z) ∧ ln

(
z′) > k

)
. (A.10)
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Now, in the last term in (A.10), we distinguish which of z or z′ is hit first.

P0
(
ln(z) ∧ ln

(
z′) > k

) ≤ P0
(
Hz < Hz′ , ln

(
z′) > k

) + P0
(
Hz′ < Hz, ln(z) > k

)
≤ P0(Hz ≤ n)Pz

(
ln

(
z′) > k

) + P0(Hz′ ≤ n)Pz′
(
ln(z) > k

)
≤ e−κdk

(
P0(Hz ≤ n)Pz(Hz′ ≤ n) + P0(Hz′ ≤ n)Pz′(Hz ≤ n)

)
. (A.11)

We treat now the term E0[ln(z)ln(z′)]. We have

E0
[
ln(z)ln

(
z′)] =

∑
k<k′≤n

(
P0

(
S(k) = z

)
Pz

(
S
(
k′ − k

) = z′) + P0
(
S(k) = z′)Pz′

(
S
(
k′ − k

) = z
))

≤ E0
[
ln(z)

]
Ez

[
ln

(
z′)] + E0

[
ln

(
z′)]Ez′

[
ln(z)

]
≤ E0

[
l∞(0)

]2(
P0(Hz ≤ n)Pz(Hz′ ≤ n) + P0(Hz′ ≤ n)Pz′(Hz ≤ n)

)
. (A.12)

Thus, with the help of (A.11) and (A.12), (A.10) reads

E
[
ln

(
D̃n(k)

)2] ≤ E0
[
ln(0)2]e−κdk

∑
z

P0(Hz ≤ n)2

+ E0
[
l∞(0)

]2e−κdk
∑
z �=z′

(
P0(Hz ≤ n)Pz(Hz′ ≤ n) + P0(Hz′ ≤ n)Pz′(Hz ≤ n)

)2

≤ E0
[
ln(0)2]e−κdk

∑
z

P0(Hz ≤ n)2

+ 2E0
[
l∞(0)

]2e−κdk
∑
z �=z′

P0(Hz ≤ n)2Pz(Hz′ ≤ n)2 + P0(Hz′ ≤ n)2Pz′(Hz ≤ n)2. (A.13)

Now, we use translation invariance and (A.7)

∑
z �=z′

P0(Hz ≤ n)2Pz(Hz′ ≤ n)2 ≤
(∑

z

P0(Hz ≤ n)2
)2

≤ C2
dψd(n)2.

The result (A.4) follows at once.

A.2. Proof of Lemma A.3

The proof of (i) follows from (4.7) of Lemma 4.2, and Remark 4.3 which deals with the contribution of {z: ln(z) <

ξ
1/q
n n1/q−ε}. Using that for a transient walk, the local time of a site is bounded by a geometric variable, we have for a

small δ > 0 and a constant c > 0,

P

(∑
z

1
{
ln(z) ≥ ξ

1/q
n n1/q−ε

}
l
q
n (z) ≥ nξnδ

)
≤ P

(∃z: ln(z) ≥ ξ
1/q
n n1/q−ε

) ≤ ne−cξ
1/q
n n1/q−ε

.

Point (ii) follows from the lower bound in (1.16): Lq(n) ≥ S
(L)
q . Indeed, we choose δ = δ0/3, (with δ0 < 2/(dq))

and L such that 2L ∼ n1−δ0 . Then, we first have

Lq(n) − E
[

Lq(n)
] ≤ −ξnn �⇒ S(L)

q − E
[

Lq(n)
] ≤ −ξnn.

Now, Lemma 2.4 gives us

P
(
S(L)

q − E
[

Lq(n)
] ≥ −ξnn

) ≤ exp

(
−ξn

2
n1−qδ0

)
. (A.14)
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